Sample records for basic fibroblast growth

  1. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    PubMed Central

    Alibolandi, Mona; Mirzahoseini, Hasan

    2011-01-01

    This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279

  2. Potential role of fibroblast growth factor in enhancement of fracture healing.

    PubMed

    Radomsky, M L; Thompson, A Y; Spiro, R C; Poser, J W

    1998-10-01

    Fibroblast growth factors are present in significant amounts in bone and several studies have suggested that they may be involved in normal fracture healing. It is well established that fibroblast growth factors have mitogenic and angiogenic activity on mesoderm and neuroectoderm derived cells. Of particular interest as a member of the fibroblast growth factor family, basic fibroblast growth factor stimulates mitogenesis, chemotaxis, differentiation, and angiogenesis. It also plays an important role in the development of vascular, nervous, and skeletal systems, promotes the maintenance and survival of certain tissues, and stimulates wound healing and tissue repair. Animal studies have shown that the direct injection of fibroblast growth factor into fresh fractures stimulates callus formation, which provides mechanical stability to the fracture, accelerates healing, and restores competence. The matrix used to present the fibroblast growth factor at the fracture site plays a critical role in the effectiveness of the treatment. The evaluation of injectable basic fibroblast growth factor in a sodium hyaluronate gel for its effectiveness in stimulating fracture healing is described. When applied directly into a freshly created fracture in the rabbit fibula, a single injection of the basic fibroblast growth factor and hyaluronan results in the stimulation of callus formation, increased bone formation, and earlier restoration of mechanical strength at the fracture site. The hyaluronan gel serves as a reservoir that sequesters the basic fibroblast growth factor at the injection site for the length of time necessary to create an environment conducive to fracture healing. It is concluded that basic fibroblast growth factor and sodium hyaluronate act synergistically to accelerate fracture healing and that the combination is suitable for clinical evaluation as a therapy in fracture treatment.

  3. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction.

    PubMed

    Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei

    2012-07-05

    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.

  4. Basic Fibroblast Growth Factor Influences Epidermal Homeostasis of Living Skin Equivalents through Affecting Fibroblast Phenotypes and Functions.

    PubMed

    Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie

    2018-05-30

    To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.

  5. Efficacy of a Single Dose of Basic Fibroblast Growth Factor: Clinical Observation for 1 Year.

    PubMed

    Suzuki, Hirotaka; Makiyama, Kiyoshi; Hirai, Ryoji; Matsuzaki, Hiroumi; Furusaka, Toru; Oshima, Takeshi

    2016-11-01

    Basic fibroblast growth factor promotes wound healing by accelerating healthy granulation and epithelialization. However, the duration of the effects of a single intracordal injection of basic fibroblast growth factor has not been established, and administration intervals and timing have yet to be standardized. Here, we administered a single injection to patients with insufficient glottic closure and conducted follow-up examinations with high-speed digital imaging to determine the duration of the treatment response. Case series. For treatment, 20 µg/mL recombinant human basic fibroblast growth factor was injected into two vocal cords. The following examinations were performed before the procedure and at 3-month intervals for 12 months starting at 1 month postinjection: Grade, Roughness, Breathiness, Asthenia, and Strain (GRBAS) scale assessment, maximum phonation time, acoustic analysis, high-speed digital imaging, glottal wave analysis, and kymographic analysis. Postinjection, the GRBAS scale score decreased, and the maximum phonation time was prolonged. In addition, the mean minimum glottal area and mean minimum glottal distance decreased. These changes were significant at 12 months postinjection compared with preinjection. However, there were no significant changes in the vibrations of the vocal cord margins. The intracordal injection of basic fibroblast growth factor improved insufficient glottic closure without reducing the vibrations of the vocal cord margins. This effect remained evident at 12 months postinjection. A single injection can be expected to yield a sufficient and persistent long-term effect. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Atelocollagen sponge and recombinant basic fibroblast growth factor combination therapy for resistant wounds with deep cavities.

    PubMed

    Nakanishi, Asako; Hakamada, Arata; Isoda, Ken-ichi; Mizutani, Hitoshi

    2005-05-01

    Recent advances in bioengineering have introduced materials that enhance wound healing. Even with such new tools, some deep ulcers surrounded by avascular tissues, including bone, tendon, and fascia, are resistant to various therapies and easily form deep cavities with loss of subcutaneous tissue. Atelocollagen sponges have been used as an artificial dermis to cover full-thickness skin defects. Topical recombinant human basic fibroblast growth factor has been introduced as a growth factor to induce fibroblast proliferation in skin ulcers. We applied these materials in combination in two patients with deep resistant wounds: one with a cavity reaching the mediastinum through a divided sternum and one with deep necrotic wounds caused by electric burns. These wounds did not respond to the topical basic fibroblast growth factor alone. In contrast, the combination therapy closed the wounds rapidly without further surgical treatment. This combination therapy is a potent treatment for resistant wounds with deep cavities.

  7. Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro--a pilot study.

    PubMed

    You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-11-01

    Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically inmore » all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.« less

  9. Expression of basic fibroblast growth factor mRNA in benign prostatic hyperplasia and prostatic carcinoma.

    PubMed

    Mydlo, J H; Michaeli, J; Heston, W D; Fair, W R

    1988-01-01

    In our previous work we demonstrated that prostate-derived growth factor (PrGF) is homologous to basic fibroblast growth factor (bFGF), not acidic fibroblast growth factor (aFGF). Using Northern blot analysis we now show that the messenger RNA for bFGF but not aFGF is expressed in benign prostatic hyperplastic (BPH) tissue as well as in carcinoma of the prostate (CAP). This not only corroborates our previous results, but suggests that PrGF is produced locally and not merely stored in the prostate. The demonstration of local production of bFGF by prostate tissue may indicate that this growth factor plays a role, either alone or in conjunction with other factors, in the etiology of benign hyperplasia or prostatic cancer.

  10. Basic fibroblastic growth factor affects the osteogenic differentiation of dental pulp stem cells in a treatment-dependent manner.

    PubMed

    Qian, J; Jiayuan, W; Wenkai, J; Peina, W; Ansheng, Z; Shukai, S; Shafei, Z; Jun, L; Longxing, N

    2015-07-01

    To determine how basic fibroblastic growth factor (bFGF) affected the osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro and in vivo. Basic fibroblastic growth factor stimulation of DPSCs was divided into a pre-treatment period and an osteogenic differentiation period. Alizarin red quantification experiments and alkaline phosphatase activity quantification assay were performed to examine the osteogenic differentiation of DPSCs after different bFGF stimulation. Quantification reverse transcription polymerase chain reaction was used to analyze the osteogenic gene expression of DPSCs after different bFGF stimulation. In addition, DPSCs that received the 1 and 2 weeks bFGF pre-treatments as in the in vitro experiments were mineralized for 1 week and seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) pills and subcutaneously transplanted into naked mice for 2 or 3 months. The transplants were removed, sliced and stained using Modified Ponceau Trichrome Stain to observe the formation of mineralized tissue. Basic fibroblastic growth factor stimulation in the osteogenic differentiation period decreased the in vitro osteogenic differentiation ability of DPSCs. One week pre-treatment with bFGF increased the in vitro osteogenic differentiation ability of DPSCs, whereas 2 weeks pre-treatment with bFGF decreased the in vitro osteogenic differentiation ability of DPSCs. The pre-treatment period was vital for the osteogenic differentiation of DPSCs in vitro. The in vivo results were similar to the in vitro results. Basic fibroblastic growth factor affected the osteogenic differentiation of DPSCs in a treatment-dependent manner both in vitro and in vivo. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  11. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    PubMed

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Conditioned media from a renal cell carcinoma cell line demonstrates the presence of basic fibroblast growth factor.

    PubMed

    Mydlo, J H; Zajac, J; Macchia, R J

    1993-09-01

    In a previous report, we demonstrated the isolation and purification of a heparin binding growth factor from human renal carcinoma, and suggested that this growth factor may play a role in the neovascularity and growth of the tumor. In this report, we demonstrate that the growth of the renal cell carcinoma cell line RC29 is stimulated by the addition of exogenous fibroblast growth factor (FGF), epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha). Also, media conditioned by this cell line was able to stimulate growth of the A431 vulvar tumor cell line, known for its high concentration of EGF receptors, 3T3 fibroblasts, human umbilical vein (HUV) cells and RC29 cells. Using heparin-sepharose chromatography and then SDS polyacrylamide gel electrophoresis (PAGE), we were able to demonstrate several proteins in the conditioned media of the RC29 cell line. Using Western blot analysis, we detected that at least one of the proteins expressed in this conditioned media was FGF and that it belongs to the basic, not acidic, family of fibroblast growth factors. These findings suggest that renal tumors may express growth factors that may play a direct role in maintaining their unrestricted proliferation.

  13. Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing.

    PubMed

    Yu, Hongfei; Peng, Jinliang; Xu, Yuhong; Chang, Jiang; Li, Haiyan

    2016-01-13

    Wound healing is a complicated process, and fibroblast is a major cell type that participates in the process. Recent studies have shown that bioglass (BG) can stimulate fibroblasts to secrete a multitude of growth factors that are critical for wound healing. Therefore, we hypothesize that BG can stimulate fibroblasts to have a higher bioactivity by secreting more bioactive growth factors and proteins as compared to untreated fibroblasts, and we aim to construct a bioactive skin tissue engineering graft for wound healing by using BG activated fibroblast sheet. Thus, the effects of BG on fibroblast behaviors were studied, and the bioactive skin tissue engineering grafts containing BG activated fibroblasts were applied to repair the full skin lesions on nude mouse. Results showed that BG stimulated fibroblasts to express some critical growth factors and important proteins including vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, collagen I, and fibronectin. In vivo results revealed that fibroblasts in the bioactive skin tissue engineering grafts migrated into wound bed, and the migration ability of fibroblasts was stimulated by BG. In addition, the bioactive BG activated fibroblast skin tissue engineering grafts could largely increase the blood vessel formation, enhance the production of collagen I, and stimulate the differentiation of fibroblasts into myofibroblasts in the wound site, which would finally accelerate wound healing. This study demonstrates that the BG activated skin tissue engineering grafts contain more critical growth factors and extracellular matrix proteins that are beneficial for wound healing as compared to untreated fibroblast cell sheets.

  14. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    PubMed

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  15. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice

    PubMed Central

    Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian

    2015-01-01

    Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806

  16. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer.

    PubMed

    Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M

    1996-03-01

    Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.

  17. Effect of growth factors on hyaluronan production by canine vocal fold fibroblasts.

    PubMed

    Hirano, Shigeru; Bless, Diane M; Heisey, Dennis; Ford, Charles N

    2003-07-01

    Hyaluronan (HYA) is considered to be a crucial factor in scarless wound healing and in maintaining tissue viscosity of the vocal fold lamina propria. In this study focusing on the effects of growth factors, we examined how HYA is produced and controlled in canine cultured vocal fold fibroblasts. Fibroblasts were taken from the lamina propria of the vocal folds of 8 dogs and cultured with and without growth factors. The production of HYA in the supernatant culture was quantitatively examined by enzyme-linked immunosorbent assay. Hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and transforming growth factor beta1 all stimulated HYA synthesis from vocal fold fibroblasts. These effects differed with the concentration of growth factors and the incubation period. We also examined how frequently the growth factors had to be administered in order to maintain appropriate levels of HYA. A single administration was sufficient to maintain appropriate HYA levels for at least 7 days. The present studies have demonstrated positive effects of growth factors in stimulating HYA production. Further in vivo study is needed to clarify the usefulness of these growth factors in the management of vocal fold scarring.

  18. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  19. Constructing a blood vessel on the porous scaffold modified with vascular endothelial growth factor and basic fibroblast growth factor

    NASA Astrophysics Data System (ADS)

    Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-11-01

    Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.

  20. Effect of botulinum toxin type A on transforming growth factor beta1 in fibroblasts derived from hypertrophic scar: a preliminary report.

    PubMed

    Xiao, Zhibo; Zhang, Fengmin; Lin, Weibin; Zhang, Miaobo; Liu, Ying

    2010-08-01

    Hypertrophic scar is a common dermal disease. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Hence, alternatives are needed. Recent basic and clinical research has shown that botulinum toxin type A (BTXA) has antihypertrophic scar properties but the molecular mechanism for this action is unknown. The aim of this study was to explore the effect of BTXA on transforming growth factor beta1 (TGF-beta1) in fibroblasts derived from hypertrophic scar and further elucidate its actual mechanism. Fibroblasts were isolated from tissue specimens of hypertrophic scar. Fibroblasts were treated with BTXA and the difference in proliferation between treated and nontreated cells was analyzed through the MTT method from the first to the fifth day after treatment. Proteins of TGF-beta1 were checked using ELISA in fibroblasts with BTXA and without BTXA from the first to the fifth day. The growth of the fibroblast treated with BTXA was obviously slower than that of the fibroblast without BTXA treatment (p < 0.01), which showed that BTXA effectively inhibited the growth of fibroblasts. Proteins of TGF-beta1 between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (p < 0.01). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from hypertrophic scar and in turn caused a decrease in TGF-beta1 protein, indicating that BTXA-based therapies for hypertrophic scar are promising and worth investigating further.

  1. Ixora coccinea Enhances Cutaneous Wound Healing by Upregulating the Expression of Collagen and Basic Fibroblast Growth Factor

    PubMed Central

    Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Goyary, Danswrang; Mitra Mazumder, Papiya; Veer, Vijay

    2014-01-01

    Background. Ixora coccinea L. (Rubiaceae) has been documented for traditional use in hypertension, menstrual irregularities, sprain, chronic ulcer, and skin diseases. In the present study, I. coccinea was subjected to in vitro and in vivo wound healing investigation. Methods. Petroleum ether, chloroform, methanol, and water sequential I. coccinea leaves extracts were evaluated for in vitro antioxidant, antimicrobial, and fibroblast proliferation activities. The promising I. coccinea methanol extract (IxME) was screened for in vivo wound healing activity in Wistar rat using circular excision model. Wound contraction measurement, hydroxyproline quantification, and western blot for collagen type III (COL3A1), basic fibroblast growth factor (bFGF), and Smad-2, -3, -4, and -7 was performed with 7-day postoperative wound granulation tissue. Gentamicin sulfate (0.01% w/w) hydrogel was used as reference standard. Results. IxME showed the potent antimicrobial, antioxidant activities, with significant fibroblast proliferation inducing activity, as compared to all other extracts. In vivo study confirmed the wound healing accelerating potential of IxME, as evidenced by faster wound contraction, higher hydroxyproline content, and improved histopathology of granulation tissue. Western blot analysis revealed that the topical application of I. coccinea methanol extract stimulates the fibroblast growth factor and Smad mediated collagen production in wound tissue. PMID:24624303

  2. Linear ordered collagen scaffolds loaded with collagen-binding basic fibroblast growth factor facilitate recovery of sciatic nerve injury in rats.

    PubMed

    Ma, Fukai; Xiao, Zhifeng; Chen, Bing; Hou, Xianglin; Dai, Jianwu; Xu, Ruxiang

    2014-04-01

    Natural biological functional scaffolds, consisting of biological materials filled with promoting elements, provide a promising strategy for the regeneration of peripheral nerve defects. Collagen conduits have been used widely due to their excellent biological properties. Linear ordered collagen scaffold (LOCS) fibers are good lumen fillers that can guide nerve regeneration in an ordered direction. In addition, basic fibroblast growth factor (bFGF) is important in the recovery of nerve injury. However, the traditional method for delivering bFGF to the lesion site has no long-term effect because of its short half-life and rapid diffusion. Therefore, we fused a specific collagen-binding domain (CBD) peptide to the N-terminal of native basic fibroblast growth factor (NAT-bFGF) to retain bFGF on the collagen scaffolds. In this study, a natural biological functional scaffold was constructed using collagen tubes filled with collagen-binding bFGF (CBD-bFGF)-loaded LOCS to promote regeneration in a 5-mm rat sciatic nerve transection model. Functional evaluation, histological investigation, and morphometric analysis indicated that the natural biological functional scaffold retained more bFGF at the injury site, guided axon growth, and promoted nerve regeneration as well as functional restoration.

  3. Regulation by basic fibroblast growth factor of glycosaminoglycan biosynthesis in cultured vascular endothelial cells.

    PubMed

    Kaji, T; Hiraga, S; Ohkawara, S; Inada, M; Yamamoto, C; Kozuka, H; Koizumi, F

    1995-05-01

    The alteration of glycosaminoglycans (GAGs) in cultured bovine aortic endothelial cells after exposure to basic fibroblast growth factor (bFGF) was investigated. It was found that the incorporation of [3H]glucosamine into GAGs was markedly increased by bFGF in both the cell layer and the conditioned medium; however, that of [35S]sulfate was not changed by the growth factor. These results indicated that bFGF enhanced the sugar-chain formation but did not affect their sulfation in endothelial GAG production. Similar changes were observed in either bovine aortic smooth-muscle cells and human fibroblastic IMR-90 cells to greater and lesser degrees, respectively. Characterization of GAGs in the endothelial cell layer and the conditioned medium revealed that bFGF enhanced both heparan sulfate and the other GAGs to a similar degree. The present data suggest that bFGF may be involved in the regulation of the blood coagulation system via altering GAGs of the vascular tissue when the endothelium was damaged.

  4. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis.

    PubMed

    Togami, Kohei; Miyao, Aki; Miyakoshi, Kei; Kanehira, Yukimune; Tada, Hitoshi; Chono, Sumio

    2015-01-01

    In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.

  5. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  6. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  7. A basic fibroblast growth factor analog for protection and mitigation against acute radiation syndromes.

    PubMed

    Casey-Sawicki, Kate; Zhang, Mei; Kim, Sunghee; Zhang, Amy; Zhang, Steven B; Zhang, Zhenhuan; Singh, Ravi; Yang, Shanmin; Swarts, Steven; Vidyasagar, Sadasivan; Zhang, Lurong; Zhang, Aiguo; Okunieff, Paul

    2014-06-01

    The effects of fibroblast growth factors and their potential as broad-spectrum agents to treat and mitigate radiation injury have been studied extensively over the past two decades. This report shows that a peptide mimetic of basic fibroblast growth factor (FGF-P) protects and mitigates against acute radiation syndromes. FGF-P attenuates both sepsis and bleeding in a radiation-induced bone marrow syndrome model and reduces the severity of gastrointestinal and cutaneous syndromes; it should also mitigate combined injuries. FGF-2 and FGF-P induce little or no deleterious inflammation or vascular leakage, which distinguishes them from most other growth factors, angiogenic factors, and cytokines. Although recombinant FGFs have proven safe in several ongoing clinical trials, they are expensive to synthesize, can only be produced in limited quantity, and have limited shelf life. FGF-P mimics the advantageous features of FGF-2 without these disadvantages. This paper shows that FGF-P not only has the potential to be a potent yet safe broad-spectrum medical countermeasure that mitigates acute radiotoxicity but also holds promise for thermal burns, ischemic wound healing, tissue engineering, and stem-cell regeneration.

  8. Spontaneous establishment of an Epstein-Barr virus-infected fibroblast line from the synovial tissue of a rheumatoid arthritis patient.

    PubMed Central

    Koide, J; Takada, K; Sugiura, M; Sekine, H; Ito, T; Saito, K; Mori, S; Takeuchi, T; Uchida, S; Abe, T

    1997-01-01

    An Epstein-Barr virus (EBV)-infected fibroblast line, designated DSEK, was spontaneously established from synovial tissue of a patient with rheumatoid arthritis (RA). DSEK cells expressed EBV nuclear antigens EBNA-1 and EBNA-2 and latent membrane protein LMP-1. Cell surface markers of DSEK cells were similar to those of EBV-negative fibroblast clones derived from synoviocytes and were negative for lymphocyte and macrophage markers. DSEK cells expressed CD44, CD58, and HLA-DR antigens and spontaneously produced interleukin-10 basic fibroblast growth factor and transforming growth factor beta1. These results indicate that rheumatoid synoviocytes can be a target for EBV infection and suggest that EBV may play a role in the pathogenesis of RA. PMID:9032386

  9. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    PubMed Central

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-01-01

    Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs) with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years. PMID:21151652

  10. The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development

    DTIC Science & Technology

    2015-09-01

    for inhibiting PCa bone lesion development: 3a. Basic fibroblast growth factor (bFGF) in PC3 bone metastasis: bFGF was identified by cytokine...II receptor (TβRII) knockout (Tgfbr2 KO) mouse models. Col1creERT/Tgfbr2 KO (Col/Tgfbr2 KO), which have TGF-β signaling specific KO in fibroblasts ... fibroblasts and osteoblasts in the bone by Colcre/Tgfbr2 KO, or in the myeloid lineage cells, including osteoclasts in the bone by LysMcre/Tgfbr2 KO

  11. Effects of mitomycin-C on normal dermal fibroblasts.

    PubMed

    Chen, Theodore; Kunnavatana, Shaun S; Koch, R James

    2006-04-01

    To evaluate the effects of mitomycin-C on the growth and autocrine growth factor production of human dermal fibroblasts from the face. In vitro study using normal adult dermal fibroblast cell lines in a serum-free model. Cell cultures were exposed to 4 mg/mL, 0.4 mg/mL, 0.04 mg/mL, 0.004 mg/mL, and 0.0004 mg/mL concentrations of mitomycin-C solution. Cell counts were performed, and the cell-free supernatants were collected at 0, 1, 3, and 5 days after the initial exposure. Population doubling times were calculated and supernatants were quantitatively assayed for basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta1. Continuous exposure to mitomycin-C caused fibroblast cell death by day 7 at all tested concentrations. A 4 minute exposure to mitomycin-C at 4 mg/mL caused rapid fibroblast cell death. A 4-minute exposure to mitomycin-C at either 0.4 mg/mL or 0.04 mg/mL resulted in decreased fibroblast proliferation. A 4 minute exposure to mitomycin-C at 0.4 mg/mL resulted in a marked increase in the production of both bFGF and TGF-beta1. A clinically ideal concentration of mitomycin-C would slow fibroblast proliferation yet not cause cell death to allow for a wound healing response. Mitomycin-C 0.4 mg/mL for 4 minutes satisfies the above criteria in vitro.

  12. Effect of mitomycin on normal dermal fibroblast and HaCat cell: an in vitro study

    PubMed Central

    Wang, Yao-wen; Ren, Ji-hao; Xia, Kun; Wang, Shu-hui; Yin, Tuan-fang; Xie, Ding-hua; Li, Li-hua

    2012-01-01

    Objective: To evaluate the effects of mitomycin on the growth of human dermal fibroblast and immortalized human keratinocyte line (HaCat cell), particularly the effect of mitomycin on intracellular messenger RNA (mRNA) synthesis of collagen and growth factors of fibroblast. Methods: The normal dermal fibroblast and HaCat cell were cultured in vitro. Cell cultures were exposed to 0.4 and 0.04 mg/ml of mitomycin solution, and serum-free culture medium was used as control. The cellular morphology change, growth characteristics, cell proliferation, and apoptosis were observed at different intervals. For the fibroblasts, the mRNA expression changes of transforming growth factor (TGF)-β1, basic fibroblast growth factor (bFGF), procollagen I, and III were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The cultured normal human skin fibroblast and HaCat cell grew exponentially. A 5-min exposure to mitomycin at either 0.4 or 0.04 mg/ml caused marked dose-dependent cell proliferation inhibition on both fibroblasts and HaCat cells. Cell morphology changed, cell density decreased, and the growth curves were without an exponential phase. The fibroblast proliferated on the 5th day after the 5-min exposure of mitomycin at 0.04 mg/ml. Meanwhile, 5-min application of mitomycin at either 0.04 or 0.4 mg/ml induced fibroblast apoptosis but not necrosis. The apoptosis rate of the fibroblast increased with a higher concentration of mytomycin (p<0.05). A 5-min exposure to mitomycin at 0.4 mg/ml resulted in a marked decrease in the mRNA production of TGF-β1, procollagen I and III, and a marked increase in the mRNA production of bFGF. Conclusions: Mitomycin can inhibit fibroblast proliferation, induce fibroblast apoptosis, and regulate intracellular protein expression on mRNA levels. In additon, mitomycin can inhibit HaCat cell proliferation, so epithelial cell needs more protecting to avoid mitomycin’s side effect when it is applied clinically. PMID:23225855

  13. Multiparametric in situ mRNA hybridization analysis to predict disease recurrence in patients with colon carcinoma.

    PubMed Central

    Kitadai, Y.; Ellis, L. M.; Tucker, S. L.; Greene, G. F.; Bucana, C. D.; Cleary, K. R.; Takahashi, Y.; Tahara, E.; Fidler, I. J.

    1996-01-01

    We examined the expression level of several genes that regulate different steps of metastasis in formalin-fixed, paraffin-embedded archival specimens of primary human colon carcinomas from patients with at least 5 years of follow-up. The expression of epidermal growth factor receptor, basic fibroblast growth factor, type IV collagenase, E-cadherin, and multidrug resistance (mdr-1) was examined by a colorimetric in situ mRNA hybridization technique concentrating on reactivity at the periphery of the neoplasms. The in situ hybridization technique revealed inter- and intratumor heterogeneity for expression of the metastasis-related genes. The expression of basic fibroblast growth factor, collagenase type IV, epidermal growth factor receptor, and mdr-1 mRNA was higher in Dukes's stage D than in Dukes' stage B tumors. Among the 22 Dukes' stage B neoplasms, 5 specimens exhibited a high expression level of epidermal growth factor receptor, basic fibroblast growth factor, and collagenase type IV. Clinical outcome data (5-year follow-up) revealed that all 5 patients with Dukes' stage B tumors developed distant metastasis (recurrent disease), whereas the other 17 patients with Dukes' stage B tumors expressing low levels of the metastasis-related genes were disease-free. Multivariate analysis identified high levels of expression of collagenase type IV and low levels of expression of E-cadherin as independent factors significantly associated with metastasis or recurrent disease. More specifically, metastatic or recurrent disease was associated with a high ratio (> 1.35) of expression of collagenase type IV to E-cadherin (specificity of 95%). Collectively, the data show that multiparametric in situ hybridization analysis for several metastasis-related genes may predict the metastatic potential, and hence the clinical outcome, of individual lymph-node-negative human colon cancers. Images Figure 1 Figure 2 PMID:8909244

  14. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts

    PubMed Central

    Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai

    2017-01-01

    Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097

  15. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders.

    PubMed

    Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata

    2016-12-01

    Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.

  16. Heparin-binding growth factor isolated from human prostatic extracts.

    PubMed

    Mydlo, J H; Bulbul, M A; Richon, V M; Heston, W D; Fair, W R

    1988-01-01

    Prostatic tissue extracts from patients with benign prostatic hyperplasia (BPH) and prostatic carcinoma were fractionated using heparin-Sepharose chromatography. The mitogenic activity of eluted fractions on quiescent subconfluent Swiss Albino 3T3 fibroblasts was tested employing a tritiated-thymidine-incorporation assay. Two peaks of activity were consistently noted--one in the void volume and a second fraction which eluted with 1.3-1.6 M NaCl and contained the majority of the mitogenic activity. Both non-heparin- and heparin-binding fractions increased tritiated incorporation into a mouse osteoblast cell line (MC3T3), while only the heparin-binding fractions stimulated a human umbilical vein endothelial cell line (HUV). No increased uptake of thymidine was seen using a human prostatic carcinoma cell line (PC-3). Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of lyophilized active fractions showed a persistent band at 17,500 daltons. The purified protein demonstrated angiogenic properties using the chick embryo chorioallantoic membrane (CAM) assay. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) or acidic FGF (aFGF) demonstrated that the former, but not the latter, bound to prostatic growth factor (PrGF), and inhibited its mitogenic activity as well. It appears that PrGF shares homology with basic fibroblast growth factors.

  17. Fibroblast migration and proliferation during in vitro wound healing. A quantitative comparison between various growth factors and a low molecular weight blood dialysate used in the clinic to normalize impaired wound healing.

    PubMed

    Schreier, T; Degen, E; Baschong, W

    1993-01-01

    During the formation of granulation tissue in a dermal wound, platelets, monocytes and other cellular blood constituents release various peptide growth factors to stimulate fibroblasts to migrate into the wound site and proliferate, in order to reconstitute the various connective tissue components. The effect on fibroblast migration and proliferation of these growth factors, and of Solcoseryl (HD), a deproteinized fraction of calf blood used to normalize wound granulation and scar tissue formation, was quantified in vitro. The presence of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta) and hemodialysate (HD) increased the number of cells in the denuded area, i.e., in the "wound space" of an artificially ruptured monolayer of LM-fibroblasts (mouse lung fibroblasts). When cell proliferation was blocked with Mitomycin C, in the first 24 h all factors, i.e., bFGF, PDGF, TGF-beta and HD, promoted cell migration, whereas after 48 h it became obvious that each factor stimulated both migration and proliferation, each in a characteristic way. The effects were significant and more distinct after 48 h, following the order: PDGF (46%) approximately bFGF (87%) > HD (45%) approximately TGF-beta (40%) > control (62%). The relative contributions of migration after inhibiting proliferation are given in brackets. The modulatory activity of HD was localized in its hydrophilic fraction. It was destroyed by acid hydrolysis. Furthermore, this activity could be blocked by protamine sulfate, an inhibitor blocking peptide growth factor receptor binding.

  18. Myostatin downregulates the expression of basic fibroblast growth factor gene in HeLa cells.

    PubMed

    Liu, H Z; Luo, P; Chen, S H; Shang, J H

    2012-01-01

    Basic fibroblast growth factor (bFGF or FGF-2), a potent tumorigenic cytokine, improves cells proliferation and angiogenesis in tumor and also plays vital roles in tumor growth, metastasis as well as prognosis. Screening and application of effective cytokines against bFGF tumorigenic activity would be helpful to oncologic therapy. Myostatin, a member of transforming growth factor β superfamily, recently showed an antitumor activity and was reported to induce HeLa cells apoptosis through mitochondrion pathway. The above data raised our assumption that expression level of endogenous bFGF gene may be suppressed by exogenous myostatin in myostatin-treated HeLa cells. To test the hypothesis, myostatin was employed to stimulate HeLa cells and expressional level of endogenous bFGF gene in HeLa cells was detected with real-time RT-PCR and ELISA. Results of the suppressed expression level of bFGF gene in Hela cells implied that myostatin may be regarded as an effective cytokine against bFGF to treat certain cancers (Fig. 3, Ref. 26).

  19. Basic fibroblast growth factor accelerates matrix degradation via a neuro-endocrine pathway in human adult articular chondrocytes.

    PubMed

    Im, Hee-Jeong; Li, Xin; Muddasani, Prasuna; Kim, Gun-Hee; Davis, Francesca; Rangan, Jayanthi; Forsyth, Christopher B; Ellman, Michael; Thonar, Eugene J M A

    2008-05-01

    Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK(1)-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1beta accelerate matrix degradation via a neural pathway upregulation of substance P and NK(1)-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK(1)-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK(1)-R is, in part, through an IL-1beta-dependent pathway. (c) 2007 Wiley-Liss, Inc.

  20. Basic Fibroblast Growth Factor Accelerates Matrix Degradation Via a Neuro-Endocrine Pathway in Human Adult Articular Chondrocytes

    PubMed Central

    IM, HEE-JEONG; LI, XIN; MUDDASANI, PRASUNA; KIM, GUN-HEE; DAVIS, FRANCESCA; RANGAN, JAYANTHI; FORSYTH, CHRISTOPHER B.; ELLMAN, MICHAEL; THONAR, EUGENE JMA

    2010-01-01

    Pain-related neuropeptides released from synovial fibroblasts, such as substance P, have been implicated in joint destruction. Substance P-induced inflammatory processes are mediated via signaling through a G-protein-coupled receptor, that is, neurokinin-1 tachykinin receptor (NK1-R). We determined the pathophysiological link between substance P and its receptor in human adult articular cartilage homeostasis. We further examined if catabolic growth factors such as basic fibroblast growth factor (bFGF or FGF-2) or IL-1β accelerate matrix degradation via a neural pathway upregulation of substance P and NK1-R. We show here that substance P stimulates the production of cartilage-degrading enzymes, such as matrix metalloproteinase-13 (MMP-13), and suppresses proteoglycan deposition in human adult articular chondrocytes via NK1-R. Furthermore, we have demonstrated that substance P negates proteoglycan stimulation promoted by bone morphogenetic protein-7, suggesting the dual role of substance P as both a pro-catabolic and anti-anabolic mediator of cartilage homeostasis. We report that bFGF-mediated stimulation of substance P and its receptor NK1-R is, in part, through an IL-1β-dependent pathway. PMID:17960584

  1. c-erbA and v-erbA modulate growth and gene expression of a mouse glial precursor cell line.

    PubMed

    Iglesias, T; Llanos, S; López-Barahona, M; Pérez-Aranda, A; Rodríguez-Peña, A; Bernal, J; Höhne, A; Seliger, B; Muñoz, A

    1994-07-01

    The c-erbA alpha protooncogene coding for the thyroid hormone (T3) receptor (TR alpha 1) and the viral, mutated v-erbA oncogene were expressed in an immortal mouse glial cell line (B3.1) using retroviral vectors. c-erbA alpha expression led to a decrease in cell proliferation in high and low serum conditions, both in the presence and in the absence of T3. In serum-free medium, c-erbA-expressing cells (B3.1 + TR alpha 1) were completely arrested, whereas cells expressing v-erbA (B3.1 + v-erbA) showed a higher DNA synthesis rate than normal B3.1 cells. Although proliferation of all three cell types was stimulated by platelet-derived growth factor and basic fibroblast growth factor, differences were also observed in the response to these agents. B3.1 + TR alpha 1 cells were more sensitive to platelet-derived growth factor than B3.1 and B3.1 + v-erbA cells. In contrast, B3.1 cells responded to basic fibroblast growth factor better than B3.1 + TR alpha 1 or B3.1 + v-erbA cells. Insulin-like growth factor I potentiated the action of platelet-derived growth factor and basic fibroblast growth factor. Again, different responses to treatment with insulin-like growth factor I alone were observed; B3.1 + TR alpha 1 cells did not respond to it, whereas B3.1 + v-erbA cells showed a dramatic stimulation by this agent. Interestingly, in the presence of T3, the blockade in B3.1 + TR alpha 1 cell proliferation was accompanied by the down-regulation of the typical astrocytic genes, glial fibrillary acidic protein and vimentin. These hormone effects were not found in v-erbA-expressing cells. In addition, v-erbA inhibited the basal expression of the cyclic nucleotide phosphodiesterase gene, an oligodendrocytic marker.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Acidic fibroblast growth factor (FGF) but not basic FGF induces sleep and fever in rabbits.

    PubMed

    Knefati, M; Somogyi, C; Kapás, L; Bourcier, T; Krueger, J M

    1995-07-01

    Acidic fibroblast growth factor (FGF) and basic FGF belong to a growth factor family. Interleukin-1, another member of that family, is involved in sleep regulation. FGFs and interleukin-1 share structural and functional features. We therefore determined whether acidic FGF and basic FGF were somnogenic. Male New Zealand White rabbits were provided with electroencephalographic (EEG) electrodes, a brain thermistor, and a lateral intracerebroventricular (icv) cannula. The animals were injected icv with isotonic NaCl (control) and on separate days with one of three doses of acidic or basic FGF (0.01, 0.1, or 1.0 micrograms) or with heat-treated acidic FGF (1.0 micrograms). The EEG, brain temperature, and motor activity were recorded for 23 h. The biological activity of basic FGF was determined in vitro by its ability to induce DNA synthesis in rat aortic smooth muscle cells. Acidic FGF induced prolonged dose-related increases in non-rapid eye movement sleep beginning in the 1st postinjection h and continuing for 12-23 h after the treatment. Acidic FGF also induced fevers of approximately 1 degree C after the 1.0 micrograms dose. Both activities of acidic FGF were lost after heat treatment. In contrast, basic FGF lacked somnogenic and pyrogenic activity, although it did induce DNA synthesis. Current results suggest that acidic FGF is part of the complex cytokine network in brain involved in sleep regulation.

  3. Involvement of basic fibroblast growth factor in suramin-induced inhibition of V79/AP4 fibroblast cell proliferation.

    PubMed Central

    Bernardini, N.; Giannessi, F.; Bianchi, F.; Dolfi, A.; Lupetti, M.; Citti, L.; Danesi, R.; Del Tacca, M.

    1993-01-01

    The V79/AP4 Chinese hamster fibroblasts were densely stained with the anti-basic fibroblast growth factor (bFGF) antibody demonstrating an endogenous production of the peptide. The in vitro proliferation of these cells was stimulated by exogenous bFGF and the maximum growth (259% increase in 3H-thymidine incorporation into DNA) was reached with bFGF 10 ng ml-1. Inhibition of bFGF-mediated mitogenic pathway was obtained with a 15-mer antisense oligodeoxynucleotide targeted against bFGF mRNA and with suramin, a drug which blocks the biological activity of heparin-binding growth factors. bFGF antisense oligomer reduced the synthesis of DNA by 79.5 and 89.5% at 20 and 60 microM, respectively; this effect was reversed by the addition of exogenous bFGF to the culture medium. A short-term exposure to suramin 300 micrograms ml-1 produced a modest reduction in 3H-thymidine incorporation but suppressed the mitogenic effect of bFGF on V79/AP4 cells. In cells treated with suramin 300 micrograms ml-1 the drug concentration increased linearly over 3 days, reaching 13.15 micrograms mg-1 of protein; cell proliferation was inhibited in a dose-related manner as evaluated by the colony formation assay (IC50: 344.22 micrograms ml-1) and by the number of mitoses observed in culture. Furthermore, the drug induced ultrastructural alterations, consisting of perinuclear cisternae swelling, chromatin condensation, nucleolar segregation and cytoplasmic vacuolations. These findings demonstrated that the endogenous production of bFGF plays an important role in V79/AP4 fibroblasts proliferation, and the inhibition of bFGF-mediated mitogenic signalling with bFGF antisense oligomer or suramin is an effective mean of reducing cell growth. Images Figure 1 Figure 5 Figure 6 PMID:7685616

  4. Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines.

    PubMed

    Kono, Kiyomi; Maeda, Hidefumi; Fujii, Shinsuke; Tomokiyo, Atsushi; Yamamoto, Naohide; Wada, Naohisa; Monnouchi, Satoshi; Teramatsu, Yoko; Hamano, Sayuri; Koori, Katsuaki; Akamine, Akifumi

    2013-05-01

    Basic fibroblast growth factor (bFGF) is a cytokine that promotes the regeneration of the periodontium, the specialized tissues supporting the teeth. bFGF, does not, however, induce the synthesis of smooth muscle actin alpha 2 (ACTA2), type I collagen (COL1), or COL3, which are principal molecules in periodontal ligament (PDL) tissue, a component of the periodontium. We have suggested the feasibility of using transforming growth factor-β1 (TGFβ1) to induce fibroblastic differentiation of PDL stem/progenitor cells (PDLSCs). Here, we investigated the effect of the subsequent application of TGFβ1 after bFGF (bFGF/TGFβ1) on the differentiation of PDLSCs into fibroblastic cells. We first confirmed the expression of bFGF and TGFβ1 in rat PDL tissue and primary human PDL cells. Receptors for both bFGF and TGFβ1 were expressed in the human PDLSC lines 1-11 and 1-17. Exposure to bFGF for 2 days promoted vascular endothelial growth factor gene and protein expression in both cell lines and down-regulated the expression of ACTA2, COL1, and COL3 mRNA in both cell lines and the gene fibrillin 1 (FBN1) in cell line 1-11 alone. Furthermore, bFGF stimulated cell proliferation of these cell lines and significantly increased the number of cells in phase G2/M in the cell lines. Exposure to TGFβ1 for 2 days induced gene expression of ACTA2 and COL1 in both cell lines and FBN1 in cell line 1-11 alone. BFGF/TGFβ1 treatment significantly up-regulated ACTA2, COL1, and FBN1 expression as compared with the group treated with bFGF alone or the untreated control. This method might thus be useful for accelerating the generation and regeneration of functional periodontium.

  5. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  6. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF).

    PubMed

    Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh

    2015-12-01

    Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with/or without production of bFGF or other regulation factors be investigated in future.

  7. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less

  8. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase.

    PubMed

    Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung Mi; Min, Bon Hong; Lee, Kee Ho; Park, Gil Hong

    2011-10-31

    Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)- p21Cip/WAF1 activation, and suppressed by the mitogenactivated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.

  9. Methylation of eukaryotic elongation factor 2 induced by basic fibroblast growth factor via mitogen-activated protein kinase

    PubMed Central

    Jung, Gyung Ah; Shin, Bong Shik; Jang, Yeon Sue; Sohn, Jae Bum; Woo, Seon Rang; Kim, Jung Eun; Choi, Go; Lee, Kyung-Mi; Min, Bon Hong

    2011-01-01

    Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)-p21Cip/WAF1 activation, and suppressed by the mitogen-activated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway. PMID:21778808

  10. Expression and Purification of Recombinant Human Basic Fibroblast Growth Factor Fusion Proteins and Their Uses in Human Stem Cell Culture.

    PubMed

    Imsoonthornruksa, Sumeth; Pruksananonda, Kamthorn; Parnpai, Rangsun; Rungsiwiwut, Ruttachuk; Ketudat-Cairns, Mariena

    2015-01-01

    To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins. © 2015 S. Karger AG, Basel.

  11. Characterization of a heparin-binding growth factor from adenocarcinoma of the kidney.

    PubMed

    Mydlo, J H; Heston, W D; Fair, W R

    1988-12-01

    A polypeptide isolated from tissue extracts of renal adenocarcinoma was mitogenic for BALB/c 3T3 cells and human umbilical vein (HUV) cells in culture. It also demonstrated angiogenic ability using the chorioallantoic membrane bioassay. Using heparin-sepharose affinity chromatography the purified protein eluted with a NaCl concentration between 1.4 and 1.8 M and demonstrated a molecular weight of approximately 17,000 daltons based on SDS polyacrylamide gel electrophoresis. Half maximal stimulation of tritiated thymidine incorporation into BALB/c 3T3 cells was achieved by 1.6 ng./ml. of the heparin binding material. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) only or acidic FGF (aFGF) only demonstrated that the purified protein binds to the former and not the latter. The characteristics of this material, in effect the elution profile off heparin-Sepharose, the molecular weight, angiogenic activity and the results of western blot analysis, suggest that this growth factor is similar to the family of basic fibroblast growth factors.

  12. In vitro propagation of male germline stem cells from piglets.

    PubMed

    Zheng, Yi; Tian, Xiue; Zhang, Yaqing; Qin, Jinzhou; An, Junhui; Zeng, Wenxian

    2013-07-01

    To study the effects of serum and growth factors on propagation of porcine male germline stem cells (MGSCs) in vitro and develop a culture system for these stem cells. Fresh testicular cells from neonatal piglets were obtained by mechanical dissociation and collagenase-trypsin digestion. After differential plating, non-adhering cells were cultured in media supplemented with different concentrations of serum (0, 1 %, 2 %, 5 %, 10 %). After 10 days of primary culture, the cells were maintained in media supplemented with different concentrations of growth factors (basic fibroblast growth factor and epidermal growth factor at 1, 5, 10 ng/ml). The number of MGSC-derived colonies with different sizes was determined in each treatment to assess the effects of serum concentrations and growth factors. The number of MGSC-derived colonies was significantly higher in the presence of 1 % rather than 10 % fetal bovine serum (FBS). Basic fibroblast growth factor (bFGF) at 1, 5 ng/ml and epidermal growth factor (EGF) at 5, 10 ng/ml significantly promoted colony formation. Immunocytochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and xenotransplantation assays demonstrated the presence of functional stem cells in cultured cell population. In vitro propagation of porcine MGSCs could be maintained in the presence of 1 % FBS and supplementation of growth factors for 1 month.

  13. [The results of combined ozone therapy using in complex treatment of soft tissues infections in patients with diabetes mellitus type II].

    PubMed

    Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Pozhilenkova, E A; Morgun, A V; Shapran, M V; Kovalenko, A O

    2015-01-01

    Levels of interleukins-6, 8, 10, TNF-alpha and basic fibroblast growth factor (bFGF) were examined in peripheral blood of 60 patients with diabetes mellitus type II and soft tissues infections. It was revealed the elevated levels of proinflammatory (IL-6, 8), anti-inflammatory (IL-10) cytokines and basic fibroblast growth factor at the time of admission. Application of combined ozone therapy including ozonated autohemotherapy and superficial management of wounds with ozone-oxygen mixture resulted in significant decrease of IL-6, 8, 10 production and high level of bFGF on blood serum. Thus effective local bactericidal impact of ozone in combination with normalization of proinflammatory cytokines levels and preserved high level of bFGF in peripheral blood provide better results of wound healing process in patients with diabetes mellitus type II.

  14. Effects of enamel matrix derivative and basic fibroblast growth factor with μ-tricalcium phosphate on periodontal regeneration in one-wall intrabony defects: an experimental study in dogs.

    PubMed

    Shirakata, Yoshinori; Takeuchi, Naoshi; Yoshimoto, Takehiko; Taniyama, Katsuyoshi; Noguchi, Kazuyuki

    2013-01-01

    This study evaluated the effects of enamel matrix derivative (EMD) and basic fibroblast growth factor (bFGF) with μ-tricalcium phosphate (μ-TCP) on periodontal healing in intrabony defects in dogs. One-wall intrabony defects created in dogs were treated with μ-TCP alone (μ-TCP), EMD with μ-TCP (EMD/μ-TCP), bFGF with μ-TCP (bFGF/μ-TCP), and a combination of each (EMD/bFGF/μ-TCP). The amount of new bone formation was not significant for any group. The EMD/bFGF/μ-TCP group induced significantly greater new cementum formation than the μ-TCP and bFGF/μ-TCP groups and, although not significantly, formed more new cementum than the EMD/μ-TCP group. These findings indicate that EMD/bFGF/μ-TCP treatment is effective for cementum regeneration.

  15. Encapsulation of basic fibroblast growth factor by polyelectrolyte multilayer microcapsules and its controlled release for enhancing cell proliferation.

    PubMed

    She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N

    2012-07-09

    Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.

  16. In vitro differentiation of embryonic stem cells into hepatocytes induced by fibroblast growth factors and bone morphological protein-4.

    PubMed

    Zhou, Qing-Jun; Huang, Yan-Dan; Xiang, Li-Xin; Shao, Jian-Zhong; Zhou, Guo-Shun; Yao, Hang; Dai, Li-Cheng; Lu, Yong-Liang

    2007-01-01

    The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.

  17. Targeting Microvascular Pericytes in Angiogenic Vessels of Prostate Cancer

    DTIC Science & Technology

    2006-04-01

    Schlingemann RO. 2004. In vivo angiogenic phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor -a. J Histochem Cytochem...R, McDonald DM. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasti- city of adult blood vessels...hematopoietic progenitor cells and their progeny in vivo . We used the basic fibroblast growth factor (bFGF)- induced mouse corneal neovascularization

  18. Evaluation of Polycaprolactone Scaffold with Basic Fibroblast Growth Factor and Fibroblasts in an Athymic Rat Model for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Kabir, Nima; Arshi, Armin; Nazemi, Azadeh; Wu, Ben; Petrigliano, Frank A.; McAllister, David R.

    2015-01-01

    Anterior cruciate ligament (ACL) rupture is a common ligamentous injury often necessitating surgery. Current surgical treatment options include ligament reconstruction with autograft or allograft, which have their inherent limitations. Thus, there is interest in a tissue-engineered substitute for use in ACL regeneration. However, there have been relatively few in vivo studies to date. In this study, an athymic rat model of ACL reconstruction was used to evaluate electrospun polycaprolactone (PCL) grafts, with and without the addition of basic fibroblast growth factor (bFGF) and human foreskin fibroblasts. We examined the regenerative potential of tissue-engineered ACL grafts using histology, immunohistochemistry, and mechanical testing up to 16 weeks postoperatively. Histology showed infiltration of the grafts with cells, and immunohistochemistry demonstrated aligned collagen deposition with minimal inflammatory reaction. Mechanical testing of the grafts demonstrated significantly higher mechanical properties than immediately postimplantation. Acellular grafts loaded with bFGF achieved 58.8% of the stiffness and 40.7% of the peak load of healthy native ACL. Grafts without bFGF achieved 31.3% of the stiffness and 28.2% of the peak load of healthy native ACL. In this in vivo rodent model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regenerative potential of our electrospun PCL ligament graft. PMID:25744933

  19. Anti-Angiogenic Action of Neutral Endopeptidase

    DTIC Science & Technology

    2005-11-30

    side of hydrophobic amino acids and inactivates a variety of physiologically active peptides, including atrial natriuretic factor, substance P ...follows. 15. SUBJECT TERMS Angiogenesis, Cell surface peptidase , Neutral endopeptidase, Basic fibroblast growth factor, Prostate cancer Proteolysis 16...patients with prostate cancer. Cell-surface peptidases are the guardians of the cell against small stimulatory peptides, functioning to control growth

  20. [Pathogenetic and Prognostic Role of Growth Factors in the Development of Chronic Heart Failure].

    PubMed

    Teplyakov, A T; Berezikova, E N; Shilov, S N; Efremova, A V; Pustovetova, M G; Popova, A A; Grakova, E V; Torim, Y Y; Safronov, I D; Andriyanova, A V

    2017-10-01

    To study the role of growth factors ((vascular endothelial growth factor (VEGF), platelet derived growth factor AB (PDGF-AB) and basic fibroblast growth factor (FGF-basic)) in the development and progression of chronic heart failure (CHF) in patients with ishcemic heart disease (IHD). We included in this study 94 patients with CHF. The control group comprised 32 persons. Blood serum levels of growth factors were determined at baseline and after 12 months of observation by enzyme-linked immunosorbent assay. VEGF, PDGF-AB and FGF-basic play an important role in the pathogenesis and progression of heart failure in patients with IHD, determining the increased risk of adverse cardiovascular events in this pathology. Serum activity of growth factors characterizes the severity and course of CHF: with disease progression levels of VEGF and FGF-basic decrease and PDGF-AB concentration increases. Initial low level of VEGF expression regardless of the sex of the patient's sex, significantly low level of FGF-basic and significantly high PDGF-AB in men characterizes unfavorable course of CHF. A correlation has been established between blood serum levels of VEGF, PDGF-AB and FGF-basic and severity and course of CHF.

  1. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. Thesemore » antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.« less

  2. Binding efficiency of recombinant collagen-binding basic fibroblast growth factors (CBD-bFGFs) and their promotion for NIH-3T3 cell proliferation.

    PubMed

    Wu, Zhenxu; Zhou, Yulai; Chen, Li; Hu, Mingxin; Wang, Yu; Li, Linlong; Wang, Zongliang; Zhang, Peibiao

    2018-03-01

    The recombinant basic fibroblast growth factor (bFGF) containing collagen-binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH-3T3 cells were achieved. An ELISA-based quantitative method was set up to investigate the binding efficiency of CBD-bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen-binding ability of bFGF (P < .05), with the optimum binding condition first determined to be in the pH range of 7.5-9.5 (P < .05). Then, the relevant equations to calculate the binding density of bFGF, C-bFGF, and V-bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications. © 2018 Wiley Periodicals, Inc.

  3. Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: correlation between late phase activation and mitogenicity.

    PubMed

    Meloche, S; Seuwen, K; Pagès, G; Pouysségur, J

    1992-05-01

    We have examined the phosphorylation and protein kinase activity of p44 mitogen-activated protein kinase (p44mapk) in growth factor-stimulated hamster fibroblasts using a specific antiserum. The activity of p44mapk was stimulated both by receptor tyrosine kinases and G protein-coupled receptors. Detailed kinetics revealed that alpha-thrombin induces a biphasic activation of p44mapk in CCL39 cells: a rapid phase appearing at 5-10 min was followed by a late and sustained phase still elevated after 4 h. Inactivation of alpha-thrombin with hirudin after 30 sec, which prevented DNA synthesis, did not alter the early p44mapk response but completely abolished the late phase. Pretreatment of the cells with pertussis toxin, which inhibits by more than 95% alpha-thrombin-induced mitogenicity, resulted in the complete loss of late phase activity, while the early peak was partially attenuated. Treatment of CCL39 cells with basic fibroblast growth factor also induced a strong activation of p44mapk. Serotonin, which is not a mitogen by its own, had no effect on late phase p44mapk activity, but synergized with basic fibroblast growth factor to induce late kinase response and DNA synthesis. Both early and late phase activation of p44mapk were accompanied by tyrosine phosphorylation of the enzyme. Together, the results indicate that there is a very close correlation between the ability of a growth factor to induce late and sustained p44mapk activation and its mitogenic potential. Therefore, we propose that sustained p44mapk activation is an obligatory event for growth factor-induced cell cycle progression.

  4. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts.

    PubMed

    Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro

    2015-12-25

    Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Comparison of fibrin clots derived from peripheral blood and bone marrow.

    PubMed

    Shoji, Takeshi; Nakasa, Tomoyuki; Yoshizuka, Masaaki; Yamasaki, Takuma; Yasunaga, Yuji; Adachi, Nobuo; Ochi, Mitsuo

    2017-03-01

    Autologous fibrin clots derived from peripheral blood (pb-fibrin clot) and bone marrow (bm-fibrin clot) are thought to be effective for tissue regeneration. However, there is no report detailing the amount of growth factors in pb-/bm-fibrin clot. In this study we evaluated the amount of growth factors in human pb-/bm-fibrin clot, and prove the validity of fibrin clot for clinical use. Human pb-/bm-fibrin clots were obtained during surgery. In the first experiment, enzyme-linked immunosorbent assay (ELISA) was performed for detecting the amount of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-β), platelet derived-growth factors-AB (PDGF-AB), and stromal cell-derived factor-1 (SDF-1). In the second experiment, the efficacy of fibrin clot on the osteogenic differentiation and fibroblast proliferation was evaluated. Pb-/bm-fibrin clots were incubated in human osteoblast derived from mesenchymal stromal cells (MSCs) or human skin fibroblast. Alizarin red staining and real-time PCR (COL1A1, RUNX2) were performed for the detection of osteogenic potential. Cell-growth assay (WST-8) and real-time PCR (COL1A1) were also performed for the detection of the potential of fibroblast proliferation. ELISA analysis revealed that the amount of VEGF, HGF, bFGF, IGF-1, and SDF-1 of bm-fibrin clot group is higher than that of pb-fibrin clot group with statistical differences. Besides, we confirmed that bm-fibrin clot has much potential for the osteogenic differentiation and fibroblast proliferation. The positive outcomes confirm the efficacy of pb-/bm-fibrin clot, and bm-fibrin clot was proved to have much potential for tissue regeneration compared with pb-fibrin clot. The current study showed the potential of a strategy for regenerative medicine using bm-fibrin clot.

  6. Fibroblast Growth Factor 23 in Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2015-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.

  7. Platelet-Rich Plasma with Basic Fibroblast Growth Factor for Treatment of Wrinkles and Depressed Areas of the Skin.

    PubMed

    Kamakura, Tatsuro; Kataoka, Jiro; Maeda, Kazuhiko; Teramachi, Hideaki; Mihara, Hisayuki; Miyata, Kazuhiro; Ooi, Kouichi; Sasaki, Naomi; Kobayashi, Miyuki; Ito, Kouhei

    2015-11-01

    There are several treatments for wrinkles and depressed areas of the face, hands, and body. Hyaluronic acid is effective, but only for 6 months to 1 year. Autologous fat grafting may cause damage during tissue harvest. In this study, patients were injected with platelet-rich plasma plus basic fibroblast growth factor (bFGF). Platelet-rich plasma was prepared by collecting blood and extracting platelets using double centrifugation. Basic fibroblast growth factor diluted with normal saline was added to platelet-rich plasma. There were 2005 patients who received platelet-rich plasma plus bFGF therapy. Of the 2005 patients treated, 1889 were female and 116 were male patients; patients had a mean age of 48.2 years. Treated areas inlcuded 1461 nasolabial folds, 437 marionette lines, 1413 nasojugal grooves, 148 supraorbital grooves, 253 midcheek grooves, 304 foreheads, 49 temples, and 282 glabellae. Results on the Global Aesthetic Improvement Scale indicated that the level of patient satisfaction was 97.3 percent and the level of investigator satisfaction was 98.4 percent. The period for the therapy's effectiveness to become apparent was an average of 65.4 days. Platelet-rich plasma plus bFGF therapy resulted in an improved grade on the Wrinkle Severity Rating Scale. Improvement was 0.55 for a Wrinkle Severity Rating Scale grade of 2, 1.13 for a Wrinkle Severity Rating Scale grade of 3, 1.82 for a Wrinkle Severity Rating Scale grade of 4, and 2.23 for a Wrinkle Severity Rating Scale grade of 5. Platelet-rich plasma plus bFGF is effective in treating wrinkles and depressed areas of the skin of the face and body. The study revealed that platelet-rich plasma plus bFGF is an innovative therapy that causes minimal complications. Therapeutic, IV.

  8. Further purification of human pituitary-derived chondrocyte growth factor: heparin-binding and cross-reactivity with antiserum to basic FGF.

    PubMed

    Too, C K; Murphy, P R; Hamel, A M; Friesen, H G

    1987-05-14

    The previously described human pituitary-derived chondrocyte growth factor (CGF), mitogenic for rabbit fetal chondrocytes, was found to bind to heparin-Sepharose and was eluted with 1.5M NaCl. Further characterization of CGF demonstrated a molecular weight of 18-20 kD and cross-reactivity with antiserum to synthetic bovine basic fibroblast growth factor (FGF1-24). When human pituitaries were homogenized in 0.15 ammonium sulfate (pH 5.5) and the extract chromatographed on heparin-Sepharose, 98% of the mitogenic activity was adsorbed to heparin and eluted with 3M NaCl. These findings indicate that CGF is closely related or identical to basic FGF and that the bulk of mitogenic activity in the human pituitary extracts binds to heparin.

  9. Negative Pressure Wound Therapy Followed by Basic Fibroblast Growth Factor Spray as a Recovery Technique in Partial Necrosis of Distally Based Sural Flap for Calcaneal Osteomyelitis: A Case Report.

    PubMed

    Mikami, Taro; Kaida, Eriko; Yabuki, Yuichiro; Kitamura, Sho; Kokubo, Ken'ichi; Maegawa, Jiro

    2018-03-28

    The distally based sural flap is regarded as the first choice for reconstruction in the distal part of the lower leg because the flap is easy to raise, reliable in its blood supply, and prone to only a few complications. Limited data have investigated the details of treatment in cases of failure of distally based sural flaps. We report a case of calcaneal osteomyelitis in which a successful outcome was finally obtained with a partially necrosed, distally based sural flap using negative pressure wound therapy with basic fibroblast growth factor spray. The 2-year follow-up examination was uneventful. Moreover, the patient was able to walk freely with an ankle-foot orthosis in her house. This technique can be considered as a useful and effective option to recover unfavorable results of distally based sural flaps. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. [Regeneration of autologous tissue-engineered cartilage by using basic-fibroblast growth factor in vitro culture].

    PubMed

    Ding, Xiao-bang; Cheng, Ning-xin; Chen, Bing; Xia, Wan-yao; Cui, Lei; Liu, Wei; Cao, Yi-lin

    2004-05-01

    To investigate the effect of the basic fibroblast growth factor (b-FGF) to regenerate an autologous tissue-engineered cartilage in vitro. The Cells were harvested from the elastic auricular cartilage of swine,and were plated at the concentration of 1 x 10(4) cells/cm2 , studied in vitro at two different media enviroments: Group I contained Ham's F-12 with supplements and b-FGF, Group II contained Ham's F-12 only with supplements. The passage 2 cells (after 12.75 +/- 1.26 days) were harvested and mixed with 30% pluronic F-127/Ham's F-12 at the concentration of 50 x 10(6) cells/ml. It was injected subcutaneously at 0.5 ml per implant. The implants were harvested 8 weeks after the vivo culture and examined with the histological stains. The chondrocytes displayed morphologically similar to the fibroblasts in the media containing basic-FGF. The number of cell doublings (after 12.75 +/- 1.26 days) in vitro culture was as the following: Group I, 70; Group II, 5.4. Eight 8 weeks after the vivo autologous implantation, the average weight (g) and volume (cm3) in each group was as the following: Group I, 0.371 g/0.370 cm3 Group II, 0.179 g/0.173 cm3 (P < 0.01). With the b-FGF in vitro culture, the cells were expanded by 70 times after 2 weeks. Histologically, all of the engineered cartilage in the two groups were similar to the native elastic cartilage. These results indicate that the basic-FGF could be used positively to enhance the quality and quantity of the seeding cells for the generation of the well-engineered cartilage.

