Sample records for basic environmental observatory

  1. CLEANER-Hydrologic Observatory Joint Science Plan

    NASA Astrophysics Data System (ADS)

    Welty, C.; Dressler, K.; Hooper, R.

    2005-12-01

    The CLEANER-Hydrologic Observatory* initiative is a distributed network for research on complex environmental systems that focuses on the intersecting water-related issues of both the CUAHSI and CLEANER communities. It emphasizes research on the nation's water resources related to human-dominated natural and built environments. The network will be comprised of: interacting field sites with an integrated cyberinfrastructure; a centralized technical resource staff and management infrastructure to support interdisciplinary research through data collection from advanced sensor systems, data mining and aggregation from multiple sources and databases; cyber-tools for analysis, visualization, and predictive multi-scale modeling that is dynamically driven. As such, the network will transform 21st century workforce development in the water-related intersection of environmental science and engineering, as well as enable substantial educational and engagement opportunities for all age levels. The scientific goal and strategic intent of the CLEANER-Hydrologic Observatory Network is to transform our understanding of the earth's water cycle and associated biogeochemical cycles across spatial and temporal scales-enabling quantitative forecasts of critical water-related processes, especially those that affect and are affected by human activities. This strategy will develop scientific and engineering tools that will enable more effective adaptive approaches for resource management. The need for the network is based on three critical deficiencies in current abilities to understand large-scale environmental processes and thereby develop more effective management strategies. First we lack basic data and the infrastructure to collect them at the needed resolution. Second, we lack the means to integrate data across scales from different media (paper records, electronic worksheets, web-based) and sources (observations, experiments, simulations). Third, we lack sufficiently accurate modeling and decision-support tools to predict the underlying processes or subsequently forecast the effects of different management strategies. Water is a critical driver for the functioning of all ecosystems and development of human society, and it is a key ingredient for the success of industry, agriculture and, national economy. CLEANER-Hydrologic Observatories will foster cutting-edge science and engineering research that addresses major national needs (public and governmental) related to water and include, for example: (i) water resource problems, such as impaired surface waters, contaminated ground water, water availability for human use and ecosystem needs, floods and floodplain management, urban storm water, agricultural runoff, and coastal hypoxia; (ii) understanding environmental impacts on public health; (iii) achieving a balance of economic and environmental sustainability; (iv) reversing environmental degradation; and (v) protecting against chemical and biological threats. CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) is an ENG initiative; the Hydrologic Observatory Network is GEO initiative through CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.). The two initiatives were merged into a joint, bi-directorate program in December 2004.

  2. NASA's Earth Observatory and Visible Earth: Imagery and Science on the Internet

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Simmon, Robert B.; Herring, David D.

    2003-01-01

    The purpose of NASA s Earth Observatory and Visible Earth Web sites is to provide freely-accessible locations on the Internet where the public can obtain new satellite imagery (at resolutions up to a given sensor's maximum) and scientific information about our home planet. Climatic and environmental change are the sites main foci. As such, they both contain ample data visualizations and time-series animations that demonstrate geophysical parameters of particular scientific interest, with emphasis on how and why they vary over time. An Image Composite Editor (ICE) tool will be added to the Earth Observatory in October 2002 that will allow visitors to conduct basic analyses of available image data. For example, users may produce scatter plots to correlate images; or they may probe images to find the precise unit values per pixel of a given data product; or they may build their own true-color and false-color images using multi- spectral data. In particular, the sites are designed to be useful to the science community, public media, educators, and students.

  3. Three Short Films about Water: Presenting Basic Concepts to Students and Stakeholders

    NASA Astrophysics Data System (ADS)

    Arrigo, J. S.; Hooper, R. P.; Michel, A.; Wilde, P.; Lilienfeld, L.

    2011-12-01

    Three short form (3 - 5 minute) movies were produced for CUAHSI, to convey basic concepts such as a hydrologic budget, stores and fluxes of water, and the flowpaths and residence time of water. The films were originally intended to be used by scientists to explain the concepts behind potential environmental observatories, but evolved into serving a broader purpose. The films combine still photos, satellite images, animation and video clips, and interviews with CUAHSI members explaining hydrologic concepts in simple, accessible terms. In producing these films, we have found the importance of engaging scientists in conversation first, to develop a script around key accessible concepts and relevant information. Film and communication professionals play a critical role in distilling the scientific explanation and concepts into accessible, engaging film material. The films have been widely distributed through CD and online to educators for use in courses. Additionally, they provide a way to engage stakeholders, particularly land owners, by conveying basic concepts that are necessary to understand the hydrologic and earth science foundation of many of today's political and environmental issues. The films can be viewed online at the CUAHSI website, which also contains links to other film related resources and programs.

  4. Cabled observatories: Connecting coastal communities to local ocean data

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Hoeberechts, M.; Brown, J. C. K.; McLean, M. A.; Ewing, N.; Moran, K.

    2015-12-01

    Coastal communities are facing a wide range of rapid changes due to anthropogenic and natural environmental influences. Communities are under pressure to adapt to effects of climate change, including altered shorelines, changes in availability of seafood, and in northern regions, changes to the extent, formation and break-up of land-fast and sea-ice. Access to up-to-date scientific data and basic climate literacy are essential tools to enable community members to make informed decisions about their own coast. Ocean Networks Canada (ONC) operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia (BC). ONC also operates smaller, coastal community observatories which provide data for both scientific and educational initiatives.The first Arctic community observatory, deployed in 2012, is located in Cambridge Bay, Nunavut. Real-time data flowing from the platform are collected by a range of instruments, including a conductivity-temperature-depth sensor (CTD), hydrophone, video camera, and an ice profiler. There is also a meteorological station and time lapse camera on the dock. Five additional community observatories are being installed over the next year along the coast of BC. Indigenous communities, including the Inuit population in Cambridge Bay and First Nations on BC's north and central coast, are key partners and collaborators of this initiative.Benefits to communities from cabled observatory ocean monitoring can only be achieved if the data collected are relevant to community members and contribute to research priorities identified within the community. The data must be easily accessible and complement existing environmental monitoring initiatives. Community members must possess knowledge and tools to analyze and interpret the data for their purposes. For these reasons, community involvement is critical to the project, including the design of user interfaces for data access, development of educational programs, and long-term planning.Here we describe Ocean Networks Canada's community initiatives including collaboration with Indigenous knowledge holders and local experts, programs in community schools to foster K-12 climate literacy and post-secondary programs targeted to community members.

  5. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  6. Framework for Informed Policy Making Using Data from National Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Wee, B.; Taylor, J. R.; Poinsatte, J.

    2012-12-01

    Large-scale environmental changes pose challenges that straddle environmental, economic, and social boundaries. As we design and implement climate adaptation strategies at the Federal, state, local, and tribal levels, accessible and usable data are essential for implementing actions that are informed by the best available information. Data-intensive science has been heralded as an enabler for scientific breakthroughs powered by advanced computing capabilities and interoperable data systems. Those same capabilities can be applied to data and information systems that facilitate the transformation of data into highly processed products. At the interface of scientifically informed public policy and data intensive science lies the potential for producers of credible, integrated, multi-scalar environmental data like the National Ecological Observatory Network (NEON) and its partners to capitalize on data and informatics interoperability initiatives that enable the integration of environmental data from across credible data sources. NSF's large-scale environmental observatories such as NEON and the Ocean Observatories Initiative (OOI) are designed to provide high-quality, long-term environmental data for research. These data are also meant to be repurposed for operational needs that like risk management, vulnerability assessments, resource management, and others. The proposed USDA Agriculture Research Service (ARS) Long Term Agro-ecosystem Research (LTAR) network is another example of such an environmental observatory that will produce credible data for environmental / agricultural forecasting and informing policy. To facilitate data fusion across observatories, there is a growing call for observation systems to more closely coordinate and standardize how variables are measured. Together with observation standards, cyberinfrastructure standards enable the proliferation of an ecosystem of applications that utilize diverse, high-quality, credible data. Interoperability facilitates the integration of data from multiple credible sources of data, and enables the repurposing of data for use at different geographical scales. Metadata that captures the transformation of data into value-added products ("provenance") lends reproducability and transparency to the entire process. This way, the datasets and model code used to create any product can be examined by other parties. This talk outlines a pathway for transforming environmental data into value-added products by various stakeholders to better inform sustainable agriculture using data from environmental observatories including NEON and LTAR.;

  7. A conceptual approach to a citizens' observatory--supporting community-based environmental governance.

    PubMed

    Liu, Hai-Ying; Kobernus, Mike; Broday, David; Bartonova, Alena

    2014-12-12

    In recent years there has been a trend to view the Citizens' Observatory as an increasingly essential tool that provides an approach for better observing, understanding, protecting and enhancing our environment. However, there is no consensus on how to develop such a system, nor is there any agreement on what a Citizens' Observatory is and what results it could produce. The increase in the prevalence of Citizens' Observatories globally has been mirrored by an increase in the number of variables that are monitored, the number of monitoring locations and the types of participating citizens. This calls for a more integrated approach to handle the emerging complexities involved in this field, but before this can be achieved, it is essential to establish a common foundation for Citizens' Observatories and their usage. There are many aspects to a Citizens' Observatory. One view is that its essence is a process that involves environmental monitoring, information gathering, data management and analysis, assessment and reporting systems. Hence, it requires the development of novel monitoring technologies and of advanced data management strategies to capture, analyse and survey the data, thus facilitating their exploitation for policy and society. Practically, there are many challenges in implementing the Citizens' Observatory approach, such as ensuring effective citizens' participation, dealing with data privacy, accounting for ethical and security requirements, and taking into account data standards, quality and reliability. These concerns all need to be addressed in a concerted way to provide a stable, reliable and scalable Citizens' Observatory programme. On the other hand, the Citizens' Observatory approach carries the promise of increasing the public's awareness to risks in their environment, which has a corollary economic value, and enhancing data acquisition at low or no cost. In this paper, we first propose a conceptual framework for a Citizens' Observatory programme as a system that supports and promotes community-based environmental governance. Next, we discuss some of the challenges involved in developing this approach. This work seeks to initiate a debate and help defining what is the Citizens' Observatory, its potential role in environmental governance, and its validity as a tool for environmental research.

  8. Parrallel power for undersea application: The basic considerations

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Howe, B.

    2001-01-01

    Power systems for undersea observatories are required to deliver high power with good reliability. For the proposed NEPTUNE observatory, the authors have developed a power scheme that combines ideas from terrestial power systems and switching power supplies with experience from undersea cable systems.

  9. An Integrated Cyberenvironment for Event-Driven Environmental Observatory Research and Education

    NASA Astrophysics Data System (ADS)

    Myers, J.; Minsker, B.; Butler, R.

    2006-12-01

    National environmental observatories will soon provide large-scale data from diverse sensor networks and community models. While much attention is focused on piping data from sensors to archives and users, truly integrating these resources into the everyday research activities of scientists and engineers across the community, and enabling their results and innovations to be brought back into the observatory, also critical to long-term success of the observatories, is often neglected. This talk will give an overview of the Environmental Cyberinfrastructure Demonstrator (ECID) Cyberenvironment for observatory-centric environmental research and education, under development at the National Center for Supercomputing Applications (NCSA), which is designed to address these issues. Cyberenvironments incorporate collaboratory and grid technologies, web services, and other cyberinfrastructure into an overall framework that balances needs for efficient coordination and the ability to innovate. They are designed to support the full scientific lifecycle both in terms of individual experiments moving from data to workflows to publication and at the macro level where new discoveries lead to additional data, models, tools, and conceptual frameworks that augment and evolve community-scale systems such as observatories. The ECID cyberenvironment currently integrates five major components a collaborative portal, workflow engine, event manager, metadata repository, and social network personalization capabilities - that have novel features inspired by the Cyberenvironment concept and enabling powerful environmental research scenarios. A summary of these components and the overall cyberenvironment will be given in this talk, while other posters will give details on several of the components. The summary will be presented within the context of environmental use case scenarios created in collaboration with researchers from the WATERS (WATer and Environmental Research Systems) Network, a joint National Science Foundation-funded initiative of the hydrology and environmental engineering communities. The use case scenarios include identifying sensor anomalies in point- and streaming sensor data and notifying data managers in near-real time; and referring users of data or data products (e.g., workflows, publications) to related data or data products.

  10. Modeling the natural UV irradiation and comparative UV measurements at Moussala BEO (BG)

    NASA Astrophysics Data System (ADS)

    Tyutyundzhiev, N.; Angelov, Ch; Lovchinov, K.; Nitchev, Hr; Petrov, M.; Arsov, T.

    2018-03-01

    Studies of and modeling the impact of natural UV irradiation on the human population are of significant importance for human activity and economics. The sharp increase of environmental problems – extraordinary temperature changes, solar irradiation abnormalities, icy rains – raises the question of developing novel means of assessing and predicting potential UV effects. In this paper, we discuss new UV irradiation modeling based on recent real-time measurements at Moussala Basic Environmental Observatory (BEO) on Moussala Peak (2925 m ASL) in Rila Mountain, Bulgaria, and highlight the development and initial validation of portable embedded devices for UV-A, UV-B monitoring using open-source software architecture, narrow bandpass UV sensors, and the popular Arduino controllers. Despite the high temporal resolution of the VIS and UV irradiation measurements, the results obtained reveal the need of new assumptions in order to minimize the discrepancy with available databases.

  11. Diurnal patterns of productivity of arbuscular mycorrhizal fungi revealed with the Soil Ecosystem Observatory.

    PubMed

    Hernandez, Rebecca R; Allen, Michael F

    2013-10-01

    Arbuscular mycorrhizal (AM) fungi are the most abundant plant symbiont and a major pathway of carbon sequestration in soils. However, their basic biology, including their activity throughout a 24-h day : night cycle, remains unknown. We employed the in situ Soil Ecosystem Observatory to quantify the rates of diurnal growth, dieback and net productivity of extra-radical AM fungi. AM fungal hyphae showed significantly different rates of growth and dieback over a period of 24 h and paralleled the circadian-driven photosynthetic oscillations observed in plants. The greatest rates (and incidences) of growth and dieback occurred between noon and 18:00 h. Growth and dieback events often occurred simultaneously and were tightly coupled with soil temperature and moisture, suggesting a rapid acclimation of the external phase of AM fungi to the immediate environment. Changes in the environmental conditions and variability of the mycorrhizosphere may alter the diurnal patterns of productivity of AM fungi, thereby modifying soil carbon sequestration, nutrient cycling and host plant success. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Diurnal patterns of productivity of arbuscular mycorrhizal fungi revealed with the Soil Ecosystem Observatory

    PubMed Central

    Hernandez, Rebecca R; Allen, Michael F

    2013-01-01

    Arbuscular mycorrhizal (AM) fungi are the most abundant plant symbiont and a major pathway of carbon sequestration in soils. However, their basic biology, including their activity throughout a 24-h day : night cycle, remains unknown. We employed the in situ Soil Ecosystem Observatory to quantify the rates of diurnal growth, dieback and net productivity of extra-radical AM fungi. AM fungal hyphae showed significantly different rates of growth and dieback over a period of 24 h and paralleled the circadian-driven photosynthetic oscillations observed in plants. The greatest rates (and incidences) of growth and dieback occurred between noon and 18:00 h. Growth and dieback events often occurred simultaneously and were tightly coupled with soil temperature and moisture, suggesting a rapid acclimation of the external phase of AM fungi to the immediate environment. Changes in the environmental conditions and variability of the mycorrhizosphere may alter the diurnal patterns of productivity of AM fungi, thereby modifying soil carbon sequestration, nutrient cycling and host plant success. PMID:23844990

  13. 78 FR 22239 - Takes of Marine Mammals Incidental to Specified Activities; Marine Geophysical Survey on the Mid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... authorization must set forth the permissible methods of taking; other means of effecting the least practicable... Authorization to the Observatory. The Observatory, with research funding from the Foundation, plans to conduct... Environmental Impact Statement/ Overseas Environmental Impact Statement for Marine Seismic Research Funded by...

  14. Challenges and Opportunities to Developing Synergies Among Diverse Environmental Observatories: FSML, NEON, and GLEON

    NASA Astrophysics Data System (ADS)

    Williamson, C. E.; Weathers, K. C.; Knoll, L. B.; Brentrup, J.

    2012-12-01

    Recent rapid advances in sensor technology and cyberinfrastructure have enabled the development of numerous environmental observatories ranging from local networks at field stations and marine laboratories (FSML) to continental scale observatories such as the National Ecological Observatory Network (NEON) to global scale observatories such as the Global Lake Ecological Observatory Network (GLEON). While divergent goals underlie the initial development of these observatories, and they are often designed to serve different communities, many opportunities for synergies exist. In addition, the use of existing infrastructure may enhance the cost-effectiveness of building and maintaining large scale observatories. For example, FSMLs are established facilities with the staff and infrastructure to host sensor nodes of larger networks. Many field stations have existing staff and long-term databases as well as smaller sensor networks that are the product of a single or small group of investigators with a unique data management system embedded in a local or regional community. These field station based facilities and data are a potentially untapped gold mine for larger continental and global scale observatories; common ecological and environmental challenges centered on understanding the impacts of changing climate, land use, and invasive species often underlie these efforts. The purpose of this talk is to stimulate a dialog on the challenges of merging efforts across these different spatial and temporal scales, as well as addressing how to develop synergies among observatory networks with divergent roots and philosophical approaches. For example, FSMLs have existing long-term databases and facilities, while NEON has sparse past data but a well-developed template and closely coordinated team working in a coherent format across a continental scale. GLEON on the other hand is a grass-roots network of experts in science, information technology, and engineering with a common goal of building a scalable network around the world to understand and predict how lakes respond to global change. Creating synergies among networks at these divergent scales requires open discussions ranging from data collection and management to data serving and sharing. Coordination of these efforts can provide an additional opportunity to educate both students and the public in innovative new ways about the broader continental to global scale of ecological and environmental challenges that they have observed in their more local ecosystems.

  15. Observatories, think tanks, and community models in the hydrologic and environmental sciences: How does it affect me?

    NASA Astrophysics Data System (ADS)

    Torgersen, Thomas

    2006-06-01

    Multiple issues in hydrologic and environmental sciences are now squarely in the public focus and require both government and scientific study. Two facts also emerge: (1) The new approach being touted publicly for advancing the hydrologic and environmental sciences is the establishment of community-operated "big science" (observatories, think tanks, community models, and data repositories). (2) There have been important changes in the business of science over the last 20 years that make it important for the hydrologic and environmental sciences to demonstrate the "value" of public investment in hydrological and environmental science. Given that community-operated big science (observatories, think tanks, community models, and data repositories) could become operational, I argue that such big science should not mean a reduction in the importance of single-investigator science. Rather, specific linkages between the large-scale, team-built, community-operated big science and the single investigator should provide context data, observatory data, and systems models for a continuing stream of hypotheses by discipline-based, specialized research and a strong rationale for continued, single-PI ("discovery-based") research. I also argue that big science can be managed to provide a better means of demonstrating the value of public investment in the hydrologic and environmental sciences. Decisions regarding policy will still be political, but big science could provide an integration of the best scientific understanding as a guide for the best policy.

  16. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  17. The Cline Observatory at Guilford Technical Community College

    NASA Astrophysics Data System (ADS)

    English, T.; Martin, A.; Herrick, D.; Cline, D.

    2003-12-01

    The Cline Observatory at the Jamestown, NC campus of Guilford Technical Community College (GTCC) was dedicated in 1997. It is the only such facility in the community college systems of the Carolinas. GTCC employs two astronomy faculty and offers multiple sections of introductory courses. The facility utilizes a 16-inch Meade LX-200 under a 6-meter dome, along with accessories for digital imaging and basic spectroscopic studies. An outside observing pad with permanent piers allows smaller instruments to be set up for sessions. In addition to supporting introductory and basic observational astronomy classes, the observatory provides regular outreach programs to serve a variety of constituencies. Public viewings are held once a week; school and community groups schedule visits throughout the year; special lectures bring the latest astronomical topics to the public; and annual conferences are hosted for regional amateur astronomers and for faculty/students from NC academic/research institutions. Volunteer support staff for such programs has been developed through partnership with the local astronomy club and through training via the observational astronomy course. Our courses and outreach programs have been very popular and successful, and the observatory now serves as a focal point of GTCC's public image.

  18. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer

    Bob Busey; Larry Hinzman

    2012-04-01

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  19. A Web-Based Resource for Investigating Environmental Change: The Emigrant Pass Observatory

    ERIC Educational Resources Information Center

    Davis, Michael G.; Chapman, David S.

    2012-01-01

    We present a user-friendly, data-driven Web site (http://thermal.gg.utah.edu/facilities/epo/) for a geothermal, climate change observatory that is educational for the general public, students, and researchers alike. The Emigrant Pass Observatory (EPO), located in the Grouse Creek Mountains in northwestern Utah, gathers both meteorological data…

  20. Publication of sensor data in the long-term environmental sub-observatory TERENO Northeast

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Ulbricht, Damian; Klump, Jens

    2017-04-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data provided by the different web services of the single observatories and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also publishes time series of environmental sensor data through the DOI registration service at GFZ Potsdam. This service uses the DataCite infrastructure to make research data citable and is able to keep and disseminate metadata popular to the geosciences [1]. The metadata required by DataCite are created in an automated process by extracting information from the SWE SensorML metadata. The GFZ data management tool kit panMetaDocs is used to manage and archive file based datasets and to register Digital Object Identifiers (DOI) for published data. In this presentation we will report on current advances in publication of time series data from environmental sensor networks. [1]http://doidb.wdc-terra.org/oaip/oai?verb=ListRecords&metadataPrefix=iso19139&set=DOIDB.TERENO

  1. Publication of sensor data in the long-term environmental monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Klump, J. F.

    2014-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also publishes time series of environmental sensor data through the online research data publication platform DataCite. The metadata required by DataCite are created in an automated process by extracting information from the SWE SensorML to create ISO 19115 compliant metadata. The GFZ data management tool kit panMetaDocs is used to register Digital Object Identifiers (DOI) and preserve file based datasets. In addition to DOI, the International Geo Sample Numbers (IGSN) is used to uniquely identify research specimens.

  2. Management approach recommendations. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Management analyses and tradeoffs were performed to determine the most cost effective management approach for the Earth Observatory Satellite (EOS) Phase C/D. The basic objectives of the management approach are identified. Some of the subjects considered are as follows: (1) contract startup phase, (2) project management control system, (3) configuration management, (4) quality control and reliability engineering requirements, and (5) the parts procurement program.

  3. Addressing the social dimensions of citizen observatories: The Ground Truth 2.0 socio-technical approach for sustainable implementation of citizen observatories

    NASA Astrophysics Data System (ADS)

    Wehn, Uta; Joshi, Somya; Pfeiffer, Ellen; Anema, Kim; Gharesifard, Mohammad; Momani, Abeer

    2017-04-01

    Owing to ICT-enabled citizen observatories, citizens can take on new roles in environmental monitoring, decision making and co-operative planning, and environmental stewardship. And yet implementing advanced citizen observatories for data collection, knowledge exchange and interactions to support policy objectives is neither always easy nor successful, given the required commitment, trust, and data reliability concerns. Many efforts are facing problems with the uptake and sustained engagement by citizens, limited scalability, unclear long-term sustainability and limited actual impact on governance processes. Similarly, to sustain the engagement of decision makers in citizen observatories, mechanisms are required from the start of the initiative in order to have them invest in and, hence, commit to and own the entire process. In order to implement sustainable citizen observatories, these social dimensions therefore need to be soundly managed. We provide empirical evidence of how the social dimensions of citizen observatories are being addressed in the Ground Truth 2.0 project, drawing on a range of relevant social science approaches. This project combines the social dimensions of citizen observatories with enabling technologies - via a socio-technical approach - so that their customisation and deployment is tailored to the envisaged societal and economic impacts of the observatories. The projects consists of the demonstration and validation of six scaled up citizen observatories in real operational conditions both in the EU and in Africa, with a specific focus on flora and fauna as well as water availability and water quality for land and natural resources management. The demonstration cases (4 EU and 2 African) cover the full 'spectrum' of citizen-sensed data usage and citizen engagement, and therefore allow testing and validation of the socio-technical concept for citizen observatories under a range of conditions.

  4. Building a pipeline of talent for operating radio observatories

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-07-01

    The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  5. Highly Adjustable Systems: An Architecture for Future Space Observatories

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Conti, Alberto; Redding, David; Lawrence, Charles R.; Hachkowski, Roman; Laskin, Robert; Steeves, John

    2017-06-01

    Mission costs for ground breaking space astronomical observatories are increasing to the point of unsustainability. We are investigating the use of adjustable or correctable systems as a means to reduce development and therefore mission costs. The poster introduces the promise and possibility of realizing a “net zero CTE” system for the general problem of observatory design and introduces the basic systems architecture we are considering. This poster concludes with an overview of our planned study and demonstrations for proving the value and worth of highly adjustable telescopes and systems ahead of the upcoming decadal survey.

  6. The Communication Strategy of NASA's Earth Observatory

    NASA Astrophysics Data System (ADS)

    Simmon, R.; Ward, K.; Riebeek, H.; Allen, J.; Przyborski, P.; Scott, M.; Carlowicz, M. J.

    2010-12-01

    Climate change is a complex, multi-disciplinary subject. Accurately conveying this complexity to general audiences, while still communicating the basic facts, is challenging. Our approach is to combine climate change information with a wide range of Earth system science topics, illustrated by satellite imagery and data visualizations. NASA's Earth Observatory web site (earthobservatory.nasa.gov) uses the broad range of NASA's remote sensing technologies, data, and research to communicate climate change science. We serve two primary audiences: the "attentive public" --people interested in and willing to seek out information about science, technology, and the environment--and media. We cover the breadth of Earth science, with information about climate change integrated with stories about weather, geology, oceanography, and solar flares. Current event-driven imagery is used as a hook to draw readers. We then supply links to supplemental information, either about current research or the scientific basics. We use analogies, carefully explain jargon or acronyms, and build narratives which both attract readers and make information easier to remember. These narratives are accompanied by primers on topics like energy balance or the water cycle. Text is carefully integrated with illustrations and state-of-the-art data visualizations. Other site features include a growing list of climate questions and answers, addressing common misconceptions about global warming and climate change. Maps of global environmental parameters like temperature, rainfall, and vegetation show seasonal change and long-term trends. Blogs from researchers in the field provide a look at the day-to-day process of science. For the media, public domain imagery is supplied at full resolution and links are provided to primary sources.

  7. Aquarius/SAC-D Observatory Being Crated for Shipment to Brazil

    NASA Image and Video Library

    2011-04-19

    NASA Aquarius/SAC-D being prepared for shipment to Brazil National Institute for Space Research Integration and Testing Lab. At INPE, the Aquarius/SAC-D observatory will undergo its final environmental testing.

  8. Aquarius/SAC-D Observatory before Departing Brazil

    NASA Image and Video Library

    2011-04-19

    After months of environmental tests at Brazil National Institute for Space Research Instituto Nacional de Pesquisas Espaciais, INPE, NASA Aquarius/SAC-D observatory is loaded into a crate for shipment to Vandenberg Air Force Base.

  9. Environmental effects on lunar astronomical observatories

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for astronomical observations. Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence) and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities where rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  10. The National Solar Observatory Digital Library - a resource for space weather studies

    NASA Astrophysics Data System (ADS)

    Hill, F.; Erdwurm, W.; Branston, D.; McGraw, R.

    2000-09-01

    We describe the National Solar Observatory Digital Library (NSODL), consisting of 200GB of on-line archived solar data, a RDBMS search engine, and an Internet HTML-form user interface. The NSODL is open to all users and provides simple access to solar physics data of basic importance for space weather research and forecasting, heliospheric research, and education. The NSODL can be accessed at the URL www.nso.noao.edu/diglib.

  11. Urban observatories opportunities for environmental monitoring: solid wastes.

    PubMed

    Rojas-Caldelas, R I; Corona Zambrano, E A

    2008-01-01

    Towns concentrate around 50% of world-wide population and the trend is oriented to underscore an urban profile of population. In addition, towns have become important for their economic contribution to the Gross Internal Product. The negative side of towns is the environmental and social impacts as a result of productive and domestic activities, besides the lack of available data. In order to overcome these shortcomings, the United Nations has established a project of urban monitoring throughout the Global Network of Urban Observatories; Mexico joined the project in 2005. The Local Urban Observatory of Mexicali has the task to produce information about cities that is useful to design public policies. Some of this information deals with a set of environmental indicators in the United Nations Habitat Agenda, which includes solid wastes. Therefore, this paper deals with two main topics; firstly, from the Habitat Agenda, a comparative urban analysis of waste production and coverage of domestic waste collection services; secondly, from the Local Agenda, the identification and ranking of environmental problems according to public perception coming from people involved in the municipal planning and decision making process. Results will be used to develop local indicators and public environmental policies.

  12. Infrared Astronomy Professional Development for K-12 Educators: WISE Telescope

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Mendez, B. M.

    2010-01-01

    K-12 educators need effective and relevant astronomy professional development. WISE Telescope (Wide-Field Infrared Survey Explorer) and Spitzer Space Telescope Education programs provided an immersive teacher professional development workshop at Arecibo Observatory in Puerto Rico during the summer of 2009. As many common misconceptions involve scale and distance, teachers worked with Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers built and used basic telescopes, learned about the history of telescopes, explored ground and satellite based telescopes, and explored and worked on models of WISE Telescope. An in-depth explanation of WISE and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. We taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of WISE lenticulars and diagramming of infrared data, listening to light by using speakers hooked up to photoreceptor cells, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars. We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development. Funding was provided by WISE Telescope, Spitzer Space Telescope, Starbucks, Arecibo Observatory, the American Institute of Aeronautics and Astronautics, and the Washington Space Grant Consortium.

  13. Alignment and testing of critical interface fixtures for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    McLean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph; Ohl, Raymond; Osgood, Dean; Parker, James; Redman, Kevin; Roberts, Vicki; Stephens, Matthew; Sutton, Adam; Wenzel, Greg; Young, Jerrod

    2017-08-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus, the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.

  14. Alignment and Testing of Critical Interface Fixtures for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mclean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph; hide

    2017-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.

  15. Alignment and Testing of Critical Interface Fixtures for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mclean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph; hide

    2017-01-01

    NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cupcone interfaces. Prior to integration to the spacecraft bus the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.

  16. Selecting, Scheduling and Carrying out Observing Programmes at CFHT

    NASA Astrophysics Data System (ADS)

    Veillet, Christian

    2006-12-01

    From paper proposals and photographic plate observations of the early days to today's submission, CFHT (Canada-France-Hawaii Telescope) went through many changes. However, a few basic features of the observatory did not change over the years, reflecting the very nature of an international collaboration deeply rooted in the concept of equal role and responsibilities of its two main partners, Canada and France. Nevertheless, the overall role of the observatory strongly evolved over the past years, as demonstrated by a more business-like management emphasizing the services rendered by the observatory to its customers, a move made possible by the Queues Service Observing mode. Together with a careful selection of its new generation of instruments, it allows the observatory to play a significant role in astronomy in spite of the relatively small size of its telescope.

  17. Earth Observatory Satellite (EOS) Definition Phase Report, Volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    System definition studies were conducted of the Earth Observatory Satellite (EOS). The studies show that the concept of an Earth Observatory Satellite in a near-earth, sun-synchronous orbit would make a unique contribution to the goals of a coordinated program for acquisition of data for environmental research with applications to earth resource inventory and management. The technical details for the proposed development of sensors, spacecraft, and a ground data processing system are presented.

  18. Using the Critical Zone Observatory Network to Put Geology into Environmental Science

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.

    2017-12-01

    The use of observatories to study the environment in the U.S.A. arguably began in 1910. Since then, many environmental observatories were set up to study impacts of land use change. At that time, observatories did not emphasize geological structure. Around 2004, scientists in the U.S.A. began to emphasize the need to study the Earth's surface as one integrated system that includes the geological underpinnings. In 2007, the Geosciences Directorate within the U.S. National Science Foundation established the Critical Zone Observatory (CZO) program. Today the CZO network has grown to 9 observatories, and 45 countries now host such observatories. A CZO is an observatory that promotes the study of the entire layer of Earth's surface from vegetation canopy to groundwater as one entity. The observatories are somewhat similar to other NSF-funded observatories such as Long Term Ecological Research (LTER) sites but they differ in that they emphasize the history of the landscape and how it mediates today's fluxes. LTERs largely focus on ecological science. The concepts of CZ science and CZOs - developed by the Geosciences Directorate - have been extraordinarily impactful: we now have deeper understanding of how surficial processes respond to tectonic, climatic, and anthropogenic drivers. One reason CZOs succeed is that they host scientists who make measurements in one place that cross timescales from that of the meteorologist to the geologist. The NSF Geosciences Directorate has thus promoted insights showing that many of the unexplained mysteries of "catchment science" or "ecosystem science" can be explained by the underlying geological story of a site. The scientific challenges of this endeavor are dwarfed, however, by cultural challenges. Specifically, while both CZOs and observatories such as LTERs struggle to publish many types of data from different disciplines in a continually changing cyber-world, only CZO scientists find they must repeatedly explain why such observatories and data are even necessary. LTERs have enjoyed funding since the 1980s whereas continued funding for CZOs has always been under intense scrutiny. These misgivings must be articulated and solved so that humans can integrate disparate observations to learn to sustain their natural environment - which is often defined by the geological substrate.

  19. A VBA Desktop Database for Proposal Processing at National Optical Astronomy Observatories

    NASA Astrophysics Data System (ADS)

    Brown, Christa L.

    National Optical Astronomy Observatories (NOAO) has developed a relational Microsoft Windows desktop database using Microsoft Access and the Microsoft Office programming language, Visual Basic for Applications (VBA). The database is used to track data relating to observing proposals from original receipt through the review process, scheduling, observing, and final statistical reporting. The database has automated proposal processing and distribution of information. It allows NOAO to collect and archive data so as to query and analyze information about our science programs in new ways.

  20. Mission requirements for a manned earth observatory. Task 2: Reference mission definition and analyiss, volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The mission requirements and conceptual design of manned earth observatory payloads for the 1980 time period are discussed. Projections of 1980 sensor technology and user data requirements were used to formulate typical basic criteria pertaining to experiments, sensor complements, and reference missions. The subjects discussed are: (1) mission selection and prioritization, (2) baseline mission analysis, (3) earth observation data handling and contingency plans, and (4) analysis of low cost mission definition and rationale.

  1. Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.

  2. A Green Robotic Observatory for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  3. The stellar occultation by the dwarf planet Haumea

    NASA Astrophysics Data System (ADS)

    Santos-Sanz, Pablo; Ortiz, Jose Luis; Sicardy, Bruno; Rossi, Gustavo; Berard, Diane; Morales, Nicolas; Duffard, Rene; Braga-Ribas, Felipe; Hopp, Ulrich; Ries, Christoph; Nascimbeni, Valerio; Marzari, Francesco; Granata, Valentina; Pál, András; Kiss, Csaba; Pribulla, Theodor; Milan Komzík, Richard; Hornoch, Kamil; Pravec, Petr; Bacci, Paolo; Maestripieri, Martina; Nerli, Luca; Mazzei, Leonardo; Bachini, Mauro; Martinelli, Fabio; Succi, Giacomo; Ciabattari, Fabrizio; Mikuz, Herman; Carbognani, Albino; Gaehrken, Bernd; Mottola, Stefano; Hellmich, Stephan; Rommel, Flavia; Fernández-Valenzuela, Estela; Campo Bagatin, Adriano; Haumea occultation international Collaboration: https://cloud.iaa.csic.es/public.php?service=files&t=d9276f8ab1a316cef13bee28bef75add

    2017-10-01

    The dwarf planet Haumea is a very peculiar Trans-Neptunian Object (TNO) with unique and exotic characteristics. It is currently classified as one of the five dwarf planets of the solar system, and it is the only one for which size, shape, albedo, density and other basic properties were not accurately known. To solve that we predicted an occultation of the star GaiaDR1 1233009038221203584 by Haumea and organized observations within the expected shadow path. Medium/large telescopes were needed to record the occultation with enough signal to noise ratio because the occulted star is of similar brightness as Haumea (R~17.7 mag). We will report results derived from this successful stellar occultation by Haumea on 2017 January 21st. The occultation was positive from 12 telescopes at 10 observing stations in Europe: the Asiago Observatory 1.8m telescope (Italy), the Mount Agliale Observatory 0.5m telescope (Italy), the Lajatico Astronomical Centre 0.5m telescope (Italy), the S.Marcello Pistoiese Observatory 0.6m telescope (Italy), the Crni Vrh Observatory 0.6m telescope (Slovenia), the Ondrejov Observatory 0.65m telescope (Czech Republic), the Bavarian Public Observatory 0.81m telescope (Germany), the Konkoly Observatory 1m and 0.6m telescopes (Hungary), the Skalnate Pleso Observatory 1.3m telescope (Slovakia), and the Wendelstein Observatory 2m and 0.4m telescopes (Germany). This is the occultation by a TNO with the largest number of chords ever recorded.Part of this work has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 687378.

  4. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  5. A study of alternative schemes for extrapolation of secular variation at observatories

    USGS Publications Warehouse

    Alldredge, L.R.

    1976-01-01

    The geomagnetic secular variation is not well known. This limits the useful life of geomagnetic models. The secular variation is usually assumed to be linear with time. It is found that attenative schemes that employ quasiperiodic variations from internal and external sources can improve the extrapolation of secular variation at high-quality observatories. Although the schemes discussed are not yet fully applicable in worldwide model making, they do suggest some basic ideas that may be developed into useful tools in future model work. ?? 1976.

  6. Heterodyne Interferometry in InfraRed at OCA-Calern Observatory in the seventies

    NASA Astrophysics Data System (ADS)

    Gay, J.; Rabbia, Y.

    2014-04-01

    We report on various works carried four decades ago, so as to develop Heterodyne Interferometry in InfraRed (10 μm) at Calern Observatory (OCA, France), by building an experiment, whose the acronym "SOIRDETE" means "Synthese d'Ouverture en InfraRouge par Detection hETErodyne". Scientific and technical contexts by this time are recalled, as well as basic principles of heterodyne interferometry. The preliminary works and the SOIRDETE experiment are briefly described. Short comments are given in conclusion regarding the difficulties which have prevented the full success of the SOIRDETE experiment.

  7. NHQ_2017_0804_This Week at NASA

    NASA Image and Video Library

    2017-08-04

    Scientists are studying our closest Earth-size exoplanet neighbor – Proxima b – to determine if it’s habitable. A NASA book is helping many people learn more about the total solar eclipse across the U.S. on Aug. 21st. "Getting a Feel for Eclipses," is a tactile guide designed to help illustrate basic concepts about the alignment of the Sun, Moon and Earth during a solar eclipse. After 40 years of searching, scientists have finally found evidence of g-mode gravity waves in our Sun – using data from our and the European Space Agency’s Solar and Heliospheric Observatory, or SOHO, spacecraft. Aug. 5 is the five-year anniversary of our Curiosity rover’s landing on Mars. At NASA Headquarters, young research professionals discussed the summer projects they completed – using NASA Earth observations and modelling data – to address a range of environmental issues around the globe.

  8. Environmental effects on an optical-UV-IR synthesis array

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Taylor, G. Jeffrey; Wetzel, John P.

    1992-01-01

    The Moon offers a stable platform with excellent seeing conditions for the Lunar Optical-UV-IR Synthesis Array (LOUISA). Some troublesome aspects of the lunar environment will need to be overcome to realize the full potential of the Moon as an observatory site. Mitigation of negative effects of vacuum, thermal radiation, dust, and micrometeorite impact is feasible with careful engineering and operational planning. Shields against impact, dust, and solar radiation need to be developed. Means of restoring degraded surfaces are probably essential for optical and thermal control surfaces deployed in long-lifetime lunar facilities. Precursor missions should be planned to validate and enhance the understanding of the lunar environment (e.g., dust behavior without and with human presence and to determine environmental effects on surfaces and components. Precursor missions should generate data useful in establishing keepout zones around observatory facilities while rocket launches and landings, mining, and vehicular traffic could be detrimental to observatory operation.

  9. NOAA News Online (Story 2393)

    Science.gov Websites

    flights, said Russell C. Schnell, the director of observatory and global network operations at the NOAA NOAA Magazine || NOAA Home Page Commerce Dept. SCIENTISTS BRAVE BRUTAL ELEMENTS ON TOP OF THE WORLD TO STUDY OZONE LAYER Image of the Greenland Environmental Observatory at Summit in the Arctic

  10. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  11. Launch and on-orbit checkout of Aquarius/SAC-D Observatory: an international remote sensing satellite mission measuring sea surface salinity

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Caruso, Daniel; Durham, David; Falcon, Carlos

    2011-11-01

    The Aquarius/SAC-D observatory was launch in June 2011 from Vandenberg Air Force Base (VAFB), in California, USA. This mission is the fourth joint earth-observation endeavor between NASA and CONAE. The primary objective of the Aquarius/SAC-D mission is to investigate the links between global water cycle, ocean circulation and climate by measuring Sea Surface Salinity (SSS). Over the last year, the observatory successfully completed system level environmental and functional testing at INPE, Brazil and was transported to VAFB for launch operations. This paper will present the challenges of this mission, the system, the preparation of the spacecraft, instruments, testing, launch, inorbit checkout and commissioning of this Observatory in space.

  12. International heliophysical year and basic space science in West Asia

    NASA Astrophysics Data System (ADS)

    Al-Naimiy, Hamid M. K.

    2007-12-01

    This paper summarizes the IHY and BSS activities in West Asia and their importance in many Arab countries, such as Algeria, Egypt, Iraq, Jordan, Kuwait, Qatar, Saudi Arabia, UAE, etc. BSS future plans for some of these countries are as follows: It is proposed by the astronomers from the Arabian Gulf Region to build the Gulf Observatory on top of Jabal Shams (2980 msl) which will have a 2-3 m optical telescope. Libya signed a contract with a French company for building an observatory which will have a 2-m optical robotic telescope. It is also proposed to rebuild the Iraqi National Astronomical Observatory (INAO) which was destroyed during the two wars. It is planned to build a 5-6 m optical telescope and a small solar telescope on the top of Korek mountain, which has excellent observing conditions.

  13. The UNH Earth Systems Observatory: A Regional Application in Support of GEOSS Global-Scale Objectives

    NASA Astrophysics Data System (ADS)

    Vorosmarty, C. J.; Braswell, B.; Fekete, B.; Glidden, S.; Hartmann, H.; Magill, A.; Prusevich, A.; Wollheim, W.; Blaha, D.; Justice, D.; Hurtt, G.; Jacobs, J.; Ollinger, S.; McDowell, W.; Rock, B.; Rubin, F.; Schloss, A.

    2006-12-01

    The Northeast corridor of the US is emblematic of the many changes taking place across the nation's and indeed the world's watersheds. Because ecosystem and watershed change occurs over many scales and is so multifaceted, transferring scientific knowledge to applications as diverse as remediation of local ground water pollution, setting State-wide best practices for non-point source pollution control, enforcing regional carbon sequestration treaties, or creating public/private partnerships for protecting ecosystem services requires a new generation of integrative environmental surveillance systems, information technology, and information transfer to the user community. Geographically complex ecosystem interactions justify moving toward more integrative, regionally-based management strategies to deal with issues affecting land, inland waterways, and coastal waterways. A unified perspective that considers the full continuum of processes which link atmospheric forcings, terrestrial responses, watershed exports along drainage networks, and the final delivery to the coastal zone, nearshore, and off shore waters is required to adequately support the management challenge. A recent inventory of NOAA-supported environmental surveillance systems, IT resources, new sensor technologies, and management-relevant decision support systems shows the community poised to formulate an integrated and operational picture of the environment of New England. This paper presents the conceptual framework and early products of the newly-created UNH Earth Systems Observatory. The goal of the UNH Observatory is to serve as a regionally-focused yet nationally-prominent platform for observation-based, integrative science and management of the New England/Gulf of Maine's land, air, and ocean environmental systems. Development of the UNH Observatory is being guided by the principles set forth under the Global Earth Observation System of Systems and is cast as an end-to-end prototype for GEOSS, targeting the monitoring in near real time of regional ecosystem state. The UNH Earth Systems Observatory consists of five interacting components. These "pillars" include (1) the Observatory data holdings themselves, (2) IT informatics backbone with standards-compliant data and map services, (3) community engagement through User Working Groups (UWGs), (4) an Advisory Board (drawn from local, regional, and national entities), and (5) education and public outreach. The structure is designed to capitalize on "operations-ready" capabilities, to identify emerging opportunities for new data integration, and to use the Observatory as a regional "launchpad" from which data-intensive science and management activities can be tested and implemented operationally.

  14. LAGO: The Latin American giant observatory

    NASA Astrophysics Data System (ADS)

    Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration

    2017-12-01

    The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.

  15. The Virtual Solar Observatory: Still a Small Box

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.

    2005-01-01

    Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.

  16. The Virtual Wave Observatory (VWO): A Portal to Heliophysics Wave Data

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.

    2010-01-01

    The Virtual Wave Observatory (VWO) is one of the discipline-oriented virtual observatories that help form the nascent NASA Heliophysics Data environment to support heliophysics research. It focuses on supporting the searching and accessing of distributed heliophysics wave data and information that are available online. Since the occurrence of a natural wave phenomenon often depends on the underlying geophysical -- i.e., context -- conditions under which the waves are generated and propagate, and the observed wave characteristics can also depend on the location of observation, VWO will implement wave-data search-by-context conditions and location, in addition to searching by time and observing platforms (both space-based and ground-based). This paper describes the VWO goals, the basic design objectives, and the key VWO functionality to be expected. Members of the heliophysics community are invited to participate in VWO development in order to ensure its usefulness and success.

  17. Test What You Fly?

    NASA Technical Reports Server (NTRS)

    Margolies, Don

    2002-01-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  18. Test What You Fly?

    NASA Astrophysics Data System (ADS)

    Margolies, Don

    2002-10-01

    It was the first time on any NASA project I know of that all the instruments on an observatory came off for rework or calibration after the full range of environmental tests, and then were reintegrated at the launch center without the benefit of an observatory environmental retest. Perhaps you've heard the expression, 'Test what you fly, fly what you test'? In theory, it's hard to argue with that. In this case, I was willing to take the risk of not testing what I flew. As the project manager for the Advanced Composition Explorer (ACE) mission, I was the one who ultimately decided what risks to take, just as it was my responsibility to get buy-in from the stakeholders.

  19. Automatic publishing ISO 19115 metadata with PanMetaDocs using SensorML information

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Ulbricht, Damian; Schroeder, Matthias; Klump, Jens

    2014-05-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. A challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences (GFZ) in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. Geographic sensor information and services are described using the ISO 19115 metadata schema. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also published data through DataCite. The necessary metadata are created in an automated process by extracting information from the SWE SensorML to create ISO 19115 compliant metadata. The resulting metadata file is stored in the GFZ Potsdam data infrastructure. The publishing workflow for file based research datasets at GFZ Potsdam is based on the eSciDoc infrastructure, using PanMetaDocs (PMD) as the graphical user interface. PMD is a collaborative, metadata based data and information exchange platform [1]. Besides SWE, metadata are also syndicated by PMD through an OAI-PMH interface. In addition, metadata from other observatories, projects or sensors in TERENO can be accessed through the TERENO Northeast data portal. [1] http://meetingorganizer.copernicus.org/EGU2012/EGU2012-7058-2.pdf

  20. SOFIA Water Vapor Monitor Design

    NASA Technical Reports Server (NTRS)

    Cooper, R.; Roellig, T. L.; Yuen, L.; Shiroyama, B.; Meyer, A.; Devincenzi, D. (Technical Monitor)

    2002-01-01

    The SOFIA Water Vapor Monitor (WVM) is a heterodyne radiometer designed to determine the integrated amount of water vapor along the telescope line of sight and directly to the zenith. The basic technique that was chosen for the WVM uses radiometric measurements of the center and wings of the 183.3 GHz rotational line of water to measure the water vapor. The WVM reports its measured water vapor levels to the aircraft Mission Controls and Communication System (MCCS) while the SOFIA observatory is in normal operation at flight altitude. The water vapor measurements are also available to other scientific instruments aboard the observatory. The electrical, mechanical and software design of the WVM are discussed.

  1. FOSS Tools for Research Infrastructures - A Success Story?

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Wächter, J.

    2015-12-01

    Established initiatives and mandated organizations, e.g. the Initiative for Scientific Cyberinfrastructures (NSF, 2007) or the European Strategy Forum on Research Infrastructures (ESFRI, 2008), promote and foster the development of sustainable research infrastructures. The basic idea behind these infrastructures is the provision of services supporting scientists to search, visualize and access data, to collaborate and exchange information, as well as to publish data and other results. Especially the management of research data is gaining more and more importance. In geosciences these developments have to be merged with the enhanced data management approaches of Spatial Data Infrastructures (SDI). The Centre for GeoInformationTechnology (CeGIT) at the GFZ German Research Centre for Geosciences has the objective to establish concepts and standards of SDIs as an integral part of research infrastructure architectures. In different projects, solutions to manage research data for land- and water management or environmental monitoring have been developed based on a framework consisting of Free and Open Source Software (FOSS) components. The framework provides basic components supporting the import and storage of data, discovery and visualization as well as data documentation (metadata). In our contribution, we present our data management solutions developed in three projects, Central Asian Water (CAWa), Sustainable Management of River Oases (SuMaRiO) and Terrestrial Environmental Observatories (TERENO) where FOSS components build the backbone of the data management platform. The multiple use and validation of tools helped to establish a standardized architectural blueprint serving as a contribution to Research Infrastructures. We examine the question of whether FOSS tools are really a sustainable choice and whether the increased efforts of maintenance are justified. Finally it should help to answering the question if the use of FOSS for Research Infrastructures is a success story.

  2. WATERS - Integrating Science and Education Through the Development of an Education & Outreach Program that Engages Scientists, Students and Citizens

    NASA Astrophysics Data System (ADS)

    Eschenbach, E. A.; Conklin, M. H.

    2007-12-01

    The need to train students in hydrologic science and environmental engineering is well established. Likewise, the public requires a raised awareness of the seriousness of water quality and availability problems. The WATERS Network (WATer and Environmental Research Systems Network ) has the potential to significantly change the way students, researchers, citizens, policy makers and industry members learn about environmental problems and solutions regarding water quality, quantity and distribution. This potential can be met if the efforts of water scientists, computer scientists, and educators are integrated appropriately. Successful pilot projects have found that cyberinfrastructure for education and outreach needs to be developed in parallel with research related cyberinfrastructure. We propose further integration of research, education and outreach activities. Through the use of technology that connects students, faculty, researchers, policy makers and others, WATERS Network can provide learning opportunities and teaching efficiencies that can revolutionize environmental science and engineering education. However, there are a plethora of existing environmental science and engineering educational programs. In this environment, WATERS can make a greater impact through careful selection of activities that build upon its unique strengths, that have high potential for engaging the members, and that meet identified needs: (i) modernizing curricula and pedagogy (ii) integrating science and education, (iii) sustainable professional development, and (iv) training the next generation of interdisciplinary water and social scientists and environmental engineers. National and observatory-based education facilities would establish the physical infrastructure necessary to coordinate education and outreach activities. Each observatory would partner with local educators and citizens to develop activities congruent with the scientific mission of the observatory. An unprecedented opportunity exists for educational research of both formal and informal environmental science and engineering education in order to understand how the Network can be efficiently used to create effective technology-based learning environments for all participants.

  3. Transformational principles for NEON sampling of mammalian parasites and pathogens: a response to Springer et al. (2016)

    USDA-ARS?s Scientific Manuscript database

    The National Environmental Observatory Network (NEON) has recently released a series of protocols presented with apparently broad community support for studies of small mammals and parasites. Sampling designs were outlined outlined, collectively aimed at understanding how changing environmental cond...

