Sample records for basic helix-loop-helix domain

  1. The solution structure of the prototype foamy virus RNase H domain indicates an important role of the basic loop in substrate binding.

    PubMed

    Leo, Berit; Schweimer, Kristian; Rösch, Paul; Hartl, Maximilian J; Wöhrl, Birgitta M

    2012-09-10

    The ribonuclease H (RNase H) domains of retroviral reverse transcriptases play an essential role in the replication cycle of retroviruses. During reverse transcription of the viral genomic RNA, an RNA/DNA hybrid is created whose RNA strand needs to be hydrolyzed by the RNase H to enable synthesis of the second DNA strand by the DNA polymerase function of the reverse transcriptase. Here, we report the solution structure of the separately purified RNase H domain from prototype foamy virus (PFV) revealing the so-called C-helix and the adjacent basic loop, which both were suggested to be important in substrate binding and activity. The solution structure of PFV RNase H shows that it contains a mixed five-stranded β-sheet, which is sandwiched by four α-helices (A-D), including the C-helix, on one side and one α-helix (helix E) on the opposite side. NMR titration experiments demonstrate that upon substrate addition signal changes can be detected predominantly in the basic loop as well as in the C-helix. All these regions are oriented towards the bound substrate. In addition, signal intensities corresponding to residues in the B-helix and the active site decrease, while only minor or no changes of the overall structure of the RNase H are detectable upon substrate binding. Dynamic studies confirm the monomeric state of the RNase H domain. Structure comparisons with HIV-1 RNase H, which lacks the basic protrusion, indicate that the basic loop is relevant for substrate interaction, while the C-helix appears to fulfill mainly structural functions, i.e. positioning the basic loop in the correct orientation for substrate binding. The structural data of PFV RNase H demonstrate the importance of the basic loop, which contains four positively charged lysines, in substrate binding and the function of the C-helix in positioning of the loop. In the dimeric full length HIV-1 RT, the function of the basic loop is carried out by a different loop, which also harbors basic residues, derived from the connection domain of the p66 subunit. Our results suggest that RNases H which are also active as separate domains might need a functional basic loop for proper substrate binding.

  2. Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors1[OPEN

    PubMed Central

    Selote, Devarshi; Samira, Rozalynne; Matthiadis, Anna; Gillikin, Jeffrey W.; Long, Terri A.

    2015-01-01

    Iron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation. To further characterize the function of this protein, we examined the expression pattern of recombinant ProBTS::β-GLUCURONIDASE and found that it is expressed in developing embryos and other reproductive tissues, corresponding with its apparent role in reproductive growth and development. Our findings also indicate that the interactions between BTS and PYE-like (PYEL) basic helix-loop-helix transcription factors occur within the nucleus and are dependent on the presence of the RING domain. We provide evidence that BTS facilitates 26S proteasome-mediated degradation of PYEL proteins in the absence of iron. We also determined that, upon binding iron at the HHE domains, BTS is destabilized and that this destabilization relies on specific residues within the HHE domains. This study reveals an important and unique mechanism for plant iron homeostasis whereby an E3 ubiquitin ligase may posttranslationally control components of the transcriptional regulatory network involved in the iron deficiency response. PMID:25452667

  3. Induction of motor neuron differentiation by transduction of Olig2 protein.

    PubMed

    Mie, Masayasu; Kaneko, Mami; Henmi, Fumiaki; Kobatake, Eiry

    2012-10-26

    Olig2 protein, a member of the basic helix-loop-helix transcription factor family, was introduced into the mouse embryonic carcinoma cell line P19 for induction of motor neuron differentiation. We show that Olig2 protein has the ability to permeate the cell membrane without the addition of a protein transduction domain (PTD), similar to other basic helix-loop-helix transcription factors such as MyoD and NeuroD2. Motor neuron differentiation was evaluated for the elongation of neurites and the expression of choline acetyltransferase (ChAT) mRNA, a differentiation marker of motor neurons. By addition of Olig2 protein, motor neuron differentiation was induced in P19 cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The basic helix-loop-helix region of the transcriptional repressor hairy and enhancer of split 1 is preorganized to bind DNA.

    PubMed

    Popovic, Matija; Wienk, Hans; Coglievina, Maristella; Boelens, Rolf; Pongor, Sándor; Pintar, Alessandro

    2014-04-01

    Hairy and enhancer of split 1, one of the main downstream effectors in Notch signaling, is a transcriptional repressor of the basic helix-loop-helix (bHLH) family. Using nuclear magnetic resonance methods, we have determined the structure and dynamics of a recombinant protein, H1H, which includes an N-terminal segment, b1, containing functionally important phosphorylation sites, the basic region b2, required for binding to DNA, and the HLH domain. We show that a proline residue in the sequence divides the protein in two parts, a flexible and disordered N-terminal region including b1 and a structured, mainly helical region comprising b2 and the HLH domain. Binding of H1H to a double strand DNA oligonucleotide was monitored through the chemical shift perturbation of backbone amide resonances, and showed that the interaction surface involves not only the b2 segment but also several residues in the b1 and HLH regions. Copyright © 2014 Wiley Periodicals, Inc.

  5. Transduction of NeuroD2 protein induced neural cell differentiation.

    PubMed

    Noda, Tomohide; Kawamura, Ryuzo; Funabashi, Hisakage; Mie, Masayasu; Kobatake, Eiry

    2006-11-01

    NeuroD2, one of the neurospecific basic helix-loop-helix transcription factors, has the ability to induce neural differentiation in undifferentiated cells. In this paper, we show that transduction of NeuroD2 protein induced mouse neuroblastoma cell line N1E-115 into neural differentiation. NeuroD2 has two basic-rich domains, one is nuclear localization signal (NLS) and the other is basic region of basic helix-loop-helix (basic). We constructed some mutants of NeuroD2, ND2(Delta100-115) (lack of NLS), ND2(Delta123-134) (lack of basic) and ND2(Delta100-134) (lack of both NLS and basic) for transduction experiments. Using these proteins, we have shown that NLS region of NeuroD2 plays a role of protein transduction. Continuous addition of NeuroD2 protein resulted in N1E-115 cells adopting neural morphology after 4 days and Tau mRNA expression was increased. These results suggest that neural differentiation can be induced by direct addition of NeuroD2 protein.

  6. The Recombinant Inhibitor of DNA Binding Id2 Forms Multimeric Structures via the Helix-Loop-Helix Domain and the Nuclear Export Signal.

    PubMed

    Roschger, Cornelia; Schubert, Mario; Regl, Christof; Andosch, Ancuela; Marquez, Augusto; Berger, Thomas; Huber, Christian G; Lütz-Meindl, Ursula; Cabrele, Chiara

    2018-04-07

    The inhibitor of DNA binding and cell differentiation 2 (Id2) is a helix-loop-helix (HLH) protein that acts as negative dominant regulator of basic-HLH transcription factors during development and in cancer. The structural properties of Id2 have been investigated so far by using synthetic or recombinant fragments reproducing single domains (N-terminus, HLH, C-terminus): the HLH domain tends to dimerize into a four-helix bundle, whereas the flanking regions are flexible. In this work, the intact protein was expressed in E. coli , solubilized from inclusion bodies with urea, purified and dissolved in water at pH~4. Under these conditions, Id2 was obtained with both cysteine residues disulfide-bonded to β-mercaptoethanol that was present during the solubilization process. Moreover, it existed in a self-assembled state, in which the N-terminus remained highly flexible, while the HLH domain and, surprisingly, part of the C-terminus, which corresponds to the nuclear export signal (NES), both were involved in slowly tumbling, rigid structures. The protein oligomers also formed twisted fibrils that were several micrometers long and up to 80 nm thick. These results show that self-assembly decreases the backbone flexibility of those two protein regions (HLH and NES) that are important for interaction with basic-HLH transcription factors or for nucleocytoplasmic shuttling.

  7. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    PubMed

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  8. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia

    USDA-ARS?s Scientific Manuscript database

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during...

  9. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis.

    PubMed

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-09-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.

  10. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis1[W][OPEN

    PubMed Central

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-01-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  11. Genome-wide identification and analysis of basic helix-loop-helix domains in dog, Canis lupus familiaris.

    PubMed

    Wang, Xu-Hua; Wang, Yong; Liu, A-Ke; Liu, Xiao-Ting; Zhou, Yang; Yao, Qin; Chen, Ke-Ping

    2015-04-01

    The basic helix-loop-helix (bHLH) domain is a highly conserved amino acid motif that defines a group of DNA-binding transcription factors. bHLH proteins play essential regulatory roles in a variety of biological processes in animal, plant, and fungus. The domestic dog, Canis lupus familiaris, is a good model organism for genetic, physiological, and behavioral studies. In this study, we identified 115 putative bHLH genes in the dog genome. Based on a phylogenetic analysis, 51, 26, 14, 4, 12, and 4 dog bHLH genes were assigned to six separate groups (A-F); four bHLH genes were categorized as ''orphans''. Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with positional conservation, other conserved domains flanking the bHLH motif, and highly conserved intron/exon patterns in other vertebrates. Our analytical results confirmed the GenBank annotations of 89 dog bHLH proteins and provided information that could be used to update the annotations of the remaining 26 dog bHLH proteins. These data will provide good references for further studies on the structures and regulatory functions of bHLH proteins in the growth and development of dogs, which may help in understanding the mechanisms that underlie the physical and behavioral differences between dogs and wolves.

  12. Identification and expression analysis of the apple (Malus × domestica) basic helix-loop-helix transcription factor family.

    PubMed

    Yang, Jinhua; Gao, Min; Huang, Li; Wang, Yaqiong; van Nocker, Steve; Wan, Ran; Guo, Chunlei; Wang, Xiping; Gao, Hua

    2017-02-09

    Basic helix-loop-helix (bHLH) proteins, which are characterized by a conserved bHLH domain, comprise one of the largest families of transcription factors in both plants and animals, and have been shown to have a wide range of biological functions. However, there have been very few studies of bHLH proteins from perennial tree species. We describe here the identification and characterization of 175 bHLH transcription factors from apple (Malus × domestica). Phylogenetic analysis of apple bHLH (MdbHLH) genes and their Arabidopsis thaliana (Arabidopsis) orthologs indicated that they can be classified into 23 subgroups. Moreover, integrated synteny analysis suggested that the large-scale expansion of the bHLH transcription factor family occurred before the divergence of apple and Arabidopsis. An analysis of the exon/intron structure and protein domains was conducted to suggest their functional roles. Finally, we observed that MdbHLH subgroup III and IV genes displayed diverse expression profiles in various organs, as well as in response to abiotic stresses and various hormone treatments. Taken together, these data provide new information regarding the composition and diversity of the apple bHLH transcription factor family that will provide a platform for future targeted functional characterization.

  13. Inhibition of F1-ATPase Rotational Catalysis by the Carboxyl-terminal Domain of the ϵ Subunit*

    PubMed Central

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Yano, Shio; Futai, Masamitsu

    2014-01-01

    Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058–42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer108 in loop 2 and ϵTyr114 in helix 2, which possibly interact with the β and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits. PMID:25228697

  14. Inhibition of F1-ATPase rotational catalysis by the carboxyl-terminal domain of the ϵ subunit.

    PubMed

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Yano, Shio; Futai, Masamitsu

    2014-10-31

    Escherichia coli ATP synthase (F0F1) couples catalysis and proton transport through subunit rotation. The ϵ subunit, an endogenous inhibitor, lowers F1-ATPase activity by decreasing the rotation speed and extending the duration of the inhibited state (Sekiya, M., Hosokawa, H., Nakanishi-Matsui, M., Al-Shawi, M. K., Nakamoto, R. K., and Futai, M. (2010) Single molecule behavior of inhibited and active states of Escherichia coli ATP synthase F1 rotation. J. Biol. Chem. 285, 42058-42067). In this study, we constructed a series of ϵ subunits truncated successively from the carboxyl-terminal domain (helix 1/loop 2/helix 2) and examined their effects on rotational catalysis (ATPase activity, average rotation rate, and duration of inhibited state). As expected, the ϵ subunit lacking helix 2 caused about ½-fold reduced inhibition, and that without loop 2/helix 2 or helix 1/loop 2/helix 2 showed a further reduced effect. Substitution of ϵSer(108) in loop 2 and ϵTyr(114) in helix 2, which possibly interact with the β and γ subunits, respectively, decreased the inhibitory effect. These results suggest that the carboxyl-terminal domain of the ϵ subunit plays a pivotal role in the inhibition of F1 rotation through interaction with other subunits. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor.

    PubMed

    Kokabu, Shoichiro; Nakatomi, Chihiro; Matsubara, Takuma; Ono, Yusuke; Addison, William N; Lowery, Jonathan W; Urata, Mariko; Hudnall, Aaron M; Hitomi, Suzuro; Nakatomi, Mitsushiro; Sato, Tsuyoshi; Osawa, Kenji; Yoda, Tetsuya; Rosen, Vicki; Jimi, Eijiro

    2017-08-04

    Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Classification and evolutionary analysis of the basic helix-loop-helix gene family in the green anole lizard, Anolis carolinensis.

    PubMed

    Liu, Ake; Wang, Yong; Zhang, Debao; Wang, Xuhua; Song, Huifang; Dang, Chunwang; Yao, Qin; Chen, Keping

    2013-08-01

    Helix-loop-helix (bHLH) proteins play essential regulatory roles in a variety of biological processes. These highly conserved proteins form a large transcription factor superfamily, and are commonly identified in large numbers within animal, plant, and fungal genomes. The bHLH domain has been well studied in many animal species, but has not yet been characterized in non-avian reptiles. In this study, we identified 102 putative bHLH genes in the genome of the green anole lizard, Anolis carolinensis. Based on phylogenetic analysis, these genes were classified into 43 families, with 43, 24, 16, 3, 10, and 3 members assigned into groups A, B, C, D, E, and F, respectively, and 3 members categorized as "orphans". Within-group evolutionary relationships inferred from the phylogenetic analysis were consistent with highly conserved patterns observed for introns and additional domains. Results from phylogenetic analysis of the H/E(spl) family suggest that genome and tandem gene duplications have contributed to this family's expansion. Our classification and evolutionary analysis has provided insights into the evolutionary diversification of animal bHLH genes, and should aid future studies on bHLH protein regulation of key growth and developmental processes.

  17. Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.

    PubMed

    Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A

    1999-10-10

    HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.

  18. Yeast transcriptional activator INO2 interacts as an Ino2p/Ino4p basic helix-loop-helix heteromeric complex with the inositol/choline-responsive element necessary for expression of phospholipid biosynthetic genes in Saccharomyces cerevisiae.

    PubMed Central

    Schwank, S; Ebbert, R; Rautenstrauss, K; Schweizer, E; Schüller, H J

    1995-01-01

    Coordinate transcriptional control of yeast genes involved in phospholipid biosynthesis is mediated by the inositol/choline-responsive element (ICRE) contained in the respective promoter regions. Regulatory genes INO2 and INO4, both encoding basic helix-loop-helix (bHLH) proteins, are necessary for ICRE-dependent gene activation. By the use of size variants and by heterologous expression in E. coli we demonstrate that Ino2p and Ino4p are both necessary and sufficient for the formation of the previously described FAS binding factor 1, Fbf1, interacting with the ICRE. Formation of a heteromeric complex between Ino2p and Ino4p by means of the respective bHLH domains was demonstrated in vivo by the interaction of appropriate two-hybrid constructs and in vitro by Far-Western analyses. Neither Ino2p nor Ino4p binds to the ICRE as a homodimer. When fused to the DNA-binding domain of Gal4p, Ino2p but not Ino4p was able to activate a UASGAL-containing reporter gene even in the absence of the heterologous Fbf1 subunit. By deletion studies, two separate transcriptional activation domains were identified in the N-terminal part of Ino2p. Thus, the bHLH domains of Ino2p and Ino4p constitute the dimerization/DNA-binding module of Fbf1 mediating its interaction with the ICRE, while transcriptional activation is effected exclusively by Ino2p. Images PMID:7862526

  19. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos Taurus.