  11. Nintedanib and Azacitidine in Treating Participants With HOX Gene Overexpression Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2018-04-30

    Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2A; Fibroblast Growth Factor Basic Form Measurement; FLT3 Internal Tandem Duplication; Recurrent Adult Acute Myeloid Leukemia; Refractory Acute Myeloid Leukemia

  12. Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression.

    PubMed

    Kumar, Dhruv; New, Jacob; Vishwakarma, Vikalp; Joshi, Radhika; Enders, Jonathan; Lin, Fangchen; Dasari, Sumana; Gutierrez, Wade R; Leef, George; Ponnurangam, Sivapriya; Chavan, Hemantkumar; Ganaden, Lydia; Thornton, Mackenzie M; Dai, Hongying; Tawfik, Ossama; Straub, Jeffrey; Shnayder, Yelizaveta; Kakarala, Kiran; Tsue, Terance Ted; Girod, Douglas A; Van Houten, Bennett; Anant, Shrikant; Krishnamurthy, Partha; Thomas, Sufi Mary

    2018-05-16

    Despite aggressive therapies, head and neck squamous cell carcinoma (HNSCC) is associated with a less than 50% 5-year survival rate. Late stage HNSCC frequently consists of up to 80% cancer-associated fibroblasts (CAF). We previously reported that CAF-secreted hepatocyte growth factor (HGF) facilitates HNSCC progression, however very little is known about the role of CAFs in HNSCC metabolism. Here we demonstrate that CAF-secreted HGF increases extracellular lactate levels in HNSCC via upregulation of glycolysis. CAF-secreted HGF induced basic fibroblast growth factor (bFGF) secretion from HNSCC. CAFs were more efficient than HNSCC in using lactate as a carbon source. HNSCC-secreted bFGF increased mitochondrial oxidative phosphorylation (OXPHOS) and HGF secretion from CAFs. Combined inhibition of c-Met and FGFR significantly inhibited CAF-induced HNSCC growth in vitro and in vivo (p<0.001). Our cumulative findings underscore reciprocal signaling between CAF and HNSCC involving bFGF and HGF. This contributes to metabolic symbiosis and a targetable therapeutic axis involving c-Met and FGFR. Copyright ©2018, American Association for Cancer Research.

  13. Aloe vera oral administration accelerates acute radiation-delayed wound healing by stimulating transforming growth factor-β and fibroblast growth factor production.

    PubMed

    Atiba, Ayman; Nishimura, Mayumi; Kakinuma, Shizuko; Hiraoka, Takeshi; Goryo, Masanobu; Shimada, Yoshiya; Ueno, Hiroshi; Uzuka, Yuji

    2011-06-01

    Delayed wound healing is a significant clinical problem in patients who have had previous irradiation. This study investigated the effectiveness of Aloe vera (Av) on acute radiation-delayed wound healing. The effect of Av was studied in radiation-exposed rats compared with radiation-only and control rats. Skin wounds were excised on the back of rats after 3 days of local radiation. Wound size was measured on days 0, 3, 6, 9, and 12 after wounding. Wound tissues were examined histologically and the expressions of transforming growth factor β-1 (TGF-β-1) and basic fibroblast growth factor (bFGF) were examined by immunohistochemistry and reverse-transcription polymerase chain reaction. Wound contraction was accelerated significantly by Av on days 6 and 12 after wounding. Furthermore, the inflammatory cell infiltration, fibroblast proliferation, collagen deposition, angiogenesis, and the expression levels of TGF-β-1 and bFGF were significantly higher in the radiation plus Av group compared with the radiation-only group. These data showed the potential application of Av to improve the acute radiation-delayed wound healing by increasing TGF-β-1 and bFGF production. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds.

    PubMed

    Moncion, Alexander; Lin, Melissa; O'Neill, Eric G; Franceschi, Renny T; Kripfgans, Oliver D; Putnam, Andrew J; Fabiilli, Mario L

    2017-09-01

    The clinical translation of pro-angiogenic growth factors for treatment of vascular disease has remained a challenge due to safety and efficacy concerns. Various approaches have been used to design spatiotemporally-controlled delivery systems for growth factors in order to recapitulate aspects of endogenous signaling and thus assist in translation. We have developed acoustically-responsive scaffolds (ARSs), which are fibrin scaffolds doped with a payload-containing, sonosensitive emulsion. Payload release can be controlled non-invasively and in an on-demand manner using focused, megahertz-range ultrasound (US). In this study, we investigate the in vitro and in vivo release from ARSs containing basic fibroblast growth factor (bFGF) encapsulated in monodispersed emulsions. Emulsions were generated in a two-step process utilizing a microfluidic device with a flow focusing geometry. At 2.5 MHz, controlled release of bFGF was observed for US pressures above 2.2 ± 0.2 MPa peak rarefactional pressure. Superthreshold US yielded a 12.6-fold increase in bFGF release in vitro. The bioactivity of the released bFGF was also characterized. When implanted subcutaneously in mice, ARSs exposed to superthreshold US displayed up to 3.3-fold and 1.7-fold greater perfusion and blood vessel density, respectively, than ARSs without US exposure. Scaffold degradation was not impacted by US. These results highlight the utility of ARSs in both basic and applied studies of therapeutic angiogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs.

    PubMed

    Murakami, S; Takayama, S; Kitamura, M; Shimabukuro, Y; Yanagi, K; Ikezawa, K; Saho, T; Nozaki, T; Okada, H

    2003-02-01

    Several growth factors (or cytokines) have been recently investigated for their use as potential therapeutics for periodontal tissue regeneration. The objective of this study was to evaluate periodontal tissue regeneration, including new bone and cementum formation, following topical application of recombinant basic fibroblast growth factor (bFGF, FGF-2) to furcation class II defects. Twelve furcation class II bone defects were surgically created in six beagle dogs, then recombinant bFGF (30 micro g/site) + gelatinous carrier was topically applied to the bony defects. Six weeks after application, periodontal regeneration was analyzed. In all sites where bFGF was applied, periodontal ligament formation with new cementum deposits and new bone formation was observed histomorphometrically, in amounts greater than in the control sites. Basic FGF-applied sites exhibited significant regeneration as represented by the new bone formation rate (NBR) (83.6 +/- 14.3%), new trabecular bone formation rate (NTBR) (44.1 +/- 9.5%), and new cementum formation rate (NCR) (97.0 +/- 7.5%). In contrast, in the carrier-only sites, the NBR, NTBR, and NCR were 35.4 +/- 8.9%, 16.6 +/- 6.2%, and 37.2 +/- 15.1%, respectively. Moreover, no instances of epithelial down growth, ankylosis, or root resorption were observed in the bFGF-applied sites examined. The present results indicate that topical application of bFGF can enhance considerable periodontal regeneration in artificially created furcation class II bone defects of beagle dogs.

  16. Protective role of vitamin E preconditioning of human dermal fibroblasts against thermal stress in vitro.

    PubMed

    Butt, Hira; Mehmood, Azra; Ali, Muhammad; Tasneem, Saba; Anjum, Muhammad Sohail; Tarar, Moazzam N; Khan, Shaheen N; Riazuddin, Sheikh

    2017-09-01

    Oxidative microenvironment of burnt skin restricts the outcome of cell based therapies of thermal skin injuries. The aim of this study was to precondition human dermal fibroblasts with an antioxidant such as vitamin E to improve their survival and therapeutic abilities in heat induced oxidative in vitro environment. Fibroblasts were treated with 100μM vitamin E for 24h at 37°C followed by heat shock for 10min at 51°C in fresh serum free medium. Preconditioning with vitamin E reduced cell injury as demonstrated by decreased expression of annexin-V, cytochrome p450 (CYP450) mediated oxidative reactions, senescence and release of lactate dehydrogenase (LDH) accomplished by down-regulated expression of pro-apoptotic BAX gene. Vitamin E preconditioned cells exhibited remarkable improvement in cell viability, release of paracrine factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), stromal derived factor-1alpha (SDF-1α) and also showed significantly up-regulated levels of PCNA, VEGF, BCL-XL, FGF7, FGF23, FLNβ and Col7α genes presumably through activation of phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. The results suggest that pretreatment of fibroblasts with vitamin E prior to transplantation in burnt skin speeds up the wound healing process by improving the antioxidant scavenging responses in oxidative environment of transplanted burn wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  18. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    PubMed

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  19. Regulation of Transforming Growth Factor β1, Platelet-Derived Growth Factor, and Basic Fibroblast Growth Factor by Silicone Gel Sheeting in Early-Stage Scarring.

    PubMed

    Choi, Jaehoon; Lee, Eun Hee; Park, Sang Woo; Chang, Hak

    2015-01-01

    Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. In both the epidermis and the dermis, the expression of TGF-β1 (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). The levels of TGF-β1, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention.

  20. bFGF Promotes the Migration of Human Dermal Fibroblasts under Diabetic Conditions through Reactive Oxygen Species Production via the PI3K/Akt-Rac1- JNK Pathways

    PubMed Central

    Shi, Hongxue; Cheng, Yi; Ye, Jingjing; Cai, Pingtao; Zhang, Jinjing; Li, Rui; Yang, Ying; Wang, Zhouguang; Zhang, Hongyu; Lin, Cai; Lu, Xianghong; Jiang, Liping; Hu, Aiping; Zhu, Xinbo; Zeng, Qiqiang; Fu, Xiaobing; Li, Xiaokun; Xiao, Jian

    2015-01-01

    Fibroblasts play a pivotal role in the process of cutaneous wound repair, whereas their migratory ability under diabetic conditions is markedly reduced. In this study, we investigated the effect of basic fibroblast growth factor (bFGF) on human dermal fibroblast migration in a high-glucose environment. bFGF significantly increased dermal fibroblast migration by increasing the percentage of fibroblasts with a high polarity index and reorganizing F-actin. A significant increase in intracellular reactive oxygen species (ROS) was observed in dermal fibroblasts under diabetic conditions following bFGF treatment. The blockage of bFGF-induced ROS production by either the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase inhibitor diphenylene iodonium chloride (DPI) almost completely neutralized the increased migration rate of dermal fibroblasts promoted by bFGF. Akt, Rac1 and JNK were rapidly activated by bFGF in dermal fibroblasts, and bFGF-induced ROS production and promoted dermal fibroblast migration were significantly attenuated when suppressed respectively. In addition, bFGF-induced increase in ROS production was indispensable for the activation of focal adhesion kinase (FAK) and paxillin. Therefore, our data suggested that bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through increased ROS production via the PI3K/Akt-Rac1-JNK pathways. PMID:26078726

  1. Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-05-01

    Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.

  2. Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified λ-carrageenan oligosaccharides.

    PubMed

    Niu, Ting-Ting; Zhang, Dong-Sheng; Chen, Hai-Min; Yan, Xiao-Jun

    2015-07-10

    Inhibitors of angiogenesis and tumor metastasis are increasingly emerging as promising agents for cancer therapy. Here, we report λ-carrageenan oligosaccharides (λ-COs), highly-sulfated oligosaccharides acting as a basic fibroblast growth factor (bFGF) antagonist and heparanase inhibitor. λ-COs with degree of polymerization (DP) from 2 to 8 degraded by λ-carrageenase were separated and purified. The structures were identified by mass spectrometry. The activities of λ-COs are closely related with DP. λ-COs showed no cytotoxicity, but inactivated bFGF-induced cell proliferation; among them, λ-carraheptaose showed highest capability. Only λ-carraheptaose can effectively bind to bFGF. Binding kinetics showed that λ-carraheptaose and suramin had different binding modes, i.e., suramin displayed a fast association and fast dissociation, but λ-carraheptaose exhibited a slow association and slow dissociation. In addition, λ-COs showed the highest heparanase inhibitory ability and abolished the endothelial cell invasion. Thus, λ-COs may provide a tool to develop of new carbohydrate-based therapeutics against cancer and angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Properties of dehydrated human amnion/chorion composite grafts: Implications for wound repair and soft tissue regeneration.

    PubMed

    Koob, Thomas J; Lim, Jeremy J; Massee, Michelle; Zabek, Nicole; Denozière, Guilhem

    2014-08-01

    PURION(®) processed dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Marietta, GA) tissue products were analyzed for the effectiveness of the PURION(®) process in retaining the native composition of the amniotic membrane and preserving bioactivity in the resulting products. dHACM was analyzed for extracellular matrix (ECM) composition through histological staining and for growth factor content via multiplex ELISA arrays. Bioactivity was assessed by evaluating endogenous growth factor production by human dermal fibroblasts in response to dHACM and for thermal stability by mechanical tests and in vitro cell proliferation assays. Histology of dHACM demonstrated preservation of the native amnion and chorion layers with intact, nonviable cells, collagen, proteoglycan, and elastic fibers distributed in the individual layers. An array of 36 cytokines known to regulate processes involved in inflammation and wound healing were identified in dHACM. When treated with dHACM extracts, bioactivity was demonstrated through an upregulation of basic fibroblast growth factor, granulocyte colony-stimulating factor, and placental growth factor biosynthesis, three growth factors involved in wound healing, by dermal fibroblasts in vitro. After conditioning at temperatures ranging from -78.7 to +73.5°C, dHACM retained its tensile strength and ability to promote proliferation of dermal fibroblasts in vitro. Elution experiments demonstrated a soluble fraction of growth factors that eluted from the tissue and another fraction sequestered within the matrix. The PURION(®) process retains the native composition of ECM and signaling molecules and preserves bioactivity. The array of cytokines preserved in dHACM are in part responsible for its therapeutic efficacy in treating chronic wounds by orchestrating a "symphony of signals" to promote healing. © 2014 Wiley Periodicals, Inc.

  4. Platelet-Derived Growth Factor-BB Stimulates Fibronectin Gene Expression in Fibroblasts Isolated from Rat Thoracic Aorta

    DTIC Science & Technology

    1994-06-13

    MARYLAND 20814-4799 TEACHING HOSPITALS WALTER REED ARMY MEDtCA L CENTER APPROVAL SHEET NAVAL HOSPITAL. BETHESDA MALCOLM GROW AIR FORCE MEDICAL ...CENTER WILFORD HALL "IR FORCE MEDICAL CENTER Title of Dissertation: "Platelet-derived growth factor-BB stimulates fibronectin gene expression in...fascinating world of basic medical science. His dedication and pursuit of excellence in all facets of his work are standards by which I will guide my own

  5. How does the motor relearning program improve neurological function of brain ischemia monkeys?☆

    PubMed Central

    Yin, Yong; Gu, Zhen; Pan, Lei; Gan, Lu; Qin, Dongdong; Yang, Bo; Guo, Jin; Hu, Xintian; Wang, Tinghua; Feng, Zhongtang

    2013-01-01

    The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia. PMID:25206440

  6. Establishment and Characterization of a New Muscle Cell Line of Zebrafish (Danio rerio) as an In Vitro Model for Gene Expression Studies.

    PubMed

    Kumar, Amit; Singh, Neha; Goswami, Mukunda; Srivastava, J K; Mishra, Akhilesh K; Lakra, W S

    2016-01-01

    A new continuous fibroblast cell line was established from the muscle tissue of healthy juvenile Danio rerio (Zebrafish) through explant method. Fish cell lines serve as useful tool for investigating basic fish biology, as a model for bioassay of environmental toxicant, toxicity ranking, and for developing molecular biomarkers. The cell line was continuously subcultured for a period of 12 months (61 passages) and maintained at 28 °C in L-15 medium supplemented with 10% FBS and 10 ng/mL of basic fibroblastic growth factor (bFGF) without use of antibiotics. Its growth rate was proportional to the FBS concentration, with optimum growth at 15% FBS. DNA barcoding (16SrRNA and COX1) was used to authenticate the cell line. Cells were incubated with propidium iodide and sorted via flow cytometry to calculate the DNA content to confirm the genetic stability. Significant green fluorescent protein (GFP) signals confirmed the utility of cell line in transgenic and genetic manipulation studies. In vitro assay was performed with MTT to examine the growth potential of the cell line. The muscle cell line would provide a novel invaluable in vitro model to identify important genes to understand regulatory mechanisms that govern the molecular regulation of myogenesis and should be useful in biomedical research.

  7. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.

    PubMed

    Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C

    2002-04-08

    Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.

  8. Utilization of Microgravity Bioreactor for Differentiation and Growth of Human Vascular Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Chen, Chu-Huang; Pellis, Neal R.

    1997-01-01

    The goal was to delineate mechanisms of genetic responses to angiogenic stimulation of human coronary arterial and dermal microvascular endothelial cells during exposure to microgravity. The NASA-designed rotating-wall vessel was used to create a three-dimensional culture environment with low shear-stress and microgravity simulating that in space. The primary specific aim was to determine whether simulated microgravity enhances endothelial cell growth and whether the growth enhancement is associated by augmented expression of Basic Fibroblast Growth Factor (BFGF) and c-fos, an immediate early gene and component of the transcription factor AP-1.

  9. Intracellular signaling pathways required for rat vascular smooth muscle cell migration. Interactions between basic fibroblast growth factor and platelet-derived growth factor.

    PubMed Central

    Bilato, C; Pauly, R R; Melillo, G; Monticone, R; Gorelick-Feldman, D; Gluzband, Y A; Sollott, S J; Ziman, B; Lakatta, E G; Crow, M T

    1995-01-01

    Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been "locked" in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration. Images PMID:7560082

  10. Anti-Angiogenic Action of Neutral Endopeptidase

    DTIC Science & Technology

    2006-11-01

    natriuretic factor, substance P , bradykinin, oxytocin, Leu- and Met-enkephalins, neurotensin, bombesin, endothelin-1 (ET-1), and beta amyloid. Loss...NOTES 14. ABSTRACT: Please see attached. 15. SUBJECT TERMS Angiogenesis, Cell surface peptidase , Neutral endopeptidase, Basic fibroblast growth...effective therapies for patients with prostate cancer. Cell-surface peptidases are the guardians of the cell against small stimulatory peptides

  11. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    PubMed

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2011-10-01

    fibroblast   growth   factor   receptors  and  their  prognostic...AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth

  13. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer

  14. Effect of COX-2 (PGE2) and IL-6 on Prostate Cancer Bone Metastases

    DTIC Science & Technology

    2008-02-02

    to stimulate both bone targeting and bone reaction (4). Several factors, such as basic fibroblast growth factor (4), osteocalcin, bone sialoprotein (8...Proc Natl Acad Sci U S A 1990;87:75–9. 8. Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LWK. Human osteocalcin and bone sialoprotein medi- ating

  15. Expression of a functional recombinant human basic fibroblast growth factor from transgenic rice seeds.

    PubMed

    An, Na; Ou, Jiquan; Jiang, Daiming; Zhang, Liping; Liu, Jingru; Fu, Kai; Dai, Ying; Yang, Daichang

    2013-02-07

    Basic fibroblast growth factor (FGF-2) is an important member of the FGF gene family. It is widely used in clinical applications for scald and wound healing in order to stimulate cell proliferation. Further it is applied for inhibiting stem cell differentiation in cultures. Due to a shortage of plasma and low expression levels of recombinant rbFGF in conventional gene expression systems, we explored the production of recombinant rbFGF in rice grains (Oryza sativa bFGF, OsrbFGF). An expression level of up to 185.66 mg/kg in brown rice was obtained. A simple purification protocol was established with final recovery of 4.49% and resulting in a yield of OsrbFGF reaching up to 8.33 mg/kg OsrbFGF. The functional assay of OsrbFGF indicated that the stimulating cell proliferation activity on NIH/3T3 was the same as with commercialized rbFGF. Wound healing in vivo of OsrbFGF is equivalent to commercialized rbFGF. Our results indicate that rice endosperm is capable of expressing small molecular mass proteins, such as bFGF. This again demonstrates that rice endosperm is a promising system to express various biopharmaceutical proteins.

  16. Effect of trehalose coating on basic fibroblast growth factor release from tailor-made bone implants.

    PubMed

    Choi, Sungjin; Lee, Jongil; Igawa, Kazuyo; Suzuki, Shigeki; Mochizuki, Manabu; Nishimura, Ryohei; Chung, Ung-il; Sasaki, Nobuo

    2011-12-01

    Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.

  17. Basic fibroblast growth factor (bFGF) facilitates differentiation of adult dorsal root ganglia-derived neural stem cells toward Schwann cells by binding to FGFR-1 through MAPK/ERK activation.

    PubMed

    Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong

    2014-04-01

    Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.

  18. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications

    PubMed Central

    Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario

    2011-01-01

    BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281

  19. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  20. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  1. Growth characteristics of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies.

    PubMed

    Miller, C B; Wilson, D A; Keegan, K G; Kreeger, J M; Adelstein, E H; Ganjam, V K

    2000-01-01

    To determine if there is a difference in in vitro growth of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies. To determine the effects of a corticosteroid and monokine on in vitro growth of fibroblasts isolated from the trunk and distal aspect of the limb of horses and ponies. Growth of fibroblasts from tissues harvested from the trunk and limb were compared from horse and pony samples grown in control media and control media with triamcinolone or monokine added. Dermal and subcutaneous tissue from 22 horses and 17 ponies of various ages and breeds. Fibroblast growth was assessed by tritiated thymidine uptake using standard cell culture techniques. The effect of a monokine or triamcinolone plus control media were compared with control media for fibroblast growth. Fibroblast growth from tissues isolated from the horse limb was significantly less than growth from the horse trunk and the limb and trunk of ponies. Monokine was more effective than triamcinolone in suppressing fibroblast growth from tissues isolated from the trunk and limb in both horses and ponies. There are growth differences in fibroblasts isolated from the limb of horses compared with those isolated from the trunk and from the limb and trunk of ponies. The difference in fibroblast growth from tissues isolated from the trunk and limb of horses and ponies may provide evidence for the difference reported in the healing characteristics of limb wounds in horses and ponies. Influencing fibroblast growth may provide a key to controlling the development of exuberant granulation tissue in horses and ponies.

  2. Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saiga, Kenta; Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp; Yoshida, Aki

    Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5more » with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.« less

  3. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    PubMed

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor effectively protects skin cell from UVB, suggesting its potential use as a cosmetic or therapeutic agent against skin photoaging. Georg Thieme Verlag KG Stuttgart · New York.

  4. Moist exposed burn ointment promotes cutaneous excisional wound healing in rats involving VEGF and bFGF.

    PubMed

    Tang, Qian-Li; Han, Shan-Shan; Feng, Jing; Di, Jia-Qi; Qin, Wen-Xi; Fu, Jun; Jiang, Qiu-Yan

    2014-04-01

    Cutaneous delayed wounds are a challenging clinical problem, and vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) exhibit key roles in wound healing. Moist exposed burn ointment (MEBO), a Chinese burn ointment with a USA patented formulation, has been reported to promote chronic ischemic and neurogenic ulcer healing in patients; however, the underlying mechanisms remain unclear. In the present study, MEBO significantly promoted the formation of granulation tissue in cutaneous excisional wounds, shortened the time of wound healing, and increased neovascularization and the number of fibroblasts. Furthermore, as well as enhancing the protein expression, MEBO application also increased the gene expression of VEGF and bFGF. The results indicate that MEBO promotes cutaneous excisional wound healing by at least partially enhancing VEGF and bFGF production, implicating the potential uses of MEBO for delayed cutaneous wound healing.

  5. Establishment and characterization of a new fish cell line from head kidney of half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Zheng, Yuan; Wang, Na; Xie, Ming-Shu; Sha, Zhen-Xia; Chen, Song-Lin

    2012-12-01

    A new cell line (TSHKC) derived from half-smooth tongue sole (Cynoglossus semilaevis) head kidney was developed. The cell line was subcultured for 40 passages over a period of 360 days. The cell line was optimally maintained in minimum essential medium supplemented with HEPES, antibiotics, fetal bovine serum, 2-Mercaptoethanol (2-Me), sodium pyruvate and basic fibroblast growth factor. The suitable growth temperature for TSHKC cells was 24 °C, and microscopically, TSHKC cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TSHKC cell line had a normal diploid karyotype with 2n = 42, contained the heterogametic W chromosome. The TSHKC cell line was found to be susceptible to lymphocystis disease virus. The fluorescent signals were observed in TSHKC when the cells were transfected with green fluorescent protein and red fluorescent protein reporter plasmids.

  6. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells.

    PubMed

    Zbinden, Aline; Browne, Shane; Altiok, Eda I; Svedlund, Felicia L; Jackson, Wesley M; Healy, Kevin E

    2018-05-01

    Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.

  7. Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro☆

    PubMed Central

    Lu, Jiang; Lu, Kehuan; Li, Dongsheng

    2012-01-01

    In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789

  8. Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand?

    PubMed

    Aguirre Palma, Luis Mario; Gehrke, Iris; Kreuzer, Karl-Anton

    2015-03-01

    The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts

    NASA Technical Reports Server (NTRS)

    Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.; hide

    1998-01-01

    Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.

  10. Synthesis and structural study of two new heparin-like hexasaccharides.

    PubMed

    Lucas, Ricardo; Angulo, Jesús; Nieto, Pedro M; Martín-Lomas, Manuel

    2003-07-07

    Two new heparin-like hexasaccharides, 5 and 6, have been synthesised using a convergent block strategy and their solution conformations have been determined by NMR spectroscopy and molecular modelling. Both hexasaccharides contain the basic structural motif of the regular region of heparin but with negative charge distributions which have been designed to get insight into the mechanism of fibroblast growth factors (FGFs) activation.

  11. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...2009 4. TITLE AND SUBTITLE Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development 5a. CONTRACT NUMBER and Tumorigenesis...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS Fibroblast Growth Factor Binding Protein-1

  12. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds

    PubMed Central

    Subramony, Siddarth D.; Su, Amanda; Yeager, Keith; Lu, Helen H.

    2014-01-01

    Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation. PMID:24267271

  13. Non-coding Double-stranded RNA and Antimicrobial Peptide LL-37 Induce Growth Factor Expression from Keratinocytes and Endothelial Cells*

    PubMed Central

    Adase, Christopher A.; Borkowski, Andrew W.; Zhang, Ling-juan; Williams, Michael R.; Sato, Emi; Sanford, James A.

    2016-01-01

    A critical function for skin is that when damaged it must simultaneously identify the nature of the injury, repair barrier function, and limit the intrusion of pathogenic organisms. These needs are carried out through the detection of damage-associated molecular patterns (DAMPs) and a response that includes secretion of cytokines, chemokines, growth factors, and antimicrobial peptides (AMPs). In this study, we analyzed how non-coding double-stranded RNA (dsRNAs) act as a DAMP in the skin and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. dsRNA alone significantly increased the expression of multiple growth factors in keratinocytes, endothelial cells, and fibroblasts. Furthermore, RNA sequencing transcriptome analysis found that multiple growth factors increase when cells are exposed to both LL-37 and dsRNA, a condition that mimics normal wounding. Quantitative PCR and/or ELISA validated that growth factors expressed by keratinocytes in these conditions included, but were not limited to, basic fibroblast growth factor (FGF2), heparin-binding EGF-like growth factor (HBEGF), vascular endothelial growth factor C (VEGFC), betacellulin (BTC), EGF, epiregulin (EREG), and other members of the transforming growth factor β superfamily. These results identify a novel role for DAMPs and AMPs in the stimulation of repair and highlight the complex interactions involved in the wound environment. PMID:27048655

  14. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2008-10-01

    AD_________________ AWARD NUMBER: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis 5b. GRANT NUMBER W81XWH-06-1-0763 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibroblast growth factors (FGFs) are vital modulators of development as well as

  15. Basic fibroblast growth factor protects against influenza A virus-induced acute lung injury by recruiting neutrophils.

    PubMed

    Wang, Keyu; Lai, Chengcai; Li, Tieling; Wang, Cheng; Wang, Wei; Ni, Bing; Bai, Changqing; Zhang, Shaogeng; Han, Lina; Gu, Hongjing; Zhao, Zhongpeng; Duan, Yueqiang; Yang, Xiaolan; Xing, Li; Zhao, Lingna; Zhou, Shanshan; Xia, Min; Jiang, Chengyu; Wang, Xiliang; Yang, Penghui

    2017-11-07

    Influenza virus (IAV) infection is a major cause of severe respiratory illness that affects almost every country in the world. IAV infections result in respiratory illness and even acute lung injury and death, but the underlying mechanisms responsible for IAV pathogenesis have not yet been fully elucidated. In this study, the basic fibroblast growth factor 2 (FGF2) level was markedly increased in H1N1 virus-infected humans and mice. FGF2, which is predominately derived from epithelial cells, recruits and activates neutrophils via the FGFR2-PI3K-AKT-NFκB signaling pathway. FGF2 depletion or knockout exacerbated influenza-associated disease by impairing neutrophil recruitment and activation. More importantly, administration of the recombinant FGF2 protein significantly alleviated the severity of IAV-induced lung injury and promoted the survival of IAV-infected mice. Based on the results from experiments in which neutrophils were depleted and adoptively transferred, FGF2 protected mice against IAV infection by recruiting neutrophils. Thus, FGF2 plays a critical role in preventing IAV-induced lung injury, and FGF2 is a promising potential therapeutic target during IAV infection. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  16. [Effects of Guilin Watermelon Frost on the mRNA expressions of basic fibroblast growth factor in patients with uterine cervical columnar ectopy].

    PubMed

    Qiu-Yan, Jiang; Jin-Ling, Song; Hai-Xia, Mo

    2012-01-01

    To study the molecular biological effects of Guilin Watermelon Frost (GWF) on the mRNA expressions of basic fibroblast growth factor (bFGF) in patients with uterine uterine cervical columnar ectopy. One hundred and sixty patients with uterine cervical columnar ectopy were assigned to two groups by the random digit table. Patients in the treatment group were treated with local spray of GWF, while those in the control group were local applied with bFGF-collagen sponge. The mRNA expressions of bFGF of the uterine tissue were detected in the two groups before and after treatment using RT-PCR. Before treatment the mRNA expression of bFGF in the uterine cervical columnar ectopy was 0.55 +/- 0.10 in the treatment group and 0.58 +/- 0.13 in the control group, without insignificant difference (P > 0.05). After treatment it significantly increased in the two groups, being 0.82 +/- 0.17 and 0.78 +/- 0.15 respectively, showing statistical difference from before treatment (P < 0.01). But no statistical difference existed between the two groups after treatment (P > 0.05). GWF showed enhancement on the mRNA expressions of bFGF in patients with uterine cervical columnar ectopy.

  17. A novel bFGF-GH injection therapy for two patients with severe ischemic limb pain.

    PubMed

    Ito, Naomi; Saito, Shigeru; Yamada, Makiko Hardy; Koizuka, Shiro; Obata, Hideaki; Nishikawa, Koichi; Tabata, Yasuhiko

    2008-01-01

    Severe ischemic pain is difficult to treat with a single therapy. Although modern angiogenic therapies have been used in patients with peripheral arterial occlusive diseases, a regimen combining novel angiogenic therapy and classic nerve blocks, including sympathectomy, has not been discussed to date. In this case report, we present two patients with peripheral arterial occlusive disease who were first treated with medication and lumbar sympathectomy, and then with a novel gelatin hydrogel drug-delivery system loaded with basic fibroblast growth factor. The gelatin hydrogel combined with recombinant basic fibroblast growth factor was injected intramuscularly into the ischemic limbs. In the first patient, with arteriosclerosis obliterans, a foot ulcer was healed, and the original score for resting pain (visual analogue scale, 5/10) was decreased to 0/10. In the second patient, with Buerger's disease, a large toe ulcer was healed, and his resting pain (visual analogue scale, 8/10) was decreased to 1/10. Some other parameters, such as skin surface temperature, transcutaneous oxygen partial pressure, and pain-free walking distance, were also improved in both patients after the combined therapy. A multimodal approach is necessary to treat severe ischemic pain. Novel angiogenic therapy combined with nerve blocks seems to be a promising option in patients with severe pain.

  18. Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats.

    PubMed

    Tanajak, Pongpan; Pongkan, Wanpitak; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-05-01

    Propose: To investigate the temporal relationship between plasma fibroblast growth factor 21 levels, insulin resistance, metabolic dysfunction and cardiac fibroblast growth factor 21 resistance in long-term high-fat diet-induced obese rats. In total, 36 male Wistar rats were fed with either a normal diet or high-fat diet for 12 weeks. Blood was collected from the tail tip, and plasma was used to determine metabolic profiles and fibroblast growth factor 21 levels. Rats were sacrificed at weeks 4, 8 and 12, and the hearts were rapidly removed for the determination of cardiac fibroblast growth factor 21 signalling pathways. Body weight and plasma fibroblast growth factor 21 levels were increased after 4 weeks of consumption of a high-fat diet. At weeks 8 and 12, high-fat diet rats had significantly increased body weight and plasma fibroblast growth factor 21 levels, together with increased plasma insulin, HOMA index, area under the curve of glucose, plasma total cholesterol, plasma low-density lipoprotein cholesterol, serum malondialdehyde and cardiac malondialdehyde levels. However, plasma high-density lipoprotein cholesterol levels and cardiac fibroblast growth factor 21 signalling proteins (p-FGFR1 Tyr 154 , p-ERK1/2 Thr 202 /Tyr 204 and p-Akt Ser 473 ) were decreased, compared with normal diet rats. These findings suggest that plasma fibroblast growth factor 21 levels could be an early predictive biomarker prior to the development of insulin resistance, metabolic disturbance and cardiac fibroblast growth factor 21 resistance.

  19. Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.

    PubMed

    Yamashita, Hiromichi; Kamada, Daichi; Shirasuna, Koumei; Matsui, Motozumi; Shimizu, Takashi; Kida, Katsuya; Berisha, Bajram; Schams, Dieter; Miyamoto, Akio

    2008-09-01

    Active angiogenesis and progesterone (P) synthesis occur in parallel during development of the corpus luteum (CL). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are known to stimulate angiogenesis and P synthesis in vitro. The aim of the present study was to investigate the impact of bFGF or VEGF on the CL development in the cow by using a specific antibody against bFGF or VEGF. bFGF antibody, VEGF antibody, or saline as a control (n = 4 cows/treatment) were injected directly into the CL immediately after ovulation (Day 1), and the treatment was continued for 3 times/day over 7 days. Luteal biopsies were applied on Day 8 of the estrous cycle to determine the expression of genes associated with P synthesis and angiogenesis. Intraluteal injections with the bFGF antibody or the VEGF antibody markedly decreased the CL volume, plasma P concentration and StAR mRNA expression. bFGF antibody treatment decreased the mRNA expression of bFGF, FGF receptor-1, VEGF120, and angiopoietin (ANPT)-1, and increased ANPT-2/ANPT-1 ratio. However, VEGF antibody treatment decreased ANPT-2 mRNA expression and ANPT-2/ANPT-1 ratio. These results indicate that local neutralization of bFGF or VEGF changes genes regulating angiogenesis and P synthesis, and remarkably suppresses the CL size and P secretion during the development of CL in the cow, supporting the concept that bFGF and VEGF control the CL formation and function.

  20. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi; Karhemo, Piia-Riitta; Räsänen, Kati

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similarmore » secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.« less

  1. Betaglycan expression is transcriptionally up-regulated during skeletal muscle differentiation. Cloning of murine betaglycan gene promoter and its modulation by MyoD, retinoic acid, and transforming growth factor-beta.

    PubMed

    Lopez-Casillas, Fernando; Riquelme, Cecilia; Perez-Kato, Yoshiaki; Ponce-Castaneda, M Veronica; Osses, Nelson; Esparza-Lopez, Jose; Gonzalez-Nunez, Gerardo; Cabello-Verrugio, Claudio; Mendoza, Valentin; Troncoso, Victor; Brandan, Enrique

    2003-01-03

    Betaglycan is a membrane-anchored proteoglycan co-receptor that binds transforming growth factor beta (TGF-beta) via its core protein and basic fibroblast growth factor through its glycosaminoglycan chains. In this study we evaluated the expression of betaglycan during the C(2)C(12) skeletal muscle differentiation. Betaglycan expression, as determined by Northern and Western blot, was up-regulated during the conversion of myoblasts to myotubes. The mouse betaglycan gene promoter was cloned, and its sequence showed putative binding sites for SP1, Smad3, Smad4, muscle regulatory factor elements such as MyoD and MEF2, and retinoic acid receptor. Transcriptional activity of the mouse betaglycan promoter reporter was also up-regulated in differentiating C(2)C(12) cells. We found that MyoD, but not myogenin, stimulated this transcriptional activity even in the presence of high serum. Betaglycan promoter activity was increased by RA and inhibited by the three isoforms of TGF-beta. On the other hand, basic fibroblast growth factor, BMP-2, and hepatocyte growth factor/scatter factor, which are inhibitors of myogenesis, had little effect. In myotubes, up-regulated betaglycan was also detectable by TGF-beta affinity labeling and immunofluorescence microscopy studies. The latter indicated that betaglycan was localized both on the cell surface and in the ECM. Forced expression of betaglycan in C(2)C(12) myoblasts increases their responsiveness to TGF-beta2, suggesting that it performs a TGF-beta presentation function in this cell lineage. These results indicate that betaglycan expression is up-regulated during myogenesis and that MyoD and RA modulate its expression by a mechanism that is independent of myogenin.

  2. Characterization of release of basic fibroblast growth factor from bovine retinal endothelial cells in monolayer cultures.

    PubMed Central

    Brooks, R A; Burrin, J M; Kohner, E M

    1991-01-01

    Release of basic fibroblast growth factor (bFGF) was investigated in bovine retinal endothelial cells (BREC) maintained in monolayer culture. Confluent cells released bFGF into serum-free culture medium or medium containing 5% serum at rates of up to 105.2 and 61.3 pM/day respectively. bFGF release coincided with a decrease in monolayer cell number and increases in lactate dehydrogenase (LDH) concentration and cells and cell-debris particles in the medium, which suggested that cell damage and lysis were responsible for growth-factor release. Maximum bFGF release at 24 h (230 +/- 10 pM) occurred when the cells were treated with lipopolysaccharide (10 micrograms/ml), which also produced the greatest changes in parameters of cell damage. Sub-confluent cells showed little overt damage at 24 h, but released bFGF (78 +/- 20 pM) along with LDH, indicating that some cell lysis had occurred. Insulin-like growth factor 1 (IGF-1) was also released into serum-free culture medium at a rate of 0.34 nM/day, but not into medium containing serum or when the cells were treated with lipopolysaccharide. This implies that the mechanism of IGF-1 release is different from that of bFGF and is not related to cell damage. Culture medium conditioned by BREC stimulated the proliferation of these cells, as measured by an increase in their incorporation of [methyl-3H]thymidine from 7550 +/- 479 to 10467 +/- 924 d.p.m. These results demonstrate that bFGF is released from damaged BREC and that medium conditioned by these cells can stimulate retinal-endothelial-cell proliferation. This strengthens the case for an involvement of this growth factor in retinal neovascularization. Images Fig. 1. PMID:2039465

  3. A study of the effects of physical dermabrasion combined with chemical peeling in porcine skin.

    PubMed

    Kang, Boo Kyoung; Choi, Jeong Hwee; Jeong, Ki Heon; Park, Jong Min; Suh, Dong Hye; Lee, Sang Jun; Shin, Min Kyung

    2015-02-01

    Many comparative studies of chemical peeling and dermabrasion have been reported. However, rare basic scientific data about the immediate effects after combined treatment with chemical peeling and dermabrasion have been confirmed. The aim of this study is to evaluate the effect of the application of physical abrasion in combination with chemical peels. Three pigs were treated with physical abrasion using a water jet device in combination with an α-hydroxy acid solution, and the skin samples of the control received chemical peeling solution alone. The levels of growth factors and neuropeptides were measured with a multiplex immunoassay. Skin treated with physical dermabrasion combined with chemical peeling showed prominent detachment and swelling of the stratum corneum (SC), and fluid collection in the hair follicles. The mean cell count of CD34 positive fibroblasts and mast cells, levels of epidermal growth factor, fibroblast growth factor-2, vascular endothelial growth factor, and neurotensin, were significantly increased in the tissue treated with physical abrasion combined with a chemical peeling agent, compared to the skin in the control. We concluded that physical dermabrasion combined with chemical peeling can be more effective than chemical peeling alone, for the approach through transfollicular routes.

  4. Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.

    PubMed

    Cirillo, A; Arruti, C; Courtois, Y; Jeanny, J C

    1990-12-01

    We have investigated the localization of basic fibroblast growth factor (bFGF) binding sites during the development of the neural retina in the chick embryo. The specificity of the affinity of bFGF for its receptors was assessed by competition experiments with unlabelled growth factor or with heparin, as well as by heparitinase treatment of the samples. Two different types of binding sites were observed in the neural retina by light-microscopic autoradiography. The first type, localized mainly to basement membranes, was highly sensitive to heparitinase digestion and to competition with heparin. It was not developmentally regulated. The second type of binding site, resistant to heparin competition, appeared to be associated with retinal cells from the earliest stages studied (3-day-old embryo, stages 21-22 of Hamburger and Hamilton). Its distribution was found to vary during embryonic development, paralleling layering of the neural retina. Binding of bFGF to the latter sites was observed throughout the retinal neuroepithelium at early stages but displayed a distinct pattern at the time when the inner and outer plexiform layers were formed. During the development of the inner plexiform layer, a banded pattern of bFGF binding was observed. These bands, lying parallel to the vitreal surface, seemed to codistribute with the synaptic bands existing in the inner plexiform layer. The presence of intra-retinal bFGF binding sites whose distribution varies with embryonic development suggests a regulatory mechanism involving differential actions of bFGF on neural retinal cells.

  5. Blocking Infralimbic Basic Fibroblast Growth Factor (bFGF or FGF2) Facilitates Extinction of Drug Seeking After Cocaine Self-Administration.

    PubMed

    Hafenbreidel, Madalyn; Twining, Robert C; Rafa Todd, Carolynn; Mueller, Devin

    2015-12-01

    Drug exposure results in structural and functional changes in brain regions that regulate reward and these changes may underlie the persistence of compulsive drug seeking and relapse. Neurotrophic factors, such as basic fibroblast growth factor (bFGF or FGF2), are necessary for neuronal survival, growth, and differentiation, and may contribute to these drug-induced changes. Following cocaine exposure, bFGF is increased in addiction-related brain regions, including the infralimbic medial prefrontal cortex (IL-mPFC). The IL-mPFC is necessary for extinction, but whether drug-induced overexpression of bFGF in this region affects extinction of drug seeking is unknown. Thus, we determined whether blocking bFGF in IL-mPFC would facilitate extinction following cocaine self-administration. Rats were trained to lever press for intravenous infusions of cocaine before extinction. Blocking bFGF in IL-mPFC before four extinction sessions resulted in facilitated extinction. In contrast, blocking bFGF alone was not sufficient to facilitate extinction, as blocking bFGF and returning rats to their home cage had no effect on subsequent extinction. Furthermore, bFGF protein expression increased in IL-mPFC following cocaine self-administration, an effect reversed by extinction. These results suggest that cocaine-induced overexpression of bFGF inhibits extinction, as blocking bFGF during extinction permits rapid extinction. Therefore, targeted reductions in bFGF during therapeutic interventions could enhance treatment outcomes for addiction.

  6. Regenerative effect of basic fibroblast growth factor on periodontal healing in two-wall intrabony defects in dogs.

    PubMed

    Shirakata, Yoshinori; Taniyama, Katsuyoshi; Yoshimoto, Takehiko; Miyamoto, Motoharu; Takeuchi, Naoshi; Matsuyama, Takashi; Noguchi, Kazuyuki

    2010-04-01

    The aim of the present study was to evaluate the effect of a basic fibroblast growth factor (bFGF) candidate treatment on periodontal healing in two-wall intrabony defects in dogs. Two-wall intrabony defects (5 x 5 x 5 mm) were created surgically on the distal and mesial sides of bilateral mandibular second and fourth premolars in four Beagle dogs. bFGF, enamel matrix derivative (EMD) and platelet-derived growth factor with beta-tricalcium phosphate (PDGF/beta-TCP) treatments, and sham-surgery (OFD) were rotated among the four defects in each animal, EMD and PDGF/beta-TCP serving as benchmark controls. The animals were euthanized for radiographic and histologic evaluation at 8 weeks. Bone formation was significantly greater in the bFGF group (4.11 +/- 0.77 mm) than in the EMD (3.32 +/- 0.71 mm; p<0.05) and OFD (3.09 +/- 0.52 mm; p<0.01) groups. The EMD (4.59 +/- 1.19 mm) and PDGF/beta-TCP (4.66 +/- 0.7 mm) groups exhibited significantly greater cementum regeneration with periodontal ligament-like tissue than the OFD group (2.96 +/- 0.69 mm; p<0.01). No significant differences were observed between the bFGF and the PDGF/beta-TCP groups in any of the histometric parameters. The candidate bFGF treatment supported periodontal regeneration comparable with that of established benchmarks: EMD and PDGF/beta-TCP.

  7. Enhanced intestinal anastomotic healing with gelatin hydrogel incorporating basic fibroblast growth factor.

    PubMed

    Hirai, Kenjiro; Tabata, Yasuhiko; Hasegawa, Suguru; Sakai, Yoshiharu

    2016-10-01

    Anastomotic leakage is a common complication of intestinal surgery. In an attempt to resolve this issue, a promising approach is enhancement of anastomotic wound healing. A method for controlled release of basic fibroblast growth factor (bFGF) using a gelatin hydrogel was developed with the objective of investigating the effects of this technology on intestinal anastomotic healing. The small intestine of Wistar rats was cut, end-to-end anastomosis was performed and rats were divided into three groups: bFGF group (anastomosis wrapped with a hydrogel sheet incorporating bFGF), PBS group (wrapped with a sheet incorporating phosphate-buffered saline solution) and NT group (no additional treatment). Degradation profiles of gelatin hydrogels in vivo and histological examinations were performed using gelatin hydrogels with various water contents and bFGF concentrations to define the optimal bFGF dose and hydrogel biodegradability. The anastomotic wound healing process was evaluated by histological examinations, adhesion-related score and bursting pressure. The optimal water content of the hydrogel and bFGF dose was determined as 96% and 30 µg per sheet, respectively. Application of bFGF significantly enhanced neovascularization, fibroblast infiltration and collagen production around the anastomotic site when compared with the other groups. Bursting pressure was significantly increased in the bFGF group. No significant difference was observed in the adhesion-related score among the groups and no anastomotic obstruction and leakage were observed. Therefore controlled release of bFGF enhanced healing of an intestinal anastomosis during the early postoperative period and is a promising method to suppress anastomotic leakage. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Evaluation of the Effects of Platelet-Rich Plasma (PRP) Therapy Involved in the Healing of Sports-Related Soft Tissue Injuries

    PubMed Central

    Middleton, Kellie K.; Barro, Victor; Muller, Bart; Terada, Satosha; Fu, Freddie H.

    2012-01-01

    Abstract Musculoskeletal injuries are the most common cause of severe long-term pain and physical disability, and affect hundreds of millions of people around the world. One of the most popular methods used to biologically enhance healing in the fields of orthopaedic surgery and sports medicine includes the use of autologous blood products, namely, platelet rich plasma (PRP). PRP is an autologous concentration of human platelets to supra-physiologic levels. At baseline levels, platelets function as a natural reservoir for growth factors including platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and insulin-like growth factor (IGF-I). PRP is commonly used in orthopaedic practice to augment healing in sports-related injuries of skeletal muscle, tendons, and ligaments. Despite its pervasive use, the clinical efficacy of PrP therapy and varying mechanisms of action have yet to be established. Basic science research has revealed that PRP exerts is effects through many downstream events secondary to release of growth factors and other bioactive factors from its alpha granules. These effects may vary depending on the location of injury and the concentration of important growth factors involved in various soft tissue healing responses. This review focuses on the effects of PrP and its associated bioactive factors as elucidated in basic science research. Current findings in PRP basic science research, which have shed light on its proposed mechanisms of action, have opened doors for future areas of PrP research. PMID:23576936

  9. Purification, partial characterization, crystallization and preliminary X-ray diffraction of a novel cardiotoxin-like basic protein from Naja naja atra (South Anhui) venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong, Hui; Li, Yan; Lou, Xiao-hua

    2007-02-01

    A novel cardiotoxin-like basic protein from Naja naja atra was crystallized and diffraction data were collected to 2.35 Å resolution. A novel cardiotoxin-like basic protein was isolated from the venom of the Chinese cobra (Naja naja atra) from the south of Anhui in China. The protein inhibits the expression of vascular endothelial growth factor and basic fibroblast growth factor in human lung cancer cell line H1299 and induces the haemolysis of rabbit erythrocytes under low-lecithin conditions. After a two-step chromatographic purification, the resultant 7 kDa protein was crystallized by the hanging-drop vapour-diffusion method at room temperature. A complete data setmore » was collected to 2.35 Å resolution using an in-house X-ray diffraction system. The crystal belongs to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 43.2, c = 147.9 Å. There are two molecules in the crystallographic asymmetric unit.« less

  10. Serum-free keloid fibroblast cell culture: an in vitro model for the study of aberrant wound healing.

    PubMed

    Koch, R J; Goode, R L; Simpson, G T

    1997-04-01

    The purpose of this study was to develop an in vitro serum-free keloid fibroblast model. Keloid formation remains a problem for every surgeon. Prior evaluations of fibroblast characteristics in vitro, especially those of growth factor measurement, have been confounded by the presence of serum-containing tissue culture media. The serum itself contains growth factors, yet has been a "necessary evil" to sustain cell growth. The design of this study is laboratory-based and uses keloid fibroblasts obtained from five patients undergoing facial (ear lobule) keloid removal in a university-affiliated clinic. Keloid fibroblasts were established in primary cell culture and then propagated in a serum-free environment. The main outcome measures included sustained keloid fibroblast growth and viability, which was comparable to serum-based models. The keloid fibroblast cell cultures exhibited logarithmic growth, sustained a high cellular viability, maintained a monolayer, and displayed contact inhibition. Demonstrating model consistency, there was no statistically significant difference between the mean cell counts of the five keloid fibroblast cell lines at each experimental time point. The in vitro growth of keloid fibroblasts in a serum-free model has not been done previous to this study. The results of this study indicate that the proliferative characteristics described are comparable to those of serum-based models. The described model will facilitate the evaluation of potential wound healing modulators, and cellular effects and collagen modifications of laser resurfacing techniques, and may serve as a harvest source for contaminant-free fibroblast autoimplants. Perhaps its greatest utility will be in the evaluation of endogenous and exogenous growth factors.

  11. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells

    PubMed Central

    Cushing, Melinda C.; Mariner, Peter D.; Liao, Jo-Tsu; Sims, Evan A.; Anseth, Kristi S.

    2008-01-01

    This study aimed to identify signaling pathways that oppose connective tissue fibrosis in the aortic valve. Using valvular interstitial cells (VICs) isolated from porcine aortic valve leaflets, we show that basic fibroblast growth factor (FGF-2) effectively blocks transforming growth factor-β1 (TGF-β1)-mediated myofibroblast activation. FGF-2 prevents the induction of α-smooth muscle actin (αSMA) expression and the exit of VICs from the cell cycle, both of which are hallmarks of myofibroblast activation. By blocking the activity of the Smad transcription factors that serve as the downstream nuclear effectors of TGF-β1, FGF-2 treatment inhibits fibrosis in VICs. Using an exogenous Smad-responsive transcriptional promoter reporter, we show that Smad activity is repressed by FGF-2, likely an effect of the fact that FGF-2 treatment prevents the nuclear localization of Smads in these cells. This appears to be a direct effect of FGF signaling through mitogen-activated protein kinase (MAPK) cascades as the treatment of VICs with the MAPK/extracellular regulated kinase (MEK) inhibitor U0126 acted to induce fibrosis and blocked the ability of FGF-2 to inhibit TGF-β1 signaling. Furthermore, FGF-2 treatment of VICs blocks the development of pathological contractile and calcifying phenotypes, suggesting that these pathways may be utilized in the engineering of effective treatments for valvular disease.—Cushing, M. C., Mariner, P. D., Liao, J. T., Sims, E. A., Anseth, K. S. Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. PMID:18218921

  12. Approaches to improve angiogenesis in tissue-engineered skin.

    PubMed

    Sahota, Parbinder S; Burn, J Lance; Brown, Nicola J; MacNeil, Sheila

    2004-01-01

    A problem with tissue-engineered skin is clinical failure due to delays in vascularization. The aim of this study was to explore a number of simple strategies to improve angiogenesis/vascularization using a tissue-engineered model of skin to which small vessel human dermal microvascular endothelial cells were added. For the majority of these studies, a modified Guirguis chamber was used, which allowed the investigation of several variables within the same experiment using the same human dermis; cell type, angiogenic growth factors, the influence of keratinocytes and fibroblasts, mechanical penetration of the human dermis, the site of endothelial cell addition, and the influence of hypoxia were all examined. A qualitative scoring system was used to assess the impact of these factors on the penetration of endothelial cells throughout the dermis. Similar results were achieved using freshly isolated small vessel human dermal microvascular endothelial cells or an endothelial cell line and a minimum cell seeding density was identified. Cell penetration was not influenced by the addition of angiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor); similarly, including epidermal keratinocytes or dermal fibroblasts did not encourage endothelial cell entry, and neither did mechanical introduction of holes throughout the dermis. Two factors were identified that significantly enhanced endothelial cell penetration into the dermis: hypoxia and the site of endothelial cell addition. Endothelial cells added from the papillary surface entered into the dermis much more effectively than when cells were added to the reticular surface of the dermis. We conclude that this model is valuable in improving our understanding of how to enhance vascularization of tissue-engineered grafts.

  13. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-11-19

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  14. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2010-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2009 – 14 September 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth ...8 Appendices…………………………………………………………………………… 8 Supporting Data……………………………………………………………………... 8 Fibroblast Growth Factor -2: an

  15. FGFR4 Downregulation of Cell Adhesion in Prostate Cancer

    DTIC Science & Technology

    2008-09-01

    Fibroblast Growth Factor Receptor 4, is a member of the FGFR family of RTK ( receptor tyrosine kinase) growth factor receptors . A common...work supported by this award: Cancer Research Coordinating Committee (CRCC) Intersection of NF- B and Fibroblast Growth Factor Receptor Signaling...disease. REFERENCES 1. Wang J, Stockton DW, Ittmann M. The fibroblast growth factor receptor -4

  16. Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling.

    PubMed

    Lim, Y P; Low, B C; Lim, J; Wong, E S; Guy, G R

    1999-07-02

    FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.

  17. Spider angiomas in patients with liver cirrhosis: Role of vascular endothelial growth factor and basic fibroblast growth factor

    PubMed Central

    Li, Chung-Pin; Lee, Fa-Yauh; Hwang, Shinn-Jang; Lu, Rei-Hwa; Lee, Wei-Ping; Chao, Yee; Wang, Sung-Sang; Chang, Full-Young; Whang-Peng, Jacqueline; Lee, Shou-Dong

    2003-01-01

    AIM: To investigate whether vascular endothelial growth factor (VEGF) and basic fibroblastic growth factor (bFGF) are associated with spider angiomas in patients with liver cirrhosis. METHODS: Eighty-six patients with liver cirrhosis were enrolled and the number and size of the spider angiomas were recorded. Fifty-three healthy subjects were selected as controls. Plasma levels of VEGF and bFGF were measured in both the cirrhotics and the controls. RESULTS: Plasma VEGF and bFGF were increased in cirrhotics compared with controls (122 ± 13 vs. 71 ± 11 pg/mL, P = 0.003 for VEGF; 5.1 ± 0.5 vs. 3.4 ± 0.5 pg/mL, P = 0.022 for bFGF). In cirrhotics, plasma VEGF and bFGF were also higher in patients with spider angiomas compared with patients without spider angiomas (185 ± 28 vs. 90 ± 10 pg/mL, P = 0.003 for VEGF; 6.8 ± 1.0 vs. 4.1 ± 0.5 pg/mL, P = 0.017 for bFGF). Multivariate logistic regression showed that young age and increased plasma levels of VEGF and bFGF were the most significant predictors for the presence of spider angiomas in cirrhotic patients (odds ratio [OR] = 6.64, 95% confidence interval [CI] = 2.02-21.79, P = 0.002; OR = 4.35, 95%CI = 1.35-14.01, P = 0.014; OR = 5.66, 95%CI = 1.72-18.63, P = 0.004, respectively). CONCLUSION: Plasma VEGF and bFGF are elevated in patients with liver cirrhosis. Age as well as plasma levels of VEGF and bFGF are significant predictors for spider angiomas in cirrhotic patients. PMID:14669345

  18. Basic Fibroblast Growth Factor Activates Serum Response Factor Gene Expression by Multiple Distinct Signaling Mechanisms

    PubMed Central

    Spencer, Jeffrey A.; Major, Michael L.; Misra, Ravi P.

    1999-01-01

    Serum response factor (SRF) plays a central role in the transcriptional response of mammalian cells to a variety of extracellular signals. It is a key regulator of many cellular early response genes which are believed to be involved in cell growth and differentiation. The mechanism by which SRF activates transcription in response to mitogenic agents has been extensively studied; however, significantly less is known about regulation of the SRF gene itself. Previously, we identified distinct regulatory elements in the SRF promoter that play a role in activation, including a consensus ETS domain binding site, a consensus overlapping Sp/Egr-1 binding site, and two SRF binding sites. We further showed that serum induces SRF by a mechanism that requires an intact SRF binding site, also termed a CArG box. In the present study we demonstrate that in response to stimulation of cells by a purified growth factor, basic fibroblast growth factor (bFGF), the SRF promoter is upregulated by a complex pathway that involves at least two independent mechanisms: a CArG box-independent mechanism that is mediated by an ETS binding site, and a novel CArG box-dependent mechanism that requires both an Sp factor binding site and the CArG motifs for maximal stimulation. Our analysis indicates that the CArG/Sp element activation mechanism is mediated by distinct signaling pathways. The CArG box-dependent component is targeted by a Rho-mediated pathway, and the Sp binding site-dependent component is targeted by a Ras-mediated pathway. Both SRF and bFGF have been implicated in playing an important role in mediating cardiogenesis during development. The implications of our findings for SRF expression during development are discussed. PMID:10330138

  19. Extracellular nucleotides act through P2U purinoceptors to elevate [Ca2+]i and enhance basic fibroblast growth factor-induced proliferation in sheep chondrocytes.