  4. Towards a virtual observatory for ecosystem services and poverty alleviation

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Baez, S.; Cuesta, F.; Veliz Rosas, C.

    2010-12-01

    Over the last decades, near real-time environmental observation, technical advances in computer power and cyber-infrastructure, and the development of environmental software algorithms have increased dramatically. The integration of these evolutions, which is commonly referred to as the establishment of a virtual observatory, is one of the major challenges of the next decade for environmental sciences. Worldwide, many coordinated activities are ongoing to make this integration a reality. However, far less attention is paid to the question of how these developments can benefit environmental services management in a poverty alleviation context. Such projects are typically faced with issues of large predictive uncertainties, limited resources, limited local scientific capacity. At the same time, the complexity of the socio-economic contexts requires a very strong bottom-up oriented and interdisciplinary approach to environmental data collection and processing. In this study, we present three natural resources management cases in the Andes and the Amazon basin, and investigate how "virtual observatory" technology can improve ecosystem management. Each of these case studies present scientific challenges in terms of model coupling, real-time data assimilation and visualisation for management purposes. The first project deals with water resources management in the Peruvian Andes. Using a rainfall-runoff model, novel visualisations are used to give farmers insight in the water production and regulation capacity of their catchments, which can then be linked to land management practices such as conservation agriculture, wetland protection and grazing density control. In a project in the Amazonian floodplains, optimal allocation of the nesting availability and quality of the giant freshwater turtle are determined using a combined hydraulic model and weather forecasts. Finally, in the rainforest of the Yasuní Biosphere Reserve, Ecuador, biodiversity models are used to quantify the impacts of hunting and logging on community composition and wildlife populations.

  5. Graphics interfaces and numerical simulations: Mexican Virtual Solar Observatory

    NASA Astrophysics Data System (ADS)

    Hernández, L.; González, A.; Salas, G.; Santillán, A.

    2007-08-01

    Preliminary results associated to the computational development and creation of the Mexican Virtual Solar Observatory (MVSO) are presented. Basically, the MVSO prototype consists of two parts: the first, related to observations that have been made during the past ten years at the Solar Observation Station (EOS) and at the Carl Sagan Observatory (OCS) of the Universidad de Sonora in Mexico. The second part is associated to the creation and manipulation of a database produced by numerical simulations related to solar phenomena, we are using the MHD ZEUS-3D code. The development of this prototype was made using mysql, apache, java and VSO 1.2. based GNU and `open source philosophy'. A graphic user interface (GUI) was created in order to make web-based, remote numerical simulations. For this purpose, Mono was used, because it is provides the necessary software to develop and run .NET client and server applications on Linux. Although this project is still under development, we hope to have access, by means of this portal, to other virtual solar observatories and to be able to count on a database created through numerical simulations or, given the case, perform simulations associated to solar phenomena.

  6. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Lei, LU; Si-ming, LIU; Qi-wu, SONG; Zong-jun, NING

    2015-10-01

    Calibration is a basic and important job in solar radio spectral observations. It not only deduces the solar radio flux as an important physical quantity for solar observations, but also deducts the flat field of the radio spectrometer to display the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of the solar radio spectrometer of Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those of the Nobeyama solar radio polarimeter and the hard X-ray observations of the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, it is shown that these results are consistent with the characteristics of typical solar flare light curves. In particular, the analysis on the correlation between the variation of radio flux and the variation of hard X-ray flux in the pulsing phase of a flare indicates that these observations can be used to study the relevant radiation mechanism, as well as the related energy release and particle acceleration processes.

  7. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 2: Data management system configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Earth Observatory Satellite (EOS) data management system (DMS) is discussed. The DMS is composed of several subsystems or system elements which have basic purposes and are connected together so that the DMS can support the EOS program by providing the following: (1) payload data acquisition and recording, (2) data processing and product generation, (3) spacecraft and processing management and control, and (4) data user services. The configuration and purposes of the primary or high-data rate system and the secondary or local user system are explained. Diagrams of the systems are provided to support the systems analysis.

  8. Operational support and service concepts for observatories

    NASA Astrophysics Data System (ADS)

    Emde, Peter; Chapus, Pierre

    2014-08-01

    The operational support and service for observatories aim at the provision, the preservation and the increase of the availability and performance of the entire structural, mechanical, drive and control systems of telescopes and the related infrastructure. The operational support and service levels range from the basic service with inspections, preventive maintenance, remote diagnostics and spare parts supply over the availability service with telephone hotline, online and on-site support, condition monitoring and spare parts logistics to the extended service with operations and site and facility management. For the level of improvements and lifecycle management support they consist of expert assessments and studies, refurbishments and upgrades including the related engineering and project management activities.

  9. Enhancing Our Knowledge of Northern Cepheids through Photometric Monitoring

    NASA Astrophysics Data System (ADS)

    Turner, D. G.; Majaess, D. J.; Lane, D. J.; Szabados, L.; Kovtyukh, V. V.; Usenko, I. A.; Berdnikov, L. N.

    2009-09-01

    A selection of known and newly-discovered northern hemisphere Cepheids and related objects are being monitored regularly through CCD observations at the automated Abbey Ridge Observatory, near Halifax, and photoelectric photometry from the Saint Mary's University Burke-Gaffney Observatory. Included is Polaris, which is displaying unusual fluctuations in its growing light amplitude, and a short-period, double-mode Cepheid, HDE 344787, with an amplitude smaller than that of Polaris, along with a selection of other classical Cepheids in need of additional observations. The observations are being used to establish basic parameters for the Cepheids, for application to the Galactic calibration of the Cepheid period-luminosity relation as well as studies of Galactic structure.

  10. 41 CFR 102-80.10 - What are the basic safety and environmental management policies for real property?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public... MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT General Provisions § 102-80.10 What are the basic safety and environmental management policies for real property? The basic safety and...

  11. A Modern Operating System for Near-real-time Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Orcutt, John; Vernon, Frank

    2014-05-01

    The NSF Ocean Observatory Initiative (OOI) provided an opportunity for expanding the capabilities for managing open, near-real-time (latencies of seconds) data from ocean observatories. The sensors deployed in this system largely return data from seafloor, cabled fiber optic cables as well as satellite telemetry. Bandwidth demands range from high-definition movies to the transmission of data via Iridium satellite. The extended Internet also provides an opportunity to not only return data, but to also control the sensors and platforms that comprise the observatory. The data themselves are openly available to any users. In order to provide heightened network security and overall reliability, the connections to and from the sensors/platforms are managed without Layer 3 of the Internet, but instead rely upon message passing using an open protocol termed Advanced Queuing Messaging Protocol (AMQP). The highest bandwidths in the system are in the Regional Scale Network (RSN) off Oregon and Washington and on the continent with highly reliable network connections between observatory components at 10 Gbps. The maintenance of metadata and life cycle histories of sensors and platforms is critical for providing data provenance over the years. The integrated cyberinfrastructure is best thought of as an operating system for the observatory - like the data, the software is also open and can be readily applied to new observatories, for example, in the rapidly evolving Arctic.

  12. Establishing Long-term Observations of Gas Hydrate Systems: Results from Ocean Networks Canada's NEPTUNE Observatory

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Riedel, M.; Roemer, M.; Heesemann, M.; Chun, J. H.; Moran, K.; Spence, G.; Thomsen, L.

    2016-12-01

    The key for a scientific understanding of natural environments and the determination of baselines is the long-term monitoring of environmental factors. For seafloor environments including gas hydrate systems, cabled ocean observatories are important platforms for the remote acquisition of a comprehensive suite of datasets. This is particularly critical for those datasets that are difficult to acquire with autonomous, battery-powered systems, such as cameras or high-bandwidth sonar because cable connections provide continuous power and communication from shore to the seafloor. Ocean Networks Canada is operating the NEPTUNE cabled undersea observatory in the Northeast Pacific with two nodes at gas hydrate sites, Barkley Canyon and Clayoquot Slope. With up to seven years of continuous data from these locations we are now beginning to understand the dynamics of the natural systems and are able to classify the variations within the gas hydrate system. For example, the long-term monitoring of gas vent activity has allowed us to classify phases of low, intermittent and high activity that seem to reoccur periodically. Or, by recording the speeds of bacterial mat growth or detecting periods of increased productivity of flora and fauna at hydrates sites we can start to classify benthic activity and relate that to outside environmental parameters. This will eventually allow us to do enhanced environmental monitoring, establish baselines, and potentially detect anthropogenic variations or events for example during gas hydrate production.

  13. Developing a Virtual Network of Research Observatories

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Kirschtl, D.

    2008-12-01

    The hydrologic community has been discussing the concept of a network of observatories for the advancement of hydrologic science in areas of scaling processes, in testing generality of hypotheses, and in examining non-linear couplings between hydrologic, biotic, and human systems. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is exploring the formation of a virtual network of observatories, formed from existing field studies without regard to funding source. Such a network would encourage sharing of data, metadata, field methods, and data analysis techniques to enable multidisciplinary synthesis, meta-analysis, and scientific collaboration in hydrologic and environmental science and engineering. The virtual network would strive to provide both the data and the environmental context of the data through advanced cyberinfrastructure support. The foundation for this virtual network is Water Data Services that enable the publication of time-series data collected at fixed points using a services-oriented architecture. These publication services, developed in the CUAHSI Hydrologic Information Systems project, permit the discovery of data from both academic and government sources through a single portal. Additional services under consideration are publication of geospatial data sets, immersive environments based upon site digital elevation models, and a common web portal to member sites populated with structured data about the site (such as land use history and geologic setting) to permit understanding the environmental context of the data being shared.

  14. Collecting various sustainability metrics of observatory operations on Maunakea

    NASA Astrophysics Data System (ADS)

    Kuo Tiong, Blaise C.; Bauman, Steven E.; Benedict, Romilly; Draughn, John Wesley; Probasco, Quinn

    2016-07-01

    By collecting metrics in fleet operations, data center usage, employee air travel and facilities consumption at the Canada France Hawaii Telescope, the collective impact of CFHT and other observatories on the Maunakea Astronomy Precinct can be estimated. An audit of carbon emissions in these aspects as well as specific efficiency metrics such as data center Power Use Efficiency gives a general scale of environmental and social alterations. Applications of the audit would be for such things as crafting sustainability strategies.

  15. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance formore » the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)« less

  16. NORSAR Basic Seismological Research

    DTIC Science & Technology

    1990-11-29

    AZ 85721 Prof. Christopher H. Scholz Dr. William Wortman Lamont-Doherty Geological Observatory Mission Research Corporation of Columbia University 735...Reston, VA 22091 Mr. William J. Best Prof. Robert W. Clayton 907 Westwood Drive Seismological Laboratory Vienna, VA 22180 Division of Geological...Planetary Sciences California Institute of Technology Pasadena, CA 91125 Dr. N. Biswas Prof. F. A. Dahlen Geophysical Institute Geological and Geophysical

  17. Istoriko-Astronomicheskie Issledovaniya. Vypusk XXXI %t Studies in the History of Astronomy. Issue 31

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy, both domestic and international astronomy. Its basic headlines are: astronomy and cosmology of the 20th century; researches and findings; history of observatories and astronomical organisations; amateur astronomy in Russia. Among the most interesting problems investigated in this issue: the history of the observed structure and stability of planetary rings explanation, the history of prediction of giant vortexes in galaxies; the newest history of planetary cartography; the Old Russian calendars; the Russian observations of the 1874 Venus transit; the history of the Pulkovo Observatory for the last 50 years; the autobiography of the distinguished Russian astronomer academician V. G. Fesenkov; Byelorussian folk astronomy; and many others.

  18. Designing an End-to-End System for Data Storage, Analysis, and Visualization for an Urban Environmental Observatory

    NASA Astrophysics Data System (ADS)

    McGuire, M. P.; Welty, C.; Gangopadhyay, A.; Karabatis, G.; Chen, Z.

    2006-05-01

    The urban environment is formed by complex interactions between natural and human dominated systems, the study of which requires the collection and analysis of very large datasets that span many disciplines. Recent advances in sensor technology and automated data collection have improved the ability to monitor urban environmental systems and are making the idea of an urban environmental observatory a reality. This in turn has created a number of potential challenges in data management and analysis. We present the design of an end-to-end system to store, analyze, and visualize data from a prototype urban environmental observatory based at the Baltimore Ecosystem Study, a National Science Foundation Long Term Ecological Research site (BES LTER). We first present an object-relational design of an operational database to store high resolution spatial datasets as well as data from sensor networks, archived data from the BES LTER, data from external sources such as USGS NWIS, EPA Storet, and metadata. The second component of the system design includes a spatiotemporal data warehouse consisting of a data staging plan and a multidimensional data model designed for the spatiotemporal analysis of monitoring data. The system design also includes applications for multi-resolution exploratory data analysis, multi-resolution data mining, and spatiotemporal visualization based on the spatiotemporal data warehouse. Also the system design includes interfaces with water quality models such as HSPF, SWMM, and SWAT, and applications for real-time sensor network visualization, data discovery, data download, QA/QC, and backup and recovery, all of which are based on the operational database. The system design includes both internet and workstation-based interfaces. Finally we present the design of a laboratory for spatiotemporal analysis and visualization as well as real-time monitoring of the sensor network.

  19. Nebula observations. Catalogues and archive of photoplates

    NASA Astrophysics Data System (ADS)

    Shlyapnikov, A. A.; Smirnova, M. A.; Elizarova, N. V.

    2017-12-01

    A process of data systematization based on "Academician G.A. Shajn's Plan" for studying the Galaxy structure related to nebula observations is considered. The creation of digital versions of catalogues of observations and publications is described, as well as their presentation in HTML, VOTable and AJS formats and basic principles of work in the interactive application of International Virtual Observatory the Aladin Sky Atlas.

  20. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision of this modular underwater observatory network in Fram Strait will be presented.

  1. Aerosol and gamma background measurements at Basic Environmental Observatory Moussala

    NASA Astrophysics Data System (ADS)

    Angelov, Christo; Arsov, Todor; Penev, Ilia; Nikolova, Nina; Kalapov, Ivo; Georgiev, Stefan

    2016-03-01

    Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW) station Moussala BEO (2925 m a.s.l., 42°10'45'' N, 23°35'07'' E). Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.

  2. New Boundary Layer Facility at Andøya, 69N 16E

    NASA Astrophysics Data System (ADS)

    Gausa, M. A.; Reuder, J.; Blindheim, S.

    2016-12-01

    The present presentation introduces an inative for a new boundary layer research facility on the island of Andøya (69N,16E) in Norway. The facility will appreciate international cooperation and contributions.Most boundary layer observatories (as e.g. the Lindenberg Observatory in Germany, the Cabauw facility in the Netherlands, or the Boulder Atmospheric Observatory in the US) are located in mid latitudes. Arctic or sub-arctic stations are rare or not representative due to their location in valleys (e.g. Ny Ålesund). In addition, most of the existing sites are representative for a continental boundary layer and do not allow to observe coupling processes to the free troposphere and the upper atmosphere. The island of Andøya has a unique location at 69N. To the West, Andøya is open to the Norwegian Sea. Its orology maintains an almost undisturbed marine boundary on the foreseen location under SW and W wind weather conditions. Due to rugged mountains, other wind directions provide a more transformed PBL. The understanding of the Planetary Boundary Layer (PBL), in particular with respect to turbulence and turbulent exchange processes, is crucial for a wide range of science fields and environmental monitoring tasks: To name a few: basic atmospheric science, monitoring of pollutants, weather forecast, and climate projection. The PBL is consequently research focus for several research groups, which investigate the empirical and theoretical description of this complex height region. In particular, in high latitudes this lowermost layer of the atmosphere the understanding is poor. The following research topics of the new facility are foreseen: present climate projections show their largest bias in polar regions; this is mostly attributed to inappropriate parameterization of PBL processes in the numerical models forecasts of extreme weather events at high latitudes, e.g. of Polar lows with their potential of hazards for infrastructure and traffic, are still poor for the same reason natural aerosols and anthropogenic pollutants form and change in the PBL due to chemical and coagulation processes upward transport of energy are gravity (buoyancy) waves, which in many cases originate from the PBL precise measurements of precipitation under difficult meteorological conditions

  3. Istoriko-Astronomicheskie Issledovaniya %t Studies in the History of Astronomy

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy, both domestic and worldwide. It includes the following basic subdivisions: Astronomy, cosmology and cosmogony of the 20th century; researches and findings; ancient and medieval astronomy; history of observatories and others. Among the most interesting problems considered in the present issue: the origin of the Earth and the geospheres: a bit of history and the current state of the problem; the Near-Earth Astronomy as an independent astronomical discipline; the problem of visual registration of observations in optical astronomy in the 17th - 18th centuries; evidence of lunar and solar calendars in Russian chronicles; the history of the first observatory of the Moscow University; the history of Pulkovo observatory for the last 50 years; the life and activity of the outstanding Russian astronomer A. A. Belopolsky (for his 150th anniversary); a reconstruction of Philolaus' solar system model; and many others. The book is addressed to professional scientists, astronomy amateurs, pedagogues, and everybody interested in the history of science.

  4. Observations of GAIA-identified Cataclysmic Variables Using the TUBITAK National Observatory

    NASA Astrophysics Data System (ADS)

    Esenoglu, Hasan H.; Kirbiyik, Halil; Kaynar, Suleyman; Okuyan, Oguzhan; Hamitoglu, Irek; Galeev, Almaz; Uluc, Kadir; Kocak, Murat; Kilic, Sila E.; Parmaksizoglu, Murat; Erece, Orhan; Ozisik, Tuncay; Gulsecen, Hulusi

    2016-07-01

    TUBITAK National Observatory supports the GAIA alerts with observations using three telescopes (RTT150, T100, T60) at the site with a limited time quota. We have observed 10 variable stars among GAIA sources discovered in the years 2014-2016 that may be candidate Cataclysmic Variables (CVs). Our TUG observations at this stage involve photometry and spectroscopy to aid the identification of these sources. The first preliminary result of our observations of Gaia14aat among them showed a dwarf nova outburst with an amplitude of 2.69 mag. We aim to construct a GAIA astrophysics group to study CVs along with supported studies using the SRG (Spectrum Roentgen Gamma astrophysical observatory) after the year of 2016. These observations will basically involve spectroscopy, narrow-band CCD imaging and photometry using several filters to aid the identification of these sources. RTT150 observations with very narrow filters (like H-alpha, SII, OIII with band width of range of 2 to 5 nm) will reveal whether shell around the SRG sources to aid identification novae among them.

  5. Bubbles, voids, and bumps in time: The new cosmology

    NASA Astrophysics Data System (ADS)

    Cornell, James

    The history and current status of theoretical and observational cosmology are examined in chapters based on the Lowell Lectures, given in Boston and Washington DC in spring 1987. Topics addressed include the Aristotelian, Copernican, Newtonian, and Einsteinian universes; the measurement of the universe (redshifts and standard candles); mapping the universe (slices and bubbles); dark matter and missing mass; and the big bang and cosmic inflation. Six basic outstanding problems are identified, and the potential contributions of planned ground-based and space observatories to their solution are discussed. Particular attention is given to CCD detectors for large ground-based telescopes, the VLA, VLBI arrays, the ESO Very Large Telescope, the 10-m Keck telescope on Mauna Kea, the Hubble Space Telescope, the Gamma-Ray Observatory, and the Advanced X-ray Astrophysics Facility.

  6. A Dedicated Environmental Remote Sensing Facility for the Columbia Earth Institute

    NASA Technical Reports Server (NTRS)

    Weissel, Jeffrey K.; Small, Christopher

    1999-01-01

    This paper presents a final technical report on a dedicated environmental remote sensing facility for the Columbia Earth Institute. The above-referenced award enabled the Lamont-Doherty Earth Observatory to establish a state-of-the-art remote sensing image analysis and data visualization facility to serve the research and educational needs of students and staff at Lamont and the Columbia Earth Institute.

  7. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    NASA Technical Reports Server (NTRS)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  8. Continuing and New Measurements at the Abyssal ALOHA Cabled Observatory

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Potemra, J. T.; Butler, R.; Santiago-Mandujano, F.; Lukas, R.; Duennebier, F. K.; Karl, D. M.; Aucan, J.

    2016-02-01

    The ALOHA Cabled Observatory (ACO) is a general purpose "node" providing power, communications and timing connectivity for science use at Station ALOHA 100 km north of Oahu. Included are a suite of basic sensors making core measurements, some local and some sensing the water column. At 4728 m deep, it is the deepest scientific outpost on the planet with power and Internet. Importantly, Station ALOHA is the field site of the NSF-funded Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988, at a site that is representative of roughly 70% of the world ocean, sampling the ocean from top to bottom to monitor and study changes on scales of months to decades. The co-located Woods Hole mooring (WHOTS) provides meteorological and upper ocean physical data. The CMORE (Center for Microbial Oceanography Research and Education) and SCOPE (Simons Collaboration on Ocean Processes and Ecology) programs address their respective science topics at ALOHA. Together these programs provide a truly unique means for observing the ocean across all disciplines and regimes (deep sea, near surface, etc.). ACO has been operating in the abyss since June 2011, collecting temperature, salinity, velocity, acoustic, and video data (see for instance the abstract by Lukas et al., Spatial Analysis of Abyssal Temperature Variations Observed from the ALOHA Cabled Observatory and WHOTS Moorings). Using the University of Hawaii remotely operated vehicle ROV Lu`ukai, a basic sensor package was recently installed equipped with a Paroscientific nano-resolution pressure sensor, a WetLabs fluorometer/turbidity sensor, and a Seabird CTDO2 instrument. These data will be presented and described.

  9. MMS Observatory TV Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese

    2014-01-01

    The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.

  10. Conceptual Design of a Chesapeake Bay Environmental Observatory (CBEO)

    NASA Astrophysics Data System (ADS)

    Ball, W. P.; di Toro, D.; Gross, T. F.; Kemp, W. M.; Burns, R.; Piasecki, M.; Zaslavsky, I.; Cuker, B. E.; Murray, L.

    2006-12-01

    A new project is underway to develop and deploy a Chesapeake Bay Environmental Observatory (CBEO), which is intended to serve as a prototype of cyberinfrastructure (CI) for environmental observatory networks (EONs) that will demonstrate the transformative power of CI. The CBEO will be developed by a team of highly qualified computer scientists, ecologists, oceanographers and environmental engineers with a track record of working together on environmental observatory projects and complex cross-discipline research efforts. The project approach has been organized around the following four concurrent interacting elements, which follow the acronym "NETS": (1) The CBEO:N group will incorporate the test bed CI into the national EONs by constructing a GEON-based node for the CBEO. This will entail resolving complex cross-disciplinary issues of semantics, syntax and inter- operability as well as developing new shared CI tools for data assimilation and interpolation. (2) CBEO:E is the education element and will use the CBEO to translate observational science for public consumption. Direct participation of multicultural students and a K-12 teacher are planned. The test-bed and network components (described below and above) will provide the focus of five workshops for users, managers and science educators; (3) Prior to full integration via CBEO:N, CBEO:T will rapidly construct a locally accessible CBEO test-bed prototype that will integrate a subset of currently available large data sets characterized by multiple variables and widely disparate time and space scales ? grab and continuous sampling at fixed stations, undulating towed sensors, and satellite and aircraft remote sensing. A novel feature will be the inclusion of the fifteen year (1986-2000) simulated data from the Bay-wide fine spatial (1-10 km) and temporal (0.02-1 hr) scale hydrodynamic and water quality model. CBEO:T will serve initially as the development platform for data integration, interpolation, and visualization. (4) The driving force and context for the effort will be provided by the environmental science element, CBEO:S. CBEO:S will use CBEO:T and CBEO:N to address unresolved questions of anthropogenic and climatic factors controlling hypoxia in Chesapeake Bay, a problem shared with many other estuaries and whose consequences are severe and long lasting. The CBEO:S and CBEO:E teams will test the CBEO capabilities, suggest modifications, and provide timely user feedback. Overall, the project intends to demonstrate the power of blending CI and domain science to produce new and exciting scientific insights and engineering tools. The CI will produce a joining of disparate and incommensurable Chesapeake Bay data sets, while also providing shared CI developments to serve a multi- disciplinary research community through an observation node that is a member of all EONs currently under development.

  11. AIRMOSS MISSION OVERVIEW

    USDA-ARS?s Scientific Manuscript database

    Active microwave remote sensing has long been recognized as a key component of an effective environmental observing strategy, due to the strong relationships of radar measurements with geometric and compositional properties of the Earth’s landscape. The Airborne Microwave Observatory of Subcanopy an...

  12. Long-Term Environmental Research Programs - Evolving Capacity for Discovery

    NASA Astrophysics Data System (ADS)

    Swanson, F. J.

    2008-12-01

    Long-term forestry, watershed, and ecological research sites have become critical, productive nodes for environmental science research and in some cases for work in the social sciences and humanities. The Forest Service's century-old Experimental Forests and Ranges and the National Science Foundation's 28- year-old Long-Term Ecological Research program have been remarkably productive in both basic and applied sciences, including characterization of acid rain and old-growth ecosystems and development of forest, watershed, and range management systems for commercial and other land use objectives. A review of recent developments suggests steps to enhance the function of collections of long-term research sites as interactive science networks. The programs at these sites have evolved greatly, especially over the past few decades, as the questions addressed, disciplines engaged, and degree of science integration have grown. This is well displayed by small, experimental watershed studies, which first were used for applied hydrology studies then more fundamental biogeochemical studies and now examination of complex ecosystem processes; all capitalizing on the legacy of intensive studies and environmental monitoring spanning decades. In very modest ways these collections of initially independent sites have functioned increasingly as integrated research networks addressing inter-site questions by using common experimental designs, being part of a single experiment, and examining long-term data in a common analytical framework. The network aspects include data sharing via publicly-accessible data-harvester systems for climate and streamflow data. The layering of one research or environmental monitoring network upon another facilitates synergies. Changing climate and atmospheric chemistry highlight a need to use these networks as continental-scale observatory systems for assessing the impacts of environmental change on ecological services. To better capitalize on long-term research sites and networks, agencies and universities 1) need to encourage collaboration among sites and between science and land manager communities while 2) maintaining long- term studies and monitoring efforts, and staffing the collaboration in each partner organization, including positions specifically designated as liaisons among the participating communities.

  13. Airborne Imagery Collections Barrow 2013

    DOE Data Explorer

    Cherry, Jessica; Crowder, Kerri

    2015-07-20

    The data here are orthomosaics, digital surface models (DSMs), and individual frames captured during low altitude airborne flights in 2013 at the Barrow Environmental Observatory. The orthomosaics, thermal IR mosaics, and DSMs were generated from the individual frames using Structure from Motion techniques.

  14. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. Almost half of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this amount of propellant, a slosh analysis was performed prior to launch. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned.

  15. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  16. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SOO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SOO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. Almost half of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this amount of propellant, a slosh analysis was performed prior to launch. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned.

  17. Site Protection Program and Progress Report of Ali Observatory, Tibet

    NASA Astrophysics Data System (ADS)

    Yao, Yongqiang; Zhou, Yunhe; Wang, Xiaohua; He, Jun; Zhou, Shu

    2015-08-01

    The Ali observatory, Tibet, is a promising new site identified through ten year site survey over west China, and it is of significance to establish rules of site protection during site development. The site protection program is described with five aspects: site monitoring, technical support, local government support, specific organization, and public education. The long-term sky brightness monitoring is ready with site testing instruments and basic for light pollution measurement; the monitoring also includes directions of main light sources, providing periodical reports and suggestions for coordinating meetings. The technical supports with institutes and manufacturers help to publish lighting standards and replace light fixtures; the research pays special attention to the blue-rich sources, which impact the important application of high altitude sites. An official leading group towards development and protection of astronomical resources has been established by Ali government; one of its tasks is to issue regulations against light pollution, including special restrictions of airport, mine, and winter heating, and to supervise lighting inspection and rectification. A site protection office under the official group and local astronomical society are organized by Ali observatory; the office can coordinate in government levels and promote related activities. A specific website operated by the protection office releases activity propaganda, evaluation results, and technical comparison with other observatories. Both the site protection office and Ali observatory take responsibility for public education, including popular science lectures, light pollution and energy conservation education. Ali Night Sky Park has been constructed and opens in 2014, and provides a popular place and observational experience. The establishment of Ali Observatory and Night Sky Park brings unexpected social influence, and the starry sky trip to Ali becomes a new format of culture-oriented travels in China. The related news reports and network propaganda have drawn attention of national top leadership, instructing to further investigate national support policies.

  18. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1998-01-01

    Gamma-ray bursts remain on of the greatest mysteries in astrophysics in spite of recent observational advances and intense theoretical work. Although some of the basic properties of bursts were known 25 years ago, new and more detailed observations have been made by the BATSE (Burst and Transient Source Experiment) experiment on the Compton Gamma Ray Observatory in the past five years. Recent observations of bursts and some proposed models will be discussed.

  19. CCD Photometer Installed on the Telescope - 600 OF the Shamakhy Astrophysical Observatory II. The Technique of Observation and Data Processing of CCD Photometry

    NASA Astrophysics Data System (ADS)

    Abdullayev, B. I.; Gulmaliyev, N. I.; Majidova, S. O.; Mikayilov, Kh. M.; Rustamov, B. N.

    2009-12-01

    Basic technical characteristics of CCD matrix U-47 made by the Apogee Alta Instruments Inc. are provided. Short description and features of various noises introduced by optical system and CCD camera are presented. The technique of getting calibration frames: bias, dark, flat field and main stages of processing of results CCD photometry are described.

  20. Environmental microbiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, R.

    1992-01-01

    This book covers issues ranging from global climate changes to biocontrol of plant diseases. Many of its contributions stress how new technologies in areas such as molecular biology and environmental engineering expand understanding and applications of basic concepts in environmental microbiology. Articles in the book are in three basic subject areas: effects of environmental contamination on the role of microbes in geochemical cycling of the major elements, pathogens in the environment, and microbial activities in environmental management.

  1. Initiative for the creation of an integrated infrastructure of European Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Bachelery, P.; Ferreira, T. J. L.; Vogfjörd, K. S.

    2012-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of European citizens. The recent Eyjafjallajökull eruption also demonstrated that indirect effects of volcanic activity can present a threat to the economy and the lives of hundreds of million of people living in the whole continental area even in the case of activity of volcanoes with sporadic eruptions. Furthermore, due to the wide political distribution of the European territories, major activities of "European" volcanoes may have a worldwide impact (e.g. on the North Atlantic Ocean, West Indies included, and the Indian Ocean). Our ability to understand volcanic unrest and forecast eruptions depends on the capability of both the monitoring systems to effectively detect the signals generated by the magma rising and on the scientific knowledge necessary to unambiguously interpret these signals. Monitoring of volcanoes is the main focus of volcano observatories, which are Research Infrastructures in the ESFRI vision, because they represent the basic resource for researches in volcanology. In addition, their facilities are needed for the design, implementation and testing of new monitoring techniques. Volcano observatories produce a large amount of monitoring data and represent extraordinary and multidisciplinary laboratories for carrying out innovative joint research. The current distribution of volcano observatories in Europe and their technological state of the art is heterogeneous because of different types of volcanoes, different social requirements, operational structures and scientific background in the different volcanic areas, so that, in some active volcanic areas, observatories are lacking or poorly instrumented. Moreover, as the recent crisis of the ash in the skies over Europe confirms, the assessment of the volcanic hazard cannot be limited to the immediate areas surrounding active volcanoes. The whole European Community would therefore benefit from the creation of a network of volcano observatories, which would enable strengthening and sharing the technological and scientific level of current infrastructures. Such a network could help to achieve the minimum goal of deploying an observatory in each active volcanic area, and lay the foundation for an efficient and effective volcanic monitoring system at the European level.

  2. The Climatic Observatory of the Karst (O.C.C.), a scientific facility within an important tourist framework

    NASA Astrophysics Data System (ADS)

    Colucci, R. R.; Micheletti, S.; Fabbo, R.

    2009-09-01

    The Climatic Observatory of the Karst, officially inaugurated on 2nd October, 2008, is born in the same place of the historical headquarter of the Borgo Grotta Gigante Meteorological Office, which was set up in 1966 and has been officially operating since 1st January, 1967. The meteorological facilities and the weather office are located on the premises of the visitor centre of "Grotta Gigante”, which is a very popular karstic cave of Trieste, visited each year by at least 70k people. The privileged position induced the promoters of this initiative to think about an integrated meteorological multilanguages system for the visitors. This system provides in real time weather forecasts and meteorological data and, at the same time, general tourist information as well. The synergic cooperation of various Scientific Organizations, which are involved in climatic research at the Borgo Grotta Gigante Climatic Observatory of the Karst, makes possible the realization of this project: "E.Boegan” Cave Commission of S.A.G. (the administrative body); ARPA-OSMER, the Friuli Venezia-Giulia Meteorological Observatory of the Regional Agency of the Environmental Protection, (which manages the automatic station, broadcasts and publishes data in real time and forecasts in the visitors waiting room); C.N.R.-I.S.M.A.R., the Marine Science Institute in Trieste of the National Research Council of Italy (which manages and maintains mechanical instruments, publishes data and carries out checks, files data and publishes reports); U.M.F.V.G., the Friuli Venezia Giulia Meteorological Union (which is involved in scientific dissemination activity and web sharing of information); the Environmental and Public Works Section and Water Service of the Friuli Venezia Giulia Region (water resources monitoring). Moreover one of the main characteristic of the Observatory, also because of didactic reasons, is to maintain the traditional mechanical-analogue part of data collection, carried out by observers, alongside the electronic sensors. This factor is essential for the continuity and the homogeneity of historical series and it distinguishes the observatory from a normal weather station. The data collected is published annually in the "Osservazioni meteoriche" magazine, a publication edited by CGEB as a supplement to the scientific journal "Atti e memorie", which is sent to various Public Authorities, Scientific Organizations, libraries and anyone who applies for it.

  3. SN-1 and NEMO: the Italian cabled observatories

    NASA Astrophysics Data System (ADS)

    Favali, P.; Beranzoli, L.; Calore, D.; D'Anna, G.; Gasparoni, F.; NEMO Collaboration Team

    2003-04-01

    A fruitful synergy between Geophysics, Environmental Sciences, Nuclear Physics and Marine Technology has started through ongoing projects within different Italian research frameworks. The Neutrino Mediterranean Observatory (NEMO) project, funded by INFN, aims at the realization of a deep-sea experiment for the detection of cosmic neutrinos using an array of towers equipped by photosensors. To test the technological solutions proposed for the realization of the project, the Laboratiori Nazionali del Sud have set up an underwater Test Site off-shore Catania. A 25 km long submarine electro-optical cable was deployed in September 2001, in order to supply power from land and receive data from the underwater site located at a depth of 2000 m. A shore station has also been realize inside the Catania port area. In October 2001, Submarine Network-1 (SN-1), the first Italian deep-sea multidisciplinary observatory for geophysical and environmental monitoring was deployed at a depth of 2105 m, in the area of the Ibleo-maltese escarpment, in proximity of the marine tail of the NEMO cable. SN-1, funded by the Italian Gruppo Nazionale di Difesa dai Terremoti and coordinated by INGV, is presently operating in local mode storing measurements on hard disks and is powered by lithium batteries with an autonomy of approximately 200 days. In the view of mutual assistance, the coordinator institutions of NEMO and SN-1 have agreed that part of the optic fibres and power lines of the NEMO-1 underwater cable be made available to power SN-1 from land and to transfer in real time the signals acquired by the geophysical and environmental sensor packages of SN-1. On this latter's side, time series of environmental parameters useful for the analysis and interpretation of NEMO-1 detections will be available. A description of the two projects and of the 'state of the art' will be given and the benefits of the development of a submarine Italian prone site will be pointed out.

  4. The Hawaiian Volcano Observatory: a natural laboratory for studying basaltic volcanism: Chapter 1 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.; Kauahikaua, James P.; Brantley, Steven R.; Neal, Christina A.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    This chapter summarizes HVO’s history and some of the scientific achievements made possible by this permanent observatory over the past century as it grew from a small wooden structure with only a small staff and few instruments to a modern, well-staffed, world-class facility with state-of-the-art monitoring networks that constantly track volcanic and earthquake activity. The many successes of HVO, from improving basic knowledge about basaltic volcanism to providing hands-on experience and training for hundreds of scientists and students and serving as the testing ground for new instruments and technologies, stem directly from the acquisition, integration, and analysis of multiple datasets that span many decades of observations of frequent eruptive activity. HVO’s history of the compilation, interpretation, and communication of long-term volcano monitoring and eruption data (for instance, seismic, geodetic, and petrologic-geochemical data and detailed eruption chronologies) is perhaps unparalleled in the world community of volcano observatories. The discussion and conclusions drawn in this chapter, which emphasize developments since the 75th anniversary of HVO in 1987, are general and retrospective and are intended to provide context for the more detailed, topically focused chapters of this volume.

  5. Observation of the Earth liquid core resonance by extensometers

    NASA Astrophysics Data System (ADS)

    Bán, Dóra; Mentes, Gyula

    2016-04-01

    The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.

  6. Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems

    NASA Astrophysics Data System (ADS)

    Martin Taylor, S.

    2009-04-01

    The health of the world's oceans and their impact on global environmental and climate change make the development of cabled observing systems vital and timely as a data source and archive of unparalleled importance for new discoveries. The VENUS and NEPTUNE Canada observatories are on the forefront of a new generation of ocean science and technology. Funding of over $100M, principally from the Governments of Canada and BC, for these two observatories supports integrated ocean systems science at a regional scale enabled by new developments in powered sub-sea cable technology and in cyber-infrastructure that streams continuous real-time data to Internet-based web platforms. VENUS is a coastal observatory supporting two instrumented arrays in the Saanich Inlet, near Victoria, and in the Strait of Georgia, off Vancouver. NEPTUNE Canada is an 800 km system on the Juan de Fuca Plate off the west coast of British Columbia, which will have five instrumented nodes in operation over the next 18 months. This paper describes the development and management of these two observatories, the principal research themes, and the applications of the research to public policy, economic development, and public education and outreach. Both observatories depend on partnerships with universities, government agencies, private sector companies, and NGOs. International collaboration is central to the development of the research programs, including partnerships with initiatives in the EU, US, Japan, Taiwan and China.

  7. Astronomy and Space Science On The School - An Outreach Project for Elementary and High School Students of Brasilia

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo

    2016-07-01

    This project aims to develop interdisciplinary actions, articulated and convergence in the field of education, dissemination and popularization of science and technology in Brasilia-DF, the Federal District of Brazil. These actions are also been carried out at DF surroundings areas. Since 2015 linked convergent actions are focused on the development of space science and astronomy teaching with hands on experimental activities. Workshops, short basic astronomy courses, expositions and planetarium show are been carried out by a team of professors, graduate and under graduate students from University of Brasilia- UnB. At the same time upgrade actions are been done in order to modernize The Luiz Cruls Astronomical Observatory located at the far campus of UnB, named Fazenda Água Limpa. It is now a Center for research and space science dissemination and popularization not only for students but also for the whole community of Brasilia. Working toghether with the Physics Institute of UnB we have the recently created Museum of Science and Technology of Brasilia, also located at the UnB campus. The Museum is responsible for contac with schools and Brasilia community and for the organization of the activities of the Science on the School Project. Science on the School is an educational, scientific and cultural proposal approved and financed by the brazillian national research council (CNPq) and by the Science and Technology Reseach Foundation of Brasilia. Besides science dissemination for the brazillian society the project is also developing theoretical and experimental research in the area of Space Science and Astronomy. The project also aim to transform the Museum in a strong Science Education Center for the Brazil central region population, It is going to be a cultural environment and leisure for the Federal District and surrounding areas of Brasilia. In this work we will describe the coordinate actions of The Luiz Cruls Astronomical Observatory the Physics Institute of UnB and of the Museum of Science and Technology of Brasilia destinate to converge public communication of science. In their facilities will be possible to conceive, plan, develop, encourage and support scientific activities (playful and interactive) in schools and communities in the Federal District and surrounding areas of Brasilia, focusing on different aspects of science and technology and their relationship with society through investigative practices involving, particularly students and teachers of basic education and the community in General. The project will act even in the promotion of events, courses, workshops and scientific-cultural experiences, production of radio and TV programs aimed at promoting initiation into Science and environmental awareness on basic education.

  8. One second vector and scalar magnetic measurements at the low-latitude Choutuppal (CPL) magnetic observatory

    NASA Astrophysics Data System (ADS)

    Phani Chandrasekhar, Nelapatla; Potharaju, Sai Vijay Kumar; Arora, Kusumita; Shakar Rao Kasuba, Chandra; Rakhlin, Leonid; Tymoshyn, Sergey; Merenyi, Laszlo; Chilukuri, Anusha; Bulusu, Jayashree; Khomutov, Sergey

    2017-12-01

    One second measurements of the geomagnetic field variations, which meet INTERMAGNET quality and transmission specifications, require very special conditions to be maintained at the observatories over sustained periods of time, which pose serious challenges for the operators, particularly when infrastructural and environmental conditions are far from ideal. This work presents the progressive steps, which led to the successful setup of such measurements at the new magnetic observatory of the Council of Scientific and Industrial Research (CSIR)-National Geophysical Research Institute (NGRI) in the Choutuppal (CPL) campus, Hyderabad (HYB), India. The 1 s magnetic measurements in trial mode commenced in 2015 using the newly developed observatory-grade 1 s fluxgate magnetometer, GEOMAG-02MO, from Research Centre GEOMAGNET (GM), Ukraine, and the Overhauser proton precession magnetometer, GSM-90F1, along with the data acquisition system, Magrec-4B from Mingeo, Hungary. Iterative tuning of the setup led to the generation of good quality data from 2016 onward. The processes of commissioning this setup in low-latitude conditions, with the aim of producing 1 s definitive data, and the characteristics of the data from this new instrument are presented here.

  9. The Evolution of Inquiry Activities in the Akamai Observatory Short Course, 2004-2009

    NASA Astrophysics Data System (ADS)

    Rice, E. L.; McElwain, M.; Sonnett, S.; Rafelski, M.

    2010-12-01

    The Akamai Observatory Short Course (AOSC) is a five-day course of activities designed to prepare college students majoring in science, technology, engineering, and mathematics (STEM) fields for internships at observatories on the Big Island of Hawai'i. The design and implementation of inquiry-based activities in the AOSC have evolved considerably over the six years of the course. The content goals have always focused on the basic understanding of light and optics necessary to understand telescopes, but the scientific process goals gradually evolved to reflect the increasingly recognized importance of engineering design skills for successful observatory internships. In 2004 the inquiry-based activities were limited to one well-established Color, Light, and Spectra activity. In subsequent years more activities were customized and expanded upon to reflect the learners' diverse academic backgrounds, the developing goals of the short course, and feedback from internship hosts. The most recent inquiry, the Design and Build a Telescope activity, engaged students in designing and building a simple telescope, emphasizing science and engineering process skills in addition to science content. This activity was influenced by the Mission Design activity, added in 2006, that incorporated the application of inquiry-based learning to the engineering design process and allowed students to draw upon their diverse prior knowledge and experience. In this paper we describe the inquiry-based activities in the AOSC in the context of its year-to-year evolution, including the conceptual and pragmatic changes to the short course that influenced the evolution.

  10. Optical Instability of the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Kucherov, N. I. (Editor)

    1966-01-01

    The atmosphere is not stationary: it changes continuously and its optical properties are inherently unstable. This optical instability of the air medium is of considerable significance in various fields of research and observation where light transmission through the atmosphere plays a basic role. Under the category of optical instabilities we mainly have the different atmospheric perturbations whose integrated effect constitutes the astroclimate: these are image pulsation, scintillation, and the blurring of the diffraction disk. The artificial satellites and space probes collected a great amount of new data on the upper atmosphere and on the outer space environment. New interesting and important problems arose, which attracted the attention of many geophysicists and astronomers. This shift in the center of gravity of scientific interests and efforts is observed mainly among scientists specializing in atmospheric physics. Recently, scientific organizations engaged on optical instability research switched to astroclimatic topics. Twelve scientific organizations were represented at the Soviet astronomers have recently been charged with a very difficult and responsible task: to select suitable sites for the erection of new observatories, including an astrophysical observatory with the largest telescope in the USSR. A considerable number of research groups were dispatched into various areas of the Soviet Union, and many astronomical observatories took part in the astroclimatic survey. The work of these expeditions remains un-paralleled by any other country in the world. On the other hand, these researches aroused a definite interest in astroclimate in Soviet astronomical observatories. International astronomical circles pay an ever growing attention to the problems of astroclimate.

  11. Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data.

    PubMed

    Mishev, A L

    2016-03-01

    A numerical model for assessment of the effective dose due to secondary cosmic ray particles of galactic origin at high mountain altitude of about 3000 m above the sea level is presented. The model is based on a newly numerically computed effective dose yield function considering realistic propagation of cosmic rays in the Earth magnetosphere and atmosphere. The yield function is computed using a full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α- particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose. A lookup table of the newly computed effective dose yield function is provided. The model is compared with several measurements. The comparison of model simulations with measured spectral energy distributions of secondary cosmic ray neutrons at high mountain altitude shows good consistency. Results from measurements of radiation environment at high mountain station--Basic Environmental Observatory Moussala (42.11 N, 23.35 E, 2925 m a.s.l.) are also shown, specifically the contribution of secondary cosmic ray neutrons. A good agreement with the model is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Designing a spatial decision-support system to improve urban resilience to floods

    NASA Astrophysics Data System (ADS)

    Heinzlef, Charlotte; Ganz, François; Becue, Vincent; Serre, Damien

    2017-04-01

    Since Hurricane Katrina (2005), the scientific-political-urban attention is focusing on urban resilience to floods. To prevent the recurrence of such a deadly and costly event ( 82 billion, Serre et al, 2014), experts began to question pre- and post- disaster management. Until now, managers and urban planners have been working on flood risk, according to the paradigm of prevention. However, following Katrina, a new approach was gradually integrated and the concept of resilience applied to urban areas (Serre, 2011). The resilience concept, used in ecology and defined by Holling (1973), refers to the ability of a system to keep its own variables despite changes and analyses the capacity of an (eco)system to tolerate disturbances without changing its state. To link it with flood risk management, this concept takes more into account water and would lead to technical, architectural, social, urban and political innovation (Serre et al, 2016). However, despite 12 years after Katrina, very few concrete actions have been made (Barroca and Serre, 2013). Based on this argument, and several abortive studies, we wish to re-address the operationalization of resilience by redefining its objectives and expectations. While in Europe some studies have been done to build up vulnerability indicators (Barroca et al, 2006; Opach et al, 2016; Wiréhn et al, 2016), few still talk about resilience. When some do (Folke et al, 2010; Lhomme et al, 2011; Nguyen et al, 2013; Suarez et al, 2016), they mainly speak about technical resilience without integrating social resilience. Our objective is thus to imagine a system facilitating the understanding of this concept, its integration in management and development policies. We started on the methodology of information systems, organized system for collection, organization, storage and communication of information, and more precisely on observatories, information systems using the methodology of observation. These last years, we assist to an increase of these observatories (Dolique, 2013), observatories which are focused on different fields as, risk observation (PACA regional risks observatory), environmental observation (Environmental virtual observatory), ecological observation (National ecological observatory), etc. Usually, an observatory focuses either on a scale (generally national or regional) or on a fact (risks, environment, energy, economy, etc) Our objective is to develop an observatory tested on the territory of Avignon, to design a tool for analyzing resilience according to indicators which would measure technical resilience (urban and suburban networks), urban resilience (buildings and critical infrastructures) and social resilience (knowledge of risk, memory of the disaster, perception of vulnerability). Our tool would be designed with the help of our socio-economic partner which is the city of Avignon, and would provide a clearer picture of the resilience for managers and inhabitants. It would be participatory and social insofar as, following the assessment of the existing resilience thanks to the indicators, it would be make the territory more resilient thanks to expert advices and participatory workshops for the inhabitants and managers.

  13. Best Practices for Creating an Observatory or Telescope Bibliography from the IAU Commission 5 Working Group on Libraries

    NASA Astrophysics Data System (ADS)

    Lagerstrom, J.

    2015-04-01

    Telescope bibliographies have been used for many years to illustrate the scholarly impact of a particular facility. Often, however, the methods used to create these bibliographies were developed independently and not always shared. As a result, it is often difficult to judge the relative impact among facilities. Best Practices for Creating an Observatory or Telescope Bibliography was developed following discussions at the International Astronomical Union's Commission 5 Working Group on Libraries meeting at the 2012 IAU General Assembly in Beijing. This community-driven document identifies the basic components needed to create a bibliography policy that is transparent and the results of which are intended to be reproducible and retrievable by any entity to within a 5% error rate. This paper will review the details of the document as well as its history, progress, and future.

  14. The Millimeter Wave Observatory antenna now at INAOE-Mexico

    NASA Astrophysics Data System (ADS)

    Luna, A.

    2017-07-01

    The antenna of 5 meters in diameter of the legendary "Millimeter Wave Observatory" is now installed in the INAOE-Mexico. This historic antenna was reinstalled and was equipped with a control system and basic primary focus receivers that enabled it in teaching activities. We work on the characterization of its surface and on the development of receivers and spectrometers to allow it to do research Solar and astronomical masers. The historical contributions of this antenna to science and technology in radio astronomy, serve as the guiding force and the inspiration of the students and technicians of our postgrade in Astrophysics. It is enough to remember that it was with this antenna, that the first molecular outflow was discovered, several lines of molecular emission were discovered and it was the first antenna whose surface was characterized by holography; among many other technological and scientific contributions.

  15. Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.

    2004-04-01

    A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.

  16. Studying Dark Energy, Black Holes and Cosmic Feedback at X-ray Wavelengths: NASA's Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2005-01-01

    Among the most important topics in modern astrophysics are the nature of the dark energy equation of state, the formation and evolution of supermassive black holes in concert with galaxy bulges, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. For instance, theoretical models predict that the majority (98%) of the energy and metal content in starburst superwinds exists in the hot million-degree gas. The Constellation-X observatory is being developed to perform spatially resolved high-resolution X-ray spectroscopy so that we may directly measure the absolute element abundances and velocities of this hot gas. This talk focuses on the driving science behind this mission, which is one of two flagship missions in NASA's Beyond Einstein program. A general overview of the observatory's capabilities and basic technology will also be given.

  17. Exploring the X-Ray Universe

    NASA Astrophysics Data System (ADS)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.

    This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  18. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    NASA Astrophysics Data System (ADS)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  19. The Environmental Virtual Observatory: A New Vision for Catchment Science

    NASA Astrophysics Data System (ADS)

    Gurney, R.; Emmett, B.; McDonald, A.; Blair, G.; Buytaert, W.; Freer, J. E.; Haygarth, P.; Rees, G.; Tetzlaff, D.; EVO Science Team

    2011-12-01

    Environmental scientists need to make predictions that are increasingly cross-disciplinary, bringing together observations and models in both physical and biological systems, and visualising the results. Observations can be from multiple platforms, and there are often many competing models that could be used. At the same time, catchment managers and policy makers face a challenging future trying to ensure a wide range of ecosystem and hydrological services are delivered from increasingly constrained budgets whilst complying with a range of regulation requirements. There is also a greater requirement for transparency and access to data and making regulatory decision making processes visible to the public. The Environmental Virtual Observatory Pilot project (EVOp) is a new initiative from the UK Natural Environment Research Council (NERC) designed to explore new tools and approaches to support these challenges. The long term vision of the Environmental Virtual Observatory is to: - Make environmental data more visible and accessible to a wide range of scientists and potential users including for public good applications; - Provide tools to facilitate the integrated analysis of data to give greater access to added knowledge and expert analysis and to visualisation of the results; - Develop new, added-value knowledge from public and private sector data assets to help tackle environmental challenges. The EVO will exploit cloud computing to give a shared working space for data, models and analysis tools; in this two year pilot project we will develop five local and national exemplars to demonstrate and test the opportunities and constraints from such an approach. The question-based exemplars being developed are focused on (i) management options for flooding and diffuse pollution at local and national scales, (ii) approaches for transferring hydrological models for both flooding and drought from data rich to data poor areas and (iii) defining the uncertainty bounds of current climate change predictions on change in soil carbon at a global scale. By developing exemplars focussed on some major environmental questions at a local, national and global scale we are able to directly test issues such as data assimilation, adapting and linking models to work in a cloud environment, and portal design for a wide range of end-users. New international standards for model exchange and exchange of analysis tools are desirable to supplement the emerging data exchange standards, and the EVOp will make a contribution here. A working prototype portal will be delivered in December 2012 that examines these issues, for a possible next phase.