    PubMed

    Li, Fengmei; Liu, Wuyi

    2017-06-01

    The basic helix-loop-helix (bHLH) transcription factors (TFs) form a huge superfamily and play crucial roles in many essential developmental, genetic, and physiological-biochemical processes of eukaryotes. In total, 109 putative bHLH TFs were identified and categorized successfully in the genomic databases of cattle, Bos Taurus, after removing redundant sequences and merging genetic isoforms. Through phylogenetic analyses, 105 proteins among these bHLH TFs were classified into 44 families with 46, 25, 14, 3, 13, and 4 members in the high-order groups A, B, C, D, E, and F, respectively. The remaining 4 bHLH proteins were sorted out as 'orphans.' Next, these 109 putative bHLH proteins identified were further characterized as significantly enriched in 524 significant Gene Ontology (GO) annotations (corrected P value ≤ 0.05) and 21 significantly enriched pathways (corrected P value ≤ 0.05) that had been mapped by the web server KOBAS 2.0. Furthermore, 95 bHLH proteins were further screened and analyzed together with two uncharacterized proteins in the STRING online database to reconstruct the protein-protein interaction network of cattle bHLH TFs. Ultimately, 89 bHLH proteins were fully mapped in a network with 67 biological process, 13 molecular functions, 5 KEGG pathways, 12 PFAM protein domains, and 25 INTERPRO classified protein domains and features. These results provide much useful information and a good reference for further functional investigations and updated researches on cattle bHLH TFs.

  20. An auto-inhibitory helix in CTP:phosphocholine cytidylyltransferase hijacks the catalytic residue and constrains a pliable, domain-bridging helix pair

    PubMed Central

    Ramezanpour, Mohsen; Lee, Jaeyong; Taneva, Svetla G.; Tieleman, D. Peter; Cornell, Rosemary B.

    2018-01-01

    The activity of CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme in phosphatidylcholine synthesis, is regulated by reversible interactions of a lipid-inducible amphipathic helix (domain M) with membrane phospholipids. When dissociated from membranes, a portion of the M domain functions as an auto-inhibitory (AI) element to suppress catalysis. The AI helix from each subunit binds to a pair of α helices (αE) that extend from the base of the catalytic dimer to create a four-helix bundle. The bound AI helices make intimate contact with loop L2, housing a key catalytic residue, Lys122. The impacts of the AI helix on active-site dynamics and positioning of Lys122 are unknown. Extensive MD simulations with and without the AI helix revealed that backbone carbonyl oxygens at the point of contact between the AI helix and loop L2 can entrap the Lys122 side chain, effectively competing with the substrate, CTP. In silico, removal of the AI helices dramatically increased αE dynamics at a predicted break in the middle of these helices, enabling them to splay apart and forge new contacts with loop L2. In vitro cross-linking confirmed the reorganization of the αE element upon membrane binding of the AI helix. Moreover, when αE bending was prevented by disulfide engineering, CCT activation by membrane binding was thwarted. These findings suggest a novel two-part auto-inhibitory mechanism for CCT involving capture of Lys122 and restraint of the pliable αE helices. We propose that membrane binding enables bending of the αE helices, bringing the active site closer to the membrane surface. PMID:29519816

  1. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domainmore » of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.« less

  2. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse.

    PubMed

    Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong

    2011-12-01

    The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.

  3. Computational modeling of the bHLH domain of the transcription factor TWIST1 and R118C, S144R and K145E mutants

    PubMed Central

    2012-01-01

    Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH) transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47), MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS), which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E) were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD) simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro circumstances. PMID:22839202

  4. Interactions between relay helix and Src homology 1 domain helix (SH1) drive the converter domain rotation during the recovery stroke of myosin II

    PubMed Central

    Baumketner, Andrij

    2012-01-01

    Myosin motor protein exists in two alternative conformations, pre-recovery state M* and post-recovery state M**, upon ATP binding. The details of the M*-to-M** transition, known as the recovery stroke to reflect its role as the functional opposite of the force-generating power stroke, remain elusive. The defining feature of the post-recovery state is a kink in the relay helix, a key part of the protein involved in force generation. In this paper we determine the interactions that are responsible for the appearance of the kink. We design a series of computational models that contain three other segments, relay loop, converter domain and Src homology 1 domain helix (SH1), with which relay helix interacts, and determine their structure in accurate replica exchange molecular dynamics simulations in explicit solvent. By conducting an exhaustive combinatorial search among different models we find that: 1) the converter domain must be attached to the relay helix during the transition, so it does not interfere with other parts of the protein, 2) the structure of the relay helix is controlled by SH1 helix. The kink is strongly coupled to the position of SH1 helix. It arises as a result of direct interactions between SH1 and the relay helix and leads to a rotation of the C-terminal part of the relay helix which is subsequently transmitted to the converter domain. PMID:22411190

  5. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    PubMed

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  6. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Brachypodium distachyon.

    PubMed

    Niu, Xin; Guan, Yuxiang; Chen, Shoukun; Li, Haifeng

    2017-08-15

    As a superfamily of transcription factors (TFs), the basic helix-loop-helix (bHLH) proteins have been characterized functionally in many plants with a vital role in the regulation of diverse biological processes including growth, development, response to various stresses, and so on. However, no systemic analysis of the bHLH TFs has been reported in Brachypodium distachyon, an emerging model plant in Poaceae. A total of 146 bHLH TFs were identified in the Brachypodium distachyon genome and classified into 24 subfamilies. BdbHLHs in the same subfamily share similar protein motifs and gene structures. Gene duplication events showed a close relationship to rice, maize and sorghum, and segment duplications might play a key role in the expansion of this gene family. The amino acid sequence of the bHLH domains were quite conservative, especially Leu-27 and Leu-54. Based on the predicted binding activities, the BdbHLHs were divided into DNA binding and non-DNA binding types. According to the gene ontology (GO) analysis, BdbHLHs were speculated to function in homodimer or heterodimer manner. By integrating the available high throughput data in public database and results of quantitative RT-PCR, we found the expression profiles of BdbHLHs were different, implying their differentiated functions. One hundred fourty-six BdbHLHs were identified and their conserved domains, sequence features, phylogenetic relationship, chromosomal distribution, GO annotations, gene structures, gene duplication and expression profiles were investigated. Our findings lay a foundation for further evolutionary and functional elucidation of BdbHLH genes.

  7. Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants

    PubMed Central

    Pires, Nuno; Dolan, Liam

    2010-01-01

    Basic helix-loop-helix (bHLH) proteins are a class of transcription factors found throughout eukaryotic organisms. Classification of the complete sets of bHLH proteins in the sequenced genomes of Arabidopsis thaliana and Oryza sativa (rice) has defined the diversity of these proteins among flowering plants. However, the evolutionary relationships of different plant bHLH groups and the diversity of bHLH proteins in more ancestral groups of plants are currently unknown. In this study, we use whole-genome sequences from nine species of land plants and algae to define the relationships between these proteins in plants. We show that few (less than 5) bHLH proteins are encoded in the genomes of chlorophytes and red algae. In contrast, many bHLH proteins (100–170) are encoded in the genomes of land plants (embryophytes). Phylogenetic analyses suggest that plant bHLH proteins are monophyletic and constitute 26 subfamilies. Twenty of these subfamilies existed in the common ancestors of extant mosses and vascular plants, whereas six further subfamilies evolved among the vascular plants. In addition to the conserved bHLH domains, most subfamilies are characterized by the presence of highly conserved short amino acid motifs. We conclude that much of the diversity of plant bHLH proteins was established in early land plants, over 440 million years ago. PMID:19942615

  8. Highly conserved sequences mediate the dynamic interplay of basic helix-loop-helix proteins regulating retinogenesis.

    PubMed

    Hernandez, Julio; Matter-Sadzinski, Lidia; Skowronska-Krawczyk, Dorota; Chiodini, Florence; Alliod, Christine; Ballivet, Marc; Matter, Jean-Marc

    2007-12-28

    The atonal homolog 5 (ATH5) protein is central to the transcriptional network regulating the specification of retinal ganglion cells, and its expression comes under the spatiotemporal control of several basic helix-loop-helix (bHLH) proteins in the course of retina development. Monitoring the in vivo occupancy of the ATH5 promoter by the ATH5, Ngn2, and NeuroM proteins and analyzing the DNA motifs they bind, we show that three evolutionarily conserved E-boxes are required for the bHLH proteins to control the different phases of ATH5 expression. E-box 4 mediates the activity of Ngn2, ATH5, and NeuroM along the pathway leading to the conversion of progenitors into newborn neurons. E-box 1, by mediating the antagonistic effects of Ngn2 and HES1 in proliferating progenitors, controls the expansion of the ATH5 expression domain in early retina. E-box 2 is required for the positive feedback by ATH5 that underlies the up-regulation of ATH5 expression when progenitors are going through their last cell cycle. The combinatorial nature of the regulation of the ATH5 promoter suggests that the bHLH proteins involved have no assigned E-boxes but use a common set at which they either cooperate or compete to finely tune ATH5 expression as development proceeds.

  9. The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis[W][OA

    PubMed Central

    Chen, Qian; Sun, Jiaqiang; Zhai, Qingzhe; Zhou, Wenkun; Qi, Linlin; Xu, Li; Wang, Bao; Chen, Rong; Jiang, Hongling; Qi, Jing; Li, Xugang; Palme, Klaus; Li, Chuanyou

    2011-01-01

    The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin. PMID:21954460

  10. Characterization of the near native conformational states of the SAM domain of Ste11 protein by NMR spectroscopy.

    PubMed

    Gupta, Sebanti; Bhattacharjya, Surajit

    2014-11-01

    The sterile alpha motif or SAM domain is one of the most frequently present protein interaction modules with diverse functional attributions. SAM domain of the Ste11 protein of budding yeast plays important roles in mitogen-activated protein kinase cascades. In the current study, urea-induced, at subdenaturing concentrations, structural, and dynamical changes in the Ste11 SAM domain have been investigated by nuclear magnetic resonance spectroscopy. Our study revealed that a number of residues from Helix 1 and Helix 5 of the Ste11 SAM domain display plausible alternate conformational states and largest chemical shift perturbations at low urea concentrations. Amide proton (H/D) exchange experiments indicated that Helix 1, loop, and Helix 5 become more susceptible to solvent exchange with increased concentrations of urea. Notably, Helix 1 and Helix 5 are directly involved in binding interactions of the Ste11 SAM domain. Our data further demonstrate that the existence of alternate conformational states around the regions involved in dimeric interactions in native or near native conditions. © 2014 Wiley Periodicals, Inc.

  11. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes

    PubMed Central

    Léger, Sandy; Balguerie, Xavier; Goldenberg, Alice; Drouin-Garraud, Valérie; Cabot, Annick; Amstutz-Montadert, Isabelle; Young, Paul; Joly, Pascal; Bodereau, Virginie; Holder-Espinasse, Muriel; Jamieson, Robyn V; Krause, Amanda; Chen, Hongsheng; Baumann, Clarisse; Nunes, Luis; Dollfus, Hélène; Goossens, Michel; Pingault, Véronique

    2012-01-01

    The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor, which regulates melanocyte development and the biosynthetic melanin pathway. A notable relationship has been described between non-truncating mutations of its basic domain and Tietz syndrome, which is characterized by albinoid-like hypopigmentation of the skin and hair, rather than the patchy depigmentation seen in Waardenburg syndrome, and severe hearing loss. Twelve patients with new or recurrent non-truncating mutations of the MITF basic domain from six families were enrolled in this study. We observed a wide range of phenotypes and some unexpected features. All the patients had blue irides and pigmentation abnormalities that ranged from diffuse hypopigmentation to Waardenburg-like patches. In addition, they showed congenital complete hearing loss, diffuse hypopigmentation of the skin, freckling and ocular abnormalities, more frequently than patients with MITF mutations outside the basic domain. In conclusion, the non-truncating mutations of the basic domain do not always lead to Tietz syndrome but rather to a large range of phenotypes. Sun-exposed freckles are interestingly observed more frequently in Asian populations. This variability argues for the possible interaction with modifier loci. PMID:22258527

  12. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.

    PubMed

    Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich

    2004-03-01

    By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany

    The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less

  14. The SUMO Pathway Promotes Basic Helix-Loop-Helix Proneural Factor Activity via a Direct Effect on the Zn Finger Protein Senseless

    PubMed Central

    Chen, Angela; Huang, Yan Chang; Wang, Pin Yao; Kemp, Sadie E.

    2012-01-01

    During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs. PMID:22586269

  15. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant.

    PubMed

    Zhao, Fengli; Li, Gang; Hu, Panpan; Zhao, Xia; Li, Liangjie; Wei, Wei; Feng, Jiayue; Zhou, Houcheng

    2018-02-09

    As the second largest transcription factor family in plant, the basic helix-loop-helix (bHLH) transcription factor family, characterized by the conserved bHLH domain, plays a central regulatory role in many biological process. However, the bHLH transcription factor family of strawberry has not been systematically identified, especially for the anthocyanin biosynthesis. Here, we identified a total of 113 bHLH transcription factors and described their chromosomal distribution and bioinformatics for the diploid woodland strawberry Fragaria vesca. In addition, transcription profiles of 113 orthologous bHLH genes from various tissues were analyzed for the cultivar 'Benihoppe', its white-flesh mutant 'Xiaobai', and the 'Snow Princess' from their fruit development to the ripening, as well as those under either the ABA or Eth treatment. Both the RT-PCR and qRT-PCR results show that seven selected FabHLH genes (FabHLH17, FabHLH25, FabHLH27, FabHLH29, FabHLH40, FabHLH80, FabHLH98) are responsive to the fruit anthocyanin biosynthesis and hormone signaling according to transcript profiles where three color modes are observed for strawberry's fruit skin and flesh. Further, prediction for the protein interaction network reveals that four bHLHs (FabHLH25, FabHLH29, FabHLH80, FabHLH98) are involved in the fruit anthocyanin biosynthesis and hormone signaling transduction. These bioinformatics and expression profiles provide a good basis for a further investigation of strawberry bHLH genes.

  16. A Genome-Wide Identification and Analysis of the Basic Helix-Loop-Helix Transcription Factors in Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Wang, Wei-Xia; Chen, Xu; Lai, Feng-Xiang; Fu, Qiang

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors in insects play essential roles in multiple developmental processes including neurogenesis, sterol metabolism, circadian rhythms, organogenesis and formation of olfactory sensory neurons. The identification and function analysis of bHLH family members of the most destructive insect pest of rice, Nilaparvata lugens, may provide novel tools for pest management. Here, a genome-wide survey for bHLH sequences identified 60 bHLH sequences (NlbHLHs) encoded in the draft genome of N. lugens. Phylogenetic analysis of the bHLH domains successfully classified these genes into 40 bHLH families in group A (25), B (14), C (10), D (1), E (8) and F (2). The number of NlbHLHs with introns is higher than many other insect species, and the average intron length is shorter than those of Acyrthosiphon pisum. High number of ortholog families of NlbHLHs was found suggesting functional conversation for these proteins. Compared to other insect species studied, N. lugens has the highest number of bHLH members. Furthermore, gene duplication events of SREBP, Kn(col), Tap, Delilah, Sim, Ato and Crp were found in N. lugens. In addition, a putative full set of NlbHLH genes is defined and compared with another insect species. Thus, our classification of these NlbHLH members provides a platform for further investigations of bHLH protein functions in the regulation of N. lugens, and of insects in general. PMID:27869716

  17. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1

    DOE PAGES

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany; ...

    2017-01-31

    The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ~24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here in this paper, we show that CRY1 binds directly to the PAS domain core of CLOCK: BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solutionmore » X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.« less

  18. Basic Helix-Loop-Helix Transcription Factor Gene Family Phylogenetics and Nomenclature

    PubMed Central

    Skinner, Michael K.; Rawls, Alan; Wilson-Rawls, Jeanne; Roalson, Eric H.