    PubMed

    Kaplan, A D; Kilkenny, D M; Hill, D J; Dixon, S J

    1996-11-01

    Extracellular nucleotides interact with specific cell surface receptors to mediate a variety of biological responses, including elevation of the cytosolic free Ca2+ concentration ([Ca2+]i) in a number of cell types. Although extracellular ATP has been shown to affect chondrocyte function, the underlying mechanisms are poorly understood. In the present study, we investigated whether Ca2+-mobilizing purinoceptors are present on sheep chondrocytes. Chondrocytes were isolated from the proximal tibial growth plate of day 120-130 sheep fetuses. Early passage cells were loaded with indo-1 or fluo-3, and [Ca2+]i was monitored by fluorescence spectrophotometry. ATP (0.3-100 microM) induced transient elevation of [Ca2+]i, lasting approximately 1 min. Half-maximal elevation of [Ca2+]i was observed at an ATP concentration of 5.0 +/- 0.2 microM. Responses were still observed in the absence of extracellular Ca2+, and were abolished by pretreatment with thapsigargin, consistent with the release of Ca2+ from intracellular stores. Several nucleotides were tested for their ability to elevate [Ca2+]i. In order of potency, these were UTP approximately ATP > ADP approximately 2-methylthio-ATP. No responses were elicited by benzoylbenzoic-ATP, a P2Z-selective agonist; alpha,beta-methylene-ATP, an agonist selective for certain P2X purinoceptors; AMP; adenosine; or pyrophosphate (all at 100 microM), demonstrating specificity. Taken together, these data indicate that nucleotides elevate [Ca2+]i in chondrocytes through interaction with the P2U purinoceptor subtype. Although pretreatment with pertussis toxin virtually abolished the Ca2+ response to lysophosphatidic acid, the response to UTP was relatively insensitive, suggesting that P2U purinoceptors are not linked to a pertussis toxin-sensitive G protein in chondrocytes. In contrast, the Ca2+ response to UTP was markedly inhibited by the biologically active phorbol ester 12-O-tetradecanoyl-beta-phorbol 13-acetate, but not by the inactive control compound 4 alpha-phorbol 12,13-didecanoate, suggesting that a 12-O-tetradecanoyl-beta-phorbol 13-acetate-sensitive isoform of protein kinase C regulates P2U purinoceptor signaling in these cells. UTP (10 microM) enhanced the proliferative response to basic fibroblast growth factor. The response to basic fibroblast growth factor was also enhanced by ATP, but not by 2-methylthio-ATP, consistent with involvement of P2U purinoceptors. Nucleotides released during trauma, inflammation, or cell death may act through P2U purinoceptors to regulate chondrocyte function in an autocrine or paracrine manner.

  20. Rapamycin Inhibits Human Laryngotracheal Stenosis–derived Fibroblast Proliferation, Metabolism, and Function in Vitro

    PubMed Central

    Namba, Daryan R.; Ma, Garret; Samad, Idris; Ding, Dacheng; Pandian, Vinciya; Powell, Jonathan D.; Horton, Maureen R.; Hillel, Alexander T.

    2015-01-01

    Objective To determine if rapamycin inhibits the growth, function, and metabolism of human laryngotracheal stenosis (LTS)–derived fibroblasts. Study Design Controlled in vitro study. Setting Tertiary care hospital in a research university. Subjects and Methods Fibroblasts isolated from biopsies of 5 patients with laryngotracheal stenosis were cultured. Cell proliferation, histology, gene expression, and cellular metabolism of LTS-derived fibroblasts were assessed in 4 conditions: (1) fibroblast growth medium, (2) fibroblast growth medium with dimethylsulfoxide (DMSO), (3) fibroblast growth medium with 10−10 M (low-dose) rapamycin dissolved in DMSO, and (4) fibroblast growth medium with 10−9 M (high-dose) rapamycin dissolved in DMSO. Results The LTS fibroblast count and DNA concentration were reduced after treatment with high-dose rapamycin compared to DMSO (P = .0007) and normal (P = .0007) controls. Collagen I expression decreased after treatment with high-dose rapamycin versus control (P = .0051) and DMSO (P = .0093) controls. Maximal respiration decreased to 68.6 pMoles of oxygen/min/10 mg/protein from 96.9 for DMSO (P = .0002) and 97.0 for normal (P = .0022) controls. Adenosine triphosphate (ATP) production decreased to 66.8 pMoles from 88.1 for DMSO (P = .0006) and 83.3 for normal (P = .0003) controls. Basal respiration decreased to 78.6 pMoles from 108 for DMSO (P = .0002) and 101 for normal (P = .0014) controls. Conclusions Rapamycin demonstrated an anti-fibroblast effect by significantly reducing the proliferation, metabolism, and collagen deposition of human LTS fibroblast in vitro. Rapamycin significantly decreased oxidative phosphorylation of LTS fibroblasts, suggesting at a potential mechanism for the reduced proliferation and differentiation. Furthermore, rapamycin’s anti-fibroblast effects indicate a promising adjuvant therapy for the treatment of laryngotracheal stenosis. PMID:25754184

  1. Optimization of culture conditions for stem cells derived from human anterior cruciate ligament and bone marrow.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2014-01-01

    Tissue engineering with stem cells is a fascinating approach for treating anterior cruciate ligament (ACL) injuries. In our previous study, stem cells isolated from the human anterior cruciate ligament were shown to possess extensive proliferation and differentiation capabilities when treated with specific growth factors. However, optimal culture conditions and the usefulness of fetal bovine serum (FBS) as a growth factor in in vitro culture systems are yet to be determined. In this study, we compared the effects of different culture media containing combinations of various concentrations of FBS and the growth factors basic fibroblastic growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) on the proliferation and differentiation of ligament-derived stem cells (LSCs) and bone marrow mesenchymal stem cells (BMSCs). We found that α-MEM plus 10% FBS and bFGF was able to maintain both LSCs and BMSCs in a relatively undifferentiated state but with lower major extracellular matrix (ECM) component gene expression and protein production, which is beneficial for stem cell expansion. However, the differentiation and proliferation potentials of LSCs and BMSCs were increased when cultured in MesenPRO, a commercially available stem cell medium containing 2% FBS. MesenPRO in conjunction with TGF-β1 had the greatest ability to induce the differentiation of BMSCs and LSCs to ligament fibroblasts, which was evidenced by the highest ligamentous ECM gene expression and protein production. These results indicate that culture media and growth factors play a very important role in the success of tissue engineering. With α-MEM plus 10% FBS and bFGF, rapid proliferation of stem cells can be achieved. In this study, MesenPRO was able to promote differentiation of both LSCs and BMSCs to ligament fibroblasts. Differentiation was further increased by TGF-β1. With increasing understanding of the effects of different culture media and growth factors, manipulation of stem cells in the desired direction for ligament tissue engineering can be achieved.

  2. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation.

    PubMed

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-11-03

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1 H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.

  3. Psychological Stress Delays Periodontitis Healing in Rats: The Involvement of Basic Fibroblast Growth Factor

    PubMed Central

    Zhao, Ya-Juan; Li, Qiang; Cheng, Bai-Xiang; Zhang, Min; Chen, Yong-Jin

    2012-01-01

    Objective. To evaluate the effects of psychological stress on periodontitis healing in rats and the contribution of basic fibroblast growth factor (bFGF) expression to the healing process. Methods. Ninety-six rats were randomly distributed into control group, periodontitis group, and periodontitis plus stress group. Then, the rats were sacrificed at baseline and week(s) 1, 2, and 4. The periodontitis healing condition was assessed, and the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and bFGF were tested by immunohistochemistry. Results. The stressed rats showed reduced body weight gain, behavioral changes, and increased serum corticosterone and ACTH levels (P < 0.05). The surface of inflammatory infiltrate, alveolar bone loss, attachment loss, and expression of IL-1β and TNF-α in the stress group were higher than those in the periodontitis group at weeks 2 and 4 (P < 0.05). Rats with experimental periodontitis showed decreased bFGF expression (P < 0.05), and the recovery of bFGF expression in the stress group was slower than that in the periodontitis group (P < 0.05). Negative correlations between inflammatory cytokines and bFGF were detected. Conclusion. Psychological stress could delay periodontitis healing in rats, which may be partly mediated by downregulation of the expression of bFGF in the periodontal ligament. PMID:23326020

  4. Establishment and characterization of a testicular Sertoli cell line from olive flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Peng, Limin; Zheng, Yuan; You, Feng; Wu, Zhihao; Zou, Yuxia; Zhang, Peijun

    2016-09-01

    The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical "S" shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.

  5. Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone.

    PubMed

    Hafez, Pezhman; Jose, Shinsmon; Chowdhury, Shiplu R; Ng, Min Hwei; Ruszymah, B H I; Abdul Rahman Mohd, Ramzisham

    2016-01-01

    The alarming rate of increase in myocardial infarction and marginal success in efforts to regenerate the damaged myocardium through conventional treatments creates an exceptional avenue for cell-based therapy. Adult bone marrow mesenchymal stem cells (MSCs) can be differentiated into cardiomyocytes, by treatment with 5-azacytidine, thus, have been anticipated as a therapeutic tool for myocardial infarction treatment. In this study, we investigated the ability of basic fibroblastic growth factor (bFGF) and hydrocortisone as a combined treatment to stimulate the differentiation of MSCs into cardiomyocytes. MSCs were isolated from sternal marrow of patients undergoing heart surgery (CABG). The isolated cells were initially monitored for the growth pattern, followed by characterization using ISCT recommendations. Cells were then differentiated using a combination of bFGF and hydrocortisone and evaluated for the expression of characteristic cardiac markers such as CTnI, CTnC, and Cnx43 at protein level using immunocytochemistry and flow cytometry, and CTnC and CTnT at mRNA level. The expression levels and pattern of the cardiac markers upon analysis with ICC and qRT-PCR were similar to that of 5-azacytidine induced cells and cultured primary human cardiomyocytes. However, flow cytometric evaluation revealed that induction with bFGF and hydrocortisone drives MSC differentiation to cardiomyocytes with a marginally higher efficiency. These results indicate that combination treatment of bFGF and hydrocortisone can be used as an alternative induction method for cardiomyogenic differentiation of MSCs for future clinical applications. © 2015 International Federation for Cell Biology.

  6. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca)

    PubMed Central

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W.; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro. PMID:26375397

  7. Mesenchymal stem cell therapy for cutaneous radiation syndrome.

    PubMed

    Akita, Sadanori; Akino, Kozo; Hirano, Akiyoshi; Ohtsuru, Akira; Yamashita, Shunichi

    2010-06-01

    Systemic and local radiation injuries caused by nuclear power reactor accidents, therapeutic irradiation, or nuclear terrorism should be prevented or properly treated in order to improve wound management and save lives. Currently, regenerative surgical modalities should be attempted with temporal artificial dermis impregnated and sprayed with a local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Human mesenchymal stem cells and adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and were tested for differentiation and local stimulation effects in the radiation-exposed wounds. The perforator flap and artificial dermal template with growth factor were successful for reconstruction in patients who were suffering from complex underlying disease. Patients were uneventfully treated with minimal morbidities. In the experiments, the hMSCs are strongly proliferative even after 20 Gy irradiation in vitro. In vivo, 4 Gy rat whole body irradiation demonstrated that sustained marrow stromal (mesenchymal stem) cells survived in the bone marrow. Immediate artificial dermis application impregnated with cells and the cytokine over the 20 Gy irradiated skin and soft tissues demonstrated the significantly improved fat angiogenesis, architected dermal reconstitution, and less inflammatory epidermal recovery. Detailed understanding of underlying diseases and rational reconstructive procedures brings about good outcomes for difficult irradiated wound healing. Adipose-derived stem cells are also implicated in the limited local injuries for short cell harvesting and processing time in the same subject.

  8. Basic Fibroblast Growth Factor Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells in Giant Panda (Ailuropoda melanoleuca).

    PubMed

    Wang, Jun-Jie; Liu, Yu-Liang; Sun, Yuan-Chao; Ge, Wei; Wang, Yong-Yong; Dyce, Paul W; Hou, Rong; Shen, Wei

    2015-01-01

    It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.

  9. Extracellular matrix metalloproteinase inducer (EMMPRIN) expression correlates positively with active angiogenesis and negatively with basic fibroblast growth factor expression in epithelial ovarian cancer.

    PubMed

    Szubert, Sebastian; Szpurek, Dariusz; Moszynski, Rafal; Nowicki, Michal; Frankowski, Andrzej; Sajdak, Stefan; Michalak, Slawomir

    2014-03-01

    The primary aim of this paper was to evaluate the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its relationship with proangiogenic factors and microvessel density (MVD) in ovarian cancer. The study group included 58 epithelial ovarian cancers (EOCs), 35 benign ovarian tumors, and 21 normal ovaries. The expression of EMMPRIN, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) was assessed by ELISA of tissue homogenates. Antibodies against CD105, CD31, and CD34 were used to immunohistochemically assess MVD. We have found significantly higher EMMPRIN expression in EOC than in benign ovarian tumors and normal ovaries. Similarly, the VEGF expression was higher in EOC than in benign ovarian tumors and normal ovaries. By contrast, bFGF expression was lower in EOC than in benign ovarian tumors and ovary samples. EMMPRIN expression in EOC was directly correlated with VEGF expression and CD105-MVD, but inversely correlated with bFGF expression. Grade 2/3 ovarian cancers had increased expression of EMMPRIN and VEGF, increased CD105-MVD, and lowered expression of bFGF compared to grade 1 ovarian cancers. Moreover, EMMPRIN expression was higher in advanced (FIGO III and IV) ovarian cancer. The upregulation of EMMPRIN and VEGF expression is correlated with increased CD105-MVD and silenced bFGF, which suggests early and/or reactivated angiogenesis in ovarian cancer. Aggressive EOC is characterized by the following: high expression of EMMPRIN and VEGF, high CD105-MVD, and low expression of bFGF.

  10. Effect of a feeder layer composed of mouse embryonic and human foreskin fibroblasts on the proliferation of human embryonic stem cells.

    PubMed

    Yang, Hua; Qiu, Ying; Zeng, Xianghui; Ding, Yan; Zeng, Jianye; Lu, Kehuan; Li, Dongsheng

    2016-06-01

    The aim of the present study was to investigate the effects of feeder layers composed of various ratios of mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (hFFs) on the growth of human embryonic stem cells (hESCs). In addition, the secretion levels of basic fibroblast growth factor (bFGF) by the feeder layers was detected. MEFs and hFFs were treated with mitomycin C and seeded onto gelatin-coated plates at a density of 1×10 8 cells/l. The hFFs and MEFs were combined and plated at the following ratios: 0:1, 1:2, 1:1, 2:1 and 1:0. The secretion of bFGF by the various hFF/MEF ratio feeder layers was detected using an enzyme-linked immunosorbent assay. Subsequently, hESCs were cultured on top of the various feeder layers. The differences in the cellular morphology of the hESCs were observed using microscopy, and the expression levels alkaline phosphatase (AKP) and octamer-binding transcription factor 4 (OCT-4) were detected using immunohistochemical analysis as indicators of differentiation status. The results showed that the hFFs secreted substantial quantities of bFGF, while no bFGF was secreted by the MEFs. The clones of hESC growing on the feeder layer containing MEF or hFF alone were flat. By contrast, hESC clones grown on a mixed feeder layer containing hFFs + MEFs at a ratio of 1:1 exhibited an accumulated growth with a clear edge, as compared with the other ratios. In addition, hESCs growing on the feeder layer were positive for the expression of AKP and OCT-4. In summary, feeder layer hFFs secreted bFGF, while MEFs did not, indicating that bFGF is not the only factor that supports the growth and differentiation of hESCs. The optimal growth of hESCs was achieved using a mixed feeder layer composed of hFFs + MEFs at a ratio of 1:1.

  11. Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts.

    PubMed

    Subramaniyan, Sivakumar Allur; Hwang, Inho

    2017-01-01

    Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

  12. Fibroblast Growth Factor 23 and Kidney Disease Progression in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Chonchol, Michel; Gitomer, Berenice; Isakova, Tamara; Cai, Xuan; Salusky, Isidro; Pereira, Renata; Abebe, Kaleab; Torres, Vicente; Steinman, Theodor I; Grantham, Jared J; Chapman, Arlene B; Schrier, Robert W; Wolf, Myles

    2017-09-07

    Increases in fibroblast growth factor 23 precede kidney function decline in autosomal dominant polycystic kidney disease; however, the role of fibroblast growth factor 23 in autosomal dominant polycystic kidney disease has not been well characterized. We measured intact fibroblast growth factor 23 levels in baseline serum samples from 1002 participants in the HALT-PKD Study A ( n =540; mean eGFR =91±17 ml/min per 1.73 m 2 ) and B ( n =462; mean eGFR =48±12 ml/min per 1.73 m 2 ). We used linear mixed and Cox proportional hazards models to test associations between fibroblast growth factor 23 and eGFR decline, percentage change in height-adjusted total kidney volume, and composite of time to 50% reduction in eGFR, onset of ESRD, or death. Median (interquartile range) intact fibroblast growth factor 23 was 44 (33-56) pg/ml in HALT-PKD Study A and 69 (50-93) pg/ml in Study B. In adjusted models, annualized eGFR decline was significantly faster in the upper fibroblast growth factor 23 quartile (Study A: quartile 4, -3.62; 95% confidence interval, -4.12 to -3.12 versus quartile 1, -2.51; 95% confidence interval, -2.71 to -2.30 ml/min per 1.73 m 2 ; P for trend <0.001; Study B: quartile 4, -3.74; 95% confidence interval, -4.14 to -3.34 versus quartile 1, -2.78; 95% confidence interval, -2.92 to -2.63 ml/min per 1.73 m 2 ; P for trend <0.001). In Study A, higher fibroblast growth factor 23 quartiles were associated with greater longitudinal percentage increase in height-adjusted total kidney volume in adjusted models (quartile 4, 6.76; 95% confidence interval, 5.57 to 7.96 versus quartile 1, 6.04; 95% confidence interval, 5.55 to 6.54; P for trend =0.03). In Study B, compared with the lowest quartile, the highest fibroblast growth factor 23 quartile was associated with elevated risk for the composite outcome (hazard ratio, 3.11; 95% confidence interval, 1.84 to 5.25). Addition of fibroblast growth factor 23 to a model of annualized decline in eGFR≥3.0 ml/min per 1.73 m 2 did not improve risk prediction. Higher serum fibroblast growth factor 23 concentration was associated with kidney function decline, height-adjusted total kidney volume percentage increase, and death in patients with autosomal dominant polycystic kidney disease. However, fibroblast growth factor 23 did not substantially improve prediction of rapid kidney function decline. Copyright © 2017 by the American Society of Nephrology.

  13. The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer

    PubMed Central

    Niu, Yi-Nong; Wang, Kai; Jin, Song; Fan, Dong-Dong; Wang, Ming-Shuai; Xing, Nian-Zeng; Xia, Shu-Jie

    2016-01-01

    In a large clinical trial, finasteride reduced the rate of low-grade prostate cancer (PCa) while increasing the incidence of high-grade cancer. Whether finasteride promotes the development of high-grade tumors remains controversial. We demonstrated the role of fibroblasts and c-Jun in chemopreventive and therapeutic effect of finasteride on xenograft models of PCa. LNCaP (PC3) cells or recombinants of cancer cells and fibroblasts were implanted in male athymic nude mice treated with finasteride. Tumor growth, cell proliferation, apoptosis, p-Akt, and p-ERK1/2 were evaluated. In LNCaP (PC3) mono-grafted models, finasteride did not change the tumor growth. In recombinant-grafted models, fibroblasts and c-Jun promoted tumor growth; finasteride induced proliferation of LNCaP cells and repressed PC3 cell apoptosis. When c-Jun was knocked out, fibroblasts and/or finasteride did not promote the tumor growth. Finasteride inhibited p-Akt and p-ERK1/2 in mono-culture cancer cells while stimulating the same signaling molecules in the presence of fibroblasts. Reduced p-Akt and p-ERK1/2 were noted in the presence of c-Jun−/− fibroblasts. Fibroblasts and c-Jun promote PCa growth; finasteride further stimulates tumor growth with promoted proliferation, repressed apoptosis, and up-regulated pro-proliferative molecular pathway in the presence of fibroblasts and c-Jun. Stromal-epithelial interactions play critical roles in finasteride's therapeutic effects on PCa. Our findings have preliminary implications in using finasteride as a chemopreventive or therapeutic agent for PCa patients. PMID:26698232

  14. Expression of Inapproptriate Cadherins in Human Breast Carcinomas

    DTIC Science & Technology

    2000-08-01

    fibroblast growth factor receptor signaling. * We showed that cadherin 11 acts in a manner... fibroblast growth factor receptor signaling; and that cadherin 11 promotes epithelial cell motility in a manner similar to N-cadherin. 28 N-Cadherin...levels of E-cadherin; and that N- cadherin-dependent motility may be mediated by fibroblast growth factor receptor signaling. 14. SUBJECT TERMS

  15. Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.

    PubMed

    Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji

    2009-07-01

    It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low-dose irradiation enhanced and suppressed, respectively, the in vivo fibroblast-mediated growth promotion. This effect was, however, not observed in the in vitro experiment with conditioned medium or even that allowing cell-cell contact. The intrathyroidal stromal microenvironments, particularly fibroblasts, appear to enhance the growth of thyroid carcinomas through soluble factor(s), which is modulated differently by high- and low-dose irradiation. To our knowledge this is the first study to show epithelial-stromal interaction in thyroid carcinoma.

  16. Sequential growth factor application in bone marrow stromal cell ligament engineering.

    PubMed

    Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H

    2005-01-01

    In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.

  17. Randomized Clinical Trial of Sevelamer Carbonate on Serum Klotho and Fibroblast Growth Factor 23 in CKD.

    PubMed

    Liabeuf, Sophie; Ryckelynck, Jean-Philippe; El Esper, Najeh; Ureña, Pablo; Combe, Christian; Dussol, Bertrand; Fouque, Denis; Vanhille, Philippe; Frimat, Luc; Thervet, Eric; Mentaverri, Romuald; Prié, Dominique; Choukroun, Gabriel

    2017-12-07

    Epidemiologic studies suggest that higher serum phosphaturic hormone fibroblast growth factor 23 levels are associated with increase morbidity and mortality. The aim of the FGF23 Reduction Efficacy of a New Phosphate Binder in CKD Trial was to evaluate the effect of sevelamer carbonate on serum C-terminal fibroblast growth factor 23 levels in normophosphatemic patients with CKD stage 3b/4. Patients with CKD, eGFR between 45 and 15 ml/min per 1.73 m 2 , fasting serum phosphate concentration >3.1 mg/dl, and serum C-terminal fibroblast growth factor 23 >80 relative units/ml were included in our double-blind, placebo-controlled, randomized multicenter study. All patients received 100,000 IU cholecalciferol at time of randomization. Participants received either placebo or sevelamer carbonate 4.8 g daily during a 12-week period. Biologic parameters, including serum C-terminal fibroblast growth factor 23, intact fibroblast growth factor 23, and α -klotho, were evaluated at baseline and 12 weeks after inclusion. Of 96 screened patients, 78 (mean±SD age: 63±13 years old; 70% men; mean eGFR: 27±9 ml/min per 1.73 m 2 ) met the inclusion criteria. At baseline, mean eGFR was 27±9 ml/min per 1.73 m 2 , mean serum phosphate level was 3.8±0.5 mg/dl, and median (interquartile range) serum C-terminal fibroblast growth factor 23 level was 157 (120-241) relative units/ml. After 12 weeks of treatment, urinary phosphate-to-creatinine ratio fell significantly in the sevelamer group. The sevelamer and placebo groups did not differ significantly in terms of median change in serum C-terminal fibroblast growth factor 23 levels: the median (interquartile range) change was 38 (-13-114) relative units/ml in the placebo group and 37 (-1-101) relative units/ml in the sevelamer group ( P =0.77). There was no significant difference in serum intact fibroblast growth factor 23, α -klotho, or phosphate levels changes between the two groups. Serum total and LDL cholesterol levels fell significantly in the sevelamer group. In our double-blind, placebo-controlled, randomized study performed in normophosphatemic patients with CKD, a 12-week course of sevelamer carbonate significantly reduced phosphaturia without changing serum phosphorus but did not significantly modify serum C-terminal fibroblast growth factor 23 and intact fibroblast growth factor 23 or α -klotho levels. Copyright © 2017 by the American Society of Nephrology.

  18. Effects of Single Vitamin D₃ Injection (200,000 Units) on Serum Fibroblast Growth Factor 23 and Sclerostin Levels in Subjects with Vitamin D Deficiency.

    PubMed

    Zhang, Dongdong; Seo, Da Hea; Choi, Han Seok; Park, Hye Sun; Chung, Yoon Sok; Lim, Sung Kil

    2017-12-01

    Vitamin D deficiency remains common in all age groups and affects skeletal and non-skeletal health. Fibroblast growth factor 23 is a bone-derived hormone that regulates phosphate and 1,25-dihydroxyvitamin D homeostasis as a counter regulatory factor. 1,25-Dihydroxyvitamin D stimulates fibroblast growth factor 23 synthesis in bone, while fibroblast growth factor 23 suppresses 1,25-dihydroxyvitamin D production in the kidney. The aim of this study was to evaluate the effects of vitamin D₃ intramuscular injection therapy on serum fibroblast growth factor 23 concentrations, and several other parameters associated with bone metabolism such as sclerostin, dickkopf-1, and parathyroid hormone. A total of 34 subjects with vitamin D deficiency (defined by serum 25-hydroxyvitamin D levels below 20 ng/mL) were randomly assigned to either the vitamin D injection group (200,000 units) or placebo treatment group. Serum calcium, phosphate, urine calcium/creatinine, serum 25-hydroxyvitamin D, fibroblast growth factor 23, sclerostin, parathyroid hormone, and dickkopf-1 levels were serially measured after treatment. Comparing the vitamin D injection group with the placebo group, no significant changes were observed in serum fibroblast growth factor 23, parathyroid hormone, or dickkopf-1 levels. Serum sclerostin concentrations transiently increased at week 4 in the vitamin D group. However, these elevated levels declined later and there were no statistically significant differences as compared with baseline levels. Serum fibroblast factor 23, sclerostin, parathyroid hormone, and dickkopf-1 levels were not affected significantly by single intramuscular injection of vitamin D₃. Copyright © 2017 Korean Endocrine Society

  19. Effects of acidic fibroblast growth factor on cholinergic neurons of nucleus basalis magnocellularis and in a spatial memory task following cortical devascularization.

    PubMed

    Figueiredo, B C; Piccardo, P; Maysinger, D; Clarke, P B; Cuello, A C

    1993-10-01

    The ability of acidic fibroblast growth factor to elicit a trophic response in the nervous system of the rat was tested in vitro and in vivo. Treatment of cultured septal cells with acidic fibroblast growth factor resulted in an elongation of glial processes as assessed by immunostaining for glial fibrillary acidic protein. Increased choline acetyltransferase was also observed. The responses to acidic fibroblast growth factor in vivo were studied in rats trained in a spatial memory task, using the Morris water maze. Randomly selected animals were subjected to unilateral cortical devascularization. This lesion results in partial unilateral infarction of the neocortex, and in retrograde degeneration of the nucleus basalis magnocellularis. Animals were tested post-lesion for memory retention and were then killed for morphological studies. Intracerebroventricular administration of acidic fibroblast growth factor (0.6 microgram/h for seven days starting at surgery) prevented the lesion-induced impairment in this test, and reduced the nucleus basalis magnocellularis cholinergic degeneration, as assessed by morphometric choline acetyltransferase-like immunoreactivity and radioenzymatic assay for choline acetyltransferase activity. The preservation of the phenotype of injured cholinergic neurons of the nucleus basalis magnocellularis by acidic fibroblast growth factor was indicated by the maintenance of the cross-sectional area of cell bodies and mean length of neuritic processes one month after surgery. The effect of acidic fibroblast growth factor in non-cholinergic cells remains to be investigated. It is suggested that acidic fibroblast growth factor may alleviate the lesion-induced deficit in the memory retention task by preventing disruption of functional connections between nucleus basalis magnocellularis and intact cortical areas.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita

    2013-04-01

    Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being a source of PF, cryopreserved ovarian cortical tissue could also be a source of stem cells which retain the ability to spontaneously differentiate into oocyte-like structures in vitro. Results provide a paradigm shift in the basic understanding of FSH action and also offer a new perspective to the field of oncofertility research.

  1. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  2. The effect of tetrathiomolybdate on cytokine expression, angiogenesis, and tumor growth in squamous cell carcinoma of the head and neck.

    PubMed

    Teknos, Theodoros N; Islam, Mozaffarul; Arenberg, Douglas A; Pan, Quintin; Carskadon, Shannon L; Abarbanell, Aaron M; Marcus, Benjamin; Paul, Supriti; Vandenberg, Curtis D; Carron, Michael; Nor, Jacques E; Merajver, Sofia D

    2005-03-01

    To assess the effect of tetrathiomolybdate on cytokine expression, angiogenesis, and tumor growth rate in human squamous cell carcinoma (SCC). Three human SCC cell lines were used in this study for both in vitro and in vivo investigations. Conditioned media from untreated and tetrathiomolybdate-treated cell lines were compared with regard to cytokine levels, endothelial cell chemotaxis, endothelial cell tubule formation, and migration and the ability to induce angiogenesis in a rat aortic ring array. In vivo UM-SCC-38 was seeded onto tissue-engineered scaffolds and surgically implanted into the flanks of immunodeficient mice. Tumor growth rates and the level of angiogenesis were compared after 2 weeks of therapy. A tertiary care facility. In this study, we demonstrate that tetrathiomolybdate significantly decreases the secretion of interleukin 6 and basic fibroblast growth factor by head and neck SCC (HNSCC) cell lines in vitro. Furthermore, we demonstrate that tetrathiomolybdate significantly decreases the secretion of interleukin 6 and basic fibroblast growth factor by HNSCC cell lines in vitro. Furthermore, tetrathiomolybdate treatment of HNSCC cell lines results in significantly decreased endothelial cell chemotaxis, tubule formation, and neovascularization in a rat aortic ring assay. This in vitro evidence of decreased angiogenesis by tetrathiomolybdate is confirmed in vivo by using a severe combined immunodeficiency disorder mouse model in which tetrathiomolybdate therapy is shown to prevent human blood vessel formation. Finally, human HNSCC implanted into immunodeficient mice grow to a much larger size in untreated mice compared with those treated with 0.7 mL/kg per day of oral tetrathiomolybdate. These findings illustrate the ability of tetrathiomolybdate to down-regulate proinflammatory and proangiogenic cytokines in HNSCC. These observations are potentially exciting from a clinical perspective because a global decrease in these cytokines may decrease tumor aggressiveness and reverse the resistance to chemotherapy and radiation therapy seen in this tumor type.

  3. Expression of Inappropriate Cadherins in Human Breast Carcinomas

    DTIC Science & Technology

    2000-10-01

    fibroblast growth factor receptor ADHERINS constitute a family of transmembrane Hamaguchi et al., 1993). In addition, p120ct", originally...1994. expression is associated with poor prognosis in patients with prostate cancer. Alternative splicing in fibroblast growth factor receptor 2 is... fibroblast growth factor receptor signaling. This year we report that the extracellular domain of N-cadherin is responsible for this

  4. Uterine Wound Healing: A Complex Process Mediated by Proteins and Peptides.

    PubMed

    Lofrumento, Dario D; Di Nardo, Maria A; De Falco, Marianna; Di Lieto, Andrea

    2017-01-01

    Wound healing is the process by which a complex cascade of biochemical events is responsible of the repair the damage. In vivo, studies in humans and mice suggest that healing and post-healing heterogeneous behavior of the surgically wounded myometrium is both phenotype and genotype dependent. Uterine wound healing process involves many cells: endothelial cells, neutrophils, monocytes/macrophages, lymphocytes, fibroblasts, myometrial cells as well a stem cell population found in the myometrium, myoSP (side population of myometrial cells). Transforming growth factor beta (TGF-β) isoforms, connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha (TNF-β) are involved in the wound healing mechanisms. The increased TGF- β1/β3 ratio reduces scarring and fibrosis. The CTGF altered expression may be a factor involved in the abnormal scars formation of low uterine segment after cesarean section and of the formation of uterine dehiscence. The lack of bFGF is involved in the reduction of collagen deposition in the wound site and thicker scabs. The altered expression of TNF-β, VEGF, and PDGF in human myometrial smooth muscle cells in case of uterine dehiscence, it is implicated in the uterine healing process. The over-and under-expressions of growth factors genes involved in uterine scarring process could represent patient's specific features, increasing the risk of cesarean scar complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Fibroblast Senescence and Squamous Cell Carcinoma: How wounding therapies could be protective

    PubMed Central

    Travers, Jeffrey B.; Spandau, Dan F; Lewis, Davina A.; Machado, Christiane; Kingsley, Melanie; Mousdicas, Nico; Somani, Ally-Khan

    2014-01-01

    Background Squamous cell carcinoma (SCC), which has one of the highest incidences of all cancers in the United States, is an age-dependent disease as the majority of these cancers are diagnosed in people over 70 years of age. Recent findings have led to a new hypothesis on the pathogenesis of SCC. Objectives To evaluate the potential of preventive therapies to reduce the incidence of SCC in at-risk geriatric patients. Materials and Methods Survey of current literature on wounding therapies to prevent SCCs. Results This new hypothesis of SCC photocarcinogenesis states that senescent fibroblasts accumulate in geriatric dermis resulting in a reduction in dermal insulin-like growth factor-1 (IGF-1) expression. This lack of IGF-1 expression sensitizes epidermal keratinocytes to fail to suppress UVB-induced mutations leading to increased proclivity to photocarcinogenesis. Recent evidence suggests that dermal wounding therapies, specifically dermabrasion and fractionated laser resurfacing, can decrease the proportion of senescent dermal fibroblasts, increase dermal IGF-1 expression, and correct the inappropriate UVB response found in geriatric skin, thus protecting geriatric keratinocytes from UVB-induced SCC initiation. Conclusions In this review, we will discuss the translation of pioneering basic science results implicating commonly used dermal fibroblast rejuvenation procedures as preventative treatments for SCC. PMID:23437969

  6. Tensile forces drive a reversible fibroblast-to-myofibroblast transition during tissue growth in engineered clefts

    PubMed Central

    Kollmannsberger, Philip; Bidan, Cécile M.; Dunlop, John W. C.; Fratzl, Peter; Vogel, Viola

    2018-01-01

    Myofibroblasts orchestrate wound healing processes, and if they remain activated, they drive disease progression such as fibrosis and cancer. Besides growth factor signaling, the local extracellular matrix (ECM) and its mechanical properties are central regulators of these processes. It remains unknown whether transforming growth factor–β (TGF-β) and tensile forces work synergistically in up-regulating the transition of fibroblasts into myofibroblasts and whether myofibroblasts undergo apoptosis or become deactivated by other means once tissue homeostasis is reached. We used three-dimensional microtissues grown in vitro from fibroblasts in macroscopically engineered clefts for several weeks and found that fibroblasts transitioned into myofibroblasts at the highly tensed growth front as the microtissue progressively closed the cleft, in analogy to closing a wound site. Proliferation was up-regulated at the growth front, and new highly stretched fibronectin fibers were deposited, as revealed by fibronectin fluorescence resonance energy transfer probes. As the tissue was growing, the ECM underneath matured into a collagen-rich tissue containing mostly fibroblasts instead of myofibroblasts, and the fibronectin fibers were under reduced tension. This correlated with a progressive rounding of cells from the growth front inward, with decreased α–smooth muscle actin expression, YAP nuclear translocation, and cell proliferation. Together, this suggests that the myofibroblast phenotype is stabilized at the growth front by tensile forces, even in the absence of endogenously supplemented TGF-β, and reverts into a quiescent fibroblast phenotype already 10 μm behind the growth front, thus giving rise to a myofibroblast-to-fibroblast transition. This is the hallmark of reaching prohealing homeostasis. PMID:29349300

  7. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed. In an effort to functionalize collagen/gelatin-based biomaterials with growth factors, we have designed an adaptor protein corresponding to a collagen-binding domain fused to a coil peptide. In our strategy, this adaptor protein captures growth factors being tagged with the partner coil peptide in a specific, stable and oriented manner. We have found that the tethering of the Epidermal Growth Factor preserved its mitogenic and anti-apoptotic activity. In the case of the basic Fibroblast Growth Factor, the captured growth factor remained bioactive although its tethering via this adaptor protein modified its natural mode of interaction with gelatin. Altogether this strategy is easily adaptable to the simultaneous tethering of various growth factors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Basic Fibroblast Growth Factor Regulates Gene and Protein Expression Related to Proliferation, Differentiation, and Matrix Production of Human Dental Pulp Cells.

    PubMed

    Chang, Ya-Ching; Chang, Mei-Chi; Chen, Yi-Jane; Liou, Ji-Uei; Chang, Hsiao-Hua; Huang, Wei-Ling; Liao, Wan-Chuen; Chan, Chiu-Po; Jeng, Po-Yuan; Jeng, Jiiang-Huei

    2017-06-01

    Basic fibroblast growth factor (bFGF) plays differential effects on the proliferation, differentiation, and extracellular matrix turnover in various tissues. However, limited information is known about the effect of bFGF on dental pulp cells. The purposes of this study were to investigate whether bFGF influences the cell differentiation and extracellular matrix turnover of human dental pulp cells (HDPCs) and the related gene and protein expression as well as the role of the mitogen-activated protein kinase (MEK)/extracellular-signal regulated kinase (ERK) signaling pathway. The expression of fibroblast growth factor receptors (FGFRs) in HDPCs was also studied. The expression of FGFR1 and FGFR2 in HDPCs was investigated by reverse-transcription polymerase chain reaction. HDPCs were treated with different concentrations of bFGF. Cell proliferation was evaluated using the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Cell differentiation was evaluated using alkaline phosphatase (ALP) staining. Changes in messenger expression of cyclin B1 and tissue inhibitor of metalloproteinase (TIMP) 1 were determined by reverse-transcription polymerase chain reaction. Changes in protein expression of cdc2, TIMP-1, TIMP-2, and collagen I were determined by Western blotting. U0126 was used to clarify the role of MEK/ERK signaling. HDPCs expressed both FGFR1 and FGFR2. Cell viability was stimulated by 50-250 ng/mL bFGF. The expression and enzyme activities of ALP were inhibited by 10-500 ng/mL bFGF. At similar concentrations, bFGF stimulates cdc2, cyclin B1, and TIMP-1 messenger RNA and protein expression. bFGF showed little effect on TIMP-2 and partly inhibited collagen I expression of pulp cells. U0126 (a MEK/ERK inhibitor) attenuated the bFGF-induced increase of cyclin B1, cdc2, and TIMP-1. bFGF may be involved in pulpal repair and regeneration by activation of FGFRs to regulate cell growth; stimulate cdc2, cyclin B1, and TIMP-1 expression; and inhibit ALP. These events are partly associated with MEK/ERK signaling. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro.

    PubMed

    Joannes, Audrey; Brayer, Stéphanie; Besnard, Valérie; Marchal-Sommé, Joëlle; Jaillet, Madeleine; Mordant, Pierre; Mal, Hervé; Borie, Raphael; Crestani, Bruno; Mailleux, Arnaud A

    2016-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by an accumulation of extracellular matrix proteins and fibroblasts in the distal airways. Key developmental lung signaling pathways are reactivated in IPF. For instance, fibroblast growth factor 9 (FGF9) and FGF18, involved in epithelial-mesenchymal interactions, are critical for lung development. We evaluated the expression of FGF9, FGF18, and FGF receptors (FGFRs) in lung tissue from controls and IPF patients and assessed their effect on proliferation, survival, migration, and differentiation of control and IPF human lung fibroblasts (HLFs). FGF9, FGF18, and all FGFRs were present in the remodeled alveolar epithelium close to the fibroblast foci in IPF lungs. FGFR3 was generally detected in fibroblast foci by immunohistochemistry. In vitro, HLFs mainly expressed mesenchyme-associated FGFR isoforms (FGFR1c and FGFR3c) and FGFR4. FGF9 did not affect fibroblast proliferation, whereas FGF18 inhibited cell growth in control fibroblasts. FGF9 and FGF18 decreased Fas-ligand-induced apoptosis in control but not in IPF fibroblasts. FGF9 prevented transforming growth factor β1-induced myofibroblast differentiation. FGF9 and FGF18 increased the migratory capacities of HLF, and FGF9 actively modulated matrix metalloproteinase activity. In addition, FGFR3 inhibition by small interfering RNA impacted p-ERK activation by FGF9 and FGF18 and their effects on differentiation and migration. These results identify FGF9 as an antiapoptotic and promigratory growth factor on HLF, maintaining fibroblasts in an undifferentiated state. The biological effects of FGF9 and FGF18 were partially driven by FGFR3. FGF18 was a less potent molecule. Both growth factors likely contribute to the fibrotic process in vivo. Copyright © 2016 the American Physiological Society.

  10. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1991-01-01

    Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.

  11. Structure of a Multilayer Nanofilm To Increase the Encapsulation Efficiency of Basic Fibroblast Growth Factor.

    PubMed

    Han, Uiyoung; Hong, Jinkee

    2018-03-05

    In this study, we established the structure of a multilayer nanofilm that more efficiently encapsulates basic fibroblast growth factor (bFGF). First, a positively charged layer material was selected from biocompatible polymers such as collagen (Col), poly(beta-amino ester) (Poly2), and chitosan (Chi), while considering the film thickness. We then investigated the change in bFGF encapsulation efficiency when the multilayer structure was changed from a tetralayer to a trilayer. As a result, we obtained a highly improved bFGF encapsulation efficiency in the nanofilm using a positively charged layer formed by a blend of Col and Poly2 and a negatively charged poly(acrylic acid) (PAA) layer within a trilayered structure. In particular, we found that a significant amount of adsorbed bFGF was desorbed again during the film fabrication process of a tetralayered nanofilm. In the conventional nanofilm, bFGF was regarded as a polycation and formed a multilayer nanofilm that was composed of a tetralayered structure and was represented as (polycation/polyanion/bFGF/polyanion) n where n = number of repeated tetralayers. Here, we suggested that bFGF should not be considered a polycation, rather it should be considered as a small quantity of molecule that exists between the polyanion and polycation layers. In this case, the nanofilm is composed of repeating units of (polycation/polyanion/bFGF/polycation/polyanion), because the amount of adsorbed bFGF is considerably lower than that of other building blocks.

  12. Novel therapeutic approach for pulmonary emphysema using gelatin microspheres releasing basic fibroblast growth factor in a canine model.

    PubMed

    Chang, Sung Soo; Yokomise, Hiroyasu; Matsuura, Natsumi; Gotoh, Masashi; Tabata, Yasuhiko

    2014-08-01

    The prognosis of patients with emphysema is poor as there is no truly effective treatment. Our previous study showed that the alveolar space was smaller and the microvessel density was higher in a canine emphysema model after the intrapulmonary arterial administration of gelatin microspheres slowly releasing basic fibroblast growth factor (bFGF-GMS). In the present study, we evaluated the functional effect of injecting bFGF-GMS via the pulmonary artery in this canine pulmonary emphysema model. Using the porcine pancreatic elastase (PPE)-induced total emphysema model, we approximated the value of lung compliance with a Power Lab System, and performed blood gas analysis in a control group, a total emphysema group, and a bFGF group in which bFGF-GMS were injected toward the whole pulmonary artery via the femoral vein. Each group comprised five dogs. Lung compliance was higher in the total emphysema group than in the control group (p = 0.031), and the bFGF group showed no significant improvement of lung compliance vs. the total emphysema group (p = 0.112). PaO2 (partial pressure of oxygen in arterial blood) was improved by administering bFGF-GMS in the total emphysema model (p = 0.027). In the canine total emphysema model, blood gas parameters were improved by the whole pulmonary arterial administration of bFGF-GMS. This method has the potential to be an effective novel therapy for pulmonary emphysema.

  13. Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.

    PubMed

    Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P

    2012-06-01

    Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.

  14. Possible mechanism of the stimulatory effect of Artemisia leaf extract on the proliferation of cultured endothelial cells: involvement of basic fibroblast growth factor.

    PubMed

    Kaji, T; Kaga, K; Miezi, N; Hayashi, T; Ejiri, N; Sakuragawa, N

    1990-09-01

    To investigate the possible mechanism of the stimulatory effect of a hot water extract from Artemisia leaf (Artemisia princeps PANPANINI) (AFE) on the proliferation of endothelial cells, cells from bovine aorta were cultured for 72 h in RPMI1640 medium supplemented with 10% fetal calf serum in the presence of 5 micrograms/ml AFE. The AFE treatment significantly increased the cell number after culture, while in the presence of 10 micrograms/ml unfractionated heparin, AFE conversely decreased it. This implied that AFE enhanced the cell growth promotion by basic fibroblast growth factor (bFGF). The accumulation of bFGF was significantly increased in the culture medium, in the low-affinity (glycosaminoglycans-binding) fraction, and in the cell extract fraction, but was unchanged in the high-affinity (receptor-binding) fraction. The contents of [35S]sulfate-labeled glycosaminoglycans in both cell layer and the medium were not increased by AFE treatment. The proliferation of A10 cells, an established cell line of smooth muscle cells from murine aorta, was not stimulated by AFE. A10 cells did not produce a significant amount of bFGF in the presence or absence of AFE. Thus, the production of bFGF was considered to be involved in AFE stimulation of cell proliferation. In conclusion, it was suggested that AFE stimulated endothelial cell proliferation by increasing the production of bFGF rather than by an increase in the number of bFGF receptors and the content of glycosaminoglycans in the cell layer. The enhanced reserve of bFGF in the low-affinity fraction of cell layer and in the medium would cause the AFE-stimulated proliferation of endothelial cells.

  15. Vascular delay and administration of basic fibroblast growth factor augment latissimus dorsi muscle flap perfusion and function.

    PubMed

    Carroll, S M; Carroll, C M; Stremel, R W; Heilman, S J; Steffen, J M; Tobin, G R; Barker, J H

    2000-03-01

    Ischemia of the distal latissimus dorsi muscle flap occurs when the entire muscle is acutely elevated. Although this level of ischemia may not be critical if the muscle is to be used as a conventional muscle flap, the ischemia causes decreased distal muscle function if it is used for dynamic muscle flap transfer. This experiment was designed to determine whether or not the administration of exogenous basic fibroblast growth factor (bFGF), combined with a sublethal ischemic insult (i.e., vascular delay), would further augment muscle perfusion and function. Both latissimus dorsi muscles of nine canines were subjected to a bipedicle vascular delay procedure immediately followed by thoracodorsal intraarterial injection of 100 microg of bFGF on one side and by intraarterial injection of vehicle on the other. Ten days later, both latissimus dorsi muscles were raised as thoracodorsally based island flaps, with perfusion determined by laser-Doppler fluximetry. The muscles were wrapped around silicone chambers, simulating cardiomyoplasty, and stimulating electrodes were placed around each thoracodorsal nerve. The muscles were then subjected to an experimental protocol to determine muscle contractile function. At the end of the experiment, latissimus dorsi muscle biopsies were obtained for measurement of bFGF expression. The results demonstrated that the administration of 100 microg of bFGF immediately after the vascular delay procedure increases expression of native bFGF. In the distal and middle muscle segments, it also significantly increased muscle perfusion by approximately 20 percent and fatigue resistance by approximately 300 percent. The administration of growth factors may serve as an important adjuvant to surgical procedures using dynamic muscle flap transfers.

  16. Mitogenic signaling pathways of growth factors can be distinguished by the involvement of pertussis toxin-sensitive guanosine triphosphate-binding protein and of protein kinase C.

    PubMed Central

    Nishizawa, N; Okano, Y; Chatani, Y; Amano, F; Tanaka, E; Nomoto, H; Nozawa, Y; Kohno, M

    1990-01-01

    We have examined the possible involvements of pertussis toxin (PT)-sensitive guanosine triphosphate (GTP)-binding protein (Gp) and protein kinase C (PKC) in the mitogenic signaling pathways of various growth factors by the use of PT-pretreated and/or 12-O-tetradecanoyl phorbol-13-acetate (TPA)-pretreated mouse fibroblasts. Effects of PT pretreatment (inactivation of PT-sensitive Gp) and TPA pretreatment (depletion of PKC) on mitogen-induced DNA synthesis varied significantly and systematically in response to growth factors: mitogenic responses of cells to thrombin, bombesin, and bradykinin were almost completely abolished both in PT- and TPA-pretreated cells; responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and vanadate were reduced to approximately 50% both in PT- and TPA-pretreated cells compared with native cells; response to basic fibroblast growth factor (bFGF) was not affected in PT-pretreated cells but was inhibited to some extent in TPA-pretreated cells. Thus, growth factors examined have been classified into three groups with regard to the involvements of PT-sensitive Gp and PKC in their signal transduction pathways. Binding of each growth factor to its receptor was not affected significantly by pretreatment of cells with PT or TPA. Inhibitory effects of PT and TPA pretreatment on each mitogen-induced DNA synthesis were not additive, suggesting that the functions of PT-sensitive Gp and PKC lie on an identical signal transduction pathway. Although all three groups of mitogens activated PKC, signaling of each growth factor depends to a varying extent on the function of PKC. Our results indicate that a single peptide growth factor such as EGF, PDGF, or bFGF acts through multiple signaling pathways to induce cell proliferation. Images PMID:2129194

  17. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    PubMed Central

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  18. Establishment and characterization of a new marine fish cell line from ovary of barfin flounder ( Verasper moseri)

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Fan, Tingjun; Jiang, Guojian; Yang, Xiuxia

    2015-12-01

    A novel continuous ovary cell line from barfin flounder ( Verasper moseri) (BFO cell line) was established with its primitive application in transgenic expression demonstrated in this study. Primarily cultured cells grew well at 22°C in Dulbecco's modified Eagle medium/F12 medium (DMEM/F12, 1:1; pH 7.2) supplemented with 20% fetal bovine serum (FBS), carboxymethyl chitooligosaccharide, basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The primary BFO cells in fibroblastic morphology proliferated into a confluent monolayer about 2 weeks later, and were able to be subcultured. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 22°C. The BFO cells can be continuously subcultured to Passage 120 steadily with a population doubling time of 32.7 h at Passage 60. Chromosome analysis revealed that 72% of BFO cells at Passage 60 maintained the normal diploid chromosome number (46) with a normal karyotype of 2st+44t. The results of gene transformation indicated that green fluorescence protein (GFP) positively expressed in these cells after being transformed with pcDNA3.1-GFP. Therefore, a continuous and transformable BFO cell line was successfully established, which may serve as a useful tool for cytotechnological manipulation and transgenic modification of this fish.

  19. VEGF and Ki-67 Overexpression in Predicting Poor Overall Survival in Adenoid Cystic Carcinoma.

    PubMed

    Park, Seongyeol; Nam, Soo Jeong; Keam, Bhumsuk; Kim, Tae Min; Jeon, Yoon Kyung; Lee, Se-Hoon; Hah, J Hun; Kwon, Tack-Kyun; Kim, Dong-Wan; Sung, Myung-Whun; Heo, Dae Seog; Bang, Yung-Jue

    2016-04-01

    The purpose of this study was to evaluate potential prognostic factors in patients with adenoid cystic carcinoma (ACC). A total of 68 patients who underwent curative surgery and had available tissue were enrolled in this study. Their medical records and pathologic slides were reviewed and immunohistochemistry for basic fibroblast growth factor, fibroblast growth factor receptor (FGFR) 2, FGFR3, c-kit, Myb proto-oncogene protein, platelet-derived growth factor receptor beta, vascular endothelial growth factor (VEGF), and Ki-67 was performed. Univariate and multivariate analysis was performed for determination of disease-free survival (DFS) and overall survival (OS). In univariate analyses, primary site of nasal cavity and paranasal sinus (p=0.022) and Ki-67 expression of more than 7% (p=0.001) were statistically significant factors for poor DFS. Regarding OS, perineural invasion (p=0.032), high expression of VEGF (p=0.033), and high expression of Ki-67 (p=0.007) were poor prognostic factors. In multivariate analyses, primary site of nasal cavity and paranasal sinus (p=0.028) and high expression of Ki-67 (p=0.004) were independent risk factors for poor DFS, and high expression of VEGF (p=0.011) and Ki-67 (p=0.011) showed independent association with poor OS. High expression of VEGF and Ki-67 were independent poor prognostic factors for OS in ACC.

  20. Cyclic stretch induces upregulation of endothelin-1 with keratinocytes in vitro: Possible role in mechanical stress-induced hyperpigmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurita, Masakazu, E-mail: masakazukurita@gmail.com; Okazaki, Mutsumi; Fujino, Takashi

    2011-05-27

    Highlights: {yields} Influence of cyclic stretch on melanogenetic paracrine cytokines was investigated. {yields} Keratinocyte-derived endothelin-1 was upregulated with cyclic stretch. {yields} Degree of upregulation increases dose-dependently. {yields} This upregulation possibly plays a role in the pathogenesis of pigmented disorders. -- Abstract: The aim of this study was to investigate the possible pathological relation between mechanical stress and hyperpigmentation. We did this by investigating the influence of cyclic stretch on the expression of keratinocyte- and fibroblast-derived melanogenetic paracrine cytokines in vitro. Using primary human keratinocytes and fibroblasts, alterations of mRNA expression of melanogenetic paracrine cytokines due to cyclic stretch were investigatedmore » using a real-time polymerase chain reaction (PCR). The cytokines included basic fibroblast growth factor (bFGF), stem cell factor (SCF), granulocyte/macrophage colony-stimulating factor, interleukin-1{alpha}, and endothelin-1 (ET-1) for keratinocytes and bFGF, SCF, and hepatocyte growth factor for fibroblasts. The dose dependence of keratinocyte-derived ET-1 upregulation was further investigated using real-time PCR and an enzyme-linked immunosorbent assay. We also investigated the effects of cyclic stretch on the proliferation and differentiation of keratinocytes. Among the melanogenetic paracrine cytokines investigated, keratinocyte-derived ET-1 was consistently upregulated in all four cell lines. The degree of upregulation increased with the degree of the length and frequency of the stretch; in contrast, cell number and differentiation markers showed no obvious alterations with cyclic stretch. Keratinocyte-derived ET-1 upregulation possibly plays a significant role in the pathogenesis of pigmented disorders, such as friction melanosis, caused by mechanical stress.« less

  1. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.

    PubMed

    Park, Hyun-Jin; Salem, Mabrouka; Semlali, Abdelhabib; Leung, Kai P; Rouabhia, Mahmoud

    2017-07-01

    We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Bone marrow-derived cultured mast cells and peritoneal mast cells as targets of a growth activity secreted by BALB/3T3 fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozaki, K.; Kuriu, A.; Hirota, S.

    1991-03-01

    When fibroblast cell lines were cultured in contact with bone marrow-derived cultured mast cells (CMC), both NIH/3T3 and BALB/3T3 cell lines supported the proliferation of CMC. In contrast, when contact between fibroblasts and CMC was prohibited by Biopore membranes or soft agar, only BALB/3T3 fibroblasts supported CMC proliferation, suggesting that BALB/3T3 but not NIH/3T3 cells secreted a significant amount of a mast cell growth activity. Moreover, the BALB/3T3-derived growth activity induced the incorporation of (3H)thymidine by CMC and the clonal growth of peritoneal mast cells in methylcellulose. The mast cell growth activity appeared to be different from interleukin 3 (IL-3)more » and interleukin 4 (IL-4), because mRNAs for these interleukins were not detectable in BALB/3T3 fibroblasts. Although mast cells are genetically deficient in tissues of W/Wv mice, CMC did develop when bone marrow cells of W/Wv mice were cultured with pokeweed mitogen-stimulated spleen cell-conditioned medium. Because BALB/3T3 fibroblast-conditioned medium (BALB-FCM) did not induce the incorporation of (3H)thymidine by W/Wv CMC, the growth activity in BALB-FCM appeared to be a ligand for the receptor encoded by the W (c-kit) locus. Because CMC and peritoneal mast cells are obtained as homogeneous suspensions rather easily, these cells may be potentially useful as targets for the fibroblast-derived mast cell growth activity.« less

  3. Effects of Aloe vera on gap junctional intercellular communication and proliferation of human diabetic and nondiabetic skin fibroblasts.

    PubMed

    Abdullah, Kay M; Abdullah, Ahmed; Johnson, Mary Lynn; Bilski, Jerzy J; Petry, Kimberly; Redmer, Dale A; Reynolds, Lawrence P; Grazul-Bilska, Anna T

    2003-10-01

    To evaluate the effects of Aloe vera on gap junctional intercellular communication (GJIC) and proliferation of human skin fibroblasts in the presence or absence of basic fibroblast growth factor (FGF-2). In vitro study using human type II diabetic and nondiabetic skin fibroblast cell lines. Diabetic (n = 4) and nondiabetic (n = 4) human skin fibroblast cell lines were purchased from Coriell Institute for Medical Research (Camden, NJ). The cells were cultured with or without Aloe vera extract in increasing concentrations (0%, 0.625%, 1.25%, 2.5%, 5%, 10%, and 20%; v/v) in culture medium and with or without FGF-2 (30 ng/mL). GJIC was evaluated after 48-hour incubation with treatments by laser cytometry. Cells were counted after 72-hour incubation with treatments by using a Coulter counter. The rate of GJIC was greater (p < 0.01) for diabetic than for nondiabetic fibroblasts (3.5 +/- 0.1 versus 3.0 +/- 0.1% per minute during the first 4 minutes after photobleaching). GJIC was increased ( p < 0.05) for diabetic fibroblasts in the presence of 2.5% and 5% of Aloe vera extract (4.2 +/- 0.1 and 4.0 +/- 0.2 versus 3.5 +/- 0.1% per minute for control, respectively). FGF-2 stimulated (p < 0.01) GJIC for diabetic (4.0 +/- 0.1 versus 3.5 +/- 0.1% per minute for control) and nondiabetic (3.5 +/- 0.1 versus 3.0 +/- 0.1% per minute for control) fibroblasts. Aloe vera extract did not affect GJIC of nondiabetic fibroblast cultured without FGF-2. However, Aloe vera extract decreased (p < 0.05) FGF-2 stimulatory effects on GJIC of diabetic and nondiabetic fibroblasts. Proliferation of diabetic fibroblasts was increased (p < 0.05) by 1.25% and 2.5% Aloe vera extract in medium. Proliferation of nondiabetic fibroblasts was not affected by Aloe vera extract. FGF-2 increased (p < 0.05) proliferation of nondiabetic fibroblasts and FGF-2 did not affect proliferation of diabetic fibroblasts. Aloe vera extract decreased (p < 0.05) FGF-2 stimulatory effects on proliferation of nondiabetic fibroblasts. These data demonstrate that Aloe vera has the ability to stimulate GJIC and proliferation of human skin fibroblasts in diabetes mellitus. Furthermore, these results indicate that Aloe vera contains a compound(s) that neutralizes, binds with FGF-2 receptor, or otherwise alters signaling pathways for FGF-2. By affecting both GJIC and proliferation of diabetic fibroblasts, Aloe vera may improve wound healing in diabetes mellitus.

  4. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured inmore » the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.« less

  5. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature.

    PubMed

    Norton, Kerri-Ann; Jin, Kideok; Popel, Aleksander S

    2018-05-08

    A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates. Copyright © 2018. Published by Elsevier Ltd.

  6. Embryonic Stem Cells: Isolation, Characterization and Culture

    NASA Astrophysics Data System (ADS)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  7. Effect of basic fibroblast growth factor and transforming growth factor β1 on the healing of reconstructed dura by carbon dioxide laser soldering in minipigs.

    PubMed

    Zhong, Hong-liang; Wang, Zhen-min; Yang, Zhi-jun; Zhao, Fu; Wang, Bo; Wang, Zhong-cheng; Liu, Pi-nan

    2012-02-01

    Carbon dioxide (CO2) laser soldering is an alternative technique for tissue bonding. Basic fibroblast growth factor (bFGF) and transforming growth factor β(1) (TGFβ(1)) are two key factors for wound healing. This study was performed to demonstrate the efficacy of CO2 laser soldering for dural reconstruction and the effect of bFGF and TGFβ(1) on healing. In Part I, 10 minipigs were randomized into two equal groups. Dural defects were reconstructed by conventional fibrin glue bonding (group I(a)) or CO2 laser soldering (group I(b)). The reconstructed dura was subjected to burst pressure (BP) measurement and immunohistochemical staining after 1 week. In Part II, 36 minipigs were randomized into three equal groups. Dural reconstruction was achieved by CO2 laser soldering. Exogenous bFGF (group II(b)) or TGFβ(1) (group II(c)) was administered while group II(a) served as a control group. The specimens were subjected to BP measurement after 1, 2, 3, and 4 weeks, respectively. In Part I, the dura specimens displayed positive staining of only bFGF in group I(a) and of both bFGF and TGFβ(1) in group I(b). Group I(b) showed higher BP than group I(a) ((98.00 ± 21.41) mmHg vs. (70.80 ± 15.09) mmHg, respectively; P < 0.05). In Part II, BP of group II(c) was significantly higher than that of group II(a) (P < 0.01). The BP of group II(a) trended toward stabilization after 3 weeks of growth, while that of groups II(b) and II(c) trended toward stabilization after 2 weeks of growth. CO2 laser soldering is a reliable technique for dural reconstruction. The superior healing of dural reconstruction by CO2 laser soldering may be related to higher expression of bFGF and TGFβ(1), and CO2 lasers may stimulate their secretion. Exogenous bFGF or TGFβ(1) may improve healing by shortening the wound healing time, and exogenous TGFβ(1) may improve the tensile strength.