  20. Citizen observatory of water as a data engine supporting the people-hydrology nexus: experience of the WeSenseIt project

    NASA Astrophysics Data System (ADS)

    Ferri, Michele; Baruffi, Francesco; Norbiato, Daniele; Monego, Martina; Tomei, Giovanni; Solomatine, Dimitri; Alfonso, Leonardo; Mazzoleni, Maurizio; Chacon, Juan Carlos; Wehn, Uta; Ciravegna, Fabio

    2016-04-01

    Citizen observatories (COs) present an interesting case of strong multi-facet feedback between the physical (water) system and humans. CO is a form of crowdsourcing ensuring a data flow from citizens observing environment (e.g. water level in a river) to a central data processing unit which is typically part of a more complex social arrangement (e.g. water authorities responsible for flood forecasting). The EU-funded project WeSenseIt (www.wesenseit.eu) aims at developing technologies and tools supporting creation of such COs [1,2,3,4]. Citizens which form a CO play the role of "social sensors" which however are very specific. The data streams from such sensors have varying temporal and spatial coverage and information value (uncertainty). The crowdsourced data can be of course simply visualized and presented to public, but it is much more interesting to consider cases when such data are assimilated into the existing forecasting systems, e.g. flood early warning systems based on hydrological and hydraulic models. COs may also affect water management and governance [4], and in fact can be seen as data engines supporting the people-hydrology nexus. In the framework of WeSenseIt project several approaches were developed allowing for optimal assimilation of intermittent data streams with varying spatial coverage into distributed hydrological models [1, 2]. The mentioned specific features of CO data required updates of the existing data assimilation algorithms (Ensemble Kalman Filter was used as the basic algorithm). The developed algorithms have been implemented in the operational flood forecasting systems of the Alto Adriatico Water Authority (AAWA), Venice. In this paper we analyse various scenarios of employing citizens data (COs) for flood forecasting. This study is partly supported by the FP7 European Project WeSenseIt Citizen Water Observatory (www.http://wesenseit.eu/). References [1] Mazzoleni, M., Alfonso, L., Chacon-Hurtado, J., Solomatine, D. (2015). Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models. Advances in Water Res., 83, 323-339 (Online on September 1, 2015). [2] Mazzoleni M., Verlaan M., Alfonso L., Monego M., Norbiato D., Ferri M., and Solomatine D.P. (2015) Can assimilation of crowdsourced streamflow observations in hydrological modelling improve flood prediction?, Hydrology and Earth System Sciences, under review. [3] Mazzoleni M., Alfonso L. and Solomatine D.P. (2015) Effect of spatial distribution and quality of sensors on the assimilation of distributed streamflow observations in hydrological modeling, Hydrological Sciences Journal, under review. [4] Wehn, U., McCarty, S., Lanfranchi, V. and Tapsell, S. (2015) Citizen observatories as facilitators of change in water governance? Experiences from three European cases, Special Issue on ICTs and Water, Journal of Environmental Engineering and Management, 2073-2086.

  1. Operation and performance of the OSSE instrument

    NASA Technical Reports Server (NTRS)

    Cameron, R. A.; Kurfess, J. D.; Johnson, W. N.; Kinzer, R. L.; Kroeger, R. A.; Leising, M. D.; Murphy, R. J.; Share, G. H.; Strickman, M. S.; Grove, J. E.

    1992-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Arthur Holly Compton Gamma Ray Observatory is described. An overview of the operation and control of the instrument is given, together with a discussion of typical observing strategies used with OSSE and basic data types produced by the instrument. Some performance measures for the instrument are presented that were obtained from pre-launch and in-flight data. These include observing statistics, continuum and line sensitivity, and detector effective area and gain stability.

  2. AmeriFlux US-NGB NGEE Barrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torn, Margaret

    This is the AmeriFlux version of the carbon flux data for the site US-NGB NGEE Barrow. Site Description - The ecosystem is an Arctic coastal tundra. This site measures greenhouse gasses and meteorological variables at the Barrow Environmental Observatory (BEO) as part of the Next-Generation Ecosystem Experiment - Arctic.

  3. Notes on Estimating the Seamount Slope from Vertical Deflection.

    DTIC Science & Technology

    1981-09-01

    Division. 37 L . ,-_:. ,- .r- ’ ,l " . .. - "A DISTRIBUTION Defense Mapping Agency Naval Observatory Building 56 ATTN: O.W. Williams C. Martin P. M...Environmental Laboratory ATTN: J. Apel M. Byrne Seattle, WA 98105 Aerospace Corporation 2350 East El Segundo Boulevard ATTN: Library El Segundo, CA 90245

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan Curtis; Margaret Torn

    Data generated from an observational platform (Tram) consisting of 68 meters of elevated track 1 to 1.5 meters above the surface and an automated cart carrying a suite of radiation and remote sensing instruments (see below table). The Tram is in the footprint of NGEE Arctic/AmeriFlux tower at the Barrow Environmental Observatory, Barrow, Alaska.

  5. Leaf Mass Area, Leaf Carbon and Nitrogen Content, Barrow, Alaska, 2012-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Alistair; Ely, Kim; Serbin, Shawn

    Carbon, Nitrogen and Leaf Mass Area of leaves sampled from the Barrow Environmental Observatory, Barrow, Alaska. Species measured; Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica, Saxifraga punctata and Potentilla hyparctica.

  6. Basic Information for EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM)

    EPA Pesticide Factsheets

    Contains basic information on the role and origins of the Selected Analytical Methods including the formation of the Homeland Security Laboratory Capacity Work Group and the Environmental Evaluation Analytical Process Roadmap for Homeland Security Events

  7. The Hazard Notification System (HANS)

    NASA Astrophysics Data System (ADS)

    Snedigar, S. F.; Venezky, D. Y.

    2009-12-01

    The Volcano Hazards Program (VHP) has developed a Hazard Notification System (HANS) for distributing volcanic activity information collected by scientists to airlines, emergency services, and the general public. In the past year, data from HANS have been used by airlines to make decisions about diverting or canceling flights during the eruption of Mount Redoubt. HANS was developed to provide a single system that each of the five U.S. volcano observatories could use for communicating and storing volcanic information about the 160+ potentially active U.S. volcanoes. The data that cover ten tables and nearly 100 fields are now stored in similar formats, and the information can be released in styles requested by our agency partners, such as the International Civil Aviation Organization (ICAO). Currently, HANS has about 4500 reports stored; on average, two - three reports are added daily. HANS (at its most basic form) consists of a user interface for entering data into one of many release types (Daily Status Reports, Weekly Updates, Volcano Activity Notifications, etc.); a database holding previous releases as well as observatory information such as email address lists and volcano boilerplates; and a transmission system for formatting releases and sending them out by email or other web related system. The user interface to HANS is completely web based, providing access to our observatory scientists from any online PC. The underlying database stores the observatory information and drives the observatory and program websites' dynamic updates and archived information releases. HANS also runs scripts for generating several different feeds including the program home page Volcano Status Map. Each observatory has the capability of running an instance of HANS. There are currently three instances of HANS and each instance is synchronized to all other instances using a master-slave environment. Information can be entered on any node; slave nodes transmit data to the master node, and the master retransmits that data to all slave nodes. All data transfer between instances uses the Simple Object Access Protocol (SOAP) as the envelope in which data are transmitted between nodes. The HANS data synchronization not only works as a backup feature, but also acts as a simple fault-tolerant system. Information from any observatory can be entered on any instance, and still be transmitted to the specified observatory's distribution list, which provides added flexibility if there is a disruption in access from an area that needs to send an update. Additionally, having the same information available on our multiple websites is necessary for communicating our scientists' most up-to-date information.

  8. 1400898

    NASA Image and Video Library

    2014-07-01

    THE SOLAR PROBE PLUS CUP INSTRUMENT WILL BE PART OF THE SOLAR PROBE PLUS MISSION TO STUDY THE SUN. THE CUP WILL FLY ON THE SPACECRAFT ON THE OUTSIDE OF THE SHIELD AND WILL "CATCH" CHARGED PARTICLES FROM THE SUN AND ANALYZE THEM. A TEAM FROM THE HARVARD SMITHSONIAN ASTROPHYSICS OBSERVATORY IS BUILDING THIS INSTRUMENT AND TESTED AN ENGINEERING MODEL OF THE CUP IN AN ENVIRONMENTAL TEST FACILITY AT NASA'S MARSHALL SPACE FLIGHT CENTER.INSIDE THE VACUUM CHAMBER, THE PROBE WAS EXPOSED TO AN ENVIRONMENTAL CONDITIONS SIMILAR TO THOSE FOUND IN SPACE

  9. To share or not to share: Drivers and barriers for sharing data via online amateur weather networks

    NASA Astrophysics Data System (ADS)

    Gharesifard, Mohammad; Wehn, Uta

    2016-04-01

    Increasing attention is being paid to the importance and potential of crowd-sourced data to complement current environmental data-streams (i.e. in-situ observations and RS data). In parallel, the diffusion of Information Communication Technologies (ICTs) that are interactive and easy to use have provided a way forward in facing extreme climatic events and the threatening hazards resulting from those. The combination of these two trends is referred to as ICT-enabled 'citizen observatories' of the environment. Nevertheless, the success of these citizen observatories hinges on the continued involvement of citizens as central actors of these initiatives. Developing strategies to (further) engage citizens requires in-depth understanding of the behavioral determinants that encourage or impede individuals to collect and share environment-related data. This paper takes the case of citizen-sensed weather data using Personal Weather Stations (PWSs) and looks at the drivers and barriers for sharing such data via online amateur weather networks. This is done employing a behavioral science lens that considers data sharing a decision and systematically investigates the influential factors that affect this decision. The analysis and findings are based on qualitative empirical research carried out in the Netherlands, United Kingdom and Italy. Subsequently, a model was developed that depicts the main drivers and barriers for citizen participation in weather observatories. This resulting model can be utilized as a tool to develop strategies for further enhancing ICT-enabled citizen participation in climatic observations and, consequently, in environmental management.

  10. Using Citizen Science to Close Gaps in Cabled Ocean Observatory Research

    NASA Astrophysics Data System (ADS)

    Morley, M. G.; Moran, K.; Riddell, D. J.; Hoeberechts, M.; Flagg, R.; Walsh, J.; Dobell, R.; Longo, J.

    2015-12-01

    Ocean Networks Canada operates the world-leading NEPTUNE and VENUS cabled ocean observatories off the west coast of British Columbia, and a community observatory in Cambridge Bay, Nunavut. Continuous power and connectivity permit large volumes of data to be collected and made available to scientists and citizens alike over the Internet through a web-based interface. The Oceans 2.0 data management system contains over one quarter petabyte of data, including more than 20,000 hours of video from fixed seafloor cameras and a further 8,000 hours of video collected by remotely operated vehicles. Cabled observatory instrument deployments enable the collection of high-frequency, long-duration time series of data from a specific location. This enables the study of important questions such as whether effects of climate change—for instance, variations in temperature or sea-level—are seen over the long term. However, cabled observatory monitoring also presents challenges to scientific researchers: the overwhelming volume of data and the fixed spatial location can be barriers to addressing some big questions. Here we describe how Ocean Networks Canada is using Citizen Science to address these limitations and supplement cabled observatory research. Two applications are presented: Digital Fishers is a crowd-sourcing application in which participants watch short deep-sea video clips and make annotations based on scientific research questions. To date, 3,000 participants have contributed 140,000 scientific observations on topics including sablefish abundance, hydrothermal vent geology and deep-sea feeding behaviour. Community Fishers is a program in which ordinary citizens aboard vessels of opportunity collect ocean data including water temperature, salinity, dissolved oxygen and chlorophyll. The program's focus is to directly address the typical quality concerns around data that are collected using a citizen science approach. This is done by providing high quality scientific instruments and basic (but imperative) training to the citizens and vessel operators who participate. The data are downloaded using a specially designed tablet app, and then transmitted to Oceans 2.0 where raw and corrected data and metadata are made available through the web in real-time.

  11. Technical-Information Products for a National Volcano Early Warning System

    USGS Publications Warehouse

    Guffanti, Marianne; Brantley, Steven R.; Cervelli, Peter F.; Nye, Christopher J.; Serafino, George N.; Siebert, Lee; Venezky, Dina Y.; Wald, Lisa

    2007-01-01

    Introduction Technical outreach - distinct from general-interest and K-12 educational outreach - for volcanic hazards is aimed at providing usable scientific information about potential or ongoing volcanic activity to public officials, businesses, and individuals in support of their response, preparedness, and mitigation efforts. Within the context of a National Volcano Early Warning System (NVEWS) (Ewert et al., 2005), technical outreach is a critical process, transferring the benefits of enhanced monitoring and hazards research to key constituents who have to initiate actions or make policy decisions to lessen the hazardous impact of volcanic activity. This report discusses recommendations of the Technical-Information Products Working Group convened in 2006 as part of the NVEWS planning process. The basic charge to the Working Group was to identify a web-based, volcanological 'product line' for NVEWS to meet the specific hazard-information needs of technical users. Members of the Working Group were: *Marianne Guffanti (Chair), USGS, Reston VA *Steve Brantley, USGS, Hawaiian Volcano Observatory HI *Peter Cervelli, USGS, Alaska Volcano Observatory, Anchorage AK *Chris Nye, Division of Geological and Geophysical Surveys and Alaska Volcano Observatory, Fairbanks AK *George Serafino, National Oceanic and Atmospheric Administration, Camp Springs MD *Lee Siebert, Smithsonian Institution, Washington DC *Dina Venezky, USGS, Volcano Hazards Team, Menlo Park CA *Lisa Wald, USGS, Earthquake Hazards Program, Golden CO

  12. Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Patrick, Matthew R.; Kauahikaua, James P.; Orr, Tim R.; Davies, Ashley G.; Ramsey, Michael S.

    2016-01-01

    Hawaiian volcanoes are highly accessible and well monitored by ground instruments. Nevertheless, observational gaps remain and thermal satellite imagery has proven useful in Hawai‘i for providing synoptic views of activity during intervals between field visits. Here we describe the beginning of a thermal remote sensing programme at the US Geological Survey Hawaiian Volcano Observatory (HVO). Whereas expensive receiving stations have been traditionally required to achieve rapid downloading of satellite data, we exploit free, low-latency data sources on the internet for timely access to GOES, MODIS, ASTER and EO-1 ALI imagery. Automated scripts at the observatory download these data and provide a basic display of the images. Satellite data have been extremely useful for monitoring the ongoing lava flow activity on Kīlauea's East Rift Zone at Pu‘u ‘Ō‘ō over the past few years. A recent lava flow, named Kahauale‘a 2, was upslope from residential subdivisions for over a year. Satellite data helped track the slow advance of the flow and contributed to hazard assessments. Ongoing improvement to thermal remote sensing at HVO incorporates automated hotspot detection, effusion rate estimation and lava flow forecasting, as has been done in Italy. These improvements should be useful for monitoring future activity on Mauna Loa.

  13. Photometric Detection of Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Hatzes, Artie P.; Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported the TEMPEST Texas McDonald Photometric Extrasolar Search for Transits) program at McDonald Observatory, which searches for transits of extrasolar planets across the disks of their parent stars. The basic approach is to use a wide-field ground-based telescope (in our case the McDonald Observatory 0.76m telescope and it s Prime Focus Corrector) to search for transits of short period (1-15 day orbits) of close-in hot-Jupiter planets in orbit around a large sample of field stars. The next task is to search these data streams for possible transit events. We collected our first set of test data for this program using the 0.76 m PFC in the summer of 1998. From those data, we developed the optimal observing procedures, including tailoring the stellar density, exposure times, and filters to best-suit the instrument and project. In the summer of 1999, we obtained the first partial season of data on a dedicated field in the constellation Cygnus. These data were used to develop and refine the reduction and analysis procedures to produce high-precision photometry and search for transits in the resulting light curves. The TeMPEST project subsequently obtained three full seasons of data on six different fields using the McDonald Observatory 0.76m PFC.

  14. Using Virtual Astronomical Observatory Tools for Astronomy 101

    NASA Astrophysics Data System (ADS)

    Mighell, Kenneth J.; Garmany, K.; Larson, K.; Eastwood, K. D.

    2009-01-01

    The Virtual Observatory provides several tools that are useful for educators. With these tools, instructors can easily provide real data to students in an environment that engages student curiosity and builds student understanding. In this poster we demonstrate how the tools Aladin and TOPCAT can be used to enhance astronomy education. The Aladin Sky Atlas is a Virtual Observatory portal from the CDS that displays images, superimposes catalogs, and provides interactive access to data. For illustration, we show an exercise for non-science majors in a college-level astronomy course that introduces students to the HR diagram of star clusters. After launching the pre-loaded Aladin applet, students select their own stars, connecting visual cues of brightness and color to the conceptual meaning behind a quantitative HR diagram. TOPCAT can be linked with Aladin on the desktop to let students analyze their data, perform calculations, and create professional-quality graphs. The basic exercise can be easily expanded to address other learning objectives and provides a launching point for students to access, visualize, and explore multi-wavelength data as they continue in astronomy. As a second example, we show an exercise that uses TOPCAT to do three-dimensional plotting of the positions of open and globular cluster to illustrate galactic structure. Detailed information is available at the following website: http://www.noao.edu/staff/mighell/nvoss2008/ . This research was done at the 2008 U.S. National Virtual Observatory Summer School which was held in Santa Fe, New Mexico on September 3 - 11, 2008 and was sponsored by the National Science Foundation.

  15. Towards An Oceanographic Component Of A Global Earth Observation System Of Systems: Progress And Challenges

    NASA Astrophysics Data System (ADS)

    Ackleson, S. G.

    2012-12-01

    Ocean observatories (systems of coordinated sensors and platforms providing real-time in situ observations across multiple temporal and spatial scales) have advanced rapidly during the past several decades with the integration of novel hardware, development of advanced cyber-infrastructures and data management software, and the formation of researcher networks employing fixed, drifting, and mobile assets. These advances have provided persistent, real-time, multi-disciplinary observations representing even the most extreme environmental conditions, enabled unique and informative views of complicated ocean processes, and aided in the development of more accurate and higher fidelity ocean models. Combined with traditional ship-based and remotely sensed observations, ocean observatories have yielded new knowledge across a broad spectrum of earth-ocean scales that would likely not exist otherwise. These developments come at a critical time in human history when the demands of global population growth are creating unprecedented societal challenges associated with rapid climatic change and unsustainable consumption of key ocean resources. Successfully meeting and overcoming these challenges and avoiding the ultimate tragedy of the commons will require greater knowledge of environmental processes than currently exists, including interactions between the ocean, the overlying atmosphere, and the adjacent land and synthesizing new knowledge into effective policy and management structures. To achieve this, researchers must have free and ready access to comprehensive data streams (oceanic, atmospheric, and terrestrial), regardless of location and collection system. While the precedent for the concept of free and open access to environmental data is not new (it traces back to the International Geophysical Year, 1957), implementing procedures and standards on a global scale is proving to be difficult, both logistically and politically. Observatories have been implemented in many parts of the global ocean, inspiring researchers to begin planning and developing connected regional observing systems that are networked into a Global Ocean Observing System as part of a comprehensive Global Earth Observation System of Systems. However, much remains to be accomplished, especially in the areas of standardizing observation methods and metadata, implementing procedures to assure an acceptable level of data quality, and defining and producing key derived products. This paper will briefly discuss the evolution of ocean observatories, summarize current efforts to develop local, regional and global observing networks, and suggest future steps towards a global ocean observing system.

  16. Dimensions and dynamics of citizen observatories: The case of online amateur weather networks

    NASA Astrophysics Data System (ADS)

    Gharesifard, Mohammad; Wehn, Uta; van der Zaag, Pieter

    2016-04-01

    Crowd-sourced environmental observations are being increasingly considered as having the potential to enhance the spatial and temporal resolution of current data streams from terrestrial and areal sensors. The rapid diffusion of ICTs during the past decades has facilitated the process of data collection and sharing by the general public (so-called citizen science) and has resulted in the formation of various online environmental citizen observatory networks. Online amateur weather networks are a particular example of such ICT-mediated citizen observatories as one of the oldest and most widely practiced citizen science activities. The objective of this paper is to introduce a conceptual framework that enables a systematic review of different dimensions of these mushrooming/expanding networks. These dimensions include the geographic scope and types of network participants; the network's establishment mechanism, revenue stream(s) and existing communication paradigm; efforts required by citizens and support offered by platform providers; and issues such as data accessibility, availability and quality. An in-depth understanding of these dimensions helps to analyze various dynamics such as interactions between different stakeholders, motivations to run these networks, sustainability of the platforms, data ownership and level of transparency of each network. This framework is then utilized to perform a critical and normative review of six existing online amateur weather networks based on publicly available data. The main findings of this analysis suggest that: (1) There are several key stakeholders such as emergency services and local authorities that are not (yet) engaged in these networks. (2) The revenue stream(s) of online amateur weather networks is one of the least discussed but most important dimensions that is crucial for the sustainability of these networks. (3) Although all of the networks included in this study have one or more explicit pattern of two-way communications, there is no sign (yet) of interactive information exchange among the triangle of weather observers, data aggregators and policy makers. KEYWORDS Citizen Science, Citizen Observatories, ICT-enabled citizen participation, online amateur weather networks

  17. Volcano-Monitoring Instrumentation in the United States, 2008

    USGS Publications Warehouse

    Guffanti, Marianne; Diefenbach, Angela K.; Ewert, John W.; Ramsey, David W.; Cervelli, Peter F.; Schilling, Steven P.

    2010-01-01

    The United States is one of the most volcanically active countries in the world. According to the global volcanism database of the Smithsonian Institution, the United States (including its Commonwealth of the Northern Mariana Islands) is home to about 170 volcanoes that are in an eruptive phase, have erupted in historical time, or have not erupted recently but are young enough (eruptions within the past 10,000 years) to be capable of reawakening. From 1980 through 2008, 30 of these volcanoes erupted, several repeatedly. Volcano monitoring in the United States is carried out by the U.S. Geological Survey (USGS) Volcano Hazards Program, which operates a system of five volcano observatories-Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Hawaiian Volcano Observatory (HVO), Long Valley Observatory (LVO), and Yellowstone Volcano Observatory (YVO). The observatories issue public alerts about conditions and hazards at U.S. volcanoes in support of the USGS mandate under P.L. 93-288 (Stafford Act) to provide timely warnings of potential volcanic disasters to the affected populace and civil authorities. To make efficient use of the Nation's scientific resources, the volcano observatories operate in partnership with universities and other governmental agencies through various formal agreements. The Consortium of U.S. Volcano Observatories (CUSVO) was established in 2001 to promote scientific cooperation among the Federal, academic, and State agencies involved in observatory operations. Other groups also contribute to volcano monitoring by sponsoring long-term installation of geophysical instruments at some volcanoes for specific research projects. This report describes a database of information about permanently installed ground-based instruments used by the U.S. volcano observatories to monitor volcanic activity (unrest and eruptions). The purposes of this Volcano-Monitoring Instrumentation Database (VMID) are to (1) document the Nation's existing, ground-based, volcano-monitoring capabilities, (2) answer queries within a geospatial framework about the nature of the instrumentation, and (3) provide a benchmark for planning future monitoring improvements. The VMID is not an archive of the data collected by monitoring instruments, nor is it intended to keep track of whether a station is temporarily unavailable due to telemetry or equipment problems. Instead, it is a compilation of basic information about each instrument such as location, type, and sponsoring agency. Typically, instruments installed expressly for volcano monitoring are emplaced within about 20 kilometers (km) of a volcanic center; however, some more distant instruments (as far away as 100 km) can be used under certain circumstances and therefore are included in the database. Not included is information about satellite-based and airborne sensors and temporarily deployed instrument arrays, which also are used for volcano monitoring but do not lend themselves to inclusion in a geospatially organized compilation of sensor networks. This Open-File Report is provided in two parts: (1) an Excel spreadsheet (http://pubs.usgs.gov/of/2009/1165/) containing the version of the Volcano-Monitoring Instrumentation Database current through 31 December 2008 and (2) this text (in Adobe PDF format), which serves as metadata for the VMID. The disclaimer for the VMID is in appendix 1 of the text. Updated versions of the VMID will be posted on the Web sites of the Consortium of U.S. Volcano Observatories (http://www.cusvo.org/) and the USGS Volcano Hazards Program http://volcanoes.usgs.gov/activity/data/index.php.

  18. New nova candidate in M81

    NASA Astrophysics Data System (ADS)

    Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.

    2016-06-01

    We report the discovery of a new nova candidate in the M81 galaxy on 16x200s stacked R filter CCD images, obtained with the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq. pixels).

  19. A Search for Cosmic String Loops Using GADGET-2 Cosmological N-Body Simulator

    NASA Astrophysics Data System (ADS)

    Braverman, William; Cousins, Bryce; Jia, Hewei

    2018-01-01

    Cosmic string loops are an extremely elusive hypothetical entity that have eluded the grasp of physicists and astronomers since their existence was postulated in the 1970’s. Finding evidence of their existence could be the first empirical evidence of string theory.Simulating their basic motion in a cold dark matter background using GADGET-2 allows us to predict where they may cluster during large scale structure formation (if they cluster at all). Here, we present our progress in placing cosmic strings into GADGET-2 with their basic equations of motion to lay a ground work for more complex simulations to find where these strings cluster. Ultimately, these simulations could lay a groundwork as to where future microlensing and gravitational wave observatories should look for cosmic strings.

  20. 7 CFR 622.31 - Basic planning efforts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Planning § 622.31 Basic planning efforts. Upon... the need for planning effort. Once planning is authorized by the Chief of NRCS, a watershed plan-environmental impact statement (plan-EIS) or a watershed plan-environmental assessment (plan-EA) will be...

  1. 7 CFR 622.31 - Basic planning efforts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Planning § 622.31 Basic planning efforts. Upon... the need for planning effort. Once planning is authorized by the Chief of NRCS, a watershed plan-environmental impact statement (plan-EIS) or a watershed plan-environmental assessment (plan-EA) will be...

  2. 7 CFR 622.31 - Basic planning efforts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Planning § 622.31 Basic planning efforts. Upon... the need for planning effort. Once planning is authorized by the Chief of NRCS, a watershed plan-environmental impact statement (plan-EIS) or a watershed plan-environmental assessment (plan-EA) will be...

  3. 7 CFR 622.31 - Basic planning efforts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Planning § 622.31 Basic planning efforts. Upon... the need for planning effort. Once planning is authorized by the Chief of NRCS, a watershed plan-environmental impact statement (plan-EIS) or a watershed plan-environmental assessment (plan-EA) will be...

  4. Genetic and Environmental Influences on Behavior: Capturing All the Interplay

    ERIC Educational Resources Information Center

    Johnson, Wendy

    2007-01-01

    Basic quantitative genetic models of human behavioral variation have made clear that individual differences in behavior cannot be understood without acknowledging the importance of genetic influences. Yet these basic models estimate average, population-level genetic and environmental influences, obscuring differences that might exist within the…

  5. Economic Evaluation of Observatory Solar-Energy System

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Long-term economic performance of a commercial solar-energy system was analyzed and used to predict economic performance at four additional sites. Analysis described in report was done to demonstrate viability of design over a broad range of environmental/economic conditions. Topics covered are system description, study approach, economic analysis and system optimization.

  6. Laboratory investigation on super-Earths atmospheres

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R. U.; Lessio, L.; Farisato, G.; Giro, E.; Cocola, L.; Billi, D.; D'alessandro, M.; Pace, E.; Schierano, D.; Benatti, S.; Bonavita, M.; Galletta, G.

    2014-04-01

    In the framework of Atmosphere in a Test Tube, at the Astronomical Observatory of Padova (INAF) we are going to perform experiments aimed to understand the possible modification of the atmosphere by photosynthetic biota present on the planet surface. This goal can be achieved simulating M star planetary environmental conditions. The bacteria that are being studied are Acaryochloris marina, Chroococcidiopsis spp. and Halomicronema hingdechloris. Tests will be performed with LISA or MINI-LISA ambient simulator in the laboratory of the Padova Astronomic Observatory. In this paper we describe the whole road map to follow in order to perform experiments and to obtain useful data to be compared with the real ones that will be obtained by the future space missions. Starting by a fiducial experiment we will modify either environmental and thermodynamical properties in order to simulate both real irradiation by an M star and gas mixture mimicing super earths atmospheres. These laboratory tests could be used as a guideline in order to understand whether chemical disequilibrium of O2, CO2 and CH4 could be ascribed to biotic life forms.

  7. The data acquisition system of the Latin American Giant Observatory (LAGO)

    NASA Astrophysics Data System (ADS)

    Sofo Haro, M.; Arnaldi, L. H.; Alvarez, W.; Alvarez, C.; Araujo, C.; Areso, O.; Arnaldi, H.; Asorey, H.; Audelo, M.; Barros, H.; Bertou, X.; Bonnett, M.; Calderon, R.; Calderon, M.; Campos-Fauth, A.; Carramiñana, A.; Carrasco, E.; Carrera, E.; Cazar, D.; Cifuentes, E.; Cogollo, D.; Conde, R.; Cotzomi, J.; Dasso, S.; De Castro, A.; De La Torre, J.; De León, R.; Estupiñan, A.; Galindo, A.; Garcia, L.; Gómez Berisso, M.; González, M.; Guevara, W.; Gulisano, A. M.; Hernández, H.; Jaimes, A.; López, J.; Mantilla, C.; Martín, R.; Martinez-Mendez, A.; Martínez, O.; Martins, E.; Masías-Meza, J. J.; Mayo-García, R.; Melo, T.; Mendoza, J.; Miranda, P.; Montes, E.; Morales, E.; Morales, I.; Moreno, E.; Murrugarra, C.; Nina, C.; Núñez, L. A.; Núñez-Castiñeyra, A.; Otiniano, L.; Peña-Rodríguez, J.; Perenguez, J.; Pérez, H.; Perez, Y.; Perez, G.; Pinilla-Velandia, S.; Ponce, E.; Quishpe, R.; Quispe, F.; Reyes, K.; Rivera, H.; Rodriguez, J.; Rodríguez-Pascual, M.; Romero, M.; Rubio-Montero, A. J.; Salazar, H.; Salinas, J.; Sarmiento-Cano, C.; Sidelnik, I.; Haro, M. Sofo; Suárez-Durán, M.; Subieta, M.; Tello, J.; Ticona, R.; Torres, I.; Torres-Niño, L.; Truyenque, J.; Valencia-Otero, M.; Vargas, S.; Vásquez, N.; Villasenor, L.; Zamalloa, M.; Zavala, L.

    2016-06-01

    LAGO is an extended cosmic ray observatory composed of water-Cherenkov detectors (WCD) placed throughout Latin America. It is dedicated to the study of various issues related to astrophysics, space weather and atmospheric physics at the regional scale. In this paper we present the design and implementation of the front-end electronics and the data acquisition system for readout of the WCDs of LAGO. The system consists of preamplifiers and a digital board sending data to a computer via an USB interface. The analog signals are acquired from three independent channels at a maximum rate of ~1.2×105 pulses per second and a sampling rate of 40 MHz. To avoid false trigger due to baseline fluctuations, we present in this work a baseline correction algorithm that makes it possible to use WCDs to study variations of the environmental radiation. A data logging software has been designed to format the received data. It also enables an easy access to the data for an off-line analysis, together with the operational conditions and environmental information. The system is currently used at different sites of LAGO.

  8. Modern nature and climate changes in Siberia: new methods and results of analysis of instrumented observations

    NASA Astrophysics Data System (ADS)

    Kabanov, Mikhail V.

    2002-02-01

    Peculiarity of nature and climate changes in middle latitudes of the Northern Hemisphere and in Siberia is that the temporal variability of meteorological quantities here has a wide range and their spatial variability has a complicated zone structure. Therefore, regional monitoring of modern nature and climate changes in Siberia is of scientific interest from the viewpoint of the global changes observed. Another Siberian peculiarity is associated with the fact that there are many unique objects that have global importance both as natural complexes (boreal forests, water- bog systems, Baikal lake, etc.) And as technogenic objects (oil and gas production, coal mining, metallurgy, transport, etc.). Therefore monitoring and modeling of regional nature and climate changes in Siberia have great practical importance, which is underestimated now, for industrial development of Siberia. Taking into account the above peculiarities and tendencies on investigation of global and regional environmental and climate changes, the multidisciplinary project on Climate and Ecological Monitoring of Siberia (CEMS) was accepted to the research and development program Sibir' since 1993. To realize this project, the Climate and Ecological Observatory was established in Tomsk at the Institute for Optical Monitoring (IOM) SB RAS. At the present time the stations (the basic and background ones) of this observatory are in a progress and theory and instruments for monitoring are being developed as well. In this paper we discuss some results obtained in the framework of CEMS project that were partially published in the monographs, in scientific journals, and will be published in the Proceedings of the 8th Joint International Symposium on Atmospheric and Ocean Optics and Atmosphere Physics. This review has a purpose not only to discuss the obtained regularities but also to formulate scientific and technical tasks for further investigations into the regional changes of technogenic, natural, and climate systems.

  9. Colloid Microthruster Feed System Development for Fine Pointing and Drag-Free Control of Multi-Year Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Ziemer, John; Mueller, J.; Spence, D.; Hruby, V.

    2014-01-01

    A new Colloid Microthruster feed system, including a propellant tank and redundant Microvalves, is being developed for fine pointing and drag-free operations of multi-year astronomical observatories under the PCOS SAT program. Almost all Gravitational Wave Observatory (GWO) concepts require microthrusters to maintain a drag-free environment for the inertial sensor instrument to meet the mission science objectives. The current state-of-the-art microthruster in the US is the Busek Colloid Micro-Newton Thruster (CMNT) originally developed under the New Millennium Program for the Space Technology 7 (ST7) and ESA's LISA Pathfinder (LPF) technology demonstration mission. The ST7 CMNT design includes a bellows propellant storage tank that is sized to provide up to 90 days of maximum thrust (30 µN). The new propellant tank is based on a blow-down, metal-diaphragm spherical tank design with enough capacity for a 5-year GWO mission. The new feed system will also include the third generation of Busek’s Microvalve, currently being developed under a NASA Phase II SBIR. The Microvalve is responsible for the picoliter per second control of the propellant from the tank to the thruster head, demanding parts with micron-level tolerances, critical alignments, and challenging acceptance test protocols. This microthruster system could also be considered for replacement of reaction wheels for slewing and fine pointing of other astronomical observatories, including Exo-Planet Observatory concepts. The goal of the PCOS SAT effort is to raise the new system to TRL 5 with performance and environmental testing within the next two years.

  10. Education for Achieving a New Societal Paradigm.

    ERIC Educational Resources Information Center

    Hull, Ronald W.

    A review of ecological problems facing human society is presented and the relationship of education to social change is considered. Basic environmental limitations which are discussed include population; basic materials such as food, fuels, and water; and environmental tolerance. Ecological hazards which combine with these limitations to result in…

  11. Instrumentation for Environmental Monitoring: Water, Volume 2.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Lawrence Berkeley Lab.

    This volume is one of a series discussing instrumentation for environmental monitoring. Each volume contains an overview of the basic problems, comparisons among the basic methods of sensing and detection, and notes that summarize the characteristics of presently available instruments and techniques. The text of this survey discusses the…

  12. Implementing CUAHSI and SWE observation data models in the long-term monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Stender, V.; Schroeder, M.

    2013-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. The challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR. TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes the data available through standard web services. Data are stored following the CUAHSI observation data model in combination with the 52° North Sensor Observation Service data model. The data model was implemented using the PostgreSQL/PostGIS DBMS. Especially in a long-term project, such as TERENO, care has to be taken in the data model. We chose to adopt the CUAHSI observational data model because it is designed to store observations and descriptive information (metadata) about the data values in combination with information about the sensor systems. Also the CUAHSI model is supported by a large and active international user community. The 52° North SOS data model can be modeled as a sub-set of the CUHASI data model. In our implementation the 52° North SWE data model is implemented as database views of the CUHASI model to avoid redundant data storage. An essential aspect in TERENO Northeast is the use of standard OGS web services to facilitate data exchange and interoperability. A uniform treatment of sensor data can be realized through OGC Sensor Web Enablement (SWE) which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service (SAS) for sending alerts.

  13. Citizen Observatories: A Standards Based Architecture

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    A number of large-scale research projects are currently under way exploring the various components of citizen observatories, e.g. CITI-SENSE (http://www.citi-sense.eu), Citclops (http://citclops.eu), COBWEB (http://cobwebproject.eu), OMNISCIENTIS (http://www.omniscientis.eu), and WeSenseIt (http://www.wesenseit.eu). Common to all projects is the motivation to develop a platform enabling effective participation by citizens in environmental projects, while considering important aspects such as security, privacy, long-term storage and availability, accessibility of raw and processed data and its proper integration into catalogues and international exchange and collaboration systems such as GEOSS or INSPIRE. This paper describes the software architecture implemented for setting up crowdsourcing campaigns using standardized components, interfaces, security features, and distribution capabilities. It illustrates the Citizen Observatory Toolkit, a software suite that allows defining crowdsourcing campaigns, to invite registered and unregistered participants to participate in crowdsourcing campaigns, and to analyze, process, and visualize raw and quality enhanced crowd sourcing data and derived products. The Citizen Observatory Toolkit is not a single software product. Instead, it is a framework of components that are built using internationally adopted standards wherever possible (e.g. OGC standards from Sensor Web Enablement, GeoPackage, and Web Mapping and Processing Services, as well as security and metadata/cataloguing standards), defines profiles of those standards where necessary (e.g. SWE O&M profile, SensorML profile), and implements design decisions based on the motivation to maximize interoperability and reusability of all components. The toolkit contains tools to set up, manage and maintain crowdsourcing campaigns, allows building on-demand apps optimized for the specific sampling focus, supports offline and online sampling modes using modern cell phones with built-in sensing technologies, automates the upload of the raw data, and handles conflation services to match quality requirements and analysis challenges. The strict implementation of all components using internationally adopted standards ensures maximal interoperability and reusability of all components. The Citizen Observatory Toolkit is currently developed as part of the COBWEB research project. COBWEB is partially funded by the European Programme FP7/2007-2013 under grant agreement n° 308513; part of the topic ENV.2012.6.5-1 "Developing community based environmental monitoring and information systems using innovative and novel earth observation applications.

  14. ROADNET: A Real-time Data Aware System for Earth, Oceanographic, and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Hansen, T.; Lindquist, K.; Ludascher, B.; Orcutt, J.; Rajasekar, A.

    2003-12-01

    The Real-time Observatories, Application, and Data management Network (ROADNet) Program aims to develop an integrated, seamless, and transparent environmental information network that will deliver geophysical, oceanographic, hydrological, ecological, and physical data to a variety of users in real-time. ROADNet is a multidisciplinary, multinational partnership of researchers, policymakers, natural resource managers, educators, and students who aim to use the data to advance our understanding and management of coastal, ocean, riparian, and terrestrial Earth systems in Southern California, Mexico, and well off shore. To date, project activity and funding have focused on the design and deployment of network linkages and on the exploratory development of the real-time data management system. We are currently adapting powerful "Data Grid" technologies to the unique challenges associated with the management and manipulation of real-time data. Current "Grid" projects deal with static data files, and significant technical innovation is required to address fundamental problems of real-time data processing, integration, and distribution. The technologies developed through this research will create a system that dynamically adapt downstream processing, cataloging, and data access interfaces when sensors are added or removed from the system; provide for real-time processing and monitoring of data streams--detecting events, and triggering computations, sensor and logger modifications, and other actions; integrate heterogeneous data from multiple (signal) domains; and provide for large-scale archival and querying of "consolidated" data. The software tools which must be developed do not exist, although limited prototype systems are available. This research has implications for the success of large-scale NSF initiatives in the Earth sciences (EarthScope), ocean sciences (OOI- Ocean Observatories Initiative), biological sciences (NEON - National Ecological Observatory Network) and civil engineering (NEES - Network for Earthquake Engineering Simulation). Each of these large scale initiatives aims to collect real-time data from thousands of sensors, and each will require new technologies to process, manage, and communicate real-time multidisciplinary environmental data on regional, national, and global scales.

  15. TERENO-MED: Observation and Exploration Platform for Water Resources in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Krueger, E.; Zacharias, S.; Friesen, J.; Vereecken, H.; Bogena, H.; Kallioras, A.

    2012-04-01

    According to the latest IPCC projections, the Circum-Mediterranean region will be particularly affected by Global and Climate Change. These changes include population growth, increases in food, water and energy demands, changes in land use patterns and urbanization/industrialization, while at the same time, the renewable water resources in the region are predicted to decrease by up to 50 % within the next 100 years. However, a profound basis for estimating and predicting the long-term effects of Global and Climate Change on the development of the quantity and quality of water resources and on ecosystems is still lacking. The main reason for this is that environmental monitoring, in particular in the Mediterranean region, is strongly disciplinarily oriented, and financing is usually limited to short-term periods. The TERENO-MED (Terrestrial Environmental Observatories in the Mediterranean) initiative aims to fill the described gap. Together with partners in the region, TERENO-MED will establish a Circum-Mediterranean network of Global Change observatories, and will investigate the effects of anthropogenic impacts and of climate change on Mediterranean water resources and ecosystems. Within a set of representative catchments around the Circum-Mediterranean region (Southern Europe, Northern Africa, Near East), observatory sites will be installed with state-of-the-art and innovative monitoring equipment, in order to measure hydrological states and fluxes on a long-term basis (minimum 15 years). Monitoring equipment will cover all scales, from the point to the regional scale using ground-based and remote sensing technologies. Based on the acquired information, TERENO-MED, together with partners across the Mediterranean region will develop model scenarios that may serve as a basis for sustainable political and economical decisions. In order to gain a deep understanding of the most relevant processes and feedbacks, and to deliver reliable future scenarios for the Mediterranean region, the two initiating Helmholtz Centres, UFZ (Helmholtz Centre for Environmental Research) and Forschungszentrum Juelich, are seeking interested German and international partners to conduct joint research within the planned monitoring network.

  16. The relevance of large scale environmental research infrastructures from the point of view of Ethics: the case of EMSO

    NASA Astrophysics Data System (ADS)

    Favali, Paolo; Beranzoli, Laura; Best, Mairi; Franceschini, PierLuigi; Materia, Paola; Peppoloni, Silvia; Picard, John

    2014-05-01

    EMSO (European Multidisciplinary Seafloor and Water Column Observatory) is a large-scale European Research Infrastructure (RI). It is a geographically distributed infrastructure composed of several deep-seafloor and water-column observatories, which will be deployed at key sites in European waters, spanning from the Arctic, through the Atlantic and Mediterranean, to the Black Sea, with the basic scientific objective of real-time, long-term monitoring of environmental processes related to the interaction between the geosphere, biosphere and hydrosphere. EMSO is one of the environmental RIs on the ESFRI roadmap. The ESRFI Roadmap identifies new RIs of pan-European importance that correspond to the long term needs of European research communities. EMSO will be the sub-sea segment of the EU's large-scale Earth Observation program, Copernicus (previously known as GMES - Global Monitoring for Environment and Security) and will significantly enhance the observational capabilities of European member states. An open data policy compliant with the recommendations being developed within the GEOSS initiative (Global Earth Observation System of Systems) will allow for shared use of the infrastructure and the exchange of scientific information and knowledge. The processes that occur in the oceans have a direct impact on human societies, therefore it is crucial to improve our understanding of how they operate and interact. To encompass the breadth of these major processes, sustained and integrated observations are required that appreciate the interconnectedness of atmospheric, surface ocean, biological pump, deep-sea, and solid-Earth dynamics and that can address: • natural and anthropogenic change; • interactions between ecosystem services, biodiversity, biogeochemistry, physics, and climate; • impacts of exploration and extraction of energy, minerals, and living resources; • geo-hazard early warning capability for earthquakes, tsunamis, gas-hydrate release, and slope instability and failure; • connecting scientific outcomes to stakeholders and policy makers, including to government decision-makers. The development of a large research infrastructure initiatives like EMSO must continuously take into account wide-reaching environmental and socio-economic implications and objectives. For this reason, an Ethics Commitee was established early in EMSO's initial Preparatory Phase with responsibility for overseeing the key ethical and social aspects of the project. These include: • promoting inclusive science communication and data dissemination services to civil society according to Open Access principles; • guaranteeing top quality scientific information and data as results of top quality research; • promoting the increased adoption of eco-friendly, sustainable technologies through the dissemination of advanced scientific knowledge and best practices to the private sector and to policy makers; • developing Education Strategies in cooperation with academia and industry aimed at informing and sensitizing the general public on the environmental and socio-economic implications and benefits of large research infrastructure initiatives such as EMSO; • carrying out Excellent Science following strict criteria of research integrity, as expressed in the Montreal Statement (2013); • promoting Geo-ethical awareness and innovation by spurring innovative approaches in the management of environmental aspects of large research projects; • supporting technological Innovation by working closely in support of SMEs; • providing a constant, qualified and authoritative one-stop-shopping Reference Point and Advisory for politicians and decision-makers. The paper shows how Geoethics is an essential tool for guiding methodological and operational choices, and management of an European project with great impact on the environment and society.

  17. The Laser Interferometer Space Antenna: A space-based Gravitational Wave Observatory

    NASA Astrophysics Data System (ADS)

    Thorpe, James Ira; McNamara, Paul

    2018-01-01

    After decades of persistence, scientists have recently developed facilities which can measure the vibrations of spacetime caused by astrophysical cataclysms such as the mergers of black holes and neutron stars. The first few detections have presented some interesting astrophysical questions and it is clear that with an increase in the number and capability of ground-based facilities, gravitational waves will become an important tool for astronomy. A space-based observatory will complement these efforts by providing access to the milliHertz gravitational wave band, which is expected to be rich in both number and variety of sources. The European Space Agency (ESA) has recently selected the Laser Interferometer Space Antenna (LISA) as a Large-Class mission in its Cosmic Visions Programme. The modern LISA retains the basic design features of previous incarnations and, like its predecessors is expected to be a collaboration between ESA, NASA, and a number of European States. In this poster, we present an overview of the current LISA design, its scientific capabilities, and the timeline to launch.

  18. The Plant Phenology Monitoring Design for the National Ecological Observatory Network

    NASA Technical Reports Server (NTRS)

    Elmendorf, Sarah C.; Jones, Katherine D.; Cook, Benjamin I.; Diez, Jeffrey M.; Enquist, Carolyn A. F.; Hufft, Rebecca A.; Jones, Matthew O.; Mazer, Susan J.; Miller-Rushing, Abraham J.; Moore, David J. P.; hide

    2016-01-01

    Phenology is an integrative science that comprises the study of recurring biological activities or events. In an era of rapidly changing climate, the relationship between the timing of those events and environmental cues such as temperature, snowmelt, water availability, or day length are of particular interest. This article provides an overview of the observer-based plant phenology sampling conducted by the U.S. National Ecological Observatory Network (NEON), the resulting data, and the rationale behind the design. Trained technicians will conduct regular in situ observations of plant phenology at all terrestrial NEON sites for the 30-yr life of the observatory. Standardized and coordinated data across the network of sites can be used to quantify the direction and magnitude of the relationships between phenology and environmental forcings, as well as the degree to which these relationships vary among sites, among species, among phenophases, and through time. Vegetation at NEON sites will also be monitored with tower-based cameras, satellite remote sensing, and annual high-resolution airborne remote sensing. Ground-based measurements can be used to calibrate and improve satellite-derived phenometrics. NEON's phenology monitoring design is complementary to existing phenology research efforts and citizen science initiatives throughout the world and will produce interoperable data. By collocating plant phenology observations with a suite of additional meteorological, biophysical, and ecological measurements (e.g., climate, carbon flux, plant productivity, population dynamics of consumers) at 47 terrestrial sites, the NEON design will enable continental-scale inference about the status, trends, causes, and ecological consequences of phenological change.

  19. The plant phenology monitoring design for the National Ecological Observatory Network

    USGS Publications Warehouse

    Elmendorf, Sarah C; Jones, Katherine D.; Cook, Benjamin I.; Diez, Jeffrey M.; Enquist, Carolyn A.F.; Hufft, Rebecca A.; Jones, Matthew O.; Mazer, Susan J.; Miller-Rushing, Abraham J.; Moore, David J. P.; Schwartz, Mark D.; Weltzin, Jake F.

    2016-01-01

    Phenology is an integrative science that comprises the study of recurring biological activities or events. In an era of rapidly changing climate, the relationship between the timing of those events and environmental cues such as temperature, snowmelt, water availability or day length are of particular interest. This article provides an overview of the plant phenology sampling which will be conducted by the U.S. National Ecological Observatory Network NEON, the resulting data, and the rationale behind the design. Trained technicians will conduct regular in situ observations of plant phenology at all terrestrial NEON sites for the 30-year life of the observatory. Standardized and coordinated data across the network of sites can be used to quantify the direction and magnitude of the relationships between phenology and environmental forcings, as well as the degree to which these relationships vary among sites, among species, among phenophases, and through time. Vegetation at NEON sites will also be monitored with tower-based cameras, satellite remote sensing and annual high-resolution airborne remote sensing. Ground-based measurements can be used to calibrate and improve satellite-derived phenometrics. NEON’s phenology monitoring design is complementary to existing phenology research efforts and citizen science initiatives throughout the world and will produce interoperable data. By collocating plant phenology observations with a suite of additional meteorological, biophysical and ecological measurements (e.g., climate, carbon flux, plant productivity, population dynamics of consumers) at 47 terrestrial sites, the NEON design will enable continentalscale inference about the status, trends, causes and ecological consequences of phenological change.

  20. Global TIE Observatories: Real Time Observational Astronomy Through a Robotic Telescope Network

    NASA Astrophysics Data System (ADS)

    Clark, G.; Mayo, L. A.

    2001-12-01

    Astronomy in grades K-12 is traditionally taught (if at all) using textbooks and a few simple hands-on activities. Teachers are generally not trained in observational astronomy techniques and are unfamiliar with the most basic astronomical concepts. In addition, most students, by High School graduation, will never have even looked through the eyepiece of a telescope. The problem becomes even more challenging in inner cities, remote rural areas and low socioeconomic communities where educational emphasis on topics in astronomy as well as access to observing facilities is limited or non existent. Access to most optical telescope facilities is limited to monthly observing nights that cater to a small percentage of the general public living near the observatory. Even here, the observing experience is a one-time event detached from the process of scientific enquiry and sustained educational application. Additionally, a number of large, "research grade" observatory facilities are largely unused, partially due to the slow creep of light pollution around the facilities as well as the development of newer, more capable telescopes. Though cutting edge science is often no longer possible at these sights, real research opportunities in astronomy remain numerous for these facilities as educational tools. The possibility now exists to establish a network of research grade telescopes, no longer useful to the professional astronomical community, that can be made accessible through classrooms, after school, and community based programs all across the country through existing IT technologies and applications. These telescopes could provide unparalleled research and educational opportunities for a broad spectrum of students and turns underutilized observatory facilities into valuable, state-of-the-art teaching centers. The NASA sponsored Telescopes In Education project has been wildly successful in engaging the K-12 education community in real-time, hands-on, interactive astronomy activities. Hundreds of schools in the US, Australia, Canada, England, and Japan have participated in the TIE program, remotely controlling the 24-inch telescope at the Mount Wilson Observatory from their classrooms. In recent years, several (approximately 20 to date) other telescopes have been, or are in the process of being, outfitted for remote use as TIE affiliates. Global TIE integrates these telescopes seamlessly into one virtual observatory and provides the services required to operate this facility, including a scheduling service, tools for data manipulation, an online proposal review environment, an online "Virtual TIE Student Ap J" for publication of results, and access to related educational materials provided by the TIE community. This presentation describes the Global TIE Observatory data and organizational systems and details the technology, partnerships, operational capabilities, science applications, and learning opportunities that this powerful virtual observatory network will provide.