    2010-01-01

    A phylogenetic analysis of the basic helix-loop-helix (bHLH) gene superfamily was performed using seven different species (human, mouse, rat, worm, fly, yeast, and plant Arabidopsis) and involving over 600 bHLH genes [1]. All bHLH genes were identified in the genomes of the various species, including expressed sequence tags, and the entire coding sequence was used in the analysis. Nearly 15% of the gene family has been updated or added since the original publication. A super-tree involving six clades and all structural relationships was established and is now presented for four of the species. The wealth of functional data available for members of the bHLH gene superfamily provides us with the opportunity to use this exhaustive phylogenetic tree to predict potential functions of uncharacterized members of the family. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique elements of the evolution and functional relationships of the different genes in the bHLH gene family. PMID:20219281

  19. Basic helix-loop-helix transcription factors in evolution: Roles in development of mesoderm and neural tissues.

    PubMed

    Gyoja, Fuki

    2017-09-01

    Basic helix-loop-helix (bHLH) transcription factors have attracted the attention of developmental and evolutionary biologists for decades because of their conserved functions in mesodermal and neural tissue formation in both vertebrates and fruit flies. Their evolutionary history is of special interest because it will likely provide insights into developmental processes and refinement of metazoan-specific traits. This review briefly considers advances in developmental biological studies on bHLHs/HLHs. I also discuss recent genome-wide surveys and molecular phylogenetic analyses of these factors in a wide range of metazoans. I hypothesize that interactions between metazoan-specific Group A, D, and E bHLH/HLH factors enabled a sophisticated transition system from cell proliferation to differentiation in multicellular development. This control mechanism probably emerged initially to organize a multicellular animal body and was subsequently recruited to form evolutionarily novel tissues, which differentiated during a later ontogenetic phase. © 2017 Wiley Periodicals, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bing; Liu, Caini; Qian, Wen

    Crystal structure of the SEFIR domain from human IL-17 receptor A provides new insights into IL-17 signaling. Interleukin 17 (IL-17) cytokines play a crucial role in mediating inflammatory and autoimmune diseases. A unique intracellular signaling domain termed SEFIR is found within all IL-17 receptors (IL-17Rs) as well as the key adaptor protein Act1. SEFIR-mediated protein–protein interaction is a crucial step in IL-17 cytokine signaling. Here, the 2.3 Å resolution crystal structure of the SEFIR domain of IL-17RA, the most commonly shared receptor for IL-17 cytokine signaling, is reported. The structure includes the complete SEFIR domain and an additional α-helical C-terminalmore » extension, which pack tightly together to form a compact unit. Structural comparison between the SEFIR domains of IL-17RA and IL-17RB reveals substantial differences in protein topology and folding. The uniquely long insertion between strand βC and helix αC in IL-17RA SEFIR is mostly well ordered, displaying a helix (αCC′{sub ins}) and a flexible loop (CC′). The DD′ loop in the IL-17RA SEFIR structure is much shorter; it rotates nearly 90° with respect to the counterpart in the IL-17RB SEFIR structure and shifts about 12 Å to accommodate the αCC′{sub ins} helix without forming any knots. Helix αC was identified as critical for its interaction with Act1 and IL-17-stimulated gene expression. The data suggest that the heterotypic SEFIR–SEFIR association via helix αC is a conserved and signature mechanism specific for IL-17 signaling. The structure also suggests that the downstream motif of IL-17RA SEFIR together with helix αC could provide a composite ligand-binding surface for recruiting Act1 during IL-17 signaling.« less

  1. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    NASA Astrophysics Data System (ADS)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  2. Basic Tilted Helix Bundle - a new protein fold in human FKBP25/FKBP3 and HectD1.

    PubMed

    Helander, Sara; Montecchio, Meri; Lemak, Alexander; Farès, Christophe; Almlöf, Jonas; Yi, Yanjun; Yee, Adelinda; Arrowsmith, Cheryl; DhePaganon, Sirano; Sunnerhagen, Maria

    2014-04-25

    In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP251-73, a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundle (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The basic helix-loop-helix transcription factor family in the sacred lotus, Nelumbo nucifera

    USDA-ARS?s Scientific Manuscript database

    Nelumbo nucifera (Sacred Lotus) is a basal eudicot with exceptional physiological and metabolic properties including seed longevity, adaptations for an aquatic habit, and floral thermiogenesis. It also occupies a unique position in the phylogeny of land plants and can be a useful species for studies...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helander, Sara; Montecchio, Meri; Lemak, Alexander

    Highlights: • We describe the structure of a novel fold in FKBP25 and HectD. • The new fold is named the Basic Tilted Helix Bundle (BTHB) domain. • A conserved basic surface patch is presented, suggesting a functional role. - Abstract: In this paper, we describe the structure of a N-terminal domain motif in nuclear-localized FKBP25{sub 1–73}, a member of the FKBP family, together with the structure of a sequence-related subdomain of the E3 ubiquitin ligase HectD1 that we show belongs to the same fold. This motif adopts a compact 5-helix bundle which we name the Basic Tilted Helix Bundlemore » (BTHB) domain. A positively charged surface patch, structurally centered around the tilted helix H4, is present in both FKBP25 and HectD1 and is conserved in both proteins, suggesting a conserved functional role. We provide detailed comparative analysis of the structures of the two proteins and their sequence similarities, and analysis of the interaction of the proposed FKBP25 binding protein YY1. We suggest that the basic motif in BTHB is involved in the observed DNA binding of FKBP25, and that the function of this domain can be affected by regulatory YY1 binding and/or interactions with adjacent domains.« less

  5. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif.

    PubMed Central

    Maira, S M; Wurtz, J M; Wasylyk, B

    1996-01-01

    The three ternary complex factors (TCFs), Net (ERP/ SAP-2), ELK-1 and SAP-1, are highly related ets oncogene family members that participate in the response of the cell to Ras and growth signals. Understanding the different roles of these factors will provide insights into how the signals result in coordinate regulation of the cell. We show that Net inhibits transcription under basal conditions, in which SAP-1a is inactive and ELK-1 stimulates. Repression is mediated by the NID, the Net Inhibitory Domain of about 50 amino acids, which autoregulates the Net protein and also inhibits when it is isolated in a heterologous fusion protein. Net is particularly sensitive to Ras activation. Ras activates Net through the C-domain, which is conserved between the three TCFs, and the NID is an efficient inhibitor of Ras activation. The NID, as well as more C-terminal sequences, inhibit DNA binding. Net is more refractory to DNA binding than the other TCFs, possibly due to the presence of multiple inhibitory elements. The NID may adopt a helix-loop-helix (HLH) structure, as evidenced by homology to other HLH motifs, structure predictions, model building and mutagenesis of critical residues. The sequence resemblance with myogenic factors suggested that Net may form complexes with the same partners. Indeed, we found that Net can interact in vivo with the basic HLH factor, E47. We propose that Net is regulated at the level of its latent DNA-binding activity by protein interactions and/or phosphorylation. Net may form complexes with HLH proteins as well as SRF on specific promotor sequences. The identification of the novel inhibitory domain provides a new inroad into exploring the different roles of the ternary complex factors in growth control and transformation. Images PMID:8918463

  6. Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif.

    PubMed

    Maira, S M; Wurtz, J M; Wasylyk, B

    1996-11-01

    The three ternary complex factors (TCFs), Net (ERP/ SAP-2), ELK-1 and SAP-1, are highly related ets oncogene family members that participate in the response of the cell to Ras and growth signals. Understanding the different roles of these factors will provide insights into how the signals result in coordinate regulation of the cell. We show that Net inhibits transcription under basal conditions, in which SAP-1a is inactive and ELK-1 stimulates. Repression is mediated by the NID, the Net Inhibitory Domain of about 50 amino acids, which autoregulates the Net protein and also inhibits when it is isolated in a heterologous fusion protein. Net is particularly sensitive to Ras activation. Ras activates Net through the C-domain, which is conserved between the three TCFs, and the NID is an efficient inhibitor of Ras activation. The NID, as well as more C-terminal sequences, inhibit DNA binding. Net is more refractory to DNA binding than the other TCFs, possibly due to the presence of multiple inhibitory elements. The NID may adopt a helix-loop-helix (HLH) structure, as evidenced by homology to other HLH motifs, structure predictions, model building and mutagenesis of critical residues. The sequence resemblance with myogenic factors suggested that Net may form complexes with the same partners. Indeed, we found that Net can interact in vivo with the basic HLH factor, E47. We propose that Net is regulated at the level of its latent DNA-binding activity by protein interactions and/or phosphorylation. Net may form complexes with HLH proteins as well as SRF on specific promotor sequences. The identification of the novel inhibitory domain provides a new inroad into exploring the different roles of the ternary complex factors in growth control and transformation.

  7. The grape berry-specific basic helix-loop-helix transcription factor VvCEB1 affects cell size.

    PubMed

    Nicolas, Philippe; Lecourieux, David; Gomès, Eric; Delrot, Serge; Lecourieux, Fatma

    2013-02-01

    The development of fleshy fruits involves complex physiological and biochemical changes. After fertilization, fruit growth usually begins with cell division, continues with both cell division and expansion, allowing fruit set to occur, and ends with cell expansion only. In spite of the economical importance of grapevine, the molecular mechanisms controlling berry growth are not fully understood. The present work identified and characterized Vitis vinifera cell elongation bHLH protein (VvCEB1), a basic helix-loop-helix (bHLH) transcription factor controlling cell expansion in grape. VvCEB1 was expressed specifically in berry-expanding tissues with a maximum around veraison. The study of VvCEB1 promoter activity in tomato confirmed its specific fruit expression during the expansion phase. Overexpression of VvCEB1 in grape embryos showed that this protein stimulates cell expansion and affects the expression of genes involved in cell expansion, including genes of auxin metabolism and signalling. Taken together, these data show that VvCEB1 is a fruit-specific bHLH transcription factor involved in grape berry development.

  8. A genome-wide survey on basic helix-loop-helix transcription factors in giant panda.

    PubMed

    Dang, Chunwang; Wang, Yong; Zhang, Debao; Yao, Qin; Chen, Keping

    2011-01-01

    The giant panda (Ailuropoda melanoleuca) is a critically endangered mammalian species. Studies on functions of regulatory proteins involved in developmental processes would facilitate understanding of specific behavior in giant panda. The basic helix-loop-helix (bHLH) proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, mouse and human. Our present study identified 107 bHLH family members being encoded in giant panda genome. Phylogenetic analyses revealed that they belong to 44 bHLH families with 46, 25, 15, 4, 11 and 3 members in group A, B, C, D, E and F, respectively, while the remaining 3 members were assigned into "orphan". Compared to mouse, the giant panda does not encode seven bHLH proteins namely Beta3a, Mesp2, Sclerax, S-Myc, Hes5 (or Hes6), EBF4 and Orphan 1. These results provide useful background information for future studies on structure and function of bHLH proteins in the regulation of giant panda development.

  9. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.

    PubMed

    Dolphin, G T; Baltzer, L

    1997-01-01

    De novo designed helix-loop-helix motifs can fold into well-defined tertiary structures if residues or groups of residues are incorporated at the helix-helix boundary to form helix-recognition sites that restrict the conformational degrees of freedom of the helical segments. Understanding the relationship between structure and function of conformational constraints therefore forms the basis for the engineering of non-natural proteins. This paper describes the design of an interhelical HisH+-Asp- hydrogen-bonded ion pair and the conformational stability of the folded helix-loop-helix motif. GTD-C, a polypeptide with 43 amino acid residues, has been designed to fold into a hairpin helix-loop-helix motif that can dimerise to form a four-helix bundle. The folded motif is in slow conformational exchange on the NMR timescale and has a well-dispersed 1H NMR spectrum, a narrow temperature interval for thermal denaturation and a near-UV CD spectrum with some fine structure. The conformational stability is pH dependent with an optimum that corresponds to the pH for maximum formation of a hydrogen-bonded ion pair between HisH17+ in helix I and Asp27- in helix II. The formation of an interhelical salt bridge is strongly suggested by the pH dependence of a number of spectroscopic probes to generate a well-defined tertiary structure in a designed helix-loop-helix motif. The thermodynamic stability of the folded motif is not increased by the formation of the salt bridge, but neighbouring conformations are destabilised. The use of this novel design principle in combination with hydrophobic interactions that provide sufficient binding energy in the folded structure should be of general use in de novo design of native-like proteins.

  10. GTF2IRD2 is located in the Williams-Beuren syndrome critical region 7q11.23 and encodes a protein with two TFII-I-like helix-loop-helix repeats.

    PubMed

    Makeyev, Aleksandr V; Erdenechimeg, Lkhamsuren; Mungunsukh, Ognoon; Roth, Jutta J; Enkhmandakh, Badam; Ruddle, Frank H; Bayarsaihan, Dashzeveg

    2004-07-27

    Williams-Beuren syndrome (also known as Williams syndrome) is caused by a deletion of a 1.55- to 1.84-megabase region from chromosome band 7q11.23. GTF2IRD1 and GTF2I, located within this critical region, encode proteins of the TFII-I family with multiple helix-loop-helix domains known as I repeats. In the present work, we characterize a third member, GTF2IRD2, which has sequence and structural similarity to the GTF2I and GTF2IRD1 paralogs. The ORF encodes a protein with several features characteristic of regulatory factors, including two I repeats, two leucine zippers, and a single Cys-2/His-2 zinc finger. The genomic organization of human, baboon, rat, and mouse genes is well conserved. Our exon-by-exon comparison has revealed that GTF2IRD2 is more closely related to GTF2I than to GTF2IRD1 and apparently is derived from the GTF2I sequence. The comparison of GTF2I and GTF2IRD2 genes revealed two distinct regions of homology, indicating that the helix-loop-helix domain structure of the GTF2IRD2 gene has been generated by two independent genomic duplications. We speculate that GTF2I is derived from GTF2IRD1 as a result of local duplication and the further evolution of its structure was associated with its functional specialization. Comparison of genomic sequences surrounding GTF2IRD2 genes in mice and humans allows refinement of the centromeric breakpoint position of the primate-specific inversion within the Williams-Beuren syndrome critical region.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Yao; Tan, Kemin; Chhor, Gekleng

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for twomore » alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.« less

  12. Discovery of the porcine NGN3 gene and testing its endocrine function in the pig

    USDA-ARS?s Scientific Manuscript database

    Neurogenin 3 (NGN3) is a member of the basic helix-loop-helix transcription factor family. NGN3 is both necessary and sufficient to drive endocrine differentiation in the developing pancreas in mouse and humans. Until now, the sequence for NGN3 eluded discovery despite completion of the pig genome a...