  8. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion.

    PubMed

    Ahluwalia, Neil; Grasberger, Paula E; Mugo, Brian M; Feghali-Bostwick, Carol; Pardo, Annie; Selman, Moisés; Lagares, David; Tager, Andrew M

    2016-06-01

    Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.

  9. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    PubMed

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Fibroblast Growth Factor-based Signaling through Synthetic Heparan Sulfate Blocks Copolymers Studied Using High Cell Density Three-dimensional Cell Printing*

    PubMed Central

    Sterner, Eric; Masuko, Sayaka; Li, Guoyun; Li, Lingyun; Green, Dixy E.; Otto, Nigel J.; Xu, Yongmei; DeAngelis, Paul L.; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.

    2014-01-01

    Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ∼40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model. PMID:24563485

  11. Fibroblast growth factor 10 upregulates the expression of mucins in rat conjunctival epithelial cells

    PubMed Central

    Ma, Mingming; Zhang, Zhengwei; Niu, Weiran; Zheng, Wenjing; Kelimu, Jiang

    2011-01-01

    Purpose This in vitro study aimed to gain insight into the function of fibroblast growth factor 10 (FGF10) on the ocular surface, especially its effect on mRNA expression of the mucins Muc1, Muc4, and Muc5ac, and mucin protein synthesis. Methods We isolated primary cultured rat conjunctival epithelial cells (Cj-ECs) and treated them with FGF10 (1 ng/ml, 10 ng/ml, 100 ng/ml, and 200 ng/ml) and basic fibroblast growth factor 2 (FGF2; 10 ng/ml) for 24 h or 48 h. The proliferation of Cj-ECs was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). mRNA levels of Muc1, Muc4, and Muc5ac were determined by real-time PCR. Synthesis levels of MUC1 and MUC4 were measured by western blot. Flow cytometry and Annexin V/PI double staining revealed degrees of apoptosis. Results In primary culture, the epithelial cells were compact and cobblestone pavement in shape. Most of the cells were positive for cytokeratin (CK). FGF10 and FGF2 significantly stimulated Muc1, Muc4, and Muc5ac mRNA expression, cell proliferation, and synthesis of MUC1 and MUC4 proteins. FGF10 was more potent than FGF2 in these regards. FGF10 did not restrain the apoptosis of Cj-ECs. Conclusions The results of this study demonstrated that FGF10 is associated with the promotion of Cj-EC proliferation and mucin production. The effects of FGF10 on Cj-ECs support a rationale to investigate its therapeutic potential for ocular surface diseases. PMID:22065934

  12. Fractional non-ablative laser-assisted drug delivery leads to improvement in male and female pattern hair loss.

    PubMed

    Bertin, Ana Carina Junqueira; Vilarinho, Adriana; Junqueira, Ana Lúcia Ariano

    2018-02-16

    Androgenetic alopecia, also known as male and female pattern hair loss, is a very prevalent condition; however, approved therapeutic options are limited. Fractionated laser has been proposed to assist in penetration of topical medications to the cutaneous tissue. We present four cases of androgenetic alopecia that underwent treatment with a non-ablative erbium glass fractional laser followed by the application of topical finasteride 0,05% and growth factors including basic fibroblast growth factor, insulin-like growth factor, vascular endothelial growth factor, and copper peptide 1%. During all laser treatment sessions, eight passes were performed, at 7 mJ, 3-9% of coverage and density of 120 mzt/cm 2 . A positive response was observed in all of the four patients. Photographs taken 2 weeks after the last session showed improvement in hair regrowth and density. No significant side effects were observed.

  13. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    PubMed

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  14. MAPs/bFGF-PLGA microsphere composite-coated titanium surfaces promote increased adhesion and proliferation of fibroblasts.

    PubMed

    Wang, Zhongshan; Wu, Guofeng; Bai, Shizhu; Feng, Zhihong; Dong, Yan; Zhou, Jian; Qin, Haiyan; Zhao, Yimin

    2014-06-01

    Infection and epithelial downgrowth are two major problems with maxillofacial transcutaneous implants, and both are mainly due to lack of stable closure of soft tissues at transcutaneous sites. Fibroblasts have been shown to play a key role in the formation of biological seals. In this work, titanium (Ti) model surfaces were coated with mussel adhesive proteins (MAPs) utilizing its unique adhesion ability on diverse inorganic and organic surfaces in wet environments. Prepared basic fibroblast growth factor (bFGF)-poly(lactic-co-glycolic acid) (PLGA) microspheres can be easily synthesized and combined onto MAPs-coated Ti surfaces, due to the negative surface charges of microspheres in aqueous solution, which is in contrast to the positive charges of MAPs. Titanium model surfaces were divided into three groups. Group A: MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces. Group B: MAPs-coated Ti surfaces. Group C: uncoated Ti surfaces. The effects of coated Ti surfaces on adhesion of fibroblasts, cytoskeletal organization, proliferation, and extracellular matrix (ECM)-related gene expressions were examined. The results revealed increased adhesion (P < 0.05), enhanced actin cytoskeletal organization, and up-regulated ECM-related gene expressions in groups A and B compared with group C. Increased proliferation of fibroblasts during five days of incubation was observed in group A compared with groups B and C (P < 0.05). Collectively, the results from this in vitro study demonstrated that MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces had the ability to increase fibroblast functionality. In addition, MAPs/bFGF-PLGA microsphere composite-coated Ti surfaces should be studied further as a method of promoting formation of stable biological seals around transcutaneous sites.

  15. Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence

    PubMed Central

    Benanti, Jennifer A.; Galloway, Denise A.

    2004-01-01

    Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073

  16. Is Fibroblast growth factor 23 the leading cause of increased mortality among chronic kidney disease patients? A narrative review.

    PubMed

    Sharaf El Din, Usama A; Salem, Mona M; Abdulazim, Dina O

    2017-05-01

    The death rate among chronic kidney disease patients is the highest compared to other chronic diseases. 60% of these fatalities are cardiovascular. Cardiovascular calcifications and chronic inflammation affect almost all chronic kidney disease patients and are associated with cardiovascular mortality. Fibroblast growth factor 23 is associated with vascular calcification. Systemic inflammation in chronic kidney disease patients is multifactorial. The role of systemic inflammation in the pathogenesis of vascular calcification was recently reappraised. Fibroblast growth factor 23 was accused as a direct stimulus of left ventricular hypertrophy, uremic inflammation, and impaired neutrophil function. This review will discuss the underlying mechanisms that underlie the link between Fibroblast growth factor 23 and increased mortality encountered among chronic kidney disease patients.

  17. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A cytokine axis regulates elastin formation and degradation

    PubMed Central

    Sproul, Erin P.; Argraves, W. Scott

    2013-01-01

    Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093

  19. Antiproliferative effect of retinoid compounds on Kaposi's sarcoma cells.

    PubMed Central

    Corbeil, J; Rapaport, E; Richman, D D; Looney, D J

    1994-01-01

    A panel of retinoid compounds (tretinoin, isotretinoin, acitretin, and RO13-1470) were tested for inhibitory activity against Kaposi's sarcoma cell (KSC) cultures in vitro. Tretinoin was found to be the most effective retinoid tested, inhibiting the growth of KSC in vitro while having no effect on the expression of interleukin-6 and basic fibroblast growth factor, two important cytokines involved in KSC growth. Tretinoin also did not appear to downregulate the expression of receptors for these two cytokines. At low concentrations (10(-9) M), acitretin and tretinoin selectively inhibited growth of early passage KSC. At higher concentrations (10(-6)-10(-5) M), retinoid treatment induced a pattern of DNA degradation and morphological changes in KSC characteristic of apoptosis (programmed cell death). The inhibitory activity of tretinoin on KSC growth was decreased if human serum (but not fetal calf serum) was present in the growth medium, and partially restored by removal of serum lipids. These data suggest that retinoids possess potential as therapeutic agents in Kaposi's sarcoma. Images PMID:8182129

  20. Burn Eschar Stimulates Fibroblast and Adipose Mesenchymal Stromal Cell Proliferation and Migration but Inhibits Endothelial Cell Sprouting

    PubMed Central

    Monsuur, Hanneke N.; van den Broek, Lenie J.; Jhingoerie, Renushka L.; Vloemans, Adrianus F. P. M.

    2017-01-01

    The majority of full-thickness burn wounds heal with hypertrophic scar formation. Burn eschar most probably influences early burn wound healing, since granulation tissue only forms after escharotomy. In order to investigate the effect of burn eschar on delayed granulation tissue formation, burn wound extract (BWE) was isolated from the interface between non-viable eschar and viable tissue. The influence of BWE on the activity of endothelial cells derived from dermis and adipose tissue, dermal fibroblasts and adipose tissue-derived mesenchymal stromal cells (ASC) was determined. It was found that BWE stimulated endothelial cell inflammatory cytokine (CXCL8, IL-6 and CCL2) secretion and migration. However, BWE had no effect on endothelial cell proliferation or angiogenic sprouting. Indeed, BWE inhibited basic Fibroblast Growth Factor (bFGF) induced endothelial cell proliferation and sprouting. In contrast, BWE stimulated fibroblast and ASC proliferation and migration. No difference was observed between cells isolated from dermis or adipose tissue. The inhibitory effect of BWE on bFGF-induced endothelial proliferation and sprouting would explain why excessive granulation tissue formation is prevented in full-thickness burn wounds as long as the eschar is still present. Identifying the eschar factors responsible for this might give indications for therapeutic targets aimed at reducing hypertrophic scar formation which is initiated by excessive granulation tissue formation once eschar is removed. PMID:28820426

  1. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium

    PubMed Central

    Vega-Hernández, Mónica; Kovacs, Attila; De Langhe, Stijn; Ornitz, David M.

    2011-01-01

    The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart. PMID:21750042

  2. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration.

    PubMed

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.

  3. Decreased levels of serum fibroblast growth factor-2 in children with autism spectrum disorder.

    PubMed

    Esnafoglu, Erman; Ayyıldız, Sema Nur

    2017-11-01

    The neurodevelopment and functioning of the central nervous system, and especially the cerebral cortex, have basic importance to understand neuropsychiatric disorders like autism. Fibroblast growth factor-2 (FGF-2) plays a very important role in the development and functioning of the cortex. FGF-2 is related to developmental processes in the central nervous system such as neurogenesis, migration, differentiation and survival. This study researched the serum FGF-2 levels in children with autism spectrum disorder (ASD). With this aim, 60 ASD children and 40 healthy controls were compared. We applied a sociodemographic form and the Childhood Autism Rating Scale (CARS) to each subject with their family to assess the severity of autism. Additionally, all subjects had routine laboratory tests performed. Serum samples were studied with ELISA. The results found that serum FGF-2 levels were statistically significantly low in the patient group compared to the healthy control group (p value 0.003). Additionally there was a statistically significant negative correlation identified between serum FGF-2 levels and CARS score for all subjects (r = -0.300; p = 0.02). In conclusion, FGF-2 may contribute to the etiopathogenesis of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sequential EMT-MET induces neuronal conversion through Sox2

    PubMed Central

    He, Songwei; Chen, Jinlong; Zhang, Yixin; Zhang, Mengdan; Yang, Xiao; Li, Yuan; Sun, Hao; Lin, Lilong; Fan, Ke; Liang, Lining; Feng, Chengqian; Wang, Fuhui; Zhang, Xiao; Guo, Yiping; Pei, Duanqing; Zheng, Hui

    2017-01-01

    Direct neuronal conversion can be achieved with combinations of small-molecule compounds and growth factors. Here, by studying the first or induction phase of the neuronal conversion induced by defined 5C medium, we show that the Sox2-mediated switch from early epithelial–mesenchymal transition (EMT) to late mesenchymal–epithelial transition (MET) within a high proliferation context is essential and sufficient for the conversion from mouse embryonic fibroblasts (MEFs) to TuJ+ cells. At the early stage, insulin and basic fibroblast growth factor (bFGF)-induced cell proliferation, early EMT, the up-regulation of Stat3 and Sox2, and the subsequent activation of neuron projection. Up-regulated Sox2 then induced MET and directed cells towards a neuronal fate at the late stage. Inhibiting either stage of this sequential EMT-MET impaired the conversion. In addition, Sox2 could replace sequential EMT-MET to induce a similar conversion within a high proliferation context, and its functions were confirmed with other neuronal conversion protocols and MEFs reprogramming. Therefore, the critical roles of the sequential EMT-MET were implicated in direct cell fate conversion in addition to reprogramming, embryonic development and cancer progression. PMID:28580167

  5. Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus).

    PubMed

    Wang, N; Wang, X L; Sha, Z X; Tian, Y S; Chen, S L

    2010-12-01

    A new marine fish cell line, TK, derived from turbot (Scophthalmus maximus) kidney, was established by the method of trypsin digestion and subcultured for more than 50 passages over a period of 300 days. The TK cells were maintained in Minimum Essential Medium Eagle (MEM) supplemented with HEPES, antibiotics, fetal bovine serum (FBS), 2-Mercaptoethanol (2-Me), and basic fibroblast growth factor (bFGF). The suitable growth temperature for TK cells was 24°C, and microscopically, TK cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TK cell line has a normal diploid karyotype with 2n=44. Two fish viruses LCDV-C (lymphocystis disease virus from China) and TRBIV (turbot reddish body iridovirus) were used to determine the virus susceptibility of TK cell line. The TK cell line was found to be susceptible to TRBIV, and the infection was confirmed by cytopathic effect (CPE) and transmission electron microscopy, which detected the viral particles in the cytoplasm of virus-infected cells. Finally, significant green fluorescent signals were observed when the TK cells were transfected with pEGFP-N3 vector, indicating its potential utility for fish virus study and genetic manipulation.

  6. Definition of Two Angiogenic Pathways by Distinct α_v Integrins

    NASA Astrophysics Data System (ADS)

    Friedlander, Martin; Brooks, Peter C.; Shaffer, Robert W.; Kincaid, Christine M.; Varner, Judith A.; Cheresh, David A.

    1995-12-01

    Angiogenesis depends on cytokines and vascular cell adhesion events. Two cytokine-dependent pathways of angiogenesis were shown to exist and were defined by their dependency on distinct vascular cell integrins. In vivo angiogenesis in corneal or chorioallantoic membrane models induced by basic fibroblast growth factor or by tumor necrosis factor-α depended on α_vβ_3, whereas angiogenesis initiated by vascular endothelial growth factor, transforming growth factor-α, or phorbol ester depended on α_vβ_5. Antibody to each integrin selectively blocked one of these pathways, and a cyclic peptide antagonist of both integrins blocked angiogenesis stimulated by each cytokine tested. These pathways are further distinguished by their sensitivity to calphostin C, an inhibitor of protein kinase C that blocked angiogenesis potentiated by α_vβ_5 but not by α_vβ_3.

  7. Bioactive factors for tissue regeneration: state of the art.

    PubMed

    Ohba, Shinsuke; Hojo, Hironori; Chung, Ung-Il

    2012-07-01

    THERE ARE THREE COMPONENTS FOR THE CREATION OF NEW TISSUES: cell sources, scaffolds, and bioactive factors. Unlike conventional medical strategies, regenerative medicine requires not only analytical approaches but also integrative ones. Basic research has identified a number of bioactive factors that are necessary, but not sufficient, for organogenesis. In skeletal development, these factors include bone morphogenetic proteins (BMPs), transforming growth factor β TGF-β, Wnts, hedgehogs (Hh), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), SRY box-containing gene (Sox) 9, Sp7, and runt-related transcription factors (Runx). Clinical and preclinical studies have been extensively performed to apply the knowledge to bone and cartilage regeneration. Given the large number of findings obtained so far, it would be a good time for a multi-disciplinary, collaborative effort to optimize these known factors and develop appropriate drug delivery systems for delivering them.

  8. Dirt or Diabetes

    DTIC Science & Technology

    2018-02-15

    possible mutation in the fibroblast growth factor receptor 3 gene, and type 3, the most common, associated with insulin resistant states and...like growth factor receptor 1 (IGFR1), fibroblast growth factor receptors (FGFR), and epidermal growth factor receptor (EGFR), have all been proposed...as contributing factors. EGFR is a pivotal receptor because it interacts with several other growth factors (PDGF, TF-B, protein kinase C). They

  9. Outgrowth of fibroblast cells from goat skin explants in three different culture media and the establishment of cell lines.

    PubMed

    Singh, Mahipal; Sharma, Anil K

    2011-02-01

    Three different commercially available media, known to support human and porcine-specific fibroblast cultures, were tested for their growth potential on goat skin explants. Although outgrowth of fibroblasts was observed in all media tested, irrespective of breed, porcine-specific media exhibited higher rate of growth. Using this media, three fibroblast cell lines (GSF289, GSF737, and GSF2010) from ear skin explants of normal healthy dairy goats of Kiko and Saanen breed were successfully established in culture. Liquid nitrogen stocks of these frozen cells had a viability rate of 96.2% in in vitro cultures. These cells were morphologically indistinguishable from the cell stocks prior to freezing. Analysis of the growth of a fifth passage culture revealed an 'S' shaped growth curve with a population doubling time of 25 h. The cell lines were found negative for microbial, fungal, and mycoplasma contaminations. These goat skin fibroblast lines and the simple method of their isolation and freezing with high rate of viability will provide additional tools to study molecular mechanisms that regulate fibroblast function and for genetic manipulation of small ruminants.

  10. Down-Regulation by Resveratrol of Basic Fibroblast Growth Factor-Stimulated Osteoprotegerin Synthesis through Suppression of Akt in Osteoblasts

    PubMed Central

    Kuroyanagi, Gen; Otsuka, Takanobu; Yamamoto, Naohiro; Matsushima-Nishiwaki, Rie; Nakakami, Akira; Mizutani, Jun; Kozawa, Osamu; Tokuda, Haruhiko

    2014-01-01

    It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation. PMID:25290095

  11. Three-dimensional porous poly-DL-lactide/basic fibroblast growth factor composites for bone defect repair: an experimental study.

    PubMed

    Min, Shao-xiong; Jin, An-min; Tong, Bin-hui; Zhu, Li-xin; Tian, Jing

    2003-04-01

    To investigate the osteoinductive ability of the composites consisting of basic fibroblast growth factor (bFGF) and porous poly-DL-lactide (PDLLA) for the development of a new absorbable osteosynthesis material. Highly porous foams of PDLLA with the pore size ranging from 150 to 300 microm were prepared by a solvent-casting, particulate-leaching technique with NaCl as the leachable component. Animal models of radial diaphyseal defects of 1.0 cm with complete removal of the periosteum were induced in 45 rabbits, which were randomly divided into 3 groups to receive the defect repair with PDLLA and PDLLA/bFGF respectively, leaving one group untreated to serve as the control group. The implant specimens were harvested at 2, 4, 8, and 12 weeks respectively after the surgery and X-ray, histological and scanning electron microscopic (SEM) examinations were performed to evaluate the effectiveness of defect repair. At 8 and 12 weeks after implantation, biomechanical test (for three-point bending strength) was employed to study the quality of bone formation. PDLLA/bFGF composite stimulated more bone formation and had higher bending strength than PDLLA (P<0.05), and the bone formation induced by both materials was significantly more than that observed in the control group in every postoperative stage (P<0.05). PDLLA possesses good biocompatibility and absorbability, and when prepared into a porous material, it exhibits good osteoconductibility. As a good bFGF carrier, the foam of PDLLA with three- dimensional structure shows good osteoinductive ability with regard to the rapidity, quantity and quality of the bone formation.

  12. [Effect of concomitant use of dental drug on the properties of recombinant human basic fibroblast growth factor formulation for periodontal disease].

    PubMed

    Sato, Yasuhiko; Oba, Takuma; Danjo, Kazumi

    2013-01-01

    We have discussed the essential property for periodontal disease medication using protein, such as recombinant human basic fibroblast growth factor (rhbFGF). In our previous study, the criteria of thickener for the medication, viscosity, flowability etc., were set. The aim of this study was to evaluate the physical and chemical effect of concomitant use of general dental drug or device on thickener properties for the clinical use of viscous rhbFGF formulation. Viscous formulation was prepared with six cellulose derivatives, two types hydroxy propyl cellulose (HPC), three types hydroxy ethyl cellulose (HEC) and methyl cellulose (MC). Antibiotic ointment, local anesthetic, bone graft substitute, agent for gargle and mouthwashes, were chosen as general dental drug and device. These drugs and device were mixed with the viscous formulations and the change of viscosity and flowability, the remaining ratio of rhbFGF were evaluated. When the various thickener solutions were mixed with the liquid drugs, viscosity and flowability did not changed much. However, in the case of MC solution, viscous property declined greatly when MC solution was mixed with cationic surfactant for gargle. The flowabilities of thickener solutions were declined with insoluble bone graft. The stabilities of rhbFGF in thickener solutions were no problem for 24 hours even in the case of mixing with dental drug or device. Our findings suggested that the viscous rhbFGF formulations prepared in this research were not substantially affected by the concomitant use of dental drug or device, especially the formulation with HPC or HEC was useful.

  13. Growth and differentiation of human lens epithelial cells in vitro on matrix

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.

    2000-01-01

    PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.

  14. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro.

    PubMed

    Wang, Tian-ren; Yan, Li-ying; Yan, Jie; Lu, Cui-ling; Xia, Xi; Yin, Tai-lang; Zhu, Xiao-hui; Gao, Jiang-man; Ding, Ting; Hu, Wei-hong; Guo, Hong-yan; Li, Rong; Qiao, Jie

    2014-03-01

    What is the effect of basic fibroblast growth factor (bFGF) on the growth of individual early human follicles in a three-dimensional (3D) culture system in vitro? The addition of 200 ng bFGF/ml improves human early follicle growth, survival and viability during growth in vitro. It has been demonstrated that bFGF enhances primordial follicle development in human ovarian tissue culture. However, the growth and survival of individual early follicles in encapsulated 3D culture have not been reported. The maturation in vitro of human ovarian follicles was investigated. Ovarian tissue (n= 11) was obtained from 11 women during laparoscopic surgery for gynecological disease, after obtaining written informed consent. One hundred and fifty-four early follicles were isolated by enzymic digestion and mechanical disruption. They were individually encapsulated into alginate (1% w/v) and randomly assigned to be cultured with 0, 100, 200 or 300 ng bFGF/ml for 8 days. Individual follicles were cultured in minimum essential medium α (αMEM) supplemented with bFGF. Follicle survival and growth were assessed by microscopy. Follicle viability was evaluated under confocal laser scanning microscope following Calcein-AM and Ethidium homodimer-I (Ca-AM/EthD-I) staining. After 8 days in culture, all 154 follicles had increased in size. The diameter and survival rate of the follicles and the percentage with good viability were significantly higher in the group cultured with 200 ng bFGF/ml than in the group without bFGF (P < 0.05). The percentage of follicles in the pre-antral stage was significantly higher in the 200 ng bFGF/ml group than in the group without bFGF (P < 0.05), while the percentages of primordial and primary follicles were significantly lower (P < 0.05). The study focuses on the effect of bFGF on the development of individual human early follicles in 3D culture in vitro and has limited ability to reveal the specific effect of bFGF at each different stage. The findings highlight the need to improve the acquisition and isolation of human ovarian follicles. The in vitro 3D culture of human follicles with appropriate dosage of bFGF offers an effective method to investigate their development. Moreover, it allows early follicles to be cultured to an advanced stage and therefore has the potential to become an important source of mature oocytes for assisted reproductive technology; particularly as an option for fertility preservation in women, including patients with cancer. This work was supported by the National Basic Research Program of China (2011|CB944504, 2011CB944503) and the National Natural Science Foundation of China (81200470, 81000275, 31230047, 8110197). There are no conflicts of interest to declare.

  15. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast.

    PubMed

    Hou, Jingang; Kim, Sunchang

    2018-05-05

    Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Nerve growth factor effect on human primary fibroblastic-keratocytes: possible mechanism during corneal healing.

    PubMed

    Micera, Alessandra; Lambiase, Alessandro; Puxeddu, Ilaria; Aloe, Luigi; Stampachiacchiere, Barbara; Levi-Schaffer, Francesca; Bonini, Sergio; Bonini, Stefano

    2006-10-01

    In response to corneal injury, cytokines and growth factors play a crucial role by influencing epithelial-stromal interaction during the healing and reparative processes which may resolve in tissue remodeling and fibrosis. While transforming growth factor-beta1 (TGF-beta1) is considered the main profibrogenic modulator of these process, recently the nerve growth factor (NGF) appears as a pleiotropic modulator of wound-healing and inflammatory responses. Interestingly in the cornea, where NGF, trkA(NGFR) and p75(NTR) are expressed by epithelial cells and keratocytes, the NGF eye-drop induces the healing of neurotrophic or autoimmune corneal ulcers. During corneal healing, quiescent keratocytes are replaced by active fibroblast-like keratocytes/myofibroblasts. While the NGF effect on epithelial cells has been investigated, no data are reported for NGF effects on fibroblastic-keratocytes, during corneal healing. NGF, trkA(NGFR) and p75(NTR) were found expressed by fibroblastic-keratocytes. NGF was able to induce fibroblastic-keratocyte differentiation into myofibroblasts, migration, Metalloproteinase-9 expression/activity and contraction of a 3D collagen gel, without affecting their proliferation and collagen production. These data also show a two-directional control of fibroblastic-keratocytes by NGF and TGF-beta1. To sum up, the findings of this study indicate that NGF can modulate some functional activities of fibroblastic-keratocytes, thus substantiating the healing effects of NGF on corneal wound-healing.

  17. Inhibition of fibroblast growth factor receptor with AZD4547 mitigates juvenile nasopharyngeal angiofibroma.

    PubMed

    Le, Tran; New, Jacob; Jones, Joel W; Usman, Shireen; Yalamanchali, Sreeya; Tawfik, Ossama; Hoover, Larry; Bruegger, Dan E; Thomas, Sufi Mary

    2017-10-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a benign tumor that presents in adolescent males. Although surgical excision is the mainstay of treatment, recurrences complicate treatment. There is a need to develop less invasive approaches for management. JNA tumors are composed of fibroblasts and vascular endothelial cells. We identified fibroblast growth factor receptor (FGFR) and vascular endothelial growth factor (VEGF) expression in JNA-derived fibroblasts. FGFR influences fibroblast proliferation and VEGF is necessary for angiogenesis. We hypothesized that targeting FGFR would mitigate JNA fibroblast proliferation, invasion, and migration, and that targeting the VEGF receptor would attenuate endothelial tubule formation. After informed consent, fibroblasts from JNA explants of 3 patients were isolated. Fibroblasts were treated with FGFR inhibitor AZD4547, 0 to 25 μg/mL for 72 hours and proliferation was quantified using CyQuant assay. Migration and invasion of JNA were assessed using 24-hour transwell assays with subsequent fixation and quantification. Mitigation of FGFR and downstream signaling was evaluated by immunoblotting. Tubule formation was assessed in human umbilical vein endothelial cells (HUVECs) treated with vehicle control (dimethylsulfoxide [DMSO]) or semaxanib (SU5416) as well as in serum-free media (SFM) or JNA conditioned media (CM). Tubule length was compared between treatment groups. Compared to control, AZD4547 inhibited JNA fibroblast proliferation, migration, and invasion through inhibition of FGFR and downstream signaling, specifically phosphorylation of - p44/42 mitogen activated protein kinase (p44/42 MAPK). JNA fibroblast CM significantly increased HUVEC tubule formation (p = 0.0039). AZD4547 effectively mitigates FGFR signaling and decreases JNA fibroblast proliferation, migration, and invasion. SU5416 attenuated JNA fibroblast-induced tubule formation. AZD4547 may have therapeutic potential in the treatment of JNA. © 2017 ARS-AAOA, LLC.

  18. Bone regeneration with active angiogenesis by basic fibroblast growth factor gene transfected mesenchymal stem cells seeded on porous beta-TCP ceramic scaffolds.

    PubMed

    Guo, Xiaodong; Zheng, Qixin; Kulbatski, Iris; Yuan, Quan; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiao, Baojun; Pan, Zhengqi; Tang, Shuo

    2006-09-01

    Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focused on combining gene transfer with tissue engineering techniques. Basic fibroblast growth factor (bFGF) is one of the most prominent osteogenic growth factors that has the potential to accelerate bone healing by promoting the proliferation and differentiation of mesenchymal stem cells (MSCs) and the regeneration of capillary vasculature. However, the short biological half-lives of growth factors may impose severe restraints on their clinical usefulness. Gene-based delivery systems provide a better way of achieving a sustained high concentration of growth factors locally in the defect and delivering a more biologically active product than that achieved by exogenous application of recombinant proteins. The objective of this experimental study was to investigate whether the bFGF gene modified MSCs could enhance the repair of large segmental bone defects. The pcDNA3-bFGF gene transfected MSCs were seeded on biodegradable porous beta tricalcium phosphate (beta-TCP) ceramics and allografted into the 15 mm critical-sized segmental bone defects in the radius of 18 New Zealand White rabbits. The pcDNA3 vector gene transfected MSCs were taken as the control. The follow-up times were 2, 4, 6, 8, 10 and 12 weeks. Scanning electron microscopic, roentgenographic, histologic and immunohistological studies were used to assess angiogenesis and bone regeneration. In vitro, the proliferation and differentiation of bFGF gene transfected MSCs were more active than that of the control groups. In vivo, significantly more new bone formation accompanied by abundant active capillary regeneration was observed in pores of the ceramics loaded with bFGF gene transfected MSCs, compared with control groups. Transfer of gene encoding bFGF to MSCs increases their osteogenic properties by enhancing capillary regeneration, thus providing a rich blood supply for new bone formation. This new bFGF gene enhanced tissue engineering strategy could be of potential benefit to accelerate bone healing, especially in defects caused by atrophic nonunion and avascular necrosis of the femoral head.

  19. Lysophosphatidic acid stimulates epidermal growth factor-family ectodomain shedding and paracrine signaling from human lung fibroblasts.

    PubMed

    Shiomi, Tetsuya; Boudreault, Francis; Padem, Nurcicek; Higashiyama, Shigeki; Drazen, Jeffrey M; Tschumperlin, Daniel J

    2011-01-01

    Lysophospatidic acid (LPA) is a bioactive lipid mediator implicated in tissue repair and wound healing. It mediates diverse functional effects in fibroblasts, including proliferation, migration and contraction, but less is known about its ability to evoke paracrine signaling to other cell types involved in wound healing. We hypothesized that human pulmonary fibroblasts stimulated by LPA would exhibit ectodomain shedding of epidermal growth factor receptor (EGFR) ligands that signal to lung epithelial cells. To test this hypothesis, we used alkaline phosphatase-tagged EGFR ligand plasmids transfected into lung fibroblasts, and enzyme-linked immunosorbent assays to detect shedding of native ligands. LPA induced shedding of alkaline phosphatase-tagged heparin-binding epidermal growth factor (HB-EGF), amphiregulin, and transforming growth factor-a; non-transfected fibroblasts shed amphiregulin and HBEGF under baseline conditions, and increased shedding of HB-EGF in response to LPA. Treatment of fibroblasts with LPA resulted in elevated phosphorylation of extracellular signal-regulated kinase 1/2, enhanced expression of mRNA for c-fos, HB-EGF and amphiregulin, and enhanced proliferation at 96 hours. However, none of these fibroblast responses to LPA required ectodomain shedding or EGFR activity. To test the ability of LPA to stimulate paracrine signaling from fibroblasts, we transferred conditioned medium from LPA-stimulated cells, and found enhanced EGFR and extracellular signal-regulated kinase 1/2 phosphorylation in reporter A549 cells in excess of what could be accounted for by transferred LPA alone. These data show that LPA mediates EGF-family ectodomain shedding, resulting in enhanced paracrine signaling from lung fibroblasts to epithelial cells. © 2011 by the Wound Healing Society.

  20. Effects of downregulation of S100A8 protein expression on cell cycle and apoptosis of fibroblasts derived from hypertrophic scars.

    PubMed

    Yaundong, Lv; Dongyan, Wang; Lijun, Hao; Zhibo, Xiao

    2014-01-01

    Uncontrolled growth and lack of apoptosis in fibroblasts derived from a hypertrophic scar play an important role in pathology. The authors explore the contribution of S100A8 overexpression to the phenotype of cells and discuss how the downregulation of S100A8 could inhibit the growth and induce apoptosis of fibroblasts derived from hypertrophic scars. Fibroblasts were harvested from hypertrophic scar tissue in 8 patients treated with small interfering RNA against S100A8 in an in vitro culture. The effects of silencing S100A8 were analyzed by Western blot. Cellular proliferation and apoptosis were detected by flow cytometry. Fibroblasts treated with small interfering RNA targeting S100A8 showed a significant decrease in S100A8 protein 48 hours after treatment. They also proliferated significantly slower and showed more apoptosis than control fibroblasts. Inhibition of S100A8 resulted in significant growth reduction and apoptosis acceleration in fibroblasts derived from hypertrophic scars. Manipulation of S100A8 protein expression by gene silencing may represent something new in the treatment of hypertrophic scarring.

  1. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.

    PubMed

    Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung

    2018-04-11

    Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

  2. Replica-exchange molecular dynamics simulation of basic fibroblast growth factor adsorption on hydroxyapatite.

    PubMed

    Liao, Chenyi; Zhou, Jian

    2014-06-05

    The adsorption of basic fibroblast growth factor (bFGF) on the hydroxyapatite (001) surface was investigated by a combination of replica-exchange molecular dynamics (REMD) and conventional molecular dynamics (CMD) methods. In CMD, the protein cannot readily cross the surface water layer, whereas in REMD, the protein can cross the adsorption barrier from the surface water layer and go through weak, medium, then strong adsorption states with three energetically preferred configurations: heparin-binding-up (HP-up), heparin-binding-middle (HP-middle), and heparin-binding-down (HP-down). The HP-middle orientation, with the strongest adsorption energy (-1149 ± 40 kJ·mol(-1)), has the largest adsorption population (52.1-52.6%) and exhibits the largest conformational charge (RMSD of 0.26 ± 0.01 nm) among the three orientations. The HP-down and HP-up orientations, with smaller adsorption energies of -1022 ± 55 and -894 ± 70 kJ·mol(-1), respectively, have smaller adsorption populations of 27.4-27.7% and 19.7-20.5% and present smaller RMSD values of 0.21 ± 0.01 and 0.19 ± 0.01 nm, respectively. The convergent distribution indicates that nearly half of the population (in the HP-middle orientation) will support both FGF/FGFR and DGR-integrin signaling and another half (in the HP-up and HP-down orientations) will support DGR-integrin signaling. The major population (~80%) has the protein dipole directed outward. In the strong adsorption state, there are usually 2 to 3 basic residues that form the anchoring interactions of 210-332 kJ·mol(-1) per residue or that are accompanied by an acidic residue with an adsorption energy of ~207 kJ·mol(-1). Together, the major bound residues form a triangle or a quadrilateral on the surface and stabilize the adsorption geometrically, which indicates topologic matching between the protein and HAP surfaces.

  3. Regulating Cancer Associated Fibroblast Biology in Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0512 TITLE: Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer PRINCIPAL INVESTIGATOR: Andrew...CONTRACT NUMBER Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0512 5c. PROGRAM ELEMENT NUMBER 6... biology to modulate epithelial growth and that inhibitors of this protein kinase have the potential to block this process and thus inhibit tumor growth

  4. Keratinocyte growth factor expression in human gingival fibroblasts and stimulation of in vitro gene expression by retinoic acid.

    PubMed

    Mackenzie, I C; Gao, Z

    2001-04-01

    Keratinocyte growth factor (KGF) is a stromally derived growth factor of the fibroblast growth factor (FGF) family with paracrine effects targeted to influence the growth and differentiation of epithelia. Regional and temporal changes in KGF expression play important roles in the development and maintenance of epithelial structures and in epithelial wound healing. Differing patterns of expression of KGF by fibroblasts in the gingival region could therefore be related to the observed regional variation in the differentiation and behavior of gingival epithelia. The in vitro and in vivo patterns of expression of KGF mRNA in human gingival and periodontal fibroblasts were examined using reverse transcription polymerase chain reactions (RT-PCR) and in situ hybridization with digoxigenin-labeled riboprobes. The patterns observed for human gingiva were compared with those for human skin and for murine tissues. Gingival and periodontal fibroblasts showed expression of KGF transcripts in vitro, and the degree of expression was markedly influenced by the presence of retinoic acid, an agent known to influence patterns of epithelial differentiation. Sections of human and murine gingiva and skin showed regionally variable expression of transcripts with the cells expressing KGF in the subepithelial, rather than the deeper, connective tissues and periodontium. The results point to a role of KGF in the maintenance of normal growth and differentiation of gingival epithelia. A lack of KGF expression by periodontal fibroblasts in vivo is expected to hinder apical epithelial migration and thus stabilize the epithelial attachment. The effects of retinoic acid (RA) on KGF expression in vitro provide an indirect mechanism by which RA may regulate the growth and differentiation of gingival epithelia.

  5. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.

    PubMed

    Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-11-01

    Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.

  6. Comparison of different cooling rates for fibroblast and keratinocyte cryopreservation.

    PubMed

    Naaldijk, Yahaira; Friedrich-Stöckigt, Annett; Sethe, Sebastian; Stolzing, Alexandra

    2016-10-01

    Easy, cost-effective and reliable cryopreservation protocols are crucial for the successful and effective application of tissue engineering. Several different protocols are in use, but no comprehensive comparisons across different machine-based and manual methods have been made. Here, we compare the effects of different cooling rates on the post-thaw survival and proliferative capacity of two basic cell lines for skin tissue engineering fibroblasts and keratinocytes, cultured and frozen in suspension or as a monolayer. We demonstrate that effectiveness of cryopreservation cannot be reliably determined immediately after thawing: the results at this stage were not indicative of cell growth in culture 3 days post-thaw. Cryopreservation of fibroblasts in an adherent state greatly diminishes their subsequent growth potential. This was not observed when freezing in suspension. In keratinocytes, however, adherent freezing is as effective as freezing in suspension, which could lead to significant cost and labour savings in a tissue-engineering environment. The 'optimal' cryopreservation protocol depends on cell type and intended use. Where time, ease and cost are dominant factors, the direct freezing into a nitrogen tank (straight freeze) approach remains a viable method. The most effective solution across the board, as measured by viability 3 days post-thaw, was the commonly used, freezing container method. Where machine-controlled cryopreservation is deemed important for tissue-engineering Good Manufacturing Practice, we present results using a portfolio of different cooling rates, identifying the 'optimal' protocol depending on cell type and culture method. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  7. [Enhancement of wound healing by taspine and its effect on fibroblast].

    PubMed

    Dong, Yalin; He, Langchong; Chen, Fang

    2005-07-01

    To study the effect of taspine on enhancement of skin wound healing and its effect on fibroblast proliferation and autocrine. The plerosis effect of taspine on experimental skin wound was observed in vivo. Different concentrations of taspine were added in vitro and MTT technique was applied to observe its effect on fibroblast proliferation, the levels of transforming growth factor-beta1 (TGF-13P) and epidermal growth factor (EGF) were determined by ELISA. In vivo, exo-applied taspine 300 microg and 150 microg accelerated the recovery of skin wound. In vitro, 0.50-0.4 microg/ml taspine could increase autocrine of TGF-beta1and EGF by fibroblast, but it showed no effect on L929 fibroblast proliferation. Taspine enhances wound healing by increasing the autocrine of TGF-beta1 and EGF by fibroblast.

  8. Ras Family GTPases Control Growth of Astrocyte Processes

    PubMed Central

    Kalman, Daniel; Gomperts, Stephen N.; Hardy, Stephen; Kitamura, Marina; Bishop, J. Michael

    1999-01-01

    Astrocytes in neuron-free cultures typically lack processes, although they are highly process-bearing in vivo. We show that basic fibroblast growth factor (bFGF) induces cultured astrocytes to grow processes and that Ras family GTPases mediate these morphological changes. Activated alleles of rac1 and rhoA blocked and reversed bFGF effects when introduced into astrocytes in dissociated culture and in brain slices using recombinant adenoviruses. By contrast, dominant negative (DN) alleles of both GTPases mimicked bFGF effects. A DN allele of Ha-ras blocked bFGF effects but not those of Rac1-DN or RhoA-DN. Our results show that bFGF acting through c-Ha-Ras inhibits endogenous Rac1 and RhoA GTPases thereby triggering astrocyte process growth, and they provide evidence for the regulation of this cascade in vivo by a yet undetermined neuron-derived factor. PMID:10233170

  9. In Vitro Expression of Cytokeratin 19 in Adipose-Derived Stem Cells Is Induced by Epidermal Growth Factor.

    PubMed

    Chen, Shangliang; Wang, Mingzhu; Chen, Xinglu; Chen, Shaolian; Liu, Li; Zhu, Jianbin; Wang, Jinhui; Yang, Xiaorong; Cai, Xiangsheng

    2018-06-21

    BACKGROUND Cytokeratin 19 (CK19) is a typical epithelial marker. In this study, we determined whether epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) could enhance CK19 expression in adipose-derived stem cells (ADSCs), thereby inducing the differentiation of ADSCs into epithelial-like cells. MATERIAL AND METHODS ADSCs were isolated from perinephric fat, and the expression of CD29, CD90, and CD105 was confirmed. Following isolation, ADSCs were cultured in static medium or medium containing EGF or bFGF. RESULTS Flow cytometry revealed that EGF and bFGF could alter mesenchymal stem cell markers as well as the cell cycle of ADSCs. Western blotting and immunofluorescence revealed that after 14 days, EGF treatment enhanced the expression of CK19 in ADSCs. CONCLUSIONS Our findings offer important insight for the clinical use of ADSCs in the generation of epithelial-like cells in the future.

  10. In vitro co-culture of human skin keratinocytes and fibroblasts on a biocompatible and biodegradable scaffold.

    PubMed

    Pajoum Shariati, Seyed Ramin; Shokrgozar, Mohammad Ali; Vossoughi, Manouchehr; Eslamifar, Ali

    2009-07-01

    Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chitosan scaffold that contains fibroblasts. The culture methods for propagation of keratinocytes and fibroblasts isolated from human neonatal foreskin were developed. The growth and proliferation of normal human keratinocytes were evaluated in serum-free (keratinocyte growth medium) and our modified medium. Characterization of human keratinocytes was determined by using pan-keratin and anti-involucrin monoclonal antibodies. For fabrication of relevant biodegradable and biocompatible collagen-chitosan porous scaffold with improved biostability, modified method of freeze-gelation was used. In generating organotypic co-cultures, epidermal keratinocytes were plated onto the upper surface of scaffold containing embedded fibroblasts. The results showed that the growth of isolated human skin fibroblasts and keratinocytes in our modified medium was more than that in the serum-free medium. The different evaluations of collagen-chitosan scaffold showed that it is relevant to growth of cells (fibroblast and keratinocyte) and has a good flexibility in manipulation of the living skin equivalents. These findings indicate that the integration of collagen-chitosan scaffold with co-cultured keratinocyte and fibroblast in vitro provides a potential source of living skin for grafting in vivo.

  11. The Influence of Platelet-Derived Growth Factor and Fibroblast Growth Factor 2 on Oligodendrocyte Development and Remyelination

    DTIC Science & Technology

    2004-01-01

    OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Z39-18 ABSTRACT Title: THE INFLUENCE OF PLATELET-DERIVED GROWTH FACTOR AND FIBROBLAST GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND...GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION by Joshua C. Murtie Thesis/dissertation submitted to the

  12. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2

    PubMed Central

    White, Rebekah R.; Shan, Siqing; Rusconi, Christopher P.; Shetty, Geetha; Dewhirst, Mark W.; Kontos, Christopher D.; Sullenger, Bruce A.

    2003-01-01

    Angiopoietin-2 (Ang2) appears to be a naturally occurring antagonist of the endothelial receptor tyrosine kinase Tie2, an important regulator of vascular stability. Destabilization of the endothelium by Ang2 is believed to potentiate the actions of proangiogenic growth factors. To investigate the specific role of Ang2 in the adult vasculature, we generated a nuclease-resistant RNA aptamer that binds and inhibits Ang2 but not the related Tie2 agonist, angiopoietin-1. Local delivery of this aptamer but not a partially scrambled mutant aptamer inhibited basic fibroblast growth factor-mediated neovascularization in the rat corneal micropocket angiogenesis assay. These in vivo data directly demonstrate that a specific inhibitor of Ang2 can act as an antiangiogenic agent. PMID:12692304

  13. ICM0301s, new angiogenesis inhibitors from Aspergillus sp. F-1491. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Kumagai, Hiroyuki; Someno, Tetsuya; Dobashi, Kazuyuki; Isshiki, Kunio; Ishizuka, Masaaki; Ikeda, Daishiro

    2004-02-01

    In the course of screening program for inhibitors of angiogenesis, novel substances designated as ICM0301A approximately H (1 approximately 8) were isolated from the culture broth of Aspergillus sp. F-1491. ICM0301s inhibited the growth of human umbilical vein endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) with IC50 values of 2.2 approximately 9.3 microg/ml. ICM0301A (1) showed significant anti-angiogenic activity at lower than 10 microg/ml in the angiogenesis model using rat aorta cultured in fibrin gel. ICM0301s showed very low cytotoxicity against various tumor cells. Furthermore, 1CM0301A did not show any toxic symptom in mice by intraperitoneal injection at 100 mg/kg.

  14. Structural Characterization of the Interaction of the Fibroblast Growth Factor Receptor with a Small Molecule Allosteric Inhibitor.

    PubMed

    Kappert, Franziska; Sreeramulu, Sridhar; Jonker, Hendrik R A; Richter, Christian; Rogov, Vladimir V; Proschak, Ewgenij; Hargittay, Bruno; Saxena, Krishna; Schwalbe, Harald

    2018-06-04

    The interaction of fibroblast growth factors (FGFs) with their fibroblast growth factor receptors (FGFRs) are important in the signaling network of cell growth and development. SSR128129E (SSR), a ligand of small molecular weight with potential anti-cancer properties, acts allosterically on the extracellular domains of FGFRs. Up to now, the structural basis of SSR binding to the D3 domain of FGFR remained elusive. This work reports the structural characterization of the interaction of SSR with one specific receptor, FGFR3, by NMR spectroscopy. This information provides a basis for rational drug design for allosteric FGFR inhibitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The primary growth of laryngeal squamous cell carcinoma cells in vitro is effectively supported by paired cancer-associated fibroblasts alone.

    PubMed

    Wang, Mei; Wu, Chunping; Guo, Yu; Cao, Xiaojuan; Zheng, Wenwei; Fan, Guo-Kang

    2017-05-01

    Most primarily cultured laryngeal squamous cell carcinoma cells are difficult to propagate in vitro and have a low survival rate. However, in our previous work to establish a laryngeal squamous cell carcinoma cell line, we found that laryngeal cancer-associated fibroblasts appeared to strongly inhibit the apoptosis of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In this study, we investigated whether paired laryngeal cancer-associated fibroblasts alone can effectively support the growth of primarily cultured laryngeal squamous cell carcinoma cells in vitro. In all, 29 laryngeal squamous cell carcinoma specimens were collected and primarily cultured. The laryngeal squamous cell carcinoma cells were separated from cancer-associated fibroblasts by differential trypsinization and continuously subcultured. Morphological changes of the cultured laryngeal squamous cell carcinoma cells were observed. Immunocytofluorescence was used to authenticate the identity of the cancer-associated fibroblasts and laryngeal squamous cell carcinoma cells. Flow cytometry was used to quantify the proportion of apoptotic cells. Western blot was used to detect the protein levels of caspase-3. Enzyme-linked immunosorbent assay was used to detect the levels of chemokine (C-X-C motif) ligand 12, chemokine (C-X-C motif) ligand 7, hepatocyte growth factor, and fibroblast growth factor 1 in the supernatants of the laryngeal squamous cell carcinoma and control cells. AMD3100 (a chemokine (C-X-C motif) receptor 4 antagonist) and an anti-chemokine (C-X-C motif) ligand 7 antibody were used to block the tumor-supporting capacity of cancer-associated fibroblasts. Significant apoptotic changes were detected in the morphology of laryngeal squamous cell carcinoma cells detached from cancer-associated fibroblasts. The percentage of apoptotic laryngeal squamous cell carcinoma cells and the protein levels of caspase-3 increased gradually in subsequent subcultures. In contrast, no significant differences in the proliferation capacity of laryngeal squamous cell carcinoma cells cocultured with cancer-associated fibroblasts were detected during subculturing. High level of chemokine (C-X-C motif) ligand 12 was detected in the culture supernatant of cancer-associated fibroblasts. The tumor-supporting effect of cancer-associated fibroblasts was significantly inhibited by AMD3100. Our findings demonstrate that the paired laryngeal cancer-associated fibroblasts alone are sufficient to support the primary growth of laryngeal squamous cell carcinoma cells in vitro and that the chemokine (C-X-C motif) ligand 12/chemokine (C-X-C motif) receptor 4 axis is one of the major contributors.

  16. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  17. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing

    PubMed Central

    Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey

    2013-01-01

    Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests a paracrine mechanism of action for dHACM when used for wound healing applications. PMID:23902526

  18. Effects of combination therapy using basic fibroblast growth factor and mature adipocyte-derived dedifferentiated fat (DFAT) cells on skin graft revascularisation.

    PubMed

    Asami, Takashi; Soejima, Kazutaka; Kashimura, Tsutomu; Kazama, Tomohiko; Matsumoto, Taro; Morioka, Kosuke; Nakazawa, Hiroaki

    2015-01-01

    Although the benefits of basic fibroblast growth factor (bFGF) for wound healing and angiogenesis are well known, its effects on the process of skin graft revascularisation have not been clarified. It was hypothesised that bFGF would be beneficial to promote taking of skin grafts, but that the effect might be limited in the case of bFGF monotherapy. Therefore, this study investigated the efficacy of combination therapy using bFGF and dedifferentiated fat (DFAT) cells. DFAT cells have multilineage differentiation potential, including into endothelial cells, similar to the case of mesenchymal stem cells (MSC). Commercially available human recombinant bFGF was used. DFAT cells were prepared from SD strain rats as an adipocyte progenitor cell line from mature adipocytes. Full-thickness skin was lifted from the back of SD strain rats and then grafted back to the original wound site. Four groups were established prior to skin grafting: control group (skin graft alone), bFGF group (treated with bFGF), DFAT group (treated with DFAT cells), and combination group (treated with both bFGF and DFAT cells). Tissue specimens for histological examination were harvested 48 hours after grafting. The histological findings for the bFGF group showed vascular augmentation in the grafted dermis compared with the control group. However, the difference in the number of revascularised vessels per unit area did not reach statistical significance against the control group. In contrast, in the combination group, skin graft revascularisation was significantly promoted, especially in the upper dermis. The results suggest that replacement of the existing graft vessels was markedly promoted by the combination therapy using bFGF and DFAT cells, which may facilitate skin graft taking.

  19. Treatment of neural anosmia by topical application of basic fibroblast growth factor-gelatin hydrogel in the nasal cavity: an experimental study in mice.

    PubMed

    Nota, Jumpei; Takahashi, Hirotaka; Hakuba, Nobuhiro; Hato, Naohito; Gyo, Kiyofumi

    2013-04-01

    A new treatment of neural anosmia. To investigate the effects of basic fibroblast growth factor (bFGF)-gelatin hydrogel on recovery of neural anosmia in mice. Anosmia was induced by intraperitoneal injection of 3-methylindole, 200 mg/kg. One week later, the animals underwent 1 of the following 3 procedures bilaterally: (1) group A: single-shot intranasal drip infusion of phosphate-buffered saline, (2) group B: single-shot intranasal drip infusion of bFGF, and (3) group C: placement of bFGF-gelatin hydrogel in the nasal cavity. The olfactory function of the animal was evaluated by the odor-detection test (ODT) 2 and 4 weeks later. Following the testing, the animal was killed, the thickness of the olfactory epithelium was measured, and the number of olfactory marker protein (OMP)-positive cells was counted. Research installation. Mice. The placement of bFGF-gelatin hydrogel in the nasal cavity. An ODT, thickness of olfactory epithelium, the number of OMP-positive cells The ODT proved that neural anosmia recovered in group C but not in groups A and B. Histologically, olfactory epithelium became thicker and the number of OMP-positive cells increased in group C, while such functional and histologic recovery was poor in groups A and B. These findings suggested that placement of bFGF-gelatin hydrogel in the nasal cavity was an efficient way to facilitate recovery of neural anosmia. As a gelatin hydrogel degrades slowly in the body, bFGF is gradually released around the site of the lesion; thus, it constantly exerts its effects on neural regeneration.

  20. Microfasciculation: a morphological pattern in leprosy nerve damage.

    PubMed

    Antunes, Sérgio L G; Medeiros, Mildred F; Corte-Real, Suzana; Jardim, Márcia R; Nery, José A da Costa; Hacker, Mariana A V B; Valentim, Vânia da Costa; Amadeu, Thaís Porto; Sarno, Euzenir N

    2011-01-01

    To study Microfasciculation, a perineurial response found in neuropathies, emphasizing its frequency, detailed morphological characteristics and biological significance in pure neural leprosy (PNL), post-treatment leprosy neuropathy (PTLN) and non-leprosy neuropathies (NLN). Morphological characteristics of microfascicles were examined via histological staining methods, immunohistochemical expression of neural markers and transmission electronmicroscopy. The detection of microfasciculation in 18 nerve biopsy specimens [12 PNL, six PTLN but not in the NLN group, was associated strongly with perineurial damage and the presence of a multibacillary inflammatory process in the nerves, particularly in the perineurium. Immunoreactivity to anti-S100 protein, anti-neurofilament, anti-nerve growth receptor and anti-myelin basic protein immunoreactivity was found within microfascicles. Ultrastructural examination of three biopsies showed that fibroblast-perineurial cells were devoid of basement membrane despite perineurial-like NGFr immunoreactivity. Morphological evidence demonstrated that multipotent pericytes from inflammation-activated microvessels could be the origin of fibroblast-perineurial cells. A microfasciculation pattern was found in 10% of leprosy-affected nerves. The microfascicles were composed predominantly of unmyelinated fibres and denervated Schwann cells (SCs) surrounded by fibroblast-perineurial cells. This pattern was found more frequently in leprosy nerves with acid-fast bacilli (AFB) and perineurial damage while undergoing an inflammatory process. Further experimental studies are necessary to elucidate microfascicle formation. © 2011 Blackwell Publishing Limited.

  1. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    PubMed

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. © The Author(s) 2016.

  2. Plasma rich in growth factors (PRGF-Endoret) stimulates tendon and synovial fibroblasts migration and improves the biological properties of hyaluronic acid.

    PubMed

    Anitua, E; Sanchez, M; De la Fuente, M; Zalduendo, M M; Orive, G

    2012-09-01

    Cell migration plays an essential role in development, wound healing, and tissue regeneration. Plasma rich in growth factors (PRGF-Endoret) technology offers a potential source of growth factors involved in tissue regeneration. Here, we evaluate the potential of PRGF-Endoret over tendon cells and synovial fibroblasts migration and study whether the combination of this autologous technology with hyaluronic acid (HA) improves the effect and potential of the biomaterials over the motility of both types of fibroblasts. Migration of primary tendon cells and synovial fibroblasts after culturing with either PRGF or PPGF (plasma poor in growth factors) at different doses was evaluated. Furthermore, the migratory capacity induced by the combination of PPGF and PRGF with HA was tested. PPGF stimulated migration of both types of cells but this effect was significantly higher when PRGF was used. Tendon cells showed an increase of 212% in migratory ability when HA was combined with PPGF and of 335% in the case of HA + PRGF treatment compared with HA alone. PRGF-Endoret stimulates migration of tendon cells and synovial fibroblasts and improves the biological properties of HA.

  3. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene.

    PubMed

    Wang, Kai; Jin, Song; Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells.

  4. Enhanced Keratinocyte Proliferation and Migration in Co-culture with Fibroblasts

    PubMed Central

    Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin

    2012-01-01

    Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11th to 15th day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage. PMID:22911722

  5. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    PubMed

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  6. Anti-proliferative activities of finasteride in benign prostate epithelial cells require stromal fibroblasts and c-Jun gene

    PubMed Central

    Fan, Dongdong; Wang, Mingshuai; Xing, Nianzeng; Niu, Yinong

    2017-01-01

    This study aimed to identify the role of mouse fibroblast-mediated c-Jun and IGF-1 signaling in the therapeutic effect of finasteride on benign prostatic epithelial cells. BPH-1 cells, alone or with fibroblasts (c-Jun+/+ or c-Jun-/-), were implanted subcutaneously in male nude mice who were then treated with finasteride. The degrees of cell proliferation, apoptosis, and sizes of the xenografts were determined. BPH-1 cells were grown alone or co-cultured with mouse fibroblasts in the presence of finasteride and the level of IGF-1 secreted into the medium by the fibroblasts was determined. The proliferation-associated signaling pathway in BPH-1 cells was also evaluated. Fibroblasts and c-Jun promoted xenograft growth, stimulated Ki-67 expression, and inhibited BPH-1 apoptosis. Finasteride did not induce the shrinkage of xenografts in the combined-grafted groups despite repressing Ki-67 expression and inducing cell apoptosis. The addition of c-Jun-/- fibroblasts did not promote xenograft growth. In the absence of c-Jun and fibroblasts, finasteride did not alter xenograft growth, Ki-67 expression, or cell apoptosis. The in vitro results demonstrated that when BPH-1 cells were grown in monoculture, treatment with finasteride did not induce cell death and stimulated the expression of pro-proliferative signaling molecules, while in the presence of fibroblasts containing c-Jun, finasteride treatment repressed epithelial cell proliferation, the level of IGF-1 in the medium, and the activation of downstream pro-proliferative signaling pathways. Taken together, our results suggest that fibroblasts, c-Jun, and IGF-1 play key roles in mediating stromal-epithelial interactions that are required for the therapeutic effects of finasteride in benign prostate epithelial cells. PMID:28196103

  7. Thy-1 Expression Regulates the Ability of Rat Lung Fibroblasts to Activate Transforming Growth Factor-β in Response to Fibrogenic Stimuli

    PubMed Central

    Zhou, Yong; Hagood, James S.; Murphy-Ullrich, Joanne E.

    2004-01-01

    Distinct subpopulations of fibroblasts contribute to lung fibrosis, although the mechanisms underlying fibrogenesis in these subpopulations are not clear. Differential expression of the glycophosphatidylinositol-linked protein Thy-1 affects proliferation and myofibroblast differentiation. Lung fibroblast populations selected on the basis of Thy-1 expression by cell sorting were examined for responses to fibrogenic stimuli. Thy-1 (−) and Thy-1 (+) fibroblast populations were treated with platelet-derived growth factor-BB, interleukin-1β, interleukin-4, or bleomycin and assessed for activation of transforming growth factor (TGF)-β, Smad3 phosphorylation, and α-smooth muscle actin and fibronectin expression. Thy-1 (−) fibroblasts responded to these stimuli with increased TGF-β activity, Smad3 phosphorylation, and expression of α-smooth muscle actin and fibronectin, whereas Thy-1 (+) fibroblasts resisted stimulation. The unresponsiveness of Thy-1 (+) cells is not because of defective TGF-β signaling because both subsets respond to exogenous active TGF-β. Rather, Thy-1 (−) fibroblasts activate latent TGF-β in response to fibrogenic stimuli, whereas Thy-1 (+) cells fail to do so. Defective activation is common to multiple mechanisms of TGF-β activation, including thrombospondin 1, matrix metalloproteinase, or plasmin. Thy-1 (−) lung fibroblasts transfected with Thy-1 also become resistant to fibrogenic stimulation, indicating that Thy-1 is a critical biological response modifier that protects against fibrotic progression by controlling TGF-β activation. These studies provide a molecular basis for understanding the differential roles of fibroblast subpopulations in fibrotic lung disease through control of latent TGF-β activation. PMID:15277239

  8. The growth of human fibroblasts and A431 epidermoid carcinoma cells on gamma-irradiated human amnion collagen substrata.