  1. 41 CFR 102-80.10 - What are the basic safety and environmental management policies for real property?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What are the basic safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...

  2. Monitoring CO2 sources and sinks from space : the Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2006-01-01

    NASA's Orbiting Carbon Observatory (OCO) will make the first space-based measurements of atmospheric carbon dioxide (CO2) with the precision, resolution, and coverage needed to characterize the geographic distribution of CO2 sources and sinks and quantify their variability over the seasonal cycle. OCO is currently scheduled for launch in 2008. The observatory will carry a single instrument that incorporates three high-resolution grating spectrometers designed to measure the near-infrared absorption by CO2 and molecular oxygen (O2) in reflected sunlight. OCO will fly 12 minutes ahead of the EOS Aqua platform in the Earth Observing System (EOS) Afternoon Constellation (A-Train). The in-strument will collect 12 to 24 soundings per second as the Observatory moves along its orbit track on the day side of the Earth. A small sampling footprint (<3 km2 at nadir) was adopted to reduce biases in each sounding associated with clouds and aerosols and spatial variations in surface topography. A comprehensive ground-based validation program will be used to assess random errors and biases in the XCO2 product on regional to continental scales. Measurements collected by OCO will be assimilated with other environmental measurements to retrieve surface sources and sinks of CO2. This information could play an important role in monitoring the integrity of large scale CO2 sequestration projects.

  3. Inspiring the Next Generation: Astronomy Catalyzes K12 STEM Education

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Thaller, Michelle; Winglee, Robert; Borders, Kyla

    2017-06-01

    K-12 educators need effective and relevant astronomy professional development. NASA's Mission Science provides innovative and accessible opportunities for K-12 teachers. Science questions involve scale and distance, including Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers can gain an understanding of basic telescopes, the history of telescopes, ground and satellite based telescopes, and models of JWST Telescope. An in-depth explanation of JWST and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. During teacher training, we taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of lenticulars and diagramming of infrared data, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars.We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development.Funding was provided by Washington STEM, NASA, and the Washington Space Grant Consortium.

  4. Trans-African Hydro-Meteorological Observatory

    NASA Astrophysics Data System (ADS)

    van de Giesen, N.; Andreini, M.; Selker, J.

    2009-04-01

    Our computing capacity to model hydrological processes is such that we can readily model every hectare of the globe's surface in real time. Satellites provide us with important state observations that allow us to calibrate our models and estimate model errors. Still, ground observations will remain necessary to obtain data that can not readily be observed from space. Hydro-Meteorological data availability is particularly scarce in Africa. This presentation launches a simple idea by which Africa can leapfrog into a new era of closely knit environmental observation networks. The basic idea is the design of a robust measurement station, based on the smart use of new sensors without moving parts. For example, instead of using a Eu 5000 long-wave pyrgeometer, a factory calibrated IR microwave oven sensor is used that costs less than Eu 10. In total, each station should cost Eu 200 or less. Every 30 km, one station will be installed, being equivalent to 20,000 stations for all of sub-Saharan Africa. The roll-out will follow the XO project ("100 computer") and focus on high schools. The stations will be accompanied by an educational package that allows high school children to learn about their environment, measurements, electronics, and mathematical modeling. Total program costs lie around MEu 18.

  5. Leaf Chlorophyll and Total Carotenoid Content, Barrow, Alaska, 2013-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alistair Rogers; Stefanie Lasota; Kim S. Ely

    Chlorophyll a, Chlorophyll b and total carotenoid content were determined on 146 samples collected from Arctic plant species within the Barrow Environmental Observatory in 2013 and 2015. Species sampled are Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica and Saxifraga punctata.

  6. Design of an environmental field observatory for quantifying the urban water budget

    Treesearch

    Claire Welty; Andrew J. Miller; Kenneth T. Belt; James A. Smith; Lawrence E. Band; Peter M. Groffman; Todd M. Scanlon; Juying Warner; Robert J. Ryan; Robert J. Shedlock; Michael P. McGuire

    2007-01-01

    Quantifying the water budget of urban areas presents special challenges, owing to the influence of subsurface infrastructure that can cause short-circuiting of natural flowpaths. In this paper we review some considerations for data collection and analysis in support of determining urban water budget components, with a particular emphasis on groundwater, using Baltimore...

  7. NASA's Earth Observatory: Success Story or Work in Progress?

    NASA Astrophysics Data System (ADS)

    Herring, D. D.

    2004-12-01

    After a series of failures and setbacks in a variety of public communications strategies explored, and then despite internal pressure not to build it, a prototype for NASA's Earth Observatory (http://earthobservatory.nasa.gov) was built in the spring of 1998. With no budget and roughly one full-time equivalent (FTE) in personnel, the site was launched in April 1999. Aimed primarily at the "science attentive public," the Earth Observatory is an interactive Web-based magazine focusing on the subjects of climatic and environmental change, with an emphasis on the use of satellite remote sensors to study our planet. Within one year after launch, the site was selected by Popular Science as one of the Web's 50 best, while subscriptions jumped to about 12,000 readers worldwide. Fast forward to 2004, the Earth Observatory core team has grown to 5.5 FTE and enjoys contributions from all across the agency as well as a number of NASA-affiliated agencies and institutions. The site's success hinges on the partnerships that have grown up around it over the years. As a testament to the outstanding content published today in the Earth Observatory, the site was also selected by Scientific American as one of the Web's 50 best, and has twice been nominated by the International Academy of the Digital Arts and Sciences for their annual Webby Awards--in both the "Education" and "Science" categories--winning the Webby once and the People's Voice Award twice. Still, the Earth Observatory is a work in progress as there remain some developmental goals it has yet to attain. In this talk, site founder and Chief Editor David Herring will give a brief tour of the site while elaborating on some of its developmental history, lessons learned along the way, and a brief look ahead at some exciting new developments on its horizon.

  8. New Global 3D Upper to Mid-mantle Electrical Conductivity Model Based on Observatory Data with Realistic Auroral Sources

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Egbert, G. D.; Sun, J.

    2011-12-01

    Poleward of 45-50 degrees (geomagnetic) observatory data are influenced significantly by auroral ionospheric current systems, invalidating the simplifying zonal dipole source assumption traditionally used for long period (T > 2 days) geomagnetic induction studies. Previous efforts to use these data to obtain the global electrical conductivity distribution in Earth's mantle have omitted high-latitude sites (further thinning an already sparse dataset) and/or corrected the affected transfer functions using a highly simplified model of auroral source currents. Although these strategies are partly effective, there remain clear suggestions of source contamination in most recent 3D inverse solutions - specifically, bands of conductive features are found near auroral latitudes. We report on a new approach to this problem, based on adjusting both external field structure and 3D Earth conductivity to fit observatory data. As an initial step towards full joint inversion we are using a two step procedure. In the first stage, we adopt a simplified conductivity model, with a thin-sheet of variable conductance (to represent the oceans) overlying a 1D Earth, to invert observed magnetic fields for external source spatial structure. Input data for this inversion are obtained from frequency domain principal components (PC) analysis of geomagnetic observatory hourly mean values. To make this (essentially linear) inverse problem well-posed we regularize using covariances for source field structure that are consistent with well-established properties of auroral ionospheric (and magnetospheric) current systems, and basic physics of the EM fields. In the second stage, we use a 3D finite difference inversion code, with source fields estimated from the first stage, to further fit the observatory PC modes. We incorporate higher latitude data into the inversion, and maximize the amount of available information by directly inverting the magnetic field components of the PC modes, instead of transfer functions such as C-responses used previously. Recent improvements in accuracy and speed of the forward and inverse finite difference codes (a secondary field formulation and parallelization over frequencies) allow us to use finer computational grid for inversion, and thus to model finer scale features, making full use of the expanded data set. Overall, our approach presents an improvement over earlier observatory data interpretation techniques, making better use of the available data, and allowing to explore the trade-offs between complications in source structure, and heterogeneities in mantle conductivity. We will also report on progress towards applying the same approach to simultaneous source/conductivity inversion of shorter period observatory data, focusing especially on the daily variation band.

  9. [The federal politics of basic sanitation and the initiatives of participation, mobilization, social control, health and environmental education].

    PubMed

    Moisés, Márcia; Kligerman, Débora Cynamon; Cohen, Simone Cynamon; Monteiro, Sandra Conceição Ferreira

    2010-08-01

    The purpose of this article is to accomplish a critical analysis of two governmental important programs in health and environmental education - Health Education and Social Mobilization Program (PESMS) and Environmental Education and Sanitation Social Mobilization Program (PEAMSS), aiming at stimulate participative educational actions and social mobilization in sanitation projects. The methodology was based on reading and analysis of documents and observation in Workshops, Meetings, Seminars, Conventions, Congresses and Interviews. The authors describe the process of Program creation - PESMS and PEAMSS. They promoted a reflection and thought about Participation, Mobilization, Social Control, Health Education and Environmental Education. They also made considerations about the difficulties, facilities, advances and challenges in the implantation and implementation of PESMS and PEAMSS in the fundament for the realization of the public services of basic sanitation. They conclude that the creation of conditions by means of initiatives of Participation, Mobilization, Social Control, Health Education and Environmental Education become necessary for the development of Federal Policies of Basic Sanitation.

  10. Kronos Observatory Operations Challenges in a Lean Environment

    NASA Astrophysics Data System (ADS)

    Koratkar, Anuradha; Peterson, Bradley M.; Polidan, Ronald S.

    2003-02-01

    Kronos is a multiwavelength observatory designed to map the accretion disks and environments of supermassive black holes in various environments using the natural intrinsic variability of the accretion-driven sources. Kronos is envisaged as a Medium Explorer mission to NASA Office of Space Science under the Structure and Evolution of the Universe theme. We will achieve the Kronos science objectives by developing cost-effective techniques for obtaining and assimilating data from the research spacecraft and its subsequent work on the ground. The science operations assumptions for the mission are: (1 Need for flexible scheduling due to the variable nature of targets, (2) Large data volumes but minimal ground station contact, (3) Very small staff for operations. Our first assumption implies that we will have to consider an effective strategy to dynamically reprioritize the observing schedule to maximize science data acquisition. The flexibility we seek greatly increases the science return of the mission, because variability events can be properly captured. Our second assumption implies that we will have to develop some basic on-board analysis strategies to determine which data get downloaded. The small size of the operations staff implies that we need to "automate" as many routine processes of science operations as possible. In this paper we will discuss the various solutions that we are considering to optimize our operations and maximize science returns on the observatory.

  11. Compton Gamma Ray Observatory: Lessons Learned in Propulsion

    NASA Technical Reports Server (NTRS)

    Dressler, G. A.; Joseph, G. W.; Behrens, H. W.; Asato, D. I.; Carlson, R. A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Compton Gamma Ray Observatory was the second of NASA's Great Observatories. At 17 1/2 tons. it was the heaviest astrophysical payload ever flown at the time of its launch on April 5, 1991 aboard the Space Shuttle. During initial, on-orbit priming of the spacecraft's monopropellant hydrazine propulsion system, a severe waterhammer transient was experienced. At that time, anomalous telemetry readings were received from on-board propulsion system instrumentation. This led to ground analyses and laboratory investigations as to the root cause of the waterhammer, potential damage to system integrity and functionality, and risks for switching from the primary (A-side) propulsion system to the redundant (B-side) system. The switchover to B-side was ultimately performed successfully and the spacecraft completed its basic and extended missions in this configuration. Nine years later, following a critical control gyroscope failure, Compton was safely deorbited and re-entered the Earth's atmosphere on June 4, 2000. Additional risk assessments concerning viability of A- and B-sides were necessary to provide confidence in attitude and delta-V authority and reliability to manage the precisely controlled reentry. This paper summarizes the design and operation of the propulsion system used on the spacecraft and provides "lessons learned" from the system engineering investigations into the propellant loading procedures, the initial priming anomaly, mission operations, and the commanded re-entry following the gyro failure.

  12. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  13. Ocean Environmental Assessment and Adaptive Resource Management within the Framework of IOOS and CLEANER

    NASA Astrophysics Data System (ADS)

    Bonner, J.; Brezonik, P.; Clesceri, N.; Gouldman, C.; Jamail, R.; Zilkoski, D.

    2006-12-01

    The Integrated Ocean Observing System (IOOS), established through the efforts of the National Office for Integrated and Sustained Ocean Observations (Oceans.US) provides quality controlled data and information on a routine and continuous basis regarding current and future states of the oceans and Great Lakes at scales from global ocean basins to coastal ecosystems. The seven societal goals of IOOS are outlined in this paper. The Engineering and Geosciences Directorates at the National Science Foundation (NSF) are collaborating in planning the WATERS (WATer Environmental Research System) Network, an outgrowth of earlier, separate initiatives of the two directorates: CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) and Hydrologic Observatories. WATERS Network is being developed by engineers and scientists in the academic community who recognize the need for an observation and research network to enable better understanding of human-dominated water-environments, their stressors, and the links between them. The WATERS Network model is based on a research framework anchored in a distributed, cyber-based network supporting: 1) data collection; 2) data aggregation; 3) analytical and exploratory tools; and 4) a computational environment supporting predictive modeling and policy analysis on water resource systems. Within IOOS, the U.S. coastal margin is divided into Regional Associations (RAs), organizational units that are conceptually linked through planned data collection and analysis activities for resolving fundamental coastal margin ecosystem questions and addressing RA concerns. Under the WATERS Network scheme, a Coastal Margin Regional Environmental System (RES) for coastal areas would be defined conceptually based on geomorphologic considerations of four major water bodies; Atlantic and Pacific Oceans, Gulf of Mexico, and Laurentian Great Lakes. Within this framework, each coastal margin would operate one or more local environmental field facilities (or observatories). Mutual coordination and collaboration would exist among these coasts through RES interactions based on a cyberinfrastructure supporting all aspects of quantitative analysis. Because the U.S. Ocean Action Plan refers to the creation of a National Water Quality Monitoring Network, a close liaison between IOOS and WATERS Network could be mutually advantageous considering the shared visions, goals and objectives. A focus on activities and initiatives involving sensor and sensor networks for coastal margin observation and assessment would be a specific instance of this liaison, leveraging the infrastructural base of both organizations to maximize resource allocation. This coordinated venture with intelligent environmental systems would include new specialized coastal monitoring networks, and management of near-real-time data, including data assimilation models. An ongoing NSF planning grant aimed at environmental observatory design for coastal margins is a component of the broader WATERS Network planning for collaborative research to support adaptive and sustainable environmental management. We propose a collaborative framework between IOOS and WATERS Network wherein collaborative research will be enabled by cybernetworks to support adaptive and sustainable management of the coastal regions.

  14. The WATERS Network Conceptual Design

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Schnoor, J. L.; Haas, C. N.; Minsker, B.; Bales, R. C.; Hooper, R. P.

    2007-12-01

    The Water and Environmental Research Systems (WATERS) Network is a collaboration between the water- related Earth science and environmental engineering communities around a series of grand-challenge and strategic research questions. The vision of WATERS Network is to transform our ability to predict the quality, quantity and use of our nation's waters. The real transformative power of the WATERS Network lies in its ability to put sustained, spatially extensive, high-frequency information in the hands of researchers, information that will resolve how natural and engineered systems respond to perturbations. This knowledge then improves process understanding, and provides better predictive capabilities. In order to do this, the WATERS Network will create a national network of observatories equipped with multimedia sensors located across a range of different climatic and geographic regions and linked together by a common cyberinfrastructure. The network will incorporate existing and new environmental and socioeconomic data at various spatial and temporal scales. Data will include physical, chemical, and biological information to characterize surface water, ground water, land, socioeconomic and behavioral information to better frame human influences. Real-time data resources will be assimilated into an information system (cyberinfrastructure) that supports analytical tools and models, networking tools, and education and outreach services. The WATERS Network is an Environmental Observatory initiative of the U.S. National Science Foundation, developed in response to community planning over the past 10 years. It is being developed for the foundation's Engineering and Geosciences Directorates to jointly propose for funding consideration through the foundation's Major Research Equipment and Facilities Construction (MREFC) account. This presentation will summarize the current status of planning for the WATERS Network.

  15. Freddie Fish. A Primary Environmental Study of Basic Numerals, Sets, Ordinals and Shapes.

    ERIC Educational Resources Information Center

    Kraynak, Ola

    This teacher's guide and study guide are an environmental approach to mathematics education in the primary grades. The mathematical studies of the numerals 0-10, ordinals, number sets, and basic shapes - diamond, circle, square, rectangle, and triangle - are developed through the story of Freddie Fish and his search for clean water. The…

  16. Air Quality and Pollution. Environmental Studies. 4 Color Transparencies, Reproducibles & Teaching Guide. Grade 3, 4, 5.

    ERIC Educational Resources Information Center

    Ortleb, Edward P.; And Others

    The world is faced with a variety of environmental problems. No country has escaped pollution and resource depletion. Basic ecological principles are often ignored and sometimes this contributes to ecological disasters. This volume is designed to provide basic information about the quality of the earth's atmosphere. The visual aids, worksheets,…

  17. Using the Child's Environment To Teach at Home and School. ERIC/CSMEE Digest.

    ERIC Educational Resources Information Center

    Heimlich, Joe E.

    This digest details how global concepts of environmental education, the basic principles of ecology, and the importance of environmental responsibility can be made concrete for children at home and at school. Topics discussed are: basic principles of ecology, "What is the home?"--teaching environment through the home, and living and the…

  18. 76 FR 38666 - Food and Drug Administration (FDA) and Marine Environmental Sciences Consortium/Dauphin Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... actively involved in both basic and applied research in coastal waters of the northern Gulf of Mexico. The... between the Center for Food Safety and Applied Nutrition (CFSAN) and the Marine Environmental Sciences Consortium/Dauphin Island Sea Lab (DISL). The goal of the DISL is marine science education, basic and applied...

  19. Water Quality and Pollution. Environmental Studies. 4 Color Transparencies, Reproducibles & Teaching Guide. Grade 3, 4, 5.

    ERIC Educational Resources Information Center

    Ortleb, Edward P.; And Others

    The world is faced with a variety of environmental problems. No country has escaped pollution and resource depletion. Basic ecological principles are often ignored and sometimes this contributes to ecological disasters. This volume is designed to provide basic information about the quality of the earth's water resources. The visual aids,…

  20. Energy and the Environment. Environmental Studies. 4 Color Transparencies, Reproducibles & Teaching Guide. Grade 3, 4, 5.

    ERIC Educational Resources Information Center

    Ortleb, Edward P.; And Others

    The world is faced with a variety of environmental problems. No country has escaped pollution and resource depletion. Basic ecological principles are often ignored and sometimes this contributes to ecological disasters. This volume is designed to provide basic information about the quality of the earth's energy resources. The visual aids,…

  1. Land Resources and Pollution. Environmental Studies. 4 Color Transparencies, Reproducibles & Teaching Guide. Grade 3, 4, 5.

    ERIC Educational Resources Information Center

    Ortleb, Edward P.; And Others

    The world is faced with a variety of environmental problems. No country has escaped pollution and resource depletion. Basic ecological principles are often ignored and sometimes this contributes to ecological disasters. This volume is designed to provide basic information about the quality of the earth's land resources. The visual aids,…

  2. Effects of Geographic Information System on the Learning of Environmental Education Concepts in Basic Computer-Mediated Classrooms in Nigeria

    ERIC Educational Resources Information Center

    Adeleke, Ayobami Gideon

    2017-01-01

    This research paper specifically examined the impact of Geographic Information System (GIS) integration in a learning method and on the performance and retention of Environmental Education (EE) concepts in basic social studies. Non-equivalent experimental research design was employed. 126 pupils in four intact, computer-mediated classrooms were…

  3. Solar physics in the space age

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A concise and brief review is given of the solar physics' domain, and how its study has been affected by NASA Space programs which have enabled space based observations. The observations have greatly increased the knowledge of solar physics by proving some theories and challenging others. Many questions remain unanswered. To exploit coming opportunities like the Space Station, solar physics must continue its advances in instrument development, observational techniques, and basic theory. Even with the Advance Solar Observatory, other space based observation will still be required for the sure to be ensuing questions.

  4. Solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eight basic solar-terrestrial scientific objectives that benefit from the Shuttle/Platform approach and a program of measurements for each are discussed. The objectives are to understand: (1) solar variability, (2) wave-particle processes, (3) magnetosphere-ionosphere mass transport, (4) the global electric circuit, (5) upper atmospheric dynamics, (6) middle atmospheric chemistry and energetics, (7) lower atmospheric turbidity, and (8) planetary atmospheric waves. A two stage approach to a multidisciplinary payload is developed: an initial STO, that uses a single platform in a low-Earth orbit, and an advanced STO that uses two platforms in differing orbits.

  5. Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2015-01-01

    The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.

  6. New optical nova candidate in the M 31 disk

    NASA Astrophysics Data System (ADS)

    Henze, M.; Sala, G.; Jose, J.; Figueira, J.; Hernanz, M.; Pietsch, W.,

    2014-07-01

    We report the discovery of a possible nova in the disk of M 31 on two 4x200s stacked R filter CCD images, obtained with the the 80 cm Ritchey-Chretien F/9.6 Joan Oro telescope at Observatori Astronomic del Montsec, owned by the Catalan Government and operated by the Institut d'Estudis Espacials de Catalunya, Spain, using a Finger Lakes PL4240-1-BI CCD Camera (with a Class 1 Basic Broadband coated 2k x 2k chip with 13.5 microns sq.

  7. The collocated station Košetice - Kešín u Pacova, Czech Republic: an important research infrastructure in central Europe

    NASA Astrophysics Data System (ADS)

    Dvorska, Alice; Milan, Váňa; Vlastimil, Hanuš; Marian, Pavelka

    2013-04-01

    The collocated station Košetice - Křešín u Pacova, central Czech Republic, is a major research and monitoring infrastructure in the Czech Republic and central Europe. It consists of two basic components: the observatory Košetice run since 1988 by the Czech Hydrometeorological Institute and the atmospheric station (AS) Křešín u Pacova starting operation in 2013. The AS is built and run by CzechGlobe - Global Change Research Centre, Academy of Sciences of the Czech Republic and is situated 100 m far from the observatory. There are three research and monitoring activities at the collocated station providing data necessary for the research on climate and related changes. The AS Křešín u Pacova consists of a 250 m tall tower serving for ground-based and vertical gradient measurements of (i) concentrations of CO2, CO, CH4, total gaseous mercury and tropospheric ozone (continuously), (ii) elemental and organic carbon (semicontinuously), (iii) carbon and oxygen isotopes, radon, N2O, SF6 and other species (episodically), (iv) optical properties of atmospheric aerosols and (v) meteorological parameters and the boundary layer height. Further, eddy covariance measurements in the nearby agroecosystem provide data on CO2 and H2O fluxes between the atmosphere and the ecosystem. Finally, monitoring activities at the nearby small hydrological catchment Anenské povodí run under the GEOMON network enables studying local hydrological and biogeochemical cycles. These measurements are supported by the long-term monitoring of meteorological and air quality parameters at the observatory Košetice, that are representative for the central European background. The collocated station provides a big research opportunity and challenge due to (i) a broad spectra of monitored chemical species, meteorological, hydrological and other parameters, (ii) measurements in various environmental compartments and especially the atmosphere, (iii) provision of data suitable for conducting multidisciplinar research activities and (iv) participation in a number of international programmes and projects, i.e. ICOS (AS Křešín u Pacova), ACTRIS, ACCENT, CLRTAP/EMEP, GAW and ICP-IM (Košetice) and others. Finally, the collocated station has potential for a successful participation in the planned network of European superstations covering both climate and air quality issues, one of the key areas in the European Strategy Forum on Research Infrastructures (ESFRI) process. Acknowledgement: This work is supported by the CzechGlobe (CZ.1.05/1.1.00/02.0073) and CZ.1.07/2.4.00/31.0056 projects.

  8. Exchanging environmental information and decision making: developing the local Pilot Environmental Virtual Observatory with stakeholder communities

    NASA Astrophysics Data System (ADS)

    Mackay, E.; Beven, K.; Brewer, P.; M, Haygarth, P.; Macklin, M.; Marshall, K.; Quinn, P.; Stutter, M.; Thomas, N.; Wilkinson, M.

    2012-04-01

    Public participation in the development of flood risk management and river basin management plans are explicit components of both the Water Framework and Floods Directives. At the local level, involving communities in land and water management has been found to (i) aid better environmental decision making, (ii) enhance social, economic and environmental benefits, and (iii) increase a sense of ownership. Facilitating the access and exchange of information on the local environment is an important part of this new approach to the land and water management process, which also includes local community stakeholders in decisions about the design and content of the information provided. As part of the Natural Environment Research Council's pilot Environment Virtual Observatory (EVO), the Local Level group are engaging with local community stakeholders in three different catchments in the UK (the rivers Eden, Tarland and Dyfi) to start the process of developing prototype visualisation tools to address the specific land and water management issues identified in each area. Through this local collaboration, we will provide novel visualisation tools through which to communicate complex catchment science outcomes and bring together different sources of environmental data in ways that better meet end-user needs as well as facilitate a far broader participatory approach in environmental decision making. The Local Landscape Visualisation Tools are being evolved iteratively during the project to reflect the needs, interests and capabilities of a wide range of stakeholders. The tools will use the latest concepts and technologies to communicate with and provide opportunities for the provision and exchange of information between the public, government agencies and scientists. This local toolkit will reside within a wider EVO platform that will include national datasets, models and state of the art cloud computer systems. As such, local stakeholder groups are assisting the EVO's development and participating in local decision making alongside policy makers, government agencies and scientists.

  9. 47 CFR 95.206 - (R/C Rule 6) Are there any special restrictions on the location of my R/C station?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio... operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must... order to resolve or mitigate any potential interference problem with the Arecibo Observatory. If the...

  10. 47 CFR 95.206 - (R/C Rule 6) Are there any special restrictions on the location of my R/C station?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Radio Control (R/C) Radio... operated in such a manner as to raise environmental problems, under § 1.1307 of this chapter, you must... order to resolve or mitigate any potential interference problem with the Arecibo Observatory. If the...

  11. How to Apply Feedback to Improve Subjective Wellbeing of Government Servants Engaged in Environmental Protection in China?

    PubMed

    Gong, Zhenxing; Wang, Xinmeng; Zhang, Na; Li, Miaomiao

    2018-01-01

    In order to improve subjective wellbeing of government servants engaged in environmental protection who work in high power distance in China, it is important to understand the impact mechanism of feedback. This study aims to analyze how feedback environment influences subjective wellbeing through basic psychological needs satisfaction and analyzing the moderating role of power distance. The study was designed as a cross-sectional study of 492 government servants engaged in environment protection in Shandong, China. Government servants who agreed to participate answered self-report questionnaires concerning demographic conditions, supervisor feedback environment, basic psychological need satisfaction, and power distance as well as subjective wellbeing. Employees in higher levels of supervisor feedback environment were more likely to experience subjective wellbeing. Full mediating effects were found for basic psychological needs satisfaction. Specifically, supervisor feedback environment firstly led to increased basic psychological needs satisfaction, which in turn resulted in increased subjective wellbeing. Additional analysis showed that the mediating effect of basic psychological needs satisfaction was stronger for employees who work in high power distance than in low power distance. The results from the study indicate that supervisor feedback environment plays a vital role in improving subjective wellbeing of government servants engaged in environmental protection through basic psychological needs satisfaction, especially in high power distance.

  12. CME Velocity and Acceleration Error Estimates Using the Bootstrap Method

    NASA Technical Reports Server (NTRS)

    Michalek, Grzegorz; Gopalswamy, Nat; Yashiro, Seiji

    2017-01-01

    The bootstrap method is used to determine errors of basic attributes of coronal mass ejections (CMEs) visually identified in images obtained by the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO) instruments. The basic parameters of CMEs are stored, among others, in a database known as the SOHO/LASCO CME catalog and are widely employed for many research studies. The basic attributes of CMEs (e.g. velocity and acceleration) are obtained from manually generated height-time plots. The subjective nature of manual measurements introduces random errors that are difficult to quantify. In many studies the impact of such measurement errors is overlooked. In this study we present a new possibility to estimate measurements errors in the basic attributes of CMEs. This approach is a computer-intensive method because it requires repeating the original data analysis procedure several times using replicate datasets. This is also commonly called the bootstrap method in the literature. We show that the bootstrap approach can be used to estimate the errors of the basic attributes of CMEs having moderately large numbers of height-time measurements. The velocity errors are in the vast majority small and depend mostly on the number of height-time points measured for a particular event. In the case of acceleration, the errors are significant, and for more than half of all CMEs, they are larger than the acceleration itself.

  13. Joint Base Langley-Eustis

    Science.gov Websites

    Advanced Environmental Management Training (AEM) Advanced Environmental Management Phase I Training (AEM Phase I) Leadership Environmental Management and Competency Training (LEMAC) Basic Environmental Management Training (BEMA) Environmental Training Information Fort Eustis Chapel Fort Eustis Command Judge

  14. Fostering Collaboration Across the U.S. Critical Zone Observatories Network

    NASA Astrophysics Data System (ADS)

    Sharkey, S.; White, T. S.

    2017-12-01

    The Critical Zone (CZ) is defined as the permeable layer from the top of the vegetation canopy to the bottom of freely circulating groundwater where rock, soil, water, air and life meet. The study of the CZ is motivated by an overall lack of understanding of the coupled physical, chemical, and biological processes in this zone at differing spatial and temporal scales. Critical Zone Observatories (CZOs), supported by the U.S. National Science Foundation's Geosciences Directorate, are natural laboratories that aim to provide infrastructure, data and models to gain understanding of the evolution and function of the CZ from grain-to-watershed scales. The nine U.S. observatories span a range of climatic, ecologic, geologic, and physiographic environments from California to Puerto Rico, working on site-specific hypotheses and network-scale goals. CZO research infrastructure allows for teams of cross-disciplinary scientists at each site to further CZ science using field and theoretical approaches, education and outreach, and cross-CZO science. Cross-CZO science emerges from a set of common CZ science questions and hypotheses focused on CZ structure and evolution, event-based and continuous fluxes across CZ interfaces, and changes in storage of major CZ reservoirs at the catchment scale. CZO research seeks to understand coupled processes across all timescales using quantitative models parameterized from observations of meteorological variables, streams, and groundwater, and sampling and analyzing landforms, bedrock, soils, and ecosystems. Each observatory strives to apply common infrastructure, protocols and measurements that help quantify the composition and fluxes of energy, water, solutes, sediments, energy, and mass across boundaries of the CZ system through both space and time. This type of approach enables researchers to access and integrate data in a way that allows for the isolation of environmental variables and comparison of processes and responses across environmental gradients. There is opportunity to foster cross-collaborations with existing research infrastructure (i.e. LTER, NEON, international CZOs) to promote cross-site science and expand upon geologic, climatic, ecological, land use and hydrologic gradients required to understand the CZ.

  15. A Primer for DoD Reliability, Maintainability and Safety Standards

    DTIC Science & Technology

    1988-03-02

    the project engineer and the concurrence of their respective managers. The primary consideration in such cases is the thoroughness of the ...basic approaches to the application of environmental stress screening. In one approach, the government explicitly specifies the screens and screening...TO USE DOD-HDBK-344 (USAF) There are two basic approaches to the application of environmental stress

  16. Environmental Impact Analysis Process. Final Environmental Impact Statement Supersonic Flight Operations in the Valentine Military Operations Area

    DTIC Science & Technology

    1983-11-04

    Arizona, and the Uinta Basin Seismological Observatory near Vernal, Utah. The seismometer locations at Edwards AFB were on a quartz monzonite outcrop and a...sandstone and limestone section covered the seismometer array area. The array area at the Uinta Basin site consisted of fluviatile, friable, cross...ONuSU"a 00121� SUSCOMIMM oil &MMN OOllTVlCl OqMCA OSM A O&O T U.&L COal .a n od - pNOW I" ""I564-746- Congress of the ’United * atets C P*C•TO

  17. Astronomy as a Tool for Training the Next Generation Technical Workforce

    NASA Astrophysics Data System (ADS)

    Romero, V.; Walsh, G.; Ryan, W.; Ryan, E.

    A major challenge for today's institutes of higher learning is training the next generation of scientists, engineers, and optical specialists to be proficient in the latest technologies they will encounter when they enter the workforce. Although research facilities can offer excellent hands-on instructional opportunities, integrating such experiential learning into academic coursework without disrupting normal operations at such facilities can be difficult. Also, motivating entry level students to increase their skill levels by undertaking and successfully completing difficult coursework can require more creative instructional approaches, including fostering a fun, non-threatening environment for enhancing basic abilities. Astronomy is a universally appealing subject area, and can be very effective as a foundation for cultivating advanced competencies. We report on a project underway at the New Mexico Institute of Mining and Technology (NM Tech), a science and engineering school in Socorro, NM, to incorporate a state-of-the-art optical telescope and laboratory experiments into an entry-level course in basic engineering. Students enrolled in an explosive engineering course were given a topical problem in Planetary Astronomy: they were asked to develop a method to energetically mitigate a potentially hazardous impact between our planet and a Near-Earth asteroid to occur sometime in the future. They were first exposed to basic engineering training in the areas of fracture and material response to failure under different environmental conditions through lectures and traditional laboratory exercises. The students were then given access to NM Tech's Magdalena Ridge Observatory's (MRO) 2.4-meter telescope to collect physical characterization data, (specifically shape information) on two potentially hazardous asteroids (one roughly spherical, the other an elongated ellipsoid). Finally, the students used NM Tech's Energetic Materials Research and Testing Center (EMRTC) to perform field experiments to discern how an object's shape affects disruptive outcomes, and what must be factored into mitigation schemes to attain the desired result of complete destruction of the object. The scientific findings (details will be presented) derived by the students were valuable, and the students benefited from this non-traditional teaching approach such that they acquired a superior appreciation for research and experimentation, and exited the course with an increased motivation to continue their engineering training.

  18. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  19. MSE observatory: a revised and optimized astronomical facility

    NASA Astrophysics Data System (ADS)

    Bauman, Steven E.; Angers, Mathieu; Benedict, Tom; Crampton, David; Flagey, Nicolas; Gedig, Mike; Green, Greg; Liu, Andy; Lo, David; Loewen, Nathan; McConnachie, Alan; Murowinski, Rick; Racine, René; Salmon, Derrick; Stiemer, Siegfried; Szeto, Kei; Wu, Di

    2016-07-01

    The Canada-France-Hawaii-Telescope Corporation (CFHT) plans to repurpose its observatory on the summit of Maunakea and operate a (60 segment) 11.25m aperture wide field spectroscopic survey telescope, the Maunakea Spectroscopic Explorer (MSE). The prime focus telescope will be equipped with dedicated instrumentation to take advantage of one of the best sites in the northern hemisphere and offer its users the ability to perform large surveys. Central themes of the development plan are reusing and upgrading wherever possible. MSE will reuse the CFHT site and build upon the existing observatory infrastructure, using the same building and telescope pier as CFHT, while minimizing environmental impact on the summit. MSE will require structural support upgrades to the building to meet the latest building seismic code requirements and accommodate a new larger telescope and upgraded enclosure. It will be necessary to replace the current dome since a larger slit opening is needed for a larger telescope. MSE will use a thermal management system to remove heat generated by loads from the building, flush excess heat from lower levels, and maintain the observing environment temperature. This paper describes the design approach for redeveloping the CFHT facility for MSE. Once the project is completed the new facility will be almost indistinguishable on the outside from the current CFHT observatory. Past experience and lessons learned from CFHT staff and the astronomical community will be used to create a modern, optimized, and transformative scientific data collecting machine.

  20. The Focal Surface of the JEM-EUSO Telescope

    NASA Technical Reports Server (NTRS)

    Kawasaki, Yoshiya

    2007-01-01

    Extreme Universe Space Observatory onboard JEM/EP (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region to observe time-resolved atmospheric fluorescence images of the extensive air showers from the International Space Station. The focal surface is a spherical curved surface, and its area amounts to about 4.5 square m. The focal surface detector is covered with about 6,000 multi-anode photomultipliers (MAPMTs). The focal surface detector consists of Photo-Detector-Modules, each of which consists of 9 Elementary Cells (ECs). The EC contains 4 units of the MAPMTs. Therefore, about 1,500 ECs or about 160 PDMS are arranged on the whole of the focal surface of JEM- EUSO. The EC is a basic unit of the front-end electronics. The PDM is a, basic unit of the data acquisition system

  1. The Ratu River Expedition - A Case Study in Successful Outreach Using Film and Social Media

    NASA Astrophysics Data System (ADS)

    Kerlow, Isaac

    2016-04-01

    The Ratu River Expedition is a 25-minute film about earthquakes in Nepal made for a general audience and for a Nepalese audience in particular. The movie explains basic facts about seismic activity in the Himalaya region and also basic preparedness concepts. It showcases the scientific research of the Structural Geology group at the Earth Observatory of Singapore in collaboration with the Department of Mines and Geology, Nepal. A social media campaign was developed to bring the movie to a large Nepalese audience, and the Nepali-subtitled version of the movie yielded over 79,000 post Likes in a Facebook outreach campaign. This presentation reviews the development, production, and distribution of this highly successful natural hazards documentary with scientific depth but designed for a mainstream audience. The full movie is being shown at EGU's Geo-Cinema 2016. http://raturiver.com/

  2. Guntersville Workshop on Solar-Terrestrial Studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The separation of purely solar physics from magnetospheric physics, and the effects of solar activity on geomagnetic activity are investigations which can be accomplished using the shuttle orbiter in an extended sortie mode, or an unmanned solar terrestrial observatory powered by the power module in an extended duration mode. When the power module is used with the shuttle in a sortie support mode, both the instrument capacity and the time in orbit of the orbiter can be increased several fold. In the free-flyer mode, the power module would be capable of providing power, basic attitude control, basic thermal control and housekeeping communications for unmanned, large, independent mission payloads in low earth orbit for periods of 6 months or longer. Instrument requirements for interdisciplinary joint observational programs are discussed for studies of the magnetosphere, the atmosphere, sun-weather relationships. Description summary charts of the power module are included.

  3. All About EVE: Education and Public Outreach for the Extreme Ultraviolet Variability Experiment (EVE) of the NASA Solar Dynamic Observatory

    NASA Astrophysics Data System (ADS)

    Eparvier, F. G.; McCaffrey, M. S.; Buhr, S. M.

    2008-12-01

    With the aim of meeting NASA goals for education and public outreach as well as support education reform efforts including the National Science Education Standards, a suite of education materials and strategies have been developed by the Cooperative Institute for Environmental Sciences (CIRES) with the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado for the Extreme Ultraviolet Variability Experiment (EVE), which is an instrument aboard the Solar Dynamic Observatory. This paper will examine the education materials that have been developed for teachers in the classroom and scientists who are conducting outreach, including handouts, a website on space weather for teachers, a slideshow presentation about the overall Solar Dynamic Observatory mission, and a DVD with videos explaining the construction and goals of the EVE instrument, a tour of LASP, and an overview of space science careers. The results and potential transferability of a pilot project developed through this effort that engaged English Second Language learners in a semester-long course on space weather that incorporated the used of a Sudden Ionospheric Disturbance (SID) Monitor will be highlighted.

  4. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The Smithsonian Astrophysical Observatory will manage the Chandra science mission for NASA from the Chandra X-ray Observatory Center in Cambridge, Mass. TRW has been developing scientific, communications and environmental satellite systems for NASA since 1958. In addition to building the Chandra X-ray Observatory, the company is currently developing the architectures and technologies needed to implement several of NASA's future space science missions, including the Next Generation Space Telescope, the Space Inteferometry Mission, both part of NASA's Origins program, and Constellation-X, the next major NASA X-ray mission after Chandra. Article courtesy of TRW. TRW news releases are available on the corporate Web site: http://www.trw.com.

  5. 7 CFR 1710.117 - Environmental considerations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Environmental considerations. 1710.117 Section 1710... GUARANTEES Loan Purposes and Basic Policies § 1710.117 Environmental considerations. Borrowers are required... Environmental Policy Act (NEPA), as amended (42 U.S.C. 4321 et seq.); the Council on Environmental Quality...

  6. Postindustrialization and Environmental Quality: An Empirical Analysis of the Environmental State

    ERIC Educational Resources Information Center

    Fisher, Dana R.; Freudenburg, William R.

    2004-01-01

    Existing sociological analyses express differing expectations about state control over economic actors and the political feasibility of environmental regulation. Recent literature on the environmental state sees environmental protection as becoming a basic responsibility of postindustrial states, with economic actors no longer having the autonomy…

  7. 7 CFR 1710.117 - Environmental considerations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Environmental considerations. 1710.117 Section 1710... GUARANTEES Loan Purposes and Basic Policies § 1710.117 Environmental considerations. Borrowers are required... Environmental Policy Act (NEPA), as amended (42 U.S.C. 4321 et seq.); the Council on Environmental Quality...

  8. OCO-2 Booster on Stand

    NASA Image and Video Library

    2014-03-28

    VANDENBERG AIR FORCE BASE, Calif. – Work platforms are moved into place around the upper end of the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, in the environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. OCO-2 Booster on Stand

    NASA Image and Video Library

    2014-03-28

    VANDENBERG AIR FORCE BASE, Calif. – Workers in the environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California steady the upper end of the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, as work platforms move into position around it. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. OCO-2 Booster on Stand

    NASA Image and Video Library

    2014-03-28

    VANDENBERG AIR FORCE BASE, Calif. – Workers in the environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California prepare to release the upper end of the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, from the lifting device. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  11. KSC-2014-1923

    NASA Image and Video Library

    2014-03-28

    VANDENBERG AIR FORCE BASE, Calif. – The lifting device detached and moved away from the upper end of the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, in the environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  12. 42 CFR 65a.6 - How will applications be evaluated?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... that purpose, including review by the National Advisory Environmental Health Sciences Council in... Environmental Health Sciences Council. ...

  13. 42 CFR 65a.6 - How will applications be evaluated?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... that purpose, including review by the National Advisory Environmental Health Sciences Council in... Environmental Health Sciences Council. ...

  14. 42 CFR 65a.6 - How will applications be evaluated?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... that purpose, including review by the National Advisory Environmental Health Sciences Council in... Environmental Health Sciences Council. ...

  15. 42 CFR 65a.6 - How will applications be evaluated?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... that purpose, including review by the National Advisory Environmental Health Sciences Council in... Environmental Health Sciences Council. ...

  16. 42 CFR 65a.6 - How will applications be evaluated?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that purpose, including review by the National Advisory Environmental Health Sciences Council in..., INTERNSHIPS, TRAINING NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH... Environmental Health Sciences Council. ...

  17. The Space Environmental Impact System

    NASA Astrophysics Data System (ADS)

    Kihn, E. A.

    2009-12-01

    The Space Environmental Impact System (SEIS) is an operational tool for incorporating environmental data sets into DoD Modeling and Simulation (M&S) which allows for enhanced decision making regarding acquisitions, testing, operations and planning. The SEIS system creates, from the environmental archives and developed rule-base, a tool for describing the effects of the space environment on particular military systems, both historically and in real-time. The system uses data available over the web, and in particular data provided by NASA’s virtual observatory network, as well as modeled data generated specifically for this purpose. The rule base system developed to support SEIS is an open XML based model which can be extended to events from any environmental domain. This presentation will show how the SEIS tool allows users to easily and accurately evaluate the effect of space weather in terms that are meaningful to them as well as discuss the relevant standards used in its construction and go over lessons learned from fielding an operational environmental decision tool.

  18. Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.

    2011-01-01

    Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.

  19. a New IAA Cosmic Study: Establishing a Radio Observatory on the Moon Farside

    NASA Astrophysics Data System (ADS)

    Heidmann, J.

    2002-01-01

    In 1998, the IAA decided to develop a new Cosmic Study following a suggestion by its President, M. Yarymovych, based on work I initiated in 1993. This project is jointly fully supported by G. Haerendel, Vice-President of the IAA and President of the COSPAR. After the Symposium " Protection of Part of a Celestial Body for the Scientific Benefit of Humankind: the Lunar Farside Crater SAHA Proposal", which I organized at the COSPAR 1998 Scientific Assembly, the IAA Space Science Committee endorsed also this study. I assembled a Committee including D. McNally, University of London Observatory, for Radio Protection, B. Reijnen, International Institute of Space Law, for Space Law, G. Genta, Politecnico di Torino, for Astronautics, J.-F. Lestrade, Paris-Meudon Observatory, for Radioastronomy, and C. Maccone, IAA SETI and Interstellar Space Exploration Committees, for Mission Management. We encourage contributions from workers in a wide range of interdisciplinary domains: space lawyers, space engineers, astronomers, policy-makers, economists, educationists, media analysts. I started to invite potential contributors from various sources such as programmes of recent conferences of IAF, IAA, IISL, COSPAR, IAU, NASA, ESA and other space agencies, together with news from journals such as Science, Nature, Space News. The basic philosophy is not to refrain from giving access to persons of different opinions, so that a balance can be presented, aiming at some synthetizing consensus. I shall be the Editor, submitting each paper to two referees and taking advice from the Committee in controversial cases.

  20. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    NASA Astrophysics Data System (ADS)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  1. Advanced situation awareness with localised environmental community observatories in the Future Internet

    NASA Astrophysics Data System (ADS)

    Sabeur, Z. A.; Denis, H.; Nativi, S.

    2012-04-01

    The phenomenal advances in information and communication technologies over the last decade have led to offering unprecedented connectivity with real potentials for "Smart living" between large segments of human populations around the world. In particular, Voluntary Groups(VGs) and individuals with interest in monitoring the state of their local environment can be connected through the internet and collaboratively generate important localised environmental observations. These could be considered as the Community Observatories(CO) of the Future Internet(FI). However, a set of FI enablers are needed to be deployed for these communities to become effective COs in the Future Internet. For example, these communities will require access to services for the intelligent processing of heterogeneous data and capture of advancend situation awarness about the environment. This important enablement will really unlock the communities true potential for participating in localised monitoring of the environment in addition to their contribution in the creation of business entreprise. Among the eight Usage Areas(UA) projects of the FP7 FI-PPP programme, the ENVIROFI Integrated Project focuses on the specifications of the Future Internet enablers of the Environment UA. The specifications are developed under multiple environmental domains in context of users needs for the development of mash-up applications in the Future Internet. It will enable users access to real-time, on-demand fused information with advanced situation awareness about the environment at localised scales. The mash-up applications shall get access to rich spatio-temporal information from structured fusion services which aggregate COs information with existing environmental monitoring stations data, established by research organisations and private entreprise. These applications are being developed in ENVIROFI for the atmospheric, marine and biodiversity domains, together with a potential to be extended to other domains and scenarios concerning smart and safe living in the Future Internet.

  2. CBEO:N, Chesapeake Bay Environmental Observatory as a Cyberinfrastructure Node

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Piasecki, M.; Whitenack, T.; Ball, W. P.; Murphy, R.

    2008-12-01

    Chesapeake Bay Environmental Observatory (CBEO) is an NSF-supported project focused on studying hypoxia in Chesapeake Bay using advanced cyberinfrastructure (CI) technologies. The project is organized around four concurrent and interacting activities: 1) CBEO:S provides science and management context for the use of CI technologies, focusing on hypoxia and its non-linear dynamics as affected by management and climate; 2) CBEO:T constructs a locally-accessible CBEO test bed prototype centered on spatio-temporal interpolation and advanced querying of model runs; 3) CBEO:N incorporates the test bed CI into national environmental observation networks, and 4) CBEO:E develops education and outreach components of the project that translate observational science for public consumption. CBEO:N activities, which are the focus of this paper, are four-fold: - constructing an online project portal to enable researchers to publish, discover, query, visualize and integrate project-related datasets of different types. The portal is based on the technologies developed within the GEON (the Geosciences Network) project, and has established the CBEO project data server as part of the GEON network of servers; * developing a CBEO node within the WATERS network, taking advantage of the CUAHSI Hydrologic Information System (HIS) Server technology that supports online publication of observation data as web services, and ontology-assisted data discovery; *developing new data structures and metadata in order to describe water quality observational data, and model run output, obtained for the Chesapeake Bay area, using data structures adopted and modified from the Observations Data Model of CUAHSI HIS; * prototyping CBEO tools that can be re-used through the portal, in particular implementing a portal version of R-based spatial interpolation tools. The paper describes recent accomplishments in these four development areas, and demonstrates how CI approaches transform research and data sharing in environmental observing systems.

  3. The James Webb Space Telescope: Observatory Status and the Path to Launch

    NASA Technical Reports Server (NTRS)

    McElwain, Michael; Bowers, Chuck; Clampin, Mark; Niedner, Mal

    2016-01-01

    JWST will carry out transformative science from the very early universe and across cosmic time. JWST OTE and ISIM have been combined to form OTIS, which will commence environmental testing. The full JWST team has made tremendous progress since the last AT+I meeting in 2014.JWST on track following 2011 replan and remains on schedule to launch in October 2018.

  4. Solar Environmental Disturbances

    DTIC Science & Technology

    2007-11-02

    like stars were examined, extending the previous 7–12 year time series to 13–20 years by combining Strömgren b, y photometry from Lowell Observatory...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...explanations for how these physical processes affect the production of solar activity, both on short and long time scales. Solar cycle variation

  5. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  6. Cameras on the NEPTUNE Canada seafloor observatory: Towards monitoring hydrothermal vent ecosystem dynamics

    NASA Astrophysics Data System (ADS)

    Robert, K.; Matabos, M.; Sarrazin, J.; Sarradin, P.; Lee, R. W.; Juniper, K.

    2010-12-01

    Hydrothermal vent environments are among the most dynamic benthic habitats in the ocean. The relative roles of physical and biological factors in shaping vent community structure remain unclear. Undersea cabled observatories offer the power and bandwidth required for high-resolution, time-series study of the dynamics of vent communities and the physico-chemical forces that influence them. The NEPTUNE Canada cabled instrument array at the Endeavour hydrothermal vents provides a unique laboratory for researchers to conduct long-term, integrated studies of hydrothermal vent ecosystem dynamics in relation to environmental variability. Beginning in September-October 2010, NEPTUNE Canada (NC) will be deploying a multi-disciplinary suite of instruments on the Endeavour Segment of the Juan de Fuca Ridge. Two camera and sensor systems will be used to study ecosystem dynamics in relation to hydrothermal discharge. These studies will make use of new experimental protocols for time-series observations that we have been developing since 2008 at other observatory sites connected to the VENUS and NC networks. These protocols include sampling design, camera calibration (i.e. structure, position, light, settings) and image analysis methodologies (see communication by Aron et al.). The camera systems to be deployed in the Main Endeavour vent field include a Sidus high definition video camera (2010) and the TEMPO-mini system (2011), designed by IFREMER (France). Real-time data from three sensors (O2, dissolved Fe, temperature) integrated with the TEMPO-mini system will enhance interpretation of imagery. For the first year of observations, a suite of internally recording temperature probes will be strategically placed in the field of view of the Sidus camera. These installations aim at monitoring variations in vent community structure and dynamics (species composition and abundances, interactions within and among species) in response to changes in environmental conditions at different temporal scales. High-resolution time-series studies also provide a mean of studying population dynamics, biological rhythms, organism growth and faunal succession. In addition to programmed time-series monitoring, the NC infrastructure will also permit manual and automated modification of observational protocols in response to natural events. This will enhance our ability to document potentially critical but short-lived environmental forces affecting vent communities.