  13. Selection of a platinum-binding sequence in a loop of a four-helix bundle protein.

    PubMed

    Yagi, Sota; Akanuma, Satoshi; Kaji, Asumi; Niiro, Hiroya; Akiyama, Hayato; Uchida, Tatsuya; Yamagishi, Akihiko

    2018-02-01

    Protein-metal hybrids are functional materials with various industrial applications. For example, a redox enzyme immobilized on a platinum electrode is a key component of some biofuel cells and biosensors. To create these hybrid materials, protein molecules are bound to metal surfaces. Here, we report the selection of a novel platinum-binding sequence in a loop of a four-helix bundle protein, the Lac repressor four-helix protein (LARFH), an artificial protein in which four identical α-helices are connected via three identical loops. We created a genetic library in which the Ser-Gly-Gln-Gly-Gly-Ser sequence within the first inter-helical loop of LARFH was semi-randomly mutated. The library was then subjected to selection for platinum-binding affinity by using the T7 phage display method. The majority of the selected variants contained the Tyr-Lys-Arg-Gly-Tyr-Lys (YKRGYK) sequence in their randomized segment. We characterized the platinum-binding properties of mutant LARFH by using quartz crystal microbalance analysis. Mutant LARFH seemed to interact with platinum through its loop containing the YKRGYK sequence, as judged by the estimated exclusive area occupied by a single molecule. Furthermore, a 10-residue peptide containing the YKRGYK sequence bound to platinum with reasonably high affinity and basic side chains in the peptide were crucial in mediating this interaction. In conclusion, we have identified an amino acid sequence, YKRGYK, in the loop of a helix-loop-helix motif that shows high platinum-binding affinity. This sequence could be grafted into loops of other polypeptides as an approach to immobilize proteins on platinum electrodes for use as biosensors among other applications. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Repressed expression of a gene for a basic helix-loop-helix protein causes a white flower phenotype in carnation

    PubMed Central

    Totsuka, Akane; Okamoto, Emi; Miyahara, Taira; Kouno, Takanobu; Cano, Emilio A.; Sasaki, Nobuhiro; Watanabe, Aiko; Tasaki, Keisuke; Nishihara, Masahiro; Ozeki, Yoshihiro

    2018-01-01

    In a previous study, two genes responsible for white flower phenotypes in carnation were identified. These genes encoded enzymes involved in anthocyanin synthesis, namely, flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR), and showed reduced expression in the white flower phenotypes. Here, we identify another candidate gene for white phenotype in carnation flowers using an RNA-seq analysis followed by RT-PCR. This candidate gene encodes a transcriptional regulatory factor of the basic helix-loop-helix (bHLH) type. In the cultivar examined here, both F3H and DFR genes produced active enzyme proteins; however, expression of DFR and of genes for enzymes involved in the downstream anthocyanin synthetic pathway from DFR was repressed in the absence of bHLH expression. Occasionally, flowers of the white flowered cultivar used here have red speckles and stripes on the white petals. We found that expression of bHLH occurred in these red petal segments and induced expression of DFR and the following downstream enzymes. Our results indicate that a member of the bHLH superfamily is another gene involved in anthocyanin synthesis in addition to structural genes encoding enzymes. PMID:29681756

  15. The basic helix-loop-helix transcription factor Nex-1/Math-2 promotes neuronal survival of PC12 cells by modulating the dynamic expression of anti-apoptotic and cell cycle regulators

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2006-01-01

    The basic helix-loop-helix transcription factor Nex1/Math-2 belongs to the NeuroD subfamily, which plays a critical role during neuronal differentiation and maintenance of the differentiated state. Previously, we demonstrated that Nex1 is a key regulatory component of the nerve growth factor (NGF) pathway. Further supporting this hypothesis, this study shows that Nex1 has survival-inducing properties similar to NGF, as Nex1-overexpressing PC12 cells survive in the absence of trophic factors. We dissected the molecular mechanism by which Nex1 confers neuroprotection upon serum removal and found that constitutive expression of Nex1 maintained the expression of specific G1 phase cyclin-dependent kinase inhibitors and concomitantly induced a dynamic expression profile of key anti-apoptotic regulators. This study provides the first evidence of the underlying mechanism by which a member of the NeuroD-subfamily promotes an active anti-apoptotic program essential to the survival of neurons. Our results suggest that the survival program may be viewed as an integral component of the intrinsic programming of the differ entiated state. PMID:15659228

  16. Genome-wide identification and analysis of the chicken basic helix-loop-helix factors.

    PubMed

    Liu, Wu-Yi; Zhao, Chun-Jiang

    2010-01-01

    Members of the basic helix-loop-helix (bHLH) family of transcription factors play important roles in a wide range of developmental processes. In this study, we conducted a genome-wide survey using the chicken (Gallus gallus) genomic database, and identified 104 bHLH sequences belonging to 42 gene families in an effort to characterize the chicken bHLH transcription factor family. Phylogenetic analyses revealed that chicken has 50, 21, 15, 4, 8, and 3 bHLH members in groups A, B, C, D, E, and F, respectively, while three members belonging to none of these groups were classified as ''orphans". A comparison between chicken and human bHLH repertoires suggested that both organisms have a number of lineage-specific bHLH members in the proteomes. Chromosome distribution patterns and phylogenetic analyses strongly suggest that the bHLH members should have arisen through gene duplication at an early date. Gene Ontology (GO) enrichment statistics showed 51 top GO annotations of biological processes counted in the frequency. The present study deepens our understanding of the chicken bHLH transcription factor family and provides much useful information for further studies using chicken as a model system.

  17. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    DOE PAGES

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; ...

    2015-07-03

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for twomore » alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.« less

  18. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    PubMed

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1 -/- mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1 -/- mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  19. Tracheophytes Contain Conserved Orthologs of a Basic Helix-Loop-Helix Transcription Factor That Modulate ROOT HAIR SPECIFIC Genes[OPEN

    PubMed Central

    Cho, Hyun-Min

    2017-01-01

    ROOT HAIR SPECIFIC (RHS) genes, which contain the root hair-specific cis-element (RHE) in their regulatory regions, function in root hair morphogenesis. Here, we demonstrate that an Arabidopsis thaliana basic helix-loop-helix transcription factor, ROOT HAIR DEFECTVE SIX-LIKE4 (RSL4), directly binds to the RHE in vitro and in vivo, upregulates RHS genes, and stimulates root hair formation in Arabidopsis. Orthologs of RSL4 from a eudicot (poplar [Populus trichocarpa]), a monocot (rice [Oryza sativa]), and a lycophyte (Selaginella moellendorffii) each restored root hair growth in the Arabidopsis rsl4 mutant. In addition, the rice and S. moellendorffii RSL4 orthologs bound to the RHE in in vitro and in vivo assays. The RSL4 orthologous genes contain RHEs in their promoter regions, and RSL4 was able to bind to its own RHEs in vivo and amplify its own expression. This process likely provides a positive feedback loop for sustainable root hair growth. When RSL4 and its orthologs were expressed in cells in non-root-hair positions, they induced ectopic root hair growth, indicating that these genes are sufficient to specify root hair formation. Our results suggest that RSL4 mediates root hair formation by regulating RHS genes and that this mechanism is conserved throughout the tracheophyte (vascular plant) lineage. PMID:28087829

  20. Structural characterization of the H-NS protein from Xylella fastidiosa and its interaction with DNA.

    PubMed

    Rosselli-Murai, Luciana K; Sforça, Maurício L; Sassonia, Rogério C; Azzoni, Adriano R; Murai, Marcelo J; de Souza, Anete P; Zeri, Ana C

    2012-10-01

    The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide (1)H and (15)N chemical shift signals for a sample of XfH-NS(56-134) were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coli and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as β-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The structural coupling between ATPase activation and recovery stroke in the myosin II motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koppole, Sampath; Smith, Jeremy C; Fischer, S.

    2007-07-01

    Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates {approx} 65{sup o}. Simultaneous with this 'recovery stroke', myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 {angstrom}-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transitionmore » at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.« less

  2. The structural coupling between ATPase activation and recovery stroke in the myosin II motor.

    PubMed

    Koppole, Sampath; Smith, Jeremy C; Fischer, Stefan

    2007-07-01

    Before the myosin motor head can perform the next power stroke, it undergoes a large conformational transition in which the converter domain, bearing the lever arm, rotates approximately 65 degrees . Simultaneous with this "recovery stroke," myosin activates its ATPase function by closing the Switch-2 loop over the bound ATP. This coupling between the motions of the converter domain and of the 40 A-distant Switch-2 loop is essential to avoid unproductive ATP hydrolysis. The coupling mechanism is determined here by finding a series of optimized intermediates between crystallographic end structures of the recovery stroke (Dictyostelium discoideum), yielding movies of the transition at atomic detail. The successive formation of two hydrogen bonds by the Switch-2 loop is correlated with the successive see-saw motions of the relay and SH1 helices that hold the converter domain. SH1 helix and Switch-2 loop communicate via a highly conserved loop that wedges against the SH1-helix upon Switch-2 closing.

  3. Artificial ligand binding within the HIF2[alpha] PAS-B domain of the HIF2 transcription factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, Thomas H.; Tomchick, Diana R.; Machius, Mischa

    2009-05-12

    The hypoxia-inducible factor (HIF) basic helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim (bHLH-PAS) transcription factors are master regulators of the conserved molecular mechanism by which metazoans sense and respond to reductions in local oxygen concentrations. In humans, HIF is critically important for the sustained growth and metastasis of solid tumors. Here, we describe crystal structures of the heterodimer formed by the C-terminal PAS domains from the HIF2{alpha} and ARNT subunits of the HIF2 transcription factor, both in the absence and presence of an artificial ligand. Unexpectedly, the HIF2{alpha} PAS-B domain contains a large internal cavity that accommodates ligands identified frommore » a small-molecule screen. Binding one of these ligands to HIF2{alpha} PAS-B modulates the affinity of the HIF2{alpha}:ARNT PAS-B heterodimer in vitro. Given the essential role of PAS domains in forming active HIF heterodimers, these results suggest a presently uncharacterized ligand-mediated mechanism for regulating HIF2 activity in endogenous and clinical settings.« less

  4. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    PubMed

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  5. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments.

    PubMed

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-09-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.

  6. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Ji-Hye; Lee, Won Kyung; Kim, Heeyoun

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminalmore » Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.« less

  7. An exploration of alternative visualisations of the basic helix-loop-helix protein interaction network

    PubMed Central

    Holden, Brian J; Pinney, John W; Lovell, Simon C; Amoutzias, Grigoris D; Robertson, David L

    2007-01-01

    Background Alternative representations of biochemical networks emphasise different aspects of the data and contribute to the understanding of complex biological systems. In this study we present a variety of automated methods for visualisation of a protein-protein interaction network, using the basic helix-loop-helix (bHLH) family of transcription factors as an example. Results Network representations that arrange nodes (proteins) according to either continuous or discrete information are investigated, revealing the existence of protein sub-families and the retention of interactions following gene duplication events. Methods of network visualisation in conjunction with a phylogenetic tree are presented, highlighting the evolutionary relationships between proteins, and clarifying the context of network hubs and interaction clusters. Finally, an optimisation technique is used to create a three-dimensional layout of the phylogenetic tree upon which the protein-protein interactions may be projected. Conclusion We show that by incorporating secondary genomic, functional or phylogenetic information into network visualisation, it is possible to move beyond simple layout algorithms based on network topology towards more biologically meaningful representations. These new visualisations can give structure to complex networks and will greatly help in interpreting their evolutionary origins and functional implications. Three open source software packages (InterView, TVi and OptiMage) implementing our methods are available. PMID:17683601

  8. Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿

    PubMed Central

    Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo

    2008-01-01

    Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128

  9. NPAS1-ARNT and NPAS3-ARNT crystal structures implicate the bHLH-PAS family as multi-ligand binding transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dalei; Su, Xiaoyu; Potluri, Nalini

    Here, the neuronal PAS domain proteins NPAS1 and NPAS3 are members of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) family, and their genetic deficiencies are linked to a variety of human psychiatric disorders including schizophrenia, autism spectrum disorders and bipolar disease. NPAS1 and NPAS3 must each heterodimerize with the aryl hydrocarbon receptor nuclear translocator (ARNT), to form functional transcription complexes capable of DNA binding and gene regulation. Here we examined the crystal structures of multi-domain NPAS1-ARNT and NPAS3-ARNT-DNA complexes, discovering each to contain four putative ligand-binding pockets. Through expanded architectural comparisons between these complexes and HIF-1α-ARNT, HIF-2α-ARNT and CLOCK-BMAL1, we show the widermore » mammalian bHLH-PAS family is capable of multi-ligand-binding and presents as an ideal class of transcription factors for direct targeting by small-molecule drugs.« less

  10. NPAS1-ARNT and NPAS3-ARNT crystal structures implicate the bHLH-PAS family as multi-ligand binding transcription factors

    DOE PAGES

    Wu, Dalei; Su, Xiaoyu; Potluri, Nalini; ...

    2016-10-26

    Here, the neuronal PAS domain proteins NPAS1 and NPAS3 are members of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) family, and their genetic deficiencies are linked to a variety of human psychiatric disorders including schizophrenia, autism spectrum disorders and bipolar disease. NPAS1 and NPAS3 must each heterodimerize with the aryl hydrocarbon receptor nuclear translocator (ARNT), to form functional transcription complexes capable of DNA binding and gene regulation. Here we examined the crystal structures of multi-domain NPAS1-ARNT and NPAS3-ARNT-DNA complexes, discovering each to contain four putative ligand-binding pockets. Through expanded architectural comparisons between these complexes and HIF-1α-ARNT, HIF-2α-ARNT and CLOCK-BMAL1, we show the widermore » mammalian bHLH-PAS family is capable of multi-ligand-binding and presents as an ideal class of transcription factors for direct targeting by small-molecule drugs.« less

  11. The basic helix-loop-helix differentiation factor Nex1/MATH-2 functions as a key activator of the GAP-43 gene

    PubMed Central

    Uittenbogaard, Martine; Martinka, Debra L.; Chiaramello, Anne

    2006-01-01

    Nex1/MATH-2 is a neurogenic basic Helix-Loop-Helix (bHLH) transcription factor that belongs to the NeuroD subfamily. Its expression parallels that of the GAP-43 gene and peaks during brain development, when neurite outgrowth and synaptogenesis are highly active. We previously observed a direct correlation between the levels of expression of Nex1 and GAP-43 proteins, which resulted in extensive neurite outgrowth and neuronal differentiation of PC12 cells in the absence of nerve growth factor. Since the GAP-43 gene is a target for bHLH regulation, we investigated whether Nex1 could regulate the activity of the GAP-43 promoter. We found that among the members of the NeuroD subfamily, Nex1 promoted maximal activity of the GAP-43 promoter. The Nex1-mediated activity is restricted to the conserved E1–E2 cluster located near the major transcription start sites. By electrophoretic mobility shift assay and site-directed mutagenesis, we showed that Nex1 binds as homodimers and that the E1 E-box is a high affinity binding site. We further found that Nex1 released the ME1 E-protein-mediated repression in a concentration dependent manner. Thus, the E1–E2 cluster has a dual function: it can mediate activation or repression depending on the interacting bHLH proteins. Finally, a series of N-terminal and C-terminal deletions revealed that Nex1 transcriptional activity is linked to two distinct transactivation domains, TAD1 and TAD2, with TAD1 being unique to Nex1. Together, our results suggest that Nex1 may engage in selective interactions with components of the core transcriptional machinery whose assembly is dictated by the architecture of the GAP-43 promoter and cellular environment. PMID:12562512

  12. Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis.

    PubMed

    Petrie, Emma J; Sandow, Jarrod J; Jacobsen, Annette V; Smith, Brian J; Griffin, Michael D W; Lucet, Isabelle S; Dai, Weiwen; Young, Samuel N; Tanzer, Maria C; Wardak, Ahmad; Liang, Lung-Yu; Cowan, Angus D; Hildebrand, Joanne M; Kersten, Wilhelmus J A; Lessene, Guillaume; Silke, John; Czabotar, Peter E; Webb, Andrew I; Murphy, James M

    2018-06-21

    Necroptotic cell death is mediated by the most terminal known effector of the pathway, MLKL. Precisely how phosphorylation of the MLKL pseudokinase domain activation loop by the upstream kinase, RIPK3, induces unmasking of the N-terminal executioner four-helix bundle (4HB) domain of MLKL, higher-order assemblies, and permeabilization of plasma membranes remains poorly understood. Here, we reveal the existence of a basal monomeric MLKL conformer present in human cells prior to exposure to a necroptotic stimulus. Following activation, toggling within the MLKL pseudokinase domain promotes 4HB domain disengagement from the pseudokinase domain αC helix and pseudocatalytic loop, to enable formation of a necroptosis-inducing tetramer. In contrast to mouse MLKL, substitution of RIPK3 substrate sites in the human MLKL pseudokinase domain completely abrogated necroptotic signaling. Therefore, while the pseudokinase domains of mouse and human MLKL function as molecular switches to control MLKL activation, the underlying mechanism differs between species.

  13. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration.