    PubMed

    Liu, B; Harrell, R; Lamb, D J; Dresden, M H; Spira, M

    1989-10-15

    Human fibroblasts and A431 human epidermoid carcinoma cells were cultured on gamma-irradiated human amnion collagen as well as on plastic dishes and non-irradiated collagen coated dishes. The morphology, attachment, growth and short-term cytotoxicity of these culture conditions have been determined. Both irradiated and non-irradiated amnion collagen enhanced the attachment and proliferation of fibroblasts as compared to the plastic dishes. No differences in these properties were observed for A431 cells cultured on irradiated collagen when compared with culture on non-irradiated collagen substrates. Cytotoxicity assays showed that irradiated and non-irradiated collagens were not cytotoxic for either fibroblasts or A431 cells. The results demonstrated that amnion collagen irradiated at doses of 0.25-2.0 Mrads is optimal for cell growth.

  9. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.

    PubMed

    Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia

    2015-04-01

    Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.

  10. Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor.

    PubMed

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S; Lagares, David; Wada, Takashi; Luster, Andrew D; Tager, Andrew M

    2017-03-01

    The expansion of the fibroblast pool is a critical step in organ fibrosis, but the mechanisms driving expansion remain to be fully clarified. We previously showed that lysophosphatidic acid (LPA) signaling through its receptor LPA 1 expressed on fibroblasts directly induces the recruitment of these cells. Here we tested whether LPA-LPA 1 signaling drives fibroblast proliferation and activation during the development of renal fibrosis. LPA 1 -deficient (LPA 1 -/- ) or -sufficient (LPA 1 +/+ ) mice were crossed to mice with green fluorescent protein expression (GFP) driven by the type I procollagen promoter (Col-GFP) to identify fibroblasts. Unilateral ureteral obstruction-induced increases in renal collagen were significantly, though not completely, attenuated in LPA 1 -/- Col-GFP mice, as were the accumulations of both fibroblasts and myofibroblasts. Connective tissue growth factor was detected mainly in tubular epithelial cells, and its levels were suppressed in LPA 1 -/- Col-GFP mice. LPA-LPA 1 signaling directly induced connective tissue growth factor expression in primary proximal tubular epithelial cells, through a myocardin-related transcription factor-serum response factor pathway. Proximal tubular epithelial cell-derived connective tissue growth factor mediated renal fibroblast proliferation and myofibroblast differentiation. Administration of an inhibitor of myocardin-related transcription factor/serum response factor suppressed obstruction-induced renal fibrosis. Thus, targeting LPA-LPA 1 signaling and/or myocardin-related transcription factor/serum response factor-induced transcription could be promising therapeutic strategies for renal fibrosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Transforming growth factor (TGF. beta. ) decreases the proliferation of human bone marrow fibroblasts by inhibiting the platelet-derived growth factor (PDGF) binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryckaert, M.C.; Tobelem, G.; Lindroth, M.

    1988-12-01

    Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classesmore » of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.« less

  12. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    PubMed

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  13. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.

  14. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  15. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  16. Clinical Application of Growth Factors and Cytokines in Wound Healing

    PubMed Central

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  17. Effect of peritoneal dialysis on expression of vascular endothelial growth factor, basic fibroblast growth factor and endostatin of the peritoneum in peritoneal dialysis patients.

    PubMed

    Gao, Dan; Zhao, Zhan-Zheng; Liang, Xian-Hui; Li, Yan; Cao, Ying; Liu, Zhang-Suo

    2011-11-01

    The aim of this study is to investigate the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and endostatin (ES) in human peritoneum and investigate the relationship between them and peritoneum neoangiogensis in the patients with uraemia and peritoneal dialysis (PD). Peritoneal biopsies were obtained from normal subjects (n = 8), uraemic predialysis patients (n = 12) and PD patients (n = 10). The mRNA expression of VEGF, bFGF and ES in peritoneal tissues were measured through real-time polymerase chain reaction. The protein expression of VEGF, bFGF and ES in peritoneal tissues were determined through western blot. Microvessel density (MVD) of peritoneal tissue was assessed using immunohistochemistry with CD34 monoclonal antibody. The mRNA and protein of VEGF, bFGF and ES were expressed in all peritoneal samples. Compared with the normal control group, the mRNA and protein expression of VEGF and bFGF in peritoneal tissues were all significantly upregulated in the uraemic predialysis and PD group (all P < 0.05). Compared with the normal control group, the protein expression of ES were significantly upregulated in the uraemic predialysis and PD group (all (P < 0.05), but the mRNA expression of ES did not have obvious differences in the uraemic predialysis and PD group as compared to the normal control group (P > 0.05). MVD of peritoneal tissue were increased in the uraemic predialysis and PD group compared with the normal group (all P < 0.05). A significant positive correlation was found between VEGF mRNA expression and MVD, bFGF mRNA expression and MVD. The mRNA expression of VEGF and bFGF, the protein expression of VEGF, bFGF, and ES and microvessel density (MVD) are increased both in the uraemic predialysis and PD patients. These results show that uraemia circumstances and non-physiological compatibility of peritoneal dialysis solution might increase VEGF, bFGF and ES expression and MVD, which might participate in the increment of the peritoneum neoangiogensis and ultrafiltration failure in PD patients. © 2011 The Authors. Nephrology © 2011 Asian Pacific Society of Nephrology.

  18. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  19. Irradiated fibroblasts promote epithelial–mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Ci-Hang; Wang, Xin-Tong; Ma, Wei

    2015-03-06

    Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial–mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiatedmore » fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and β-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and β-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC. - Highlights: • Irradiated CAFs accelerated invasiveness and scattering of ESCC cell lines. • Irradiated CAFs promoted EMT of ESCC cells. • Irradiated fibroblasts induced nuclear β-catenin relocalization in ESCC cells. • Irradiated fibroblasts increased HDGF expression in vitro and in vivo.« less

  20. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms.

    PubMed

    Bavik, Claes; Coleman, Ilsa; Dean, James P; Knudsen, Beatrice; Plymate, Steven; Nelson, Peter S

    2006-01-15

    The greatest risk factor for developing carcinoma of the prostate is advanced age. Potential molecular and physiologic contributors to the frequency of cancer occurrence in older individuals include the accumulation of somatic mutations through defects in genome maintenance, epigenetic gene silencing, oxidative stress, loss of immune surveillance, telomere dysfunction, chronic inflammation, and alterations in tissue microenvironment. In this context, the process of prostate carcinogenesis can be influenced through interactions between intrinsic cellular alterations and the extrinsic microenvironment and macroenvironment, both of which change substantially as a consequence of aging. In this study, we sought to characterize the molecular alterations that occur during the process of prostate fibroblast senescence to identify factors in the aged tissue microenvironment capable of promoting the proliferation and potentially the neoplastic progression of prostate epithelium. We evaluated three mechanisms leading to cell senescence: oxidative stress, DNA damage, and replicative exhaustion. We identified a consistent program of gene expression that includes a subset of paracrine factors capable of influencing adjacent prostate epithelial growth. Both direct coculture and conditioned medium from senescent prostate fibroblasts stimulated epithelial cell proliferation, 3-fold and 2-fold, respectively. The paracrine-acting proteins fibroblast growth factor 7, hepatocyte growth factor, and amphiregulin (AREG) were elevated in the extracellular environment of senescent prostate fibroblasts. Exogenous AREG alone stimulated prostate epithelial cell growth, and neutralizing antibodies and small interfering RNA targeting AREG attenuated, but did not completely abrogate the growth-promoting effects of senescent fibroblast conditioned medium. These results support the concept that aging-related changes in the prostate microenvironment may contribute to the progression of prostate neoplasia.

  1. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix

    PubMed Central

    1989-01-01

    The angiogenic factor, basic fibroblast growth factor (FGF), either stimulates endothelial cell growth or promotes capillary differentiation depending upon the microenvironment in which it acts. Analysis of various in vitro models of spontaneous angiogenesis, in combination with time-lapse cinematography, demonstrated that capillary tube formation was greatly facilitated by promoting multicellular retraction and cell elevation above the surface of the rigid culture dish or by culturing endothelial cells on malleable extracellular matrix (ECM) substrata. These observations suggested to us that mechanical (i.e., tension-dependent) interactions between endothelial cells and ECM may serve to regulate capillary development. To test this hypothesis, FGF-stimulated endothelial cells were grown in chemically defined medium on bacteriological (nonadhesive) dishes that were precoated with different densities of fibronectin. Extensive cell spreading and growth were promoted by fibronectin coating densities that were highly adhesive (greater than 500 ng/cm2), whereas cell rounding, detachment, and loss of viability were observed on dishes coated with low fibronectin concentrations (less than 100 ng/cm2). Intermediate fibronectin coating densities (100-500 ng/cm2) promoted cell extension, but they could not completely resist cell tractional forces. Partial retraction of multicellular aggregates resulted in cell shortening, cessation of growth, and formation of branching tubular networks within 24-48 h. Multicellular retraction and subsequent tube formation also could be elicited on highly adhesive dishes by overcoming the mechanical resistance of the substratum using higher cell plating numbers. Dishes coated with varying concentrations of type IV collagen or gelatin produced similar results. These results suggest that ECM components may act locally to regulate the growth and pattern- regulating actions of soluble FGF based upon their ability to resist cell-generated mechanical loads. Thus, we propose that FGF-stimulated endothelial cells may be "switched" between growth, differentiation, and involution modes during angiogenesis by altering the adhesivity or mechanical integrity of their ECM. PMID:2473081

  2. Suppression of type I collagen in human scleral fibroblasts treated with extremely low-frequency electromagnetic fields

    PubMed Central

    Wang, Jie; Cui, Jiefeng

    2013-01-01

    Purpose To investigate the expression differences of type I collagen (COL1A1) and its underlying mechanisms in human fetal scleral fibroblasts (HFSFs) that were treated with conditioned medium from retinal pigment epithelial (RPE) cells under extremely low-frequency electromagnetic fields (ELF-EMFs). Methods The ELF-EMFs used in this study were established by slidac and artificial coils. Growth of the treated HFSFs was evaluated by a cell-counting kit-8 assay. The expression of COL1A1 and matrix metalloproteinases-2 (MMP-2) in the treated HFSFs was detected by reverse transcription PCR (RT-PCR) and western blot, and the expression of transforming growth factor-β2 (TGF-β2) and basic fibroblast growth factor-2 (FGF-2) in RPE cells exposed to EMFs was detected by RT-PCR. The expression of COL1A1 and MMP-2 in HFSFs was further confirmed by immunofluorescence staining. Activation of extracellular signal-regulated kinase 1/2 (ERK1/2 also called p44/p42 mitogen-activated protein kinases [MAPK]) and p38 in HFSFs was measured by western blot. Results We found that exposure to ELF-EMFs resulted in a decreased proliferation rate of HFSFs and that addition of RPE supernatant medium could enhance this effect. Compared with that of the control cells, a significant decrease in collagen synthesis was detected in HFSFs under ELF-EMFs. However, the expression of MMP-2 was upregulated, which could be further enhanced via an RPE supernatant additive. The activities of ERK1/2 and p38 were significantly increased in HFSFs exposed to ELF-EMFs, and this effect could be enhanced by RPE supernatant medium additive. Conclusions Our results suggested that ELF-EMFs can inhibit the expression of type I collagen in HFSFs and contribute to the remodeling of the sclera. PMID:23592926

  3. Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine.

    PubMed

    Cass, Wayne A; Peters, Laura E; Harned, Michael E; Seroogy, Kim B

    2006-08-01

    Repeated methamphetamine (METH) administration to animals can result in long-lasting decreases in striatal dopamine (DA) content. It has previously been shown that glial cell line-derived neurotrophic factor (GDNF) can reduce the DA-depleting effects of neurotoxic doses of METH. However, there are several other trophic factors that are protective against dopaminergic toxins. Thus, the present experiments further investigated the protective effect of GDNF as well as the protective effects of several other trophic factors. Male Fischer-344 rats were given an intracerebral injection of trophic factor (2-10 microg) 1 day before METH (5 mg/kg, s.c., 4 injections at 2-h intervals). Seven days later DA levels in the striatum were measured using high-performance liquid chromatography (HPLC). Initial experiments indicated that only intrastriatal GDNF, and not intranigral GDNF, was protective. Thereafter, all other trophic factors were administered into the striatum. Members of the GDNF family (GDNF, neurturin, and artemin) all provided significant protection against the DA-depleting effects of METH, with GDNF providing the greatest protection. Brain-derived neurotrophic factor, neurotrophin-3, acidic fibroblast growth factor, basic fibroblast growth factor, ciliary neurotrophic factor, transforming growth factor-alpha (TGF-alpha), heregulin beta1 (HRG-beta1), and amphiregulin (AR) provided no significant protection at the doses examined. These results suggest that the GDNF family of trophic factors can provide significant protection against the DA-depleting effects of neurotoxic doses of METH.

  4. A Role for Fibroblasts in Mediating the Effects of Tobacco-Induced Epithelial Cell Growth and Invasion

    PubMed Central

    Coppe, Jean-Philippe; Boysen, Megan; Ho Sun, Chung; Wong, Brian J.F.; Kang, Mo K.; Park, No-Hee; Desprez, Pierre-Yves; Campisi, Judith; Krtolica, Ana

    2009-01-01

    Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts–exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts–exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment. PMID:18644973

  5. Cyclical cell stretching of skin-derived fibroblasts downregulates connective tissue growth factor (CTGF) production.

    PubMed

    Kanazawa, Yuichiro; Nomura, Jun; Yoshimoto, Shinya; Suzuki, Toshikazu; Kita, Kazuko; Suzuki, Nobuo; Ichinose, Masaharu

    2009-01-01

    Delayed healing of skin wounds can be caused by wound instability, whereas appropriate massage or exercise prevents sclerosis and scar contracture. However, the mechanism by which wound healing is related to mechanical stress has not been fully elucidated. The present study aimed to identify whether mechanical stretching of fibroblasts reduces their production of extracellular matrix. We transferred skin fibroblasts into collagen-coated elastic silicone chambers, cultured them on a stretching apparatus, and used RT-PCR to examine the effects of mechanical stretching on the expression levels of 17 genes related to extracellular matrix production and growth factor secretion. We found that connective tissue growth factor (CTGF) was downregulated after 24 hr of cell stretching. Specifically, the CTGF mRNA and protein levels were 50% and 48% of the control levels, respectively. These findings suggest that cyclic stretching of fibroblasts contributes to anti-fibrotic processes by reducing CTGF production.

  6. Differential effect of extracellular matrix derived from papillary and reticular fibroblasts on epidermal development in vitro.

    PubMed

    Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb

    2017-06-01

    Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.

  7. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts.

    PubMed

    Lamprecht, Sergio; Sigal-Batikoff, Ina; Shany, Shraga; Abu-Freha, Naim; Ling, Eduard; Delinasios, George J; Moyal-Atias, Keren; Delinasios, John G; Fich, Alexander

    2018-02-27

    It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs-the most abundant cell population of the tumor microenvironment (TME)-as target cells.

  8. Elevated TGF β2 serum levels in Emery-Dreifuss muscular dystrophy: implications for myocyte and tenocyte differentiation and fibrogenic processes.

    PubMed

    Bernasconi, Pia; Carboni, Nicola; Ricci, Giulia; Siciliano, Gabriele; Politano, Luisa; Maggi, Lorenzo; Mongini, Tiziana; Vercelli, Liliana; Rodolico, Carmelo; Biagini, Elena; Boriani, Giuseppe; Ruggiero, Lucia; Santoro, Lucio; Schena, Elisa; Prencipe, Sabino; Evangelisti, Camilla; Pegoraro, Elena; Morandi, Lucia; Columbaro, Marta; Lanzuolo, Chiara; Sabatelli, Patrizia; Cavalcante, Paola; Cappelletti, Cristina; Bonne, Gisèle; Muchir, Antoine; Lattanzi, Giovanna

    2018-04-25

    Among rare diseases caused by mutations in LMNA gene, Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B are characterized by muscle weakness and wasting, joint contractures, cardiomyopathy with conduction system disorders. Circulating biomarkers for these pathologies have not been identified. Here, we analyzed the secretome of a cohort of patients affected by these muscular laminopathies in the attempt to identify a common signature. Multiplex cytokine assay showed that transforming growth factor beta 2 (TGF β2) and interleukin 17 serum levels are consistently elevated in the vast majority of examined patients, while interleukin 6 and basic fibroblast growth factor are altered in subgroups of patients. Levels of TGF β2 are also increased in fibroblast and myoblast cultures established from patient biopsies as well as in serum from mice bearing the H222P Lmna mutation causing Emery-Dreifuss muscular dystrophy in humans. Both patient serum and fibroblast conditioned media activated a TGF β2-dependent fibrogenic program in normal human myoblasts and tenocytes and inhibited myoblast differentiation. Consistent with these results, a TGF β2 neutralizing antibody avoided fibrogenic marker activation and myogenesis impairment. Cell intrinsic TGF β2-dependent mechanisms were also determined in laminopathic cells, where TGF β2 activated AKT/mTOR phosphorylation. These data show that TGF β2 contributes to the pathogenesis of Emery-Dreifuss Muscular Dystrophy type 2 and Limb-Girdle muscular Dystrophy 1B and can be considered a potential biomarker of those diseases. Further, the evidence of TGF β2 pathogenetic effects in tenocytes provides the first mechanistic insight into occurrence of joint contractures in muscular laminopathies.

  9. Hereditary orotic aciduria, Lesch-Nyhan syndrome, and xeroderma pigmentosum probed by herpes simplex virus: /sup 125/I-iododeoxycytidine incorporation as an assay for viral growth. [Human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campisi, J.; Hafner, J.; Boorstein, R.

    /sup 125/I-Iododeoxycytidine (/sup 125/IdC) incorporation into acid-insoluble material was a sensitive, rapid, and quantitative assay for the growth of herpes simplex virus type 1 (HSV-1) in human fibroblasts. Cellular utilization of the isotope was 10 to 25% of the incorporation by infected cells and could be 80% inhibited by tetrahydrouridine (THU). Viral utilization was inhibited by acycloguanosine, thioguanine (TG), and cytosine arabinoside. Isotope was incorporated equally well by growing or quiescent infected cells. HSV-1 was used to probe the metabolic capabilities of three mutant human fibroblast strains. /sup 125/IdC incorporation quantitatively measured the ability of the virus to grow inmore » these cells. Viral /sup 125/IdC incorporation was sensitive to TG in normal fibroblasts but showed a 8- to 10-fold greater resistance to TG in fibroblasts derived from patients with Lesch-Nyhan syndrome (LN). Similarly, the growth of ultraviolet irradiated HSV-1 in normal fibroblasts was 5-fold greater than in fibroblasts derived from patients with xeroderma pigmentosum. In fibroblasts derived from patients with hereditary orotic aciduria, viral /sup 125/IdC incorporation was sensitive to adenosine (AD) at concentrations which were slightly stimulatory in normal fibroblasts. This was a 2-fold difference in AD sensitivity, which the radioassay reliably and quantitatively documented. HSV-1 infected cells could be individually identified by their incorporated /sup 125/IdC; such cells had blackened nuclei in autoradiograms prepared 12 hr after infection. Normal cells infected in the presence of TG had many fewer labeled nuclei than LN cells similarly infected in the presence of the drug. (JMT)« less

  10. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xianwei, E-mail: XWang2@UAMS.edu; Lu, Jingjun; Khaidakov, Magomed

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiacmore » fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast growth and collagen formation. ► Aspirin decreases the transcription of angiotensin II type 1 receptor by inhibiting NADPH oxidase–NF-κB pathway. ► The inhibition of angiotensin II type 1 receptor expression may be the basis for reduction in fibroblast growth and collagen formation. ► The effects of aspirin appear to be mediated via its salicylate moiety.« less

  11. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts

    PubMed Central

    Gupta, Manoj K.; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F.; Windmueller, Rebecca; Wagers, Amy J.

    2015-01-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. Significance The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. PMID:26253715

  12. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells.

    PubMed

    Zhu, Qingwei; Pearson-White, Sonia; Luo, Kunxin

    2005-12-01

    Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts. TGF-beta induces upregulation of snoN expression in both epithelial cells and fibroblasts through a common Smad-dependent mechanism. However, a strong and prolonged activation of snoN transcription that lasts for 8 to 24 h is detected only in these two fibroblast lines. This prolonged induction is mediated by Smad2 and appears to play an important role in the transformation of both AKR-2B and NRK cells. Reduction of snoN expression by small interfering RNA or shortening of the duration of snoN induction by a pharmacological inhibitor impaired TGF-beta-induced anchorage-independent growth of AKR-2B cells. Interestingly, Smad2 and Smad3 play opposite roles in regulating snoN expression in both fibroblasts and epithelial cells. The Smad2/Smad4 complex activates snoN transcription by direct binding to the TGF-beta-responsive element in the snoN promoter, while the Smad3/Smad4 complex inhibits it through a novel Smad inhibitory site. Mutations of Smad4 that render it defective in heterodimerization with Smad3, which are found in many human cancers, convert the activity of Smad3 on the snoN promoter from inhibitory to stimulatory, resulting in increased snoN expression in cancer cells. Thus, we demonstrate a novel role of SnoN in the transforming activity of TGF-beta in fibroblasts and also uncovered a mechanism for the elevated SnoN expression in some human cancer cells.

  13. Plasma rich in growth factors (PRGF-Endoret) stimulates proliferation and migration of primary keratocytes and conjunctival fibroblasts and inhibits and reverts TGF-beta1-Induced myodifferentiation.

    PubMed

    Anitua, Eduardo; Sanchez, Mikel; Merayo-Lloves, Jesus; De la Fuente, Maria; Muruzabal, Francisco; Orive, Gorka

    2011-08-01

    Plasma rich in growth factors (PRGF-Endoret) technology is an autologous platelet-enriched plasma obtained from patient's own blood, which after activation with calcium chloride allows the release of a pool of biologically active proteins that influence and promote a range of biological processes including cell recruitment, and growth and differentiation. Because ocular surface wound healing is mediated by different growth factors, we decided to explore the potential of PRGF-Endoret technology in stimulating the biological processes related with fibroblast-induced tissue repair. Furthermore, the anti-fibrotic properties of this technology were also studied. Blood from healthy donors was collected, centrifuged and, whole plasma column (WP) and the plasma fraction with the highest platelet concentration (F3) were drawn off, avoiding the buffy coat. Primary human cells including keratocytes and conjunctival fibroblasts were used to perform the "in vitro" investigations. The potential of PRGF-Endoret in promoting wound healing was evaluated by means of a proliferation and migration assays. Fibroblast cells were induced to myofibroblast differentiation after the treatment with 2.5 ng/mL of TGF-β1. The capability of WP and F3 to prevent and inhibit TGF-β1-induced differentiation was evaluated. Results show that this autologous approach significantly enhances proliferation and migration of both keratocytes and conjunctival fibroblasts. In addition, plasma rich in growth factors prevents and inhibits TGF-β1-induced myofibroblast differentiation. No differences were found between WP and F3 plasma fractions. These results suggest that PRGF-Endoret could reduce scarring while stimulating wound healing in ocular surface. F3 or whole plasma column show similar biological effects in keratocytes and conjunctival fibroblast cells.

  14. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. © 2013 Wiley Periodicals, Inc.

  15. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts.

    PubMed

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-12-31

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC.

  16. Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Jianhai; Guan Tongju; Zhang Hui

    2008-04-04

    Extracellular signal-regulated kinase (ERK) is one of the key protein kinases that regulate the growth and proliferation in cardiac fibroblasts (CFs). As an energy sensor of cellular metabolism, AMP-activated protein kinase (AMPK) is found recently to be involved in myocardial remodeling. In this study, we investigated the crosstalk between ERK and AMPK in the growth and proliferation of CFs. In neonatal rat cardiac fibroblasts (NRCFs), we found that serum significantly inhibited basal AMPK phosphorylation between 10 min and 24 h and also partially inhibited AMPK phosphorylation by AMPK activator, 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR). Furthermore, ERK inhibitor could greatly reverse the inhibition ofmore » AMPK by serum. Conversely, activation of AMPK by AICAR also showed a significant inhibition of basal and serum-induced ERK phosphorylation but it showed a delayed and steadfast inhibition which appeared after 60 min and lasted until 12 h. Moreover, inhibition of ERK could repress the activation of p70S6K, an important kinase in cardiac proliferation, and AICAR could also inhibit p70S6K phosphorylation. In addition, under both serum and serum-free medium, AICAR significantly inhibited the DNA synthesis and cell numbers, and reduced cells at S phase. In conclusion, AMPK activation with AICAR inhibited growth and proliferation in cardiac fibroblasts, which involved inhibitory interactions between ERK and AMPK. This is the first report that AMPK could be a target of ERK in growth factors-induced proliferation, which may give a new mechanism that growth factors utilize in their promotion of proliferation in cardiac fibroblasts.« less

  17. Stromal loss of TGFβ drives cancer growth in the epithelium via inflammation | Center for Cancer Research

    Cancer.gov

    Interactions between epithelial and stromal cells play an important role in cancer development and progression. Epithelial cancers develop when changes occur to tumor suppressor genes in stromal fibroblast cells. For example, loss of tumor suppressor, p53, in stromal fibroblasts leads to p53 inactivation in the epithelium in a prostate cancer model, and disruption of the transforming growth factor-b receptor II (TGF-βRII) in stromal fibroblasts results in intraepithelial dysplasia in prostate cancer and invasive squamous cell carcinoma (SCC) in mouse forestomach.

  18. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  19. Basic FGF Support of Human Embryonic Stem Cell Self-Renewal

    PubMed Central

    Levenstein, Mark E.; Ludwig, Tenneille E.; Xu, Ren-He; Llanas, Rachel A.; VanDenHeuvel-Kramer, Kaitlyn; Manning, Daisy; Thomson, James A.

    2015-01-01

    Human embryonic stem (ES) cells have most commonly been cultured in the presence of basic FGF (FGF2) either on fibroblast feeder layers or in fibroblast-conditioned medium. Recently, it has been reported that elevated concentrations of FGF2 permit the culture of human ES cells in the absence of fibroblasts or fibroblast-conditioned medium. Here we compare the ability of unconditioned medium (UM) supplemented with 4, 24, 40, 80, 100 and 250 ng/ml FGF2 to sustain low-density human ES cell cultures through multiple passages. In these stringent culture conditions, 4, 24, and 40 ng/ml FGF2 failed to sustain human ES cells through three passages, but 100 ng/ml sustained human ES cells with an effectiveness comparable to conditioned medium (CM). Two human ES cell lines (H1 and H9) were maintained for up to 164 population doublings (7 and 4 months) in UM supplemented with 100 ng/ml FGF2. After prolonged culture the cells formed teratomas when injected into SCID-beige mice, and expressed markers characteristic of undifferentiated human ES cells. We also demonstrate that FGF2 is degraded more rapidly in UM than in CM, partly explaining the need for higher concentrations of FGF2 in UM. These results further facilitate the large-scale, routine culture of human ES cells, and suggest that fibroblasts and fibroblast-conditioned medium sustain human ES cells in part by stabilizing FGF signaling above a critical threshold. PMID:16282444

  20. Exogenous bFGF or TGFβ1 accelerates healing of reconstructed dura by CO2 laser soldering in minipigs.

    PubMed

    Wang, Zhenmin; Zhong, Hongliang; Yang, Zhijun; Zhao, Fu; Wang, Bo; Qu, Peiran; Liu, Pinan

    2014-05-01

    This study aims to explore the probable mechanism of better result of dural reconstruction by CO2 laser soldering and the effect of exogenous basic fibroblast growth factor (bFGF) or transforming growth factor-beta1(TGFβ1) on wound healing. In part I of the study, ten minipigs were randomized into two equal groups, and the dural defects were reconstructed by conventional fibrin glue (FG) bonding (group I a) or by CO2 laser soldering (group Ib). In part II, 36 minipigs were randomized into three equal groups, and the dural defect was reconstructed by CO2 laser soldering; then exogenous bFGF or TGFβ1 was administered in group IIb and group IIc, respectively, while group IIa served as control group. The dural specimens were harvested at 1st week postoperatively in part I; and at 1st, 2nd, 3rd, and 4th week postoperatively in part II, they were examined for healing condition and subjected to hematoxylin-eosin (HE) staining and immunohistochemical (IHC) staining with antibodies against bFGF and TGFβ1. In part I, group Ib showed higher fibroblast cell density than group Ia (P < 0.05). The optical density (OD) for IHC staining with antibodies against bFGF of group Ib was significantly higher than that of group Ia (P < 0.05), and for IHC staining with antibodies against TGFβ1, group Ib showed positive staining while group Ia was negative. In part II, administering exogenous bFGF or TGFβ1 made a left shift of fibroblast cell number-time curve compared with control group. For specimens' IHC staining with antibodies against bFGF, the OD of group IIb was higher than that of group IIa in the corresponding time. For specimens' IHC staining with antibodies against TGFβ1, the OD of groups IIb and IIc was both higher than that of group IIa (P < 0.05 and P < 0.01, respectively). In conclusion, CO2 laser may trigger fibroblast proliferation through stimulating the secretion of bFGF and TGFβ1. Topically administering exogenous bFGF or TGFβ1 could accelerate the healing of the reconstructed dura by enhancing secretion of bFGF and/or TGFβ1 and promoting the process of fibroblast gathering-degrading.

  1. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma

    PubMed Central

    Arrieta, O; Guevara, P; Escobar, E; García-Navarrete, R; Pineda, B; Sotelo, J

    2005-01-01

    Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis. PMID:15785746

  2. Biological properties of human skeletal myoblasts genetically modified to simultaneously overexpress the pro-angiogenic factors vascular endothelial growth factor-A and fibroblast growth factor-4.

    PubMed

    Zimna, A; Janeczek, A; Rozwadowska, N; Fraczek, M; Kucharzewska, P; Rucinski, M; Mietkiewski, T; Kurpisz, M

    2014-04-01

    Myocardial infarction results in cardiomyocyte loss and may eventually lead to cardiac failure. Skeletal myoblast transplantation into the scar area may compensate for this observed cell loss by strengthening the weakened myocardium and inducing myogenesis. Moreover, skeletal myoblasts may serve as potential transgene carriers for the myocardium (i.e., delivering pro-angiogenic factors, which may potentially improve blood perfusion in infarcted heart). We examined the influence of the simultaneous overexpression of two potent pro-angiogenic factors, fibroblast growth factor-4 (FGF-4) and vascular endothelial growth factor (VEGF), on human primary myoblast proliferation, cell cycle, resistance to hypoxic stress conditions and myogenic gene expression, as well as the induction of pro-angiogenic activities. We used a bicistronic plasmid vector encoding two factors introduced via an efficient myoblast electroporation method. The levels of overexpressed proteins were assessed, and their functionality at capillary formation was evaluated. This combined approach led to a high level of non-viral transient overexpression of both pro-angiogenic proteins, which proved to be potent regulators of blood vessel development assayed in capillary formation tests. We demonstrated in in vitro conditions that the transfection of human skeletal myoblasts with both FGF-4 and VEGF did not affect their basic biological properties such as the cell cycle, proliferation or expression of myogenic lineage-specific genes, and the modified cells adapted to oxidative stress conditions. Overall, the results obtained suggest that the applied combined approach with the use of two pro-angiogenic genes overexpressed in skeletal muscle stem cells may be an interesting alternative for the effective therapy of myocardial infarction in animal models and/or prospective clinical trials.

  3. Conditional knockout of N-WASP in mouse fibroblast caused keratinocyte hyper proliferation and enhanced wound closure

    PubMed Central

    Jain, Neeraj; Kalailingam, Pazhanichamy; Tan, Kai Wei; Tan, Hui Bing; Sng, Ming Keat; Chan, Jeremy Soon Kiat; Tan, Nguan Soon; Thanabalu, Thirumaran

    2016-01-01

    Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice. PMID:27909303

  4. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    PubMed

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  5. Wound Healing Activity of Extracts and Formulations of Aloe vera, Henna, Adiantum capillus-veneris, and Myrrh on Mouse Dermal Fibroblast Cells.

    PubMed

    Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza

    2017-01-01

    Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.

  6. Bioelectrochemical control of neural cell development on conducting polymers.

    PubMed

    Collazos-Castro, Jorge E; Polo, José L; Hernández-Labrado, Gabriel R; Padial-Cañete, Vanesa; García-Rama, Concepción

    2010-12-01

    Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. The mouse cornea micropocket angiogenesis assay.

    PubMed

    Rogers, Michael S; Birsner, Amy E; D'Amato, Robert J

    2007-01-01

    The mouse corneal micropocket angiogenesis assay uses the avascular cornea as a canvas to study angiogenesis in vivo. Through the use of standardized slow-release pellets, a predictable angiogenic response is generated over the course of 5 d and then quantified. Uniform slow-release pellets are prepared by mixing purified angiogenic growth factors such as basic fibroblast growth factor or vascular endothelial growth factor with sucralfate (a stabilizer) and Hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate)) to allow slow release). This mixture is applied to a mesh that controls unit size and then allowed to harden. A micropocket is surgically created in the mouse cornea and a pellet implanted. Five days later, the area of the cornea overgrown by the angiogenic response is measured using a slit lamp. A skilled investigator can implant and grade 40 eyes in about 2.5 h. The results of the assay are used to assess the ability of potential therapeutic molecules or genetic differences to modulate angiogenesis in vivo.

  8. Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium.

    PubMed

    Lidgerwood, Grace E; Lim, Shiang Y; Crombie, Duncan E; Ali, Ray; Gill, Katherine P; Hernández, Damián; Kie, Josh; Conquest, Alison; Waugh, Hayley S; Wong, Raymond C B; Liang, Helena H; Hewitt, Alex W; Davidson, Kathryn C; Pébay, Alice

    2016-04-01

    We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.

  9. Uncaria rhynchophylla induces angiogenesis in vitro and in vivo.

    PubMed

    Choi, Do-Young; Huh, Jeong-Eun; Lee, Jae-Dong; Cho, Eun-Mi; Baek, Yong-Hyeon; Yang, Ha-Ru; Cho, Yoon-Je; Kim, Kang-Il; Kim, Deog-Yoon; Park, Dong-Suk

    2005-12-01

    Angiogenesis consists of the proliferation, migration, and differentiation of endothelial cells, and angiogenic factors and matrix protein interactions modulate this process. The aim of this study was to determine the angiogenic properties of Uncaria rhynchophylla. Uncaria rhynchophylla significantly enhanced human umbilical vein endothelial cells (HUVECs) proliferation in a dose-dependent manner. Neutralization of vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) by monoclonal antibody suppressed the Uncaria rhynchophylla stimulatory effect on proliferation. In addition, Uncaria rhynchophylla significantly increased chemotactic-migration on gelatin and tubular structures on Matrigel of HUVECs in a dose-dependent manner. Interestingly, Uncaria rhynchophylla dose-dependently increased VEGF, and bFGF gene expression and protein secretion of HUVEC. The angiogenic activity of Uncaria rhynchophylla was confirmed using an in vivo Matrigel angiogenesis model, showing promotion of blood vessel formation. These results suggest that Uncaria rhynchophylla could potentially used to accelerate vascular wound healing or to promote the growth of collateral blood vessel in ischemic tissues.

  10. Immobilization of type-I collagen and basic fibroblast growth factor (bFGF) onto poly (HEMA-co-MMA) hydrogel surface and its cytotoxicity study.

    PubMed

    Yan, Tuo; Sun, Rong; Li, Chun; Tan, Baihua; Mao, Xuan; Ao, Ningjian

    2010-08-01

    Type-I collagen and bFGF were immobilized onto the surface of poly (HEMA-co-MMA) hydrogel by grafting and coating methods to improve its cytotoxicity. The multi-layered structure of the biocompatible layer was confirmed by FTIR, AFM and static water contact angles. The layers were stable in body-like environment (pH 7.4). Human skin fibroblast cells (HSFC) were seeded onto Col/bFGF-poly (HEMA-co-MMA), Col-poly (HEMA-co-MMA) and poly (HEMA-co-MMA) films for 1, 3 and 5 day. MTT assay was performed to evaluate the extraction toxicity of the materials. Results showed that the cell attachment, proliferation and differentiation on Col/bFGF-poly (HEMA-co-MMA) film were higher than those of the control group, which indicated the improvement of cell-material interaction. The extraction toxicity of the modified materials was also lower than that of the unmodified group. The protein and bFGF immobilized poly (HEMA-co-MMA) hydrogel might hold great promise to be a biocompatible material.

  11. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity.

    PubMed

    Green, Jenna; Endale, Mehari; Auer, Herbert; Perl, Anne-Karina T

    2016-04-01

    Epithelial-mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α-green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α(+)CD29(+) cells behaved as myofibroblasts, CD140α(+)CD34(+) appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy.

  12. Diversity of Interstitial Lung Fibroblasts Is Regulated by Platelet-Derived Growth Factor Receptor α Kinase Activity

    PubMed Central

    Green, Jenna; Endale, Mehari; Auer, Herbert

    2016-01-01

    Epithelial–mesenchymal cell interactions and factors that control normal lung development are key players in lung injury, repair, and fibrosis. A number of studies have investigated the roles and sources of epithelial progenitors during lung regeneration; such information, however, is limited in lung fibroblasts. Thus, understanding the origin, phenotype, and roles of fibroblast progenitors in lung development, repair, and regeneration helps address these limitations. Using a combination of platelet-derived growth factor receptor α–green fluorescent protein (PDGFRα-GFP) reporter mice, microarray, real-time polymerase chain reaction, flow cytometry, and immunofluorescence, we characterized two distinct interstitial resident fibroblasts, myo- and matrix fibroblasts, and identified a role for PDGFRα kinase activity in regulating their activation during lung regeneration. Transcriptional profiling of the two populations revealed a myo- and matrix fibroblast gene signature. Differences in proliferation, smooth muscle actin induction, and lipid content in the two subpopulations of PDGFRα-expressing fibroblasts during alveolar regeneration were observed. Although CD140α+CD29+ cells behaved as myofibroblasts, CD140α+CD34+ appeared as matrix and/or lipofibroblasts. Gain or loss of PDGFRα kinase activity using the inhibitor nilotinib and a dominant-active PDGFRα-D842V mutation revealed that PDGFRα was important for matrix fibroblast differentiation. We demonstrated that PDGFRα signaling promotes alveolar septation by regulating fibroblast activation and matrix fibroblast differentiation, whereas myofibroblast differentiation was largely PDGFRα independent. These studies provide evidence for the phenotypic and functional diversity as well as the extent of specificity of interstitial resident fibroblasts differentiation during regeneration after partial pneumonectomy. PMID:26414960

  13. Problem-Based Test: The Effect of Fibroblast Growth Factor on Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    This paper shows the results of an experiment in which the effects of fibroblast growth factor (FGF), actinomycin D (Act D; an inhibitor of transcription), and cycloheximide (CHX; an inhibitor of translation) were studied on the expression of two genes: a gene called "Fnk" and the gene coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).…

  14. The influence of occupational chronic lead exposure on the levels of selected pro-inflammatory cytokines and angiogenic factors.

    PubMed

    Machoń-Grecka, A; Dobrakowski, M; Boroń, M; Lisowska, G; Kasperczyk, A; Kasperczyk, S

    2017-05-01

    The aim of the study was to determine the effect of occupational exposure to lead on the blood levels of pro-inflammatory cytokines and selected factors that influence angiogenesis. The study population was divided into two groups. The first group consisted of 56 male workers chronically exposed to lead. The second group (control) was comprised of 24 male administrative workers. The serum levels of interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) were significantly higher in the group of workers chronically exposed to lead compared to control values by 38%, 68%, and 57%, respectively. Similarly, the values of soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) and fibroblast growth factor-basic (FGF-basic) were higher by 19% and 63%, respectively. In the group of workers chronically exposed to lead, there were positive correlations between the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and angiogenic factors (VEGF, FGF-basic, sVEGFR-1, and soluble angiopoietin receptor). In the control group, there were no correlations between the levels of the abovementioned parameters. Results of the present study indicate that chronic occupational lead exposure promotes inflammatory processes via induction of pro-inflammatory cytokines, modulates angiogenesis, and elicits interdependencies between the immune response and angiogenic factors.

  15. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components

    PubMed Central

    Fekete, Natalie; Gadelorge, Mélanie; Fürst, Daniel; Maurer, Caroline; Dausend, Julia; Fleury-Cappellesso, Sandrine; Mailänder, Volker; Lotfi, Ramin; Ignatius, Anita; Sensebé, Luc; Bourin, Philippe; Schrezenmeier, Hubert; Rojewski, Markus Thomas

    2012-01-01

    Background aims The clinical use of human mesenchymal stromal cells (MSC) requires ex vivo expansion in media containing supplements such as fetal bovine serum or, alternatively, human platelet lysate (PL). Methods Platelet concentrates were frozen, quarantine stored, thawed and sterile filtered to obtain PL. PL content and its effect on fibroblast-colony-forming unit (CFU-F) formation, MSC proliferation and large-scale expansion were studied. Results PL contained high levels of basic fibroblast growth factor (bFGF), soluble CD40L (sCD40L), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), platelet-derived growth factor AA (PDGF-AA), platelet-derived growth factor AB/BB (PDGF-AB/BB), chemokine (C-C) ligand 5 (CCL5; RANTES) transforming growth factor-β1 (TGF-β1) and chemokine (C-X-C) ligand 1/2/3 (GRO), with low batch-to-batch variability, and most were stable for up to 14 days. Inhibition of PDGF-BB and bFGF decreased MSC proliferation by about 20% and 50%, respectively. The strongest inhibition (about 75%) was observed with a combination of anti-bFGF + anti-PDGF-BB and anti-bFGF + anti-TGF-β1 + anti-PDGF-BB. Interestingly, various combinations of recombinant PDGF-BB, bFGF and TGF-β1 were not sufficient to promote cell proliferation. PL from whole blood-derived pooled platelet concentrates and apheresis platelet concentrates did not differ significantly in their growth-promoting activity on MSC. Conclusions PL enhances MSC proliferation and can be regarded as a safe tool for MSC expansion for clinical purposes. \\in particular, PDGF-BB and bFGF are essential components for the growth-promoting effect of PL, but are not sufficient for MSC proliferation. PMID:22296115

  16. Evaluation of Autologous Fascia Implantation With Controlled Release of Fibroblast Growth Factor for Recurrent Laryngeal Nerve Paralysis Due to Long-term Denervation.

    PubMed

    Nagai, Hiromi; Nishiyama, Koichiro; Seino, Yutomo; Tabata, Yasuhiko; Okamoto, Makito

    2016-06-01

    Paralyzed tissue due to long-term denervation is resistant to many treatments because it induces irreversible histological changes and disorders of deglutition or phonation. We sought to determine the effect of autologous transplantation of fascia into the vocal fold (ATFV) with controlled release of basic fibroblast growth factor (bFGF) on long-term unilateral vocal fold paralysis (UVFP). Unilateral recurrent laryngeal nerve (RLN) section was performed on 20 rats. Five rats were implanted with autologous fascia only (fascia group), and 10 rats were implanted with autologous fascia and a gelatin hydrogel sheet with 1 μg (1 μg bFGF + fascia group) or 0.1 μg (0.1 μg bFGF + fascia group) of bFGF 4 months after RLN section. We evaluated the normalized glottal gap and laryngeal volume and histological changes 3 months after implantation. The normalized glottal gap was significantly reduced in the 3 fascia implantation groups. Normalized laryngeal volume, fat volume, and lateral thyroarytenoid muscle volume were significantly increased in the 2 fascia implantation with bFGF groups. The ATFV with controlled release of bFGF repaired the glottal gap and laryngeal volume after RLN section and may reduce the occurrence of aspiration and hoarseness. We speculate that this treatment improves laryngeal function in long-term RLN denervation. © The Author(s) 2016.

  17. Oligodendrocyte progenitor cells proliferate and survive in an immature state following treatment with an axolemma-enriched fraction

    PubMed Central

    Becker-Catania, Sara G; Nelson, Julie K; Olivares, Shantel; Chen, Shu-Jen; DeVries, George H

    2011-01-01

    The ability of an AEF (axolemma-enriched fraction) to influence the proliferation, survival and differentiation of OPC (oligodendrocyte progenitor cells) was evaluated. Following addition of AEF to cultured OPC, the AEF associated with the outer surface of OPC so that subsequent metabolic events were likely mediated by direct AEF-OPC contact. Addition of AEF to the cultured OPC resulted in a dose- and time-dependent increase in proliferation that was partially dependent on Akt (protein kinase B) and MAPK (mitogen-activated protein kinase) activation. The major mitogen in an AEF-SE (soluble 2.0 M NaCl extract of the AEF) was identified as aFGF (acidic fibroblast growth factor) and accounted for 50% of the mitogenicity. The remaining 50% of the mitogenicity had properties consistent with bFGF (basic fibroblast growth factor) but was not unequivocally identified. Under conditions that limit the survival of OPC in culture, AEF treatment prolonged the survival of the OPC. Antigenic and morphological examination of the AEF-treated OPC indicated that the AEF treatment helped the OPC survive in a more immature state. The potential downstream metabolic pathways potentially activated in OPC by AEF and the consequences of these activated pathways are discussed. The results of these studies are consistent with the view that direct contact of axons with OPC stimulates their proliferation and survival while preventing their differentiation. PMID:21345173

  18. Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner.

    PubMed

    van Rooyen, Beverley A; Schäfer, Georgia; Leaner, Virna D; Parker, M Iqbal

    2013-10-03

    Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.

  19. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo

    NASA Astrophysics Data System (ADS)

    Kim, K. Jin; Li, Bing; Winer, Jane; Armanini, Mark; Gillett, Nancy; Phillips, Heidi S.; Ferrara, Napoleone

    1993-04-01

    THE development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation1,2. Blood vessel neoformation is also important in the pathogenesis of many disorders1-5, particularly rapid growth and metastasis of solid tumours3-5. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-α and transforming factors-α and -β 1,2. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosar-coma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells In vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.

  20. ACTION OF SERUM ON FIBROBLASTS IN VITRO

    PubMed Central

    Carrel, Alexis; Ebeling, Albert H.

    1923-01-01

    It may be concluded that, under the conditions of the experiments: 1. The duration of life of fibroblasts is not altered by the presence of 7 per cent serum in a medium composed of fibrin and Tyrode solution, but is slightly decreased when the concentration of the serum reaches 25 per cent. 2. Fibroblasts cultivated in serum or in Tyrode solution are only in a condition of survival; they do not build up new protoplasm from the serum proteins and their mass does not increase. 3. When embryonic tissue juice is added to the medium, the tissues increase in mass. But the rate of growth is the same in media containing 0 per cent and 10 per cent serum. In 25 per cent serum, however, the rate of growth slightly decreases. Even in the presence of embryonic tissue juice, serum does not increase the rate of growth of connective tissue. 4. The nitrogenous compounds contained in serum are not used as food material by fibroblasts growing in vitro. PMID:19868757

  1. Quantitative Evaluation of Myostatin Gene in Stably Transfected Caprine Fibroblast Cells by Anti-Myostatin shRNA.

    PubMed

    Jain, Sudhir Kumar; Jain, Hemlata; Kumar, Dharmendra; Bedekar, Megha Kadam; Pandey, Akhilesh Kumar; Sarkhel, Bikash Chandra

    2015-09-01

    Skeletal muscle is the major component of lean tissue that is used for consumption, and myostatin is a negative regulator of skeletal muscle growth. Downregulation of this gene therefore offers a strategy for developing superior animals with enhanced muscle growth. Knockdown of myostatin was achieved by RNA interference technology. The anti-myostatin shRNA were designed and stably transfected in caprine fibroblast cells. The reduced expression of target gene was achieved and measured in clonal fibroblast cells by real-time PCR. Two single-cell clones induced significant decrease of myostatin gene expression by 73.96 and 72.66 %, respectively (P < 0.05). To ensure the appropriate growth of transfected cell, seven media were tested. The best suited media was used for transfected fibroblast cell proliferation. The findings suggest that shRNA provides a novel potential tool for gene knockdown and these stably transfected cells can be used as the donor cells for animal cloning.

  2. Modulation of hepatocyte growth factor secretion in human female reproductive tract stromal fibroblasts by poly (I:C) and estradiol.

    PubMed

    Coleman, Kimberly D; Ghosh, Mimi; Crist, Sarah G; Wright, Jacqueline A; Rossoll, Richard M; Wira, Charles R; Fahey, John V

    2012-01-01

    Hepatocyte Growth Factor (HGF) secretion facilitates epithelial cell growth and development in the female reproductive tract (FRT) and may contribute to pathological conditions such as cancer and endometriosis. We hypothesized that estradiol and poly (I:C), a synthetic RNA mimic, may have a regulatory effect on HGF secretion by stromal fibroblasts from FRT tissues. Following hysterectomies, normal tissue from the uterus, endocervix, and ectocervix were dispersed into stromal cell fractions by enzymatic digestion and differential filtering. Stromal fibroblasts were cultured and treated with estradiol and/or poly (I:C), and conditioned media were analyzed for HGF via enzyme-linked immunosorbent assay. Treating uterine fibroblasts with estradiol or poly (I:C) significantly increased HGF secretion. When uterine fibroblasts were co-treated with estradiol and poly (I:C), the effect on HGF secretion was additive. In contrast, stromal fibroblasts from endo- and ecto-cervix were unresponsive to estradiol, but were stimulated to secrete HGF by poly (I:C). HGF secretion is uniquely regulated in the uterus, but not in ecto- and endo-cervix, by estradiol. Moreover, potential viral pathogens further induce HGF. These findings have potential applications in understanding both hormonal regulation of normal tissue as well as the role of HGF in tumorogenesis, endometriosis, and human immunodeficiency virus infection. © 2011 John Wiley & Sons A/S.

  3. ATM-dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts

    PubMed Central

    Zhou, Tong; Chou, Jeff; Zhou, Yingchun; Simpson, Dennis A.; Cao, Feng; Bushel, Pierre R.; Paules, Richard S.; Kaufmann, William K.

    2013-01-01

    The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6 and 24 h after treatment with 1.5 Gy IR or sham-treatment, and were compared to those previously recognized in normal human fibroblasts. Under basal conditions 160 genes or ESTs were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. Upon DNA damage, 1091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison to normal cells. The reduced change in DNA-damage-response genes and the attenuated repression of cell-cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells. PMID:17699107

  4. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  5. Screening anti-tumor compounds from Ligusticum wallichii using cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry.

    PubMed

    Zhang, Tao; Ding, Yuanyuan; An, Hongli; Feng, Liuxin; Wang, Sicen

    2015-07-14

    Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry was developed. Tyrosine 367 Cysteine-HEK293 cells were used as cell membrane stationary phase. Specificity and reproducibility of the cell membrane chromatography was evaluated using 1-tert-butyl-3-{2-[4-(diethylamino)butylamino]-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl}urea, Nimodipine and dexamethasone acetate. Then, anti-tumor components acting on Tyrosine 367 Cysteine-fibroblast growth factor receptor 4 were screened and identified from extracts of Ligusticum wallichii. Components from the extract were retained on the cell membrane chromatographic column. The retained fraction was directly eluted into high-performance liquid chromatography with mass spectrometry system for separation and identification. Finally, Levistolide A was identified as an active component from Ligusticum wallichii extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide-formazan colorimetric assay revealed that Levistolide A inhibits proliferation of overexpressing the mutated receptor cells with dose-dependent manner. Phosphorylation of fibroblast growth factor receptor 4 was also decrease under Levistolide A treatment. Flex dock simulation verified that Levistolide A could bind with the tyrosine kinase domain of fibroblast growth factor receptor 4. Therefore, Levistolide A screened by the cell membrane chromatography combined with high-performance liquid chromatography and mass spectrometry can arrest cell growth. In conclusion, the two-dimensional high-performance liquid chromatography method can screen and identify potential anti-tumor ingredients which specifically act on the tyrosine kinase domain of the mutated fibroblast growth factor receptor 4. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. p27 Nuclear localization and growth arrest caused by perlecan knockdown in human endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Katsuya; Oka, Kiyomasa; Matsumoto, Kunio

    2010-02-12

    Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and itsmore » expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.« less

  7. Effectiveness of a Crocus sativus Extract on Burn Wounds in Rats.

    PubMed

    Alemzadeh, Esmat; Oryan, Ahmad

    2018-05-23

    Crocus sativus is a spice with various pharmacological properties. Crocin, picrocrocin, and safranal are the main compositions of saffron that have recently been considered in the therapy of many diseases. High-performance liquid chromatography analysis revealed presence of these compounds in our saffron extract. This study was carried out to evaluate the effect of saffron on burn wound healing at an in vivo model. Saffron was topically applied on burn wounds in rats; the percentage of wound closure, wound contraction, and the levels of main cytokines and growth factors were measured. The saffron extract was also applied to evaluate the proliferation and migration of human dermal fibroblast (HDF) cells using in vitro scratch assay and resulted in active proliferation and migration of the HDF cells in a dose-dependent manner. A clear enhanced healing was observed in the saffron-treated wounds compared to the silver sulfadiazine and negative control groups. Decreased expression of interleukin-1 β and transforming growth factor- β 1 (TGF- β 1) during the inflammatory phase demonstrated the role of saffron in promoting wound healing. In addition, enhanced TGF- β 1 expression during the proliferative phase and basic fibroblast growth factor during the remodeling phase represented regenerative and anti-scarring role of saffron, respectively. Our histological and biochemical findings also confirmed that saffron significantly stimulated burn wound healing by modulating healing phases. Therefore, saffron can be an optimal option in promoting skin repair and regeneration. Application of this herbal medicinal drug should be encouraged because of its availability and negligible side effects. Georg Thieme Verlag KG Stuttgart · New York.

  8. Isolation and Characterization of Rat Pituitary Endothelial Cells

    PubMed Central

    Chaturvedi, Kirti; Sarkar, Dipak K.

    2010-01-01

    Most previous studies that determined the effect of estradiol on angiogenesis used endothelial cells from nonpituitary sources. Because pituitary tumor tissue receives its blood supply via portal and arterial circulation, it is important to use pituitary-derived endothelial cells in studying pituitary angiogenesis. We have developed a magnetic separation technique to isolate endothelial cells from pituitary tissues and have characterized these cells in primary cultures. Endothelial cells of the pituitary showed the existence of endothelial cell marker, CD31, and of von Willebrand factor protein. These cells in cultures also showed immunore-activity of estrogen receptors alpha and beta. The angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, significantly increased proliferation and migration of the pituitary-derived endothelial cells in primary cultures. These results suggest that a magnetic separation technique can be used for enrichment of pituitary-derived endothelial cells for determination of cellular mechanisms governing the vascularization in the pituitary. PMID:17028416

  9. Requirement of Vascular Integrin α_vβ_3 for Angiogenesis

    NASA Astrophysics Data System (ADS)

    Brooks, Peter C.; Clark, Richard A. F.; Cheresh, David A.

    1994-04-01

    Angiogenesis depends on the adhesive interactions of vascular cells. The adhesion receptor integrin α_vβ_3 was identified as a marker of angiogenic vascular tissue. Integrin α_vβ_3 was expressed on blood vessels in human wound granulation tissue but not in normal skin, and it showed a fourfold increase in expression during angiogenesis on the chick chorioallantoic membrane. In the latter assay, a monoclonal antibody to α_vβ_3 blocked angiogenesis induced by basic fibroblast growth factor, tumor necrosis factor-α, and human melanoma fragments but had no effect on preexisting vessels. These findings suggest that α_vβ_3 may be a useful therapeutic target for diseases characterized by neovascularization.

  10. Circulating basic fibroblast growth factor is partly derived from the tumour in patients with colon, cervical and ovarian cancer.

    PubMed

    Salgado, R; Benoy, I; Vermeulen, P; van Dam, P; Van Marck, E; Dirix, L

    2004-01-01

    In order to investigate whether the high bFGF serum levels encountered in cancer patients are derived from the tumour, we analysed serum bFGF levels in 18 untreated randomly selected patients with operable colorectal, cervical and ovarian cancer in the blood draining the tumour, i.e., in mesenteric and uterine veins, and compared these with arterial samples. No significantly elevated bFGF levels were found in the veins draining the tumours compared with arterial samples in our patient population. This suggests that, in contrast to what is generally presumed, serum bFGF levels might also be derived from other sources besides the tumour, e.g., platelets.

  11. Induction of vascular endothelial growth factor expression in human pulp fibroblasts stimulated with black-pigmented Bacteroides.

    PubMed

    Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C

    2004-09-01

    To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.

  12. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing.

    PubMed

    Koob, Thomas J; Rennert, Robert; Zabek, Nicole; Massee, Michelle; Lim, Jeremy J; Temenoff, Johnna S; Li, William W; Gurtner, Geoffrey

    2013-10-01

    Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests a paracrine mechanism of action for dHACM when used for wound healing applications. ©2013 The Authors. International Wound Journal published by John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  13. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  14. Vitamin D3 supplementation increases fibroblast growth factor-23 in HIV-infected youth treated with tenofovir disoproxil fumarate

    USDA-ARS?s Scientific Manuscript database

    Tenofovir (TDF) is associated with phosphaturia and elevated 1,25 dihydroxy vitamin D (1,25-OH(2)D). Fibroblast growth factor-23 causes phosphaturia and increases in response to elevated 1,25-OH(2)D. Vitamin D binding proetin (VDBP) binds to 1,25-OH(2)D, decreasing biologic activity, and is elevated...

  15. Vitamin D Supplementation increases fibroblast growth factor-23 in HIV-infected youth treated with tenofovir disoproxil fumarate

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Tenofovir (TDF) is associated with phosphaturia and elevated 1,25 dihydroxy vitamin D (1,25-OH(2)D). Fibroblast growth factor 23 (FGF23) causes phosphaturia and increases in response to elevated 1,25-OH(2)D. Vitamin D binding protein (VDBP) binds to 1,25-OH(2)D, decreasing its biologic...

  16. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis

    PubMed Central

    Wex, Eva; Pautsch, Alexander; Schnapp, Gisela; Hostettler, Katrin E.; Stowasser, Susanne; Kolb, Martin

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease characterised by fibrosis of the lung parenchyma and loss of lung function. Although the pathogenic pathways involved in IPF have not been fully elucidated, IPF is believed to be caused by repetitive alveolar epithelial cell injury and dysregulated repair, in which there is uncontrolled proliferation of lung fibroblasts and differentiation of fibroblasts into myofibroblasts, which excessively deposit extracellular matrix (ECM) proteins in the interstitial space. A number of profibrotic mediators including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and transforming growth factor-β are believed to play important roles in the pathogenesis of IPF. Nintedanib is a potent small molecule inhibitor of the receptor tyrosine kinases PDGF receptor, FGF receptor and vascular endothelial growth factor receptor. Data from in vitro studies have shown that nintedanib interferes with processes active in fibrosis such as fibroblast proliferation, migration and differentiation, and the secretion of ECM. In addition, nintedanib has shown consistent anti-fibrotic and anti-inflammatory activity in animal models of lung fibrosis. These data provide a strong rationale for the clinical efficacy of nintedanib in patients with IPF, which has recently been demonstrated in phase III clinical trials. PMID:25745043

  17. Expression of basic fibroblast growth factor and its receptors FGFR1 and FGFR2 in human benign prostatic hyperplasia treated with finasteride.