  7. Common Technologies for Environmental Research Infrastructures in ENVRIplus

    NASA Astrophysics Data System (ADS)

    Paris, Jean-Daniel

    2016-04-01

    Environmental and geoscientific research infrastructures (RIs) are dedicated to distinct aspects of the ocean, atmosphere, ecosystems, or solid Earth research, yet there is significant commonality in the way they conceive, develop, operate and upgrade their observation systems and platforms. Many environmental Ris are distributed network of observatories (be it drifting buoys, geophysical observatories, ocean-bottom stations, atmospheric measurements sites) with needs for remote operations. Most RIs have to deal with calibration and standardization issues. RIs use a variety of measurements technologies, but this variety is based on a small, common set of physical principles. All RIs have set their own research and development priorities, and developed their solution to their problems - however many problems are common across RIs. Finally, RIs may overlap in terms of scientific perimeter. In ENVRIplus we aim, for the first time, to identify common opportunities for innovation, to support common research and development across RIs on promising issues, and more generally to create a forum to spread state of the art techniques among participants. ENVRIplus activities include 1) measurement technologies: where are the common types of measurement for which we can share expertise or common development? 2) Metrology : how do we tackle together the diversified challenge of quality assurance and standardization? 3) Remote operations: can we address collectively the need for autonomy, robustness and distributed data handling? And 4) joint operations for research: are we able to demonstrate that together, RIs are able to provide relevant information to support excellent research. In this process we need to nurture an ecosystem of key players. Can we involve all the key technologists of the European RIs for a greater mutual benefit? Can we pave the way to a growing common market for innovative European SMEs, with a common programmatic approach conducive to targeted R&D? Can we develop a common metrological language adapted to the observation of our environment? We aim at creating a space for exchange on the "hardware" issues of our networks of observatories, a forum that allows fast transmission across RIs of best practices and state of the art technology, a laboratory for joint research and co-development, where research infrastructures and their communities join efforts on well-identified objectives.

  8. "Back to the Basics" Through Environmental Education.

    ERIC Educational Resources Information Center

    Christian, Adelaide

    Environmental education is proposed as a viable means of improving the educational system. The rationale for teaching environmental education is based in part upon White's principles of education for Seventh-day Adventists and upon Noel McInnis's views of what makes education environmental. An overview of environmental education characterizes it…

  9. Kids Can Make a Difference! Environmental Science Activities.

    ERIC Educational Resources Information Center

    Dashefsky, H. Steven

    This book of more than 160 environmental science activities is designed to help students understand environmental issues, ask questions, and find solutions to the problems. Introductory sections address: (1) the nature of major global problems and a history of environmental concern; (2) basic environmental science terminology and scientific study…

  10. How to Apply Feedback to Improve Subjective Wellbeing of Government Servants Engaged in Environmental Protection in China?

    PubMed Central

    Wang, Xinmeng; Zhang, Na; Li, Miaomiao

    2018-01-01

    Background In order to improve subjective wellbeing of government servants engaged in environmental protection who work in high power distance in China, it is important to understand the impact mechanism of feedback. This study aims to analyze how feedback environment influences subjective wellbeing through basic psychological needs satisfaction and analyzing the moderating role of power distance. Method The study was designed as a cross-sectional study of 492 government servants engaged in environment protection in Shandong, China. Government servants who agreed to participate answered self-report questionnaires concerning demographic conditions, supervisor feedback environment, basic psychological need satisfaction, and power distance as well as subjective wellbeing. Results Employees in higher levels of supervisor feedback environment were more likely to experience subjective wellbeing. Full mediating effects were found for basic psychological needs satisfaction. Specifically, supervisor feedback environment firstly led to increased basic psychological needs satisfaction, which in turn resulted in increased subjective wellbeing. Additional analysis showed that the mediating effect of basic psychological needs satisfaction was stronger for employees who work in high power distance than in low power distance. Conclusion The results from the study indicate that supervisor feedback environment plays a vital role in improving subjective wellbeing of government servants engaged in environmental protection through basic psychological needs satisfaction, especially in high power distance. PMID:29662901

  11. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  12. Identification of stars and digital version of the catalogue of 1958 by Brodskaya and Shajn

    NASA Astrophysics Data System (ADS)

    Gorbunov, M. A.; Shlyapnikov, A. A.

    2017-12-01

    The following topics are considered: the identification of objects on search maps, the determination of their coordinates at the epoch of 2000, and converting the published version of the catalogue of 1958 by Brodskaya and Shajn into a machine-readable format. The statistics for photometric and spectral data from the original catalogue is presented. A digital version of the catalogue is described, as well as its presentation in HTML, VOTable and AJS formats and the basic principles of work in the interactive application of International Virtual Observatory - the Aladin Sky Atlas.

  13. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Joseph, R. D.

    2009-08-01

    The SOFIA is a 2.5-meter telescope built into a Boeing 747 airplane. It will fly at altitudes between 12-14 km above 99.8% of the atmospheric water vapor, making possible observations throughout the far-infrared and submillimeter spectral region. Nine focal plane instruments providing imaging and low-to-high resolution spectroscopy will be available. It will be operated as a guest observer facility. The first call for ``Early Basic Science'' will be issued in December 2009, the call for Demonstration Science will be issued early in 2010, and the call for Cycle 0 Guest Investigator programs is planned for January 2011.

  14. Alternative Environments for Basic Skills Development.

    ERIC Educational Resources Information Center

    Crowe, Michael R.; And Others

    This study focused on the identification and description of environmental characteristics and their relationship to basic skills exposure. The objectives of the study were to identify the major factors that characterize environments in which learning is intended to occur, and to delineate patterns of co-exposure to basic skills and environmental…

  15. Amateur observations of solar eclipses and derivation of scientific data

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Stoeva, P. V.

    2008-12-01

    This work presents the educational approach of using total solar eclipse occurrences as a scientific process learning aid. The work reviews the basic scientific aims and experiments included in the observational programs "Total solar eclipse 1999 and 2006" (Stoev, A., Kiskinova, N., Muglova, P. et al. Complex observational programme of the Yuri Gagarin Public Astronomical Observatory and STIL, BAS, Stara Zagora Department for the August 11, 1999 total solar eclipse, in: Total Solar Eclipse 1999 - Observational Programmes and Coordination, Proceedings, Recol, Haskovo, pp. 133-137, 1999a (in Bulgarian); Stoeva, P.V., Stoev, A.D., Kostadinov, I.N. et al. Solar Corona and Atmospheric Effects during the March 29, 2006 Total Solar Eclipse, in: 11th International Science Conference SOLAR-Terrestrial Influences, Sofia, November 24-25, pp. 69-72, 2005). Results from teaching and training the students in the procedures, methods and equipment necessary for the observation of a total solar eclipse (TSE) at the Yuri Gagarin Public Astronomical Observatory (PAO) in Stara Zagora, Bulgaria, as well as the selection process used in determining participation in the different observational teams are discussed. The final stages reveal the special methodology used to investigate the level of "pretensions", the levels of ambition displayed by the students in achieving each independent goal, and the setting of goals in context with their problem solving capabilities and information gathering abilities in the scientific observation process. Results obtained from the observational experiments are interpreted mainly in the following themes: Investigation of the structure of the white-light solar corona and evolution of separate coronal elements during the total phase of the eclipse; Photometry of the white-light solar corona and specific emission lines; Meteorological, actinometrical and optical atmospheric investigations; Astrometry of the Moon during the phase evolution of the eclipse and Biological and behavioral reactions of highly organized colonies (ants and bats) during the eclipse. It is also shown that the students benefit from the activities of processing data, observational results and their interpretation, and preparation of summary reports. This exercise is intended to provide the basic training necessary to develop the creativity of the students and amateur astronomers involved. This will enable the students from the Astronomy schools at Public Astronomical Observatories and Planetaria (PAOP) to further develop their creative skills, emotional-volitional personal qualities with an orientation towards scientific analysis, using observations and experiments, to build an effective scientific style of thinking. Students of the Yuri Gagarin Public Astronomical Observatory, whom are already being nurtured in this manner, should be able to participate with great success in Scientific Research Programs devoted to the International Heliophysical Year.

  16. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  17. Worldwide Emerging Environmental Issues Affecting the U.S. Military. June 2007 Report

    DTIC Science & Technology

    2007-06-01

    Idle Nighttime Computers Cited as Energy Wasters……………………………………….10 8.8 Nanotechnology Safety Issues……………………………………………………………...10 8.8.1 French Group to...Impact on Business Savings and Reducing CO2 http://www.csrwire.com/News/8951.html 8.8 Nanotechnology Safety Issues 8.8.1 French Group to Study...Nanotech Environmental Health and Safety The Observatory for Micro and NanoTechnologies (Minatec, France), a part of the National Center for Scientific

  18. Quality Control of Meteorological Observations

    NASA Technical Reports Server (NTRS)

    Collins, William; Dee, Dick; Rukhovets, Leonid

    1999-01-01

    For the first time, a problem of the meteorological observation quality control (QC) was formulated by L.S. Gandin at the Main Geophysical Observatory in the 70's. Later in 1988 L.S. Gandin began adapting his ideas in complex quality control (CQC) to the operational environment at the National Centers for Environmental Prediction. The CQC was first applied by L.S.Gandin and his colleagues to detection and correction of errors in rawinsonde heights and temperatures using a complex of hydrostatic residuals.Later, a full complex of residuals, vertical and horizontal optimal interpolations and baseline checks were added for the checking and correction of a wide range of meteorological variables. some other of Gandin's ideas were applied and substantially developed at other meteorological centers. A new statistical QC was recently implemented in the Goddard Data Assimilation System. The central component of any quality control is a buddy check which is a test of individual suspect observations against available nearby non-suspect observations. A novel feature of this test is that the error variances which are used for QC decision are re-estimated on-line. As a result, the allowed tolerances for suspect observations can depend on local atmospheric conditions. The system is then better able to accept extreme values observed in deep cyclones, jet streams and so on. The basic statements of this adaptive buddy check are described. Some results of the on-line QC including moisture QC are presented.

  19. Guide to Developing an Environmental Management System - Act

    EPA Pesticide Factsheets

    This page takes you though the basic steps (Plan, Do, Check, Act) of building an Environmental Management System (EMS) as they are outlined in the 2001 Second Edition of Environmental Management Systems: An Implementation Guide. Act section.

  20. Guide to Developing an Environmental Management System - Plan

    EPA Pesticide Factsheets

    This page takes you though the basic steps (Plan, Do, Check, Act) of building an Environmental Management System (EMS) as they are outlined in the 2001 Second Edition of Environmental Management Systems: An Implementation Guide. Plan section.

  1. Guide to Developing an Environmental Management System - Check

    EPA Pesticide Factsheets

    This page takes you though the basic steps (Plan, Do, Check, Act) of building an Environmental Management System (EMS) as they are outlined in the 2001 Second Edition of Environmental Management Systems: An Implementation Guide. Check section.

  2. A multiattribute index for assessing environmental impacts of regional development projects: a case study of Korea.

    PubMed

    Kwak, Seung-Jun; Yoo, Seung-Hoon; Shin, Chol-Oh

    2002-02-01

    Evaluating environmental impacts has become an increasingly vital part of environmental management. In the present study, a methodological procedure based on multiattribute utility theory (MAUT) has been applied to obtain a decision-maker's value index on assessment of the environmental impacts. The paper begins with an overview of MAUT. Next, we elicited strategic objectives and several important attributes, and then structured them into a hierarchy, with the aim of structuring and quantifying the basic values for the assessment. An environmental multiattribute index is constructed as a multiattribute utility function, based on value judgements provided by a decision-maker at the Korean Ministry of Environment (MOE). The implications of the results are useful for many aspects of MOE's environmental policies; identifying the strategic objectives and basic values; facilitating communication about the organization's priorities; and recognizing decision opportunities that face decision-makers of Korea.

  3. JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data

    NASA Astrophysics Data System (ADS)

    Müller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; García-Ortiz, J. P.; Ireland, J.; Zahniy, S.; Fleck, B.

    2017-09-01

    Context. Solar observatories are providing the world-wide community with a wealth of data, covering wide time ranges (e.g. Solar and Heliospheric Observatory, SOHO), multiple viewpoints (Solar TErrestrial RElations Observatory, STEREO), and returning large amounts of data (Solar Dynamics Observatory, SDO). In particular, the large volume of SDO data presents challenges; the data are available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download, due to their size and the download rates available to most users. From a scientist's perspective this poses three problems: accessing, browsing, and finding interesting data as efficiently as possible. Aims: To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG 2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer in 2009, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods: The JPEG 2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent, and extendable via a plug-in architecture. Results: With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today; they can perform basic image processing in real time, track features on the Sun, and interactively overlay magnetic field extrapolations. The software integrates solar event data and a timeline display. Once an interesting event has been identified, science quality data can be accessed for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer offers a virtual camera model that enables users to set the vantage point to the location of a spacecraft or celestial body at any given time.

  4. Effect of climate, intra and inter-annual variability, on nutrients emission (C,N, P) in stream water: lessons from an agricultural long term observatory of the temperate zone

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, Chantal; Remi, Dupas; Patrick, Durand; Ophélie, Fovet; Gerard, Gruau; Anne, Jaffrezic; Guillaume, Humbert; Philippe, Merot; Gu, Sen

    2016-04-01

    Agriculture greatly contributes to modify C, N and P cycles, particularly in animal breeding regions due to high inputs. Climatic conditions, intra and inter-annual variabilities, modify nutrient stream water emissions, acting in time on transfer and transformation, accumulation and mobilization processes, connecting and disconnecting in time different compartments (soil, riparian areas, groundwater). In agricultural catchments, nutrient perturbations are dominated by agricultural land use, and decoupling human activities and climate effects is far from easy. Climate change generally appears as a secondary driver compared to land use. If studied, generally only one nutrient is considered. Only long term, high frequency and multiple element data series can decouple these two drivers. The Kervidy-Naizin watershed belongs to the AgrHyS environmental research observatory (http://www6.inra.fr/ore_agrhys_eng), itself included in RBV (French catchment network of the CZO). On this catchment, 6 years of daily data on DOC, NO3, SRP, TP concentrations allow us to analyze the effect of seasonal and inter-annual climatic variabilities on water quality (C, N, P). Different papers have been published on the effect of climate on nitrate (Molenat et al, 2008), SRP and TP (Dupas et al, 2015) and DOC (Humbert et al, 2015). We will present first results comparing the effect of climate on these three major solute forms of C, N and P. While C and P dynamics are very close and controlled by fluctuation of water table downslope, i.e. in riparian areas, mobilizing C and P in time, nitrate dynamics is controlled by GW dynamics upslope acting as the major N reservoir. As example, the dryness conditions in summer appears a key factor of the C and P emissions in autumn. All the three solute forms interact when anoxic conditions are observed in riparian zones. These basic processes explain how climatic variability can influence and explain interactions between C, N and P emissions in stream water. These results underline three major lack in most of our observatories: high frequency data as flood event are important for C and P emissions; multiple element approach, as very few observatories have currently C, N and P, their solute and particulate forms; climate but also soil wetness, GW fluctuations explaining biotransformation and connection between reservoirs on catchments, so that linking hydrological and biogeochimical condition is necessary to explain export. These lacks of observations is a barrier to develop process based models assessing and predicting the effect of climate on water quality. References Dupas R., Gruau G., Sen Gu, Humbert G., Jaffrezic A., Gascuel-Odoux C., 2015. Groundwater control of biogeochemical processes causing phosphorus release from riparian wetlands. Water Research 84, 307-314 Humbert G., Jaffrezic A., Fovet O., Gruau G., Durand P., 2015. Dry-season length and runoff control annual variability in stream DOC dynamics in a small, shallow groundwater-dominated agricultural watershed. Water Resources Research. Molenat J., Gascuel-Odoux C., Ruiz L., Gruau G., 2008. Role of water table dynamics on stream nitrate export and concentration in agricultural headwater. Journal of Hydrology 348, 363- 378.

  5. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Workers transfer half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  6. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is transferred through the portal into the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  7. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at the portal of the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. OCO-2 Fairing Bi-Sector Halves Transport

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrive at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. OCO-2 Tower Roll Prior to Fairing Hoist

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Workers roll the mobile service tower away from the Delta II launcher behind them at Space Launch Complex 2 on Vandenberg Air Force Base in California in preparation for hoisting the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into the gantry's environmental enclosure, or clean room. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. OCO-2 Tower Roll Prior to Fairing Hoist

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – The mobile service tower is rolled away from the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California in preparation for hoisting the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into the gantry's environmental enclosure, or clean room. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  11. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is positioned into the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  12. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, are moved into position in the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at the portal to the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. OCO-2 Tower Roll Prior to Fairing Hoist

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – At Space Launch Complex 2 on Vandenberg Air Force Base in California, workers prepare to hoist the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, seen in the background, into the gantry's environmental enclosure, or clean room, following the rollback of the mobile service tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is lifted toward the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  16. OCO-2 Fairings being hoisted into MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is lifted up the side of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California toward the Delta II launcher's environmental enclosure, or clean room, at the top of the tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, VAFB

  17. MMS Observatory Thermal Vacuum Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos

    2014-01-01

    The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.

  18. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, have arrived in the environmental enclosure, or clean room, at the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  19. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  20. OCO-2 Fairing Bi-Sector Halves Transport

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, are delivered to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  1. OCO-2 Fairings being hoisted into MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is attached to a crane for its lift into the Delta II launcher's environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, VAFB

  2. Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui

    2018-05-01

    In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.

  3. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  4. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    NASA Astrophysics Data System (ADS)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the efficiency of subsea monitoring in a variety of applications.

  5. 42 CFR 65a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH AND TRAINING GRANTS... of the National Institute of Environmental Health Sciences, or the Director's delegate. HHS means the... of Environmental Health Sciences, an organizational component of the National Institutes of Health...

  6. 76 FR 80364 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Emissions From Basic Oxygen Furnaces (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice...: NSPS for Primary and Secondary Emissions from Basic Oxygen Furnaces (Renewal). ICR Numbers: EPA ICR... Primary and Secondary Emissions from Basic Oxygen Furnaces (40 CFR part 60, subparts N and Na) were...

  7. Application And Implication Of Nanomaterials In The Environment: An Overview Of Current Research At The Environmental Protection Agency (Romania)

    EPA Science Inventory

    The purpose of this presentation is to teach a course on analytical techniques, quality assurance, environmental research protocols, and basic soil environmental chemistry at the Environmental Health Center and Babes Bolyai University in Cluj, Romania. FOR FURTHER INFORMATI...

  8. Construction on Practical Talents Training Mode in Environmental Monitoring Curriculum

    ERIC Educational Resources Information Center

    Wang, Jing-Ping; Wang, Xin-Hong

    2017-01-01

    Environmental Monitoring is a basic and comprehensive course for students majoring in environmental sciences and engineering. Based on the characteristics of this course, a new teaching mode in application of practical talents training in Environmental Monitoring Curriculum teaching mode is proposed including the new scheme of training applied…

  9. Combining cationic and anionic mixed-mode sorbents in a single cartridge to extract basic and acidic pharmaceuticals simultaneously from environmental waters.

    PubMed

    Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria

    2018-01-01

    The aim of the present study is to broaden the applications of mixed-mode ion-exchange solid-phase extraction sorbents to extract both basic and acidic compounds simultaneously by combining the sorbents in a single cartridge and developing a simplified extraction procedure. Four different cartridges containing negative and positive charges in the same configuration were evaluated and compared to extract a group of basic, neutral, and acidic pharmaceuticals selected as model compounds. After a thorough optimization of the extraction conditions, the four different cartridges showed to be capable of retaining basic and acidic pharmaceuticals simultaneously through ionic interactions, allowing the introduction of a washing step with 15 mL methanol to eliminate interferences retained by hydrophobic interactions. Using the best combined cartridge, a method was developed, validated, and further applied to environmental waters to demonstrate that the method is promising for the extraction of basic and acidic compounds from very complex samples.

  10. Evolving the NCSA CyberCollaboratory for Distributed Environmental Observatory Networks

    NASA Astrophysics Data System (ADS)

    Myers, J.; Liu, Y.; Minsker, B.; Futrelle, J.; Downey, S.; Kim, I.; Rantanen, E.

    2007-12-01

    Since 2004, NCSA's Cybercollaboratory, which is built on top of the open source Liferay portal framework, has been evolving as part of NCSA's efforts to build national cyberinfrastructure to support collaborative research in environmental engineering and hydrological sciences and allow users to efficiently share contents (sensors, data, model, documents, etc.) in a context-sensitive way (e.g., providing different tools/data based on group affiliation and geospatial contexts). During this period, we provided the CyberCollaboratory to users in CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research, now WATer and Environmental Research Systems (WATERS) network) Project Office and several CLEANER /WATERS testbed projects. Preliminary statistics shows that one in four users (among over 400 registered users) provided contents with many other reading/accessing those contents (such as messages, documents, wikis). During the course of this use, and in evaluation by others including representatives from the CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science) community, we have received significant feedback on issues of usability and suitability to various communities involved in environmental observatories. Much of this feedback applies to collaborative portals in general and some reflect a comparison of portals with newer Web 2.0 style social -networking sites. For example, users working in multiple groups found it difficult to get an overview of all of their activities and found differences in group layouts to be confusing. Users also found the standard account creation and group management processes cumbersome compared to inviting people to be friends on social sites and wanted a better sense of presence and social networks within the portal. The fragmentation of group documents between local stores, the portal document repository and email, and issues of "lost updates" was another significant concern. This poster reviews the usability feedback, identifies key issues that hinder traditional portal-based collaboration environments, and presents design changes made to the Cybercollaboratory to address them. Feedback on the effectiveness of the new design from hydrologists and environmental researchers and preliminary results from a formal usability study will also be presented.

  11. Guide to Developing an Environmental Management System - Do

    EPA Pesticide Factsheets

    This page takes you though the basic steps (Plan, Do, Check, Act) of building an Environmental Management System (EMS) as they are outlined in the 2001 Second Edition of Environmental Management Systems: An Implementation Guide. This is the Do section.

  12. The role of universities in energy and environmental R & D: An extended outline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drucker, H.

    1995-12-31

    Issues related to university research and development roles in energy and environmental areas are very briefly outlined in the paper. Fundamental issues discussed include basic versus applied science, and applied science versus technology development. Some specific issues appropriate for university research are identified, such as desulfurizing coal and managing mixed wastes in groundwater. The Plant Biotechnology consortium is described as a model that builds on university strengths in basic and applied technology.

  13. Status of the flora and fauna on the Nevada Test Site, 1988. Results of continuing basic environmental monitoring, January--December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, R.B.

    1992-06-01

    In 1987 the US Department of Energy (DOE) initiated a program to monitor the health of the Nevada Test Site (NTS) plants and animals in support of the National Environmental Protection Act. The program, part of DOE`s Basic Environmental Compliance and Monitoring Program (BECAMP), monitors perennial and ephemeral plants, the more common species of rodents and lizards, and the horses, deer, raptors and other large animals on the NTS. This is a report of data collected on these flora and fauna for the year 1988, the second year of monitoring.

  14. Integrating Data Distribution and Data Assimilation Between the OOI CI and the NOAA DIF

    NASA Astrophysics Data System (ADS)

    Meisinger, M.; Arrott, M.; Clemesha, A.; Farcas, C.; Farcas, E.; Im, T.; Schofield, O.; Krueger, I.; Klacansky, I.; Orcutt, J.; Peach, C.; Chave, A.; Raymer, D.; Vernon, F.

    2008-12-01

    The Ocean Observatories Initiative (OOI) is an NSF funded program to establish the ocean observing infrastructure of the 21st century benefiting research and education. It is currently approaching final design and promises to deliver cyber and physical observatory infrastructure components as well as substantial core instrumentation to study environmental processes of the ocean at various scales, from coastal shelf-slope exchange processes to the deep ocean. The OOI's data distribution network lies at the heart of its cyber- infrastructure, which enables a multitude of science and education applications, ranging from data analysis, to processing, visualization and ontology supported query and mediation. In addition, it fundamentally supports a class of applications exploiting the knowledge gained from analyzing observational data for objective-driven ocean observing applications, such as automatically triggered response to episodic environmental events and interactive instrument tasking and control. The U.S. Department of Commerce through NOAA operates the Integrated Ocean Observing System (IOOS) providing continuous data in various formats, rates and scales on open oceans and coastal waters to scientists, managers, businesses, governments, and the public to support research and inform decision-making. The NOAA IOOS program initiated development of the Data Integration Framework (DIF) to improve management and delivery of an initial subset of ocean observations with the expectation of achieving improvements in a select set of NOAA's decision-support tools. Both OOI and NOAA through DIF collaborate on an effort to integrate the data distribution, access and analysis needs of both programs. We present details and early findings from this collaboration; one part of it is the development of a demonstrator combining web-based user access to oceanographic data through ERDDAP, efficient science data distribution, and scalable, self-healing deployment in a cloud computing environment. ERDDAP is a web-based front-end application integrating oceanographic data sources of various formats, for instance CDF data files as aggregated through NcML or presented using a THREDDS server. The OOI-designed data distribution network provides global traffic management and computational load balancing for observatory resources; it makes use of the OpenDAP Data Access Protocol (DAP) for efficient canonical science data distribution over the network. A cloud computing strategy is the basis for scalable, self-healing organization of an observatory's computing and storage resources, independent of the physical location and technical implementation of these resources.

  15. Results from Binary Black Hole Simulations in Astrophysics Applications

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  16. Stellar spectral classification of previously unclassified stars GSC 4461-698 and GSC 4466-870

    NASA Astrophysics Data System (ADS)

    Grau, Darren Moser

    Stellar spectral classification is one of the first efforts undertaken to begin defining the physical characteristics of stars. However, many stars lack even this basic information, which is the foundation for later research to constrain stellar effective temperatures, masses, radial velocities, the number of stars in the system, and age. This research obtained visible-λ stellar spectra via the testing and commissioning of a Santa Barbara Instruments Group (SBIG) Self-Guiding Spectrograph (SGS) at the UND Observatory. Utilizing a 16-inch-aperture telescope on Internet Observatory #3, the SGS obtained spectra of GSC 4461-698 and GSC 4466-870 in the low-resolution mode using an 18-µm wide slit with dispersion of 4.3 Å/pixel, resolution of 8 Å, and a spectral range from 3800-7500 Å. Observational protocols include automatic bias/dark frame subtraction for each stellar spectrum obtained. This was followed by spectral averaging to obtain a combined spectrum for each star observed. Image calibration and spectral averaging was performed using the software programs, Maxim DL, Image J, Microsoft Excel, and Winmk. A wavelength calibration process was used to obtain spectra of an Hg/Ne source that allowed the conversion of spectrograph channels into wavelengths. Stellar emission and absorption lines, such as those for hydrogen (H) and helium (He), were identified, extracted, and rectified. Each average spectrum was compared to the MK stellar spectral standards to determine an initial spectral classification for each star. The hope is that successful completion of this project will allow long-term stellar spectral observations to begin at the UND Observatory.

  17. Astronomy education through hands-on photography workshops

    NASA Astrophysics Data System (ADS)

    Schofield, I.; Connors, M. G.; Holmberg, R.

    2013-12-01

    Athabasca University (AU), Athabasca University Geophysical and Geo-Space Observatories (AUGO / AUGSO), the Rotary Club of Athabasca and Science Outreach Athabasca has designed a three day science workshop entitled Photography and the Night Sky. This pilot workshop, aimed primarily at high-school aged students, serves as an introduction to observational astronomy as seen in the western Canadian night sky using digital astrophotography without the use of a telescope or tracking mount. Participants learn the layout of the night sky by proficiently photographing it using digital single lens reflex camera (DSLR) kits including telephoto and wide-angle lenses, tripod and cable release. The kits are assembled with entry-level consumer-grade camera gear as to be affordable by the participants, if they so desire to purchase their own equipment after the workshop. Basic digital photo editing is covered using free photo editing software (IrfanView). Students are given an overview of observational astronomy using interactive planetarium software (Stellarium) before heading outdoors to shoot the night sky. Photography is conducted at AU's auroral observatories, both of which possess dark open sky that is ideal for night sky viewing. If space weather conditions are favorable, there are opportunities to photograph the aurora borealis, then compare results with imagery generated by the all-sky auroral imagers located at the Geo-Space observatory. The aim of this program is to develop awareness to the science and beauty of the night sky, while promoting photography as a rewarding, lifelong hobby. Moreover, emphasis is placed on western Canada's unique subauroral location that makes aurora watching highly accessible and rewarding in 2013, the maximum of the current solar cycle.

  18. “An Instrument for the Frontiers of Modern Astronomy”: An Exhibit for the Harlan J. Smith 2.7-m Telescope Lobby at McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Preston, Sandra; Cianciolo, F.; Jones, T.; Wetzel, M.; Mace, K.; Barrick, R.; Kelton, P.; Cochran, A.; Johnson, R.

    2007-05-01

    Of the 100,000 visitors that come to McDonald Observatory each year, about half of them visit the Harlan J. Smith 2.7-m Telescope. Visitors experience the 2.7-m telescope as part of a guided tour, a self-guided tour, and during the once-a-month special viewing nights, that are unique to a telescope this size. Recent safety requirements limiting visitor access to the dome-floor level and a need to modernize out-of-date displays in the 2.7-m lobby area, motivated us to do this new exhibit. A planning team consisting of McDonald Observatory personnel from Outreach & Education, Physical Plant, and Administration came together via videoconferences (between Austin and Fort Davis) to develop an exhibit for the lobby area of this telescope. As the planning process unfolded, the team determined that a mix of static displays and modern technology such as flat panel displays and DVD video were key to presenting the history of the facility, introducing basic concepts about the telescope and current research, as well as giving virtual access to the dome floor for visitors on the self-guided tour. This approach also allows for content development and much of production to be done in-house, which was important from both a cost and maintenance standpoint. A representative of the Smith family was also consulted throughout the development of the exhibit to insure that the exhibit plan was seen as an acceptable memorial to the late director. The exhibit was installed in January 2007.

  19. Miklós Konkoly Thege (1842-1916). 100 Years of Observational Astronomy and Astrophysics. A collection of papers on the history of Observational Astrophysics

    NASA Astrophysics Data System (ADS)

    Sterken, C.; Hearnshaw, J. B.

    2001-12-01

    This book results from presentations and discussions by a group of astronomers and historians during a three-day workshop held at Tihany (Hungary), on 13-15 August 1999. This meeting - the second forum dedicated to the rise of observational astrophysics in the nineteenth and early twentieth century - coincided with the centenary of Hungary's national observatory. The basic principle of this series of meetings is to reflect on the work and personality of a single individual or of a group of persons, at the same time avoiding the really dominant figures that typify the age. The series focuses on key people who epitomize a way of thinking and working, that has in turn formed many of the ideas by which we do astrophysical research today. Hence the evocation of the scientific spirit of the era under consideration is attempted. Such a leading key person undoubtedly was Miklós Konkoly Thege. A superb instrumentalist and observer, Konkoly became the founding father of Hungarian astronomy through the establishment of his private observatory that later became the Royal Hungarian Ogyalla Observatory, the precursor of the modern Konkoly Observatory. The workshop was organized at the occasion of the centennial anniversary of Konkoly Observatory. The book outlines five major themes. The first part describes the birth of observational astrophysics in Hungary and focuses on historical aspects of 19th-century Hungarian astronomy from three different viewpoints: the historical narrative based on historical facts, the perspective as seen by an expert in historical instrumentation, and a discussion of the socio-political consequences of nineteenth-century developments for our present times. The second part analyses the birth of observational astrophysics in countries with which Konkoly and his collaborators had close contacts: Japan, South Africa and France. The third part of the book discusses the establishment of the discipline of photometry worldwide. An important aspect of 19th-century science - and of observational astrophysics in particular - is the role played by female scientists. This aspect is profoundly reviewed in the fourth part of the book. The last part analyses interpretations of early observations, with emphasis on early research on the expansion of the universe.

  20. Computer Vision for the Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Martens, P. C. H.; Attrill, G. D. R.; Davey, A. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Savcheva, A.; Su, Y.; Testa, P.; Wills-Davey, M.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F.; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgoulis, M. K.; McAteer, R. T. J.; Timmons, R. P.

    2012-01-01

    In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre- Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).

  1. Educational Module on Environmental Problems in Cities. Environmental Educational Series 4.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Paris (France). Div. of Science, Technical and Vocational Education.

    The International Environmental Education Programme (IEEP) of UNESCO has determined that the enhancement of the quality of the built environment is a basic priority for future environmental action, particularly in Europe and North America. This experimental teaching module applies specifically to those two continents, and is intended for use by…

  2. Teaching about Hazardous and Toxic Materials. Teaching Activities in Environmental Education Series.

    ERIC Educational Resources Information Center

    Disinger, John F.; Lisowski, Marylin

    Designed to assist practitioners of both formal and non-formal settings, this 18th volume of the ERIC Clearinghouse for Science, Mathematics, and Environmental Education's Teaching Activities in Environmental Education series specifically focuses on the theme of hazardous and toxic materials. Initially, basic environmental concepts that deal with…

  3. Investigations for a Mobile Environmental Education Laboratory.

    ERIC Educational Resources Information Center

    Childress, Ronald B.

    Envirpnmental investigations in this compilation were developed in conjunction with the establishment of a mobile environmental education laboratory, a demonstration project of the Kingsport (Tennessee) City School System. The 50 activities are divided into five categories: basic resources, environmental problems, living organisms, community…

  4. Probes Measure Gases for Environmental Research

    NASA Technical Reports Server (NTRS)

    2015-01-01

    NASA's Orbiting Carbon Observatory-2 satellite will make the first space-based measurements of carbon dioxide in Earth's atmosphere. In support of the mission, Goddard Space Flight Center will fly air missions from Wallops Flight Facility to gather finer-grained data in areas of interest. Goddard started working with Blacksburg, Virginia-based Aeroprobe Corporation through the SBIR program in 2008 to develop sensors for such flights, and the company has since commercialized the resulting product.

  5. OCO-2 Post Launch Briefing

    NASA Image and Video Library

    2014-07-02

    Mike Miller, senior vice president, Science and Environmental Satellite Programs, Orbital Sciences Space Systems Group, discusses the successful launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Wednesday, July 2, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  6. Biological and environmental rhythms in (dark) deep-sea hydrothermal ecosystems

    NASA Astrophysics Data System (ADS)

    Cuvelier, Daphne; Legendre, Pierre; Laës-Huon, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2017-06-01

    During 2011, two deep-sea observatories focusing on hydrothermal vent ecology were up and running in the Atlantic (Eiffel Tower, Lucky Strike vent field) and the Northeast Pacific Ocean (NEP) (Grotto, Main Endeavour Field). Both ecological modules recorded imagery and environmental variables jointly for a time span of 23 days (7-30 October 2011) and environmental variables for up to 9 months (October 2011-June 2012). Community dynamics were assessed based on imagery analysis and rhythms in temporal variation for both fauna and environment were revealed. Tidal rhythms were found to be at play in the two settings and were most visible in temperature and tubeworm appearances (at NEP). A ˜ 6 h lag in tidal rhythm occurrence was observed between Pacific and Atlantic hydrothermal vents, which corresponds to the geographical distance and time delay between the two sites.

  7. Assessment of secondary sources of Persistent Organic Pollutants in the Arctic

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Eckhardt, Sabine; Breivik, Knut

    2014-05-01

    Persistent organic pollutants (POPs) including highly toxic pesticides and other chemicals accumulate in living tissues and magnify in food chains. POPs are subject to long-range transport and hence represent a serious public health issue even in regions where their production is regulated. Rational control strategies require an understanding of the overall relationship between environmental emissions of contaminants and environmental / human exposure. In this study, we assess the relationships between environmental emissions and potential human exposure of organic contaminants with emphasis on long-range atmospheric transport. We investigate whether atmospheric levels of POPs measured at Zeppelin observatory in Svalbard since the early '90s are controlled by primary or secondary emissions. We present statistical indications that the measurements are affected by secondary ocean emissions and discuss the applicability of different inverse modeling approaches.

  8. Identification and Support of Outstanding Astronomy Students

    NASA Astrophysics Data System (ADS)

    Stoev, A. D.; Bozhurova, E. S.

    2006-08-01

    The aims, organizational plan and syllabus of a specialized Astronomy School with a subject of training students for participation in the International Astronomy Olympiad, are presented. Thematic frame includes basic educational activities during the preparation and self-preparation of the students and their participation in astronomical Olympiads. A model of identification and selection of outstanding students for astronomical Olympiads has been developed. Examples of didactic systems of problems for development of mathematical, physical and astronomical skills are shown. The programme ends with individual training for solving problems on astronomy and astrophysics. Possibilities, which the characteristic, non-standard astronomical problems give for stimulating the creative and original thinking, are specified. Basic psychological condition for development of the students' creative potential - transformation of the cognitive content in emotional one - is demonstrated. The programme of identification and support of outstanding students on astronomy is realized in collaboration with The Ministry of Education and Science, Public Astronomical Observatories and Planetaria, Institute of Astronomy - Bulgarian Academy of Sciences, and The Union of Astronomers in Bulgaria.

  9. The Fundamental Stellar Parameters of FGK Stars in the SEEDS Survey

    NASA Astrophysics Data System (ADS)

    Rich, Evan; Wisniewski, John P.; SEEDS Team

    2017-01-01

    Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties of F, K, and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from echelle spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT to extract line fluxes and TGVIT to calculate the fundamental parameters, we have computed Teff, log(g), vt, [Fe/H], chromospheric activity, lithium abundance, and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The future meta-analysis of the results of the SEEDS survey will utilize our results to constrain the occurrence of detected co-moving companions with the properties of their host stars.

  10. Proyecto multidisciplinar `Marte nos visita'

    NASA Astrophysics Data System (ADS)

    Merlo, D.; Merlo, N.; Parodi, B.; Garis, A.; Peralta, G.; Rovessi, V.; Urrutia, S.; Calderón, J.; Bustos Fierro, I.; Melia, R.

    The planets Earth and Mars reached in August 2003 the most approximation in the last 58,000 years. In order to that we carried out a transversal study of red planet, joining the knowledges from several subjects of second school year of unified basic cycle (eighth basic general education) at I.P.E.M. No 249 "Nicolás Copérnico" (a public secondary institution from Córdoba, Argentine). In this study, activities in accordance with current contents has been proposed by common consents of each teacher. Besides, students visited Córdoba Astronomical Observatory in order to search informations and received a multimedia exposition about of astronomical event and a performance of the "Carl Sagan" Moveable Planetary. Finally, each student carried out practical works and wrote an integrative report, which one has been evaluated and exposed at ExpoIPEM 2003, an annual exhibition of several specialities that Institution offers in its specialization cycle (10-12 grade), where the annual students' activities are exhibited too (workshops, school projects, etc.).

  11. Metrology for Trending Alignment of the James Webb Space Telescope Before and After Ambient Environmental Testing

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeffery; Hayden, Joseph; Khreishi, Manal; McLean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg; hide

    2017-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, theJWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.

  12. Metrology for Trending Alignment of the James Webb Space Telescope Before and After Ambient Environmental Testing

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeff; Hayden, Joseph; Khreishi, Manal; Mclean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg; hide

    2017-01-01

    NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.

  13. In Brief: U.S. Volcano Early Warning System; Bill provides clear mandate for NOAA

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2005-05-01

    The U.S. Geological Survey on 29 April released a comprehensive review of the 169 U.S. volcanoes, and established a framework for a National Volcano Early Warning System that is being formulated by the Consortium of U.S. Volcano Observatories. The framework proposes an around-the-clock Volcano Watch Office and improved instrumentation and monitoring at targeted volcanoes. The report, authored by USGS scientists John Ewert, Marianne Guffanti, and Thomas Murray, notes that although a few U.S. volcanoes are well-monitored, half of the most threatening volcanoes are monitored at a basic level and some hazardous volcanoes have no ground-based monitoring.

  14. Chapter 28: Theory SkyNode

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Norman, M. L.

    Here we present a working example of a Basic SkyNode serving theoretical data. The data is taken from the Simulated Cluster Archive (SCA), a set of simulated X-ray clusters, where each cluster was computed using four different physics models. The LCA Theory SkyNode (LCATheory) tables contain columns of the integrated physical properties of the clusters at various redshifts. The ease of setting up a Theory SkyNode is an important result, because it represents a clear way to present theory data to the Virtual Observatory. Also, our Theory SkyNode provides a prototype for additional simulated object catalogs, which will be created from other simulations by our group, and hopefully others.

  15. Belinda Eriachoe: Respect Underlies an Environmental Career.

    ERIC Educational Resources Information Center

    Casken, John

    1992-01-01

    An interview with Belinda Eriachoe, a Navajo/Zuni environmental scientist, discusses the basic respect for the environment instilled during her childhood on the Navajo Reservation, educational experiences at Arizona State University and the University of Hawaii, and her concerns about environmental and occupational health issues affecting…

  16. Environmental Scanning Practices for Rural Colleges.

    ERIC Educational Resources Information Center

    Friedel, Janice Nahra; Lapin, Joel D.

    1995-01-01

    Discusses the importance of environmental scanning in the planning efforts of rural community colleges. Reviews basic techniques and terminology and suggests sources of data. Argues that environmental scanning allows rural colleges to inexpensively forecast change, identify implications for the organization, and plan preferred responses to shape…

  17. Effects of environmental pollutants on cellular iron homeostasis and ultimate links to human disease

    EPA Science Inventory

    Chronic disease has increased in the last several decades, and environmental pollutants have been implicated. The magnitude and variety of diseases indicate the malfunctioning of some basic mechanism underlying human health. Environmental pollutants demonstrate a capability to co...

  18. WOVOdat - An online, growing library of worldwide volcanic unrest

    NASA Astrophysics Data System (ADS)

    Newhall, C. G.; Costa, F.; Ratdomopurbo, A.; Venezky, D. Y.; Widiwijayanti, C.; Win, Nang Thin Zar; Tan, K.; Fajiculay, E.

    2017-10-01

    The World Organization of Volcano Observatories (WOVO), with major support from the Earth Observatory of Singapore, is developing a web-accessible database of seismic, geodetic, gas, hydrologic, and other unrest from volcanoes around the world. This database, WOVOdat, is intended for reference during volcanic crises, comparative studies, basic research on pre-eruption processes, teaching, and outreach. Data are already processed to have physical meaning, e.g. earthquake hypocenters rather than voltages or arrival times, and are historical rather than real-time, ranging in age from a few days to several decades. Data from > 900 episodes of unrest covering > 75 volcanoes are already accessible. Users can visualize and compare changes from one episode of unrest or from one volcano to the next. As the database grows more complete, users will be able to analyze patterns of unrest in the same way that epidemiologists study the spatial and temporal patterns and associations among diseases. WOVOdat was opened for station and data visualization in August 2013, and now includes utilities for data downloads and Boolean searches. Many more data sets are being added, as well as utilities interfacing to new applications, e.g., the construction of event trees. For more details, please see www.wovodat.org.

  19. Automation of the 1.3-meter Robotically Controlled Telescope (RCT)

    NASA Astrophysics Data System (ADS)

    Gelderman, Richard; Treffers, Richard R.

    2011-03-01

    This poster describes the automation for the Robotically Controlled Telescope (RCT) Consortium of the 50-inch telescope at Kitt Peak National Observatory. Building upon the work of the previous contractor the telescope, dome and instrument were wired for totally autonomous (robotic) observations. The existing motors, encoders, limit switches and cables were connected to an open industrial panel that allows easy interconnection, troubleshooting and modifications. A sixteen axis Delta Tau Turbo PMAC controller is used to control all motors, encoders, flat field lights and many of the digital functions of the telescope. ADAM industrial I/O bricks are used for additional digital and analog I/O functions. Complex relay logic problems, such as the mirror cover opening sequence and the slit control, are managed using Allen Bradley Pico PLDs. Most of the low level software is written in C using the GNU compiler. The basic functionality uses an ASCII protocol communicating over Berkeley sockets. Early versions of this software were developed at U.C. Berkeley, for what was to become the Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory. ASCII communications are useful for control, testing and easy to debug by looking at the log files; C-shell scripts are written to form more complex orchestrations.

  20. VizieR Online Data Catalog: CO, [CI] and [NII] lines from Herschel spectra (Kamenetzky+, 2016)

    NASA Astrophysics Data System (ADS)

    Kamenetzky, J.; Rangwala, N.; Glenn, J.; Maloney, P. R.; Conley, A.

    2016-11-01

    We compiled a list of successful extragalactic Herschel/SPIRE FTS proposals (301 spectra) and searched the Herschel Science Archive (HSA) for the available data. Table 1 lists the basic galaxy information and observation IDs for all galaxies for which at least one FTS line measurement or upper limit is reported. The bandpass of the Herschel FTS starts around the CO J=4-3 line, but the majority of the molecular mass in galaxies is cool and populates the lower rotational levels. We complement the line fluxes derived from the FTS with the CO J=1-0, J=2-1, and J=3-2 lines available from ground-based observatories. Many of these galaxies have already been studied in the literature, particularly in large CO surveys. For some galaxies, we also performed single-dish measurements using the Arizona Radio Observatory (ARO). Measurements of the CO J=1-0 line were conducted with the 12m dish on Kitt Peak in 2015 May, and those of CO J=2-1 and J=3-2 were conducted with the Submillimeter Telescope (SMT) located on Mt. Graham from 2014 November to 2015 February. (4 data files).

  1. National education program for energy efficient illumination engineering

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Pompea, Stephen M.

    2011-05-01

    About one-third of outdoor lighting escapes unused into the sky, wasting energy and causing sky glow. Because of excessive sky glow around astronomical facilities, the National Optical Astronomy Observatory has a strong motivation to lead light pollution education efforts. While our original motivation of preserving the dark skies near observatories is still important, energy conservation is a critical problem that needs to be addressed nationwide. To address this problem we have created an extensive educational program on understanding and measuring light pollution. A set of four learning experiences introduces school students at all grade levels to basic energy-responsive illumination engineering design principles that can minimize light pollution. We created and utilize the GLOBE at Night citizen science light pollution assessment campaign as a cornerstone activity. We also utilize educational activities on light shielding that are introduced through a teaching kit. These two components provide vocabulary, concepts, and visual illustrations of the causes of light pollution. The third, more advanced component is the school outdoor lighting audit, which has students perform an audit and produce a revised master plan for compliant lighting. These learning experiences provide an integrated learning unit that is highly adaptable for U.S. and international education efforts in this area.

  2. Boosting productivity: a framework for professional/amateur collaborative teamwork

    NASA Astrophysics Data System (ADS)

    Al-Shedhani, Saleh S.

    2002-11-01

    As technology advances, remote operation of telescopes has paved the way for joint observational projects between Astronomy clubs. Equipped with a small telescope, a standard CCD, and a networked computer, the observatory can be set up to carry out several photometric studies. However, most club members lack the basic training and background required for such tasks. A collaborative network between professionals and amateurs is proposed to utilize professional know-how and amateurs' readiness for continuous observations. Working as a team, various long-term observational projects can be carried out using small telescopes. Professionals can play an important role in raising the standards of astronomy clubs via specialized training programs for members on how to use the available technology to search/observe certain events (e.g. supernovae, comets, etc.). Professionals in return can accumulate a research-relevant database and can set up an early notification scheme based on comparative analyses of the recently-added images in an online archive. Here we present a framework for the above collaborative teamwork that uses web-based communication tools to establish remote/robotic operation of the telescope, and an online archive and discussion forum, to maximize the interactions between professionals and amateurs and to boost the productivity of small telescope observatories.

  3. Probing the Hot and Energetic Universe: X-rays and Astrophysics

    NASA Astrophysics Data System (ADS)

    Bautz, Marshall; Kraft, Ralph

    2016-03-01

    X-ray observations are a cornerstone of our understanding of the formation and evolution of structure in the Universe, from solar-system-sized supermassive black holes (SMBH) to the largest galaxy clusters. At the most basic level, a significant fraction of the energy output in the Universe is in X-rays, and much of this emission traces the response of baryonic matter to the inexorable, gravity-driven growth of cosmic structure. At present, for example, half or more of the baryons in the Universe reside in a hot (>1 MK) X-ray-emitting phase. We discuss some of the remarkable progress that has been made in understanding the broad outlines of these processes with the current generation of X-ray observatories. We summarize the potential of recently launched and forthcoming X-ray observatories to track the development of large-scale cosmic structure and to understand the physics linking the growth of SMBH with that of the (many orders of magnitude larger) galaxies and clusters which host them. We briefly review nearer-term prospects for smaller, focussed missions, including one that will soon exploit pulsating X-ray emission from neutron stars to probe the equation of state of matter at nuclear densities.

  4. Towards benchmarking citizen observatories: Features and functioning of online amateur weather networks.

    PubMed

    Gharesifard, Mohammad; Wehn, Uta; van der Zaag, Pieter

    2017-05-15

    Crowd-sourced environmental observations are increasingly being considered as having the potential to enhance the spatial and temporal resolution of current data streams from terrestrial and areal sensors. The rapid diffusion of ICTs during the past decades has facilitated the process of data collection and sharing by the general public and has resulted in the formation of various online environmental citizen observatory networks. Online amateur weather networks are a particular example of such ICT-mediated observatories that are rooted in one of the oldest and most widely practiced citizen science activities, namely amateur weather observation. The objective of this paper is to introduce a conceptual framework that enables a systematic review of the features and functioning of these expanding networks. This is done by considering distinct dimensions, namely the geographic scope and types of participants, the network's establishment mechanism, revenue stream(s), existing communication paradigm, efforts required by data sharers, support offered by platform providers, and issues such as data accessibility, availability and quality. An in-depth understanding of these dimensions helps to analyze various dynamics such as interactions between different stakeholders, motivations to run the networks, and their sustainability. This framework is then utilized to perform a critical review of six existing online amateur weather networks based on publicly available data. The main findings of this analysis suggest that: (1) there are several key stakeholders such as emergency services and local authorities that are not (yet) engaged in these networks; (2) the revenue stream(s) of online amateur weather networks is one of the least discussed but arguably most important dimensions that is crucial for the sustainability of these networks; and (3) all of the networks included in this study have one or more explicit modes of bi-directional communication, however, this is limited to feedback mechanisms that are mainly designed to educate the data sharers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Integrated Interpretation of Geophysical, Geotechnical, and Environmental Monitoring Data to Define Precursors for Landslide Activation

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.

    2014-12-01

    To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of gravimetric moisture content (derived from the ERT data) that highlight the reasons for the differential behaviour and indicate precursors for landslide reactivation.

  6. Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel

    2015-01-01

    NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.

  7. Facing Climate Change: Connecting Coastal Communities with Place-Based Ocean Science

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Dewey, R. K.; Hoeberechts, M.; McLean, M. A.; Brown, J. C.; Ewing, N.; Riddell, D. J.

    2016-12-01

    As coastal communities face a wide range of environmental changes, including threats from climate change, real-time data from cabled observatories can be used to support community members in making informed decisions about their coast and marine resources. Ocean Networks Canada (ONC) deploys and operates an expanding network of community observatories in the Arctic and coastal British Columbia, which enable communities to monitor real-time and historical data from the local marine environment. Community observatories comprise an underwater cabled seafloor platform and shore station equipped with a variety of sensors that collect environmental data 24/7. It is essential that data being collected by ONC instruments are relevant to community members and can contribute to priorities identified within the community. Using a community-based science approach, ONC is engaging local parties at all stages of each project from location planning, to instrument deployment, to data analysis. Alongside the science objectives, place-based educational programming is being developed with local educators and students. As coastal populations continue to grow and our use of and impacts on the ocean increase, it is vital that global citizens develop an understanding that the health of the ocean reflects the health of the planet. This presentation will focus on programs developed by ONC emphasizing the connection to place and local relevance with an emphasis on Indigenous knowledge. Building programs which embrace multiple perspectives is effective both in making ocean science more relevant to Indigenous students and in linking place-based knowledge to ocean science. The inclusion of Indigenous Knowledge into science-based monitoring programs also helps develop a more complete understanding of local conditions. We present a case study from the Canadian Arctic, in which ONC is working with Inuit community members to develop a snow and ice monitoring program to assist with predictions and modelling of sea-ice.