    PubMed

    Ibrahim, Hisham R; Imazato, Kenta; Ono, Hajime

    2011-09-28

    Human milk lysozyme is thought to be a key defense factor in protecting the gastrointestinal tract of newborns against bacterial infection. Recently, evidence was found that pepsin, under conditions relevant to the newborn stomach, cleaves chicken lysozyme (cLZ) at specific loops to generate five antimicrobial peptide motifs. This study explores the antimicrobial role of the corresponding peptides of human lysozyme (hLZ), the actual protein in breast milk. Five peptide motifs of hLZ, one helix-loop-helix (HLH), its two helices (H1 and H2), and two helix-sheet motifs, H2-β-strands 1-2 (H2-S12) or H2-β-strands 1-3 (H2-S13), were synthesized and examined for antimicrobial action. The five peptides of hLZ exhibit microbicidal activity to various degrees against several bacterial strains. The HLH peptide and its N-terminal helix (H1) were significantly the most potent bactericidal to Gram-positive and Gram-negative bacteria and the fungus Candida albicans . Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its N-terminal helix (H1) kill bacteria by crossing the outer membrane of Gram-negative bacteria via self-promoted uptake and are able to dissipate the membrane potential-dependent respiration of Gram-positive bacteria. This finding is the first to describe that hLZ possesses multiple antimicrobial peptide motifs within its N-terminal domain, providing insight into new classes of antibiotic peptides with potential use in the treatment of infectious diseases.

  14. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics

    PubMed Central

    Zheng, Liangzhen; Mu, Yuguang

    2016-01-01

    Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application. PMID:27824891

  15. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor

    PubMed Central

    Sarker, Muzaddid; de Antueno, Roberto; Langelaan, David N.; Parmar, Hiren B.; Shin, Kyungsoo; Rainey, Jan K.; Duncan, Roy

    2015-01-01

    Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation. PMID:26061049

  16. Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans

    PubMed Central

    Dumesic, Phillip A.; Rosenblad, Magnus A.; Samuelsson, Tore; Nguyen, Tiffany; Moresco, James J.; Yates, John R.; Madhani, Hiten D.

    2015-01-01

    Despite conservation of the signal recognition particle (SRP) from bacteria to man, computational approaches have failed to identify SRP components from genomes of many lower eukaryotes, raising the possibility that they have been lost or altered in those lineages. We report purification and analysis of SRP in the human pathogen Cryptococcus neoformans, providing the first description of SRP in basidiomycetous yeast. The C. neoformans SRP RNA displays a predicted structure in which the universally conserved helix 8 contains an unprecedented stem-loop insertion. Guided by this sequence, we computationally identified 152 SRP RNAs throughout the phylum Basidiomycota. This analysis revealed additional helix 8 alterations including single and double stem-loop insertions as well as loop diminutions affecting RNA structural elements that are otherwise conserved from bacteria to man. Strikingly, these SRP RNA features in Basidiomycota are accompanied by phylum-specific alterations in the RNA-binding domain of Srp54, the SRP protein subunit that directly interacts with helix 8. Our findings reveal unexpected fungal SRP diversity and suggest coevolution of the two most conserved SRP features—SRP RNA helix 8 and Srp54—in basidiomycetes. Because members of this phylum include important human and plant pathogens, these noncanonical features provide new targets for antifungal compound development. PMID:26275773

  17. Helix-Grafted Pleckstrin Homology Domains Suppress HIV-1 Infection of CD4-Positive Cells.

    PubMed

    Tennyson, Rachel L; Walker, Susanne N; Ikeda, Terumasa; Harris, Reuben S; Kennan, Alan J; McNaughton, Brian R

    2016-10-17

    The size, functional group diversity and three-dimensional structure of proteins often allow these biomolecules to bind disease-relevant structures that challenge or evade small-molecule discovery. Additionally, folded proteins are often much more stable in biologically relevant environments compared to their peptide counterparts. We recently showed that helix-grafted display-extensive resurfacing and elongation of an existing solvent-exposed helix in a pleckstrin homology (PH) domain-led to a new protein that binds a surrogate of HIV-1 gp41, a validated target for inhibition of HIV-1 entry. Expanding on this work, we prepared a number of human-derived helix-grafted-display PH domains of varied helix length and measured properties relevant to therapeutic and basic research applications. In particular, we showed that some of these new reagents expressed well as recombinant proteins in Escherichia coli, were relatively stable in human serum, bound a mimic of pre-fusogenic HIV-1 gp41 in vitro and in complex biological environments, and significantly lowered the incidence of HIV-1 infection of CD4-positive cells. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.

    PubMed

    Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana

    2016-01-01

    The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.

  19. STARD4 Membrane Interactions and Sterol Binding

    PubMed Central

    2016-01-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix. PMID:26168008

  20. Transcription regulation of the Saccharomyces cerevisiae PIS1 gene by inositol and the pleiotropic regulator, Ume6p.

    PubMed

    Jani, Niketa M; Lopes, John M

    2008-12-01

    In Saccharomyces cerevisiae, transcription of most of the phospholipid biosynthetic genes (e.g. INO1, CHO1, CHO2 and OPI3) is repressed by growth in the presence of inositol and choline and derepressed in their absence. This regulation requires the Ino2p and Ino4p activators and the Opi1p repressor. The PIS1 structural gene is required for the synthesis of the essential lipid phosphatidylinositol. Previous reports show that PIS1 expression is uncoupled from inositol/choline regulation, but is regulated by carbon source, hypoxia and zinc. However, in this study we found that the expression of PIS1 is induced twofold by inositol. This regulation did not require Ino2p and Ino4p, although Ino4p was required for full expression. Ino4p is a basic helix-loop-helix protein that requires a binding partner. Curiously, none of the other basic helix-loop-helix proteins affected PIS1 expression. Inositol induction did require another general regulator of phospholipid biosynthesis, Ume6p. Ume6p was found to be a positive regulator of PIS1 gene expression. Ume6p, and several associated factors, were required for inositol-mediated induction and chromatin immunoprecipitation analysis showed that Ume6p directly regulates PIS1 expression. Thus, we demonstrate novel regulation of the PIS1 gene by Ume6p.

  1. The Rice Basic Helix-Loop-Helix Transcription Factor TDR INTERACTING PROTEIN2 Is a Central Switch in Early Anther Development[C][W

    PubMed Central

    Fu, Zhenzhen; Yu, Jing; Cheng, Xiaowei; Zong, Xu; Xu, Jie; Chen, Mingjiao; Li, Zongyun; Zhang, Dabing; Liang, Wanqi

    2014-01-01

    In male reproductive development in plants, meristemoid precursor cells possessing transient, stem cell–like features undergo cell divisions and differentiation to produce the anther, the male reproductive organ. The anther contains centrally positioned microsporocytes surrounded by four distinct layers of wall: the epidermis, endothecium, middle layer, and tapetum. Here, we report that the rice (Oryza sativa) basic helix-loop-helix (bHLH) protein TDR INTERACTING PROTEIN2 (TIP2) functions as a crucial switch in the meristemoid transition and differentiation during early anther development. The tip2 mutants display undifferentiated inner three anther wall layers and abort tapetal programmed cell death, causing complete male sterility. TIP2 has two paralogs in rice, TDR and EAT1, which are key regulators of tapetal programmed cell death. We revealed that TIP2 acts upstream of TDR and EAT1 and directly regulates the expression of TDR and EAT1. In addition, TIP2 can interact with TDR, indicating a role of TIP2 in later anther development. Our findings suggest that the bHLH proteins TIP2, TDR, and EAT1 play a central role in regulating differentiation, morphogenesis, and degradation of anther somatic cell layers, highlighting the role of paralogous bHLH proteins in regulating distinct steps of plant cell–type determination. PMID:24755456

  2. Genomic organization and chromosomal localization of the gene TCF15 encoding the early mesodermal basic helix-loop-helix factor bHLH-EC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidai, H.; Quertermous, E.E.; Quertermous, T.

    1995-12-10

    bHLH-EC2 is a recently characterized member of a growing family of basic helix-loop-helix transcription factors. This family includes bHLH factors such as twist, which appear to be primarily involved in early mesodermal differentiation, and bHLH factors such as TAL-1, which have been characterized through their association with chromosomal breakpoints associated with T-cell leukemias. To provide for studies aimed at understanding the genetic regulation of bHLH-EC2, we have characterized the organization of this gene and conducted preliminary studies of the transcriptional activity of the upstream promoter region. The mouse bHLH-EC2 gene was found to consist of two exons separated by amore » 5-kb intron, an organization pattern similar to the mouse twist gene. The transcription initiation site was identified by RNase protection assay and primer extension analysis. Linked promoter-reporter gene transfection experiments in cultured cells indicated that while the identified upstream sequence can function to promote transcription, it does not function in a cell-specific fashion. To investigate the possible association of bHLH-EC2 with hematological malignancy, the chromosomal location of this gene in the human was mapped by fluorescence in situ hybridization and assigned to chromosome band 20p13. 16 refs., 3 figs.« less

  3. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development.

    PubMed

    Gao, Chao; Sun, Jianlei; Wang, Chongqi; Dong, Yumei; Xiao, Shouhua; Wang, Xingjun; Jiao, Zigao

    2017-01-01

    The basic/helix-loop-helix (bHLH) proteins constitute a superfamily of transcription factors that are known to play a range of regulatory roles in eukaryotes. Over the past few decades, many bHLH family genes have been well-characterized in model plants, such as Arabidopsis, rice and tomato. However, the bHLH protein family in peanuts has not yet been systematically identified and characterized. Here, 132 and 129 bHLH proteins were identified from two wild ancestral diploid subgenomes of cultivated tetraploid peanuts, Arachis duranensis (AA) and Arachis ipaensis (BB), respectively. Phylogenetic analysis indicated that these bHLHs could be classified into 19 subfamilies. Distribution mapping results showed that peanut bHLH genes were randomly and unevenly distributed within the 10 AA chromosomes and 10 BB chromosomes. In addition, 120 bHLH gene pairs between the AA-subgenome and BB-subgenome were found to be orthologous and 101 of these pairs were highly syntenic in AA and BB chromosomes. Furthermore, we confirmed that 184 bHLH genes expressed in different tissues, 22 of which exhibited tissue-specific expression. Meanwhile, we identified 61 bHLH genes that may be potentially involved in peanut-specific subterranean. Our comprehensive genomic analysis provides a foundation for future functional dissection and understanding of the regulatory mechanisms of bHLH transcription factors in peanuts.

  4. Evolution of the Max and Mlx networks in animals.

    PubMed

    McFerrin, Lisa G; Atchley, William R

    2011-01-01

    Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.

  5. Identification of Specific DNA Binding Residues in the TCP Family of Transcription Factors in Arabidopsis[W

    PubMed Central

    Aggarwal, Pooja; Das Gupta, Mainak; Joseph, Agnel Praveen; Chatterjee, Nirmalya; Srinivasan, N.; Nath, Utpal

    2010-01-01

    The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an ∼60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors. PMID:20363772

  6. Autoinhibition of ETV6 DNA Binding Is Established by the Stability of Its Inhibitory Helix

    PubMed Central

    De, Soumya; Okon, Mark; Graves, Barbara J.; McIntosh, Lawrence P.

    2017-01-01

    The ETS transcriptional repressor ETV6 (or TEL) is autoinhibited by an α-helix that sterically blocks its DNA-binding ETS domain. The inhibitory helix is marginally stable and unfolds when ETV6 binds to either specific or non-specific DNA. Using NMR spectroscopy, we show that folding of the inhibitory helix requires a buried charge–dipole interaction with helix H1 of the ETS domain. This interaction also contributes directly to autoinhibition by precluding a highly conserved dipole-enhanced hydrogen bond between the phosphodiester backbone of bound DNA and the N terminus of helix H1. To probe further the thermodynamic basis of autoinhibition, ETV6 variants were generated with amino acid substitutions introduced along the solvent exposed surface of the inhibitory helix. These changes were designed to increase the intrinsic helical propensity of the inhibitory helix without perturbing its packing interactions with the ETS domain. NMR-monitored amide hydrogen exchange measurements confirmed that the stability of the folded inhibitory helix increases progressively with added helix-promoting substitutions. This also results in progressively reinforced autoinhibition and decreased DNA-binding affinity. Surprisingly, locking the inhibitory helix onto the ETS domain by a disulfide bridge severely impairs, but does not abolish DNA binding. Weak interactions still occur via an interface displaced from the canonical ETS domain DNA-binding surface. Collectively, these studies establish a direct thermodynamic linkage between inhibitory helix stability and ETV6 autoinhibition, and demonstrate that helix unfolding does not strictly precede DNA binding. Modulating inhibitory helix stability provides a potential route for the in vivo regulation of ETV6 activity. PMID:26920109

  7. Critical domain interactions for type A RNase P RNA catalysis with and without the specificity domain

    PubMed Central

    Mao, Guanzhong; Srivastava, Abhishek S.; Wu, Shiying; Kosek, David; Lindell, Magnus

    2018-01-01

    The natural trans-acting ribozyme RNase P RNA (RPR) is composed of two domains in which the catalytic (C-) domain mediates cleavage of various substrates. The C-domain alone, after removal of the second specificity (S-) domain, catalyzes this reaction as well, albeit with reduced efficiency. Here we provide experimental evidence indicating that efficient cleavage mediated by the Escherichia coli C-domain (Eco CP RPR) with and without the C5 protein likely depends on an interaction referred to as the "P6-mimic". Moreover, the P18 helix connects the C- and S-domains between its loop and the P8 helix in the S-domain (the P8/ P18-interaction). In contrast to the "P6-mimic", the presence of P18 does not contribute to the catalytic performance by the C-domain lacking the S-domain in cleavage of an all ribo model hairpin loop substrate while deletion or disruption of the P8/ P18-interaction in full-size RPR lowers the catalytic efficiency in cleavage of the same model hairpin loop substrate in keeping with previously reported data using precursor tRNAs. Consistent with that P18 is not required for cleavage mediated by the C-domain we show that the archaeal Pyrococcus furiosus RPR C-domain, which lacks the P18 helix, is catalytically active in trans without the S-domain and any protein. Our data also suggest that the S-domain has a larger impact on catalysis for E. coli RPR compared to P. furiosus RPR. Finally, we provide data indicating that the absence of the S-domain and P18, or the P8/ P18-interaction in full-length RPR influences the charge distribution near the cleavage site in the RPR-substrate complex to a small but reproducible extent. PMID:29509761

  8. Phylogenetic Analysis and Classification of the Fungal bHLH Domain

    PubMed Central

    Sailsbery, Joshua K.; Atchley, William R.; Dean, Ralph A.

    2012-01-01

    The basic Helix-Loop-Helix (bHLH) domain is an essential highly conserved DNA-binding domain found in many transcription factors in all eukaryotic organisms. The bHLH domain has been well studied in the Animal and Plant Kingdoms but has yet to be characterized within Fungi. Herein, we obtained and evaluated the phylogenetic relationship of 490 fungal-specific bHLH containing proteins from 55 whole genome projects composed of 49 Ascomycota and 6 Basidiomycota organisms. We identified 12 major groupings within Fungi (F1–F12); identifying conserved motifs and functions specific to each group. Several classification models were built to distinguish the 12 groups and elucidate the most discerning sites in the domain. Performance testing on these models, for correct group classification, resulted in a maximum sensitivity and specificity of 98.5% and 99.8%, respectively. We identified 12 highly discerning sites and incorporated those into a set of rules (simplified model) to classify sequences into the correct group. Conservation of amino acid sites and phylogenetic analyses established that like plant bHLH proteins, fungal bHLH–containing proteins are most closely related to animal Group B. The models used in these analyses were incorporated into a software package, the source code for which is available at www.fungalgenomics.ncsu.edu. PMID:22114358

  9. Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous signals.