    PubMed

    Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Rodríguez-Vallejo, J M; González-Esteban, J; Miranda, G; Torrubia, F

    1999-07-01

    The development of benign prostatic hyperplasia (BPH) is an androgen-dependent process which may be mediated by a number of locally produced growth factors. One of these, the basic fibroblast growth factor (bFGF or FGF2), has a mitogenic effect on prostatic stroma. High expression levels of bFGF have been reported in BPH. FGFR1 and FGFR2 receptors, that exhibit affinity for bFGF, have been identified in normal and hyperplastic prostate. Finasteride, a 5alpha-reductase inhibitor, is an effective drug in the treatment of BPH, inducing regressive changes in the prostate of treated patients, even though its mechanisms of action are not yet completely elucidated. This study was designed to assess the effects of finasteride on the expression levels of bFGF, FGFR1, and FGFR2 in patients with BPH. The expression levels of bFGF, FGFR1, and FGFR2 in 9 patients with prostatic hyperplasia treated with finasteride were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis of mRNA expression and were compared with those of 9 control patients with untreated BPH. Immunohistochemistry showed strong bFGF immunoreactivity in the prostatic stroma of untreated patients, this being somewhat weaker in the epithelium. In treated patients, epithelial immunoreactivity was practically negative, and a considerable reduction in stromal immunoreactivity was seen. These findings were also confirmed by RT-PCR. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR2 exhibited strong stromal immunoreactivity, becoming weaker in the basal epithelium. No differences were seen in the expression of both receptors between the groups of treated and untreated patients. A marked reduction in bFGF levels is seen in BPH treated with finasteride in comparison to untreated BPH. In our opinion, finasteride may act as a negative regulator of bFGF expression, counteracting the role of bFGF in the development of BPH.

  18. Notoginsenoside Ft1 Promotes Fibroblast Proliferation via PI3K/Akt/mTOR Signaling Pathway and Benefits Wound Healing in Genetically Diabetic Mice.

    PubMed

    Zhang, Eryun; Gao, Bo; Yang, Li; Wu, Xiaojun; Wang, Zhengtao

    2016-02-01

    Wound healing requires the essential participation of fibroblasts, which is impaired in diabetic foot ulcers (DFU). Notoginsenoside Ft1 (Ft1), a saponin from Panax notoginseng, can enhance platelet aggregation by activating signaling network mediated through P2Y12 and induce proliferation, migration, and tube formation in cultured human umbilical vein endothelial cells. However, whether it can accelerate fibroblast proliferation and benefit wound healing, especially DFU, has not been elucidated. In the present study on human dermal fibroblast HDF-a, Ft1 increased cell proliferation and collagen production via PI3K/Akt/mTOR signaling pathway. On the excisional wound splinting model established on db/db diabetic mouse, topical application of Ft1 significantly shortened the wound closure time by 5.1 days in contrast with phosphate-buffered saline (PBS) treatment (15.8 versus 20.9 days). Meanwhile, Ft1 increased the rate of re-epithelialization and the amount of granulation tissue at day 7 and day 14. The molecule also enhanced mRNA expressions of COL1A1, COL3A1, transforming growth factor (TGF)-β1 and TGF-β3 and fibronectin, the genes that contributed to collagen expression, fibroblast proliferation, and consequent scar formation. Moreover, Ft1 facilitated the neovascularization accompanied with elevated vascular endothelial growth factor, platelet-derived growth factor, and fibroblast growth factor at either mRNA or protein levels and alleviated the inflammation of infiltrated monocytes indicated by reduced tumor necrosis factor-α and interleukin-6 mRNA expressions in the diabetic wounds. Altogether, these results indicated that Ft1 might accelerate diabetic wound healing by orchestrating multiple processes, including promoting fibroblast proliferation, enhancing angiogenesis, and attenuating inflammatory response, which provided a great potential application of it in clinics for patients with DFU. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Effect of eosinophils activated with Alternaria on the production of extracellular matrix from nasal fibroblasts.

    PubMed

    Shin, Seung-Heon; Ye, Mi-Kyung; Choi, Sung-Yong; Kim, Yee-Hyuk

    2016-06-01

    Eosinophils and fibroblasts are known to play major roles in the pathogenesis of nasal polyps. Fungi are commonly found in nasal secretion and are associated with airway inflammation. To investigate whether activated eosinophils by airborne fungi can influence the production of extracellular matrix (ECM) from nasal fibroblasts. Inferior turbinate and nasal polyp fibroblasts were stimulated with Alternaria or Aspergillus, respectively, for 24 hours and ECM messenger RNA (mRNA) and protein expressions were measured. Eosinophils isolated from healthy volunteers were stimulated with Alternaria or Aspergillus for 4 hours then superoxide, eosinophil peroxidase, and transforming growth factor β1 were measured. Then activated eosinophils were cocultured with nasal fibroblasts for 24 hours, and ECM mRNA expressions were measured. Alternaria strongly enhanced ECM mRNA expression and protein production from nasal fibroblasts. Alternaria also induced the production of superoxide, eosinophil peroxidase, and transforming growth factor β1 from eosinophils, and activated eosinophils enhanced ECM mRNA expression when they were cocultured without the Transwell insert system. Eosinophils activated with Alternaria enhanced ECM mRNA expression from nasal polyp fibroblasts. Alternaria plays an important role in tissue fibrosis in the pathogenesis of nasal polyps by directly or indirectly influencing the production of ECM from nasal fibroblasts. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Sean R.; Prahalad, Agasanur K.; Yang Jieping

    2006-06-23

    Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H{sub 2}O{sub 2})-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H{sub 2}O{sub 2} treatment. H{sub 2}O{sub 2} induces 8-oxo-dG formation in both RTS andmore » normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed.« less

  1. Genetic analysis of fibroblast growth factor signaling in the Drosophila eye.

    PubMed

    Mukherjee, T; Choi, I; Banerjee, Utpal

    2012-01-01

    The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously.

  2. Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons

    PubMed Central

    Tang, Jin Bo; Wu, Ya Fang; Cao, Yi; Chen, Chuan Hao; Zhou, You Lang; Avanessian, Bella; Shimada, Masaru; Wang, Xiao Tian; Liu, Paul Y.

    2016-01-01

    Tendon injury during limb motion is common. Damaged tendons heal poorly and frequently undergo unpredictable ruptures or impaired motion due to insufficient innate healing capacity. By basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) gene therapy via adeno-associated viral type-2 (AAV2) vector to produce supernormal amount of bFGF or VEGF intrinsically in the tendon, we effectively corrected the insufficiency of the tendon healing capacity. This therapeutic approach (1) resulted in substantial amelioration of the low growth factor activity with significant increases in bFGF or VEGF from weeks 4 to 6 in the treated tendons (p < 0.05 or p < 0.01), (2) significantly promoted production of type I collagen and other extracellular molecules (p < 0.01) and accelerated cellular proliferation, and (3) significantly increased tendon strength by 68–91% from week 2 after AAV2-bFGF treatment and by 82–210% from week 3 after AAV2-VEGF compared with that of the controls (p < 0.05 or p < 0.01). Moreover, the transgene expression dissipated after healing was complete. These findings show that the gene transfers provide an optimistic solution to the insufficiencies of the intrinsic healing capacity of the tendon and offers an effective therapeutic possibility for patients with tendon disunion. PMID:26865366

  3. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia.

    PubMed

    Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P < 0.001) and was not significantly stimulated by hypoxia (1% O(2)), whereas wild-type fibroblast migration was up-regulated nearly twofold in hypoxic conditions (P < 0.05). Diabetic fibroblasts produced twice the amount of pro-matrix metalloproteinase-9 as normal fibroblasts, as measured by both gelatin zymography and enzyme-linked immunosorbent assay (P < 0.05). Adult diabetic fibroblasts exhibited a sevenfold impairment in vascular endothelial growth factor (VEGF) production (4.5 +/- 1.3 pg/ml versus 34.8 +/- 3.3 pg/ml, P < 0.001) compared to wild-type fibroblasts. Moreover, wild-type fibroblast production of VEGF increased threefold in response to hypoxia, whereas diabetic fibroblast production of VEGF was not up-regulated in hypoxic conditions (P < 0.001). To address the question whether these differences resulted from chronic hyperglycemia or absence of the leptin receptor, fibroblasts were harvested from newborn db/db mice before the onset of diabetes (4 to 5 weeks old). These fibroblasts showed no impairments in VEGF production under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.

  4. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    PubMed

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  5. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  6. Biological effects of plasma rich in growth factors (PRGF) on human endometrial fibroblasts.

    PubMed

    Anitua, Eduardo; de la Fuente, María; Ferrando, Marcos; Quintana, Fernando; Larreategui, Zaloa; Matorras, Roberto; Orive, Gorka

    2016-11-01

    To evaluate the biological outcomes of plasma rich in growth factors (PRGF) on human endometrial fibroblasts in culture. PRGF was obtained from three healthy donors and human endometrial fibroblasts (HEF) were isolated from endometrial specimens from five healthy women. The effects of PRGF on cell proliferation and migration, secretion of vascular endothelial growth factor (VEGF), procollagen type I and hyaluronic acid (HA) and contractility of isolated and cultured human endometrial fibroblasts (HEF) were analyzed. Statistical analysis was performed in order to compare the effects of PRGF with respect to control situation (T-test or Mann-Whitney U-test). We report a significantly elevated human endometrial fibroblast proliferation and migration after treatment with PRGF. In addition, stimulation of HEF with PRGF induced an increased expression of the angiogenic factor VEGF and favored the endometrial matrix remodeling by the secretion of procollagen type I and HA and endometrial regeneration by elevating the contractility of HEF. These results were obtained for all PRGF donors and each endometrial cell line. The myriad of growth factors contained in PRGF promoted HEF proliferation, migration and synthesis of paracrine molecules apart from increasing their contractility potential. These preliminary results suggest that PRGF improves the biological activity of HEF in vitro, enhancing the regulation of several cellular processes implied in endometrial regeneration. This innovative treatment deserves further investigation for its potential in "in vivo" endometrial development and especially in human embryo implantation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    PubMed

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  8. Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts.

    PubMed

    Madeo, Antonio; Maggiolini, Marcello

    2010-07-15

    Fibroblasts are the principal cellular component of connective tissue and are associated with cancer cells at all stages of tumor progression. Structural and functional contributions of fibroblasts to the growth, survival, and invasive capacity of cancer cells are beginning to emerge. In breast carcinoma, approximately 80% of stromal fibroblasts termed cancer-associated fibroblasts (CAF) are thought to manifest an activated phenotype that promotes cancer cell proliferation tumor growth at metastatic sites similar to the primary tumor. In this report, we show that CAFs respond to physiologic concentrations of 17beta-estradiol (E2) by rapidly inducing extracellular signal-regulated kinase phosphorylation and immediate early gene expression, including c-fos and connective tissue growth factor, and cyclin D1. Notably, the E2 response is mediated by the alternate estrogen receptor GPR30, which interfaces with the epidermal growth factor receptor (EGFR) signaling pathway. In particular, E2 stimulates a physical interaction between GPR30 and phosphorylated EGFR, recruiting them to the cyclin D1 gene promoter. Nuclear localization induced by E2 was confirmed by cellular immunofluorescence methods. GPR30 was required for CAF proliferation and migration induced by E2. Our results provide important new mechanistic insights into how CAFs are stimulated by estrogen through a GPR30-mediated nuclear signaling pathway. More generally, they define estrogenic GPR30 signaling as a functionally important component of the tumor microenvironment. (c)2010 AACR.

  9. Skin fibroblasts from individuals hemizygous for the familial adenopolyposis susceptibility gene show delayed crisis in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.; Kazim, D.; Kraveka, J.

    Normal human fibroblast cells have not been reported to escape crisis--that is they die after about 24 doublings in culture. The authors have been studying the growth properties of skin fibroblast cells from persons in families with familial adenopolyposis of the colon (FAP). An individual hemizygous at the FAP locus will develop hyperplasia of the colonic epithelium followed by colonic polyps, both at an early age. Polyps themselves still retain a single functional FAP allele. A mutation or deletion in this allele in a polyp is hypothesized to lead to further loss of growth control; thus, a tumor is formed.more » They found that the in vitro life-span of skin fibroblast cells from FAP individuals and from some asymptomatic children were markedly extended when compared with normal individuals.« less

  10. A single exposure to cocaine during development elicits regionally-selective changes in basal basic Fibroblast Growth Factor (FGF-2) gene expression and alters the trophic response to a second injection.

    PubMed

    Giannotti, Giuseppe; Caffino, Lucia; Malpighi, Chiara; Melfi, Simona; Racagni, Giorgio; Fumagalli, Fabio

    2015-02-01

    During adolescence, the brain is maturing and more sensitive to drugs of abuse that can influence its developmental trajectory. Recently, attention has been focused on basic fibroblast growth factor (FGF-2) given that its administration early in life enhances the acquisition of cocaine self-administration and sensitization at adulthood (Turner et al. (Pharmacol Biochem Behav 92:100-4, 2009), Clinton et al. (Pharmacol Biochem Behav103:6-17, 2012)). Additionally, we found that abstinence from adolescent cocaine exposure long lastingly dysregulates FGF-2 transcription (Giannotti et al. (Psychopharmacology (Berl) 225:553-60, 2013 ). The objectives of the study are to evaluate if (1) a single injection of cocaine (20 mg/kg) at postnatal day 35 alters FGF-2 messenger RNA (mRNA) levels and (2) the first injection influences the trophic response to a second injection (10 mg/kg) provided 24 h or 7 days later. We found regional differences in the FGF-2 expression pattern as either the first or the second injection of cocaine by themselves upregulated FGF-2 mRNA in the medial prefrontal cortex and nucleus accumbens while downregulating it in the hippocampus. The first injection influences the trophic response of the second. Of note, 24 h after the first injection, accumbal and hippocampal FGF-2 changes produced by cocaine in saline-pretreated rats were prevented in cocaine-pretreated rats. Conversely, in the medial prefrontal cortex and hippocampus 7 days after the first injection, the cocaine-induced FGF-2 changes were modified by the subsequent exposure to the psychostimulant. These findings show that a single cocaine injection is sufficient to produce enduring changes in the adolescent brain and indicate that early cocaine priming alters the mechanisms regulating the trophic response in a brain region-specific fashion.

  11. The differential effect of basic fibroblast growth factor and stromal cell‑derived factor‑1 pretreatment on bone morrow mesenchymal stem cells osteogenic differentiation potency.

    PubMed

    Wang, Ruolin; Liu, Wenhua; Du, Mi; Yang, Chengzhe; Li, Xuefen; Yang, Pishan

    2018-03-01

    In situ tissue engineering has become a novel strategy to repair periodontal/bone tissue defects. The choice of cytokines that promote the recruitment and proliferation, and potentiate and maintain the osteogenic differentiation ability of mesenchymal stem cells (MSCs) is the key point in this technique. Stromal cell‑derived factor‑1 (SDF‑1) and basic fibroblast growth factor (bFGF) have the ability to promote the recruitment, and proliferation of MSCs; however, the differential effect of SDF‑1 and bFGF pretreatment on MSC osteogenic differentiation potency remains to be explored. The present study comparatively observed osteogenic differentiation of bone morrow MSCs (BMMSCs) pretreated by bFGF or SDF‑1 in vitro. The gene and protein expression levels of alkaline phosphatase (ALP), runt related transcription factor 2 (Runx‑2) and bone sialoprotein (BSP) were detected using reverse transcription‑quantitative polymerase chain reaction and western blotting. The results showed that the expression of ALP mRNA on day 3, and BSP and Runx‑2 mRNA on day 7 in the bFGF pretreatment group was significantly higher than those in SDF‑1 pretreatment group. Expression levels of Runx‑2 mRNA, and ALP and Runx‑2 protein on day 3 in the SDF‑1 pretreatment group were higher than those in the bFGF pretreatment group. However, there was no significant difference in osteogenic differentiation ability on day 14 and 28 between the bFGF‑ or SDF‑1‑pretreatment groups and the control. In conclusion, bFGF and SDF‑1 pretreatment inhibits osteogenic differentiation of BMMSCs at the early stage, promotes it in the medium phase, and maintains it in the later stage during osteogenic induction, particularly at the mRNA level. Out of the two cytokines, bFGF appeared to have a greater effect on osteogenic differentiation.

  12. M/sub r/ 25,000 heparin-binding protein from guinea pig brain is a high molecular weight form of basic fibroblast growth factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscatelli, D.; Joseph-Silverstein, J.; Manejias, R.

    1987-08-01

    A M/sub r/ 25,000 form of basic fibroblast growth factor (bFGF) has been isolated from guinea pig grain along with the typical M/sub r/ 18,000 form. Both forms were purified to homogeneity by a combination of heparin-affinity chromatography and ion-exchange chromatography on an FPLC Mono S column. The M/sub r/ 25,000 form, like the M/sub r/ 18,000 form was not eluted from the heparin-affinity column with 0.95 M NaCl, but was eluted with 2 M NaCl. The M/sub r/ 25,000 guinea pig protein stimulated plasminogen activator production by cultured bovine capillary endothelial cells in a dose-dependent manner at concentration ofmore » 0.1-10 ngml, the same range that was effective for guinea pig and human M/sub r/ 18,000 bFGFs. The binding of human /sup 125/I-labeled bFGF to baby hamster kidney cells is inhibited equally by the M/sub r/ 25,000 guinea pig protein and the M/sub r/ 18,000 guinea pig and human bFGFs. Polyclonal antibodies raised against human bFGF recognize both the M/sub r/ 25,000 and 18,000 guinea pig proteins in an immunoblot analysis. In a radioimmunoassay, both the M/sub r/ 25,000 and M/sub r/ 18,000 guinea pig proteins compete equally well with iodinated human bFGF for binding to the anti-human bFGF antibodies. When treated with low concentrations of trypsin, the M/sub r/ 25,000 guinea pig bFGF was converted to a M/sub r/ 18,000 protein. These results show that the two molecules are closely related and suggest that the M/sub r/ 25,000 protein shares substantial homology with the M/sub r/ 18,000 bFGF« less

  13. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study.

    PubMed

    Marui, Akira; Tabata, Yasuhiko; Kojima, Shinsuke; Yamamoto, Masaya; Tambara, Keiichi; Nishina, Takeshi; Saji, Yoshiaki; Inui, Ken-ichi; Hashida, Tohru; Yokoyama, Sumiko; Onodera, Rie; Ikeda, Tadashi; Fukushima, Masanori; Komeda, Masashi

    2007-08-01

    Limb ischemia remains a challenge. To overcome shortcomings or limitations of gene therapy or cell transplantation, a sustained release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel has been developed. A phase I-IIa study was performed, in which 7 patients had critical limb ischemia. They were intramuscularly injected with 200 microg of bFGF-incorporated gelatin hydrogel microspheres into the gastrocnemius of the ischemic limb. End-points were safety and feasibility of treatment after 4 and 24 weeks. One patient was excluded from the study for social reasons, but only after symptomatic improvements. In the evaluation of the other 6 patients, significant improvements were observed in the distance walked in 6 min (295+/-42 m vs 491+/-85 m for pretreatment vs after 24 weeks, p=0.023) and in transcutaneous oxygen pressure (53.5+/-5.2 mmHg vs 65.5+/-4.0 mmHg, p=0.03). The rest pain scale also improved (3.5+/-0.2 vs 1.0+/-0.6, p=0.022). The ankle-brachial pressure index improved at 4 weeks but not at 24 weeks. Among 5 patients who had a non-healing foot ulcer, the ulcer was completely healed in 3 patients, reduced in 1, and there was no change in 1 patient at 24 weeks. The blood levels of bFGF were undetected or within the normal level in all patients. The sustained release of bFGF from gelatin hydrogel might be simple, safe, and effective to achieve therapeutic angiogenesis because it did not need genetic materials or collection of implanted cells, and because it did not have any general effects, which was supported by there being no elevation of the bFGF serum level.

  14. Differences in prostate and adipose tissue basic fibroblast growth factor: analysis of preliminary results.

    PubMed

    Mydlo, J H; Kral, J G; Macchia, R J

    1997-09-01

    Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to human prostate epithelial and stromal cells, and it is reported to be elevated in the serum and urine of patients with various cancers, including prostate cancer. Obesity, with increased body fat, is a risk factor for prostate cancer through unknown mechanisms. Because adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it with normal and cancerous prostate tissues. Using heparin-Sepharose chromatography, we extracted proteins from human omental adipose tissue, adenocarcinoma of the prostate, and benign prostatic hypertrophic (BPH) tissues. Each of the mitogenic proteins eluted with NaCl concentrations between 1.4 M and 1.8 M, similar to control FGF-2. Using FGF-2 antisera (which inhibited the mitogenic activity of the proteins), we performed Western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity, and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells and the chorioallantoic membrane assay. There was greater recovery of FGF-2 from omental adipose tissue compared with cancerous or BPH homogenates (40 micrograms [2.0 micrograms/g] versus 25 micrograms [1.25 micrograms/g] and 20 micrograms [1.0 microgram/g], respectively). Moreover. FGF-2 from adipose tissue had greater mitogenic activity (96.2% versus 74.8% and 54%; P < 0.05) and a greater angiogenic activity (5.1 vessels versus 2.9 and 1.8 vessels; P < 0.05) on the chorioallantoic assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either BPH or prostate cancer tissue FGF-2. It is not known whether FGF-2 from adipose tissue qualitatively or quantitatively may underlie the relationship between obesity and prostate cancer.

  15. Preliminary results comparing the recovery of basic fibroblast growth factor (FGF-2) in adipose tissue and benign and malignant renal tissue.

    PubMed

    Mydlo, J H; Kral, J G; Macchia, R J

    1998-06-01

    Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to numerous epithelial, mesodermal and endothelial cells, and thus may play a role in the neovascularity and progression of several tumors. Furthermore, FGF-2 is reported to be elevated in the serum and urine of patients with various cancers, including renal cancer. Obesity, with increased body fat, is a risk factor for renal cancer through unknown mechanisms. Since adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it to normal and cancerous renal tissue. Using heparin-Sepharose chromatography we extracted proteins from human omental adipose tissue, renal cell carcinoma (RCC) and benign renal tissue (BRT). Using FGF-2 antisera we performed western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells (HUVEC) and the chorioallantoic membrane (CAM) assay. Each of the three purified mitogenic proteins eluted with NaCl concentrations between 1.4 M. and 1.8 M., similar to control FGF-2. There was greater recovery of FGF-2 from omental adipose tissue compared with renal cell carcinoma or benign renal tissue (42 microg. vs. 24 microg. and 18 microg., respectively; ANOVA p <0.05). Moreover, FGF-2 from adipose tissue had greater mitogenic activity (96.% versus 68% and 38%; p <0.05) and greater angiogenic activity (5.5 vessels versus 2.7 and 1.6 vessels; p <0.05) on the CAM assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either benign or cancerous renal tissue FGF-2. It is not known if FGF-2 from adipose tissue may play a role in the relationship between obesity and renal cancer.

  16. [An in vivo study of basic fibroblast growth factor on activation and proliferation of retinal progenitor cell in RCS rats].

    PubMed

    Xia, Xiaoping; Song, Guoxiang; Liu, Xiangfu; Tang, Xiangchen; Ye, Hui

    2010-11-01

    To investigate the effect of intravitreal basic fibroblast growth factor(bFGF) on activation and proliferation of endogenous retinal progenitor cells in the Royal College of Surgeons(RCS) rats. Twenty-four rats were studied after the 30th postnatal day(≥30). Eighteen affected rats were randomly divided into 3 groups: bFGF-treated, vehicle-treated and untreated group, and 6 unaffected rats were used as normal controls. Six μl of bFGF (5μg/10 μl) or vehicle was injected into the vitreous on days 31, 33 and 35 after birth (P31, P33, P35) in the bFGF group and vehicle group, and no injection was administered in the untreated and control groups. All the rats were euthanized, and their eyes were enucleated, hemisected and fixed at 50 d after birth for immunohistochemistry and measurement of outer nuclear layer thickness. Nestin and Chx10 were positively expressed in all retinal layers, intravitreous injection of bFGF in retina-dystrophic RCS(RCS-p+/Lav) rats induced intense labeling for the retinal progenitor cell markers Chx10 and Nestin, which were highly colocalized. Fluorescence intensity for both labels was slightly less in the control rats, and much less in the vehicle-injected rats as well as in the untreated RCS rats. The outer nuclear layer (ONL) was significantly thicker in bFGF group than that of vehicle-treated or untreated group(p<0.01), but thinner than that of the control group(p<0.01). No significant difference was observed in the ONL thicknesses between the vehicle group and untreated group(P>0.05). bFGF may contribute to the activation of retinal progenitor cells in RCS rats, thus counteract degeneration by promoting the proliferation of the progenitor cells.

  17. Effect of 1,25-dihydroxyvitamin D3 on human keratinocytes grown under different culture conditions.

    PubMed

    McLane, J A; Katz, M; Abdelkader, N

    1990-04-01

    1,25-Dihydroxyvitamin D3 (1,25-(OH)2-D3) is known to decrease the proliferation and increase the differentiation of different cell types including human keratinocytes. The growth and differentiation of keratinocytes in the presence of 1,25-(OH)2-D3 using serum-free media formulations has been described previously. This investigation extends these studies to describe various culture conditions with human foreskin keratinocytes to determine the optimal antiproliferative activity of 1,25-(OH)2-D3. Keratinocytes were plated onto tissue culture dishes using one of three basic serum-free media protocols; a) with no feeder layer in keratinocyte growth medium (KGM); b) onto mitomycin C-treated 3T3 mouse embryo fibroblasts; or c) onto mitomycin C-treated dermal human fibroblasts. The last two protocols utilized Dulbecco's modified Eagle's Medium (DMEM) supplemented with growth factors. Keratinocyte cell growth was greatest in the KGM medium. Although the growth of keratinocytes on either feeder layer was similar, there were differences in the ability of the cells to form envelopes in the presence of 1,25-(OH)2-D3. The addition of hydrocortisone and cholera toxin to the medium also affected the response of the keratinocytes to 1,25-(OH)2-D3. The antiproliferative effect of 1,25-(OH)2-D3 was not altered by varying the extracellular calcium levels from 0.25 to 3 mM. The antiproliferative activity of 1,25-(OH)2-D3 is attenuated in cells at low density. Our results suggest that an optimal condition to investigate the ability of 1,25-(OH)2-D3 to inhibit keratinocyte proliferation is at preconfluent cell density in the presence of KGM supplemented with 1.5 mM calcium without a feeder layer. These conditions are not appropriate for investigating the enhancement of differentiation by 1,25-(OH)2-D3, but can be used to assay other agents that modulate keratinocyte proliferation.

  18. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M.

    1987-05-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected bymore » 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.« less

  19. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Pengfei; Zhang, Yingjie; Liu, Yunye

    2016-01-01

    Fibroblast growth factor 21 (FGF-21) is a secreted protein, which has anti-diabetic and lipocaic effects, but its ability to protect against hepatic fibrosis has not been studied. In this study, we investigated the ability of FGF-21 to attenuate dimethylnitrosamine (DMN)-induced hepatic fibrogenesis in mice and the mechanism of its action. Hepatic fibrosis was induced by injection of DMN, FGF-21 was administered to the mice once daily in association with DMN injection till the end of the experiment. Histopathological examination, tissue 4-hydroxyproline content and expressions of smooth muscle α-actin (α-SMA) and collagen I were measured to assess hepatic fibrosis. Ethanol/PDGF-BB-activated hepaticmore » stellate cells (HSCs) were used to understand the mechanisms of FGF-21 inhibited hepatic fibrogenesis. Results showed that FGF-21 treatment attenuated hepatic fibrogenesis and was associated with a significant decrease in intrahepatic fibrogenesis, 4-hydroxyproline accumulation, α-SMA expression and collagen I deposition. FGF-21 treatment inhibited the activation of HSCs via down-regulating the expression of TGF-β, NF-κB nuclear translocation, phosphorylation levels of smad2/3 and IκBα. Besides, FGF-21 treatment caused activated HSC apoptosis with increasing expression of Caspase-3, and decreased the ratio of Bcl-2 to Bax. In conclusion, FGF-21 attenuates hepatic fibrogenesis and inhibits the activation of HSC warranting the use of FGF-21 as a potential therapeutic agent in the treatment of hepatic fibrosis. - Highlights: • Fibroblast growth factor 21 attenuates hepatic fibrogenesis. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via TGF-β/smad2/3 signaling pathways. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via NF-κB signaling pathways.« less

  20. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived solublemore » factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.« less

  1. Genetic Analysis of Fibroblast Growth Factor Signaling in the Drosophila Eye

    PubMed Central

    Mukherjee, T.; Choi, I.; Banerjee, Utpal

    2012-01-01

    The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously. PMID:22384378

  2. Down-Regulation of Myeloid Cell Leukemia 1 by Epigallocatechin-3-Gallate Sensitizes Rheumatoid Arthritis Synovial Fibroblasts to Tumor Necrosis Factor α–Induced Apoptosis

    PubMed Central

    Ahmed, Salahuddin; Silverman, Matthew D.; Marotte, Hubert; Kwan, Kevin; Matuszczak, Natalie; Koch, Alisa E.

    2010-01-01

    Objective Overexpression of the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) in rheumatoid arthritis (RA) synovial fibroblasts is a major cause of their resistance to tumor necrosis factor α (TNFα)–induced apoptosis. This study was undertaken to evaluate the efficacy of epigallocatechin-3-gallate (EGCG) in down-regulating Mcl-1 expression and its mechanism of RA synovial fibroblast sensitization to TNFα-induced apoptosis. Methods EGCG effects on cultured RA synovial fibroblast cell morphology, proliferation, and viability over 72 hours were determined by microscopy and a fluorescent cell enumeration assay. Caspase 3 activity was determined by a colorimetric assay. Western blotting was used to evaluate the apoptosis mediators poly(ADP-ribose) polymerase (PARP), Mcl-1, Bcl-2, Akt, and nuclear translocation of NF-κB. Results In RA synovial fibroblasts, EGCG (5–50 μM) inhibited constitutive and TNFα-induced Mcl-1 protein expression in a concentration- and time-dependent manner (P < 0.05). Importantly, EGCG specifically abrogated Mcl-1 expression in RA synovial fibroblasts and affected Mcl-1 expression to a lesser extent in osteoarthritis and normal synovial fibroblasts or endothelial cells. Inhibition of Mcl-1 by EGCG triggered caspase 3 activity in RA synovial fibroblasts, which was mediated via down-regulation of the TNFα-induced Akt and NF-κB pathways. Caspase 3 activation by EGCG also suppressed RA synovial fibroblast growth, and this effect was mimicked by Akt and NF-κB inhibitors. Interestingly, Mcl-1 degradation by EGCG sensitized RA synovial fibroblasts to TNFα-induced PARP cleavage and apoptotic cell death. Conclusion Our findings indicate that EGCG itself induces apoptosis and further sensitizes RA synovial fibroblasts to TNFα-induced apoptosis by specifically blocking Mcl-1 expression and, hence, may be of promising adjunct therapeutic value in regulating the invasive growth of synovial fibroblasts in RA. PMID:19404960

  3. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma.

    PubMed

    Morsing, Mikkel; Klitgaard, Marie Christine; Jafari, Abbas; Villadsen, René; Kassem, Moustapha; Petersen, Ole William; Rønnov-Jessen, Lone

    2016-11-03

    The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. The two lineages are prospectively isolated by fluorescence activated cell sorting (FACS) based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271 low /MUC1 high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase-stained cultures. Lobular fibroblasts are CD105 high /CD26 low while interlobular fibroblasts are CD105 low /CD26 high . Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.

  4. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures.

    PubMed

    David, Manu S; Kelly, Elizabeth; Zoellner, Hans

    2013-04-01

    We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p < 0.001). Contact co-cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p < 0.05). The opposite was the case for co-cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p < 0.03) and no clear difference in FGF. We thus demonstrate significant phenotypic change in cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis

    PubMed Central

    Liu, Fei; Lagares, David; Choi, Kyoung Moo; Stopfer, Lauren; Marinković, Aleksandar; Vrbanac, Vladimir; Probst, Clemens K.; Hiemer, Samantha E.; Sisson, Thomas H.; Horowitz, Jeffrey C.; Rosas, Ivan O.; Fredenburgh, Laura E.; Feghali-Bostwick, Carol; Varelas, Xaralabos; Tager, Andrew M.

    2014-01-01

    Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-β signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis. PMID:25502501

  6. Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression.

    PubMed

    Eto, Hitomi; Suga, Hirotaka; Aoi, Noriyuki; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Tabata, Yasuhiko; Yoshimura, Kotaro

    2012-02-01

    Although hypertrophic scars (HTSs) and keloids are challenging problems, their pathogenesis is not well understood, making therapy difficult. We showed that matrix metalloproteinase (MMP)-1 expression was downregulated in HTS compared with normal skin from the same patients, whereas type 1 and 3 collagen and transforming growth factor-β (TGF-β) were upregulated. These differences, however, were not seen in cultured fibroblasts, suggesting the involvement of microenvironmental factors in the pathogenesis of HTS. Fibroblast growth factor-2 (FGF-2) highly upregulated the expression of MMP-1 and hepatocyte growth factor (HGF) in both HTS-derived and control fibroblasts; the upregulation was reversed by extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) inhibitors. An animal study using human HTS tissue implanted into nude mice indicated that controlled-release FGF-2 resulted in significantly less weight and decreased hydroxyproline content in HTS. Degradation of collagen fibers in FGF-2-treated HTS was also confirmed histologically. Western blotting showed that FGF-2-treated HTS expressed significantly higher MMP-1 protein than control. Decreased MMP-1 expression may be an important transcriptional change in HTS, and its reversal as well as upregulation of HGF by FGF-2 could be a new therapeutic approach for HTS.

  7. Structure of rat acidic fibroblast growth factor at 1.4 Å resolution

    PubMed Central

    Kulahin, Nikolaj; Kiselyov, Vladislav; Kochoyan, Arthur; Kristensen, Ole; Kastrup, Jette Sandholm; Berezin, Vladimir; Bock, Elisabeth; Gajhede, Michael

    2007-01-01

    Fibroblast growth factors (FGFs) constitute a family of 22 structurally related heparin-binding polypeptides that are involved in the regulation of cell growth, survival, differentiation and migration. Here, a 1.4 Å resolution X-ray structure of rat FGF1 is presented. Two molecules are present in the asymmetric unit of the crystal and they coordinate a total of five sulfate ions. The structures of human, bovine and newt FGF1 have been published previously. Human and rat FGF1 are found to have very similar structures. PMID:17277441

  8. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats.

    PubMed

    He, Xiaolin; Chao, Yuan; Zhou, Guangxian; Chen, Yulin

    2016-01-10

    To determine the relationship between fibroblast growth factor 5 (FGF5) and FGF5-short (FGF5s) in dermal papilla cells of cashmere goat primary and secondary hair follicles. We isolated dermal papilla cells from primary hair follicle (PHF) and secondary hair follicle (SHF) of cashmere goat, and found that the FGF5 receptor, fibroblast growth factor receptor 1 (FGFR1), was expressed in these two types of dermal papilla cells. Moreover, adenovirus-mediated overexpression of FGF5 could upregulate the mRNA expression of insulin-like growth factor-1 (IGF-1), versican and noggin that were important for follicle growth maintenance, whereas downregulate the expression of anagen chalone bone morphogenetic protein 4 (BMP4) in dermal papilla cells. However, these alterations were partly reversed by FGF5s overexpression. In conclusion, our results demonstrated that FGF5s acted as an inhibitor of FGF5 in the regulation of anagen-catagen transition of cashmere goat dermal papilla cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  10. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications.

    PubMed

    Liu, Ting; Dan, Weihua; Dan, Nianhua; Liu, Xinhua; Liu, Xuexu; Peng, Xu

    2017-08-01

    Collagen-chitosan composite film modified with grapheme oxide (GO) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), termed CC-G-E film, was loaded with basic fibroblast growth factor (bFGF) as the development of an efficacious wound healing device. In this study we report a novel drug delivery system that prevents the initial burst release and loss of bioactivity of drugs in vitro and in vivo applications. The results showed that CC-G-E film possessed improved thermal stability and a higher rate of crosslinking with increased mechanical properties when the dosage of GO was between 0.03% and 0.07%. It was shown that the in vitro release of bFGF from CC-G-E film continued for more than 28d. Furthermore, the CC-G-E films demonstrated excellent in vitro biocompatibility following culture with L929 fibroblasts in terms of cell adhesion and proliferation. CC-G-E films were implanted into Sprague-Dawley rats to characterize their ability to repair full-thickness skin wounds. Results showed that the CC-G-E film accelerated the wound healing process compared with the blank control. Based on all the results, it was concluded that CC-G-E film operates as a novel drug delivery system and due to its performance in wound remodeling, has potential to be developed as a wound dressing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High-Yield Site-Specific Conjugation of Fibroblast Growth Factor 1 with Monomethylauristatin E via Cysteine Flanked by Basic Residues.

    PubMed

    Lobocki, Michal; Zakrzewska, Malgorzata; Szlachcic, Anna; Krzyscik, Mateusz A; Sokolowska-Wedzina, Aleksandra; Otlewski, Jacek

    2017-07-19

    Site-specific conjugation is a leading trend in the development of protein conjugates, including antibody-drug conjugates (ADCs), suitable for targeted cancer therapy. Here, we present a very efficient strategy for specific attachment of a cytotoxic drug to fibroblast growth factor 1 (FGF1), a natural ligand of FGF receptors (FGFRs), which are over-expressed in several types of lung, breast, and gastric cancers and are therefore an attractive molecular target. Recently, we showed that FGF1 fused to monomethylauristatin E (vcMMAE) was highly cytotoxic to cells presenting FGFRs on their surface and could be used as a targeting agent alternative to an antibody. Unfortunately, conjugation via maleimide chemistry to endogenous FGF1 cysteines or a cysteine introduced at the N-terminus proceeded with low yield and led to nonhomogeneous products. To improve the conjugation, we introduced a novel Lys-Cys-Lys motif at either FGF1 terminus, which increased cysteine reactivity and allowed us to obtain an FGF1 conjugate with a defined site of conjugation and a yield exceeding 95%. Using FGFR-expressing cancer lines, we confirmed specific cytotoxity of the obtained C-terminal FGF1-vcMMAE conjugate and its selective endocytososis as compared with FGFR1-negative cells. This simple and powerful approach relying on the introduction of a short sequence containing cysteine and positively charged amino acids could be used universally to improve the efficiency of the site-specific chemical modification of other proteins.

  12. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model1

    PubMed Central

    Dickerson, Erin B; Steinberg, Howard; Breen, Matthew; Auerbach, Robert; Helfand, Stuart C

    2004-01-01

    Abstract We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF) receptors 1 and 2, CD31, CD146, and αvβ3 integrin, and produced several growth factors and cytokines, including VEGF, basic fibroblast growth factor, and interleukin (IL)-8 that are stimulatory to endothelial cell growth. These results indicated that the cells recapitulated features of mitotically activated endothelia. In vivo, SB-HSA cells stimulated robust angiogenic responses in mice and formed tumor masses composed of aberrant vascular channels in immunocompromised mice providing novel opportunities for investigating the effectiveness of antiangiogenic agents. Using this model, we determined that IL-12, a cytokine with both immunostimulatory and antiangiogenic effects, suppressed angiogenesis induced by, and tumor growth of, SB-HSA cells. The endothelial cell model we have described offers unique opportunities to pursue further investigations with IL-12, as well as other antiangiogenic approaches in cancer therapy. PMID:15140399

  13. Enhanced angiogenic effect of adipose-derived stromal cell spheroid with low-level light therapy in hind limb ischemia mice.

    PubMed

    Park, In-Su; Chung, Phil-Sang; Ahn, Jin Chul

    2014-11-01

    The aim of this study was to investigate the effects of low-level laser therapy (LLLT) on transplanted human adipose-derived mesenchymal stem cells (hASCs) spheroid in a hind limb ischemia animal model. LLLT, hASCs spheroid and hASCs spheroid transplantation with LLLT (spheroid + LLLT) were applied to the ischemic hind limbs in athymic mice. The survival, differentiation and secretion of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), and hepatocyte growth factor (HGF) of the spheroid ASCs were evaluated by immunohistochemistry and western blots. Spheroid + LLLT group had enhanced the tissue regeneration, including angiogenesis, compared with the ASC group. The spheroid ASCs contributed to tissue regeneration via differentiation and secretion of growth factors. In the spheroid + LLLT group, the survival of spheroid hASCs increased with a concomitant decrease in apoptosis of spheroid hASCs in the ischemic hind limb. The secretion of growth factors was stimulated in the spheroid + LLLT group compared with the ASCs and spheroid group. These data suggested that LLLT is an effective biostimulator of spheroid hASCs in tissue regeneration that enhanced the survival of ASCs and stimulated the secretion of growth factors in the ischemic hind limb. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis

    PubMed Central

    YANG, ZHIZHOU; SUN, ZHAORUI; LIU, HONGMEI; REN, YI; SHAO, DANBING; ZHANG, WEI; LIN, JINFENG; WOLFRAM, JOY; WANG, FENG; NIE, SHINAN

    2015-01-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson’s trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury. PMID:25815693

  15. Fibrosis in connective tissue disease: the role of the myofibroblast and fibroblast-epithelial cell interactions

    PubMed Central

    Krieg, Thomas; Abraham, David; Lafyatis, Robert

    2007-01-01

    Fibrosis, characterized by excessive extracellular matrix accumulation, is a common feature of many connective tissue diseases, notably scleroderma (systemic sclerosis). Experimental studies suggest that a complex network of intercellular interactions involving endothelial cells, epithelial cells, fibroblasts and immune cells, using an array of molecular mediators, drives the pathogenic events that lead to fibrosis. Transforming growth factor-β and endothelin-1, which are part of a cytokine hierarchy with connective tissue growth factor, are key mediators of fibrogenesis and are primarily responsible for the differentiation of fibroblasts toward a myofibroblast phenotype. The tight skin mouse (Tsk-1) model of cutaneous fibrosis suggests that numerous other genes may also be important. PMID:17767742

  16. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes

    NASA Technical Reports Server (NTRS)

    Romanov, S. R.; Kozakiewicz, B. K.; Holst, C. R.; Stampfer, M. R.; Haupt, L. M.; Tlsty, T. D.

    2001-01-01

    Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.

  17. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.

    PubMed

    Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak

    2017-03-07

    Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.

  18. [In vitro generation of insulin-producing cells from the neonatal rat bone marrow mesenchymal stem cells].

    PubMed

    Li, Xiaohu; Huang, Haiyan; Liu, Xirong; Xia, Hongxia; Li, Mincai

    2015-03-01

    To observe the differentiation of the neonatal rat bone marrow mesenchymal stem cells (MSCs) into insulin-producing cells and detect the expressions of insulin, pancreatic duodenal homebox-1 (PDX-1) and nestin. MSCs were isolated from the neonatal rats and cultured in the modified medium composed of 10 μg/L human epidermal growth factor (EGF), 10 μg/L basic fibroblast growth factor (bFGF), 10 μg/L hepatocyte growth factor (HGF), 10 μg/L human B cell regulin, 20 mmol/L nicotinamide and 20 g/L B27. After the induction, the mRNA expressions of insulin, PDX-1 and nestin were examined by reverse transcription-PCR, and the insulin, PDX-1 and nestin protein levels were detected by immunocytochemistry. The insulin and PDX-1 mRNA expressions increased and the nestin mRNA expression decreased in the differentiation of the neonatal rat MSCs into insulin-producing cells. The nestin, PDX-1 and insulin proteins were co-expressed in insulin-producing cells. MSCs can be induced to differentiate into insulin-producing cells.

  19. Six Month Report on Tissue Cultured Avian Skeletal Myofibers in the STL/A Module Aboard STS-77

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1997-01-01

    Space travel is know to effect skeletal muscle, causing rapid and pronounced atrophy in humans and animals, even when strenuous exercise is used as a countermeasure. The cellular and molecular bases of this atrophy are unknown. Space travel may cause muscle atrophy by a direct effect on the muscle fibers and/or indirectly by reducing circulating levels of growth factors such as growth hormone. The recent development of a tissue culture incubator system for Shuttle Middeck basic science experiments [Space Tissue Loss (STL) Module] by the Walter Reed Army Institute of Research (WRAIR) allows the study of the effects of space travel directly on isolated skeletal myofibers. Avian bioartificial skeletal muscle 'organoids' containing differentiated skeletal myofibers and connective tissue fibroblasts were flown aboard the Space Shuttle (Space Transportation System, STS) on Flight STS-77, a repeat of a similar experiment flown on STS-66. The results from these two flight experiments show for the first time that space travel has a direct effect on skeletal muscle cells separate from any systemic effects resulting from altered circulating growth factors.

  20. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    PubMed

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  1. Circuit Design Features of a Stable Two-Cell System.

    PubMed

    Zhou, Xu; Franklin, Ruth A; Adler, Miri; Jacox, Jeremy B; Bailis, Will; Shyer, Justin A; Flavell, Richard A; Mayo, Avi; Alon, Uri; Medzhitov, Ruslan

    2018-02-08

    Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    PubMed

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.

  3. Interleukin-1β Attenuates Myofibroblast Formation and Extracellular Matrix Production in Dermal and Lung Fibroblasts Exposed to Transforming Growth Factor-β1

    PubMed Central

    Mia, Masum M.; Boersema, Miriam; Bank, Ruud A.

    2014-01-01

    One of the most potent pro-fibrotic cytokines is transforming growth factor (TGFβ). TGFβ is involved in the activation of fibroblasts into myofibroblasts, resulting in the hallmark of fibrosis: the pathological accumulation of collagen. Interleukin-1β (IL1β) can influence the severity of fibrosis, however much less is known about the direct effects on fibroblasts. Using lung and dermal fibroblasts, we have investigated the effects of IL1β, TGFβ1, and IL1β in combination with TGFβ1 on myofibroblast formation, collagen synthesis and collagen modification (including prolyl hydroxylase, lysyl hydroxylase and lysyl oxidase), and matrix metalloproteinases (MMPs). We found that IL1β alone has no obvious pro-fibrotic effect on fibroblasts. However, IL1β is able to inhibit the TGFβ1-induced myofibroblast formation as well as collagen synthesis. Glioma-associated oncogene homolog 1 (GLI1), the Hedgehog transcription factor that is involved in the transformation of fibroblasts into myofibroblasts is upregulated by TGFβ1. The addition of IL1β reduced the expression of GLI1 and thereby also indirectly inhibits myofibroblast formation. Other potentially anti-fibrotic effects of IL1β that were observed are the increased levels of MMP1, −2, −9 and −14 produced by fibroblasts exposed to TGFβ1/IL1β in comparison with fibroblasts exposed to TGFβ1 alone. In addition, IL1β decreased the TGFβ1-induced upregulation of lysyl oxidase, an enzyme involved in collagen cross-linking. Furthermore, we found that lung and dermal fibroblasts do not always behave identically towards IL1β. Suppression of COL1A1 by IL1β in the presence of TGFβ1 is more pronounced in lung fibroblasts compared to dermal fibroblasts, whereas a higher upregulation of MMP1 is seen in dermal fibroblasts. The role of IL1β in fibrosis should be reconsidered, and the differences in phenotypical properties of fibroblasts derived from different organs should be taken into account in future anti-fibrotic treatment regimes. PMID:24622053

  4. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis.

    PubMed

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-12-11

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1(-/-)) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4(-/-) mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Direct Melanoma Cell Contact Induces Stromal Cell Autocrine Prostaglandin E2-EP4 Receptor Signaling That Drives Tumor Growth, Angiogenesis, and Metastasis*

    PubMed Central

    Inada, Masaki; Takita, Morichika; Yokoyama, Satoshi; Watanabe, Kenta; Tominari, Tsukasa; Matsumoto, Chiho; Hirata, Michiko; Maru, Yoshiro; Maruyama, Takayuki; Sugimoto, Yukihiko; Narumiya, Shuh; Uematsu, Satoshi; Akira, Shizuo; Murphy, Gillian; Nagase, Hideaki; Miyaura, Chisato

    2015-01-01

    The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1−/−) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4−/− mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors. PMID:26475855

  6. A Prospective, Randomized, Double-blind, Split-face Clinical Trial Comparing the Efficacy of Two Topical Human Growth Factors for the Rejuvenation of the Aging Face

    PubMed Central

    Goldman, Mitchel P.

    2017-01-01

    Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality. PMID:28670356

  7. A Prospective, Randomized, Double-blind, Split-face Clinical Trial Comparing the Efficacy of Two Topical Human Growth Factors for the Rejuvenation of the Aging Face.

    PubMed

    Wu, Douglas C; Goldman, Mitchel P

    2017-05-01

    Background: Cosmeceutical products represent an increasingly important therapeutic option for anti-aging and rejuvenation, either used alone or in combination with dermatologic surgical procedures. Among this group of products, topical growth factors have demonstrated efficacy in randomized, controlled clinical trials. However, comparisons between different products remain uncommon. Objective: The objective of this randomized, double-blind, split-face clinical trial was to compare two different topical growth factor formulations derived from either human fibroblasts or human adipose tissue derived mesenchymal stem cells. Methods: This was an institutional review board-approved, randomized, double-blind, split-face clinical trial involving 20 healthy subjects with moderate-to-severe facial wrinkling secondary to photodamage. One half of the face was randomized to receive topical human fibroblast growth factors and the other topical human mesenchymal stem cell growth factors. Treatment was continued for three months, and evaluations were performed in a double-blind fashion. Results: Both growth factor formulations achieved significant improvement in facial wrinkling. Blinded investigator and subject evaluations did not detect any significant differences between the two formulations in terms of efficacy, safety, or tolerability. Conclusion: Both human fibroblast growth factors and human mesenchymal stem cell growth factors are effective at facial rejuvenation. Topical growth factors represent a useful therapeutic modality.

  8. Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation

    PubMed Central

    Willard, Melinda D; Willard, Francis S; Li, Xiaoyan; Cappell, Steven D; Snider, William D; Siderovski, David P

    2007-01-01

    Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by heterotrimeric G-protein α subunits and thus inhibit signaling by many G protein-coupled receptors. Several RGS proteins have a multidomain architecture that adds further complexity to their roles in cell signaling in addition to their GTPase-accelerating activity. RGS12 contains a tandem repeat of Ras-binding domains but, to date, the role of this protein in Ras-mediated signal transduction has not been reported. Here, we show that RGS12 associates with the nerve growth factor (NGF) receptor tyrosine kinase TrkA, activated H-Ras, B-Raf, and MEK2 and facilitates their coordinated signaling to prolonged ERK activation. RGS12 is required for NGF-mediated neurite outgrowth of PC12 cells, but not outgrowth stimulated by basic fibroblast growth factor. siRNA-mediated knockdown of RGS12 expression also inhibits NGF-induced axonal growth in dissociated cultures of primary dorsal root ganglia neurons. These data suggest that RGS12 may play a critical, and receptor-selective, role in coordinating Ras-dependent signals that are required for promoting and/or maintaining neuronal differentiation. PMID:17380122

  9. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair

    PubMed Central

    Grulova, I.; Slovinska, L.; Blaško, J.; Devaux, S.; Wisztorski, M.; Salzet, M.; Fournier, I.; Kryukov, O.; Cohen, S.; Cizkova, D.

    2015-01-01

    Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment. PMID:26348665

  10. Synergy between growth factors and transmitters required for catecholamine differentiation in brain neurons.

    PubMed

    Du, X; Iacovitti, L

    1995-07-01

    The phenotypically plastic neurons of the embryonic mouse striatum were used to explore mechanisms of catecholamine differentiation in culture. De novo transcription and translation of the CA biosynthetic enzyme, tyrosine hydroxylase (TH), was induced in striatal neurons exposed, simultaneously or sequentially, to the growth factor, acidic fibroblast growth factor (aFGF) and a catecholamine. Although dopamine was the most potent aFGF partner (ED50 = 4 microM), a number of substances, including dopamine (D1) receptor agonists, beta-adrenoceptor agonists, and dopamine uptake inhibitors also trigger TH induction when accompanied by aFGF. However, since none of the receptor antagonists nor transport blockers tested could inhibit dopamine's action, the mechanism remains obscure. Structure-activity analysis suggests that effective aFGF partners all contain an amine group separated from a catechol nucleus by two carbons. Thus, TH expression can be novelly induced by the synergistic interaction of aFGF, and to a lesser extent basic FGF, and a variety of CA-containing partner molecules. We speculate that a similar association between growth factor and transmitter may be required in development for the differentiation of a CA phenotype in brain neurons.

  11. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes.

    PubMed

    El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.

  12. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis

    PubMed Central

    Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.

    2016-01-01

    Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875

  13. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.

    PubMed

    Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C

    2016-03-21

    Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Pleiotrophin is downregulated in human keloids.

    PubMed

    Lee, Dong Hun; Jin, Cheng Long; Kim, Yeji; Shin, Mi Hee; Kim, Ji Eun; Kim, Minji; Lee, Min Jung; Cho, Soyun

    2016-10-01

    Keloid is an abnormal hyperproliferative scarring process with involvement of complex genetic and triggering environmental factors. Previously published dysregulated gene expression profile of keloids includes genes involved in tumor formation. Pleiotrophin (PTN) is a secreted, heparin-binding growth factor which is involved in various biological functions such as cell growth, differentiation, and tumor progression. Although PTN expression was reported to be increased in hypertrophic scars, there is no study on PTN expression in keloids, and previous microarray results are controversial. To clarify differential expression of PTN in keloids, we investigated the expression of PTN and its interacting molecules in keloid and control fibroblasts, and performed immunohistochemical staining of PTN using tissue arrays. The expressions of PTN, its upstream regulator platelet-derived growth factor subunit B (PDGF-B) and corresponding PDGF receptors were significantly downregulated in keloid fibroblasts compared to normal human fibroblasts, and the decreased PTN protein expression was confirmed by immunohistochemistry as well as Western blot. Moreover, functional downstream receptor protein tyrosine phosphatase β/ζ was significantly upregulated in keloid fibroblasts, supporting overall downregulation of PTN signaling pathway. The lowered PTN expression in keloids suggests a different pathomechanism from that of hypertrophic scars.

  15. Impaired growth in Rabson-Mendenhall syndrome: lack of effect of growth hormone and insulin-like growth factor-I.

    PubMed

    Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J

    1994-09-01

    Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF-I resistance in target cells at a receptor or postreceptor level, or an inhibitory action of the mutant insulin receptors on IGF-I receptor signaling.

  16. Differential cytokine expression in skin graft healing in inducible nitric oxide synthase knockout mice.

    PubMed

    Most, D; Efron, D T; Shi, H P; Tantry, U S; Barbul, A

    2001-10-01

    Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test. Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05). Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These data further delineate the modulatory effect of iNOS and nitric oxide in healing skin grafts.

  17. Development of a Fully Human Anti-PDGFRβ Antibody That Suppresses Growth of Human Tumor Xenografts and Enhances Antitumor Activity of an Anti-VEGFR2 Antibody

    PubMed Central

    Shen, Juqun; Vil, Marie Danielle; Prewett, Marie; Damoci, Chris; Zhang, Haifan; Li, Huiling; Jimenez, Xenia; Deevi, Dhanvanthri S; Iacolina, Michelle; Kayas, Anthony; Bassi, Rajiv; Persaud, Kris; Rohoza-Asandi, Anna; Balderes, Paul; Loizos, Nick; Ludwig, Dale L; Tonra, James; Witte, Larry; Zhu, Zhenping

    2009-01-01

    Platelet-derived growth factor receptor β (PDGFRβ) is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRβ from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRβ and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRβ and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRβ antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers. PMID:19484148

  18. Effects of laser immunotherapy on tumor microenvironment

    NASA Astrophysics Data System (ADS)

    Acquaviva, Joseph T.; Wood, Ethan W.; Hasanjee, Aamr; Chen, Wei R.; Vaughan, Melville B.

    2014-02-01

    The microenvironments of tumors are involved in a complex and reciprocal dialog with surrounding cancer cells. Any novel treatment must consider the impact of the therapy on the microenvironment. Recently, clinical trials with laser immunotherapy (LIT) have proven to effectively treat patients with late-stage, metastatic breast cancer and melanoma. LIT is the synergistic combination of phototherapy (laser irradiation) and immunological stimulation. One prominent cell type found in the tumor stroma is the fibroblast. Fibroblast cells can secrete different growth factors and extracellular matrix modifying molecules. Furthermore, fibroblast cells found in the tumor stroma often express alpha smooth muscle actin. These particular fibroblasts are coined cancer-associated fibroblast cells (CAFs). CAFs are known to facilitate the malignant progression of tumors. A collagen lattice assay with human fibroblast cells is used to elucidate the effects LIT has on the microenvironment of tumors. Changes in the contraction of the lattice, the differentiation of the fibroblast cells, as well as the proliferation of the fibroblast cells will be determined.

  19. Subcellular distribution and mitogenic effect of basic fibroblast growth factor in mesenchymal uncommitted stem cells.

    PubMed

    Benavente, Claudia A; Sierralta, Walter D; Conget, Paulette A; Minguell, José J

    2003-06-01

    Uncommitted mesenchymal stem cells (MSC), upon commitment and differentiation give rise to several mature mesenchymal lineages. Although the involvement of specific growth factors, including FGF2, in the development of committed MSC is known, the effect of FGF2 on uncommitted progenitors remains unclear. We have analyzed on a comparative basis, the subcellular distribution and mitogenic effect of FGF2 in committed and uncommitted MSC prepared from human bone marrow. Indirect immunofluorescence studies showed strong nuclear FGF2 staining in both progenitors; however, cytoplasmic staining was only detected in committed cells. Western blot analysis revealed the presence of 22.5 and 21-22 kDa forms of FGF2 in the nucleus of both progenitors; however, their relative content was higher in uncommitted than in committed cells. Exogenous FGF2 stimulated proliferation and sustained quiescence in committed and uncommitted cells, respectively. These results show that both type of progenitors, apart from morphological and proliferative differences, display specific patterns of response to FGF2.

  20. Combining platelet-rich plasma and tissue-engineered skin in the treatment of large skin wound.

    PubMed

    Han, Tong; Wang, Hao; Zhang, Ya Qin

    2012-03-01

    The objective of the study was to observe the effects of tissue-engineered skin in combination with platelet-rich plasma (PRP) and other preparations on the repair of large skin wound on nude mice.We first prepared PRP from venous blood by density-gradient centrifugation. Large skin wounds were created surgically on the dorsal part of nude mice. The wounds were then treated with either artificial skin, tissue-engineered skin, tissue-engineered skin combined with basic fibroblast growth factor, tissue-engineered skin combined with epidermal growth factor, or tissue-engineered skin combined with PRP. Tissue specimens were collected at different time intervals after surgery. Hematoxylin-eosin and periodic acid-Schiff staining and immunohistochemistry were performed to assess the rate of wound healing.Macroscopic observations, hematoxylin-eosin/periodic acid-Schiff staining, and immunohistochemistry revealed that the wounds treated with tissue-engineered skin in combination with PRP showed the most satisfactory wound recovery, among the 5 groups.

  1. Periostin Limits Tumor Response to VEGFA Inhibition.

    PubMed

    Keklikoglou, Ioanna; Kadioglu, Ece; Bissinger, Stefan; Langlois, Benoît; Bellotti, Axel; Orend, Gertraud; Ries, Carola H; De Palma, Michele

    2018-03-06

    Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA + stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2), an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R) antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    PubMed

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  3. Effect of cannabidiol on human gingival fibroblast extracellular matrix metabolism: MMP production and activity, and production of fibronectin and transforming growth factor β.