  8. The CEOS Recovery Observatory Pilot

    NASA Astrophysics Data System (ADS)

    Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.

    2015-04-01

    Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.

  9. Development of the GPM Observatory Thermal Vacuum Test Model

    NASA Technical Reports Server (NTRS)

    Yang, Kan; Peabody, Hume

    2012-01-01

    A software-based thermal modeling process was documented for generating the thermal panel settings necessary to simulate worst-case on-orbit flight environments in an observatory-level thermal vacuum test setup. The method for creating such a thermal model involved four major steps: (1) determining the major thermal zones for test as indicated by the major dissipating components on the spacecraft, then mapping the major heat flows between these components; (2) finding the flight equivalent sink temperatures for these test thermal zones; (3) determining the thermal test ground support equipment (GSE) design and initial thermal panel settings based on the equivalent sink temperatures; and (4) adjusting the panel settings in the test model to match heat flows and temperatures with the flight model. The observatory test thermal model developed from this process allows quick predictions of the performance of the thermal vacuum test design. In this work, the method described above was applied to the Global Precipitation Measurement (GPM) core observatory spacecraft, a joint project between NASA and the Japanese Aerospace Exploration Agency (JAXA) which is currently being integrated at NASA Goddard Space Flight Center for launch in Early 2014. From preliminary results, the thermal test model generated from this process shows that the heat flows and temperatures match fairly well with the flight thermal model, indicating that the test model can simulate fairly accurately the conditions on-orbit. However, further analysis is needed to determine the best test configuration possible to validate the GPM thermal design before the start of environmental testing later this year. Also, while this analysis method has been applied solely to GPM, it should be emphasized that the same process can be applied to any mission to develop an effective test setup and panel settings which accurately simulate on-orbit thermal environments.

  10. The integrated water balance and soil data set of the Rollesbroich hydrological observatory

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Bogena, Heye R.; Huisman, Johan A.; Schmidt, Marius; Kunkel, Ralf; Weuthen, Ansgar; Schiedung, Henning; Schilling, Bernd; Sorg, Jürgen; Vereecken, Harry

    2016-10-01

    The Rollesbroich headwater catchment located in western Germany is a densely instrumented hydrological observatory and part of the TERENO (Terrestrial Environmental Observatories) initiative. The measurements acquired in this observatory present a comprehensive data set that contains key hydrological fluxes in addition to important hydrological states and properties. Meteorological data (i.e., precipitation, air temperature, air humidity, radiation components, and wind speed) are continuously recorded and actual evapotranspiration is measured using the eddy covariance technique. Runoff is measured at the catchment outlet with a gauging station. In addition, spatiotemporal variations in soil water content and temperature are measured at high resolution with a wireless sensor network (SoilNet). Soil physical properties were determined using standard laboratory procedures from samples taken at a large number of locations in the catchment. This comprehensive data set can be used to validate remote sensing retrievals and hydrological models, to improve the understanding of spatial temporal dynamics of soil water content, to optimize data assimilation and inverse techniques for hydrological models, and to develop upscaling and downscaling procedures of soil water content information. The complete data set is freely available online (http://www.tereno.net, doi:10.5880/TERENO.2016.001, doi:10.5880/TERENO.2016.004, doi:10.5880/TERENO.2016.003) and additionally referenced by three persistent identifiers securing the long-term data and metadata availability.

  11. Robotic Observatory System Design-Specification Considerations for Achieving Long-Term Sustainable Precision Performance

    NASA Astrophysics Data System (ADS)

    Wray, J. D.

    2003-05-01

    The robotic observatory telescope must point precisely on the target object, and then track autonomously to a fraction of the FWHM of the system PSF for durations of ten to twenty minutes or more. It must retain this precision while continuing to function at rates approaching thousands of observations per night for all its years of useful life. These stringent requirements raise new challenges unique to robotic telescope systems design. Critical design considerations are driven by the applicability of the above requirements to all systems of the robotic observatory, including telescope and instrument systems, telescope-dome enclosure systems, combined electrical and electronics systems, environmental (e.g. seeing) control systems and integrated computer control software systems. Traditional telescope design considerations include the effects of differential thermal strain, elastic flexure, plastic flexure and slack or backlash with respect to focal stability, optical alignment and angular pointing and tracking precision. Robotic observatory design must holistically encapsulate these traditional considerations within the overall objective of maximized long-term sustainable precision performance. This overall objective is accomplished through combining appropriate mechanical and dynamical system characteristics with a full-time real-time telescope mount model feedback computer control system. Important design considerations include: identifying and reducing quasi-zero-backlash; increasing size to increase precision; directly encoding axis shaft rotation; pointing and tracking operation via real-time feedback between precision mount model and axis mounted encoders; use of monolithic construction whenever appropriate for sustainable mechanical integrity; accelerating dome motion to eliminate repetitive shock; ducting internal telescope air to outside dome; and the principal design criteria: maximizing elastic repeatability while minimizing slack, plastic deformation and hysteresis to facilitate long-term repeatably precise pointing and tracking performance.

  12. Carter Budget Tilts "Back to Basics" for Research

    ERIC Educational Resources Information Center

    Hammond, Allen L.

    1978-01-01

    Reviews the proposed 1979 federal budget for basic research for the National Institutes of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), Environmental Protection Agency (EPA), Department of Defense, and Department of Energy. (SL)

  13. Teaching Basic Science Environmentally, The Concept: The cell is basic unit of structure of most organisms.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1985-01-01

    Suggests simple ways to introduce students to the concept that the cell is the basic unit of structure of most organisms. Mentions materials for microscope study that are readily available and easy to handle, e.g., membranes from between the scales of the onion bulb, thin-leaved plants, pond water, and pollen. (JHZ)

  14. Environmental Attitudes, Knowledge, and Alternative Conceptions of Primary School Children in Greece

    ERIC Educational Resources Information Center

    Malandrakis, Georgios; Chatzakis, Stergios

    2014-01-01

    In this study the environmental attitudes, knowledge, and alternative conceptions of 281 primary school children from 5th and 6th grade, ages 10-12 years were explored. Low knowledge scores, indicate a substantial lack of knowledge on basic environmental issues, while attitude scores were relatively high. Children's environmental attitudes and…

  15. Implementation of an Environmental Education Course to Improve Pre-Service Elementary Teachers' Environmental Literacy and Self-Efficacy Beliefs

    ERIC Educational Resources Information Center

    Saribas, Deniz; Kucuk, Zerrin Doganca; Ertepinar, Hamide

    2017-01-01

    This study aims to investigate effects of a treatment implemented in an environmental education course on pre-service elementary teachers' environmental literacy and self-efficacy beliefs. During the course, 58 participants were informed about basic concepts of ecology, went to climate change exhibition, and prepared presentations and reflections…

  16. The Environmental Self-Audit for Campus-Based Organizations: A Quick and Easy Guide to Environmental Compliance.

    ERIC Educational Resources Information Center

    New York State Dept. of Environmental Conservation, Albany.

    This guide is intended to help public and not-for-profit campus-based organizations in New York State to comply with local, state, and federal environmental regulations. The environmental self-audit serves as a basic diagnostic tool for campus-based organizations (centralized schools, colleges/universities, correctional facilities, mental health…

  17. Professional Equipment for a University Environmental Health Program

    ERIC Educational Resources Information Center

    Iglar, Albert F.; Morgan, Monroe T.

    1972-01-01

    A rather thorough description of the professional equipment utilized in the Environmental Health Program at East Tennessee State University. Describes equipment and apparatus employed in the General Environmental, Occupational Health and Safety, and the Air and Water Pollution Control Areas. Table of recommended basic professional equipment…

  18. Environmental chemistry: Volume A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  19. Propagation of Environmental Noise

    ERIC Educational Resources Information Center

    Lyon, R. H.

    1973-01-01

    Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)

  20. Scientific Workflows and the Sensor Web for Virtual Environmental Observatories

    NASA Astrophysics Data System (ADS)

    Simonis, I.; Vahed, A.

    2008-12-01

    Virtual observatories mature from their original domain and become common practice for earth observation research and policy building. The term Virtual Observatory originally came from the astronomical research community. Here, virtual observatories provide universal access to the available astronomical data archives of space and ground-based observatories. Further on, as those virtual observatories aim at integrating heterogeneous ressources provided by a number of participating organizations, the virtual observatory acts as a coordinating entity that strives for common data analysis techniques and tools based on common standards. The Sensor Web is on its way to become one of the major virtual observatories outside of the astronomical research community. Like the original observatory that consists of a number of telescopes, each observing a specific part of the wave spectrum and with a collection of astronomical instruments, the Sensor Web provides a multi-eyes perspective on the current, past, as well as future situation of our planet and its surrounding spheres. The current view of the Sensor Web is that of a single worldwide collaborative, coherent, consistent and consolidated sensor data collection, fusion and distribution system. The Sensor Web can perform as an extensive monitoring and sensing system that provides timely, comprehensive, continuous and multi-mode observations. This technology is key to monitoring and understanding our natural environment, including key areas such as climate change, biodiversity, or natural disasters on local, regional, and global scales. The Sensor Web concept has been well established with ongoing global research and deployment of Sensor Web middleware and standards and represents the foundation layer of systems like the Global Earth Observation System of Systems (GEOSS). The Sensor Web consists of a huge variety of physical and virtual sensors as well as observational data, made available on the Internet at standardized interfaces. All data sets and sensor communication follow well-defined abstract models and corresponding encodings, mostly developed by the OGC Sensor Web Enablement initiative. Scientific progress is currently accelerated by an emerging new concept called scientific workflows, which organize and manage complex distributed computations. A scientific workflow represents and records the highly complex processes that a domain scientist typically would follow in exploration, discovery and ultimately, transformation of raw data to publishable results. The challenge is now to integrate the benefits of scientific workflows with those provided by the Sensor Web in order to leverage all resources for scientific exploration, problem solving, and knowledge generation. Scientific workflows for the Sensor Web represent the next evolutionary step towards efficient, powerful, and flexible earth observation frameworks and platforms. Those platforms support the entire process from capturing data, sharing and integrating, to requesting additional observations. Multiple sites and organizations will participate on single platforms and scientists from different countries and organizations interact and contribute to large-scale research projects. Simultaneously, the data- and information overload becomes manageable, as multiple layers of abstraction will free scientists to deal with underlying data-, processing or storage peculiarities. The vision are automated investigation and discovery mechanisms that allow scientists to pose queries to the system, which in turn would identify potentially related resources, schedules processing tasks and assembles all parts in workflows that may satisfy the query.

  1. Indoor Environmental Contaminants in Schools

    EPA Pesticide Factsheets

    A wide range of environmental contaminants can affect the health and safety of a school environment. This page covers the basics on issues your school may face, including asbestos, chemicals, formaldehyde, lead, mercury, PCBs and radon.

  2. Final Data Usability Summary and Resampling Proposal for Fort Sheridan

    DTIC Science & Technology

    1996-03-22

    performed. The basic approach discussed here was determined in discussions between Fort Sheridan, the EPA, Illinois EPA, the Army Environmental Center, and its RI consultant, Environmental Science and Engineering, Inc.

  3. Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013

    DOE Data Explorer

    Heikoop, Jeffrey H.; Throckmorton, Heather M.; Wilson, Cathy J.; Newman, Brent D.

    2016-02-22

    Data include results from geochemical and isotopic analyses for samples collected in Barrow, Alaska during July and September 2013. Samples were soil pore waters from 17 drainages that could be interlake (basins with polygonal terrain), different-aged drain thaw lake basins (young, medium, old, or ancient), or a combination of different aged basins. Samples taken in different drainage flow types at three different depths at each location in and around the Barrow Environmental Observatory.

  4. Real-time attitude determination and gyro calibration

    NASA Technical Reports Server (NTRS)

    Challa, M.; Filla, O.; Sedlak, J.; Chu, D.

    1993-01-01

    We present results for two real-time filters prototyped for the Compton Gamma Ray Observatory (GRO), the Extreme Ultraviolet Explorer (EUVE), the Cosmic Background Explorer (COBE), and the next generation of Geostationary Operational Environmental Satellites (GOES). Both real and simulated data were used to solve for attitude and gyro biases. These filters promise advantages over single-frame and batch methods for missions like GOES, where startup and transfer-orbit operations require quick knowledge of attitude and gyro biases.

  5. Solid-state Terahertz Sources for Space Applications

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Pearson, John C.; Ward, John S.; Schlecht, Erich; Chattopadhyay, Goutam; Gill, John J.; Ferber, R.; Tsang, Raymond; Lin, Robert H.; Peralta, Alejandro; hide

    2004-01-01

    This paper discusses the construction of solid-state frequency multiplier chains utilized far teraherz receiver applications such as the Herschel Space Observatory . Emphasis will he placed on the specific requirements to be met and challenges that were encountered. The availability of high power amplifiers at 100 GHz makes it possible to cascade frequency doublers and triplers with sufficient RF power to pump heterodyne receivers at THz frequencies. The environmental and mechanical constraints will be addressed as well as reliability issues.

  6. Finding of No Significant Impact (FONSI): Environmental Assessment of the Farish Recreation Area Observatory and Cabin Construction

    DTIC Science & Technology

    2011-12-21

    by low-density home sites and ranchettes. Private lands around Farish include a fishing resort named Carroll Lakes, ranching operations to the...night sky and make measurements from Farish. In addition, the new recreational cabins would not be built. Without additional lodging facilities at... measures described in the EA and incorporated into the Proposed Actions are generally required by laws, regulations or USAF policies and are adopted

  7. Design and Analysis of the International X-Ray Observatory Mirror Modules

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Carnahan, Timothy M.; Robinson, David W.; Saha, Timo T.

    2009-01-01

    The Soft X-Ray Telescope (SXT) modules are the fundamental focusing assemblies on NASA's next major X-ray telescope mission, the International X-Ray Observatory (IXO). The preliminary design and analysis of these assemblies has been completed, addressing the major engineering challenges and leading to an understanding of the factors effecting module performance. Each of the 60 modules in the Flight Mirror Assembly (FMA) supports 200-300 densely packed 0.4 mm thick glass mirror segments in order to meet the unprecedented effective area required to achieve the scientific objectives of the mission. Detailed Finite Element Analysis (FEA), materials testing, and environmental testing have been completed to ensure the modules can be successfully launched. Resulting stress margins are positive based on detailed FEA, a large factor of safety, and a design strength determined by robust characterization of the glass properties. FEA correlates well with the results of the successful modal, vibration, and acoustic environmental tests. Deformation of the module due to on-orbit thermal conditions is also a major design driver. A preliminary thermal control system has been designed and the sensitivity of module optical performance to various thermal loads has been determined using optomechanical analysis methods developed for this unique assembly. This design and analysis furthers the goal of building a module that demonstrates the ability to meet IXO requirements, which is the current focus of the IXO FMA technology development team.

  8. Hydrological models as web services: Experiences from the Environmental Virtual Observatory project

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Vitolo, C.; Reaney, S. M.; Beven, K.

    2012-12-01

    Data availability in environmental sciences is expanding at a rapid pace. From the constant stream of high-resolution satellite images to the local efforts of citizen scientists, there is an increasing need to process the growing stream of heterogeneous data and turn it into useful information for decision-making. Environmental models, ranging from simple rainfall - runoff relations to complex climate models, can be very useful tools to process data, identify patterns, and help predict the potential impact of management scenarios. Recent technological innovations in networking, computing and standardization may bring a new generation of interactive models plugged into virtual environments closer to the end-user. They are the driver of major funding initiatives such as the UK's Virtual Observatory program, and the U.S. National Science Foundation's Earth Cube. In this study we explore how hydrological models, being an important subset of environmental models, have to be adapted in order to function within a broader environment of web-services and user interactions. Historically, hydrological models have been developed for very different purposes. Typically they have a rigid model structure, requiring a very specific set of input data and parameters. As such, the process of implementing a model for a specific catchment requires careful collection and preparation of the input data, extensive calibration and subsequent validation. This procedure seems incompatible with a web-environment, where data availability is highly variable, heterogeneous and constantly changing in time, and where the requirements of end-users may be not necessarily align with the original intention of the model developer. We present prototypes of models that are web-enabled using the web standards of the Open Geospatial Consortium, and implemented in online decision-support systems. We identify issues related to (1) optimal use of available data; (2) the need for flexible and adaptive structures; (3) quantification and communication of uncertainties. Lastly, we present some road maps to address these issues and discuss them in the broader context of web-based data processing and "big data" science.

  9. Cyberinfrastructure for remote environmental observatories: a model homogeneous sensor network in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick

    2017-04-01

    Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to provide dramatically improved levels of scientific and hazard monitoring that span complex topographies and remote geography.

  10. Decision-Making Using Real-Time Observations for Environmental Sustainability; an integrated 802.11 sensor network

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Kleissl, J.; Farhadi, M.; Kim, D.; Liu, W.; Mao, Y.; Nguyen, H. T.; Roshandell, M.; Sankur, M.; Shiga, Y.; Linden, P.; Hodgkiss, W.

    2007-12-01

    Meteorological conditions have important implications on human activities. They affect human comfort, productivity, and health, and contribute to material wear and tear. The University of California, San Diego (UCSD)'s proximity to the Pacific Ocean places it in a temperate microclimate which has unique advantages and disadvantages for campus water and energy use and air quality. In particular, the daily sea-breezes provide cool, moist, and salt-laden air to campus. For the Decision-Making Using Real-Time Observations for Environmental Sustainability (DEMROES) project a heterogeneous wireless network of monitoring stations is being set up across the UCSD campus and beyond. Conditions to be monitored include temperature, humidity, wind speed and direction, surface temperatures, solar radiation, particulate matter, CO, NO2, rainfall, and soil moisture. Stations are strategically placed on rooftops and lampposts across campus, as well as select off-campus locations and will transmit data over the UCSD 802.11 wireless network. In addition to rooftop and lamppost stations, mobile stations will be deployed via remotely controlled ground and air units, and stations affixed to campus shuttle busses. These mobile stations will allow for greater spatial resolution of the environmental conditions across campus and inter-sensor calibration. The hardware consists of meteorological, hydrological, and air quality sensors connected to (a) commercial Campbell datalogging systems with serial2IP modules and wireless bridges, and (b) sensor and 802.11 boards based on the dpac technology developed in-house. The measurements will serve campus facilities management with information to feed the energy management system (EMS) for building operation and energy conservation, and irrigation management. The technology developed for this project can be applied elsewhere thereby contributing to hydrologic and ecologic observatories. Through extensive student involvement a new generation of environmental scientists and engineers will be trained to work on the planning and execution of national observatories.

  11. 76 FR 50170 - Pohick Creek Watershed Dam No. 8, Fairfax County, Virginia; Finding of No Significant Impact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Natural Resources Conservation Service, U.S. Department of Agriculture, gives notice that an environmental...) 287- 1691, E-Mail [email protected] . SUPPLEMENTARY INFORMATION: The environmental assessment.... Basic data developed during the environmental assessment are on file and may be reviewed by contacting...

  12. Solar Program Assessment: Environmental Factors - Fuels from Biomass.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of biomass production and biomass conversion systems. To provide a background for this environmental analysis, the basic concepts of the technology are reviewed, as are resource requirements. The potential effects of this…

  13. Center for Adaptive Optics | Links

    Science.gov Websites

    extraterrestrische Physik, Infrared/Submillimeter Astronomy MMT Adaptive Optics Mount Wilson Observatory National Astronomical Observatory of Japan National Solar Observatory National Optical Astronomy Observatories, AO Astronomy Observatoire de Paris Osservatorio Astrofisico di Arcetri Padua Observatory Palomar Observatory

  14. Environmental Education, Values for the Future: Environmental Ethics. Grades 6-8.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield.

    This booklet on environmental ethics is one of a series in environmental education for grades K-12. The concept of man's role in helping to preserve the natural order and the importance of maintaining a pleasant environment is presented in this booklet for grades 6-8. Five basic concepts are listed, along with the behavioral objectives, subject…

  15. Environmental and economic sustainability of the Mediterranean Diet.

    PubMed

    Germani, Alessia; Vitiello, Valeria; Giusti, Anna Maria; Pinto, Alessandro; Donini, Lorenzo Maria; del Balzo, Valeria

    2014-12-01

    The Mediterranean diet (MD) has been proposed as a healthy dietary pattern for disease prevention. However, little information exists on the cost and on the environmental impact of such a dietary model. We compared the environmental impact and the costs of the current food consumption pattern of the Italian population and the Mediterranean model in order to investigate its overall sustainability. The environmental impact was calculated on the basis of three indexes, i.e. Carbon, Ecological and Water Footprint. The costs (Euro) per person of the MD and of the current Italian household food expenditure were considered on a weekly basis according to the 2013 data from the Observatory prices and tariffs of the Ministry of Economic Development and the service SMS consumers of the Ministry of Agriculture, Food and Forestry. The MD resulted to produce a lower environmental impact than the current food consumption of the Italian population. The monthly expenditure of the MD is slightly higher in the overall budget compared to the current expenditure allocated to food by the Italian population, but there is a substantial difference in the distribution of budget according to the different food groups.

  16. Ocean Observatories and the Integrated Ocean Observing System, IOOS: Developing the Synergy

    NASA Astrophysics Data System (ADS)

    Altalo, M. G.

    2006-05-01

    The National Office for Integrated and Sustained Ocean Observations is responsible for the planning, coordination and development of the U.S. Integrated Ocean Observing System, IOOS, which is both the U.S. contribution to GOOS as well as the ocean component of GEOSS. The IOOS is comprised of global observations as well as regional coastal observations coordinated so as to provide environmental information to optimize societal management decisions including disaster resilience, public health, marine transport, national security, climate and weather impact, and natural resource and ecosystem management. Data comes from distributed sensor systems comprising Federal and state monitoring efforts as well as regional enhancements, which are managed through data management and communications (DMAC) protocols. At present, 11 regional associations oversee the development of the observing System components in their region and are the primary interface with the user community. The ocean observatories are key elements of this National architecture and provide the infrastructure necessary to test new technologies, platforms, methods, models, and practices which, when validated, can transition into the operational components of the IOOS. This allows the IOOS to remain "state of the art" through incorporation of research at all phases. Both the observatories as well as the IOOS will contribute to the enhanced understanding of the ocean and coastal system so as to transform science results into societal solutions.

  17. Mercury (Environmental Health Student Portal)

    MedlinePlus

    ... Read About It Enviro-Health Links - Mercury and Human Health (National Library of Medicine) - Resources on basic information, ... how it is used, and the effects on human health. For Teachers Mercury Middle School Activities (U.S. Environmental ...

  18. ENVIRONMENTAL HYDRAULICS

    EPA Science Inventory

    The thermal, chemical, and biological quality of water in rivers, lakes, reservoirs, and near coastal areas is inseparable from a consideration of hydraulic engineering principles: therefore, the term environmental hydraulics. In this chapter we discuss the basic principles of w...

  19. Operating and environmental characteristics of Sigma Tau hydrogen masers used in the Very Long Baseline Array (VLBA)

    NASA Technical Reports Server (NTRS)

    Tucker, T. K.

    1989-01-01

    Presented here are the results obtained from performance evaluation of a pair of Sigma Tau Standards Corporation Model VLBA-112 active hydrogen maser frequency standards. These masers were manufactured for the National Radio Astronomy Observatory (NRAO) for use on the Very Long Baseline Array (VLBA) project and were furnished to the Jet Propulsion Laboratory (JPL) for the purpose of these tests. Tests on the two masers were performed in the JPL Frequency Standards Laboratory (FSL) and included the characterization of output frequency stability versus environmental factors such as temperature, humidity, magnetic field, and barometric pressure. The performance tests also included the determination of phase noise and Allan variance using both FSL and Sigma Tau masers as references. All tests were conducted under controlled laboratory conditions, with only the desired environmental and operational parameters varied to determine sensitivity to external environment.

  20. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  1. OCO-2 Fairings being hoisted into MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Workers attach half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, to a crane at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's mobile service tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, VAFB

  2. OCO-2 Fairing Bi-Sector Halves Transport

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Both halves of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, are towed from the Building 836 hangar to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  3. OCO-2 Fairing Bi-Sector Halves Transport

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is towed from the Building 836 hangar to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  4. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – A crane is employed to lift half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into a vertical position at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  5. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Workers remove the protective wrap from half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, newly arrived at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  6. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is lifted into a vertical position at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  7. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to lift half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into a vertical position at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Workers maneuver half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, newly arrived at Space Launch Complex 2 on Vandenberg Air Force Base in California, into position underneath the crane. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower where the other half already is in position. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Workers attach a crane onto half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, newly arrived at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower where the other half already is in position. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – The second half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower where the other half already is in position. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  11. OCO-2 Fairings being hoisted into MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – Half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is towed from the Building 836 hangar to Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations have begun to hoist the sections of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the pad's mobile service tower. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/30th Space Wing, VAFB

  12. OCO-2: Hoisting the Fairing Halves up the MST

    NASA Image and Video Library

    2014-03-24

    VANDENBERG AIR FORCE BASE, Calif. – A crane lifts half of the fairing for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, up the side of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to hoist this section of the fairing into the Delta II launcher's environmental enclosure, or clean room, at the top of the tower where the other half is already in position. The fairing will protect OCO-2 during launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. Wastewater Treatment Plants as Chemical Observatories to Forecast Ecological and Human Health Risks of Manmade Chemicals

    PubMed Central

    Venkatesan, Arjun K.; Halden, Rolf U.

    2014-01-01

    Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge (biosolids) were analyzed for 231 CECs, of which 123 were detected. Ten of the top 11 most abundant CECs in biosolids were found to be high-production volume chemicals, eight of which representing priority chemicals, including three flame retardants, three surfactants and two antimicrobials. A comparison of chemicals detected in nationally representative biological specimens from humans and municipal biosolids revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that the analysis of sewage sludge can inform human health risk assessments by providing current information on toxic exposures in human populations and associated body burdens of harmful environmental pollutants. PMID:24429544

  14. Texas Water Observatory: A platform for landscape-level assessment of human and natural water uses, productivity, carbon sequestration, and other ecosystem services

    NASA Astrophysics Data System (ADS)

    Jaimes, A.; Gaur, N.; Moore, G. W.; Miller, G. R.; Morgan, C.; Everett, M. E.; Noormets, A.; Mohanty, B.

    2017-12-01

    The increasing temperature, and growing variability and intensity of precipitation events have strained the water supplies of several metropolitan areas in the Southern USA. The need for better system-level understanding and data-based planning tools to support the needs of 50 million habitants of Texas and the Gulf States led the establishment of Texas Water Observatory (TWO; http://two.tamu.edu/sites.aspx) in 2015. Using the Brazos River watershed as a model system, encompassing land cover types from agricultural and pasture lands to forest, savannah, and wetland systems, TWO is designed to develop comprehensive understanding of hydrological and biogeochemical processes at not only ecosystem scale, but of their spatially explicit interconnections in the landscape. In the current report, we will report the first year of ecosystem-scale fluxes of water and CO2 from the different nine sites, and discuss the regional implications of their environmental sensitivities.

  15. Hamilton Jeffers and the Double Star Catalogues

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2013-01-01

    Astronomers have long tracked double stars in efforts to find those that are gravitationally-bound binaries and then to determine their orbits. Court reporter and amateur astronomer Shelburne Wesley Burnham (1838-1921) published a massive double star catalogue containing more than 13,000 systems in 1906. The next keeper of the double stars was Lick Observatory astronomer Robert Grant Aitken (1864-1951), who produced a much larger catalogue in 1932. Aitken maintained and expanded Burnham’s records of observations on handwritten file cards, eventually turning them over to Lick Observatory astrometrist Hamilton Moore Jeffers (1893-1976). Jeffers further expanded the collection and put all the observations on punched cards. With the aid of Frances M. "Rete" Greeby (1921-2002), he made two catalogues: an Index Catalogue with basic data about each star, and a complete catalogue of observations, with one observation per punched card. He enlisted Willem van den Bos of Johannesburg to add southern stars, and they published the Index Catalogue of Visual Double Stars, 1961.0. As Jeffers approached retirement he became greatly concerned about the disposition of the catalogues. He wanted to be replaced by another "double star man," but Lick Director Albert E. Whitford (1905-2002) had the new 120-inch reflector, the world’s second largest telescope, and he wanted to pursue modern astrophysics instead. Jeffers was vociferously opposed to turning over the card files to another institution, and especially against their coming under the control of Kaj Strand of the U.S. Naval Observatory. In the end the USNO got the files and has maintained the records ever since, first under Charles Worley (1935-1997), and, since 1997, under Brian Mason. Now called the Washington Double Star Catalog (WDS), it is completely online and currently contains more than 1,000,000 measures of more than 100,000 pairs.

  16. The Solar Connections Observatory for Planetary Environments

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Harris, W. M.

    2002-05-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative studies of planetary, cometary, and local interstellar medium (LISM) interaction with the Sun and solar variability. Through such studies, we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the STP, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap, we propose a mission to study the solar interaction with bodies throughout our solar system and the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/UV telescope operating from a heliocentric, Earth-trailing orbit that provides high observing efficiency, sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high resolution (R>105) H Ly-α emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. The other planets and comets will be monitored in long duration campaigns centered, when possible, on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using the combination of SCOPE observations and models including MHD, general circulation, and radiative transfer, we will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.

  17. Can Polar Fields Explain Missing Open Flux?

    NASA Astrophysics Data System (ADS)

    Linker, J.; Downs, C.; Caplan, R. M.; Riley, P.; Mikic, Z.; Lionello, R.

    2017-12-01

    The "open" magnetic field is the portion of the Sun's magnetic field that extends out into the heliosphere and becomes the interplanetary magnetic field (IMF). Both the IMF and the Sun's magnetic field in the photosphere have been measured for many years. In the standard paradigm of coronal structure, the open magnetic field originates primarily in coronal holes. The regions that are magnetically closed trap the coronal plasma and give rise to the streamer belt. This basic picture is qualitatively reproduced by models of coronal structure using photospheric magnetic fields as input. If this paradigm is correct, there are two primary observational constraints on the models: (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Linker et al. (2017, ApJ, submitted) investigated the July 2010 time period for a range of observatory maps and both PFSS and MHD models. We found that all of the model/map combinations underestimated the interplanetary magnetic flux, unless the modeled open field regions were larger than observed coronal holes. An estimate of the open magnetic flux made entirely from solar observations (combining detected coronal hole boundaries with observatory synoptic magnetic maps) also underestimated the interplanetary magnetic flux. The magnetic field near the Sun's poles is poorly observed and may not be well represented in observatory maps. In this paper, we explore whether an underestimate of the polar magnetic flux during this time period could account for the overall underestimate of open magnetic flux. Research supported by NASA, AFOSR, and NSF.

  18. Meteorological conditions at the Caucasus Observatory of the SAI MSU from the results of the 2007-2015 campaign

    NASA Astrophysics Data System (ADS)

    Kornilov, V. G.; Kornilov, M. V.; Shatsky, N. I.; Vozyakova, O. V.; Gorbunov, I. A.; Safonov, B. S.; Potanin, S. A.; Cheryasov, D. V.; Senik, V. A.

    2016-09-01

    Based on the measurements performed from 2007 to 2015 at the summit of Mount Shatdzhatmaz adjacent to the 2.5-m telescope at the Caucasus Observatory of the SAI MSU, we have determined the statistical characteristics of basic meteorological parameters: the ambient air temperature, the ground wind speed, and the relative humidity. The stability of these parameters over the entire period of our measurements and their variations within an annual cycle have been studied. The median temperature on clear nights is +3.2°C, although there are nights with a temperature below -15°C. The typical ground wind speed is 3 m s-1; the probability of a wind stronger than 10 m s-1 does not exceed 2%. The losses of observing time due to high humidity are maximal in the summer period but, on the whole, are small over a year, less than 10%. We have estimated the absolute water vapor content in the atmosphere, which is especially important for infrared observations. Minimum precipitablewater vapor is observed in December-February; the median value over these months is 5 mm. We additionally provide the wind speeds at various altitudes above the ground (from 1 to 16 km) that we obtained when measuring the optical turbulence. We present the results and technique of our measurements of the annual amount of clear night astronomical time, which is, on average, 1320 h, i.e., 45% of the possible one at the latitude of the observatory. The period from mid-September to mid-March accounts for about 70% of the clear time. A maximum of clear skies is observed in November, when its fraction reaches 60% of the possible astronomical night time.

  19. Benefits of Long-term Catchment/Observatory Research: Reynolds Creek Case

    NASA Astrophysics Data System (ADS)

    Seyfried, M. S.; Marks, D. G.; Pierson, F. B.; Lohse, K. A.; Flerchinger, G. N.

    2017-12-01

    Long-term catchments/observatories fill an important role in the larger spectrum of ecohydrologic research. We use three examples of roles the Reynolds Creek Experimental Watershed (RCEW) has played in advancing research to illustrate the benefits of these observatories. Two characteristics of the RCEW are critical: longevity and scale. Longevity provides continuity of effort and historical context, scale provides environmental gradients, replication and management options. First, the RCEW is a laboratory for ecohydrologic model testing and development. The extensive RCEW data have been used for testing a variety models. The RCEW is also the site of several "home grown" models. Today Isnobal, a process-based snow model, is being used to inform reservoir management for power supply and irrigation of major catchments in the western US. This model is the result of many years of directed field research and model testing in the "outdoor laboratory" of the RCEW, which provided a range of topography, vegetation cover, a climatic gradient spanning the rain-snow transition elevation and many years of climate data to evaluate inter-annual variations. Second, the RCEW provides scientific and physical support for multi-institutional, interdisciplinary research. By providing preexisting instrumentation, on-site support, and historical context for research, the RCEW has been host to research from a variety of institutions. This is most evident today in the collaborative research with the co-located Reynolds Creek Critical Zone Observatory. We have built upon traditional hydrologic research to incorporate the linkages between water availability, soil development and vegetative productivity that are critical to natural resource management. Third, the RCEW provides documentation of climate change impacts on ecohydrology. The observatories are in the unique position of providing direct linkages between climate change and ecohydrologic change. Thus, we have measured temperature increases at the RCEW and have been able to directly link those increases to changes in snow accumulation and melt at different elevations, soil water trends, and streamflow amount and timing. This kind of linkage facilitates a process-level understanding of how climate change impacts the landscape.

  20. Benthic long-term Observatories based on Lander Technology

    NASA Astrophysics Data System (ADS)

    Linke, P.; Pfannkuche, O.; Sommer, S.; Gubsch, S.; Gust, G.

    2003-04-01

    Landers are autonomous carrier systems for a wide range of scientific applications. The GEOMAR Lander System is based on a tripod-shaped platform for various scientific payloads to monitor, measure and experiment at the deep sea floor. These landers can be deployed using hybrid fibre optical or coaxial cables with a special launching device or in the conventional free falling mode. The launcher enables accurate positioning on meter scale, soft deployment and rapid disconnection of lander and launcher by an electric release. The bi-directional video and data telemetry provides on line video transmission, power supply and surface control of various relay functions. Within the collaborative project LOTUS novel long-term observatories have been developed and integrated into the GEOMAR Lander System. An overview of the recent developments is presented. Two new observatories are presented in detail to study the temporal variability of physico-chemical and biogeochemical mechanisms, flux- and turnover rates related to the decomposition and formation of near surface gas hydrates embedded in their original sedimentary matrix. With the Biogeochemical Observatory, BIGO, the temporal variability of the biologically facilitated methane turnover in the sediment and fluxes across the sediment water interface is studied in two mesocosms. Inside the mesocosms the oxygen content can be maintained by a chemostat. The in situ flow regime is measured outside the mesocosms and is reproduced within the chamber with an intelligent stirring system. This approach represents a major step in the development of benthic chambers from stationary to dynamic systems. The Fluid-Flux Observatory (FLUFO) measures the different types of fluid fluxes at the benthic boundary layer of sediments overlying near surface gas hydrates and monitors relevant environmental parameters as temperature, pressure and near bottom currents. FLUFO consists of two chamber units. Both units separate the gas phase from the aqueous phase and measure their individual contribution to the total fluid flux. Whereas the first (reference) chamber measures the aqueous flux without obtaining information about their direction, the second (FLUFO) chamber measures the aqueous flux including the direction discriminating between outward flow, stagnation and inward flow.

  1. Raman microscopy of size-segregated aerosol particles, collected at the Sonnblick Observatory in Austria

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Kasper-Giebl, Anneliese; Kistler, Magdalena; Matzl, Julia; Schauer, Gerhard; Hitzenberger, Regina; Lohninger, Johann; Lendl, Bernhard

    2014-05-01

    Size classified aerosol samples were collected using low pressure impactors in July 2013 at the high alpine background site Sonnnblick. The Sonnblick Observatory is located in the Austrian Alps, at the summit of Sonnblick 3100 m asl. Sampling was performed in parallel on the platform of the Observatory and after the aerosol inlet. The inlet is constructed as a whole air inlet and is operated at an overall sampling flow of 137 lpm and heated to 30 °C. Size cuts of the eight stage low pressure impactors were from 0.1 to 12.8 µm a.d.. Alumina foils were used as sample substrates for the impactor stages. In addition to the size classified aerosol sampling overall aerosol mass (Sharp Monitor 5030, Thermo Scientific) and number concentrations (TSI, CPC 3022a; TCC-3, Klotz) were determined. A Horiba LabRam 800HR Raman microscope was used for vibrational mapping of an area of about 100 µm x 100 µm of the alumina foils at a resolution of about 0.5 µm. The Raman microscope is equipped with a laser with an excitation wavelength of 532 nm and a grating with 300 gr/mm. Both optical images and the related chemical images were combined and a chemometric investigation of the combined images was done using the software package Imagelab (Epina Software Labs). Based on the well-known environment, a basic assignment of Raman signals of single particles is possible at a sufficient certainty. Main aerosol constituents e.g. like sulfates, black carbon and mineral particles could be identified. First results of the chemical imaging of size-segregated aerosol, collected at the Sonnblick Observatory, will be discussed with respect to standardized long-term measurements at the sampling station. Further, advantages and disadvantages of chemical imaging with subsequent chemometric investigation of the single images will be discussed and compared to the established methods of aerosol analysis. The chemometric analysis of the dataset is focused on mixing and variation of single compounds at different stages of the impactors.

  2. The Very Large Array Data Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.; Masters, Joseph S.; Chandler, Claire J.; Davis, Lindsey E.; Kern, Jeffrey S.; Ott, Juergen; Schinzel, Frank K.; Medlin, Drew; Muders, Dirk; Williams, Stewart; Geers, Vincent C.; Momjian, Emmanuel; Butler, Bryan J.; Nakazato, Takeshi; Sugimoto, Kanako

    2018-01-01

    We present the VLA Pipeline, software that is part of the larger pipeline processing framework used for the Karl G. Jansky Very Large Array (VLA), and Atacama Large Millimeter/sub-millimeter Array (ALMA) for both interferometric and single dish observations.Through a collection of base code jointly used by the VLA and ALMA, the pipeline builds a hierarchy of classes to execute individual atomic pipeline tasks within the Common Astronomy Software Applications (CASA) package. Each pipeline task contains heuristics designed by the team to actively decide the best processing path and execution parameters for calibration and imaging. The pipeline code is developed and written in Python and uses a "context" structure for tracking the heuristic decisions and processing results. The pipeline "weblog" acts as the user interface in verifying the quality assurance of each calibration and imaging stage. The majority of VLA scheduling blocks above 1 GHz are now processed with the standard continuum recipe of the pipeline and offer a calibrated measurement set as a basic data product to observatory users. In addition, the pipeline is used for processing data from the VLA Sky Survey (VLASS), a seven year community-driven endeavor started in September 2017 to survey the entire sky down to a declination of -40 degrees at S-band (2-4 GHz). This 5500 hour next-generation large radio survey will explore the time and spectral domains, relying on pipeline processing to generate calibrated measurement sets, polarimetry, and imaging data products that are available to the astronomical community with no proprietary period. Here we present an overview of the pipeline design philosophy, heuristics, and calibration and imaging results produced by the pipeline. Future development will include the testing of spectral line recipes, low signal-to-noise heuristics, and serving as a testing platform for science ready data products.The pipeline is developed as part of the CASA software package by an international consortium of scientists and software developers based at the National Radio Astronomical Observatory (NRAO), the European Southern Observatory (ESO), and the National Astronomical Observatory of Japan (NAOJ).

  3. A new test environment for the SOFIA secondary mirror assembly to reduce the required time for in-flight testing

    NASA Astrophysics Data System (ADS)

    Lammen, Yannick; Reinacher, Andreas; Brewster, Rick; Greiner, Benjamin; Graf, Friederike; Krabbe, Alfred

    2016-07-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) reached its full operational capability in 2014 and takes off from the NASA Armstrong Flight Research Center to explore the universe about three times a week. Maximizing the program's scientific output naturally leaves very little flight time for implementation and test of improved soft- and hardware. Consequently, it is very important to have a comparable test environment and infrastructure to perform troubleshooting, verifications and improvements on ground without interfering with science missions. SOFIA's Secondary Mirror Mechanism is one of the most complex systems of the observatory. In 2012 a first simple laboratory mockup of the mechanism was built to perform basic controller tests in the lower frequency band of up to 50Hz. This was a first step to relocate required engineering tests from the active observatory into the laboratory. However, to test and include accurate filters and damping methods as well as to evaluate hardware modifications a more precise mockup is required that represents the system characteristics over a much larger frequency range. Therefore the mockup has been improved in several steps to a full test environment representing the system dynamics with high accuracy. This new ground equipment allows moving almost the entire secondary mirror test activities away from the observatory. As fast actuator in the optical path, the SMM also plays a major role in SOFIA's pointing stabilization concept. To increase the steering bandwidth, hardware changes are required that ultimately need to be evaluated using the telescope optics. One interesting concept presented in this contribution is the in- stallation of piezo stack actuators between the mirror and the chopping mechanism. First successful baseline tests are presented. An outlook is given about upcoming performance tests of the actively controlled piezo stage with local metrology and optical feedback. To minimize the impact on science time, the laboratory test setup will be expanded with an optical measurement system so that it can be used for the vast majority of testing.

  4. 75 FR 27547 - Notice of Reestablishment of the Secretary of Energy Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... management, basic science, research, development and technology activities; energy and national security... basis of their broad competence in areas relating to quality management, basic science, renewable energy, energy policy, environmental science, economics, and broad public policy interests. Membership of the...

  5. Teaching Basic Science Environmentally, Concept: Water that Comes Down as Rain Is Used Over and Over Again.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1985-01-01

    Provides directions for basic science experiments which demonstrate the rain cycle, fundamentals of cloud formation, and testing for the presence of acidity in local rainwater. Describes materials required, step-by-step instructions, and discussion topics. (NEC)

  6. Developments of next generation of seafloor observatories in MARsite project

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Favali, Paolo; Zaffuto, Alfonso; Zora, Marco; D'Anca, Fabio

    2015-04-01

    The development of new generation of autonomous sea-floor observatories is among the aims of the EC supersite project MARsite (MARMARA Supersite; FP7 EC-funded project, grant n° 308417). An approach based on multiparameter seafloor observatories is considered of basic importance to better understand the role of the fluids in an active tectonic system and their behaviour during the development of the seismogenesis. To continuously collect geochemical and geophysical data from the immediate vicinity of the submerged North Anatolian Fault Zone (NAFZ) is one of the possibilities to contribute to the seismic hazard minimization of the Marmara area. The planning of next generation of seafloor observatories for geo-hazard monitoring is a task in one of the MARsite Work Packages (WP8). The activity is carried out combining together either the experience got after years of investigating fluids and their interactions with the seafloor and tectonic structures and the long-term experience on the development and management of permanent seafloor observatories in the main frame of the EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The new generation of seafloor observatories have to support the observation of both slow and quick variations, thus allow collecting low and high-frequency signals besides the storage of long-term dataset and/or enable the near-real-time mode data transmission. Improvements of some the seafloor equipments have been done so far within MARsite project in terms of the amount of contemporary active instruments, their interlink with "smart sensor" capacities (threshold detection, triggering), quality of the collected data and power consumption reduction. In order to power the multiparameter sensors the digitizer and the microprocessor, an electronic board named PMS (Power Management System) with multi-master, multi-slave, single-ended, serial bus Inter-Integrated Circuit (I²C) interface has been designed, and the prototype is under test. To reduce energy consumption an embedded system has been used. All the parts of the data acquisition module are integrated in a compact and reliable aluminum frame that can be easily fitted inside vessels for tests in the marine environment. The module also includes two solid-state drives for data storage and connectors for integration with other devices and sensors. The ongoing testing activity is aimed to check the three main advances obtained so far: an open architecture of the system, very low power consumption and the possibility of digitizing at 24 bit signals from a large variety of analog sensors. The tests are carried out in the extreme marine environment of the submarine hydrothermal system of Panarea (Aeolian islands), where tectonic and volcanic activities are the responsible for the November 2002 submarine explosion which is the only submarine volcanic event recorded in the Mediterranean sea in recent times. The tests include corrosion resistance of the materials, data recording, storage and transmission. The tests are carried out using two sets of sensors, very different in terms of data acquisition frequency: temperature and pressure probes and hydrophones.

  7. Construction and Validation of Textbook Analysis Grids for Ecology and Environmental Education

    ERIC Educational Resources Information Center

    Caravita, Silvia; Valente, Adriana; Luzi, Daniela; Pace, Paul; Valanides, Nicos; Khalil, Iman; Berthou, Guillemette; Kozan-Naumescu, Adrienne; Clement, Pierre

    2008-01-01

    Knowledge about ecology and environmental education (EE) constitutes a basic tool for promoting a sustainable future, and was a target area of the BIOHEAD-Citizen Project. School textbooks were considered as representative sources of evidence in terms of ecology and environmental education, and were used for comparison among the countries…

  8. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  9. Essential Learnings in Environmental Education--A Database for Building Activities and Programs.

    ERIC Educational Resources Information Center

    Ballard, Melissa, Comp.; Pandya, Mamata, Comp.

    The purpose of this book is to provide building blocks for designing and reviewing environmental education programs and activities. This handbook provides 600 basic concepts needed to attain the environmental education goals outlined at the Tbilisi, USSR, conference and generally agreed to be the fundamental core of quality environmental…

  10. Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course

    ERIC Educational Resources Information Center

    Munn, D. A.

    2004-01-01

    Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…

  11. 75 FR 41236 - Notice of Proposed Withdrawal Extension and Opportunity for Public Meeting; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Barrow Base Line Observatory and the Barrow Magnetic Observatory. This notice also gives an opportunity... Observatory and the Barrow Magnetic Observatory. This withdrawal comprises approximately 216 acres of public... the Federal investment in the Barrow Base Line Observatory and the Barrow Magnetic Observatory. There...

  12. Environmental Management Science Program Workshop. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as thatmore » performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.« less

  13. Scientists and Science Museums: Forging New Collaborations to Interpret the Environment and Engage Public Audiences in Climate Change

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Bartels, D.; Schwartzenberg, S.; Andrews, M. S.

    2011-12-01

    The Exploratorium engages Americans on issues of climate change, and energy use and production in a distinctive way; using a multilayered approach emphasizing all of the Exploratorium's strengths, not simply exhibitions. Specifically, the institution gives people access to the latest science research and researchers, provides the inquiry skills and basic science needed to make sense of this research, studies perception and cognition and how we come to believe what we believe, and sets up social communities and spaces for people to test their ideas and understandings with others. Using exhibits, the web and other media, visualization technology, building architecture, physical spaces, classes and professional education the Exploratorium achieves this multilayered approach. This powerful combination enhances people's own ability to make sound, evidence-based decisions for themselves, their families, and their communities. In 2013, the Exploratorium will move from its current home in the Palace of Fine Arts in San Francisco to a waterfront campus with access to the bay and outdoor platforms for instrumentation and observation. This will allow program and exhibit development in the environmental sciences that focuses on natural phenomena and physical and biological systems. Some current and planned Exploratorium projects with an emphasis on global climate change and potential for further development in the new location: 1. An Observatory building, where visitors can investigate Bay waters and climate. 2. Wired Pier, a suite of environmental sensors that will track local conditions over time and connect to larger observing networks regionally and globally 3. NOAA education and climate science partnership, including a scientist-in-residence program for training front-line staff 4. Global Climate Change Research Explorer website enabling visitors to observe current climate data or analyze evidence. 5. The Ice Stories project which trained polar scientists in media production and story-telling to blog and produce videos from their research field sites. 6. The science of thinking and sharing: How do we make decisions? How do we evaluate risk?

  14. The WHO Green Page - Assessment of the Environmental Health Risks in Children.

    PubMed

    Kurpas, Donata; Church, Joseph; Mroczek, Bożena; Hans-Wytrychowska, Anna; Rudkowski, Zbigniew

    2014-01-01

    The objective of this study was to assess the possibility of implementation of the WHO Green Page as a tool to supplement basic medical interviews with environmental health risk factors for children. The WHO Green Page questionnaire was tested on parents of children who visited family practice doctors. A total of 159 parents took part in the study. It was noted that 24.3% of caregivers expressed concern about their children's environment without naming the risk factors. It was also found that 23.7% of the parents demonstrated knowledge and awareness of existing real environmental risks, and 7.0% of them stated that their children had sustained injuries in connection with road traffic prior to the questionnaire study. The WHO Green Page will provide additional information to the basic medical interview and, if regularly updated, will allow for monitoring of changing environmental conditions of children.

  15. Children's environment and health in Latin America: the Ecuadorian case.

    PubMed

    Harari, Raul; Harari, Homero

    2006-09-01

    Environmental health problems of children in Latin America and Ecuador are complex due to the close relationship that exists between social and environmental factors. Extended poverty and basic problems, such as the lack of drinking water and sanitation, are common. Infectious diseases are the greatest cause of morbidity and mortality among children. Development in industry and the introduction of chemical substances in agriculture add new risks including pesticide use, heavy metal exposure, and air pollution. Major problems can be divided into (a) lack of basic infrastructure, (b) poor living conditions, (c) specific environmental problems, and (d) child labor. Reproductive health disorders are frequent in developing countries like Ecuador. Issues related to children's health should consider new approaches, creative methodologies, and the search for independent predictors to separate environmental from social problems. Only with knowledge of the specific contribution of each factor, can it be possible to develop a strategy for prevention.