    PubMed

    Nebert, Daniel W

    2017-07-01

    The basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family comprises many transcription factors, found throughout all three kingdoms of life; bHLH/PAS members "sense" innumerable intracellular and extracellular "signals" - including endogenous compounds, foreign chemicals, gas molecules, redox potential, photons (light), gravity, heat, and osmotic pressure. These signals then initiate downstream signaling pathways involved in responding to that signal. The term "PAS", abbreviation for "per-Arnt-sim" was first coined in 1991. Although the mouse Arnt gene was not identified until 1991, evidence of its co-transcriptional binding partner, aryl hydrocarbon receptor (AHR), was first reported in 1974 as a "sensor" of foreign chemicals, up-regulating cytochrome P450 family 1 (CYP1) and other enzyme activities that usually metabolize the signaling chemical. Within a few years, AHR was proposed also to participate in inflammation. The mouse [Ah] locus was shown (1973-1989) to be relevant to chemical carcinogenesis, mutagenesis, toxicity and teratogenesis, the mouse Ahr gene was cloned in 1992, and the first Ahr(-/-) knockout mouse line was reported in 1995. After thousands of studies from the early 1970s to present day, we now realize that AHR participates in dozens of signaling pathways involved in critical-life processes, affecting virtually every organ and cell-type in the animal, including many invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Antagonistic Basic Helix-Loop-Helix/bZIP Transcription Factors Form Transcriptional Modules That Integrate Light and Reactive Oxygen Species Signaling in Arabidopsis[W

    PubMed Central

    Chen, Dongqin; Xu, Gang; Tang, Weijiang; Jing, Yanjun; Ji, Qiang; Fei, Zhangjun; Lin, Rongcheng

    2013-01-01

    The critical developmental switch from heterotrophic to autotrophic growth of plants involves light signaling transduction and the production of reactive oxygen species (ROS). ROS function as signaling molecules that regulate multiple developmental processes, including cell death. However, the relationship between light and ROS signaling remains unclear. Here, we identify transcriptional modules composed of the basic helix-loop-helix and bZIP transcription factors PHYTOCHROME-INTERACTING FACTOR1 (PIF1), PIF3, ELONGATED HYPOCOTYL5 (HY5), and HY5 HOMOLOGY (HYH) that bridge light and ROS signaling to regulate cell death and photooxidative response. We show that pif mutants release more singlet oxygen and exhibit more extensive cell death than the wild type during Arabidopsis thaliana deetiolation. Genome-wide expression profiling indicates that PIF1 represses numerous ROS and stress-related genes. Molecular and biochemical analyses reveal that PIF1/PIF3 and HY5/HYH physically interact and coordinately regulate the expression of five ROS-responsive genes by directly binding to their promoters. Furthermore, PIF1/PIF3 and HY5/HYH function antagonistically during the seedling greening process. In addition, phytochromes, cryptochromes, and CONSTITUTIVE PHOTOMORPHOGENIC1 act upstream to regulate ROS signaling. Together, this study reveals that the PIF1/PIF3-HY5/HYH transcriptional modules mediate crosstalk between light and ROS signaling and sheds light on a new mechanism by which plants adapt to the light environments. PMID:23645630

  11. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes.

    PubMed

    Marchegiani, Shannon; Davis, Taylor; Tessadori, Federico; van Haaften, Gijs; Brancati, Francesco; Hoischen, Alexander; Huang, Haigen; Valkanas, Elise; Pusey, Barbara; Schanze, Denny; Venselaar, Hanka; Vulto-van Silfhout, Anneke T; Wolfe, Lynne A; Tifft, Cynthia J; Zerfas, Patricia M; Zambruno, Giovanna; Kariminejad, Ariana; Sabbagh-Kermani, Farahnaz; Lee, Janice; Tsokos, Maria G; Lee, Chyi-Chia R; Ferraz, Victor; da Silva, Eduarda Morgana; Stevens, Cathy A; Roche, Nathalie; Bartsch, Oliver; Farndon, Peter; Bermejo-Sanchez, Eva; Brooks, Brian P; Maduro, Valerie; Dallapiccola, Bruno; Ramos, Feliciano J; Chung, Hon-Yin Brian; Le Caignec, Cédric; Martins, Fabiana; Jacyk, Witold K; Mazzanti, Laura; Brunner, Han G; Bakkers, Jeroen; Lin, Shuo; Malicdan, May Christine V; Boerkoel, Cornelius F; Gahl, William A; de Vries, Bert B A; van Haelst, Mieke M; Zenker, Martin; Markello, Thomas C

    2015-07-02

    Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. Behavior of Solvent-Exposed Hydrophobic Groove in the Anti-Apoptotic Bcl-XL Protein: Clues for Its Ability to Bind Diverse BH3 Ligands from MD Simulations

    PubMed Central

    Sankararamakrishnan, Ramasubbu

    2013-01-01

    Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME) scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL. PMID:23468841

  13. Structural and functional aspects of winged-helix domains at the core of transcription initiation complexes.

    PubMed

    Teichmann, Martin; Dumay-Odelot, Hélène; Fribourg, Sébastien

    2012-01-01

    The winged helix (WH) domain is found in core components of transcription systems in eukaryotes and prokaryotes. It represents a sub-class of the helix-turn-helix motif. The WH domain participates in establishing protein-DNA and protein-protein-interactions. Here, we discuss possible explanations for the enrichment of this motif in transcription systems.

  14. NMR structure of the bovine prion protein

    PubMed Central

    López García, Francisco; Zahn, Ralph; Riek, Roland; Wüthrich, Kurt

    2000-01-01

    The NMR structures of the recombinant 217-residue polypeptide chain of the mature bovine prion protein, bPrP(23–230), and a C-terminal fragment, bPrP(121–230), include a globular domain extending from residue 125 to residue 227, a short flexible chain end of residues 228–230, and an N-terminal flexibly disordered “tail” comprising 108 residues for the intact protein and 4 residues for bPrP(121–230), respectively. The globular domain contains three α-helices comprising the residues 144–154, 173–194, and 200–226, and a short antiparallel β-sheet comprising the residues 128–131 and 161–164. The best-defined parts of the globular domain are the central portions of the helices 2 and 3, which are linked by the only disulfide bond in bPrP. Significantly increased disorder and mobility is observed for helix 1, the loop 166–172 leading from the β-strand 2 to helix 2, the end of helix 2 and the following loop, and the last turn of helix 3. Although there are characteristic local differences relative to the conformations of the murine and Syrian hamster prion proteins, the bPrP structure is essentially identical to that of the human prion protein. On the other hand, there are differences between bovine and human PrP in the surface distribution of electrostatic charges, which then appears to be the principal structural feature of the “healthy” PrP form that might affect the stringency of the species barrier for transmission of prion diseases between humans and cattle. PMID:10899999

  15. Functional studies of the Ciona intestinalis myogenic regulatory factor reveal conserved features of chordate myogenesis.

    PubMed

    Izzi, Stephanie A; Colantuono, Bonnie J; Sullivan, Kelly; Khare, Parul; Meedel, Thomas H

    2013-04-15

    Ci-MRF is the sole myogenic regulatory factor (MRF) of the ascidian Ciona intestinalis, an invertebrate chordate. In order to investigate its properties we developed a simple in vivo assay based on misexpressing Ci-MRF in the notochord of Ciona embryos. We used this assay to examine the roles of three structural motifs that are conserved among MRFs: an alanine-threonine (Ala-Thr) dipeptide of the basic domain that is known in vertebrates as the myogenic code, a cysteine/histidine-rich (C/H) domain found just N-terminal to the basic domain, and a carboxy-terminal amphipathic α-helix referred to as Helix III. We show that the Ala-Thr dipeptide is necessary for normal Ci-MRF function, and that while eliminating the C/H domain or Helix III individually has no demonstrable effect on Ci-MRF, simultaneous loss of both motifs significantly reduces its activity. Our studies also indicate that direct interaction between CiMRF and an essential E-box of Ciona Troponin I is required for the expression of this muscle-specific gene and that multiple classes of MRF-regulated genes exist in Ciona. These findings are consistent with substantial conservation of MRF-directed myogenesis in chordates and demonstrate for the first time that the Ala/Thr dipeptide of the basic domain of an invertebrate MRF behaves as a myogenic code. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  17. Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors.

    PubMed Central

    Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H

    1999-01-01

    Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625

  18. Identification of exosite residues of factor Xa involved in recognition of PAR-2 on endothelial cells.

    PubMed

    Manithody, Chandrashekhara; Yang, Likui; Rezaie, Alireza R

    2012-03-27

    Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.

  19. Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy

    PubMed Central

    Imani, Saber; Cheng, Jingliang; Shasaltaneh, Marzieh Dehghan; Wei, Chunli; Yang, Lisha; Fu, Shangyi; Zou, Hui; Khan, Md. Asaduzzaman; Zhang, Xianqin; Chen, Hanchun; Zhang, Dianzheng; Duan, Chengxia; Lv, Hongbin; Li, Yumei; Chen, Rui; Fu, Junjiang

    2018-01-01

    Stargardt disease-4 (STGD4) is an autosomal dominant complex, genetically heterogeneous macular degeneration/dystrophy (MD) disorder. In this paper, we used targeted next generation sequencing and multiple molecular dynamics analyses to identify and characterize a disease-causing genetic variant in four generations of a Chinese family with STGD4-like MD. We found a novel heterozygous missense mutation, c.734T>C (p.L245P) in the PROM1 gene. Structurally, this mutation most likely impairs PROM1 protein stability, flexibility, and amino acid interaction network after changing the amino acid residue Leucine into Proline in the basic helix-loop-helix leucine zipper domain. Molecular dynamic simulation and principal component analysis provide compelling evidence that this PROM1 mutation contributes to disease causativeness or susceptibility variants in patients with STGD4-like MD. Thus, this finding defines new approaches in genetic characterization, accurate diagnosis, and prevention of STGD4-like MD. PMID:29416601

  20. Solution structure and DNA-binding properties of the C-terminal domain of UvrC from E.coli

    PubMed Central

    Singh, S.; Folkers, G.E.; Bonvin, A.M.J.J.; Boelens, R.; Wechselberger, R.; Niztayev, A.; Kaptein, R.

    2002-01-01

    The C-terminal domain of the UvrC protein (UvrC CTD) is essential for 5′ incision in the prokaryotic nucleotide excision repair process. We have determined the three-dimensional structure of the UvrC CTD using heteronuclear NMR techniques. The structure shows two helix–hairpin–helix (HhH) motifs connected by a small connector helix. The UvrC CTD is shown to mediate structure-specific DNA binding. The domain binds to a single-stranded–double-stranded junction DNA, with a strong specificity towards looped duplex DNA that contains at least six unpaired bases per loop (‘bubble DNA’). Using chemical shift perturbation experiments, the DNA-binding surface is mapped to the first hairpin region encompassing the conserved glycine–valine–glycine residues followed by lysine–arginine–arginine, a positively charged surface patch and the second hairpin region consisting of glycine–isoleucine–serine. A model for the protein– DNA complex is proposed that accounts for this specificity. PMID:12426397

  1. Crystal structure of the Mus81-Eme1 complex.

    PubMed

    Chang, Jeong Ho; Kim, Jeong Joo; Choi, Jung Min; Lee, Jung Hoon; Cho, Yunje

    2008-04-15

    The Mus81-Eme1 complex is a structure-specific endonuclease that plays an important role in rescuing stalled replication forks and resolving the meiotic recombination intermediates in eukaryotes. We have determined the crystal structure of the Mus81-Eme1 complex. Both Mus81 and Eme1 consist of a central nuclease domain, two repeats of the helix-hairpin-helix (HhH) motif at their C-terminal region, and a linker helix. While each domain structure resembles archaeal XPF homologs, the overall structure is significantly different from those due to the structure of a linker helix. We show that a flexible intradomain linker that formed with 36 residues in the nuclease domain of Eme1 is essential for the recognition of DNA. We identified several basic residues lining the outer surface of the active site cleft of Mus81 that are involved in the interaction with a flexible arm of a nicked Holliday junction (HJ). These interactions might contribute to the optimal positioning of the opposite junction across the nick into the catalytic site, which provided the basis for the "nick and counternick" mechanism of Mus81-Eme1 and for the nicked HJ to be the favored in vitro substrate of this enzyme.

  2. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics

    PubMed Central

    Simionato, Elena; Ledent, Valérie; Richards, Gemma; Thomas-Chollier, Morgane; Kerner, Pierre; Coornaert, David; Degnan, Bernard M; Vervoort, Michel

    2007-01-01

    Background Molecular and genetic analyses conducted in model organisms such as Drosophila and vertebrates, have provided a wealth of information about how networks of transcription factors control the proper development of these species. Much less is known, however, about the evolutionary origin of these elaborated networks and their large-scale evolution. Here we report the first evolutionary analysis of a whole superfamily of transcription factors, the basic helix-loop-helix (bHLH) proteins, at the scale of the whole metazoan kingdom. Results We identified in silico the putative full complement of bHLH genes in the sequenced genomes of 12 different species representative of the main metazoan lineages, including three non-bilaterian metazoans, the cnidarians Nematostella vectensis and Hydra magnipapillata and the demosponge Amphimedon queenslandica. We have performed extensive phylogenetic analyses of the 695 identified bHLHs, which has allowed us to allocate most of these bHLHs to defined evolutionary conserved groups of orthology. Conclusion Three main features in the history of the bHLH gene superfamily can be inferred from these analyses: (i) an initial diversification of the bHLHs has occurred in the pre-Cambrian, prior to metazoan cladogenesis; (ii) a second expansion of the bHLH superfamily occurred early in metazoan evolution before bilaterians and cnidarians diverged; and (iii) the bHLH complement during the evolution of the bilaterians has been remarkably stable. We suggest that these features may be extended to other developmental gene families and reflect a general trend in the evolution of the developmental gene repertoires of metazoans. PMID:17335570

  3. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple

    PubMed Central

    2012-01-01

    Background Plant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple. Results Here, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation. Conclusions Based on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple. PMID:22336381

  4. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae.

    PubMed

    Jin, Feng Jie; Takahashi, Tadashi; Matsushima, Ken-ichiro; Hara, Seiichi; Shinohara, Yasutomo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Koyama, Yasuji

    2011-07-01

    Most known basic-region helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors often involved in the control of growth and differentiation. Therefore, inappropriate expression of genes encoding bHLH proteins is frequently associated with developmental dysfunction. In our previously reported study, a novel bHLH protein-encoding gene (AO090011000215) of Aspergillus oryzae was identified. The gene-disrupted strain was found to produce dense conidia, but sparse sclerotia, relative to the parent strain. Here, to further analyze its function, we generated an overexpressing strain using the A. oryzae amyB gene promoter. Genetic overexpression led to a large number of initial hyphal aggregations and then the formation of mature sclerotia; it was therefore designated sclR (sclerotium regulator). At the same time, the sclR-overexpressing strain also displayed both delayed and decreased conidiation. Scanning electron microscopy indicated that the aerial hyphae of the sclR-overexpressing strain were extremely branched and intertwined with each other. In the generation of the SclR-enhanced green fluorescent protein (EGFP) expression strain, the SclR-EGFP protein fusion was conditionally detected in the nuclei. In addition, the loss of sclR function led to rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. Taken together, these observations indicate that SclR plays an important role in hyphal morphology, asexual conidiospore formation, and the promotion of sclerotial production, even retaining normal cell function, at least in submerged liquid culture.

  5. A Genome-Wide Identification of Basic Helix-Loop-Helix Motifs in Pediculus humanus corporis (Phthiraptera: Pediculidae)

    PubMed Central

    Wang, Xu-Hua; Wang, Yong; Zhang, De-Bao; Liu, A-Ke; Yao, Qin; Chen, Ke-Ping

    2014-01-01

    Abstract Basic helix-loop-helix (bHLH) proteins comprise a large superfamily of transcription factors, which are involved in the regulation of various developmental processes. bHLH family members are widely distributed in various eukaryotes including yeast, fruit fly, zebrafish, mouse, and human. In this study, we identified 55 bHLH motifs encoded in genome sequence of the human body louse, Pediculus humanus corporis (Phthiraptera: Pediculidae). Phylogenetic analyses of the identified P. humanus corporis bHLH (PhcbHLH) motifs revealed that there are 23, 11, 9, 1, 10, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Examination to GenBank annotations of the 55 PhcbHLH members indicated that 29 PhcbHLH proteins were annotated in consistence with our analytical result, 8 were annotated different with our analytical result, 12 were merely annotated as hypothetical protein, and the rest 6 were not deposited in GenBank. A comparison on insect bHLH gene composition revealed that human body louse possibly has more hairy and E(spl) genes than other insect species. Because hairy and E(spl) genes have been found to negatively regulate the differentiation of insect preneural cells, it is suggested that the existence of additional hairy and E(spl) genes in human body louse is probably the consequence of its long period adaptation to the relatively dark and stable environment. These data provide good references for further studies on regulatory functions of bHLH proteins in the growth and development of human body louse. PMID:25434030

  6. The MYB182 Protein Down-Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Poplar by Repressing Both Structural and Regulatory Flavonoid Genes1[OPEN

    PubMed Central

    Yoshida, Kazuko; Ma, Dawei; Constabel, C. Peter

    2015-01-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. PMID:25624398

  7. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia.