    PubMed

    Rawal, S Y; Dabbous, M Kh; Tipton, D A

    2012-06-01

    Marijuana (Cannabis sativa) use may be associated with gingival enlargement, resembling that caused by phenytoin. Cannabidiol (CBD), a nonpsychotropic Cannabis derivative, is structurally similar to phenytoin. While there are many reports on effects of phenytoin on human gingival fibroblasts, there is no information on effects of Cannabis components on these cells. The objective of this study was to determine effects of CBD on human gingival fibroblast fibrogenic and matrix-degrading activities. Fibroblasts were incubated with CBD in serum-free medium for 1-6 d. The effect of CBD on cell viability was determined by measuring activity of a mitochondrial enzyme. The fibrogenic molecule transforming growth factor β and the extracellular matrix molecule fibronectin were measured by ELISA. Pro-MMP-1 and total MMP-2 were measured by ELISA. Activity of MMP-2 was determined via a colorimetric assay in which a detection enzyme is activated by active MMP-2. Data were analysed using ANOVA and Scheffe's F procedure for post hoc comparisons. Cannabidiol had little or no significant effect on cell viability. Low CBD concentrations increased transforming growth factor β production by as much as 40% (p < 0.001), while higher concentrations decreased it by as much as 40% (p < 0.0001). Cannabidiol increased fibronectin production by as much as approximately 100% (p < 0.001). Lower CBD concentrations increased MMP production, but the highest concentrations decreased production of both MMPs (p < 0.05) and decreased MMP-2 activity (p < 0.02). The data suggest that the CBD may promote fibrotic gingival enlargement by increasing gingival fibroblast production of transforming growth factor β and fibronectin, while decreasing MMP production and activity. © 2011 John Wiley & Sons A/S.

  4. [Primary culture and characteristics of colorectal cancer-associated fibroblasts].

    PubMed

    Wen, Huan; Nie, Qianqian; Jiang, Zhinong; Deng, Hong

    2015-10-01

    To compare the biological characteristics of colorectal cancer associated fibroblasts (CAFs) with normal fibroblasts (NFs). CAFs and NFs were isolated from fresh specimens of colorectal cancer and their paired normal colon tissue and cultured by tissue explant method. Light microscopy, quantitative polymerase chain reaction (qPCR), Western blot, immunofluorescence microscopy, electron microscopy and flow cytometry were used to identify isolated fibroblasts and to explore their characteristics of activation and growth. Primary colorectal CAFs and NFs were isolated and cultured successfully. NFs showed spindled morphology and were arranged in interlacing or spiral bundles. CAFs were polygonal or spindle, but were fatter than NFs. They were distributed randomly and arranged irregularly, and had obvious actin expression. CAFs and NFs both expressed fibronectin, but not E-cadherin, CD31 and caldesmon. qPCR showed that CAFs expressed more fibroblast activation protein (FAP) and less fibroblast specific protein 1 (FSP1) than that of NFs. There was no difference in the expression of α-SMA between NFs and CAFs by Western blot. α-SMA was bundled in parallel to the long axis of the cell by immunofluorescence. By electron microscopy, CAFs but not NFs showed dense myofilament that was arranged regularly. Flow cytometry showed that the percentage of S- and G2-phase in CAFs were significantly lower than that in NFs. mRNA expression of transforming growth factor β1, stromal derived factor 1 (SDF-1) and platelet derived growth factor (PDGF)-D in CAFs were lower while that for PDGFC was higher than that in NFs. That indicated the proliferation of CAFs was inhibited and the secretion of some cytokines was different when compared with NFs. CAFs show differences with NFs in morphology, characteristics of activation and secretion of some cytokines. The proliferation of CAFs is down regulated as compared with NFs.

  5. In vitro toxicity evaluation of silver soldering, electrical resistance, and laser welding of orthodontic wires.

    PubMed

    Sestini, Silvia; Notarantonio, Laura; Cerboni, Barbara; Alessandrini, Carlo; Fimiani, Michele; Nannelli, Pietro; Pelagalli, Antonio; Giorgetti, Roberto

    2006-12-01

    The long-term effects of orthodontic appliances in the oral environment and the subsequent leaching of metals are relatively unknown. A method for determining the effects of various types of soldering and welding, both of which in turn could lead to leaching of metal ions, on the growth of osteoblasts, fibroblasts, and oral keratinocytes in vitro, is proposed. The effects of cell behaviour of metal wires on osteoblast differentiation, expressed by alkaline phosphatase (ALP) activity; on fibroblast proliferation, assayed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenil)-2H-tetrazolium-phenazine ethosulphate method; and on keratinocyte viability and migration on the wires, observed by scanning electron microscopy (SEM), were tested. Two types of commercially available wires normally used for orthodontic appliances, with a similar chemical composition (iron, carbon, silicon, chromium, molybdenum, phosphorus, sulphur, vanadium, and nitrogen) but differing in nickel and manganese content, were examined, as well as the joints obtained by electrical resistance welding, traditional soldering, and laser welding. Nickel and chromium, known as possible toxic metals, were also examined using pure nickel- and chromium-plated titanium wires. Segments of each wire, cut into different lengths, were added to each well in which the cells were grown to confluence. The high nickel and chromium content of orthodontic wires damaged both osteoblasts and fibroblasts, but did not affect keratinocytes. Chromium strongly affected fibroblast growth. The joint produced by electrical resistance welding was well tolerated by both osteoblasts and fibroblasts, whereas traditional soldering caused a significant (P < 0.05) decrease in both osteoblast ALP activity and fibroblast viability, and prevented the growth of keratinocytes in vitro. Laser welding was the only joining process well tolerated by all tested cells.

  6. Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing.

    PubMed

    Ding, Jie; Kwan, Peter; Ma, Zengshuan; Iwashina, Takashi; Wang, Jianfei; Shankowsky, Heather A; Tredget, Edward E

    2016-09-01

    Dermal wound healing, in which transforming growth factor beta 1 (TGFβ1) plays an important role, is a complex process. Previous studies suggest that vitamin D has a potential regulatory role in TGFβ1 induced activation in bone formation, and there is cross-talk between their signaling pathways, but research on their effects in other types of wound healing is limited. The authors therefore wanted to explore the role of vitamin D and its interaction with low concentration of TGFβ1 in dermal fibroblast-mediated wound healing through an in vitro study. Human dermal fibroblasts were treated with vitamin D, TGFβ1, both, or vehicle, and then the wound healing functions of dermal fibroblasts were measured. To further explore possible mechanisms explaining the synergistic effect of vitamin D and TGFβ1, targeted gene silencing of the vitamin D receptor was performed. Compared to either factor alone, treatment of fibroblasts with both vitamin D and low concentration of TGFβ1 increased gene expression of TGFβ1, connective tissue growth factor, and fibronectin 1, and enhanced fibroblast migration, myofibroblast formation, and collagen production. Vitamin D receptor gene silencing blocked this synergistic effect of vitamin D and TGFβ1 on both collagen production and myofibroblast differentiation. Thus a synergistic effect of vitamin D and low TGFβ1 concentration was found in dermal fibroblast-mediated wound healing in vitro. This study suggests that supplementation of vitamin D may be an important step to improve wound healing and regeneration in patients with a vitamin D deficiency. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Effect of mitomycin C on IL-1R expression, IL-1-related hepatocyte growth factor secretion and corneal epithelial cell migration.

    PubMed

    Chen, Tsan-Chi; Chang, Shu-Wen

    2010-03-01

    To investigate how mitomycin C (MMC) modulates hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) secretions in human corneal fibroblasts and regulates human corneal epithelial (HCE) cell migration. Primary human corneal fibroblasts were treated with MMC (0.05, 0.1, or 0.2 mg/mL for 5 minutes) and were cultivated with or without interleukin (IL)-1beta. Transcript and secretion of HGF and KGF were determined by quantitative real-time RT-PCR and Western blot analysis, respectively. The effect of MMC-treated fibroblasts on HCE cell migration was evaluated using a transwell migration assay. The influence of MMC on HGF expression/secretion and HCE cell migration was further confirmed by RNA interference. The number of IL-1 receptors (IL-1R) on the fibroblast surface was analyzed by flow cytometry. MMC alone did not affect endogenous HGF expression, whereas IL-1beta alone significantly upregulated HGF transcripts and secretion. By modifying IL-1R numbers, MMC further upregulated IL-1beta-related HGF expression at a concentration of 0.05 mg/mL but to a lesser extent at 0.1 and 0.2 mg/mL. KGF transcripts and intracellular expression were suppressed by MMC dose dependently in the presence or absence of IL-1beta, whereas KGF secretion was not affected. Conditioned medium from MMC-treated fibroblasts exerted a similar concentration-dependent effect on HCE cell migration, enhancing migration most significantly at 0.05 mg/mL MMC in the presence of IL-1beta. The MMC dose-dependent modulation of HCE cell migration was abolished in HGF-silenced fibroblasts. MMC differentially modulated IL-1R expression at various concentrations and regulated HGF and KGF differently. MMC alone did not alter HGF expression. In the presence of IL-1beta, MMC-treated corneal fibroblasts modified HCE cell migration through IL-1beta-induced HGF secretion.

  8. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone.

    PubMed

    Benson, S; Wu, J; Padmanabhan, S; Kurtz, T W; Pershadsingh, H A

    2000-01-01

    This study was conducted to determine whether cultured human coronary artery and aorta vascular smooth muscle (VSM) cells express the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma); whether the thiazolidinedione troglitazone, a ligand for PPARgamma, would inhibit c-fos expression by these cells; and whether troglitazone would inhibit proliferation and migration induced in these cells by mitogenic growth factors. Using immunoblotting and reverse-transcriptase polymerase chain reaction (RT-PCR) techniques, we show that both human aorta and coronary artery VSM cell lines expressed PPARgamma protein and mRNA for both PPARgamma isoforms, PPARgamma1 and PPARgamma2. Immunocytochemical staining localized the PPARgamma protein primarily within the nucleus. Troglitazone inhibited basic fibroblast growth factor and platelet-derived growth factor-BB induced DNA synthesis in a dose-dependent manner and downregulated the growth-factor-induced expression of c-fos. Troglitazone also inhibited the migration of coronary artery VSM cells along a platelet-derived growth factor-BB concentration gradient. These findings demonstrate for the first time the expression and nuclear localization of PPARgamma in human coronary artery and aorta VSM cells. The data also suggest that the downregulation of c-fos expression, growth-factor-induced proliferation, and migration by VSM may, in part, be mediated by activation of the PPARgamma receptor.

  9. Alveolar type II cell-fibroblast interactions, synthesis and secretion of surfactant and type I collagen.

    PubMed

    Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T

    1993-06-01

    During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium contained low levels of IGF-1 and the stimulation of type I collagen secretion was abolished when the conditioned medium was pre-incubated with antibodies to insulin-like growth factor 1 (IGF-1). There are important reciprocal interactions between alveolar type II cells and fibroblasts in co-culture. Direct contacts between alveolar type II cells and fibroblasts appear to have a trophic effect on cultured alveolar type II cells, increasing the levels of mRNA for SP-A. Rat lung alveolar type II cells appear to release a factor (possibly IGF-1) that stimulates type I collagen secretion by fibroblasts.

  10. Identification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions

    PubMed Central

    Chevalier, Benoit; Puisségur, Marie-Pierre; Lebrigand, Kevin; Robbe-Sermesant, Karine; Bertero, Thomas; Lino Cardenas, Christian L.; Courcot, Elisabeth; Rios, Géraldine; Fourre, Sandra; Lo-Guidice, Jean-Marc; Marcet, Brice; Cardinaud, Bruno; Barbry, Pascal; Mari, Bernard

    2009-01-01

    Background Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-α, IL-1β and TGF-β. Methodology/Principal Findings MiR-155 was significantly induced by inflammatory cytokines TNF-α and IL-1β while it was down-regulated by TGF-β. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to “cell to cell signalling”, “cell morphology” and “cellular movement”. This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3′-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3′-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3′-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. Conclusions/Significance Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury. PMID:19701459

  11. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  12. Role of fibroblast growth factor receptor signaling in kidney development

    PubMed Central

    2011-01-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling “decoy” receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development. PMID:21613421

  13. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2011-08-01

    Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.

  14. Growth enhancement by embryonic fibroblasts upon cotransplantation of noncommitted pig embryonic tissues with fully committed organs.

    PubMed

    Cohen, Sivan; Tchorsh-Yutsis, Dalit; Aronovich, Anna; Tal, Orna; Eventov-Friedman, Smadar; Katchman, Helena; Klionsky, Yael; Shezen, Elias; Reisner, Yair

    2010-05-27

    We recently defined the optimal gestational time windows for the transplantation of several embryonic tissues. We showed that the liver and kidney obtained from E28 pig embryos can grow and differentiate normally after transplantation, whereas 1 week earlier in gestation, these tissues develop into teratoma-like structures or fibrotic mass. In this study, we investigated whether cotransplantation of E28 with E21 tissue could control its tumorogenic potential, or alternatively whether the stem cells derived from the earlier tissue contribute to the growth of the more committed one. Pig embryonic precursors from E21 and E28 gestational age were transplanted alone or together, into nonobese diabetic/severe combined immunodeficiency mice, and their growth and differentiation was evaluated by immunohistology. In situ analysis, based on sex disparity between the E21 and E28 tissues, was used to identify the tissue source. In some experiments, mouse embryonic fibroblasts (MEF) were cotransplanted with E28 liver, and their effect was evaluated. E28 tissues could not abrogate the propensity of the cells within the undifferentiated tissue to form teratoma-like structures. However, E21 kidney or liver tissue markedly enhanced the growth and function of E28 kidney, liver, and heart grafts. Moreover, similar growth enhancement was observed on coimplantation of E28 liver tissue with MEF or on infusion of MEF culture medium, indicating that this enhancement is likely mediated through soluble factors secreted by the fibroblasts. Our results suggest a novel approach for the enhancement of growth and differentiation of transplanted embryonic tissues by the use of soluble factors secreted by embryonic fibroblasts.

  15. Semiquantitative immunohistochemical marker staining and localization in canine thyroid carcinoma and normal thyroid gland.

    PubMed

    Pessina, P; Castillo, V; Sartore, I; Borrego, J; Meikle, A

    2016-09-01

    Immunoreactive proteins in follicular cells, fibroblasts and endothelial cells were assessed in canine thyroid carcinomas and healthy thyroid glands. No differences were detected in thyrotropin receptor and thyroglobulin staining between cancer and normal tissues, but expression was higher in follicular cells than in fibroblasts. Fibroblast growth factor-2 staining was more intense in healthy follicular cells than in those of carcinomas. Follicular cells in carcinomas presented two- to three-fold greater staining intensity of thyroid transcription factor-1 and proliferating cell nuclear antigen, respectively, than healthy cells, and a similar trend was found for the latter antigen in fibroblasts. Vascular endothelial growth factor staining was more intense in the endothelial cells of tumours than in those of normal tissues. In conclusion, greater expression of factors related to proliferation and angiogenesis was demonstrated in several cell types within thyroid carcinomas compared to healthy tissues, which may represent mechanisms of tumour progression in this disease. © 2014 John Wiley & Sons Ltd.

  16. Integrin-linked kinase is required for TGF-β1 induction of dermal myofibroblast differentiation.

    PubMed

    Vi, Linda; de Lasa, Cristina; DiGuglielmo, Gianni M; Dagnino, Lina

    2011-03-01

    Cutaneous repair after injury requires activation of resident dermal fibroblasts and their transition to myofibroblasts. The key stimuli for myofibroblast formation are activation of transforming growth factor-β (TGF-β) receptors and mechanotransduction mediated by integrins and associated proteins. We investigated the role of integrin-linked kinase (ILK) in TGF-β1 induction of dermal fibroblast transition to myofibroblasts. ILK-deficient fibroblasts treated with TGF-β1 exhibited attenuation of Smad 2 and 3 phosphorylation, accompanied by impaired transcriptional activation of Smad targets, such as α-smooth muscle actin. These alterations were not limited to Smad-associated TGF-β1 responses, as stimulation of noncanonical mitogen-activated protein kinase pathways by this growth factor was also diminished in the absence of ILK. ILK-deficient fibroblasts exhibited abnormalities in the actin cytoskeleton, and did not form supermature focal adhesions or contractile F-actin stress fibers, indicating a severe impairment in their capacity to differentiate into myofibroblasts. These defects extended to the inability of cells to contract extracellular matrices when embedded in collagen lattices. We conclude that ILK is necessary to transduce signals implicated in the transition of dermal fibroblasts to myofibroblasts originating from matrix substrates and TGF-β1.

  17. Transforming growth factor-beta and Forkhead box O transcription factors as cardiac fibroblast regulators.

    PubMed

    Norambuena-Soto, Ignacio; Núñez-Soto, Constanza; Sanhueza-Olivares, Fernanda; Cancino-Arenas, Nicole; Mondaca-Ruff, David; Vivar, Raul; Díaz-Araya, Guillermo; Mellado, Rosemarie; Chiong, Mario

    2017-05-23

    Fibroblasts play several homeostatic roles, including electrical coupling, paracrine signaling and tissue repair after injury. Fibroblasts have low secretory activity. However, in response to injury, they differentiate to myofibroblasts. These cells have an increased extracellular matrix synthesis and secretion, including collagen fibers, providing stiffness to the tissue. In pathological conditions myofibroblasts became resistant to apoptosis, remaining in the tissue, causing excessive extracellular matrix secretion and deposition, which contributes to the progressive tissue remodeling. Therefore, increased myofibroblast content within damaged tissue is a characteristic hallmark of heart, lung, kidney and liver fibrosis. Recently, it was described that cardiac fibroblast to myofibroblast differentiation is triggered by the transforming growth factor β1 (TGF-β1) through a Smad-independent activation of Forkhead box O (FoxO). FoxO proteins are a transcription factor family that includes FoxO1, FoxO3, FoxO4 and FoxO6. In several cells types, they play an important role in cell cycle arrest, oxidative stress resistance, cell survival, energy metabolism, and cell death. Here, we review the role of FoxO family members on the regulation of cardiac fibroblast proliferation and differentiation.

  18. Fibroblast Growth Factor Receptor-4 and Prostate Cancer Progression

    DTIC Science & Technology

    2007-10-01

    difference between the two FGFR-4 variants? Achondroplasia (dwarfism) is caused by a similar mutation in FGFR-3 (Gly380 to Arg380). Increased FGFR-3...what is the molecular basis for the difference between the two FGFR-4 variants? Achondroplasia is caused by a similar mutation in FGFR-3 (Gly380 to...lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia . Proc Natl Acad Sci U S A 2004;101(2):609-14. 27. Hyun TS, Rao DS

  19. Platelet-derived-growth-factor-stimulated heterogeneous polyphosphoinositide metabolism and phosphate uptake in C3H fibroblasts.

    PubMed Central

    Holmsen, H; Male, R; Rongved, S; Langeland, N; Lillehaug, J

    1989-01-01

    Pig platelet-derived growth factor (PDGF) increased the rate of [32P]Pi uptake by murine fibroblasts, resulting in a 3-9-fold elevation of the specific radioactivity of ATP, PtdInsP, PtdInsP2, PtdIns and phosphatidic acid. The specific radioactivity was 10-60-fold higher in ATP than in the four phospholipids. These substances are therefore not in metabolic equilibrium, which complicates determination of inositol phospholipid turnover. PMID:2548480

  20. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers.

    PubMed

    Tiong, Kai Hung; Mah, Li Yen; Leong, Chee-Onn

    2013-12-01

    The fibroblast growth factor receptors (FGFRs) regulate important biological processes including cell proliferation and differentiation during development and tissue repair. Over the past decades, numerous pathological conditions and developmental syndromes have emerged as a consequence of deregulation in the FGFRs signaling network. This review aims to provide an overview of FGFR family, their complex signaling pathways in tumorigenesis, and the current development and application of therapeutics targeting the FGFRs signaling for treatment of refractory human cancers.

  1. 10-Shogaol, an Antioxidant from Zingiber officinale for Skin Cell Proliferation and Migration Enhancer

    PubMed Central

    Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min

    2012-01-01

    In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422

  2. TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer*

    PubMed Central

    Ko, Ying-Hui; Domingo-Vidal, Marina; Roche, Megan; Lin, Zhao; Whitaker-Menezes, Diana; Seifert, Erin; Capparelli, Claudia; Tuluc, Madalina; Birbe, Ruth C.; Tassone, Patrick; Curry, Joseph M.; Navarro-Sabaté, Àurea; Manzano, Anna; Bartrons, Ramon; Caro, Jaime; Martinez-Outschoorn, Ubaldo

    2016-01-01

    A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer. PMID:27803158

  3. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers.

    PubMed

    Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A; Bak, Mads; Mikkelsen, Hanne B; Byskov, Anne Grete; Andersen, Claus Yding; Møllgård, Kjeld

    2012-03-01

    The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.

  4. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation.

    PubMed

    Ji, Hong; Tang, Haiying; Lin, Hongli; Mao, Jingwei; Gao, Lili; Liu, Jia; Wu, Taihua

    2014-11-01

    The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G 0 /G 1 and decreased S and G 2 /M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro .

  5. Role of B61, the Ligand for the Eck Receptor Tyrosine Kinase, in TNF- α-Induced Angiogenesis

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Shao, Haining; Marks, Rory M.; Polverini, Peter J.; Dixit, Vishva M.

    1995-04-01

    B61, a cytokine-inducible endothelial gene product, is the ligand for the Eck receptor protein tyrosine kinase (RPTK). Expression of a B61-immunoglobulin chimera showed that B61 could act as an angiogenic factor in vivo and a chemoattractant for endothelial cells in vitro. The Eck RPTK was activated by tumor necrosis factor-α (TNF-α) through induction of B61, and an antibody to B61 attenuated angiogenesis induced by TNF-α but not by basic fibroblast growth factor. This finding suggests the existence of an autocrine or paracrine loop involving activation of the Eck RPTK by its inducible ligand B61 after an inflammatory stimulus, the net effect of which would be to promote angiogenesis, a hallmark of chronic inflammation.

  6. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis.

    PubMed

    Pandey, A; Shao, H; Marks, R M; Polverini, P J; Dixit, V M

    1995-04-28

    B61, a cytokine-inducible endothelial gene product, is the ligand for the Eck receptor protein tyrosine kinase (RPTK). Expression of a B61-immunoglobulin chimera showed that B61 could act as an angiogenic factor in vivo and a chemoattractant for endothelial cells in vitro. The Eck RPTK was activated by tumor necrosis factor-alpha (TNF-alpha) through induction of B61, and an antibody to B61 attenuated angiogenesis induced by TNF-alpha but not by basic fibroblast growth factor. This finding suggests the existence of an autocrine or paracrine loop involving activation of the Eck RPTK by its inducible ligand B61 after an inflammatory stimulus, the net effect of which would be to promote angiogenesis, a hallmark of chronic inflammation.

  7. Development of an ES-like cell culture system (RESC) from rohu, Labeo rohita (Ham.).

    PubMed

    Goswami, M; Lakra, W S; Yadav, Kamalendra; Jena, J K

    2012-12-01

    An embryonic stem (ES)-like cell culture system RESC from a commercially important freshwater carp, Labeo rohita, was developed using blastula stage embryos. The cells were cultured in Leibovitz-15 (L-15) medium in gelatin-coated cell culture flask supplemented with 15 % fetal bovine serum along with 10 ng ml(-1) basic fibroblast growth factor at 28 °C under feeder-free conditions. The ES-like cells were characterized by their unique morphology, alkaline phosphatase activity, embryoid body formation tendency, expression of transcription factor Oct4, and consistent chromosome count. The RESC cells when treated with retinoic acid differentiated into cells of different lineages. The RESC developed from mid-blastula embryos of L. rohita would be a useful tool for cellular differentiation and gene expression studies.

  8. Plasticity of the Muscle Stem Cell Microenvironment.

    PubMed

    Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph

    2017-01-01

    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.

  9. Fibroblasts—a key host cell type in tumor initiation, progression, and metastasis

    PubMed Central

    Strell, Carina; Rundqvist, Helene

    2012-01-01

    Tumor initiation, growth, invasion, and metastasis occur as a consequence of a complex interplay between the host environment and cancer cells. Fibroblasts are now recognized as a key host cell type involved in host–cancer signaling. This review discusses some recent studies that highlight the roles of fibroblasts in tumor initiation, early progression, invasion, and metastasis. Some clinical studies describing the prognostic significance of fibroblast-derived markers and signatures are also discussed. PMID:22509805

  10. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    PubMed Central

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  11. The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis.

    PubMed

    Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A

    2012-12-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Effect of icodextrin peritoneal dialysis solution on cell proliferation in vitro.

    PubMed

    Cooker, L A; Choo, C G; Luneburg, P; Lamela, J; Holmes, C J

    1999-01-01

    Peritoneal dialysis solutions containing icodextrin are ideal for providing sustained ultrafiltration during long dwells, and they have replaced high glucose for long dwells in some patients. The biocompatibility of these solutions, especially in regard to glucose degradation products, has not been studied in depth. The object of this study was to compare the effects of commercially available dextrose-containing dialysis solutions to those of icodextrin-containing solutions on fibroblast proliferation in vitro. We measured the effect of solutions on cell growth by exposing murine fibroblasts to pH-adjusted test solutions mixed with culture medium, and by comparing cell growth to growth in culture medium only. No statistical difference was observed in the growth of cells exposed to heat-sterilized Extraneal [7.5% icodextrin (Baxter Healthcare, Deerfield, Illinois, U.S.A.)], heat-sterilized Dianeal [1.5% dextrose (Baxter Healthcare)], or filter-sterilized Dianeal [4.25% dextrose (Baxter Healthcare]. Also, no difference was observed in the growth of fibroblasts exposed to heat-sterilized Extraneal or to filter-sterilized Extraneal, but heat-sterilized Dianeal [4.25% dextrose (Baxter Healthcare)] caused a significant reduction in cell growth. Glucose degradation products (GDPs) are known to contribute to reduced cell growth in vitro. Extraneal had lower levels of the GDP acetaldehyde compared to Dianeal (2.5% or 4.25% dextrose). The results demonstrate enhanced in vitro biocompatibility characteristics for Extraneal, possibly related to low GDP levels in Extraneal.

  13. A simple in vitro model for investigating epithelial/mesenchymal interactions: keratinocyte inhibition of fibroblast proliferation and fibronectin synthesis.

    PubMed

    Harrison, Caroline A; Dalley, Andrew J; Mac Neil, Sheila

    2005-01-01

    Hypertrophic scarring and graft contracture are major causes of morbidity after burn injuries. It is well established that application of a split-thickness skin graft reduces scarring and contraction, and cultured epithelial autografts have a similar effect. To investigate the influence of keratinocytes on fibroblast proliferation and fibronectin synthesis, we used an in vitro separated co-culture model in which epithelial sheets were cultured above fibroblast monolayers without physical contact. We also investigated the response of fibroblasts to keratinocyte-conditioned medium (KCM) obtained from confluent and subconfluent keratinocyte monolayers. Both cultured epithelial sheets, composed of adherent fully confluent keratinocytes, and their conditioned medium, reduced fibroblast proliferation. However, KCM from subconfluent keratinocytes stimulated fibroblast proliferation at low concentrations while inhibiting it at higher concentrations, indicating that keratinocytes can produce both mitogenic and growth-inhibiting factors for fibroblasts. KCM, but not epithelial sheet co-culture, also inhibited fibroblast fibronectin synthesis. This indicates regulation of fibroblast phenotype by soluble factors released by the keratinocyte and also suggests that there is a dialogue between keratinocytes and fibroblasts with respect to fibronectin production. We conclude that this separated co-culture model is a simple way to study epithelial/mesenchymal communication particularly with respect to the role of the fibroblast in wound healing.

  14. Mutant soluble ectodomain of fibroblast growth factor receptor-2 IIIc attenuates bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Yu, Zhi-hong; Wang, Ding-ding; Zhou, Zhi-you; He, Shui-lian; Chen, An-an; Wang, Ju

    2012-01-01

    We have developed a strong inhibitor (S252W mutant soluble ectodomain of fibroblast growth factor recptor-2 IIIc, msFGFR2) that binds FGFs strongly and blocks the activation of FGFRs. In vitro, msFGFR2 could inhibit the promoting effect of transforming growth factor (TGF)-β1 on the proliferation of primary lung fibroblasts. In vivo, msFGFR2 alleviated lung fibrosis through inhibiting the expression of α-smooth muscle actin (SMA) and collagen deposit. In Western blotting of the right lung tissues and immunohistochemical assay, we found the level of p-FGFRs, p-mitogen activated protein kinase (MAPK) and p-Smad3 in the mice of bleomycin (BLM) group treated with msFGFR2 was down dramatically compared with the mice of BLM group, which suggested the activations of FGF and TGF-β signals were blocked meanwhile. In summary, msFGFR2 attenuated BLM-induced fibrosis and is an attractive therapeutic candidate for human pulmonary fibrosis.

  15. Mesenchymal Stem Cells Derived from Human Limbal Niche Cells

    PubMed Central

    Li, Gui-Gang; Zhu, Ying-Ting; Xie, Hua-Tao; Chen, Szu-Yu; Tseng, Scheffer C. G.

    2012-01-01

    Purpose. We investigated whether human limbal niche cells generate mesenchymal stem cells. Methods. Limbal niche cells were isolated from the limbal stroma by collagenase alone or following dispase removal of the limbal epithelium (D/C), and cultured on plastic in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS), or coated or three-dimensional Matrigel in embryonic stem cell medium with leukemia inhibitory factor and basic fibroblast growth factor. Expression of cell markers, colony-forming units-fibroblast, tri-lineage differentiation, and ability of supporting limbal epithelial stem/progenitor cells were compared to limbal residual stromal cells. Results. Stromal cells expressing angiogenesis markers were found perivascularly, subjacent to limbal basal epithelial cells, and in D/C and limbal residual stromal cells. When seeded in three-dimensional Matrigel, D/C but not limbal residual stromal cells yielded spheres of angiogenesis progenitors that stabilized vascular networks. Similar to collagenase-isolated cells, D/C cells could be expanded on coated Matrigel for more than 12 passages, yielding spindle cells expressing angiogenesis and mesenchymal stem cells markers, and possessing significantly higher colony-forming units-fibroblast and more efficient tri-lineage differentiation than D/C and limbal residual stromal cells expanded on plastic in DMEM with 10% FBS, of which both lost the pericyte phenotype while limbal residual stromal cells turned into myofibroblasts. Upon reunion with limbal epithelial stem/progenitor cells to form spheres, D/C cells expanded on coated Matrigel maintained higher expression of p63α and lower expression of cytokeratin 12 than those expanded on plastic in DMEM with 10% FBS, while spheres formed with human corneal fibroblasts expressed cytokeratin 12 without p63α. Conclusions. In the limbal stroma, cells subjacent to limbal basal epithelial cells serve as niche cells, and generate progenitors with angiogenesis and mesenchymal stem cells potentials. They might partake in angiogenesis and regeneration during corneal wound healing. PMID:22836771

  16. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.

    PubMed

    German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro

    2015-02-01

    Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.

  17. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models.

    PubMed

    Wu, Xiao Yu; Xu, Hao; Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-12-29

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis.

  18. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models

    PubMed Central

    Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis. PMID:26575424

  19. Inhibition of myostatin reverses muscle fibrosis through apoptosis.

    PubMed

    Bo Li, Zhao; Zhang, Jiangyang; Wagner, Kathryn R

    2012-09-01

    Skeletal muscle fibrosis is a defining feature of the muscular dystrophies in which contractile myofibers are replaced by fibroblasts, adipocytes and extracellular matrix. This maladaptive response of muscle to repetitive injury is progressive, self-perpetuating and thus far, has been considered irreversible. We have previously shown that myostatin, a known endogenous modulator of muscle growth, stimulates normal muscle fibroblasts to proliferate. Here, we demonstrate that myostatin also regulates the proliferation of dystrophic muscle fibroblasts, and increases resistance of fibroblasts to apoptosis through Smad and MAPK signaling. Inhibition of myostatin signaling pathways with a soluble activin IIB receptor (ActRIIB.Fc) reduces resistance of muscle fibroblasts to apoptosis in vitro. Systemic administration of ActRIIB.Fc in senescent mdx mice, a model of muscular dystrophy, significantly increases the number of muscle fibroblasts undergoing apoptosis. This leads to the reversal of pre-existing muscle fibrosis as determined by histological, biochemical and radiographical criteria. These results demonstrate that skeletal muscle fibrosis can be pharmacologically reversed through induction of fibroblast apoptosis.

  20. Chitosan and thiolated chitosan: Novel therapeutic approach for preventing corneal haze after chemical injuries.

    PubMed

    Zahir-Jouzdani, Forouhe; Mahbod, Mirgholamreza; Soleimani, Masoud; Vakhshiteh, Faezeh; Arefian, Ehsan; Shahosseini, Saeed; Dinarvand, Rasoul; Atyabi, Fatemeh

    2018-01-01

    Corneal haze, commonly caused by deep physical and chemical injuries, can greatly impair vision. Growth factors facilitate fibroblast proliferation and differentiation, which leads to haze intensity. In this study, the potential effect of chitosan (CS) and thiolated-chitosan (TCS) nanoparticles and solutions on inhibition of fibroblast proliferation, fibroblast to myofibroblast differentiation, neovascularization, extracellular matrix (ECM) deposition, and pro-fibrotic cytokine expression was examined. Transforming growth factor beta-1 (TGFβ 1 ) was induced by interleukin-6 (IL6) in human corneal fibroblasts and expression levels of TGFβ 1 , Platelet-derived growth factor (PDGF), α-smooth muscle actins (α-SMA), collagen type I (Col I), fibronectin (Fn) and vascular endothelial growth factor (VEGF) were quantified using qRT-PCR. To assess wound-healing capacity, TCS-treated mice were examined for α-SMA positive cells, collagen deposition, inflammatory cells and neovascularization through pathological immunohistochemistry. The results revealed that CS and TCS could down-regulate the expression levels of TGFβ 1 and PDGF comparable to that of TGFβ 1 knockdown experiment. However, down-regulation of TGFβ 1 was not regulated through miR29b induction. Neovascularization along with α-SMA and ECM deposition were significantly diminished. According to these findings, CS and TCS can be considered as potential anti-fibrotic and anti-angiogenic therapeutics. Furthermore, TCS, thiolated derivative of CS, will increase mucoadhesion of the polymer at the corneal surface which makes the polymer efficient and non-toxic therapeutic approach for corneal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Anti-fibrotic efficacy of nintedanib in pulmonary fibrosis via the inhibition of fibrocyte activity.

    PubMed

    Sato, Seidai; Shinohara, Shintaro; Hayashi, Shinya; Morizumi, Shun; Abe, Shuichi; Okazaki, Hiroyasu; Chen, Yanjuan; Goto, Hisatsugu; Aono, Yoshinori; Ogawa, Hirohisa; Koyama, Kazuya; Nishimura, Haruka; Kawano, Hiroshi; Toyoda, Yuko; Uehara, Hisanori; Nishioka, Yasuhiko

    2017-09-15

    Nintedanib, a tyrosine kinase inhibitor that is specific for platelet-derived growth factor receptors (PDGFR), fibroblast growth factor receptors (FGFR), and vascular endothelial growth factor receptors (VEGFR), has recently been approved for idiopathic pulmonary fibrosis. Fibrocytes are bone marrow-derived progenitor cells that produce growth factors and contribute to fibrogenesis in the lungs. However, the effects of nintedanib on the functions of fibrocytes remain unclear. Human monocytes were isolated from the peripheral blood of healthy volunteers. The expression of growth factors and their receptors in fibrocytes was analyzed using ELISA and Western blotting. The effects of nintedanib on the ability of fibrocytes to stimulate lung fibroblasts were examined in terms of their proliferation. The direct effects of nintedanib on the differentiation and migration of fibrocytes were also assessed. We investigated whether nintedanib affected the accumulation of fibrocytes in mouse lungs treated with bleomycin. Human fibrocytes produced PDGF, FGF2, and VEGF-A. Nintedanib and specific inhibitors for each growth factor receptor significantly inhibited the proliferation of lung fibroblasts stimulated by the supernatant of fibrocytes. Nintedanib inhibited the migration and differentiation of fibrocytes induced by growth factors in vitro. The number of fibrocytes in the bleomycin-induced lung fibrosis model was reduced by the administration of nintedanib, and this was associated with anti-fibrotic effects. These results support the role of fibrocytes as producers of and responders to growth factors, and suggest that the anti-fibrotic effects of nintedanib are at least partly mediated by suppression of fibrocyte function.

  2. An Alternative Method for Long-Term Culture of Chicken Embryonic Stem Cell In Vitro.

    PubMed

    Zhang, Li; Wu, Yenan; Li, Xiang; Wei, Shao; Xing, Yiming; Lian, Zhengxing; Han, Hongbing

    2018-01-01

    Chicken embryonic stem cells (cESCs) obtained from stage X embryos provide a novel model for the study of avian embryonic development. A new way to maintain cESCs for a long period in vitro still remains unexplored. We found that the cESCs showed stem cell-like properties in vitro for a long term with the support of DF-1 feeder and basic culture medium supplemented with human basic fibroblast growth factor (hbFGF), mouse stem cell factor (mSCF), and human leukemia inhibitory factor (hLIF). During the long culture period, the cESCs showed typical ES cell morphology and expressed primitive stem cell markers with a relatively stable proliferation rate and high telomerase activity. These cells also exhibited the capability to differentiate into cardiac myocytes, smooth muscle cells, neural cells, osteoblast, and adipocyte in vitro . Chimera chickens were produced by cESCs cultured for 25 passages with this new culture system. The experiments showed that DF-1 was the optimal feeder and hbFGF was an important factor for maintaining the pluripotency of cESCs in vitro .

  3. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.

    PubMed

    Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh

    2014-06-01

    Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.

  4. In Vitro Effects of Pirfenidone on Cardiac Fibroblasts: Proliferation, Myofibroblast Differentiation, Migration and Cytokine Secretion

    PubMed Central

    Shi, Qiang; Liu, Xiaoyan; Bai, Yuanyuan; Cui, Chuanjue; Li, Jun; Li, Yishi; Hu, Shengshou; Wei, Yingjie

    2011-01-01

    Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated whether pirfenidone directly modulates cardiac fibroblast behavior that is important in myocardial remodeling such as proliferation, myofibroblast differentiation, migration and cytokine secretion. Fibroblasts were isolated from neonatal rat hearts and bioassays were performed to determine the effects of pirfenidone on fibroblast function. We demonstrated that treatment of CFs with pirfenidone resulted in decreased proliferation, and attenuated fibroblast α-smooth muscle actin expression and collagen contractility. Boyden chamber assay illustrated that pirfenidone inhibited fibroblast migration ability, probably by decreasing the ratio of matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1. Furthermore, pirfenidone attenuated the synthesis and secretion of transforming growth factor-β1 but elevated that of interleukin-10. These direct and pleiotropic effects of pirfenidone on cardiac fibroblasts point to its potential use in the treatment of adverse myocardial remodeling. PMID:22132230

  5. Role of fibroblast-derived factors in the pathogenesis of melasma.

    PubMed

    Byun, J W; Park, I S; Choi, G S; Shin, J

    2016-08-01

    The hyperactive melanocytes present in melasma skin are confined to the epidermis, but epidermal ablation to treat melasma pigmentation may lead to disease recurrence and aggravation. Melanocyte function is regulated by interactions between melanocytes and neighbouring cells such as keratinocytes and fibroblasts. Because melasma skin usually shows dermal changes after exposure to sunlight, we hypothesized that sun-damaged fibroblasts might play a crucial role in the pathogenesis of melasma. In this study, the melanogenic role of primary cultured fibroblasts from human melasma skin was investigated. We explored whether primary cultured fibroblasts from melasma tissue have a melanogenic function on cultured human epidermal melanocytes and artificial skin. The cytokine profile derived from fibroblasts and their effect on the pigmented epidermal equivalents were investigated. Fibroblasts from the melasma lesion and perilesional skin increased melanogenesis in cultured human epidermal melanocytes and in artificial skin. Fibroblasts from the melasma lesion and perilesional skin secreted more nerve growth factor (NGF)-β than those in normal buttock skin, and also increased melanogenesis and the expression level of NGF-β in cultured human epidermal melanocytes and artificial skin. These results suggest that fibroblasts may play a role in melanogenesis and the pathogenesis of melasma. © 2016 British Association of Dermatologists.

  6. 4F2 monoclonal antibody recognizes a surface antigen on spread human fibroblasts of embryonic but not of adult origin

    PubMed Central

    1984-01-01

    The 4F2 monoclonal antibody (mAb) has been shown to recognize a 120- kilodalton glycoprotein expressed on the cell surface of human peripheral blood monocytes, activated (but not resting) T or B cells, and T and B lymphoblastoid cell lines. In this report we show that 4F2 mAb specifically binds to the surface of adherent human embryonic fibroblasts but fails to bind to normal adult fibroblasts. Moreover, 4F2 antigen was expressed on sarcoma-derived or SV40-transformed adult fibroblastic cells. Finally, addition of 4F2 mAb inhibited the growth of cultured HT-1080 fibrosarcoma cell line, but had no inhibitory effect on various embryonic and adult normal or transformed fibroblasts. PMID:6538202

  7. Impact of transforming growth factor-beta1 on atrioventricular node conduction modification by injected autologous fibroblasts in the canine heart.

    PubMed

    Bunch, T Jared; Mahapatra, Srijoy; Bruce, G Keith; Johnson, Susan B; Miller, Dylan V; Horne, Benjamin D; Wang, Xiao-Li; Lee, Hon-Chi; Caplice, Noel M; Packer, Douglas L

    2006-05-30

    Atrioventricular (AV) nodal ablation for management of atrial fibrillation (AF) is irreversible and requires permanent pacemaker implantation. We hypothesized that as an alternative, implantation of autologous fibroblasts in the perinodal region would focally modify AV nodal conduction and that this modulation would be enhanced by pretreatment with transforming growth factor-beta1 (TGF-beta1), a stimulant of fibroblasts. Skin biopsies were taken from 12 mongrel dogs, and derived fibroblasts were dissociated and grown in culture for 2 weeks. Multiple injections (0.25 mL) were made through an 8F NOGA catheter along the fast/slow AV nodal pathways as guided by an electroanatomic mapping system. Seven dogs received fibroblasts alone (1x10(6) cells/mL), 7 dogs received TGF-beta1 (5 microg), 4 dogs received fibroblasts and TGF-beta1 (1x10(6) cells/mL+5 microg), and 4 dogs received saline only. AV node function was assessed at baseline and after 4 weeks. Saline (80 mL) with assigned therapy (0.25 mL per injection) was injected into the peri-AV nodal region in each dog. At baseline, the AH interval (66+/-3 ms) and the average RR interval (331+/-17 ms) in pacing-induced AF were similar in each cohort. The increase in AH interval in normal sinus rhythm was longer after fibroblast (23+/-4 versus 5+/-5 ms; P=0.05) and fibroblast plus TGF-beta1 (50+/-5 versus 5+/-5 ms; P<0.001) injections than with saline alone, with similar findings during high right atrium and distal coronary sinus pacing. The AH interval was not significantly increased after TGF-beta1 injections. The AH interval was significantly longer after fibroblast plus TGF-beta1 injections than with either therapy (TGF-beta1 or fibroblasts) alone. The RR interval during AF was increased in dogs that received fibroblasts alone (110+/-36 versus -41+/-34 ms) and to a greater extent with the addition of TGF-beta1 (294+/-108 versus -41+/-34 ms). No AV block was seen in any cohort at 4 weeks. Labeled fibroblasts that expressed vimentin were identified in all dogs that received cell injections at 4 weeks. AV nodal modification can be achieved with injected fibroblasts without the creation of AV block. The effect on AV node conduction is substantially enhanced by pretreatment of fibroblasts with TGF-beta1. These data have therapeutic potential for the management of rapid ventricular rate during AF without pacemaker implantation.

  8. Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin αvβ5-mediated adhesion

    PubMed Central

    Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio

    2015-01-01

    Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion. PMID:25973543

  9. Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin αvβ5-mediated adhesion.

    PubMed

    Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio

    2015-06-10

    Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.

  10. Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments1

    PubMed Central

    Christiansen, Victoria J; Jackson, Kenneth W; Lee, Kyung N; Downs, Tamyra D; McKee, Patrick A

    2013-01-01

    Fibroblast activation protein (FAP), a membrane prolyl-specific proteinase with both dipeptidase and endopeptidase activities, is overexpressed by reactive stromal fibroblasts during epithelial-derived cancer growth. FAP digests extracellular matrix as tissue is remodeled during cancer expansion and may also promote an immunotolerant tumor microenvironment. Recent studies suggest that nonspecific FAP inhibitors suppress human cancer xenografts in mouse models. Prolyl oligopeptidase (POP), another prolyl-specific serine proteinase, is also elevated in many cancers and may have a regulatory role in angiogenesis promotion. FAP and POP cell-associated activities may be targets for diagnosis and treatment of various cancers, but their accessibilities to highly effective specific inhibitors have not been shown for cells important to cancer growth. Despite their frequent simultaneous expression in many cancers and their overlapping activities toward commonly used substrates, precise, separate measurement of FAP or POP activity has largely been ignored. To distinguish each of the two activities, we synthesized highly specific substrates and inhibitors for FAP or POP based on amino acid sequences surrounding the scissile bonds of their respective putative substrates. We found varying amounts of FAP and POP protein and activities on activated fibroblasts, mesenchymal cells, normal breast cells, and one breast cancer cell line, with some cells exhibiting more POP than FAP activity. Replicating endothelial cells (ECs) expressed POP but not FAP until tubulogenesis began. Targeting FAP-positive cells, especially mesenchymal stem cells and cancer-associated fibroblasts for inactivation or destruction, and inhibiting POP-producing EC may abrogate stromal invasion and angiogenesis simultaneously and thereby diminish cancer growth. PMID:23555181

  11. Inhibition of α-SMA by the Ectodomain of FGFR2c Attenuates Lung Fibrosis

    PubMed Central

    Ju, Wang; Zhihong, Yu; Zhiyou, Zhou; Qin, Huang; Dingding, Wang; Li, Sun; Baowei, Zhu; Xing, Wei; Ying, He; An, Hong

    2012-01-01

    The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist. PMID:22451267

  12. Role of fibroblast growth factor receptor signaling in kidney development.

    PubMed

    Bates, Carlton M

    2007-03-01

    Fibroblast growth factor receptors (Fgfrs) are expressed in the ureteric bud and metanephric mesenchyme of the developing kidney. Furthermore, in vitro and in vivo studies have shown that exogenous fibroblast growth factors (Fgfs) increase growth and maturation of the metanephric mesenchyme and ureteric bud. Deletion of fgf7, fgf10, and fgfr2IIIb (the receptor isoform that binds Fgf7 and Fgf10) in mice lead to smaller kidneys with fewer collecting ducts and nephrons. Overexpression of a dominant negative receptor isoform in transgenic mice has revealed more striking defects including renal aplasia or severe dysplasia. Moreover, deletion of many fgf ligands and receptors in mice results in early embryonic lethality, making it difficult to determine their roles in kidney development. Recently, conditional targeting approaches revealed that deletion of fgf8 from the metanephric mesenchyme interrupts nephron formation. Furthermore, deletion of fgfr2 from the ureteric bud resulted in both ureteric bud branching and stromal mesenchymal patterning defects. Deletion of both fgfr1 and fgfr2 in the metanephric mesenchyme resulted in renal aplasia, characterized by defects in metanephric mesenchyme formation and initial ureteric bud elongation and branching. Thus, Fgfr signaling is critical for growth and patterning of all renal lineages at early and later stages of kidney development.

  13. Efficient and high yield isolation of myoblasts from skeletal muscle.

    PubMed

    Shahini, Aref; Vydiam, Kalyan; Choudhury, Debanik; Rajabian, Nika; Nguyen, Thy; Lei, Pedro; Andreadis, Stelios T

    2018-05-24

    Skeletal muscle (SkM) regeneration relies on the activity of myogenic progenitors that reside beneath the basal lamina of myofibers. Here, we describe a protocol for the isolation of the SkM progenitors from young and old mice by exploiting their outgrowth potential from SkM explants on matrigel coated dishes in the presence of high serum, chicken embryo extract and basic fibroblast growth factor. Compared to other protocols, this method yields a higher number of myoblasts (10-20 million) by enabling the outgrowth of these cells from tissue fragments. The majority of outgrowth cells (~90%) were positive for myogenic markers such as α7-integrin, MyoD, and Desmin. The myogenic cell population could be purified to 98% with one round of pre-plating on collagen coated dishes, where differential attachment of fibroblasts and other non-myogenic progenitors separates them from myoblasts. Moreover, the combination of high serum medium and matrigel coating provided a proliferation advantage to myogenic cells, which expanded rapidly (~24 h population doubling), while non-myogenic cells diminished over time, thereby eliminating the need for further purification steps such as FACS sorting. Finally, myogenic progenitors gave rise to multinucleated myotubes that exhibited sarcomeres and spontaneous beating in the culture dish. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Conversion of partially reprogrammed cells to fully pluripotent stem cells is associated with further activation of stem cell maintenance- and gamete generation-related genes.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Seo, Han Geuk; Moon, Sung-Hwan; Chung, Hyung-Min; Do, Jeong Tae

    2014-11-01

    Somatic cells are reprogrammed to induced pluripotent stem cells (iPSCs) by overexpression of a combination of defined transcription factors. We generated iPSCs from mouse embryonic fibroblasts (with Oct4-GFP reporter) by transfection of pCX-OSK-2A (Oct4, Sox2, and Klf4) and pCX-cMyc vectors. We could generate partially reprogrammed cells (XiPS-7), which maintained more than 20 passages in a partially reprogrammed state; the cells expressed Nanog but were Oct4-GFP negative. When the cells were transferred to serum-free medium (with serum replacement and basic fibroblast growth factor), the XiPS-7 cells converted to Oct4-GFP-positive iPSCs (XiPS-7c, fully reprogrammed cells) with ESC-like properties. During the conversion of XiPS-7 to XiPS-7c, we found several clusters of slowly reprogrammed genes, which were activated at later stages of reprogramming. Our results suggest that partial reprogrammed cells can be induced to full reprogramming status by serum-free medium, in which stem cell maintenance- and gamete generation-related genes were upregulated. These long-term expandable partially reprogrammed cells can be used to verify the mechanism of reprogramming.

  15. [Clinical observation of basic fibroblast growth factor combined with topical oxygen therapy in enhancing burn wound healing].

    PubMed

    Nie, Kaiyu; Li, Pengcheng; Zeng, Xueqin; Sun, Guangfeng; Jin, Wenhu; Wei, Zairong; Wang, Bo; Qi, Jianping; Wang, Yuming; Wang, Dali

    2010-06-01

    To investigate the efficacy of basic fibroblast growth factor (bFGF) combined with topical oxygen therapy for deep II degree burn wounds, by comparing the effects of bFGF combined with topical oxygen therapy and bFGF with routine therapy. From February 2004 to July 2009, 85 patients with deep II degree burn wounds (117 wounds) were enrolled and divided into 4 groups randomly according to different treatments. There was no significant difference in sex, age, disease course, wound size, and wound treatment size among 4 groups (P > 0.05). In group A, 18 patients (28 wounds) were treated routinely; in group B, 23 patients (30 wounds) were treated with routine methods and topical oxygen therapy; in group C, 19 patients (25 wounds) were treated with routine methods and bFGF therapy; and in group D, 25 patients (34 wounds) were treated with routine methods and bFGF/topical oxygen therapy. Topical oxygen therapy was administered to the wound for 90 minutes per day for 3 weeks. The bFGF therapy was applied everyday (150 U/cm2) for 3 weeks. All cases were followed up 6-12 months (9 months on average). The wound healing times in groups A, B, C, and D were (27.3 +/- 6.6), (24.2 +/- 5.8), (22.2 +/- 6.8), and (18.2 +/- 4.8) days, respectively; showing significant difference between group A and group D (P < 0.05). The wound healing rates in groups A, B, C, and D were 67.8% +/- 12.1%, 85.1% +/- 7.5%, 89.2% +/- 8.3%, and 96.1% +/- 5.6%, respectively; showing significant differences between group A and groups B, C, D (P < 0.05). The therapic effective rates in groups A, B, C, and D were 75%, 90%, 92%, and 100%, respectively; showing significant difference between group A and group D (P < 0.05). The Vancouver scar scale scoring of group D 6 months after treatment was better than that of group A (P < 0.05). The bFGF combined with topical oxygen therapy can enhance deep II degree burn wound healing. Furthermore, the therapy method is simple and convenient.

  16. Lipopolysaccharide and hypoxia significantly alters interleukin-8 and macrophage chemoattractant protein-1 production by human fibroblasts but not fibrosis related factors.

    PubMed

    Eleftheriadis, T; Liakopoulos, V; Lawson, B; Antoniadi, G; Stefanidis, I; Galaktidou, G

    2011-07-01

    Besides extracellular matrix production, fibroblasts are able to produce various cytokines. Their ubiquitous position makes fibroblasts appropriate cells for sensing various noxious stimuli and for attracting immune cells in the affected area. In the present study the effect of lipopolysaccharide (LPS) and cobalt chloride (CoCl(2)) on the above fibroblasts functions were evaluated in primary human skin fibroblasts cultures. Collagen, matrix metalloproteinase-1, tissue inhibitor of metalloproteinases-1, transforming growth factor-β1, interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) were measured in fibroblasts culture supernatants. Fibroblasts proliferation and viability were assessed as well. Hypoxia inducible factor-1α and the phosphorylated p65 portion of NF-κB were assessed in fibroblasts protein extracts. LPS and CoCl(2) had a minor effect on fibrosis related factors in human primary fibroblasts, possibly due to the absence of interplay with other cell types in the used experimental system. On the contrary both LPS and CoCl(2) increased significantly IL-8. LPS also increased considerably MCP-1, but CoCl(2) decreased it. Thus LPS and CoCl(2) induce a sentinel, nevertheless not identical, phenotype in primary human fibroblasts. The last disparity could result in different body response to infectious or hypoxic noxious stimuli.

  17. Characterization of interleukin-4-stimulated nasal polyp fibroblasts.

    PubMed

    Steinke, John W; Crouse, Charles D; Bradley, Dewayne; Hise, Kathleen; Lynch, Kevin; Kountakis, Stilianos E; Borish, Larry

    2004-02-01

    Chronic hyperplastic eosinophilic sinusitis is an inflammatory disease that results in the accumulation of eosinophils, fibroblasts, mast cells, and goblet cells at the site of injury. A common feature of this disease is the presence of nasal polyposis (NP). The current studies were designed to assess the contribution of interleukin (IL)-4 to fibroblast-mediated inflammation in chronic hyperplastic eosinophilic sinusitis/NP. In addition, we hypothesized that cysteinyl leukotrienes (CysLT) may directly influence fibroblast-mediated fibrotic and remodeling pathways in this disorder. Fibroblasts were isolated from NP tissue. All fibroblast lines expressed the IL-4 receptor. IL-4 induced changes in mRNA and protein expression of fibrotic (transforming growth factor-beta1 and -beta2) and inflammatory cytokines and chemokines (IL-6 and CCL11) by fibroblasts as measured by semiquantitative and quantitative polymerase chain reaction, RNase protection assay, and enzyme-linked immunosorbent assay. The expression of CysLT and other proinflammatory lipid receptors on fibroblasts was evaluated. CysLT1 and CysLT2 receptors were not expressed on fibroblasts; however, LPA(1) receptor was constitutively expressed and LPA(2) receptor expression was upregulated by IL-4. The metabolic cascade involved in CysLT synthesis was not expressed in fibroblasts and could not be induced by IL-4 treatment.

  18. Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels.

    PubMed

    Kobayashi, Tetsu; Kim, HuiJung; Liu, Xiangde; Sugiura, Hisatoshi; Kohyama, Tadashi; Fang, Qiuhong; Wen, Fu-Qiang; Abe, Shinji; Wang, Xingqi; Atkinson, Jeffrey J; Shipley, James M; Senior, Robert M; Rennard, Stephen I

    2014-06-01

    Matrix metalloproteinase-9 (MMP-9) is a matrix-degrading enzyme implicated in many biological processes, including inflammation. It is produced by many cells, including fibroblasts. When cultured in three-dimensional (3D) collagen gels, fibroblasts contract the surrounding matrix, a function that is thought to model the contraction that characterizes both normal wound repair and fibrosis. The current study was designed to evaluate the role of endogenously produced MMP-9 in fibroblast contraction of 3D collagen gels. Fibroblasts from mice lacking expression of MMP-9 and human lung fibroblasts (HFL-1) transfected with MMP-9 small-interfering RNA (siRNA) were used. Fibroblasts were cast into type I collagen gels and floated in culture medium with or without transforming growth factor (TGF)-β1 for 5 days. Gel size was determined daily using an image analysis system. Gels made from MMP-9 siRNA-treated human fibroblasts contracted less than control fibroblasts, as did fibroblasts incubated with a nonspecific MMP inhibitor. Similarly, fibroblasts cultured from MMP-9-deficient mice contracted gels less than did fibroblasts from control mice. Transfection of the MMP-9-deficient murine fibroblasts with a vector expressing murine MMP-9 restored contractile activity to MMP-9-deficient fibroblasts. Inhibition of MMP-9 reduced active TGF-β1 and reduced several TGF-β1-driven responses, including activity of a Smad3 reporter gene and production of fibronectin. Because TGF-β1 also drives fibroblast gel contraction, this suggests the mechanism for MMP-9 regulation of contraction is through the generation of active TGF-β1. This study provides direct evidence that endogenously produced MMP-9 has a role in regulation of tissue contraction of 3D collagen gels mediated by fibroblasts. Copyright © 2014 the American Physiological Society.

  19. Pathogenesis and Treatment of Skin Lesions Caused by Sulfur Mustard: Inflammatory Mediators and Modulators Released from Organ-Cultured Inflammatory Lesions Produced in Vivo in Rabbit Skin by Sulfur Mustard

    DTIC Science & Technology

    1987-02-20

    fibroblast growth factors . Soon, we shall be able to use such products to stimulate specific cell types. Knowledge of the mediators produced by each cell type...source of some of these enzymes. 7. Finally, we have begun an extensive investigation on chemotactic fac- tors present in SM lesions. Factors ...gamma-interferon, Interleukin 1, and epi- dermal and fibroblast growth factors . Soon we shall be able to use such products to stimulate specific

  20. Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly.

    PubMed

    Go, Dewi P; Palmer, Jason A; Mitchell, Geraldine M; Gras, Sally L; O'Connor, Andrea J

    2015-05-01

    Tissue engineering is a complex and dynamic process that requires varied biomolecular cues to promote optimal tissue growth. Consequently, the development of delivery systems capable of sequestering more than one biomolecule with controllable release profiles is a key step in the advancement of this field. This study develops multilayered polyelectrolyte films incorporating alpha-melanocyte stimulating hormone (α-MSH), an anti-inflammatory molecule, and basic fibroblast growth factor (bFGF). The layers were successfully formed on macroporous poly lactic-co-glycolic acid microspheres produced using a combined inkjet and thermally induced phase separation technique. Release profiles could be varied by altering layer properties including the number of layers and concentrations of layering molecules. α-MSH and bFGF were released in a sustained manner and the bioactivity of α-MSH was shown to be preserved using an activated macrophage cell assay in vitro. The system performance was also tested in vivo subcutaneously in rats. The multilayered microspheres reduced the inflammatory response induced by a carrageenan stimulus 6 weeks after implantation compared to the non-layered microspheres without the anti-inflammatory and growth factors, demonstrating the potential of such multilayered constructs for the controlled delivery of bioactive molecules. © 2014 Wiley Periodicals, Inc.