  16. The WHO Green Page – Assessment of the Environmental Health Risks in Children

    PubMed Central

    Kurpas, Donata; Church, Joseph; Mroczek, Bożena; Hans-Wytrychowska, Anna; Rudkowski, Zbigniew

    2013-01-01

    Background: The objective of this study was to assess the possibility of implementation of the WHO Green Page as a tool to supplement basic medical interviews with environmental health risk factors for children. Methods: The WHO Green Page questionnaire was tested on parents of children who visited family practice doctors. Results: A total of 159 parents took part in the study. It was noted that 24.3% of caregivers expressed concern about their children’s environment without naming the risk factors. It was also found that 23.7% of the parents demonstrated knowledge and awareness of existing real environmental risks, and 7.0% of them stated that their children had sustained injuries in connection with road traffic prior to the questionnaire study. Conclusions: The WHO Green Page will provide additional information to the basic medical interview and, if regularly updated, will allow for monitoring of changing environmental conditions of children. PMID:25648271

  17. A mountain environmental virtual observatory (Mountain-EVO) to support participatory monitoring in a network of Andean catchments

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Ochoa Tocachi, Boris; De Bievre, Bert; Zulkafli, Zed

    2015-04-01

    The tropical Andes are a hotspot of environmental change. The combination of dramatic land-use change with global climate change, demographic growth, and increasing water demand is causing extreme pressures on water resources. This is of particular concern to rural upland communities. They are facing a double challenge of maintaining their own livelihoods with dwindling natural resources, and at the same time supporting downstream ecosystem services such as a well buffered stream flow and good water quality. This challenge is complicated further by the acute lack of data on the hydrological functioning of Andean catchments. The factors controlling their hydrological response are extremely variable in space and time, including meteorological forcing, land cover types, soil properties and geology. This makes it very difficult to predict accurately the impact of human activities such as land use, ecosystem management, and watershed investments. Such predictions are essential for policy-making and sustainable ecosystem management. To tackle the issue of hydrological data scarcity in the tropical Andes, an initiative was set up to implement a network of hydrological monitoring of upland catchments in a pairwise fashion. Using a trading-space-for-time approach, the initiative intends to use these data to improve predictions about the impact of land-use changes and other ecosystem management practices on the hydrological response. Currently, over 25 catchments are being monitored for precipitation and streamflow in 9 sites located in Bolivia, Peru, Ecuador, and Venezuela. The sites are supported by local stakeholders and communities in a participatory monitoring scheme that otherwise would be impractical or prohibitively expensive. To overcome the technical challenges of monitoring hydrological variables in remote mountain areas, the initiative has set up a web-based infrastructure to support local technicians and stakeholders. Additionally, using open data standards such as those of the Open Geospatial Consortium, the data can be pooled efficiently for regional-scale analysis, as well as processed and visualized efficiently. Lastly, the datasets can be coupled to web-based hydrological models using rich and interactive interfaces. Such setups, which we refer to as "environmental virtual observatories", can support water and land users at different scales of decision making, from community level to national governance entities, and at different levels of technical and scientific skills. This paper reports on the effort of building our environmental virtual observatory. We highlight some of the technological breakthroughs, such as exposing hydrological models to the web, using web processing services standards and pooling hydrological data for regionalization. Lastly, we also discuss the major remaining challenges in the technological, hydrological, and social science domains.

  18. Identification and mitigation of Advanced LIGO noise sources

    NASA Astrophysics Data System (ADS)

    Berger, Beverly K.

    2018-02-01

    In order to increase the reach of the astrophysical searches, various sources of instrumental and environmental noise must be identified and ameliorated. Here we discuss efforts to understand the origin of noise manifested as short-duration bursts (glitches) and/or range-impacting features at LIGO Hanford. Several examples found at LIGO Hanford Observatory in O1 and O2 were identified including glitches due to an air compressor, ringing phone, airplanes, and an incorrect servo setting, and a decrease in detector sensitivity due to truck traffic.

  19. Analytical Methodology Used To Assess/Refine Observatory Thermal Vacuum Test Conditions For the Landsat 8 Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Fantano, Louis

    2015-01-01

    Thermal and Fluids Analysis Workshop Silver Spring, MD NCTS 21070-15 The Landsat 8 Data Continuity Mission, which is part of the United States Geologic Survey (USGS), launched February 11, 2013. A Landsat environmental test requirement mandated that test conditions bound worst-case flight thermal environments. This paper describes a rigorous analytical methodology applied to assess refine proposed thermal vacuum test conditions and the issues encountered attempting to satisfy this requirement.

  20. Mission requirements for a manned earth observatory. Volume 1, task 1: Experiment selection, definition, and documentation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information related to proposed earth observation experiments for shuttle sortie missions (SSM) in the 1980's is presented. The step-wise progression of study activities and the development of the rationale that led to the identification, selection, and description of earth observation experiments for SSM are listed. The selected experiments are described, defined, and documented by individual disciplines. These disciplines include: oceanography; meteorology; agriculture, forestry, and rangeland; geology; hydrology; and environmental impact.

  1. Far-infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Boreiko, Rita T.; Betz, Al L.

    1995-01-01

    A far-infrared heterodyne spectrometer was designed and built by our group for observations of atomic and molecular lines from interstellar clouds. Linewidths as narrow as 1 km/s can be expected from such regions, and so the spectrometer is designed with sub-km/s resolution so that observed line profiles will be resolved. Since its debut on the Kuiper Airborne Observatory (KAO) in 1985, the instrument has been used in regular annual flight programs from both Moffett Field, CA and Christchurch, NZ. The basic plan of the spectrometer remains unchanged from the original design presented at the previous airborne science symposium. Numerous improvements and updates to the technical capability have of course been included over the many years of operational service.

  2. Búsqueda de Sitios para CTA: Análisis de Datos Satelitales

    NASA Astrophysics Data System (ADS)

    Suárez, A. E.; Medina, M. C.; Romero, G. E.

    The CTA Consortium has decided to implement a systematic search for sites for the Observatory. This search will be made in two different steps. The first one consists of a general determination of the possible sites on the basis of some very basic selection criteria, such as geographic latitude, altitude and extension of the flat area needed. For those sites passing these criteria, a more intensive characterization should be made, using available satellite data, together with existing ground or air-based measurements. In this work we compare the behavior of different sites analyzing the aerosol content and the total precipitable water vapor, measured by MODIS instrument. FULL TEXT IN SPANISH

  3. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  4. A report on the laboratory performance of the spectroscopic detector arrays for SPIRE/HSO

    NASA Astrophysics Data System (ADS)

    Nguyen, Hien T.; Bock, James J.; Ringold, Peter; Battle, John; Elliott, Steven C.; Turner, Anthony D.; Weilert, Mark; Hristov, Viktor V.; Schulz, Bernhard; Ganga, Ken; Zhang, L.; Beeman, Jeffrey W.; Ade, Peter A. R.; Hargrave, Peter C.

    2004-10-01

    We report the performance of the flight bolometer arrays for the Spectral and Photometric Imaging REceiver (SPIRE) instrument to be on board of the Herschel Space Observatory (HSO). We describe the test setup for the flight Bolometric Detector Assembly (BDA) that allows the characterization of its performance, both dark and optical, in one instrument's cool down. We summarize the laboratory procedure to measure the basic bolometer parameters, optical response time, optical efficiency of bolometer and feedhorn, dark and optical noise, and the overall thermal conductance of the BDA unit. Finally, we present the test results obtained from the two flight units, Spectroscopic Long Wavelength (SLW) and Spectroscopic Short Wavelength (SSW).

  5. Software for Processing of Digitized Astronegatives from Archives and Databases of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Protsyuk, Yu. I.; Andruk, V. N.; Kazantseva, L. V.

    The paper discusses and illustrates the steps of basic processing of digitized image of astro negatives. Software for obtaining of a rectangular coordinates and photometric values of objects on photographic plates was created in the environment LINUX / MIDAS / ROMAFOT. The program can automatically process the specified number of files in FITS format with sizes up to 20000 x 20000 pixels. Other programs were made in FORTRAN and PASCAL with the ability to work in an environment of LINUX or WINDOWS. They were used for: identification of stars, separation and exclusion of diffraction satellites and double and triple exposures, elimination of image defects, reduction to the equatorial coordinates and magnitudes of a reference catalogs.

  6. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  7. Use of EPA collaborative problem-solving model to obtain environmental justice in North Carolina.

    PubMed

    Wilson, Sacoby M; Wilson, Omega R; Heaney, Christopher D; Cooper, John

    2007-01-01

    The West End Revitalization Association (WERA), a community-based organization (CBO) in Mebane, North Carolina, was awarded a Collaborative Problem-Solving (CPS) grant from the U.S. Environmental Protection Agency's Office of Environmental Justice (EPA OEJ). The purpose of this paper is to highlight WERA's efforts to bring stakeholders in three low-income African-American communities where environmental hazards created public health risks together for collaboration rather than litigation. WERA's board and staff organized nine working groups with specific areas of expertise that would facilitate research, identify lack of basic amenities, and encourage funding for corrective action and participation in progress reporting workshops. WERA used consensus building, dispute resolution, and resource mobilization as part of the CPS model to address noncompliance with environmental laws, including the Clean Air Act, Clean Water Act, Safe Drinking Water Act, Toxic Substances Control Act, and Solid Waste Disposal Act. WERA's CPS "Right to Basic Amenities" project produced a framework for (1) grassroots management and ownership of a collaborative problem-solving process; (2) bringing stakeholders together with diverse and conflicting viewpoints; (3) implementation of an innovative community-owned and managed (COMR) research model; and (4) leveraging millions of dollars to fund installation of first-time municipal water/sewer services, street paving, and relocation of the 119-bypass to advance environmental health solutions. The structure and successes of WERA's Right to Basic Amenities project have been discussed at demonstration and training sessions to help others replicate the model in comparable low-income communities of color in North Carolina and across the United States.

  8. Environmental Awareness: Just a Pane of Glass Away.

    ERIC Educational Resources Information Center

    Kopchynski, Kevin

    1982-01-01

    Highlights several basic ecological principles and suggests corresponding classroom activities for grades five to eight that revolve around a freshwater aquarium. Basic ecological concepts, adaptations, characteristics of aquatic habitats, and pollution problems are outlined in separate tables. A short list of resource materials is included.…

  9. Environmental Education: Back to Basics.

    ERIC Educational Resources Information Center

    Warpinski, Robert

    1984-01-01

    Describes an instructional framework based on concepts of energy, ecosystems, carrying capacity, change, and stewardship. Stresses the importance of determining what is really important (basic) for each student to experience or learn in relation to each concept and grade level. Student-centered learning activities and sample lesson on energy…

  10. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  11. MAGNITUDE STUDIES CONDUCTED UNDER PROJECTS VT/5054 AND VT/5055.

    DTIC Science & Technology

    statistical model for Blue Mountains Seismological Observatory, Cumberland Plateau Seismological Observatory, Tonto Forest Seismological Observatory, Uinta ... Basin Seismological Observatory, and Wichita Mountains Seismological Observatory. Azimuthal dependence of station correction is not established at any of

  12. Perception of environmental sounds by experienced cochlear implant patients.

    PubMed

    Shafiro, Valeriy; Gygi, Brian; Cheng, Min-Yu; Vachhani, Jay; Mulvey, Megan

    2011-01-01

    Environmental sound perception serves an important ecological function by providing listeners with information about objects and events in their immediate environment. Environmental sounds such as car horns, baby cries, or chirping birds can alert listeners to imminent dangers as well as contribute to one's sense of awareness and well being. Perception of environmental sounds as acoustically and semantically complex stimuli may also involve some factors common to the processing of speech. However, very limited research has investigated the abilities of cochlear implant (CI) patients to identify common environmental sounds, despite patients' general enthusiasm about them. This project (1) investigated the ability of patients with modern-day CIs to perceive environmental sounds, (2) explored associations among speech, environmental sounds, and basic auditory abilities, and (3) examined acoustic factors that might be involved in environmental sound perception. Seventeen experienced postlingually deafened CI patients participated in the study. Environmental sound perception was assessed with a large-item test composed of 40 sound sources, each represented by four different tokens. The relationship between speech and environmental sound perception and the role of working memory and some basic auditory abilities were examined based on patient performance on a battery of speech tests (HINT, CNC, and individual consonant and vowel tests), tests of basic auditory abilities (audiometric thresholds, gap detection, temporal pattern, and temporal order for tones tests), and a backward digit recall test. The results indicated substantially reduced ability to identify common environmental sounds in CI patients (45.3%). Except for vowels, all speech test scores significantly correlated with the environmental sound test scores: r = 0.73 for HINT in quiet, r = 0.69 for HINT in noise, r = 0.70 for CNC, r = 0.64 for consonants, and r = 0.48 for vowels. HINT and CNC scores in quiet moderately correlated with the temporal order for tones. However, the correlation between speech and environmental sounds changed little after partialling out the variance due to other variables. Present findings indicate that environmental sound identification is difficult for CI patients. They further suggest that speech and environmental sounds may overlap considerably in their perceptual processing. Certain spectrotemproral processing abilities are separately associated with speech and environmental sound performance. However, they do not appear to mediate the relationship between speech and environmental sounds in CI patients. Environmental sound rehabilitation may be beneficial to some patients. Environmental sound testing may have potential diagnostic applications, especially with difficult-to-test populations and might also be predictive of speech performance for prelingually deafened patients with cochlear implants.

  13. Toward Integrating Environmental and Economic Education: Lessons from the U.S. Acid Rain Program

    ERIC Educational Resources Information Center

    Ellerbrock, Michael J.; Regn, Ann M.

    2004-01-01

    This field report presents an actual case study which illustrates that the natural and social sciences, in this case ecology and economics, can and should be integrated in environmental education and the formulation of public policy. After outlining basic economic approaches for addressing environmental problems, we focus on the process and…

  14. Solar Program Assessment: Environmental Factors - Solar Agricultural and Industrial Process Heat.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of solar energy as a source of process heat in the industrial and agricultural sectors. To provide a background for this environmental analysis, the basic concepts and technologies of solar process heating are reviewed.…

  15. Current Status of Japan's Activity for GPM/DPR and Global Rainfall Map algorithm development

    NASA Astrophysics Data System (ADS)

    Kachi, M.; Kubota, T.; Yoshida, N.; Kida, S.; Oki, R.; Iguchi, T.; Nakamura, K.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission is composed of two categories of satellites; 1) a Tropical Rainfall Measuring Mission (TRMM)-like non-sun-synchronous orbit satellite (GPM Core Observatory); and 2) constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). GPM Core Observatory will be launched in February 2014, and development of algorithms is underway. DPR Level 1 algorithm, which provides DPR L1B product including received power, will be developed by the JAXA. The first version was submitted in March 2011. Development of the second version of DPR L1B algorithm (Version 2) will complete in March 2012. Version 2 algorithm includes all basic functions, preliminary database, HDF5 I/F, and minimum error handling. Pre-launch code will be developed by the end of October 2012. DPR Level 2 algorithm has been developing by the DPR Algorithm Team led by Japan, which is under the NASA-JAXA Joint Algorithm Team. The first version of GPM/DPR Level-2 Algorithm Theoretical Basis Document was completed on November 2010. The second version, "Baseline code", was completed in January 2012. Baseline code includes main module, and eight basic sub-modules (Preparation module, Vertical Profile module, Classification module, SRT module, DSD module, Solver module, Input module, and Output module.) The Level-2 algorithms will provide KuPR only products, KaPR only products, and Dual-frequency Precipitation products, with estimated precipitation rate, radar reflectivity, and precipitation information such as drop size distribution and bright band height. It is important to develop algorithm applicable to both TRMM/PR and KuPR in order to produce long-term continuous data set. Pre-launch code will be developed by autumn 2012. Global Rainfall Map algorithm has been developed by the Global Rainfall Map Algorithm Development Team in Japan. The algorithm succeeded heritages of the Global Satellite Mapping for Precipitation (GSMaP) project between 2002 and 2007, and near-real-time version operating at JAXA since 2007. "Baseline code" used current operational GSMaP code (V5.222,) and development completed in January 2012. Pre-launch code will be developed by autumn 2012, including update of database for rain type classification and rain/no-rain classification, and introduction of rain-gauge correction.

  16. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  17. Wholistic Health Care for a Campus Student Health Service.

    ERIC Educational Resources Information Center

    Van Ness, John H.

    1981-01-01

    Discusses the importance of environmental and emotional considerations in medical care. Outlines the basic principles of holistic health care and provides a rationale for a campus-based center. Describes an existing holistic student health service and proposes a basic program for a campus holistic health clinic. (RC)

  18. Supporting the Basic Psychological Needs of Athletes with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Shangraw, Rebecca

    2017-01-01

    A subtheory of self-determination theory, basic needs theory (BNT), examines the ways in which social-environmental factors interact with athletes' physical and psychological wellness. When the three psychological needs (autonomy, competence and relatedness) identified in BNT are met in a sport setting, athletes' perceptions of well-being and…

  19. Chemical Biodynamics Division. Annual report 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    The Chemical Biodynamics Division of LBL continues to conduct basic research on the dynamics of living cells and on the interaction of radiant energy with organic matter. Many aspects of this basic research are related to problems of environmental and health effects of fossil fuel combustion, solar energy conversion and chemical/ viral carcinogenesis.

  20. Department of Defense Basic Research Program.

    DTIC Science & Technology

    1983-01-01

    25 Environmental Sciences oceanography ........................................................................... 27...budget category and increased emphasis on high- risk , high-payoff, and named Basic Research, most of the effort funded under long-term research was...proximity fue, °.tchooie-o examplsi, radar, theus prxiit fuzenan asrsk purchasing power because of inflation and was risking nuclear weapons, homing

  1. Prototype Scale Development of an Environmentally Benign Yellow Smoke Hand-Held Signal Formulation Based on Solvent Yellow 33

    DTIC Science & Technology

    2013-04-15

    VAAR) was purchased from McGean. Hydrated basic magnesium carbonate was obtained from Pine Bluff Arsenal (Pine Bluff, AR) and was confirmed to be Mg5( CO3 ...a potential environmental exposure of approximately 29 g of the toxic yellow dyes throughout the life cycle of a single M194 signal! To mitigate this...consists of Solvent Yellow 33 as the smoke sublimating agent, hydrated basic magnesium carbonate (Mg5( CO3 )4(OH)2·4H2O) instead of sodium bicarbonate (NaHCO3

  2. Astronomy Village Reaches for New Heights

    NASA Astrophysics Data System (ADS)

    Croft, S. K.; Pompea, S. M.

    2007-12-01

    We are developing a set of complex, multimedia-based instructional modules emphasizing technical and scientific issues related to Giant Segmented Mirror Telescope project. The modules" pedagogy will be open-ended and problem-based to promote development of problem-solving skills. Problem- based-learning modules that emphasize work on open-ended complex real world problems are particularly valuable in illustrating and promoting a perspective on the process of science and engineering. Research in this area shows that these kinds of learning experiences are superior to more conventional student training in terms of gains in student learning. The format for the modules will be based on the award-winning multi-media educational Astronomy Village products that present students with a simulated environment: a mountaintop community surrounded by a cluster of telescopes, satellite receivers, and telecommunication towers. A number of "buildings" are found in the Village, such as a library, a laboratory, and an auditorium. Each building contains an array of information sources and computer simulations. Students navigate through their research with a mentor via imbedded video. The first module will be "Observatory Site Selection." Students will use astronomical data, basic weather information, and sky brightness data to select the best site for an observatory. Students will investigate the six GSMT sites considered by the professional site selection teams. Students will explore weather and basic site issues (e.g., roads and topography) using remote sensing images, computational fluid dynamics results, turbulence profiles, and scintillation of the different sites. Comparison of student problem solving with expert problem solving will also be done as part of the module. As part of a site selection team they will have to construct a case and present it on why they chose a particular site. The second module will address aspects of system engineering and optimization for a GSMT-like telescope. Basic system issues will be addressed and studied. These might include various controls issues and optimization issues such as mirror figure, mirror support stability, and wind loading trade-offs. Using system modeling and system optimization results from existing and early GSMT trade studies, we will create a simulation where students are part of an engineering design and optimization team. They will explore the cost/performance/schedule issues associate with the GSMT design.

  3. [JAN JĘDRZEJEWICZ AND EUROPEAN ASTRONOMY OF THE 2ND HALF OF THE 19TH CENTURY].

    PubMed

    Siuda-Bochenek, Magda

    2015-01-01

    Jan Jędrzejewicz was an amateur astronomer who in the 2nd half of the 19th century created an observation centre, which considering the level of research was comparable to the European ones. Jędrzejewicz settled down in Plonsk in 1862 and worked as a doctor ever since but his greatest passion was astronomy, to which he dedicated all his free time. In 1875 Jędrzejewicz finished the construction of his observatory. He equipped it with basic astronomical and meteorological instruments, then began his observations and with time he became quite skilled in it. Jędrzejewicz focused mainly on binary stars but he also pointed his telescopes at the planets of the solar system, the comets, the Sun, as well as all the phenomena appearing in the sky at that time. Thanks to the variety of the objects observed and the number of observations he stood out from other observers in Poland and took a very good position in the mainstream of the 19th-century astronomy in Europe. Micrometer observations of binary stars made in Płońsk gained recognition in the West and were included in the catalogues of binary stars. Interest in Jędrzejewicz and his observatory was confirmed by numerous references in the English "Nature" magazine.

  4. Better Living Through Metadata: Examining Archive Usage

    NASA Astrophysics Data System (ADS)

    Becker, G.; Winkelman, S.; Rots, A.

    2013-10-01

    The primary purpose of an observatory's archive is to provide access to the data through various interfaces. User interactions with the archive are recorded in server logs, which can be used to answer basic questions like: Who has downloaded dataset X? When did she do this? Which tools did she use? The answers to questions like these fill in patterns of data access (e.g., how many times dataset X has been downloaded in the past three years). Analysis of server logs provides metrics of archive usage and provides feedback on interface use which can be used to guide future interface development. The Chandra X-ray Observatory is fortunate in that a database to track data access and downloads has been continuously recording such transactions for years; however, it is overdue for an update. We will detail changes we hope to effect and the differences the changes may make to our usage metadata picture. We plan to gather more information about the geographic location of users without compromising privacy; create improved archive statistics; and track and assess the impact of web “crawlers” and other scripted access methods on the archive. With the improvements to our download tracking we hope to gain a better understanding of the dissemination of Chandra's data; how effectively it is being done; and perhaps discover ideas for new services.

  5. The System for Quick Search of the Astronomical Objects and Events in the Digital Plate Archives.

    NASA Astrophysics Data System (ADS)

    Sergeev, A. V.; Sergeeva, T. P.

    From the middle of the XIX century observatories all over the world have accumulated about three millions astronomical plates contained the unique information about the Universe which can not be obtained or restored with the help of any newest facilities and technologies but may be useful for many modern astronomical investigations. The threat of astronomical plate archives loss caused by economical, technical or some other causes have put before world astronomical community a problem: the preservation of the unique information kept on those plates. The problem can be solved by transformation of the information from plates to digital form and keeping it on electronic data medium. We began a creation of a system for quick search and analysing of astronomical events and objects in digital plate archive of the Ukrainian Main astronomical observatory of NAS. Connection of the system to Internet will allow a remote user (astronomer or observer) to have access to digital plate archive and to work with it. For providing of the high efficiency of this work the plate database (list of the plates with all information about them and access software) are preparing. Modular structure of the system basic software and standard format of the plate image files allow future development of problem-oriented software for special astronomical researches.

  6. Laboratory studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Kohl, J. L.; Gardner, L. D.; Raymond, J. C.; Smith, P. L.

    1991-01-01

    The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided.

  7. Llnking the EarthScope Data Virtual Catalog to the GEON Portal

    NASA Astrophysics Data System (ADS)

    Lin, K.; Memon, A.; Baru, C.

    2008-12-01

    The EarthScope Data Portal provides a unified, single-point of access to EarthScope data and products from USArray, Plate Boundary Observatory (PBO), and San Andreas Fault Observatory at Depth (SAFOD) experiments. The portal features basic search and data access capabilities to allow users to discover and access EarthScope data using spatial, temporal, and other metadata-based (data type, station specific) search conditions. The portal search module is the user interface implementation of the EarthScope Data Search Web Service. This Web Service acts as a virtual catalog that in turn invokes Web services developed by IRIS (Incorporated Research Institutions for Seismology), UNAVCO (University NAVSTAR Consortium), and GFZ (German Research Center for Geosciences) to search for EarthScope data in the archives at each of these locations. These Web Services provide information about all resources (data) that match the specified search conditions. In this presentation we will describe how the EarthScope Data Search Web service can be integrated into the GEONsearch application in the GEON Portal (see http://portal.geongrid.org). Thus, a search request issued at the GEON Portal will also search the EarthScope virtual catalog thereby providing users seamless access to data in GEON as well as the Earthscope via a common user interface.

  8. DATA FOR ENVIRONMENTAL MODELING (D4EM)

    EPA Science Inventory

    Data is a basic requirement for most modeling applications. Collecting data is expensive and time consuming. High speed internet connections and growing databases of online environmental data go a long way to overcoming issues of data scarcity. Among the obstacles still remain...

  9. Science Around the Corner.

    ERIC Educational Resources Information Center

    Lunetta, Vincent N.; And Others

    1984-01-01

    Advocates including environmental issues balanced with basic science concepts/processes to provide a sound science foundation. Suggests case studies of regional environmental issues to sensitize/motivate students while reflecting complex nature of science/society issues. Issues considered include: fresh water quality, earthquake predication,…

  10. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the theme "Contemporary Astronomy" - Crimean Astrophysical Observatory. Also on the basis of collaboration between Ukraine and Russia the Russian-Ukrainian network of astronomical observatories was organized. The participation in Paris conference, on September 20-22, will be a good opportunity to present and to discuss some questions of selection, protection and preparation of Russian-Ukrainian -network to the List of UNESCO within the topic of the Project "Route of European astronomical observatories ".

  11. Innovative enclosure dome/observing aperture system design for the MROI Array Telescopes

    NASA Astrophysics Data System (ADS)

    Busatta, A.; Marchiori, G.; Mian, S.; Payne, I.; Pozzobon, M.

    2010-07-01

    The close-pack array of the MROI necessitated an original design for the Unit Telescope Enclosure (UTE) at Magdalena Ridge Observatory. The Magdalena Ridge Observatory Interferometer (MROI) is a project which comprises an array of up to ten (10) 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. The most compact configuration includes all ten telescopes, several of which are at a relative distance of less than 8m center to center from each other. Since the minimum angle of the field of regard is 30° with respect to the horizon, it is difficult to prevent optical blockage caused by adjacent UTEs in this compact array. This paper presents the design constraints inherent in meeting the requirement for the close-pack array. An innovative design enclosure was created which incorporates an unique dome/observing aperture system. The description of this system focuses on how the field of regard requirement led to an unique and highly innovative concept that had to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). Finally, we describe the wide use of composites materials and structures (e.g. glass/carbon fibres, sandwich panels etc.) on the aperture system which represents the only way to guarantee adequate thermal and environmental protection, compactness, structural stability and limited power consumption due to reduced mass.

  12. Temperature Effects on Microbial CH4 and CO2 Production in Permafrost-Affected Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Zheng, J.; Moon, J. W.; Yang, Z.; Gu, B.; Wullschleger, S. D.

    2015-12-01

    Warmer Arctic temperatures are increasing the annual soil thaw depth and prolonging the thaw season in Alaskan permafrost zones. This change exposes organic matter buried in the soils and permafrost to microbial degradation and mineralization to form CO2 and CH4. The proportion and fluxes of these greenhouse gases released into the atmosphere control the global feedback on warming. To improve representations of these biogeochemical processes in terrestrial ecosystem models we compared soil properties and microbial activities in core samples of polygonal tundra from the Barrow Environmental Observatory. Measurements of soil water potential through the soil column characterized water binding to the organic and mineral components. This suction combines with temperature to control freezing, gas diffusion and microbial activity. The temperature-dependence of CO2 and CH4 production from anoxic soil incubations at -2, +4 or +8 °C identified a significant lag in methanogenesis relative to CO2 production by anaerobic respiration and fermentation. Changes in the abundance of methanogen signature genes during incubations indicate that microbial population shifts caused by thawing and warmer temperatures drive changes in the mixtures of soil carbon degradation products. Comparisons of samples collected across the microtopographic features of ice-wedge polygons address the impacts of water saturation, iron reduction and organic matter content on CH4 production and oxidation. These combined measurements build process understanding that can be applied across scales to constrain key response factors in models that address Arctic soil warming.

  13. NEON, Establishing a Standardized Network for Groundwater Observations

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M.; Schroeter, N.; Goodman, K. J.; Roehm, C. L.

    2013-12-01

    The National Ecological Observatory Network (NEON) is establishing a standardized set of data collection systems comprised of in-situ sensors and observational sampling to obtain data fundamental to the analysis of environmental change at a continental scale. NEON will be collecting aquatic, terrestrial, and atmospheric data using Observatory-wide standardized designs and methods via a systems engineering approach. This approach ensures a wealth of high quality data, data algorithms, and models that will be freely accessible to all communities such as academic researchers, policy makers, and the general public. The project is established to provide 30 years of data which will enable prediction and forecasting of drivers and responses of ecological change at scales ranging from localized responses through regional gradients and up to the continental scale. The Observatory is a distributed system of sites spread across the United States, including Alaska, Hawaii, and Puerto Rico, which is subdivided into 20 statistically unique domains, based on a set of 18 ecologically important parameters. Each domain contains at least one core aquatic and terrestrial site which are located in unmanaged lands, and up to 2 additional sites selected to study domain specific questions such as nitrogen deposition gradients and responses of land use change activities on the ecosystem. Here, we present the development of NEON's groundwater observation well network design and the timing strategy for sampling groundwater chemistry. Shallow well networks, up to 100 feet in depth, will be installed at NEON aquatic sites and will allow for observation of localized ecohydrologic site conditions, by providing basic spatio-temporal near-real time data on groundwater parameters (level, temperature, conductivity) collected from in situ high-resolution instrumentation positioned in each well; and biannual sampling of geochemical and nutrient (N and P) concentrations in a subset of wells for each site. These data will be used to calculate several higher level data products such as hydrologic gradients which drive nutrient fluxes and their change over time. When coupled with other NEON data products, these data will allow for examining surface water/groundwater interactions as well as additional terrestrial and aquatic linkages, such as riparian vegetation response to changing ecohydrologic conditions (i.e. groundwater withdraw for irrigation, land use change) and natural sources (i.e. drought and changing precipitation patterns). This work will present the well network arrays designed for the different types of aquatic sites (1st/2nd order streams, larger rivers, and lakes) including variations on the well network designs for sites where physical constraints hinder a consistent design due to topographic (steep topography, wetlands) or physical constraints (such as permafrost). A generalized sampling strategy for each type of environment will also be detailed indicating the time of year, largely governed by hydrologic conditions, when sampling should take place to provide consistent groundwater chemistry data to allow for analyzing geochemical trends spatially across the network and through time.

  14. Tools for Implementing the Recent IAU Resolutions: USNO Circular 179 and the NOVAS Software Package

    NASA Astrophysics Data System (ADS)

    Kaplan, G. H.; Bangert, J. A.

    2006-08-01

    The resolutions on positional astronomy adopted at the 1997 and 2000 IAU General Assemblies are far-reaching in scope, affecting both the details of various computations and the basic concepts upon which they are built. For many scientists and engineers, applying these recommendations to practical problems is thus doubly challenging. Because the U.S. Naval Observatory (USNO) serves a broad base of users, we have provided two different tools to aid in implementing the resolutions, both of which are intended for the person who is knowledgeable but not necessarily expert in positional astronomy. These tools complement the new material that has been added to The Astronomical Almanac (see paper by Hohenkerk). USNO Circular 179 is a 118-page book that introduces the resolutions to non-specialists. It includes extensive narratives describing the basic concepts as well as compilations of the equations necessary to apply the recommendations. The resolutions have been logically grouped into six main chapters. The Circular is available as a hard-cover book or as a PDF file that can be downloaded from either the USNO/AA web site (http://aa.usno.navy.mil/) or arXiv.org. NOVAS (Naval Observatory Vector Astrometry Subroutines) is a source-code library available in both Fortran and C. It is a long established package with a wide user base that has recently been extensively revised (in version 3.0) to implement the recent IAU resolutions. However, use of NOVAS does not require detailed knowledge of the resolutions, since commonly requested high-level data _ for example, topocentric positions of stars or planets _ are provided in a single call. NOVAS can be downloaded from the USNO/AA web site. Both Circular 179 and NOVAS version 3.0 anticipate IAU adoption of the recommendations of the 2003-2006 working groups on precession and nomenclature.

  15. VizieR Online Data Catalog: BV light curves of WX Eridani (Arentoft+, 2004)

    NASA Astrophysics Data System (ADS)

    Arentoft, T.; Lampens, P.; van Cauteren, P.; Duerbeck, H. W.; Garcia-Melendo, E.; Sterken, C.

    2004-04-01

    Photometric V and B CCD time-series observations of WX Eri, obtained at the South African Astronomical Observatory (SAAO), Beersel Hills Observatory (BH), Las Campanas Observatory (LCO), European Southern Observatory (ESO), Sternwarte Hoher List (HOLI/HOLIr) and at Esteve Duran Observatory (EDO) during 2001 and early 2002. The measurements from the different observatories was merged and shifted to standard values. (1 data file).

  16. High Resolution Time Series of Plankton Communities: From Early Warning of Harmful Blooms to Sentinels of Climate Change

    NASA Astrophysics Data System (ADS)

    Sosik, H. M.; Campbell, L.; Olson, R. J.

    2016-02-01

    The combination of ocean observatory infrastructure and automated submersible flow cytometry provides an unprecedented capability for sustained high resolution time series of plankton, including taxa that are harmful or early indicators of ecosystem response to environmental change. On-going time series produced with the FlowCytobot series of instruments document important ways this challenge is already being met for phytoplankton and microzooplankton. FlowCytobot and Imaging FlowCytobot use a combination of laser-based scattering and fluorescence measurements and video imaging of individual particles to enumerate and characterize cells ranging from picocyanobacteria to large chaining-forming diatoms. Over a decade of observations at the Martha's Vineyard Coastal Observatory (MVCO), a cabled facility on the New England Shelf, have been compiled from repeated instrument deployments, typically 6 months or longer in duration. These multi-year high resolution (hourly to daily) time series are providing new insights into dynamics of community structure such as blooms, seasonality, and multi-year trends linked to regional climate-related variables. Similar observations in Texas coastal waters at the Texas Observatory for Algal Succession Time series (TOAST) have repeatedly provided early warning of harmful algal bloom events that threaten human and ecosystem health. As coastal ocean observing systems mature and expand, the continued integration of these type of detailed observations of the plankton will provide unparalleled information about variability and patterns of change at the base of the marine food webs, with direct implications for informed ecosystem-based management.

  17. Advantages of long-term multidisciplinary ocean observations for gas hydrate systems - Examples from Ocean Networks Canada

    NASA Astrophysics Data System (ADS)

    Scherwath, Martin; Riedel, Michael; Roemer, Miriam; Thomsen, Laurenz; Chatzievangelou, Damianos; Juniper, Kim; Heesemann, Martin; Mihaly, Steven

    2017-04-01

    Ocean Networks Canada (ONC) operates permanent ocean observatories around Canada, with two science nodes on gas hydrate sites on its NEPTUNE observatory off Vancouver Island. We present examples of gas hydrates related scientific discoveries that require high power and high data capacity provided by the underwater cabled network. The first example utilizes the seafloor crawler Wally that is operated by Jacobs University in Bremen. Regular live crawler missions allowed a thorough analysis of the benthic activity around the hydrate mounds, where the cabled access makes it possible to drive at a speed dependent on the seafloor turbidity to obtain clear images. Combining these visual data with a variety of co-located environmental monitoring data showed which species reacted to which parameters, for instance that sablefish appear to follow low currents, Juvenile crabs react to oxygen levels or hagfish to chlorophyll. The second example is from gas vent monitoring using a 270 kHz sonar. At least one year of constant monitoring was necessary not only to prove that seafloor gas venting is primarily controlled by the tidal pressure but also to establish months-long phases of different venting intensity. This highlights that ship-based monitoring is less adequate for quantitative analyses of methane release into the ocean, though crucial for extrapolating the observatory results. Note that all these data are freely and openly accessible to the research community through Oceans 2.0, ONC's data portal; see http://www.oceannetworks.ca/DATA-TOOLS.

  18. A pilot Virtual Observatory (pVO) for integrated catchment science - Demonstration of national scale modelling of hydrology and biogeochemistry (Invited)

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Bloomfield, J. P.; Johnes, P. J.; MacLeod, C.; Reaney, S.

    2010-12-01

    There are many challenges in developing effective and integrated catchment management solutions for hydrology and water quality issues. Such solutions should ideally build on current scientific evidence to inform policy makers and regulators and additionally allow stakeholders to take ownership of local and/or national issues, in effect bringing together ‘communities of practice’. A strategy being piloted in the UK as the Pilot Virtual Observatory (pVO), funded by NERC, is to demonstrate the use of cyber-infrastructure and cloud computing resources to investigate better methods of linking data and models and to demonstrate scenario analysis for research, policy and operational needs. The research will provide new ways the scientific and stakeholder communities come together to exploit current environmental information, knowledge and experience in an open framework. This poster presents the project scope and methodologies for the pVO work dealing with national modelling of hydrology and macro-nutrient biogeochemistry. We evaluate the strategies needed to robustly benchmark our current predictive capability of these resources through ensemble modelling. We explore the use of catchment similarity concepts to understand if national monitoring programs can inform us about the behaviour of catchments. We discuss the challenges to applying these strategies in an open access and integrated framework and finally we consider the future for such virtual observatory platforms for improving the way we iteratively improve our understanding of catchment science.

  19. IMPACT Observatory: tracking the evolution of clinical trial data sharing and research integrity.

    PubMed

    Krleža-Jerić, Karmela; Gabelica, Mirko; Banzi, Rita; Martinić, Marina Krnić; Pulido, Bibiana; Mahmić-Kaknjo, Mersiha; Reveiz, Ludovic; Šimić, Josip; Utrobičić, Ana; Hrgović, Irena

    2016-10-15

    The opening of research data is emerging thanks to the increasing possibilities of digital technology. The opening of clinical trial (CT) data is a part of this process, expected to have positive scientific, ethical, health, and economic impacts thus contributing to research integrity. The January 2016 proposal by the International Council of Medical Journal Editors triggered ample discussion about CT data sharing and reconfirmed the need for an ongoing assessment of its dynamics. The IMProving Access to Clinical Trials data (IMPACT) Observatory aims to play such a role, and assess the data sharing culture, policies, and practices of key players, the impact of their interventions on CTs, and contribute to a transformation of research. The objective of this paper is to present the IMPACT Observatory as well as share some of its preliminary findings. Methods include a scoping study of research, surveys, interviews, and an environmental scan of research data repositories. Our preliminary findings indicate that although opening of CT data has not yet been achieved, its evolution is encouraging. Initiatives by key players contribute to increasing of CT data sharing, and many barriers are shrinking or disappearing. The major barrier is the lack of data sharing standards, from preparing data for public sharing to its curatorship, findability and access. However, experiences accumulated by sharing CT data according to "upon request" or "open" mechanisms could inform the development of such standards. The Vivli, CORBEL-ECRIN and Open Trials projects are currently working in this direction.

  20. Architectures of astronomical observation: From Sternwarte Kassel (circa 1560) to the Radcliffe Observatory (1772)

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair Marcus

    Historical observatories did not merely shelter astronomers and their instruments, but interacted with them to shape the range and outcome of astronomical observations. This claim is demonstrated through both improvised and purpose-built observatories from the late sixteenth century to the late eighteenth. The improvised observatories involve various grades of architectural intervention from simple re-purposing of a generic space through to radical renovation and customisation. Some of the observatories examined were never built, and some survive only in textual and visual representations, but all nonetheless reflect astronomers' thinking about what observatories needed to provide, and allow us to reconstruct aspects of what it was like to work in them. Historical observatories hence offer a physical record of observational practices. Reconstructing lost practices and the tacit knowledge involved shows how observatories actively contributed to observations by accommodating, supporting and sheltering observers and instruments. We also see how observatories compromised observations by constraining views and free movement, by failing to provide sufficient support, by being expensive or otherwise difficult to obtain, modify or replace. Some observatories were modified many times, accumulating layers of renovation and addition that reflect both advancement and succession of multiple research programs. Such observatories materially and spatially manifest how observational astronomy developed and also also how observatories, like other buildings, respond to changing needs. Examining observatories for their architectural functions and functional shortcomings connects observational practices, spatial configurations and astronomical instrumentation. Such examination shows that spatial contexts, and hence the buildings that define them, are not passive: to the contrary, observatories are active protagonists in the development and practise of observational astronomy.

  1. An environmental generalised Luenberger-Hicks-Moorsteen productivity indicator and an environmental generalised Hicks-Moorsteen productivity index.

    PubMed

    Abad, A

    2015-09-15

    The purpose of this paper is to introduce an environmental generalised productivity indicator and its ratio-based counterpart. The innovative environmental generalised total factor productivity measures inherit the basic structure of both Hicks-Moorsteen productivity index and Luenberger-Hicks-Moorsteen productivity indicator. This methodological contribution shows that these new environmental generalised total factor productivity measures yield the earlier standard Hicks-Moorsteen index and Luenberger-Hicks-Moorsteen indicator, as well as environmental performance index, as special cases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Environmental Virtual Observatory (EVO) local exemplar: A cloud based local landscape learning visualisation tool for communicating flood risk to catchment stakeholders

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Beven, Keith; Brewer, Paul; El-khatib, Yehia; Gemmell, Alastair; Haygarth, Phil; Mackay, Ellie; Macklin, Mark; Marshall, Keith; Quinn, Paul; Stutter, Marc; Thomas, Nicola; Vitolo, Claudia

    2013-04-01

    Today's world is dominated by a wide range of informatics tools that are readily available to a wide range of stakeholders. There is growing recognition that the appropriate involvement of local communities in land and water management decisions can result in multiple environmental, economic and social benefits. Therefore, local stakeholder groups are increasingly being asked to participate in decision making alongside policy makers, government agencies and scientists. As such, addressing flooding issues requires new ways of engaging with the catchment and its inhabitants at a local level. To support this, new tools and approaches are required. The growth of cloud based technologies offers new novel ways to facilitate this process of exchange of information in earth sciences. The Environmental Virtual Observatory Pilot project (EVOp) is a new initiative from the UK Natural Environment Research Council (NERC) designed to deliver proof of concept for new tools and approaches to support the challenges as outlined above (http://www.evo-uk.org/). The long term vision of the Environmental Virtual Observatory is to: • Make environmental data more visible and accessible to a wide range of potential users including public good applications; • Provide tools to facilitate the integrated analysis of data, greater access to added knowledge and expert analysis and visualisation of the results; • Develop new, added-value knowledge from public and private sector data assets to help tackle environmental challenges. As part of the EVO pilot, an interactive cloud based tool has been developed with local stakeholders. The Local Landscape Visualisation Tool attempts to communicate flood risk in local impacted communities. The tool has been developed iteratively to reflect the needs, interests and capabilities of a wide range of stakeholders. This tool (assessable via a web portal) combines numerous cloud based tools and services, local catchment datasets, hydrological models and novel visualisation techniques. This pilot tool has been developed by engaging with different stakeholder groups in three catchments in the UK; the Afon Dyfi (Wales), the River Tarland (Scotland) and the River Eden (England). Stakeholders were interested in accessing live data in their catchments and looking at different land use change scenarios on flood peaks. Visualisation tools have been created which offer access to real time data (such as river level, rainfall and webcam images). Other tools allow land owners to use cloud based models (example presented here uses Topmodel, a rainfall-runoff model, on a custom virtual machine image on Amazon web services) and local datasets to explore future land use scenarios, allowing them to understand the associated flood risk. Different ways to communicate model uncertainty are currently being investigated and discussed with stakeholders. In summary the pilot project has had positive feedback and has evolved into two unique parts; a web based map tool and a model interface tool. Users can view live data from different sources, combine different data types together (data mash-up), develop local scenarios for land use and flood risk and exploit the dynamic, elastic cloud modelling capability. This local toolkit will reside within a wider EVO platform that will include national and global datasets, models and state of the art cloud computer systems.

  3. Microcontrollers for data logging in Environmental Physics

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Westbrook, Christopher. D.

    2016-04-01

    Methods for obtaining reliable environmental measurements are central in developing a quantitative understanding of the natural world [1]. In the environmental sciences, data is usually obtained through planned experimental work, by collaborators in large field experiments or merely from others downloaded through the internet. Careful appreciation of the provenance and reliability of measurements has traditionally been a central aspect of physics education, and a similar physics-centred approach to measurements has been embedded in the new Environmental Physics BSc programme at the University of Reading [2]. Through the use of practical classes, students are educated in using small programmable microcontroller devices to obtain environmental data. The classes are based around exploring the open source Arduino, to which a range of analogue and digital sensors are connected and evaluated. A simplified prototyping system has been developed to help emphasise the measurement aspects over the electronics considerations. The practical classes work towards deployment of a miniature data logger based on the Arduino's microcontroller but optimised for low power, from which the environmental measurements are compared with co-located standard data obtained at the Reading University Atmospheric Observatory. [1] R.G. Harrison, Meteorological Measurements and Instrumentation, Wiley, 2014. (http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118745809.html) [2] Environmental Physics BSc (https://www.reading.ac.uk/ready-to-study/study/subject-area/environment-ug/bsc-environmental-physics.aspx)

  4. Atmospheric CO2 Concentrations Derived from Flask Samples Collected at U.S.S.R.-Operated Sampling Sites (1991) (NDP-033)

    DOE Data Explorer

    Brounshtein, A. M. [Main Geophysical Observatory, Hydrometeorological Service of the U.S.S.R., St. Petersburg, U.S.S.R.; Faber, E. V. [Main Geophysical Observatory, Hydrometeorological Service of the U.S.S.R., St. Petersburg, U.S.S.R.; Shashkov, A. A. [Main Geophysical Observatory, Hydrometeorological Service of the U.S.S.R., St. Petersburg, U.S.S.R.

    1991-01-01

    This NDP represents the first CDIAC data package to result from our involvement with Soviet scientists as part of Working Group (WG) VIII of the U.S.-U.S.S.R. Joint Committee on Cooperation in the Field of Environmental Protection. The U.S.-U.S.S.R. Agreement on Protection of the Environment, established in 1972, covers a wide variety of areas, including environmental pollution, the urban environment, nature preserves, arctic and subarctic ecological systems, earthquake prediction, and institutional measures for environmental protection. WG VIII is concerned with the influence of environmental changes on climate. CDIAC's activities have been conducted under the auspices of WG VIII's "Data Exchange Management" project. (The four other WG VIII projects deal with climate change, atmospheric composition, clouds and radiation fluxes, and stratospheric ozone.) In addition to the Main Geophysical Observatory, other Soviet institutions that have been cooperating with CDIAC in the exchange of CO2 and climate-related data include the All-Union Research Institute of Hydrometeorological Information (Obninsk) and the State Hydrological Institute (St. Petersburg).

  5. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  6. 76 FR 18244 - Public Land Order No. 7760; Extension of Public Land Order No. 6839; Alaska

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Barrow Magnetic Observatory (formerly known as the Barrow Geomagnetic Observatory). This order also... Barrow Base Line Observatory and the Barrow Magnetic Observatory, respectively. The land continues to be... facility encumbers 45 acres for the Barrow Magnetic Observatory. The withdrawal for both facilities is...

  7. Autobiography of Sir George Biddell Airy

    NASA Astrophysics Data System (ADS)

    Airy, George Biddell; Airy, Wilfred

    2010-06-01

    Preface; 1. Personal sketch of George Biddell Airy; 2. From his birth to his taking his B.A. degree; 3. At Trinity College, Cambridge; 4. At Cambridge Observatory; 5. At Greenwich Observatory, 1836-1846; 6. At Greenwich Observatory, 1846-1856; 7. At Greenwich Observatory, 1856-1866; 8. At Greenwich Observatory, 1866-1876; 9. At Greenwich Observatory to his resignation in 1881; 10. At the White House, Greewich, to his death; Appendix: List of printed papers; Index.

  8. From research institution to astronomical museum: a history of the Stockholm Observatory

    NASA Astrophysics Data System (ADS)

    Yaskell, Steven Haywood

    2008-07-01

    The Royal Swedish Academy of Sciences (RSAS) (or Kungliga Vetenskapsakademien [KvA] in Swedish) founded 1739, opened its first permanent building, an astronomical and meteorological observatory, on 20 September 1753. This was situated at Brunkebergsåsen (formerly Observatorie Lunden, or Observatory Hill), on a high terrace in a northern quarter of Stockholm. This historic building is still sometimes called Gamla Observatoriet (the Old Observatory) and now is formally the Observatory Museum. This paper reviews the history of the Observatory from its function as a scientific astronomical institution to its relatively-recent relegation to museum status.

  9. Operations of and Future Plans for the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Augermore » Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.« less

  10. Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince

    2002-01-01

    Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.

  11. First deployment of a Multiparameter Ocean Bottom System in the Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Hello, Y.; Charvis, P.; Yegikyan, M.; Rivet, D.; Deschamps, A.

    2016-12-01

    Continuous monitoring of oceans is the next great scientific and technical challenge. Recently several cabled sea bottom observatories were developed in Canada (Neptune), in Japan (DONET) and in France (Antares) for real time monitoring of seismic activity, dynamics of the water column, global environmental changes, observation of marine life, the detection of neutrinos, etc. Nevertheless, these initiatives are costly to install and to maintain and it is unlikely that we can deploy many similar observatories in the near future. Among the most recent alternative we developed a 3-years autonomy system equipped with a Nanometrics Trillium 120 s, a triaxial accelerometer, a differential and an absolute pressure gauge, and a hydrophone. MUG-OBS (Multiparameter Geophysical Ocean Bottom system) is a free falling instrument rated down to 6000 m for the monitoring of geophysical signals (earthquakes, submarine landslides, other transient signals, …). The major innovation is that it is possible to recover the data any time on demand (regularly every 6-months or after a crisis) using one of the 6 data-shuttles released from the surface by acoustic command. The MUG-OBS prototype was tested in situ twice for a short period of one week in the bay of Villefranche-sur-mer (French Riviera) in November 2015 and March 2016. During these periods we were lucky to record several teleseismic events with an excellent signal to noise ratio. In September 2016 the instrument will be deployed in the Ligurian sea, 35 miles offshore the city of Nice, for a three-years period, to extend offshore the regional land seismic network. We will present the first seismic signals available from this new instrument. MUG-OBS is a user friendly design and once installed can be maintained by non-specialists to recover data using ship of opportunity. This make it a good challenger to be deployed along the subduction of South America in the frame of the future Subduction Zone Observatory. Such a sea bottom system could also be equipped with other sensors (ADCP, underwater Methane sensor, CO2 flow-through sensor,…) and could be used as a multidisciplinary platform for the environmental monitoring of the deep Ocean.

  12. Early benthic successional processes at implanted substrates in Barkley Submarine Canyon affected by a permanent oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Cabrera De Leo, F.; Smith, C. R.; Levin, L. A.; Fleury, A.; Aguzzi, J.

    2016-02-01

    With the advent of cabled observatories scientists are now able to have a permanent presence in the deep-seafloor, being able to reveal previously unseen faunal behavior as well as to track long-term changes in biodiversity and ecosystem function. The Ocean Networks Canada 800-km loop seafloor observatory array (NEPTUNE) located in the NE Pacific has instruments measuring a variety of environmental variables ranging from temperature, salinity, oxygen, currents, turbidity, fluorescence, etc, at multiple and very high temporal resolution scales. High-definition video cameras also monitor benthic communities in multiple deep-sea habitats, all at some extent influenced by an oxygen minimum zone (OMZ). In the present study, whale-bone and wood substrates are being used to evaluate bathymetric, regional and inter-basin variations in benthic biodiversity and connectivity, as well as interactions between biodiversity and ecosystem function. In May of 2014 three humpback whale (Megaptera novaeangliae) rib sections, one 20x20x10 cm block of Douglas Fir (Pseudotsunga meniziesii), and a 30x30x30 block of authigenic carbonate were placed with the use of an ROV at 890 m depth inside Barkley Canyon. The substrate packages were placed concentrically, 45-cm away from a HD video camera. Five-minute videos were captured at 2-hr intervals. Preliminary data analysis from 8 months of deployment showed very distinct early community succession patterns between the two organic substrates (bones and wood) and the authigenic carbonate. Whalebones and wood showed amphipod (Orchomene obtusa) abundance peaks mostly contained during the first 60 days after deployment; Amphipod peak abundance rapid decline coincides with rapid growth of bacterial mat on whalebone and wood surfaces. Low abundance, species richness and substrate degradation rates are in agreement with a low oxygen environment of the OMZ in the canyon. Despite the early stages of data analysis, this experiment demonstrates how cabled observatories are suited for conducting experiments in the deep-sea, where researchers gain full control of observation parameters and benefit from high-frequency measuring of environmental fluctuation.