    PubMed

    Yin, Jing; Chang, Xiaoxiao; Kasuga, Takao; Bui, Mai; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during flower senescence. Transcription of PhFBH4 is induced by plant hormones and abiotic stress treatments. Silencing of PhFBH4 using virus-induced gene silencing or an antisense approach extended flower longevity, while transgenic petunia flowers with an overexpression construct showed a reduction in flower lifespan. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was significantly changed in petunia PhFBH4 transgenic flowers. Furthermore, silencing or overexpression of PhFBH4 reduced or increased, respectively, transcript abundances of important ethylene biosynthesis-related genes, ACS1 and ACO1, thereby influencing ethylene production. An electrophoretic mobility shift assay showed that the PhFBH4 protein physically interacted with the G-box cis-element in the promoter of ACS1, suggesting that ACS1 was a direct target of the PhFBH4 protein. In addition, ectopic expression of this gene altered plant development including plant height, internode length, and size of leaves and flowers, accompanied by alteration of transcript abundance of the gibberellin biosynthesis-related gene GA2OX3. Our results indicate that PhFBH4 plays an important role in regulating plant growth and development through modulating the ethylene biosynthesis pathway.

  8. Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134.

    PubMed

    Gesell, Andreas; Yoshida, Kazuko; Tran, Lan T; Constabel, C Peter

    2014-09-01

    The apple MdMYB9 gene encodes a positive regulator of proanthocyanidin synthesis that activates anthocyanidin reductase promoters from apple and poplar via interaction with basic helix-loop-helix proteins. The regulation of proanthocyanidins (PAs, condensed tannins) is of great importance in food plants due to the many benefits of PAs in the human diet. Two candidate flavonoid MYB regulators, MdMYB9 and MdMYB11, were cloned from apple (Malus × domestica) based on their similarity to known MYB PA regulators. Transcript accumulation of both MdMYB9 and MdMYB11 was induced by high light and wounding, similar to the poplar (Populus spp) PA regulator PtMYB134. In transient activation assays with various basic helix-loop-helix (bHLH) co-regulators, MdMYB9 activated apple and poplar anthocyanidin reductase (ANR) promoters, while MdMYB11 showed no activity. Potential transcription factor binding elements were found within several ANR promoters, and the importance of the bHLH binding site (E-box) on ANR promoter activation was demonstrated via mutational analysis. The ability of MdMYB9 and PtMYB134 to reciprocally activate ANR promoters from both apple and poplar and to partner with heterologous bHLH co-factors from these plants confirms the high degree of conservation of PA regulatory complexes across species. The similarity in apple and poplar PA regulation suggests that regulatory genes from poplar could be effectively employed for metabolic engineering of the PA pathway in apple.

  9. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.

    PubMed

    Tong, Junsen; Manik, Mohammad Kawsar; Im, Young Jun

    2018-01-30

    Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.

  10. A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.

    PubMed

    de Marcos, Alberto; Houbaert, Anaxi; Triviño, Magdalena; Delgado, Dolores; Martín-Trillo, Mar; Russinova, Eugenia; Fenoll, Carmen; Mena, Montaña

    2017-06-01

    The asymmetric cell divisions necessary for stomatal lineage initiation and progression in Arabidopsis ( Arabidopsis thaliana ) require the function of the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS ( SPCH ). Mutants lacking SPCH do not produce stomata or lineages. Here, we isolated a new spch-5 allele carrying a point mutation in the bHLH domain that displayed normal growth, but had an extremely low number of sometimes clustered stomata in the leaves, whereas the hypocotyls did not have any stomata. In vivo tracking of leaf epidermal cell divisions, combined with marker lines and genetic analysis, showed that the spch-5 leaf phenotype is dosage dependent and results from the decreased ability to initiate and amplify lineages, defects in asymmetric cell fate allocation, and misorientation of asymmetric division planes. Notably, application of brassinosteroids (BRs) partly rescued the stomatal leaf phenotype of spch-5 Transcriptomic analysis combining spch-5 with BR treatments revealed that the expression of a set of SPCH target genes was restored by BRs. Our results also show that BR-dependent stomata formation and expression of some, but not all, SPCH target genes require the integrity of the bHLH domain of SPCH. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development1

    PubMed Central

    Triviño, Magdalena; Delgado, Dolores; Martín-Trillo, Mar

    2017-01-01

    The asymmetric cell divisions necessary for stomatal lineage initiation and progression in Arabidopsis (Arabidopsis thaliana) require the function of the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS (SPCH). Mutants lacking SPCH do not produce stomata or lineages. Here, we isolated a new spch-5 allele carrying a point mutation in the bHLH domain that displayed normal growth, but had an extremely low number of sometimes clustered stomata in the leaves, whereas the hypocotyls did not have any stomata. In vivo tracking of leaf epidermal cell divisions, combined with marker lines and genetic analysis, showed that the spch-5 leaf phenotype is dosage dependent and results from the decreased ability to initiate and amplify lineages, defects in asymmetric cell fate allocation, and misorientation of asymmetric division planes. Notably, application of brassinosteroids (BRs) partly rescued the stomatal leaf phenotype of spch-5. Transcriptomic analysis combining spch-5 with BR treatments revealed that the expression of a set of SPCH target genes was restored by BRs. Our results also show that BR-dependent stomata formation and expression of some, but not all, SPCH target genes require the integrity of the bHLH domain of SPCH. PMID:28507175

  12. Evolution of the α-Subunit of Na/K-ATPase from Paramecium to Homo sapiens: Invariance of Transmembrane Helix Topology.

    PubMed

    Morrill, Gene A; Kostellow, Adele B; Liu, Lijun; Gupta, Raj K; Askari, Amir

    2016-05-01

    Na/K-ATPase is a key plasma membrane enzyme involved in cell signaling, volume regulation, and maintenance of electrochemical gradients. The α-subunit, central to these functions, belongs to a large family of P-type ATPases. Differences in transmembrane (TM) helix topology, sequence homology, helix-helix contacts, cell signaling, and protein domains of Na/K-ATPase α-subunit were compared in fungi (Beauveria), unicellular organisms (Paramecia), primitive multicellular organisms (Hydra), and vertebrates (Xenopus, Homo sapiens), and correlated with evolution of physiological functions in the α-subunit. All α-subunits are of similar length, with groupings of four and six helices in the N- and C-terminal regions, respectively. Minimal homology was seen for protein domain patterns in Paramecium and Hydra, with high correlation between Hydra and vertebrates. Paramecium α-subunits display extensive disorder, with minimal helix contacts. Increases in helix contacts in Hydra approached vertebrates. Protein motifs known to be associated with membrane lipid rafts and cell signaling reveal significant positional shifts between Paramecium and Hydra vulgaris, indicating that regional membrane fluidity changes occur during evolution. Putative steroid binding sites overlapping TM-3 occurred in all species. Sites associated with G-protein-receptor stimulation occur both in vertebrates and amphibia but not in Hydra or Paramecia. The C-terminus moiety "KETYY," necessary for the Na(+) activation of pump phosphorylation, is not present in unicellular species indicating the absence of classical Na(+)/K(+)-pumps. The basic protein topology evolved earliest, followed by increases in protein domains and ordered helical arrays, correlated with appearance of α-subunit regions known to involve cell signaling, membrane recycling, and ion channel formation.

  13. The Effect of C-Terminal Helix on the Stability of FF Domain Studied by Molecular Dynamics Simulation

    PubMed Central

    Zhao, Liling; Cao, Zanxia; Wang, Jihua

    2012-01-01

    To investigate the effect of C-terminal helix on the stability of the FF domain, we studied the native domain FF3-71 from human HYPA/FBP11 and the truncated version FF3-60 with C-terminal helix being deleted by molecular dynamics simulations with GROMACS package and GROMOS 43A1 force field. The results indicated that the structures of truncated version FF3-60 were evident different from those of native partner FF3-71. Compared with FF3-71, the FF3-60 lost some native contacts and exhibited some similar structural characters to those of intermediate state. The C-terminal helix played a major role in stabilizing the FF3-71 domain. To a certain degree, the FF domain had a tendency to form an intermediate state without the C-terminal helix. In our knowledge, this was the first study to examine the role of C-terminal helix of FF domain in detail by molecular dynamics simulations, which was useful to understand the three-state folding mechanism of the small FF domain. PMID:22408419

  14. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC)*

    PubMed Central

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J.; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C.; Gründer, Stefan; Wiemuth, Dominik

    2016-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. PMID:27679529

  15. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC).

    PubMed

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C; Gründer, Stefan; Wiemuth, Dominik

    2016-11-18

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na + channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Novel Structural Components Contribute to the High Thermal Stability of Acyl Carrier Protein from Enterococcus faecalis*

    PubMed Central

    Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee

    2016-01-01

    Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3–17), helix II (residues 39–53), helix III (residues 60–64), and helix IV (residues 68–78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe45 in helix II and Phe18 in the α1α2 loop and a hydrogen bonding between Ser15 in helix I and Ile20 in the α1α2 loop, resulting in its high thermal stability. Phe45-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser58 in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains. PMID:26631734

  17. The genetics of rhizosheath size in a multiparent mapping population of wheat.

    PubMed

    Delhaize, Emmanuel; Rathjen, Tina M; Cavanagh, Colin R

    2015-08-01

    Rhizosheaths comprise soil that adheres to plant roots and, in some species, are indicative of root hair length. In this study, the genetics of rhizosheath size in wheat was investigated by screening the progeny of multiparent advanced generation intercrosses (MAGIC). Two MAGIC populations were screened for rhizosheath size using a high throughput method. One MAGIC population was developed from intercrosses between four parents (4-way) and the other from intercrosses between eight parents (8-way). Transgressive segregation for rhizosheath size was observed in both the 4-way and 8-way MAGIC populations. A quantitative trait loci (QTL) analysis of the 4-way population identified six major loci located on chromosomes 2B, 4D, 5A, 5B, 6A, and 7A together accounting for 42% of the variation in rhizosheath size. Rhizosheath size was strongly correlated with root hair length and was robust across different soil types in the absence of chemical constraints. Rhizosheath size in the MAGIC populations was a reliable surrogate for root hair length and, therefore, the QTL identified probably control root hair elongation. Members of the basic helix-loop-helix family of transcription factors have previously been identified to regulate root hair length in Arabidopsis and rice. Since several wheat members of the basic helix-loop-helix family of genes are located within or near the QTL, these genes are candidates for controlling the long root hair trait. The QTL for rhizosheath size identified in this study provides the opportunity to implement marker-assisted selection to increase root hair length for improved phosphate acquisition in wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Constitutive Overexpression of the Basic Helix-Loop-Helix Nex1/MATH-2 Transcription Factor Promotes Neuronal Differentiation of PC12 Cells and Neurite Regeneration

    PubMed Central

    Uittenbogaard, Martine; Chiaramello, Anne

    2009-01-01

    Elucidation of the intricate transcriptional pathways leading to neural differentiation and the establishment of neuronal identity is critical to the understanding and design of therapeutic approaches. Among the important players, the basic helix-loop-helix (bHLH) transcription factors have been found to be pivotal regulators of neurogenesis. In this study, we investigate the role of the bHLH differentiation factor Nex1/MATH-2 in conjunction with the nerve growth factor (NGF) signaling pathway using the rat phenochromocytoma PC12 cell line. We report that the expression of Nex1 protein is induced after 5 hr of NGF treatment and reaches maximal levels at 24 hr, when very few PC12 cells have begun extending neurites and ceased cell division. Furthermore, our study demonstrates that Nex1 has the ability to trigger neuronal differentiation of PC12 cells in the absence of neurotrophic factor. We show that Nex1 plays an important role in neurite outgrowth and has the capacity to regenerate neurite outgrowth in the absence of NGF. These results are corroborated by the fact that Nex1 targets a repertoire of distinct types of genes associated with neuronal differentiation, such as GAP-43, βIII-tubulin, and NeuroD. In addition, our findings show that Nex1 up-regulates the expression of the mitotic inhibitor p21WAF1, thus linking neuronal differentiation to cell cycle withdrawal. Finally, our studies show that overexpression of a Nex1 mutant has the ability to block the execution of NGF-induced differentiation program, suggesting that Nex1 may be an important effector of the NGF signaling pathway. PMID:11782967

  19. A Basic Helix-Loop-Helix Transcription Factor, PtrbHLH, of Poncirus trifoliata Confers Cold Tolerance and Modulates Peroxidase-Mediated Scavenging of Hydrogen Peroxide1[C][W

    PubMed Central

    Huang, Xiao-San; Wang, Wei; Zhang, Qian; Liu, Ji-Hong

    2013-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal. PMID:23624854

  20. A genome-wide identification of basic helix-loop-helix motifs in Pediculus humanus corporis (Phthiraptera: Pediculidae).

    PubMed

    Wang, Xu-Hua; Wang, Yong; Zhang, De-Bao; Liu, A-Ke; Yao, Qin; Chen, Ke-Ping

    2014-01-01

    Basic helix-loop-helix (bHLH) proteins comprise a large superfamily of transcription factors, which are involved in the regulation of various developmental processes. bHLH family members are widely distributed in various eukaryotes including yeast, fruit fly, zebrafish, mouse, and human. In this study, we identified 55 bHLH motifs encoded in genome sequence of the human body louse, Pediculus humanus corporis (Phthiraptera: Pediculidae). Phylogenetic analyses of the identified P. humanus corporis bHLH (PhcbHLH) motifs revealed that there are 23, 11, 9, 1, 10, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Examination to GenBank annotations of the 55 PhcbHLH members indicated that 29 PhcbHLH proteins were annotated in consistence with our analytical result, 8 were annotated different with our analytical result, 12 were merely annotated as hypothetical protein, and the rest 6 were not deposited in GenBank. A comparison on insect bHLH gene composition revealed that human body louse possibly has more hairy and E(spl) genes than other insect species. Because hairy and E(spl) genes have been found to negatively regulate the differentiation of insect preneural cells, it is suggested that the existence of additional hairy and E(spl) genes in human body louse is probably the consequence of its long period adaptation to the relatively dark and stable environment. These data provide good references for further studies on regulatory functions of bHLH proteins in the growth and development of human body louse. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  1. Basic helix-loop-helix transcription factor NEUROG1 and schizophrenia: effects on illness susceptibility, MRI brain morphometry and cognitive abilities.