  1. Synergistic effects of FGF-2 and PDGF-BB on angiogenesis and muscle regeneration in rabbit hindlimb ischemia model.

    PubMed

    Li, Jie; Wei, Yuquan; Liu, Kang; Yuan, Chuang; Tang, Yajuan; Quan, Qingli; Chen, Ping; Wang, Wei; Hu, Huozhen; Yang, Li

    2010-07-01

    Combinatorial strategy has been used in therapeutic angiogenesis in animal models of peripheral arterial disease (PAD) and coronary artery disease for decades. Previous studies have shown that basic fibroblast growth factor (FGF-2) and platelet-derived growth factor BB (PDGF-BB) proteins together establish functional and stable vascular networks on mouse corneal and also in animal model of hindlimb ischemia. However, the short half life of protein by single injection is not sufficient to achieve effective dosage, repeated and prolonged injection causes systemic toxicity. Here we study the synergistic effects of FGF-2 and PDGF-BB by intramuscular injection of naked plasmid DNA on therapeutic angiogenesis in rabbit model of hindlimb ischemia. We found that transient delivery of FGF-2 and PDGF-BB naked DNA together resulted in greater increases in capillary growth, collateral formation and popliteal blood flow compared with control and single gene delivery. Our data provided novel evidence of beneficial effects of DNA-based FGF-2 and PDFG-BB on muscle repair after ischemic injury. These findings reveal an alternative therapeutic approach in the treatment of ischemic diseases and even in muscular disorders. Copyright 2010. Published by Elsevier Inc.

  2. PDGF-BB induces vascular smooth muscle cell expression of high molecular weight FGF-2, which accumulates in the nucleus.

    PubMed

    Pintucci, Giuseppe; Yu, Pey-Jen; Saponara, Fiorella; Kadian-Dodov, Daniella L; Galloway, Aubrey C; Mignatti, Paolo

    2005-08-15

    Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.

  3. Role of Stromal Paracrine Signals in Proliferative Diseases of the Aging Human Prostate

    PubMed Central

    Takahashi, Sanai; Sugimura, Yoshiki

    2018-01-01

    Androgens are essential for the development, differentiation, growth, and function of the prostate through epithelial–stromal interactions. However, androgen concentrations in the hypertrophic human prostate decrease significantly with age, suggesting an inverse correlation between androgen levels and proliferative diseases of the aging prostate. In elderly males, age- and/or androgen-related stromal remodeling is spontaneously induced, i.e., increased fibroblast and myofibroblast numbers, but decreased smooth muscle cell numbers in the prostatic stroma. These fibroblasts produce not only growth factors, cytokines, and extracellular matrix proteins, but also microRNAs as stromal paracrine signals that stimulate prostate epithelial cell proliferation. Surgical or chemical castration is the standard systemic therapy for patients with advanced prostate cancer. Androgen deprivation therapy induces temporary remission, but the majority of patients eventually progress to castration-resistant prostate cancer, which is associated with a high mortality rate. Androgen deprivation therapy-induced stromal remodeling may be involved in the development and progression of castration-resistant prostate cancer. In the tumor microenvironment, activated fibroblasts stimulating prostate cancer cell proliferation are called carcinoma-associated fibroblasts. In this review, we summarize the role of stromal paracrine signals in proliferative diseases of the aging human prostate and discuss the potential clinical applications of carcinoma-associated fibroblast-derived exosomal microRNAs as promising biomarkers. PMID:29614830

  4. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. GROWTH REGULATION IN ROUS SARCOMA VIRUS INFECTED CHICKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, G.; Bartholomew, J.A.; Blssell, M.J.

    1980-07-01

    We report here a study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in this process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. The two principal findings were (1) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts seems to have two distinct regulatory compartments (using the terminology of Brooks et al. we refer to these as 'Q' and 'A' states).more » When rendered stationary at 41.5 C by serum deprivation, normal cells enter a Q state, but cells infected with the ts-mutant occupy an A state. (2) Whereas normal cells can occupy either state depending on culture conditions, the ts-infected cells, at 41.5 C, do not seem to enter Q even though a known src gene product, a kinase, is reported to be inactive at this temperature. We discuss the possibility that viral factors other than the active src protein kinase influence growth control in infected cultures.« less

  6. Discovery of an artificial peptide agonist to the fibroblast growth factor receptor 1c/βKlotho complex from random peptide T7 phage display.

    PubMed

    Sakamoto, Kotaro; Kawata, Yayoi; Masuda, Yasushi; Umemoto, Tadashi; Ito, Takashi; Asami, Taiji; Takekawa, Shiro; Ohtaki, Tetsuya; Inooka, Hiroshi

    2016-11-04

    Fibroblast growth factor receptor-1c (FGFR1c)/βKlotho (KLB) complex is a receptor of fibroblast growth factor 21 (FGF21). Pharmacologically, FGF21 shows anti-obesity and anti-diabetic effects upon peripheral administration. Here, we report the development of an artificial peptide agonist to the FGFR1c/KLB heterodimer complex. The peptide, F91-8A07 (LPGRTCREYPDLWWVRCY), was discovered from random peptide T7 phage display and selectively bound to the FGFR1c/KLB complex, but not to FGFR1c and KLB individually. After subsequent peptide dimerization using a short polyethyleneglycol (PEG) linker, the dimeric F91-8A07 peptide showed higher potent agonist activity than that of FGF21 in cultured primary human adipocytes. Moreover, the dimeric peptide led to an expression of the early growth response protein-1 (Egr-1) mRNA in vivo, which is a target gene of FGFR1c. To the best of our knowledge, this is the first report of a FGFR1c/KLB complex-selective artificial peptide agonist. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Collaborative and Defensive Fibroblasts in Tumor Progression and Therapy Resistance.

    PubMed

    Chiavarina, Barbara; Turtoi, Andrei

    2017-01-01

    Tumor microenvironment is a complex network of epithelial cancer cells and non-transformed stromal cells. Of the many stromal cell types, fibroblasts are the most numerous ones and are traditionally viewed as supportive elements of cancer progression. Many studies show that cancer cells engage in active crosstalk with associated fibroblasts in order to obtain key resources, such as growth factors and nutrients. The facets of fibroblast "complicity to murder" in cancer are multiple. However, recent therapeutic attempts aiming at depleting fibroblasts from tumors, perturbed rather simplistic picture. Contrary to the expectations, tumors devoid of fibroblasts accelerated their progression while patients faced poorer outcomes. These studies remind us of the physiologic roles fibroblasts have in maintaining tissue homeostasis even in the presence of cancer. It is becoming increasingly clear that our research focus on advanced tumors has biased our understanding of fibroblast role in tumor biology. The numerous events where the fibroblasts protect the tissue from malignant transformation remain largely unacknowledged, as the tumors are invisible. The present review has the ambition to offer a more balanced view of fibroblasts functions in cancer progression and therapy resistance. We will address the question whether it is possible to synergize the efforts with fibroblasts as the therapeutic concept against tumor progression and therapy resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Primary mouse lung fibroblasts help macrophages to tackle Mycobacterium tuberculosis more efficiently and differentiate into myofibroblasts up on bacterial stimulation.

    PubMed

    Verma, Subash Chand; Agarwal, Pooja; Krishnan, Manju Y

    2016-03-01

    Keeping with their classical role in wound healing, fibroblasts of the lung take part in the resolution of tubercular granulomas. They are totally absent in nascent granulomas, but surround necrotizing granulomas, and are the majority of cells in healed granulomas. Lung fibroblasts may become infected with Mycobacterium tuberculosis (Mtb). Two previous studies suggested an immunomodulatory effect of fibroblasts on infected macrophages. In the present study, we looked at the role of primary mouse lung fibroblasts on naive or activated mouse bone marrow macrophages infected with Mtb and the effect of infection on fibroblast properties. We observed that with fibroblasts in the vicinity, infected naive macrophages restricted the bacterial growth, while activated macrophages turned more bactericidal with concomitant increase in nitrite production. Neutralizing IL-1α in fibroblast supernatant reduced the nitrite production by infected macrophages. Secretion of IL-6 and MCP-1 was down-regulated, while TNF-α was up-regulated in infected naive macrophages. In infected activated macrophages, the secretion of IL-6 was up-regulated, while that of MCP-1 and TNF-α was unaffected. The 'fibroblast effects' were enhanced when the fibroblasts too were infected. Mtb induced IL-1 secretion and pro-fibrotic responses by fibroblasts. Mtb-induced myofibroblast conversion was blocked by rapamycin suggesting cell signalling via mTOR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cytotoxic effects of polybasic acids, poly(alkenoic acid)s, and the monomers with various functional groups on human pulp fibroblasts.

    PubMed

    Kurata, Shigeaki; Morishita, Kumiko; Kawase, Toshio; Umemoto, Kozo

    2011-01-01

    This study evaluated the cytotoxicity of various polybasic acids, poly(alkenoic acid)s, and the monomers with various acidic functional groups such as carboxyl, phosphoryl, and sulfo group. The cell growth of fibroblasts cultivated in medium containing polybasic acids and polymers up to the concentration to 5 mmol/L was not significantly different compared with that of control without their acids. On the other hand, the cell growth fibroblasts cultivated in medium containing 1 mmol/L of the monomers with acryloyloxy and phosphoryl or carboxyl group decreased remarkably compared with that of the control and the cells were probably lifeless. Those exposed to the monomers with a ether bond and a carboxyl group or a amide bond and a sulfo group was not significantly different compared with that of control.

  10. [Effect of epidermal growth factor and testosterone on androgen receptor activation in urethral plate fibroblasts in hypospadias].

    PubMed

    Lin, Junshan; Xie, Cheng; Chen, Ruiqing; Li, Dumiao

    2016-05-01

    To investigate androgen receptor (AR) expression and the effect of epidermal growth factor (EGF) and testosterone on AR expression level.
 EGF or different concentrations of testosterone were incubated with the primary urethral plate fibroblasts from patients with hypospadias. The levels of AR expression in the fibroblasts were detected by immunocytochemical assays and graphical analysis.
 There was no significant difference in AR activation under physiological concentrations (3×10(-8) mol/L) of testosterone between the control and the distal hypospadias group (P>0.05). However, there was a significant decrease in AR activation in the proximal hypospadias group compared to that in the control group (P<0.001). Under the concentration of 3×10(-6) mol/L, the effects of testosterone on AR activation were dramatically different in the three groups (control group>distal hypospadias group>proximal hypospadias group, P<0.001). AR activation level in the group of proximal hypospadias was improved most obviously when EGF and physiological concentration of testosterone were employed in the urethral plate fibroblasts from hypospadias patients (P<0.001), and it was improved more in the distal hypospadias group than that in the control group (P=0.02).
 AR expression and activation in the urethral plate fibroblasts from hypospadias patients are abnormal. EGF can be used to improve AR activation in fibroblasts from different types of hypospadias, especially in the proximal type.

  11. The effect of myostatin silencing by lentiviral-mediated RNA interference on goat fetal fibroblasts.

    PubMed

    Lu, Jian; Wei, Caihong; Zhang, Xiaoning; Xu, Lingyang; Zhang, Shifang; Liu, Jiasen; Cao, Jiaxue; Zhao, Fuping; Zhang, Li; Li, Bichun; Du, Lixin

    2013-06-01

    Myostatin is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may promote muscle growth, we used RNA interference mediated by a lentiviral vector to knockdown myostatin in goat fetal fibroblast cells. We also investigated the expression changes in relevant myogenic regulatory factors (MRFs) and adipogenic regulatory factors in the absence of myostatin in goat fetal fibroblasts. Quantitative RT-PCR revealed that myostatin transcripts were significantly reduced by 75 % (P < 0.01). Western blot showed that myostatin protein expression was reduced by 95 % (P < 0.01). We also found that the mRNA expression of activin receptor IIB (ACVR2B) significantly increased by 350 % (P < 0.01), and p21 increased 172 % (P < 0.01). Furthermore, myostatin inhibition decreased Myf5 and increased MEF2C mRNA expression in goat fetal fibroblasts, suggesting that myostatin regulates MRFs differently in fibroblasts compared to muscle. In addition, the expression of adipocyte marker genes peroxisome proliferator-activated receptor (PPAR) γ and leptin, but not CCAAT/enhance-binding protein (C/EBP) α and C/EBPβ, were upregulated at the transcript level after myostatin silencing. These results suggest that we have generated a novel way to block myostatin in vitro, which could be used to improve livestock meat production and gene therapy of musculoskeletal diseases. This also suggests that myostatin plays a negative role in regulating the expression of adipogenesis related genes in goat fetal fibroblasts.

  12. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  13. AGE AND MULTIPLICATION OF FIBROBLASTS.

    PubMed

    Carrel, A; Ebeling, A H

    1921-11-30

    Pure cultures of fibroblasts displayed marked differences in their activity in the plasma of young, middle aged, and old chickens. The rate of cell multiplication varied in inverse ratio to the age of the animal from which the plasma was taken. There was a definite relation between the age of the animal and the amount of new tissue produced in its plasma in a given time (Text-figs. 1 to 10). The chart obtained by plotting the rate of cell proliferation in ordinates, and the age of the animal in abscissae, showed that the rate of growth decreased more quickly than the age increased (Text-fig. 12). The decrease in the rate of growth was 50 per cent during the first 3 years of life, while in the following 6 years it was only 30 per cent. When the duration of the life of the cultures in the four plasmas was compared, a curve was obtained which showed about the same characteristics (Text-fig. 11). The duration of life of the fibroblasts in vitro varied in inverse ratio to the age of the animal, and decreased more quickly than the age increased. As the differences in the amount of new tissue produced in the plasma of young, middle aged, and old chickens were large, the growth of a pure culture of fibroblasts could be employed as a reagent for detecting certain changes occurring in the plasma under the influence of age. But the method possesses the necessary accuracy only when it is used as has already been described, and by technicians thoroughly trained in the details of its application. A comparative study of the growth of fibroblasts in media containing no serum, and serum under low and high concentrations, was made in order to ascertain whether the decreasing rate of cell multiplication was due to the loss of an accelerating factor, or to the increase See PDF for Structure of an inhibiting one. In high and low concentrations of the serum of young animals, no difference in the rate of multiplication of fibroblasts was observed. This showed that the serum of an actively growing animal did not contain any accelerating agent. The same experiments were repeated with the serum of a 3 year old and a 9 year old chicken. The medium made of a high concentration of serum had a markedly depressing effect on the growth, and this effect was greater in the serum of the older animal (Text-fig. 13). The results of the experiments showed in a very definite manner that certain changes occurring in the serum during the course of life can be detected by modifications in the rate of growth of pure cultures of fibroblasts, and that these changes are characterized by the increase of an inhibiting factor, and not by the loss of an accelerating one. It appeared, therefore,that the substances which greatly accelerate the multiplication of fibroblasts and are found in the tissues do not exist in the blood serum, or are constantly shielded by more active inhibiting factors. The curve which expresses the variations of the inhibiting factor in function of the age was compared with that showing the variations of the rate of healing of a wound according to the age of the subject. For wounds of equal size, the index of cicatrization, which expresses the rate of healing, varies in inverse ratio to the age. The different values of the index of cicatrization of a wound 40 sq. cm. in area, taken from measurements made by du Noüy, were plotted in ordinates, and the age of the subject in abscissae (Text-fig. 14). The curve showed a decrease in the activity of cicatrization which resembled the decrease in the rate of growth of fibroblasts in function of the age of the animal. This suggested the existence of a relation between the factors determining both phenomena.

  14. Characterization of fibroblast-free CWR-R1ca castration-recurrent prostate cancer cell line.

    PubMed

    Shourideh, Mojgan; DePriest, Adam; Mohler, James L; Wilson, Elizabeth M; Koochekpour, Shahriar

    2016-09-01

    The previously established CWR-R1 cell line has been used as an in vitro model representing castration-recurrent prostate cancer. Microscopic observation of subconfluent cells demonstrated two distinct cellular morphologies: polygonal closely aggregated epithelial cells surrounded by bipolar fibroblastic cells with long processes. This study sought to establish and characterize a fibroblast-free derivative of the CWR-R1 cell line. The CWR-R1ca cell line was established from CWR-R1 cells by removing fibroblasts using multiple cycles of short-term trypsinization, cloning, and pooling single-cell colonies. Authentication of fibroblast-free CWR-R1ca cells was demonstrated by analyzing the expression of cytodifferentiation and prostate-associated markers, DNA and cytogenetic profiling, and growth pattern in the absence or presence of androgen. CWR-R1ca is an androgen-sensitive cell line that expresses the androgen receptor (AR) and its splice variant 7 and the luminal epithelia markers, CK-8, CK-18, and c-Met. CWR-R1fb fibroblasts isolated from CWR-R1 cells express AR, hepatocyte growth factor-α, and mouse β-actin but not AR-V7 or epithelial markers. Cytogenetic analysis of CWR-R1ca cells revealed a hyperdiploid male with numerical gains in chromosomes 1, 7, 8, 10, 11, and 12, deletion of one chromosome 2 allele, structural abnormalities that include der(1)t(1:4), der(4)t(2:4), der(10)t(4:10), and an unbalanced reciprocal translocation between chromosome 6 and 14. DNA-profiling revealed that CWR-R1ca cells had significant short-tandem repeat marker homology with CWR22Pc and CWR22Rv1 cell lines, which indicated lineage derivation from CWR22 prostate cancer xenografts. CWR-R1ca cells were responsive to the growth stimulatory effects of dihydrotestosterone (DHT) in the femtomolar range. This study establishes CWR-R1ca cells as a fibroblast-free derivative of the castration-recurrent CWR-R1 cell line. Prostate 76:1067-1077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  16. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    PubMed

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  17. The effect of growth hormone on fibroblast proliferation and keratinocyte migration.

    PubMed

    Lee, Sang Woo; Kim, Suk Hwa; Kim, Ji Youn; Lee, Yoonho

    2010-04-01

    The beneficial effects of growth hormones (GHs) on wound healing have been reported. Although the mechanism of how GH promotes wound healing is unclear, there are reports showing that the principal factor lies in the GH-stimulated production of IGF-1 in topical wounds. In this study, a human primary cell model was devised to examine how the topical application of GHs affects fibroblast proliferation and keratinocyte migration, which play fundamental roles in wound healing. The fibroblasts were cultured in media with different concentrations of GH. The amount of fibroblast proliferation was assessed using a tetrazolium-based colourimetric assay (MTT assay). The amount of newly formed IGF-I mRNA was measured by reverse transcription and polymerase chain reaction (RT-PCR). Keratinocyte migration was compared using a migration assay. Fibroblast proliferation was significantly higher in the experimental group than in the control group (the absorbance of 2.5IU L(-1) GH applied group: 0.3954+/-0.056, control group: 0.2943+/-0.0554, P<0.05), and the promotion of IGF-I formation by fibroblasts was observed. There was more keratinocyte migration in the experimental group than in the control group (the remaining gap in the 2.5IU L(-1) GH applied group after keratinocyte migration: 46.57+/-2.22% of the primary gap, control group: 75.14+/-3.44%, P<0.05). GH enhances the local formation of IGF-1, which activates fibroblast proliferation and keratinocyte migration. These results highlight the potential of the topical application of GHs in the treatment of wounds. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.

  18. Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo.

    PubMed

    Taguchi, Ayumi; Kawana, Kei; Tomio, Kensuke; Yamashita, Aki; Isobe, Yosuke; Nagasaka, Kazunori; Koga, Kaori; Inoue, Tomoko; Nishida, Haruka; Kojima, Satoko; Adachi, Katsuyuki; Matsumoto, Yoko; Arimoto, Takahide; Wada-Hiraike, Osamu; Oda, Katsutoshi; Kang, Jing X; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki

    2014-01-01

    Cancer associated fibroblasts (CAFs) are responsible for tumor growth, angiogenesis, invasion, and metastasis. Matrix metalloproteinase (MMP)-9 secreted from cancer stroma populated by CAFs is a prerequisite for cancer angiogenesis and metastasis. Omega-3 polyunsaturated fatty acids (omega-3 PUFA) have been reported to have anti-tumor effects on diverse types of malignancies. Fat-1 mice, which can convert omega-6 to omega-3 PUFA independent of diet, are useful to investigate the functions of endogenous omega-3 PUFA. To examine the effect of omega-3 PUFA on tumorigenesis, TC-1 cells, a murine epithelial cell line immortalized by human papillomavirus (HPV) oncogenes, were injected subcutaneously into fat-1 or wild type mice. Tumor growth and angiogenesis of the TC-1 tumor were significantly suppressed in fat-1 compared to wild type mice. cDNA microarray of the tumors derived from fat-1 and wild type mice revealed that MMP-9 is downregulated in fat-1 mice. Immunohistochemical study demonstrated immunoreactivity for MMP-9 in the tumor stromal fibroblasts was diffusely positive in wild type whereas focal in fat-1 mice. MMP-9 was expressed in primary cultured fibroblasts isolated from fat-1 and wild type mice but was not expressed in TC-1 cells. Co-culture of fibroblasts with TC-1 cells enhanced the expression and the proteinase activity of MMP-9, although the protease activity of MMP-9 in fat-1-derived fibroblasts was lower than that in wild type fibroblasts. Our data suggests that omega-3 PUFAs suppress MMP-9 induction and tumor angiogenesis. These findings may provide insight into mechanisms by which omega-3 PUFAs exert anti-tumor effects by modulating tumor microenvironment.

  19. Involvement of H- and N-Ras isoforms in transforming growth factor-{beta}1-induced proliferation and in collagen and fibronectin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Instituto 'Reina Sofia' de Investigacion Nefrologica, Universidad de Salamanca, 37007 Salamanca

    2006-07-01

    Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms andmore » from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.« less

  20. Factor XIIIa is expressed by fibroblasts in fibrovascular tumors.

    PubMed

    Nemeth, A J; Penneys, N S

    1989-10-01

    Factor XIIIa (FXIIIa), a blood and intracellularly produced coagulation factor, has been found in a variety of cell types including fibroblast-like mesenchymal cells, and has been shown to stimulate the proliferation of fibroblasts and some neoplastic cells in vitro. We have already shown that the dendritic fibroblasts composing the fibrous papule contain this factor. We hypothesized that histopathologically similar fibrovascular tumors may also express FXIIIa and, in this report, show that the large stellate fibroblasts found in acquired digital fibrokeratomas, angiofibromas (adenoma sebaceum of Pringle), and oral fibroma (oral fibrous hyperplasia) also express FXIIIa. We postulate that FXIIIa, possibly acting as a growth factor, may be a common denominator in the pathogenesis of these tumors. Another possibility is that these tumors may be the consequence of a local overproduction of FXIIIa in response to an, as yet, unidentified stimulus.

  1. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    PubMed

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  2. Prevention of skin flap necrosis by use of adipose-derived stromal cells with light-emitting diode phototherapy.

    PubMed

    Park, In-Su; Mondal, Arindam; Chung, Phil-Sang; Ahn, Jin Chul

    2015-03-01

    The aim of this study was to investigate the effects of low-level light therapy (LLLT) on transplanted human adipose-derived mesenchymal stromal cells (ASCs) in the skin flap of mice. LLLT, ASC transplantation and ASC transplantation with LLLT (ASC + LLLT) were applied to the skin flap. Immunostaining and Western blot analysis were performed to evaluate cell survival and differentiation and secretion of vascular endothelial growth factor and basic fibroblast growth factor by the ASCs. Vascular regeneration was assessed by means of immunostaining in addition to hematoxylin and eosin staining. In the ASC + LLLT group, the survival of ASCs was increased as the result of the decreased apoptosis of ASCs. The secretion of growth factors was higher in this group as compared with ASCs alone. ASCs contributed to tissue regeneration through vascular cell differentiation and secretion of angiogenic growth factors. The ASC + LLLT group displayed improved treatment efficacy including neovascularization and tissue regeneration compared with ASCs alone. Transplanting ASCs to ischemic skin flaps improved therapeutic efficacy for ischemia treatment as the result of enhanced cell survival and paracrine effects. These data suggest that LLLT is an effective biostimulator of ASCs in vascular regeneration, which enhances the survival of ASCs and stimulates the secretion of growth factors in skin flaps. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Conditioned medium of adipose-derived stromal cell culture in three-dimensional bioreactors for enhanced wound healing.

    PubMed

    Kwon, Sun Hyun; Bhang, Suk Ho; Jang, Hyeon-Ki; Rhim, Taiyoun; Kim, Byung-Soo

    2015-03-01

    It was previously shown that human adipose-derived stromal cell (hADSC)-conditioned medium (CM) promotes wound healing. An essential part of the wound healing process is neovascularization in the wound bed. We hypothesized that CM prepared from hADSCs cultured as spheroids in three-dimensional suspension bioreactors (spheroid CM) would contain much higher concentrations of angiogenic growth factors secreted by hADSCs, induce a higher extent of neovascularization in the wound bed, and improve wound healing as compared with CM prepared by conventional monolayer culture (monolayer CM). The concentrations of angiogenic growth factors (i.e., vascular endothelial growth factor, basic fibroblast growth factor, and hepatocyte growth factor) in spheroid CM were 20- to 145-fold higher than those in monolayer CM. Either fresh medium, monolayer CM, or spheroid CM was administered to full-thickness wounds created on the dorsal aspects of athymic mice. The monolayer CM promoted wound healing as compared with fresh medium or no treatment. Importantly, wound closure was faster, and dermal and epidermal regeneration was improved in the spheroid CM-treated mice compared with that in the monolayer CM-treated mice. The improved wound healing by spheroid CM may be attributed, at least in part, to enhanced neovascularization in the wound beds. The spheroid-based CM approach showed potential as a therapy for skin wound repair. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Vasculogenic and Angiogenic Pathways in Moyamoya Disease.

    PubMed

    Bedini, Gloria; Blecharz, Kinga G; Nava, Sara; Vajkoczy, Peter; Alessandri, Giulio; Ranieri, Michela; Acerbi, Francesco; Ferroli, Paolo; Riva, Daria; Esposito, Silvia; Pantaleoni, Chiara; Nardocci, Nardo; Zibordi, Federica; Ciceri, Elisa; Parati, Eugenio A; Bersano, Anna

    2016-01-01

    Moyamoya disease (MMD) is a slowly progressing steno-occlusive cerebrovascular disease. The typical moyamoya vessels, which originate from an initial stenosis of the internal carotid, highlight that increased and/or abnormal angiogenic, vasculogenic and arteriogenic processes are involved in the disease pathophysiology. Herein, we summarize the current knowledge on the most important signaling pathways involved in MMD vessel formation, particularly focusing on the expression of growth factors and function of endothelial progenitor cells (EPCs). Higher plasma concentrations of vascular endothelial growth factor, matrix metalloproteinase, hepatocyte growth factor, and interleukin-1β were reported in MMD. A specific higher level of basic fibroblast growth factor was also found in the cerebrospinal fluid of these patients. Finally, the number and the functionality of EPCs were found to be increased. In spite of the available data, the approaches and findings reported so far do not give an evident correlation between the expression levels of the aforementioned growth factors and MMD severity. Furthermore, the controversial results provided by studies on EPCs, do not permit to understand the true involvement of these cells in MMD pathophysiology. Further studies should thus be implemented to extend our knowledge on processes regulating both the arterial stenosis and the excessive formation of collateral vessels. Moreover, we suggest advances of integrated approaches and functional assays to correlate biological and clinical data, arguing for the development of new therapeutic applications for MMD.

  5. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  6. Fibroblast Growth Factor 10-Fibroblast Growth Factor Receptor 2b Mediated Signaling Is Not Required for Adult Glandular Stomach Homeostasis

    PubMed Central

    Sala, Frederic G.; Ford, Henri R.; Bellusci, Saverio; Grikscheit, Tracy C.

    2012-01-01

    The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10) and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b), in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22) except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis. PMID:23133671

  7. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts.

    PubMed

    Romero, A; Cáceres, M; Arancibia, R; Silva, D; Couve, E; Martínez, C; Martínez, J; Smith, P C

    2015-06-01

    Granulation tissue remodeling and myofibroblastic differentiation are critically important events during wound healing. Tobacco smoking has a detrimental effect in gingival tissue repair. However, studies evaluating the effects of cigarette smoke on these events are lacking. We used gingival fibroblasts cultured within free-floating and restrained collagen gels to simulate the initial and final steps of the granulation tissue phase during tissue repair. Collagen gel contraction was stimulated with serum or transforming growth factor-β1. Cigarette smoke condensate (CSC) was used to evaluate the effects of tobacco smoke on gel contraction. Protein levels of alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor were evaluated through Western blot. Prostaglandin E(2) (PGE(2)) levels were determined through ELISA. Actin organization was evaluated through confocal microscopy. CSC reduced collagen gel contraction induced by serum and transforming growth factor-β1 in restrained collagen gels. CSC also altered the development of actin stress fibers in fibroblasts cultured within restrained collagen gels. PGE(2) levels were strongly diminished by CSC in three-dimensional cell cultures. However, other proteins involved in granulation tissue remodeling and myofibroblastic differentiation such as alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor, were unmodified by CSC. CSC may alter the capacity of gingival fibroblasts to remodel and contract a collagen matrix. Inhibition of PGE(2) production and alterations of actin stress fibers in these cells may impair proper tissue maturation during wound healing in smokers. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping.

    PubMed

    Alcaide, María; Papaioannou, Stavros; Taylor, Andrew; Fekete, Ladislav; Gurevich, Leonid; Zachar, Vladimir; Pennisi, Cristian Pablo

    2016-05-01

    Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.

  9. Plasticity of the Muscle Stem Cell Microenvironment

    PubMed Central

    Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph

    2018-01-01

    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes. PMID:29204832

  10. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.

    PubMed

    Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris

    2015-06-01

    Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Regeneratory characteristics of complex extract and isolated diterpene alkaloids of Aconitum baikalense.

    PubMed

    Nesterova, Yu V; Povetieva, T N; Suslov, N I; Zhdanov, V V; Hrichkova, T Yu; Udut, E V; Chaykovskiy, A S; Gaydamovich, N N; Andreeva, T I; Dygai, A M

    2012-02-01

    The effects of complex extract from Aconitum baikalense on reparative regeneration of a plane dorsal skin wound were studied. Treatment with Aconitum baikalense tincture stimulated reparation and skin regeneration. The effects of the Aconitum baikalense alkaloids on functional activity of fibroblast precursors were studied in vitro by cultural methods. Mesaconitine, hypaconitine, songorine, napelline, and 12-epinapelline N-oxide significantly stimulated the growth of colonies from fibroblast precursors. This indicated direct stimulation of fibroblasts by aconite alkaloids, which could be a mechanism of reparative activity of the complex extract.

  12. GROWTH REGULATION IN RSV INFECTED CHECKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, G.; Bartholomew, J.C.; Bissell, M.J.

    1980-03-01

    The relationship between growth regulation and cell transformation has been studied in many cultured cell lines transformed by a range of oncogenic agents. The main conclusion derived from these investigations is that the nature of the growth regulatory lesion in transformed cells is a function of the agent used to induce transformation. For example, when 3T3 fibroblasts are rendered stationary by serum deprivation, normal cells accumulate in G{sub 1} but SV40 transformed cells are arrested at all stages of the cell cycle. In contrast, 3T3 cells transformed with Rous sarcoma virus B77, accumulate in G{sub 1} upon serum deprivation. Thismore » is also true when mouse sarcoma virus (MSV) is used as the transforming agent. MSV-transformed cells accumulate in G{sub 1}, just as do normal cells. In this letter we report a detailed study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in the process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. Two principal findings have emerged: (a) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts has two distinct compartments, (for simplicity referred to as G{sub 1} and G{sub 0} states), (b) when rendered stationary at 41.5{sup o} by serum deprivation, normal cells enter a G{sub 0}-like state, but cells infected with the ts-mutant occupy a G{sub 1} state, even though a known src gene product, a kinase, should be inactive at this temperature. The possibility is discussed that viral factors other than the active src protein kinase influence growth control.« less

  13. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression

    PubMed Central

    Audette, Dylan S.; Anand, Deepti; So, Tammy; Rubenstein, Troy B.; Lachke, Salil A.; Lovicu, Frank J.; Duncan, Melinda K.

    2016-01-01

    Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. PMID:26657765

  14. Identifying the culprit lesion in tumor induced hypophosphatemia, the solution of a clinical enigma.

    PubMed

    Slot-Steenks, Mathilde M Bruins; Hamdy, Neveen A T; van de Sande, Michiel A J; Vriens, Dennis; Cleven, Arjen H G; Appelman-Dijkstra, Natasha M

    2016-12-01

    Tumor-induced osteomalacia is a rare acquired metabolic bone disorder characterized by isolated renal phosphate wasting due to abnormal tumor production of fibroblast growth factor 23. We report the case of a 59 year old woman referred to our department with a long history of progressive diffuse muscle weakness and pain, generalized bone pains and multiple insufficiency fractures of heels, ankles and hips due to a hypophosphatemic osteomalacia. A fibroblast growth factor 23-producing phosphaturic mesenchymal tumor localized in the left quadriceps femoris muscle was identified 7 years after onset of symptoms. Excision of the tumor resulted in normalization of serum phosphate and fibroblast growth factor 23 levels and in complete resolution of the clinical picture with disappearance of all musculoskeletal symptoms. This case illustrates the diagnostic difficulties in establishing a diagnosis tumor-induced osteomalacia and in identifying the responsible tumor. Our case underscores the clinical need to investigate all patients with persistent musculoskeletal symptoms for hypophosphatemia. A systematic approach is of pivotal importance because early recognition and treatment of the metabolic abnormality can prevent deleterious effects of osteomalacia on the skeleton.

  15. egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans

    PubMed Central

    Burdine, Rebecca D.; Chen, Estella B.; Kwok, Shing F.; Stern, Michael J.

    1997-01-01

    The proper guidance of the Caenorhabditis elegans hermaphrodite sex myoblasts (SMs) requires the genes egl-15 and egl-17. egl-15 has been shown to encode the C. elegans orthologue of the fibroblast growth factor receptor (FGFR). Here we clone egl-17 and show it to be a member of the fibroblast growth factor (FGF) family, one of the first functional invertebrate FGFs known. egl-17 shares homology with other FGF members, conserving the key residues required to form the distinctive tertiary structure common to FGFs. Genetic and molecular evidence demonstrates that the SM migration defect seen in egl-17 mutant animals represents complete loss of egl-17 function. While mutations in egl-17 affect only SM migration, mutations in egl-15 can result in larval arrest, scrawny body morphology, and the ability to suppress mutations in clr-1. We propose that EGL-17 (FGF) acts as a ligand for EGL-15 (FGFR) specifically during SM migration and that another ligand(s) activates EGL-15 for its other functions. PMID:9122212

  16. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression.

    PubMed

    Audette, Dylan S; Anand, Deepti; So, Tammy; Rubenstein, Troy B; Lachke, Salil A; Lovicu, Frank J; Duncan, Melinda K

    2016-01-15

    Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. © 2016. Published by The Company of Biologists Ltd.

  17. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy

    PubMed Central

    Tal, Reshef; Segars, James H.

    2014-01-01

    Background It is well established that tumors are dependent on angiogenesis for their growth and survival. Although uterine fibroids are known to be benign tumors with reduced vascularization, recent work demonstrates that the vasculature of fibroids is grossly and microscopically abnormal. Accumulating evidence suggests that angiogenic growth factor dysregulation may be implicated in these vascular and other features of fibroid pathophysiology. Methods Literature searches were performed in PubMed and Google Scholar for articles with content related to angiogenic growth factors and myometrium/leiomyoma. The findings are hereby reviewed and discussed. Results Multiple growth factors involved in angiogenesis are differentially expressed in leiomyoma compared with myometrium. These include epidermal growth factor (EGF), heparin-binding-EGF, vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, transforming growth factor-β and adrenomedullin. An important paradox is that although leiomyoma tissues are hypoxic, leiomyoma feature down-regulation of key molecular regulators of the hypoxia response. Furthermore, the hypoxic milieu of leiomyoma may contribute to fibroid development and growth. Notably, common treatments for fibroids such as GnRH agonists and uterine artery embolization (UAE) are shown to work at least partly via anti-angiogenic mechanisms. Conclusions Angiogenic growth factors play an important role in mechanisms of fibroid pathophysiology, including abnormal vasculature and fibroid growth and survival. Moreover, the fibroid's abnormal vasculature together with its aberrant hypoxic and angiogenic response may make it especially vulnerable to disruption of its vascular supply, a feature which could be exploited for treatment. Further experimental studies are required in order to gain a better understanding of the growth factors that are involved in normal and pathological myometrial angiogenesis, and to assess the potential of anti-angiogenic treatment strategies for uterine fibroids. PMID:24077979

  18. Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery.

    PubMed

    Takeuchi, Kimio; Nakazawa, Mitsuru; Ebina, Yuichi; Sato, Kota; Metoki, Tomomi; Miyagawa, Yasuhiro; Ito, Tadashi

    2010-11-01

    Trehalose is a disaccharide which plays an important role in preserving cells from completely dehydrated circumstances. In this study, we investigated effects of trehalose on proliferative activity of fibroblasts and epithelial cells both in vitro and in vivo. As in vitro assessment, normal human dermal fibroblasts and normal human epidermal keratinocytes were cultured in media containing various concentrations of trehalose. Growth activities of cells were evaluated with MTT assay and diff-quick™ staining. Expressions of vimentin and α smooth muscle actin (α-SMA) changed by trehalose were semiquantitatively measured by Western blot. As an in vivo study, 5% or 10% trehalose was topically instilled onto rabbit eyes after simple conjunctival incision or trabeculectomy. Condition of the surgical wound was evaluated by morphologically and immunohistochemically using isolectin B4 and antibodies specific for vimentin and α-SMA. Intraocular pressures (IOPs) after trabeculectomy were compared between eyes treated with trehalose and 0.04% mitomycin C (MMC). Results obtained by in vitro experiments showed that growth activities of cultured fibroblasts and keratinocytes were inhibited by trehalose in a dose-dependent manner. Fibroblasts were strongly inhibited by trehalose concentrations ≧ 5% of trehalose, whereas keratinocytes were less inhibited compared to fibroblasts. Expressions of vimentin and α-SMA were reduced by trehalose. With in vivo experiments, postoperative application of trehalose resulted in less firm adhesion between conjunctiva and sclera compared to controls. Immunohistochemical studies showed reduced staining of isolectin B4, vimentin and α-SMA in conjunctival wounds treated by topical trehalose. Also, after trabeculectomy, IOP remained in a low range during instillation of topical trehalose solution. We concluded that trehalose has inhibitory effects on proliferation of fibroblasts and vascular tissues, partially due to inhibition of transformation of fibroblasts into myofibroblasts in wound tissues. The present results imply that trehalose can be a potential agent for preventing postoperative fibrous scar formation after ocular surgery such as glaucoma filtration surgery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD.

    PubMed

    Dong, Ying; Li, Ping; Chen, Chong-bo; Wang, Zhi-hui; Ma, Ping; Chen, Guo-Qiang

    2010-12-01

    Polyhydroxyalkanoates (PHA), a family of biopolyesters, have been studied as tissue engineering biomaterials due to their adjustable mechanical properties, biodegradability and tissue compatibility. Amphiphilic PHA granule binding protein PhaP has been shown to be able to bind to hydrophobic surfaces of polymers, especially PHA, via strong hydrophobic interaction. Genes of PhaP and RGD peptides, which are a cell adhesion motif recognized by many cell surface receptors, were successfully expressed and obtained as a pure fusion protein PhaP-RGD in Escherichia coli DH5α. When films of poly(3-hydroxybutyrate-co-3-hydroxy- hexanoate) (PHBHHx), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) were coated with PhaP-RGD, their surface hydrophilicities were all increased compared with their corresponding naked (non-coated) films, respectively. Among the three biopolyesters, PHBHHx demonstrated the strongest affinity to PhaP. In vitro study showed that mouse fibroblasts L929 and mouse embryonic fibroblasts NIH/3T3 attached better and grew faster on all three PhaP-RGD coated films compared with their related behaviors on PhaP coated and non-coated films, respectively. Both fibroblasts attached and grew very well on PhaP-RGD coated PHBHHx, PHBV and PLA, even in their serum-free medium, while the non-coated and PhaP coated biopolyesters poorly supported the cell growth if the two fibroblasts were incubated in their serum free medium. These results indicated that PhaP-RGD could be used as a coating material to improve cell growth on hydrophobic biopolyesters for implant tissue engineering purposes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    PubMed

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  1. Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts.

    PubMed

    Yu, Shengqiang; Yeh, Chiuan-Ren; Niu, Yuanjie; Chang, Hong-Chiang; Tsai, Yu-Chieh; Moses, Harold L; Shyr, Chih-Rong; Chang, Chawnshang; Yeh, Shuyuan

    2012-03-01

    Androgens and the androgen receptor (AR) play important roles in the development of male urogenital organs. We previously found that mice with total AR knockout (ARKO) and epithelial ARKO failed to develop normal prostate with loss of differentiation. We have recently knocked out AR gene in smooth muscle cells and found the reduced luminal infolding and IGF-1 production in the mouse prostate. However, AR roles of stromal fibroblasts in prostate development remain unclear. To further probe the stromal fibroblast AR roles in prostate development, we generated tissue-selective knockout mice with the AR gene deleted in stromal fibroblasts (FSP-ARKO). We also used primary culture stromal cells to confirm the in vivo data and investigate mechanisms related to prostate development. The results showed cellular alterations in the FSP-ARKO mouse prostate with decreased epithelial proliferation, increased apoptosis, and decreased collagen composition. Further mechanistic studies demonstrated that FSP-ARKO mice have defects in the expression of prostate stromal growth factors. To further confirm these in vivo findings, we prepared primary cultured mouse prostate stromal cells and found knocking down the stromal AR could result in growth retardation of prostate stromal cells and co-cultured prostate epithelial cells, as well as decrease of some stromal growth factors. Our FSP-ARKO mice not only provide the first in vivo evidence in Cre-loxP knockout system for the requirement of stromal fibroblast AR to maintain the normal development of the prostate, but may also suggest the selective knockdown of stromal AR might become a potential therapeutic approach to battle prostate hyperplasia and cancer. Copyright © 2011 Wiley Periodicals, Inc.

  2. A modified collagen gel dressing promotes angiogenesis in a preclinical swine model of chronic ischemic wounds.

    PubMed

    Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K

    2014-01-01

    We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full-thickness excisional wounds were established in the center of bipedicle ischemic skin flaps on the backs of animals. Ischemia was verified by laser Doppler imaging, and MCG was applied to the test group of wounds. Seven days post wounding, macrophage recruitment to the wound was significantly higher in MCG-treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine interleukin (IL)-10 and of fibroblast growth factor-basic (β-FGF). An increased expression of CCR2, an M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of transforming growth factor-β, vascular endothelial growth factor, von Willebrand's factor, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I : III deposition. Taken together, MCG helped mount a more robust inflammatory response that resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome, and postwound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds. © 2014 by the Wound Healing Society.

  3. Fibroblast growth factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion.

    PubMed

    Timmer, Marco; Cesnulevicius, Konstantin; Winkler, Christian; Kolb, Julia; Lipokatic-Takacs, Esther; Jungnickel, Julia; Grothe, Claudia

    2007-01-17

    Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.

  4. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    PubMed

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts.

  5. Polymorphisms in the FGF2 gene and risk of serous ovarian cancer: results from the Ovarian Cancer Association Consortium

    PubMed Central

    Johnatty, Sharon E.; Beesley, Jonathan; Chen, Xiaoqing; Spurdle, Amanda B.; deFazio, Anna; Webb, Penelope M; Goode, Ellen L.; Rider, David N.; Vierkant, Robert A.; Anderson, Stephanie; Wu, Anna H.; Pike, Malcolm; Van Den Berg, David; Moysich, Kirsten; Ness, Roberta; Doherty, Jennifer; Rossing, Mary-Anne; Pearce, Celeste Leigh; Chenevix-Trench, Georgia

    2009-01-01

    Fibroblast growth factor (FGF)-2 (basic) is a potent angiogenic molecule involved in tumour progression, and is one of several growth factors with a central role in ovarian carcinogenesis. We hypothesised that common single nucleotide polymorphisms (SNPs) in the FGF2 gene may alter angiogenic potential and thereby susceptibility to ovarian cancer. We analysed 25 FGF2 tgSNPs using five independent study populations from the United States and Australia. Analysis was restricted to non-Hispanic White women with serous ovarian carcinoma (1269 cases and 2829 controls). There were no statistically significant associations between any FGF2 SNPs and ovarian cancer risk. There were two nominally statistically significant associations between heterozygosity for two FGF2 SNPs (rs308379 and rs308447; p<0.05) and serous ovarian cancer risk in the combined dataset, but rare homozygous estimates did not achieve statistical significance, nor were they consistent with the log additive model of inheritance. Overall genetic variation in FGF2 does not appear to play a role in susceptibility to ovarian cancer. PMID:19456219

  6. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.

    PubMed

    Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A

    2014-01-01

    Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.

  7. Suppression of Angiogenesis and Therapy of Human Colon Cancer Liver Metastasis by Systemic Administration of Interferon-α1

    PubMed Central

    Ozawa, Shutaro; Shinohara, Hisashi; Kanayama, Hiro-omi; Bruns, Christiane J; Bucana, Corazon D; Ellis, Lee M; Davis, Darren W; Fidler, Isaiah J

    2001-01-01

    Abstract The purpose of this study was to determine whether systemic administration of interferon-alpha (IFN-α) can inhibit liver metastasis produced in nude mice by human colon cancer cells. KM12L4 (IFN-α-sensitive) or KM12L4 IFNR (IFN-α-resistant) cells were injected into the spleen of nude mice. Seven days later, the mice were treated with subcutaneous (s.c.) injections of IFN-α (70,000 units/week) at different dosing schedules (1, 2, or 7 times/week). Significant inhibition of tumor growth, vascularization and expression of basic fibroblast growth factor (bFGF) or matrix metalloproteinase-9 (MMP-9) mRNA and protein occurred in mice given daily injections of IFN-α. Kinetic analysis of therapy showed that daily s.c. administrations of 10,000 units of IFN-α induced apoptosis in liver metastasis-associated endothelial cells, followed by inhibition of tumor cell division and apoptosis of tumor cells. These data suggest that the antiangiogenic activity of IFN-α-2a depends on frequent administration of the optimal biologic dose. PMID:11420751

  8. Therapeutic Angiogenesis via Solar Cell-Facilitated Electrical Stimulation.

    PubMed

    Jeong, Gun-Jae; Oh, Jin Young; Kim, Yeon-Ju; Bhang, Suk Ho; Jang, Hyeon-Ki; Han, Jin; Yoon, Jeong-Kee; Kwon, Sang-Mo; Lee, Tae Il; Kim, Byung-Soo

    2017-11-08

    Cell therapy has been suggested as a treatment modality for ischemic diseases, but the poor survival and engraftment of implanted cells limit its therapeutic efficacy. To overcome such limitation, we used electrical stimulation (ES) derived from a wearable solar cell for inducing angiogenesis in ischemic tissue. ES enhanced the secretion of angiogenic growth factors and the migration of mesenchymal stem cells (MSCs), myoblasts, endothelial progenitor cells, and endothelial cells in vitro. In a mouse ischemic hindlimb model, ES generated by a solar cell and applied to the ischemic region promoted migration of MSCs toward the ischemic site and upregulated expression of angiogenic paracrine factors (vascular endothelial, basic fibroblast, and hepatocyte growth factors; and stromal cell-derived factor-1α). Importantly, solar cell-generated ES promoted the formation of capillaries and arterioles at the ischemic region, attenuated muscle necrosis and fibrosis, and eventually prevented loss of the ischemic limb. Solar cell ES therapy showed higher angiogenic efficacy than conventional MSC therapy. This study shows the feasibility of using solar cell ES as a novel treatment for therapeutic angiogenesis.

  9. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Dubin, Paul L.; Kaltashov, Igor A.

    2017-04-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions.

  10. Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor.

    PubMed

    Li, Shizhong; Bock, Elisabeth; Berezin, Vladimir

    2010-05-26

    Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential.

  11. Targeting fibroblast growth factor pathways in endometrial cancer.

    PubMed

    Winterhoff, Boris; Konecny, Gottfried E

    Novel treatments that improve outcomes for patients with recurrent or metastatic endometrial cancer (EC) remain an unmet need. Aberrant signaling by fibroblast growth factors (FGFs) and FGF receptors (FGFRs) has been implicated in several human cancers. Activating mutations in FGFR2 have been found in up to 16% of ECs, suggesting an opportunity for targeted therapy. This review summarizes the role of the FGF pathway in angiogenesis and EC, and provides an overview of FGFR-targeted therapies under clinical development for the treatment of EC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. [Fibroblast growth factors and their effects in pancreas organogenesis].

    PubMed

    Gnatenko, D A; Kopantzev, E P; Sverdlov, E D

    2017-05-01

    Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.

  13. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia.

    PubMed

    Cho, Jay Y; Guo, Changsheng; Torello, Monica; Lunstrum, Gregory P; Iwata, Tomoko; Deng, Chuxia; Horton, William A

    2004-01-13

    Mutations of fibroblast growth factor receptor 3 (FGFR3) are responsible for achondroplasia (ACH) and related dwarfing conditions in humans. The pathogenesis involves constitutive activation of FGFR3, which inhibits proliferation and differentiation of growth plate chondrocytes. Here we report that activating mutations in FGFR3 increase the stability of the receptor. Our results suggest that the mutations disrupt c-Cbl-mediated ubiquitination that serves as a targeting signal for lysosomal degradation and termination of receptor signaling. The defect allows diversion of actively signaling receptors from lysosomes to a recycling pathway where their survival is prolonged, and, as a result, their signaling capacity is increased. The lysosomal targeting defect is additive to other mechanisms proposed to explain the pathogenesis of ACH.

  14. Prosurvival Factors Improve Functional Engraftment of Myogenically Converted Dermal Cells into Dystrophic Skeletal Muscle

    PubMed Central

    Muir, Lindsey A.; Murry, Charles E.

    2016-01-01

    In Duchenne muscular dystrophy (DMD) and other muscle wasting disorders, cell therapies are a promising route for promoting muscle regeneration by supplying a functional copy of the missing dystrophin gene and contributing new muscle fibers. The clinical application of cell-based therapies is resource intensive, and it will therefore be necessary to address key limitations that reduce cell engraftment into muscle tissue. A pressing issue is poor donor cell survival following transplantation, which in preclinical studies limits the ability to effectively test the impact of cell-based therapy on whole muscle function. We, therefore, sought to improve engraftment and the functional impact of in vivo myogenically converted dermal fibroblasts (dFbs) using a prosurvival cocktail (PSC) that includes heat shock followed by treatment with insulin-like growth factor-1, a caspase inhibitor, a Bcl-XL peptide, a KATP channel opener, basic fibroblast growth factor, Matrigel, and cyclosporine A. Advantages of dFbs include compatibility with the autologous setting, ease of isolation, and greater proliferative potential than DMD satellite cells. dFbs expressed tamoxifen-inducible MyoD and carried a mini-dystrophin gene driven by a muscle-specific promoter. After transplantation into muscles of mdx mice, a 70% reduction in donor cells was observed by day 5, and a 94% reduction by day 28. However, treatment with PSC gave a nearly three-fold increase in donor cells in early engraftment, and greatly increased the number of donor-contributed muscle fibers and total engrafted area in transplanted muscles. Furthermore, dystrophic muscles that received dFbs with PSC displayed reduced injury with eccentric contractions and an increase in maximum isometric force. Thus, enhancing survival of myogenic cells increases engraftment and improves structure and function of dystrophic muscle. PMID:27503462

  15. Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression.

    PubMed

    Waibel, Jill S; Mi, Qing-Sheng; Ozog, David; Qu, Le; Zhou, Li; Rudnick, Ashley; Al-Niaimi, Firas; Woodward, Julie; Campos, Valerie; Mordon, Serge

    2016-03-01

    Laser-assisted drug delivery is an emerging technology to achieve greater penetration by existing topical medications to reach desired targets in the tissue. The objective of this research was to study whether laser-assisted delivery of Vitamin C, E, and Ferulic immediately postoperatively of fractional ablative laser could improve wound healing. Secondary objectives were to evaluate the potential molecular markers involved in this wound-healing process. A double blinded, prospective, single center, randomized split face trial of Vitamin C, E, and Ferulic topical formula #740019 to decrease postoperative recovery time in fractional ablative laser resurfacing for photo damage. Fifteen healthy men and women of ages 30-55 years were treated with the Vitamin C, E, and Ferulic acid serum to one side of face and vehicle to the other side of face, within 2 minutes immediately after fractional ablative CO2 laser surgery and daily during the healing process. Patients were evaluated daily on days 1-7 using photographs, patient questionnaires, and molecular evaluation. Clinically, postoperative Vitamin C, E, and Ferulic delivery resulted in decreased edema versus vehicle on postoperative day 7 and decreased erythema versus vehicle on postoperative days 3 and 5. Molecularly, the expression of basic fibroblast growth factor (bFGF) was significantly increased at day 5 on the lesion treated with Vitamin C, E, and Ferulic acid serum compared to vehicle control on the other side. This is first study to show that Vitamin C, E, and Ferulic acid correlate with more rapid wound healing post-fractional ablative laser. Elevated bFGF could be involved in the Vitamin C, E, and Ferulic acid-induced rapid wound healing. © 2015 Wiley Periodicals, Inc.

  16. Enhancement of scleral macromolecular permeability with prostaglandins.

    PubMed Central

    Weinreb, R N

    2001-01-01

    PURPOSE: It is proposed that the sclera is a metabolically active and pharmacologically responsive tissue. These studies were undertaken to determine whether prostaglandin exposure can enhance scleral permeability to high-molecular-weight substances. METHODS: Topical prostaglandin F2 alpha (PGF2 alpha) was administered to monkeys to determine if this altered the amount of scleral matrix metalloproteinases (MMPs). Experiments also were performed to determine whether the prostaglandin F (FP) receptor and gene transcripts are expressed in normal human sclera. Permeability of organ-cultured human sclera following prostaglandin exposure then was studied and the amount of MMP released into the medium measured. Finally, the permeability of human sclera to basic fibroblast growth factor (FGF-2) was determined following prostaglandin exposure. RESULTS: Topical prostaglandin administration that reduced scleral collagen also increased scleral MMP-1, MMP-2, and MMP-3 by 63 +/- 35%, 267 +/- 210%, and 729 +/- 500%, respectively. FP receptor protein was localized in scleral fibroblasts, and FP receptor gene transcript was identified in sclera. Exposure to prostaglandin F2 alpha, 17-phenyltrinor, PGF2 alpha, or latanoprost acid increased scleral permeability by up to 124%, 183%, or 213%, respectively. In these cultures, MMP-1, MMP-2, and MMP-3 were increased by up to 37%, 267%, and 96%, respectively. Finally, transscleral absorption of FGF-2 was increased by up to 126% with scleral exposure to latanoprost. CONCLUSIONS: These studies demonstrate that the sclera is metabolically active and pharmacologically responsive to prostaglandins. Further, they demonstrate the feasibility of cotreatment with prostaglandin to enhance transscleral delivery of peptides, such as growth factors and high-molecular-weight substances, to the posterior segment of the eye. PMID:11797317

  17. Prosurvival Factors Improve Functional Engraftment of Myogenically Converted Dermal Cells into Dystrophic Skeletal Muscle.

    PubMed

    Muir, Lindsey A; Murry, Charles E; Chamberlain, Jeffrey S

    2016-09-07

    In Duchenne muscular dystrophy (DMD) and other muscle wasting disorders, cell therapies are a promising route for promoting muscle regeneration by supplying a functional copy of the missing dystrophin gene and contributing new muscle fibers. The clinical application of cell-based therapies is resource intensive, and it will therefore be necessary to address key limitations that reduce cell engraftment into muscle tissue. A pressing issue is poor donor cell survival following transplantation, which in preclinical studies limits the ability to effectively test the impact of cell-based therapy on whole muscle function. We, therefore, sought to improve engraftment and the functional impact of in vivo myogenically converted dermal fibroblasts (dFbs) using a prosurvival cocktail (PSC) that includes heat shock followed by treatment with insulin-like growth factor-1, a caspase inhibitor, a Bcl-XL peptide, a K ATP channel opener, basic fibroblast growth factor, Matrigel, and cyclosporine A. Advantages of dFbs include compatibility with the autologous setting, ease of isolation, and greater proliferative potential than DMD satellite cells. dFbs expressed tamoxifen-inducible MyoD and carried a mini-dystrophin gene driven by a muscle-specific promoter. After transplantation into muscles of mdx mice, a 70% reduction in donor cells was observed by day 5, and a 94% reduction by day 28. However, treatment with PSC gave a nearly three-fold increase in donor cells in early engraftment, and greatly increased the number of donor-contributed muscle fibers and total engrafted area in transplanted muscles. Furthermore, dystrophic muscles that received dFbs with PSC displayed reduced injury with eccentric contractions and an increase in maximum isometric force. Thus, enhancing survival of myogenic cells increases engraftment and improves structure and function of dystrophic muscle.

  18. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production inmore » a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.« less

  19. Freeze-dried, cross-linked bovine type I collagen: analysis of properties.

    PubMed

    Hyder, P R; Dowell, P; Singh, G; Dolby, A E

    1992-03-01

    This study was undertaken to assess the physical and biological properties of freeze-dried cross-linked bovine type I collagen and to assess its potential for use in the guided tissue regeneration method of treatment of periodontal disease in human adult subjects. The modulus of elasticity, swelling ratio, and biodegradation rate were investigated. The collagen sponge was implanted subdermally into Sprague-Dawley rats and a histological study carried out at 2, 7, 21, 35, and 49 days post implantation. Growth of human gingival and periodontal ligament derived fibroblasts on collagen sponge was assessed, as well as the effect of bovine collagen supernatants upon gingival and periodontal fibroblast cultures. The physical properties of the collagen sponge were consistent with good handling qualities and, therefore, it was appropriate for use at a surgical site. The histological study demonstrated a reduction in thickness of the collagen at 21 days; at 35 days there was a hazy appearance of the collagen remnants; and at 49 days the graft material had been completely replaced with fibrous tissues. The in vitro response of human gingival and periodontal fibroblasts to bovine collagen showed that, after 21 days, confluent fibroblast growth was observed around and underneath the sponge. The effect of bovine collagen supernatants upon fibroblasts demonstrated an apparent proliferative effect of the supernatant with both gingival and periodontal ligament fibroblasts. However, the non-parametric Friedman test revealed no significant differences between dilutions or time points. The overall findings provide encouraging evidence of the safety of freeze-dried cross-linked bovine collagen sponge in the surgical treatment of periodontal disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Transcript characteristic of myostatin in sheep fibroblasts.

    PubMed

    Lu, Jian; Ren, Hangxing; Sheng, Xihui; Zhang, Xiaoning; Li, Shangang; Zhao, Fuping; Zhou, Xinlei; Zhang, Li; Wei, Caihong; Ding, Jiatong; Li, Bichun; Du, Lixin

    2012-08-01

    Myostatin, a secreted growth factor highly expressed in skeletal muscle, negatively regulates skeletal muscle growth and differentiation. Recently, myostatin is emerged as a potential target for anti-atrophy and anti-fibrotic therapies. Therefore, to investigate the regulation of myostatin in sheep adult fibroblasts, we used the RNA interference mediated by lentiviral vector to gene silence myostatin. Simultaneously, we also had constructed the sheep myostatin overexpression vector to further explore the function of myostatin in fibroblasts. The results here demonstrated that the lentiviral vector could significantly reduce myostatin gene both at mRNA and protein level by 71% and 67%, respectively (P < 0.01). Inhibition of myostatin also resulted in a remarkable increase of activin receptor 2B (ACV2B), p21, PPARγ, leptin, C/EBPβ, and MEF2A expression, and a decrease of Akt1, CDK2, MEF2C, and Myf5 expression. Ectopic myostatin mRNA and protein were also present in the fibroblasts transfection. Furthermore, we observed that overexpression of myostatin contributed to an increase of Akt1, CDK2, Myf5 and PPARγ, and a decrease of p21, C/EBPα and leptin at the transcript level. These results suggested that myostatin positively regulated Akt1, CDK2, Myf5, leptin, and C/EBPα, but negatively regulated p21 mRNA expression in adult fibroblasts, and it also expanded our understanding of the regulation mechanism of myostatin. Moreover, the lentiviral system inactivated myostatin gene in fibroblasts would be used to generate transgenic sheep and to ameliorate muscle fibrosis and atrophy by gene therapy in the future. Copyright © 2012 Wiley Periodicals, Inc.

Top