  13. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing; Mandrini, Cristina H.; Mann, Ian R.; Nagatsuma, Tsutomu; Nandy, Dibyendu; Obara, Takahiro; Paul O'Brien, T.; Onsager, Terrance; Opgenoorth, Hermann J.; Terkildsen, Michael; Valladares, Cesar E.; Vilmer, Nicole

    2015-06-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vast - extending from deep within the Sun to far outside the planetary orbits - and the physics complex - including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations.

  14. TEODOOR, a blueprint for distributed terrestrial observation data infrastructures

    NASA Astrophysics Data System (ADS)

    Kunkel, Ralf; Sorg, Jürgen; Abbrent, Martin; Borg, Erik; Gasche, Rainer; Kolditz, Olaf; Neidl, Frank; Priesack, Eckart; Stender, Vivien

    2017-04-01

    TERENO (TERrestrial ENvironmental Observatories) is an initiative funded by the large research infrastructure program of the Helmholtz Association of Germany. Four observation platforms to facilitate the investigation of consequences of global change for terrestrial ecosys-tems and the socioeconomic implications of these have been implemented and equipped from 2007 until 2013. Data collection, however, is planned to be performed for at least 30 years. TERENO provides series of system variables (e.g. precipitation, runoff, groundwater level, soil moisture, water vapor and trace gases fluxes) for the analysis and prognosis of global change consequences using integrated model systems, which will be used to derive efficient prevention, mitigation and adaptation strategies. Each platform is operated by a different Helmholtz-Institution, which maintains its local data infrastructure. Within the individual observatories, areas with intensive measurement programs have been implemented. Different sensors provide information on various physical parameters like soil moisture, temperatures, ground water levels or gas fluxes. Sensor data from more than 900 stations are collected automatically with a frequency of 20 s-1 up to 2 h-1, summing up to about 2,500,000 data values per day. In addition, three weather radar devices create raster data with a frequency of 12 to 60 h-1. The data are automatically imported into local relational database systems using a common data quality assessment framework, used to handle processing and assessment of heterogeneous environmental observation data. Starting with the way data are imported into the data infrastructure, custom workflows are developed. Data levels implying the underlying data processing, stages of quality assessment and data ac-cessibility are defined. In order to facilitate the acquisition, provision, integration, management and exchange of heterogeneous geospatial resources within a scientific and non-scientific environment the dis-tributed spatial data infrastructure TEODOOR (TEreno Online Data RepOsitORry) has been build-up. The individual observatories are connected via OGC-compliant web-services, while the TERENO Data Discovery Portal (DDP) enables data discovery, visualization and data ac-cess. Currently, free access to data from more than 900 monitoring stations is provided.

  15. Reclaiming Basic Skills: In Defence of Long-Life Learning

    ERIC Educational Resources Information Center

    Pirrie, Anne

    2005-01-01

    The author draws upon recent experience of providing consultancy services to a working group established by the European Commission in 2001 to facilitate the implementation of the Lisbon Strategy for economic, social, and environmental renewal in the European Union. The article begins with a critique of the "new basic skills" identified…

  16. 75 FR 61219 - Entergy Operations, Inc.; River Bend Station, Unit 1; Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... Emergencies,'' for repair and corrective actions states that two individuals, one Mechanical Maintenance... actions will be taken to ensure basic electrical/l&C tasks can be performed by Mechanical Maintenance personnel. Mechanical Maintenance personnel will receive training in basic electrical and I&C tasks to...

  17. Basic Human Needs; A Framework for Action.

    ERIC Educational Resources Information Center

    McHale, John; McHale, Magda Cordell

    The report presents quantitative assessments of basic human needs in the areas of food, health, education, shelter, and clothing and considers how these needs may be met in ways harmonious with environmental and developmental objectives. The target group consists of those who are below or just below poverty line. The book is presented in six…

  18. Environmental Terms--The Basics.

    ERIC Educational Resources Information Center

    Lee County School District, Ft. Myers, FL. Dept. of Environmental Education and Instructional Development Services.

    One of the problems of the English language is that individual words can often convey such a breadth of meaning that people often find themselves speaking past each other. The jargon of the environment is not immune. The words included in this publication are some of those more basic to the understanding of the environment. Definitions offered…

  19. The Starlight Initiative in relation to the A&WHI

    NASA Astrophysics Data System (ADS)

    Marin, Cipriano

    2015-08-01

    Launched in 2007 on the occasion of the Starlight Conference (La Palma), the Starlight Initiative is designed as an international action in defence of the values associated with the night sky and the general right to observe the stars.The contribution of the Starlight initiative to UNESCO's Astronomy and World Heritage Thematic Initiative is focused on some actions that provide new perspectives on the heritage of astronomy in the framework of the Global Strategy for the balanced, representative and credible World Heritage List.1. Recognition of Windows to the Universe, the Astronomical Observatories of High Mountain. Only a few places on the planet where we find a unique combination of environmental and natural circumstances: well conserved spaces with very little alteration to natural starlight. These exceptional sites, including their natural components, can be considered as “landscapes of science and knowledge”. As we would have expected, the world’s largest contemporary observatories, true scientific monuments, are located in these places and are, to a greater or lesser extent, historical sources of modern astronomical culture. The case of Mauna Kea (Hawaii), the Canarian observatories (Spain), Pic-du-Midi (France) and northern Chile observatories are for an ensemble of discrete sites that have outstanding universal significance as a group.2. Highlight the importance of heritage of astronomy in ancient island cultures. One aspect scarcely represented in the case studies on this subject. In this context, Risco Caído and the sacred mountains of Gran Canaria can be taken as reference on the evolution of astronomical cultures in complete isolation.3. Emphasize the importance of preserving the dark skies and natural lighting in the conservation of biodiversity and landscapes in prime locations with outstanding natural values, including cultural landscapes. This represents a new dimension that affects the improvement of properties included in the List, and also a new field to develop in other sites that address a new vision of the integrity of certain exceptional values, providing new interpretations to the application criteria.

  20. Grass Roots Design for the Ocean Science of Tomorrow

    NASA Astrophysics Data System (ADS)

    Jul, S.; Peach, C. L.; Kilb, D. L.; Schofield, O.; Fisher, C.; Quintana, C.; Keen, C. S.

    2010-12-01

    Current technologies offer the opportunity for ocean science to expand its traditional expeditionary base by embracing e-science methods of continuous interactive real-time research. The Ocean Observatories Initiative Cyberinfrastructure (OOI CI) is an NSF-funded effort to develop a national cyberinfrastructure that will allow researchers, educators and others to share in this new type of oceanography. The OOI is an environmental observatory spanning coastal waters to the deep ocean, enabled by the CI to offer scientists continuous interactive access to instruments in the ocean, and allow them to search, subscribe to and access real-time or archival data streams. It will also supply interactive analysis and visualization tools, and a virtual social environment for discovering and realizing collaborative opportunities. Most importantly, it provides an extensible open-access cyberinfrastructure that supports integration of new technologies and observatories, and which will allow adoption of its tools elsewhere, such as by the Integrated Ocean Observing System (IOOS). The eventual success of such a large and flexible system requires the input of a large number of people, and user-centered design has been a driving philosophy of the OOI CI from its beginning. Support for users’ real needs cannot be designed as an add-on or casual afterthought, but must be deeply embedded in all aspects of a project, from inception through architecture, implementation, and deployment. The OOI CI strategy is to employ the skills and knowledge of a small number of user experience professionals to channel and guide a very large collective effort to deliver tools, interfaces and interactions that are intellectually stimulating, scientifically productive, and conducive to innovation. Participation from all parts of the user community early in the design process is vital to meeting these goals. The OOI user experience team will be on hand to meet members of the Earth and ocean sciences community, and invites them to become partners in the design of the Ocean Observatory by offering their thoughts, ideas and observations.

  1. Volcano and Earthquake Monitoring Plan for the Yellowstone Volcano Observatory, 2006-2015

    USGS Publications Warehouse

    ,

    2006-01-01

    To provide Yellowstone National Park (YNP) and its surrounding communities with a modern, comprehensive system for volcano and earthquake monitoring, the Yellowstone Volcano Observatory (YVO) has developed a monitoring plan for the period 2006-2015. Such a plan is needed so that YVO can provide timely information during seismic, volcanic, and hydrothermal crises and can anticipate hazardous events before they occur. The monitoring network will also provide high-quality data for scientific study and interpretation of one of the largest active volcanic systems in the world. Among the needs of the observatory are to upgrade its seismograph network to modern standards and to add five new seismograph stations in areas of the park that currently lack adequate station density. In cooperation with the National Science Foundation (NSF) and its Plate Boundary Observatory Program (PBO), YVO seeks to install five borehole strainmeters and two tiltmeters to measure crustal movements. The boreholes would be located in developed areas close to existing infrastructure and away from sensitive geothermal features. In conjunction with the park's geothermal monitoring program, installation of new stream gages, and gas-measuring instruments will allow YVO to compare geophysical phenomena, such as earthquakes and ground motions, to hydrothermal events, such as anomalous water and gas discharge. In addition, YVO seeks to characterize the behavior of geyser basins, both to detect any precursors to hydrothermal explosions and to monitor earthquakes related to fluid movements that are difficult to detect with the current monitoring system. Finally, a monitoring network consists not solely of instruments, but requires also a secure system for real-time transmission of data. The current telemetry system is vulnerable to failures that could jeopardize data transmission out of Yellowstone. Future advances in monitoring technologies must be accompanied by improvements in the infrastructure for data transmission. Overall, our strategy is to (1) maximize our ability to provide rapid assessments of changing conditions to ensure public safety, (2) minimize environmental and visual impact, and (3) install instrumentation in developed areas.

  2. Atmospheric Science Research at the Whiteface Mountain Adirondack High Peaks Observatory

    NASA Astrophysics Data System (ADS)

    Schwab, J. J.; Brandt, R. E.; Casson, P.; Demerjian, K. L.; Crandall, B. A.

    2014-12-01

    The Atmospheric Sciences Research Center established an atmospheric observatory at Whiteface Mountain in the Adirondacks in 1961. The current mountain top observatory building was built by the University at Albany in 1969-70 and the New York State Department of Environmental Conservation (DEC) began ozone measurements at this summit location in 1973. Those measurements continue to this day and constitute a valuable long term data record for tropospheric ozone in the northeastern U.S. The elevation of the summit is 1483 m above sea level, and is roughly 90 m above the tree line in this location. With a mean cloud base height of less than 1100 m at the summit, it is a prime location for cloud research. The research station headquarters, laboratories, offices, and a second measurement site are located at the Marble Mountain Lodge, perched on a shoulder northeast of the massif at an elevation of 604 m above sea level. Parameters measured at the site include meteorological variables, trace gases, precipitation chemistry, aerosol mass and components, and more. Precipitation and cloud chemistry has a long history at the lodge and summit locations, respectively, and continues to this day. Some data from the 40-year record will be shown in the presentation. In the late 1980's the summit site was outfitted with instrumentation to measure oxides of nitrogen and other ozone precursors. Measurements of many of these same parameters were added at the lodge site and continue to this day. In this poster we will give an overview of the Whiteface Mountain Observatory and its two measurement locations. We will highlight the parameters currently being measured at our sites, and indicate those measured by ASRC, as well as those measured by other organizations. We will also recap some of the historical activities and measurement programs that have taken place at the site, as alluded to above. Also included will be examples of the rich archive of trends data for gas phase species, precipitation chemistry, and particulate matter.

  3. Environmental Monitoring Using Sensor Networks

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, C.; Li, X.; Huang, Y.; Fu, S.; Acevedo, M. F.

    2008-12-01

    Environmental observatories, consisting of a variety of sensor systems, computational resources and informatics, are important for us to observe, model, predict, and ultimately help preserve the health of the nature. The commoditization and proliferation of coin-to-palm sized wireless sensors will allow environmental monitoring with unprecedented fine spatial and temporal resolution. Once scattered around, these sensors can identify themselves, locate their positions, describe their functions, and self-organize into a network. They communicate through wireless channel with nearby sensors and transmit data through multi-hop protocols to a gateway, which can forward information to a remote data server. In this project, we describe an environmental observatory called Texas Environmental Observatory (TEO) that incorporates a sensor network system with intertwined wired and wireless sensors. We are enhancing and expanding the existing wired weather stations to include wireless sensor networks (WSNs) and telemetry using solar-powered cellular modems. The new WSNs will monitor soil moisture and support long-term hydrologic modeling. Hydrologic models are helpful in predicting how changes in land cover translate into changes in the stream flow regime. These models require inputs that are difficult to measure over large areas, especially variables related to storm events, such as soil moisture antecedent conditions and rainfall amount and intensity. This will also contribute to improve rainfall estimations from meteorological radar data and enhance hydrological forecasts. Sensor data are transmitted from monitoring site to a Central Data Collection (CDC) Server. We incorporate a GPRS modem for wireless telemetry, a single-board computer (SBC) as Remote Field Gateway (RFG) Server, and a WSN for distributed soil moisture monitoring. The RFG provides effective control, management, and coordination of two independent sensor systems, i.e., a traditional datalogger-based wired sensor system and the WSN-based wireless sensor system. The RFG also supports remote manipulation of the devices in the field such as the SBC, datalogger, and WSN. Sensor data collected from the distributed monitoring stations are stored in a database (DB) Server. The CDC Server acts as an intermediate component to hide the heterogeneity of different devices and support data validation required by the DB Server. Daemon programs running on the CDC Server pre-process the data before it is inserted into the database, and periodically perform synchronization tasks. A SWE-compliant data repository is installed to enable data exchange, accepting data from both internal DB Server and external sources through the OGC web services. The web portal, i.e. TEO Online, serves as a user-friendly interface for data visualization, analysis, synthesis, modeling, and K-12 educational outreach activities. It also provides useful capabilities for system developers and operators to remotely monitor system status and remotely update software and system configuration, which greatly simplifies the system debugging and maintenance tasks. We also implement Sensor Observation Services (SOS) at this layer, conforming to the SWE standard to facilitate data exchange. The standard SensorML/O&M data representation makes it easy to integrate our sensor data into the existing Geographic Information Systems (GIS) web services and exchange the data with other organizations.

  4. Microendophenotypes of psychiatric disorders: phenotypes of psychiatric disorders at the level of molecular dynamics, synapses, neurons, and neural circuits.

    PubMed

    Kida, S; Kato, T

    2015-01-01

    Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.

  5. 22 CFR 216.1 - Introduction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Abroad of Major Federal Actions, and the purposes of the National Environmental Policy Act of 1970, as... effect the A.I.D. program. (b) Environmental policy. In the conduct of its mandate to help upgrade the... activities address such basic problems as hunger, malnutrition, overpopulation, disease, disaster...

  6. Environmentally friendly lubricant development programs at the USDA

    USDA-ARS?s Scientific Manuscript database

    The USDA is engaged in a comprehensive program to bring about the development and commercialization of environmentally friendly lubricants. A wide range of critical issues are being addresses through basic and applied research internally and in collaboration with industry and academia. The main thr...

  7. Teaching Psychology for Sustainability: The Why and How

    ERIC Educational Resources Information Center

    Koger, Susan M.; Scott, Britain A.

    2016-01-01

    The behavioral sciences can make vital contributions to environmental sustainability efforts, as relevant basic and applied psychological research has grown considerably over the past dozen years. Recently, conservation biologists, environmental policy makers, and other experts have recognized the importance of engaging with experts on human…

  8. APPLICATION OF GENOMIC AND PROTEOMIC INDICATORS TO CHARACTERIZE EXPOSURE OF AQUATIC ORGANISMS TO ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Advances in molecular biological methods are continually being brought to bear on human health research, from a basic understanding of systems biology to identification of toxicity pathways for environmental stressors and to correlations of molecular indicators with physiological...

  9. An Online Prediction Platform to Support the Environmental Sciences (American Chemical Society)

    EPA Science Inventory

    Historical QSAR models are currently utilized across a broad range of applications within the U.S. Environmental Protection Agency (EPA). These models predict basic physicochemical properties (e.g., logP, aqueous solubility, vapor pressure), which are then incorporated into expo...

  10. An Earth Day Reader.

    ERIC Educational Resources Information Center

    Moser, Don, Ed.

    1990-01-01

    Presents what the author believes to be some of the most important environmental books published since Earth Day 1970. Discusses each selection and how it provides the historical background, basic information, and appreciation necessary to understand the character of our environmental dilemma and our need to address it. (MCO)

  11. Riccardo Giacconi to Receive National Medal of Science

    NASA Astrophysics Data System (ADS)

    2005-02-01

    Riccardo Giacconi, very recently retired President of Associated Universities, Inc. (AUI), will be awarded the National Medal of Science by President George W. Bush on March 14, according to the White House. Giacconi, who received the Nobel Prize in Physics in 2002, will be honored for his pioneering research in X-ray astronomy and for his visionary leadership of major astronomy facilities. Established by Congress in 1959, the National Medal of Science is the Nation's highest honor for American scientists and is awarded annually by the President of the United States to individuals "deserving of special recognition for their outstanding contributions to knowledge." "We are extremely proud that Riccardo Giacconi has been selected to receive the nation's highest award for scientific achievement," said current AUI President Ethan J. Schreier, a long-term colleague of Dr. Giacconi. "It is another fitting recognition for an outstanding scientific career that has enhanced our basic understanding of the universe," Schreier added. Giacconi, known as the father of X-ray astronomy, used X-ray detectors launched on rockets to discover the first cosmic X-ray source in 1962. Because X-ray radiation is absorbed in Earth's atmosphere, space-based instruments are necessary to study it. Giacconi outlined a methodical program to investigate this new X-ray universe and, working with his research group at American Science and Engineering, Inc. in Cambridge, Massachusetts, developed the first space satellite dedicated to the new field of X-ray astronomy. Named Uhuru, this X-ray satellite observatory was launched in 1970 and subsequently discovered hundreds of X-ray sources. The ground-breaking work of Giacconi and his group led to the discovery of black holes, which to that point had been hypothesized but never seen. Giacconi was also the first to prove that the universe contains background radiation of X-ray light. Riccardo Giacconi has played a key role in many other landmark astronomy programs. He was the Principal Investigator for the Einstein Observatory, the first imaging X-ray observatory, and led the team that proposed the current Chandra X-ray Observatory. He became the first director of the Space Telescope Science Institute, responsible for conducting the science program of the Hubble Space Telescope. He later moved to Germany to become Director-General of the European Southern Observatory (ESO), building the Very Large Telescope, an array of four 8-meter telescopes in Chile. While Director-General of ESO, Giacconi initiated a new cooperative program between the United States, ESO, and Canada to develop and build a large array of antennas for radio astronomy, the Atacama Large Millimeter Array (ALMA), in northern Chile. Giacconi was President of AUI from 1999 to 2004, managing the world-class National Radio Astronomy Observatory (NRAO), an astronomical research facility of the National Science Foundation. During his tenure, Giacconi's scientific vision dramatically advanced the observatory's capabilities. NRAO began the construction of ALMA in Chile and also the Expansion of the Very Large Array (EVLA) in New Mexico, opening new scientific frontiers across the entire radio spectrum. "I am delighted that Riccardo Giacconi has received this recognition," said NRAO Director Fred K.Y. Lo. "The value and impact of the multi-wavelength astronomy which he enabled has been nothing short of revolutionary. This honor recognizes Giacconi's contributions to astronomy and the broader scientific community." Dr. Giacconi is currently a University Professor at Johns Hopkins University in Baltimore, and remains a Distinguished Advisor to the Trustees of Associated Universities, Inc.

  12. [A review on urban metabolism research based on physical space entities for environmental management].

    PubMed

    Liu, Ye; Liu, Dan

    2015-07-01

    Urban metabolism is a basic theory for coping with global environmental problems, which is coherent with the aims of national environmental management. This paper analyzed the concept of urban metabolism, and pointed out the meaning for urban metabolism in physical space entities; reviewed the current methods for urban metabolism and its merits and shortages; analyzed the system boundaries, connotation, and methodologies; and summarized the advances on urban meta-bolism practices in physical space entities. At last, we made conclusions that there were shortages, including conception system, basic theory system, and interdisciplinary integrated theory system in current urban metabolism research, and the current cases studied in urban metabolism were limited and not suitable to the harmony development between society, economy, and environment. In the future, we need to strengthen comparison between different case studies from different countries, develop the prior modes of typical urban metabolism research, identify the mechanism for urban ecosystem, and strengthen the spatial decision support system of environmental management taking urban spatial entity spaces as units.

  13. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  14. Status of the flora and fauna on the Nevada Test Site, 1992. Results of continuing basic environmental monitoring, January through December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, R.B.

    This report documents changes in the populations of plants and animals on the Nevada Test Site (NTS) for calendar year 1992. It is part of a Department of Energy (DOE) program (Basic Environmental Compliance and Monitoring Program -- BECAMP) that also includes monitoring DOE compliance with the Endangered Species Act, the Historic Preservation Act, and the American Indian Freedom of Religion Act. Ecological studies were to comply with the National Environmental Policy Act and DOE Order 5400.1, ``General Environmental Protection Program.`` These studies focused on the following: status of ephemeral plants on the Nevada Test Site, 1992; status of reptilemore » and amphibian populations on the Nevada Test Site, 1992; trends in small mammal populations on the Nevada Test Site, 1992; status of large mammals and birds at Nevada Test Site, 1992; and status of perennial plants on the Nevada Test Site, 1992.« less

  15. [Assessment of land use environmental impacts in urban built-up area: a case study in main built-up area of Nanchang City].

    PubMed

    Chen, Wen-Bo; Liu, Shi-Yu; Yu, Dun; Zou, Qiu-Ming

    2009-07-01

    Based on the relevant studies of land use environmental impacts and the characteristics of urban land use, a conceptual model on the assessment of land use environmental impacts in urban built-up area was established. This model grouped the land use environmental impacts in built-up area into four basic processes, i. e., detailization, abstractization, matching, and evaluation. A case study was conducted in the main built-up area of Nanchang City, with noise, smell, dust, and hazard as the impact factors. In the test area, noise had a widespread impact, its impacting area accounting for 59% of the total, smell and dust impacts centralized in the east and south parts, while hazard impact was centralized in the southeast part, an industrial area. This assessment model of four basic processes was practical, and could provide basis for the decision-making of urban land use management and planning.

  16. New developments in Seafloor observatory technologies: the SED Module developed in the MONSOON project

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caruso, Cinzia; Corbo, Andrea; Lazzaro, Gianluca; Nigrelli, Alessandra; Sprovieri, Mario; Oliveri, Elvira; Bagnato, Emanuela; Favali, Paolo

    2015-04-01

    In the main frame of the wide range of scientific and technological activities developed by EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) Research Infrastructure. The MONSOON project (MONitoraggio SOttOmariNo for environmental and energetic purposes) is a FESR (i.e. European funds for social development) funded project by "Regione Siciliana" (industrial call). The final target of the project is to build up a prototype of a seafloor observatory named SED (Submarine Energy Device),.for which specific technological developments in terms of power consumption reduction, new data logger and new sensors have been planned. The SED observatory is planned to operate down to a water depth of 2000m in an extreme marine environment, with the presence of hydrothermal vents. SED is designed to operate as "stand-alone" or near-real-time observatory when connected to a buoy. The final version of the prototype it is planned to be released in June-July 2015 after tests completion. All the components of the observatory have been planned and laboratory-tested by the INGV and CNR public Research Institutions, while the executive plan and the manufacturing has been carried out by the industrial partnership (Eurobuilding SpA, Hitec2000 srl and Innova SpA). All the partners are going to take care of the tests in a real environment. The selected test site is located in the Aeolian islands where the shallow hydrothermal system off the coasts of the Panarea island provided an easy-to access extreme submarine environment with temperatures up to 140°C, pH less than 3 and electrical conductivity double of the normal sea-water. In this hostile environment we tested all the materials planned to be used to manufacture the different parts of the observatory, as well as all the sensors including those off-the-shelf and those planned within the MONSOON project: probes for acoustic signals, dissolved CO2 data, optical fibre-based temperature and pressure The probes are connected by submarine cables and connectors to a vessel hosting the electronics made new low-power cards for data collection, electrical power management, sensor driving and control, network communication and data storage. The power is provided by high capacity Lithium-polymer batteries. The tests have been carried out using a permanent INGV infrastructure made of a buoy cabled to a seafloor station operating at a depth of 23 metres two miles to the East of the Panarea island. This infrastructure allowed to perform the communication tests and to check the status of all the probes by near-real time communication. The technologies developed within the MONSOON project support the EMSO scientific infrastructure, allow to perform continuous monitoring in marine hydrothermal systems and exploit the know-how on the scientific and industrial international market.

  17. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  18. The United Nations Basic Space Science Initiative

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space UNISPACE III and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space UNCOPUOS annual UN European Space Agency workshops on basic space science have been held around the world since 1991 These workshops contribute to the development of astrophysics and space science particularly in developing nations Following a process of prioritization the workshops identified the following elements as particularly important for international cooperation in the field i operation of astronomical telescope facilities implementing TRIPOD ii virtual observatories iii astrophysical data systems iv concurrent design capabilities for the development of international space missions and v theoretical astrophysics such as applications of nonextensive statistical mechanics Beginning in 2005 the workshops focus on preparations for the International Heliophysical Year 2007 IHY2007 The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost ground-based world-wide instrument arrays as lead by the IHY secretariat Further information Wamsteker W Albrecht R and Haubold H J Developing Basic Space Science World-Wide A Decade of UN ESA Workshops Kluwer Academic Publishers Dordrecht 2004 http ihy2007 org http www oosa unvienna org SAP bss ihy2007 index html http www cbpf br GrupPesq StatisticalPhys biblio htm

  19. The European Virtual Observatory EURO-VO | Euro-VO

    Science.gov Websites

    : VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big

  20. International VLBI Service for Geodesy and Astrometry 2004 Annual Report

    NASA Technical Reports Server (NTRS)

    Behrend, Dirk (Editor); Baver, Karen D. (Editor)

    2005-01-01

    Contents include the following: Combination Studies using the Cont02 Campaign. Coordinating Center report. Analysis coordinator report. Network coordinator report. IVS Technology coordinator report. Algonquin Radio observatory. Fortaleza Station report for 2004. Gilmore Creek Geophysical Observatory. Goddard Geophysical and Astronomical observatory. Hartebeesthoek Radio Astronomy Observatory (HartRAO). Hbart, Mt Pleasant, station report for 2004. Kashima 34m Radio Telescope. Kashima and Koganei 11-m VLBI Stations. Kokee Park Geophysical Observatory. Matera GGS VLBI Station. The Medicina Station status report. Report of the Mizusawa 10m Telescope. Noto Station Activity. NYAL Ny-Alesund 20 metre Antenna. German Antarctic receiving Station (GARS) O'higgins. The IVS network station Onsala space Observatory. Sheshan VLBI Station report for 2004. 10 Years of Geodetic Experiments at the Simeiz VLBI Station. Svetloe RAdio Astronomical Observatory. JARE Syowa Station 11-m Antenna, Antarctica. Geodetic Observatory TIGO in Concepcion. Tsukuba 32-m VLBI Station. Nanshan VLBI Station Report. Westford Antenna. Fundamental-station Wettzell 20m Radiotelescope. Observatorio Astroonomico Nacional Yebes. Yellowknife Observatory. The Bonn Geodetic VLBI Operation Center. CORE Operation Center Report. U.S. Naval Observatory Operation Center. The Bonn Astro/Geo Mark IV Correlator.

  1. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for siderealmore » modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.« less

  2. Progress in Dark Sky Protection in Southern Arizona

    NASA Astrophysics Data System (ADS)

    Green, Richard F.; Allen, L.; Alvarez Del Castillo, E. M.; Brocious, D. K.; Corbally, C. J.; Davis, D. R.; Falco, E. E.; Gabor, P.; Hall, J. C.; Jannuzi, B.; Larson, S. M.; Mighell, K. J.; Nance, C.; Shankland, P. D.; Walker, C. E.; Williams, G.; Zaritsky, D. F.

    2014-01-01

    Arizona has many observatories dedicated to scientific research and a rapidly growing population. Continuous interaction with governmental entities and education of the public are required to take advantage of the good intentions of lighting control ordinances in place around the state. We give several recent examples of active engagement of observatories: * Interaction of Mt. Graham International Observatory with the State prison and major copper mine. * Interaction of Smithsonian Astrophysical Observatory, acting on behalf of MMT Observatory and Steward Observatory, with the US Forest Service on the prospects of developing the Rosemont Copper Mine * Defense of the Outdoor Lighting and Sign Codes in Pima County and the City of Tucson * Coordinated observatory approach to statewide issues, including the establishment of radial zones of protection from LED billboards around observatory sites.

  3. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha- Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide next-generation precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory.

  4. Status of the Space Station environmental control and life support system design concept

    NASA Technical Reports Server (NTRS)

    Ray, C. D.; Humphries, W. R.

    1986-01-01

    The current status of the Space Station (SS) environmental control and life support system (ECLSS) design is outlined. The concept has been defined at the subsystem level. Data supporting these definitions are provided which identify general configuratioons for all modules. Requirements, guidelines and assumptions used in generating these configurations are detailed. The basic 2 US module 'core' Space Station is addressed along with system synergism issues and early man-tended and future growth considerations. Along with these basic studies, also addressed here are options related to variation in the 'core' module makeup and more austere Station concepts such as commonality, automation and design to cost.

  5. The many transformations of the University of Illinois Observatory Annex

    NASA Astrophysics Data System (ADS)

    Svec, Michael

    2018-04-01

    The University of Illinois Observatory acquired a second-hand 30-inch Brashear reflector in 1912 with the intent of dedicating it to photoelectric photometry. A small observatory annex was built adjacent to the main observatory. This smaller observatory and its telescope underwent multiple transitions and instrument changes over the next 70 years, reflecting the research interests of Joel Stebbins and Robert H. Baker. The story of this observatory telescope illustrates changes in astronomical instrumentation and research over the course of the twentieth century.

  6. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  7. Reliability of Cascaded THz Frequency Chains with Planar GaAs Circuits

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank; Schlecht, Erich; Lin, Robert; Ward, John; Pearson, John; Siegel, Peter; Mehdi, Imran

    2004-01-01

    Planar GaAs Schottky diodes will be utilized for all of the LO chains on the HIPI instrument for the Herschel Space Observatory. A better understanding of device degradation mechanisms is desirable in order to specify environmental and operational conditions that do not reduce device life times. Failures and degradation associated with ESD (Electrostatic Discharge), high temperatures, DC currents and RF induced current and heating have been investigated. The goal is to establish a procedure to obtain the safe operating range for a given frequency multiplier.

  8. The CfA Einstein Observatory extended deep X-ray survey

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  9. Building the Pipeline for Hubble Legacy Archive Grism data

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Albrecht, R.; Fosbury, R.; Freudling, W.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Rosa, M.; Stoehr, F.; Walsh, J. R.

    2008-10-01

    The Pipeline for Hubble Legacy Archive Grism data (PHLAG) is currently being developed as an end-to-end pipeline for the Hubble Legacy Archive (HLA). The inputs to PHLAG are slitless spectroscopic HST data with only the basic calibrations from standard HST pipelines applied; the outputs are fully calibrated, Virtuall Observatory-compatible spectra, which will be made available through a static HLA-archive. We give an overview of the various aspects of PHLAG. The pipeline consists of several subcomponents -- data preparation, data retrieval, image combination, object detection, spectral extraction using the aXe software, quality control -- which is discussed in detail. As a pilot project, PHLAG is currently being applied to NICMOS G141 grism data. Examples of G141 spectra reduced with PHLAG are shown.

  10. Design and operation of a Loran-C time reference station

    NASA Technical Reports Server (NTRS)

    Putkovich, K.

    1974-01-01

    Some of the practical questions that arise when one decides to use Loran-C in a time reference system are explored. An extensive effort is made to provide basic, practical information on establishing and operating a reference station. Four areas were covered: (1) the design, configuration and operational concepts which should be considered prior to establishing and operating a reference station using Loran-C, (2) the options and tradeoffs available regarding capabilities, cost, size, versatility, ease of operation, etc., that are available to the designer, (3) what measurements are made, how they are made and what they mean, and (4) the experience the U.S. Naval Observatory Time Service Division has had in the design and operation of such stations.

  11. Supermassive Black Holes as Revealed by LISA: How Gravitational Wave Astronomy Will be a Game Changer

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly

    2018-04-01

    Astronomers now know that supermassive black holes are in nearly every galaxy.Though these black holes are an observational certainty, nearly every aspect of their evolution -- from their birth, to their fuel source, to their basic dynamics -- is a matter of lively debate. Fortunately, LISA, a space-based gravitational wave observatory set to launch in 2034, will revolutionize this field by providing data that is complementary to electromagnetic observations as well as data in regimes that are electromagnetically dark. This talk will touch on our current understanding of how SMBHs form, evolve, and alter their galaxy host, and will outline the theoretical, computational and observational work needed to make the most of LISA observations.

  12. Software for Photometric and Astrometric Reduction of Video Meteors

    NASA Astrophysics Data System (ADS)

    Atreya, Prakash; Christou, Apostolos

    2007-12-01

    SPARVM is a Software for Photometric and Astrometric Reduction of Video Meteors being developed at Armagh Observatory. It is written in Interactive Data Language (IDL) and is designed to run primarily under Linux platform. The basic features of the software will be derivation of light curves, estimation of angular velocity and radiant position for single station data. For double station data, calculation of 3D coordinates of meteors, velocity, brightness, and estimation of meteoroid's orbit including uncertainties. Currently, the software supports extraction of time and date from video frames, estimation of position of cameras (Azimuth, Altitude), finding stellar sources in video frames and transformation of coordinates from video, frames to Horizontal coordinate system (Azimuth, Altitude), and Equatorial coordinate system (RA, Dec).

  13. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  14. Automated observation scheduling for the VLT

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    It is becoming increasingly evident that, in order to optimize the observing efficiency of large telescopes, some changes will be required in the way observations are planned and executed. Not all observing programs require the presence of the astronomer at the telescope: for those programs which permit service observing it is possible to better match planned observations to conditions at the telescope. This concept of flexible scheduling has been proposed for the VLT: based on current and predicted environmental and instrumental observations which make the most efficient possible use of valuable time. A similar kind of observation scheduling is already necessary for some space observatories, such as Hubble Space Telescope (HST). Space Telescope Science Institute is presently developing scheduling tools for HST, based on the use of artificial intelligence software development techniques. These tools could be readily adapted for ground-based telescope scheduling since they address many of the same issues. The concept are described on which the HST tools are based, their implementation, and what would be required to adapt them for use with the VLT and other ground-based observatories.

  15. Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M.

    2016-09-01

    The indoor calibration of brightness sensors requires extremely low values of irradiance in the most accurate and reproducible way. In this work the testing equipment of an ISO 17025 accredited laboratory for electrical testing, qualification and type approval of solar photovoltaic modules was modified in order to test the linearity of the instruments from few mW/cm2 down to fractions of nW/cm2, corresponding to levels of simulated brightness from 6 to 19 mag/arcsec2. Sixteen Sky Quality Meter (SQM) produced by Unihedron, a Canadian manufacturer, were tested, also assessing the impact of the ageing of their protective glasses on the calibration coefficients and the drift of the instruments. The instruments are in operation on measurement points and observatories at different sites and altitudes in Southern Switzerland, within the framework of OASI, the Environmental Observatory of Southern Switzerland. The authors present the results of the calibration campaign: linearity; brightness calibration, with and without protective glasses; transmittance measurement of the glasses; and spectral responsivity of the devices. A detailed uncertainty analysis is also provided, according to the ISO 17025 standard.

  16. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.

    2003-01-01

    The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.

  17. KSC-2014-3122

    NASA Image and Video Library

    2014-07-02

    VANDENBERG AIR FORCE BASE, Calif. – Mike Miller, senior vice president, Science and Environmental Satellite Programs, Orbital Sciences Space Systems Group, participates in a post-launch news conference at Vandenberg Air Force Base in California following the successful launch of NASA's Orbiting Carbon Observatory-2, or OCO-2. Orbital Sciences built the satellite for NASA. Liftoff of OCO-2 from Space Launch Complex 2 aboard a United Launch Alliance Delta II rocket was on schedule at 5:56 a.m. EDT on July 2 following the repair of the pad's water suppression system, which failed on the first launch attempt July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 will provide a new tool for understanding the human and natural sources of carbon dioxide emissions and the natural "sinks" that absorb carbon dioxide and help control its buildup. The observatory will measure the global geographic distribution of these sources and sinks and study their changes over time. To learn more about OCO-2, visit http://www.nasa.gov/oco2. Photo credit: NASA/Kim Shiflett

  18. ENERGY RELEASE AND INITIATION OF A SUNQUAKE IN A C-CLASS FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharykin, I. N.; Kosovichev, A. G.; Zimovets, I. V.

    We present an analysis of the C7.0 solar flare from 2013 February 17, revealing a strong helioseismic response (sunquake) caused by a compact impact observed with the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) in the low atmosphere. This is the weakest known C-class flare generating a sunquake event. To investigate the possible mechanisms of this event and understand the role of accelerated charged particles and photospheric electric currents, we use data from three space observatories: RHESSI, SDO, and Geostationary Operational Environmental Satellite. We find that the photospheric flare impact does not spatially correspond to themore » strongest hard X-ray emission source, but both of these events are parts of the same energy release. Our analysis reveals a close association of the flare energy release with a rapid increase in the electric currents and suggests that the sunquake initiation is unlikely to be caused by the impact of high-energy electrons, but may be associated with rapid current dissipation or a localized impulsive Lorentz force in the lower layers of the solar atmosphere.« less

  19. Implementation of weather stations at Ghanaian high schools

    NASA Astrophysics Data System (ADS)

    Pieron, M.

    2012-04-01

    The Trans-African Hydro-Meteorological Observatory (www.tahmo.org) is an initiative that aims to develop a dense weather observation network in Sub-Sahara Africa. The ambition is to have 20.000 low-cost innovative weather stations in place in 2015. An increased amount of weather data is locally required to provide stakeholders that are dependent on the weather, such as farmers and fishermen, with accurate forecasts. As a first proof of concept, showing that sensors can be built at costs lower than commercially available, a disdrometer was developed. In parallel with the design of the measurement instruments, a high school curriculum is developed that covers environmental sciences. In order to find out which requirements the TAHMO weather station and accompanying educational materials should meet for optimal use at Junior High Schools research was done at Ghanaian schools. Useful insights regarding the future African context of the weather station and requirements for an implementation strategy were obtained during workshops with teachers and students, visits to WMO observatories and case studies regarding use of educational materials. The poster presents the conclusions of this research, which is part of the bigger TAHMO framework.

  20. Silicon pore optics for the international x-ray observatory

    NASA Astrophysics Data System (ADS)

    Wille, E.; Wallace, K.; Bavdaz, M.; Collon, M. J.; Günther, R.; Ackermann, M.; Beijersbergen, M. W.; Riekerink, M. O.; Blom, M.; Lansdorp, B.; de Vreede, L.

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The International X-ray Observatory (IXO) requires a mirror assembly of 3 m2 effective area (at 1.5 keV) and an angular resolution of 5 arcsec. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.

  1. Development of a TES-Based Anti-Coincidence Detector for Future X-ray Observatories

    NASA Technical Reports Server (NTRS)

    Bailey, Catherine

    2011-01-01

    Microcalorimeters onboard future x-ray observatories require an anti-coincidence detector to remove environmental backgrounds. In order to most effectively integrate this anticoincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We will present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.

  2. Generating community-built tools for data sharing and analysis in environmental networks

    USGS Publications Warehouse

    Read, Jordan S.; Gries, Corinna; Read, Emily K.; Klug, Jennifer; Hanson, Paul C.; Hipsey, Matthew R.; Jennings, Eleanor; O'Reilley, Catherine; Winslow, Luke A.; Pierson, Don; McBride, Christopher G.; Hamilton, David

    2016-01-01

    Rapid data growth in many environmental sectors has necessitated tools to manage and analyze these data. The development of tools often lags behind the proliferation of data, however, which may slow exploratory opportunities and scientific progress. The Global Lake Ecological Observatory Network (GLEON) collaborative model supports an efficient and comprehensive data–analysis–insight life cycle, including implementations of data quality control checks, statistical calculations/derivations, models, and data visualizations. These tools are community-built and openly shared. We discuss the network structure that enables tool development and a culture of sharing, leading to optimized output from limited resources. Specifically, data sharing and a flat collaborative structure encourage the development of tools that enable scientific insights from these data. Here we provide a cross-section of scientific advances derived from global-scale analyses in GLEON. We document enhancements to science capabilities made possible by the development of analytical tools and highlight opportunities to expand this framework to benefit other environmental networks.

  3. GloboLakes: A global observatory of lake responses to environmental change.

    NASA Astrophysics Data System (ADS)

    Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian

    2014-05-01

    The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will introduce the GloboLakes project including its scientific ambitions for the next 4 years, present initial results, focussing on in-water optical data and describe the LIMNADES database.

  4. A virtual observatory in a real world: building capacity for an uncertain future

    NASA Astrophysics Data System (ADS)

    Blair, Gordon; Buytaert, Wouter; Emmett, Bridget; Freer, Jim; Gurney, Robert; Haygarth, Phil; McDonald, Adrian; Rees, Gwyn; Tetzlaff, Doerthe

    2010-05-01

    Environmental managers and policy makers face a challenging future trying to accommodate growing expectations of environmental well-being, while subject to maturing regulation, constrained budgets and a public scrutiny that expects easier and more meaningful access. To support such a challenge requires new tools and new approaches. The VO is a new initiative from the Natural Environment Research Council (NERC) designed to deliver proof of concept for these new tools and approaches. The VO is at an early stage and we first evaluate the role of existing ‘observatories' in the UK and elsewhere both to learn good practice (and just as valuable - errors) and to define boundaries. A series of exemplar ‘big catchment science questions' are posed - distinguishing between science and society positions - and the prospects for their solution are assessed. The VO vision of being driven by these questions is outlined as are the seven key ambitions namely: i. being driven by the need to contribute to the solution of major environmental issues that impinge on, or link to, catchment science ii. having the flexibility and adaptability to address future problems not yet defined or fully clarified iii. being able to communicate issues and solutions to a range of audiences iv. supporting easy access by a variety of users v. drawing meaningful information from data and models and identifying the constraints on application in terms of errors, uncertainties, etc vi. adding value and cost effectiveness to current investigations by supporting transfer and scale adjustment thus limiting the repetition of expensive field monitoring addressing essentially the same issues in varying locations vii. promoting effective interfacing of robust science with a variety of end users by using terminology or measures familiar to the user (or required by regulation), including financial and carbon accounting, whole life or fixed period costing, risk as probability or as disability adjusted life years/ etc as appropriate Portal structures pivotal to communicating these ambitions are presented and emphasis is given to the importance of the ‘environmental cloud', the cloud computing that facilitates the required interoperability across data sets, models, visualisations etc. The timetable for delivering a proof of concept evaluation is outlined.

  5. 76 FR 21387 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... applications. Place: Hilton Garden Inn Durham Southpoint, 7007 Fayetteville Road, Durham, NC 27713. Contact....142, NIEHS Hazardous Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and Manpower Development in the Environmental...

  6. 75 FR 13558 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...: Hilton Garden Inn Durham Southpoint, 7007 Fayetteville Road, Durham, NC 27713. Contact Person: Leroy..., NIEHS Hazardous Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and Manpower Development in the Environmental Health...

  7. 78 FR 26793 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... evaluate grant applications. Place: Hilton Garden Inn Durham Southpoint Hotel, 7007 Fayetteville Road...--Health Risks from Environmental Exposures; 93.142, NIEHS Hazardous Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and...

  8. 75 FR 38768 - Rehabilitation of Floodwater Retarding Structure No. 10 of the Mountain Creek Watershed, Ellis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... 76501-7682, Telephone (254) 742-9800. SUPPLEMENTARY INFORMATION: The environmental assessment of this.... Basic data developed during the environmental assessment are on file and may be reviewed by contacting... DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Rehabilitation of Floodwater...

  9. A Mediterranean atmospheric observatory in Corsica within the framework of HyMEx and ChArMEx

    NASA Astrophysics Data System (ADS)

    Lambert, D.

    2010-09-01

    In the western Mediterranean basin, Corsica is at a strategic location for oceanographic and atmospheric studies in the framework of the Mediterranean projects HyMeX and ChArMEx. The development of a multi-site instrumented platform located on this island is the core of the project CORSiCA (Corsican Observatory for Research and Studies on Climate and Atmosphere-ocean environment). Several measurement sites are planned in various places in Corsica, but the main site gathering the largest panel of measurements will be located near Ersa at the northern tip of the island (Cap Corse). This area is relevant for many reasons: it is open to the Gulf of Genoa and is not impacted by local and regional anthropogenic inputs. In the close area of Ersa, five sites are particularly interesting: the Semaphore du Cap Corse belonging to the French Navy, the wind-mill farm on the mountain crest, two sites at Centuri and Tollare, and the Giraglia island. Contacts and partnerships have been established with local partners in Corsica: Departmental Centres of Météo-France (CDM 2B and CDM 2A), OEC (the Corsica environmental office, a regional agency co-funding the CORSiCA observatory), the University of Corsica, Qualitair Corse (the local air quality agency) and STARESO (Station de Recherches Sous-marines et Océanographiques, an oceanographic station located on the west coast of Corsica). CORSiCA will be operated for the HyMEx and ChArMEx Long Observation Period (LOP), Enhanced Observation Period (EOP) and Special Observation Periods (SOP). In addition, this observatory will also be of interest for the MERMEx experiment (Marine Ecosystems Response in the Mediterranean Experiment). Furthermore, it will be supported by the MOOSE network (Mediterranean Ocean Observing System on Environment) to maintain long-term observations of key atmospheric parameters on this site. In the present communication we will expose the scientific objectives and we will describe the type of instrumentation and observations that have been proposed for a deployment at CORSiCA. Updated informations dedicated to the CORSiCA observatory can be found on the web: http://www.aero.obs-mip.fr/spip.php?article658. All atmospheric and oceanographic initiatives in Corsica are welcome to join the project.

  10. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.

    2013-12-01

    The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and multiple jurisdictions. The SaskRB has therefore been developed as a large scale observatory, now a Regional Hydroclimate Project of the World Climate Research Programme's GEWEX project, and is available to contribute to the emerging North American Water Program. State-of-the-art hydro-ecological experimental sites have been developed for the key biomes, and a river and lake biogeochemical research facility, focussed on impacts of nutrients and exotic chemicals. Data are integrated at SaskRB scale to support the development of improved large scale climate and hydrological modelling products, the development of DSS systems for local, provincial and basin-scale management, and the development of related social science research, engaging stakeholders in the research and exploring their values and priorities for water security. The observatory provides multiple scales of observation and modelling required to develop: a) new climate, hydrological and ecological science and modelling tools to address environmental change in key environments, and their integrated effects and feedbacks at large catchment scale, b) new tools needed to support river basin management under uncertainty, including anthropogenic controls on land and water management and c) the place-based focus for the development of new transdisciplinary science.

  11. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  12. Water Pollution. Environmental Education Curriculum. Revised.

    ERIC Educational Resources Information Center

    Topeka Public Schools, KS.

    Water is one of the most polluted resources in our environment. Since everyone has the same basic need for pure water, it follows that all people should have a basic knowledge of the causes, results and solutions to the water pollution problem. This unit is designed for use with Level II and III educable mentally retarded students to present…

  13. An alternative regionalization scheme for defining nutrient criteria for rivers and streams

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.; Wieben, Ann M.

    2001-01-01

    The environmental nutrient zone approach can be applied to specific states or nutrient ecoregions and used to develop criteria as a function of stream type. This approach can also be applied on the basis of environmental characteristics of the watershed alone rather than the general environmental characteristics from the region in which the site is located. The environmental nutrient zone approach will enable states to refine the basic nutrient criteria established by the USEPA by developing attainable criteria given the environmental characteristics where the streams are located.

  14. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  15. Science Planning for Multi-Spacecraft Coordinated Observations

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Fishman, Mark; Pell, Vince; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    Fulfilling the promise of an era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to single observatory observations. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. Each year, a number of proposals are accepted by a space-based observatory for conduction of astronomical observations and gathering of science data for the study of galactic events. Since each space-based observatory uses a set of instruments designed to operate in specific energy regions, most such studies are conducted by submitting observation proposals to multiple observatories, with requests to coordinate among themselves. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. In order to exploit new paradigms for observatory operation, the Goddard Space Flight Center's Advanced Architectures and Automation Branch has developed a prototype tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the science planning of coordinated observations for multiple spacecraft, as well as to increase the scheduling probability of observations. However, VOLT is also useful for single observatory planning to optimize observatory control. Three space-based missions are interested in using VOLT (the Hubble Space Telescope, the Chandra X-Ray Observatory, and the Far Ultraviolet Spectroscopic Explorer). The VOLT team members have collaborated with these missions to gather requirements and obtain feedback on their mission planning processes. VOLT has been developed as a cross-platform Java client application for use by scientists and observatory science planning staff to visualize scheduling options and constraints. It also supports a lightweight graphical user interface for remote viewing via a Web front end. Additionally, it uniquely supports the ability to interact with multiple, diverse scheduling packages in order to determine windows of opportunity for observations and visually portray the constraints of each observation request. VOLT enables science data capture scenarios which are currently either impossible, or which require extensive time and manpower to coordinate amongst multiple observatories. it supports early detection of planning conflicts by generating coordinated solutions based on observatory schedulability and constraints. The project development approach has included frequent prototype demonstrations to our interested missions to obtain feedback after each release of the software. We will present an overview of our lessons learned in infusing the VOLT tool into the operations of the missions we have collaborated with and a brief demonstration of the software.

  16. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  17. Ad Astra Per Automobile

    NASA Astrophysics Data System (ADS)

    Peterson, C. C.; D'Alto, N.; Frambach, A.; Gaskill, M.; Hostetler, A. J.; Johnson, R.; Novy, R.

    2005-05-01

    There are professional research observatories open to the public across the United States. Many of these offer public tours, star parties, classes, lectures, and educational movies about astronomy. Lick Observatory, the oldest continually operated professional observatory in the world, lies just east of San Jose, California. It is home to planet searches and offers special summer evening programs. McDonald Observatory, near Fort Davis, Texas, offers a wide variety of visitor programs year-round, including Star Parties three nights per week. Green Bank radio observatory in the mountains of West Virginia is home to the 360 foot Byrd Radio Telescope. Visitors are welcome year round and they can visit the new Science Center and exhibits. Other observatories noted are Sacramento Peak near Cloud Croft, New Mexico, the Very Large Array near Socorro, New Mexico, Palomar near San Diego, California, Cincinnati Observatory and Historic Landmark, and Arecibo Observatory in Puerto Rico.

  18. 76 FR 27653 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Southpoint, 7007 Fayetteville Road, Durham, NC 27713. Contact Person: Linda K. Bass, PhD, Scientific Review... Estimation--Health Risks from Environmental Exposures; 93.142, NIEHS Hazardous Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and...

  19. 77 FR 43849 - National Institute of Environmental Health Sciences; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... applications. Place: Hilton Garden Inn Durham Southpoint, 7007 Fayetteville Road, Durham, NC 27713. Contact... Waste Worker Health and Safety Training; 93.143, NIEHS Superfund Hazardous Substances--Basic Research and Education; 93.894, Resources and Manpower Development in the Environmental Health Sciences; 93.113...

  20. Health, Supportive Environments, and the Reasonable Person Model

    Treesearch

    Stephen Kaplan; Rachel Kaplan

    2003-01-01

    The Reasonable Person Model is a conceptual framework that links environmental factors with human behavior. People are more reasonable, cooperative, helpful, and satisfied when the environment supports their basic informational needs. The same environmental supports are important factors in enhancing human health. We use this framework to identify the informational...

Top