    PubMed

    Ho, Beng-Choon; Epping, Eric; Wang, Kai; Andreasen, Nancy C; Librant, Amy; Wassink, Thomas H

    2008-12-01

    Transcription factors, including the basic helix-loop-helix (bHLH) family, regulate numerous genes and play vital roles in controlling gene expression. Consequently, transcription factor mutations can lead to phenotypic pleiotropy, and may be a candidate mechanism underlying the complex genetics and heterogeneous phenotype of schizophrenia. Neurogenin1 (NEUROG1; a.k.a. Ngn1 or Neurod3), a bHLH transcription factor encoded on a known schizophrenia linkage region in 5q31.1, induces glutamatergic and suppresses GABAergic neuronal differentiation during embryonic neurodevelopment. The goal of this study is to investigate NEUROG1 effects on schizophrenia risk and on phenotypic features of schizophrenia. We tested 392 patients with schizophrenia or schizoaffective disorder and 226 healthy normal volunteers for association with NEUROG1. Major alleles on two NEUROG1-associated SNPs (rs2344484-C-allele and rs8192558-G-allele) were significantly more prevalent among patients (p

  2. Structural Basis for Antifreeze Activity of Ice-binding Protein from Arctic Yeast*

    PubMed Central

    Lee, Jun Hyuck; Park, Ae Kyung; Do, Hackwon; Park, Kyoung Sun; Moh, Sang Hyun; Chi, Young Min; Kim, Hak Jun

    2012-01-01

    Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ∼25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-Å resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed β-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96–115 form a long α-helix that packs along one face of the β-helix), and a C-terminal hydrophobic loop region (243PFVPAPEVV251). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn185 provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common β-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins. PMID:22303017

  3. Structures of bacterial homologues of SWEET transporters in two distinct conformations.

    PubMed

    Xu, Yan; Tao, Yuyong; Cheung, Lily S; Fan, Chao; Chen, Li-Qing; Xu, Sophia; Perry, Kay; Frommer, Wolf B; Feng, Liang

    2014-11-20

    SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 × 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general.

  4. Modification and simulation of Rhizomucor miehei lipase: the influence of surficial electrostatic interaction on enantioselectivity.

    PubMed

    Xu, Gang; Meng, Xiao; Xu, Lin-Jie; Guo, Li; Wu, Jian-Ping; Yang, Li-Rong

    2015-04-01

    Surface residues have a significant impact on the enantioselectivity of lipases. But the molecular basis of this has never been explained. In this work, transition state complexes of Rhizomucor miehei lipase (RmL) and (R)- or (S)-n-butyl 2-phenxypropinate were studied using molecular dynamics. According to comparison between B-factor of the two simulated complexes, the β 1-β 2 loop and α 2 helix were considered the enantioselectivity-determining domains of RmL. Interaction analysis of these domains suggested an Asp(61)-Arg(86) electrostatic interaction linking the loop and helix strongly impacting enantioselectivity of RmL. Modification of Arg(86) by 1, 2-cyclohexanedione weakening this interaction decreased the E ratio from 6 to 1, modification by 1-iodo-2, 3-butanedione covalently bonding Asp(61) and Arg(86) strengthening the interaction increased the E ratio to 45. Dynamics simulation and energy calculation of the modified lipases also displayed corresponding decreases or increases of enantioselectivity.

  5. Structural Determination of Functional Domains in Early B-cell Factor (EBF) Family of Transcription Factors Reveals Similarities to Rel DNA-binding Proteins and a Novel Dimerization Motif*

    PubMed Central

    Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena

    2010-01-01

    The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035

  6. The signaling helix: a common functional theme in diverse signaling proteins

    PubMed Central

    Anantharaman, Vivek; Balaji, S; Aravind, L

    2006-01-01

    Background The mechanism by which the signals are transmitted between receptor and effector domains in multi-domain signaling proteins is poorly understood. Results Using sensitive sequence analysis methods we identify a conserved helical segment of around 40 residues in a wide range of signaling proteins, including numerous sensor histidine kinases such as Sln1p, and receptor guanylyl cyclases such as the atrial natriuretic peptide receptor and nitric oxide receptors. We term this helical segment the signaling (S)-helix and present evidence that it forms a novel parallel coiled-coil element, distinct from previously known helical segments in signaling proteins, such as the Dimerization-Histidine phosphotransfer module of histidine kinases, the intra-cellular domains of the chemotaxis receptors, inter-GAF domain helical linkers and the α-helical HAMP module. Analysis of domain architectures allowed us to reconstruct the domain-neighborhood graph for the S-helix, which showed that the S-helix almost always occurs between two signaling domains. Several striking patterns in the domain neighborhood of the S-helix also became evident from the graph. It most often separates diverse N-terminal sensory domains from various C-terminal catalytic signaling domains such as histidine kinases, cNMP cyclase, PP2C phosphatases, NtrC-like AAA+ ATPases and diguanylate cyclases. It might also occur between two sensory domains such as PAS domains and occasionally between a DNA-binding HTH domain and a sensory domain. The sequence conservation pattern of the S-helix revealed the presence of a unique constellation of polar residues in the dimer-interface positions within the central heptad of the coiled-coil formed by the S-helix. Conclusion Combining these observations with previously reported mutagenesis studies on different S-helix-containing proteins we suggest that it functions as a switch that prevents constitutive activation of linked downstream signaling domains. However, upon occurrence of specific conformational changes due to binding of ligand or other sensory inputs in a linked upstream domain it transmits the signal to the downstream domain. Thus, the S-helix represents one of the most prevalent functional themes involved in the flow of signals between modules in diverse prokaryote-type multi-domain signaling proteins. Reviewers This article was reviewed by Frank Eisenhaber, Arcady Mushegian and Sandor Pongor. PMID:16953892

  7. Open and Lys–His Hexacoordinated Closed Structures of a Globin with Swapped Proximal and Distal Sites

    PubMed Central

    Teh, Aik-Hong; Saito, Jennifer A.; Najimudin, Nazalan; Alam, Maqsudul

    2015-01-01

    Globins are haem-binding proteins with a conserved fold made up of α-helices and can possess diverse properties. A putative globin-coupled sensor from Methylacidiphilum infernorum, HGbRL, contains an N-terminal globin domain whose open and closed structures reveal an untypical dimeric architecture. Helices E and F fuse into an elongated helix, resulting in a novel site-swapped globin fold made up of helices A–E, hence the distal site, from one subunit and helices F–H, the proximal site, from another. The open structure possesses a large cavity binding an imidazole molecule, while the closed structure forms a unique Lys–His hexacoordinated species, with the first turn of helix E unravelling to allow Lys52(E10) to bind to the haem. Ligand binding induces reorganization of loop CE, which is stabilized in the closed form, and helix E, triggering a large conformational movement in the open form. These provide a mechanical insight into how a signal may be relayed between the globin domain and the C-terminal domain of HGbRL, a Roadblock/LC7 domain. Comparison with HGbI, a closely related globin, further underlines the high degree of structural versatility that the globin fold is capable of, enabling it to perform a diversity of functions. PMID:26094577

  8. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3

    PubMed Central

    Zhou, Zheng; Feng, Hanqiao; Zhou, Bing-Rui; Ghirlando, Rodolfo; Hu, Kaifeng; Zwolak, Adam; Miller Jenkins, Lisa M.; Xiao, Hua; Tjandra, Nico; Wu, Carl; Bai, Yawen

    2011-01-01

    The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore1. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A2. A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH33, 4. The structural basis of this specification is of outstanding interest. Yeast Scm3 and human HJURP are conserved nonhistone proteins that interact physically with the (CenH3-H4)2 heterotetramer and are required for the deposition of CenH3 at centromeres in vivo5, 6, 7, 8, 9, 10, 11, 12, 13. Here we have elucidated the structural basis for recognition of budding yeast CenH3 (Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 complexed with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved N-terminus and a shorter α-helix at the C-terminus of Scm3-CBD wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3-CBD induces major conformational changes and sterically occludes DNA binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome. PMID:21412236

  9. Notch pathway signaling in the skin antagonizes Merkel cell development.

    PubMed

    Logan, Gregory J; Wright, Margaret C; Kubicki, Adam C; Maricich, Stephen M

    2018-02-15

    Merkel cells are mechanosensitive skin cells derived from the epidermal lineage whose development requires expression of the basic helix-loop-helix transcription factor Atoh1. The genes and pathways involved in regulating Merkel cell development during embryogenesis are poorly understood. Notch pathway signaling antagonizes Atoh1 expression in many developing body regions, so we hypothesized that Notch signaling might inhibit Merkel cell development. We found that conditional, constitutive overexpression of the Notch intracellular domain (NICD) in mouse epidermis significantly decreased Merkel cell numbers in whisker follicles and touch domes of hairy skin. Conversely, conditional deletion of the obligate NICD binding partner RBPj in the epidermis significantly increased Merkel cell numbers in whisker follicles, led to the development of ectopic Merkel cells outside of touch domes in hairy skin epidermis, and altered the distribution of Merkel cells in touch domes. Deletion of the downstream Notch effector gene Hes1 also significantly increased Merkel cell numbers in whisker follicles. Together, these data demonstrate that Notch signaling regulates Merkel cell production and patterning. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Phage selection of peptide "microantibodies".

    PubMed

    Fujiwara, Daisuke; Fujii, Ikuo

    2013-01-01

    A bioactive peptide capable of inhibiting protein-protein interactions has the potential to be a molecular tool for biological studies and a therapeutic by disrupting aberrant interactions involved in diseases. We have developed combinatorial libraries of peptides with helix-loop-helix structure, from which the isolated peptides have the constrained structure to reduce entropy costs in binding, resulting in high binding affinities for target molecules. Previously, we designed a de novo peptide of helix-loop-helix structure that we termed a "microantibody." Using the microantibody as a library scaffold, we have constructed a phage-display library to successfully isolate molecular-targeting peptides against a cytokine receptor (granulocyte colony-stimulating factor receptor), a protein kinase (Aurora-A), and a ganglioside (GM1). Protocols in this article describe a general procedure for the library construction and the library screening.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Brian; Nayak, Dhananjaya; Ray, Ananya

    RNA polymerase inhibitors like the CBR class that target the enzyme’s complex catalytic center are attractive leads for new antimicrobials. The catalysis by RNA polymerase involves multiple rearrangements of bridge helix, trigger loop, and active-center side chains that isomerize the triphosphate of bound NTP and two Mg 2+ ions from a preinsertion state to a reactive configuration. CBR inhibitors target a crevice between the N-terminal portion of the bridge helix and a surrounding cap region within which the bridge helix is thought to rearrange during the nucleotide addition cycle. Here, we report crystal structures of CBR inhibitor/Escherichia coli RNA polymerasemore » complexes as well as biochemical tests that establish two distinct effects of the inhibitors on the RNA polymerase catalytic site. One effect involves inhibition of trigger-loop folding via the F loop in the cap, which affects both nucleotide addition and hydrolysis of 3'-terminal dinucleotides in certain backtracked complexes. The second effect is trigger-loop independent, affects only nucleotide addition and pyrophosphorolysis, and may involve inhibition of bridge-helix movements that facilitate reactive triphosphate alignment.« less

  12. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    PubMed

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A Light-Regulated Genetic Module Was Recruited to Carpel Development in Arabidopsis following a Structural Change to SPATULA[W

    PubMed Central

    Reymond, Mathieu C.; Brunoud, Géraldine; Chauvet, Aurélie; Martínez-Garcia, Jaime F.; Martin-Magniette, Marie-Laure; Monéger, Françoise; Scutt, Charles P.

    2012-01-01

    A key innovation of flowering plants is the female reproductive organ, the carpel. Here, we show that a mechanism that regulates carpel margin development in the model flowering plant Arabidopsis thaliana was recruited from light-regulated processes. This recruitment followed the loss from the basic helix-loop-helix transcription factor SPATULA (SPT) of a domain previously responsible for its negative regulation by phytochrome. We propose that the loss of this domain was a prerequisite for the light-independent expression in female reproductive tissues of a genetic module that also promotes shade avoidance responses in vegetative organs. Striking evidence for this proposition is provided by the restoration of wild-type carpel development to spt mutants by low red/far-red light ratios, simulating vegetation shade, which we show to occur via phytochrome B, PHYTOCHROME INTERACTING FACTOR4 (PIF4), and PIF5. Our data illustrate the potential of modular evolutionary events to generate rapid morphological change and thereby provide a molecular basis for neo-Darwinian theories that describe this nongradualist phenomenon. Furthermore, the effects shown here of light quality perception on carpel development lead us to speculate on the potential role of light-regulated mechanisms in plant organs that, like the carpel, form within the shade of surrounding tissues. PMID:22851763

  14. Structural insights into alternative splicing-mediated desensitization of jasmonate signaling.

    PubMed

    Zhang, Feng; Ke, Jiyuan; Zhang, Li; Chen, Rongzhi; Sugimoto, Koichi; Howe, Gregg A; Xu, H Eric; Zhou, Mingguo; He, Sheng Yang; Melcher, Karsten

    2017-02-14

    Jasmonate ZIM-domain (JAZ) transcriptional repressors play a key role in regulating jasmonate (JA) signaling in plants. Below a threshold concentration of jasmonoyl isoleucine (JA-Ile), the active form of JA, the C-terminal Jas motif of JAZ proteins binds MYC transcription factors to repress JA signaling. With increasing JA-Ile concentration, the Jas motif binds to JA-Ile and the COI1 subunit of the SCF COI1 E3 ligase, which mediates ubiquitination and proteasomal degradation of JAZ repressors, resulting in derepression of MYC transcription factors. JA signaling subsequently becomes desensitized, in part by feedback induction of JAZ splice variants that lack the C-terminal Jas motif but include an N-terminal cryptic MYC-interaction domain (CMID). The CMID sequence is dissimilar to the Jas motif and is incapable of recruiting SCF COI1 , allowing CMID-containing JAZ splice variants to accumulate in the presence of JA and to re-repress MYC transcription factors as an integral part of reestablishing signal homeostasis. The mechanism by which the CMID represses MYC transcription factors remains elusive. Here we describe the crystal structure of the MYC3-CMID JAZ10 complex. In contrast to the Jas motif, which forms a single continuous helix when bound to MYC3, the CMID adopts a loop-helix-loop-helix architecture with modular interactions with both the Jas-binding groove and the backside of the Jas-interaction domain of MYC3. This clamp-like interaction allows the CMID to bind MYC3 tightly and block access of MED25 (a subunit of the Mediator coactivator complex) to the MYC3 transcriptional activation domain, shedding light on the enigmatic mechanism by which JAZ splice variants desensitize JA signaling.

  15. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2

    PubMed Central

    Kenchappa, Chandra S.; Heidarsson, Pétur O.; Kragelund, Birthe B.; Garrett, Roger A.; Poulsen, Flemming M.

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) form the basis of diverse adaptive immune systems directed primarily against invading genetic elements of archaea and bacteria. Cbp1 of the crenarchaeal thermoacidophilic order Sulfolobales, carrying three imperfect repeats, binds specifically to CRISPR DNA repeats and has been implicated in facilitating production of long transcripts from CRISPR loci. Here, a second related class of CRISPR DNA repeat-binding protein, denoted Cbp2, is characterized that contains two imperfect repeats and is found amongst members of the crenarchaeal thermoneutrophilic order Desulfurococcales. DNA repeat-binding properties of the Hyperthermus butylicus protein Cbp2Hb were characterized and its three-dimensional structure was determined by NMR spectroscopy. The two repeats generate helix-turn-helix structures separated by a basic linker that is implicated in facilitating high affinity DNA binding of Cbp2 by tethering the two domains. Structural studies on mutant proteins provide support for Cys7 and Cys28 enhancing high thermal stability of Cbp2Hb through disulphide bridge formation. Consistent with their proposed CRISPR transcriptional regulatory role, Cbp2Hb and, by inference, other Cbp1 and Cbp2 proteins are closely related in structure to homeodomain proteins with linked helix-turn-helix (HTH) domains, in particular the paired domain Pax and Myb family proteins that are involved in eukaryal transcriptional regulation. PMID:23325851

  16. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain?

    PubMed

    Mercurio, Flavia A; Costantini, Susan; Di Natale, Concetta; Pirone, Luciano; Guariniello, Stefano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Leone, Marilisa

    2017-09-01

    Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short β-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I.

    PubMed

    Tanaka, Masafumi; Dhanasekaran, Padmaja; Nguyen, David; Ohta, Shinya; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki

    2006-08-29

    The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.

  18. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity.

    PubMed

    Manjasetty, Babu A; Halavaty, Andrei S; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F; Joachimiak, Andrzej

    2016-04-01

    Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol. Copyright © 2016. Published by Elsevier Inc.

  19. Lipid functions in cytochrome bc complexes: an odd evolutionary transition in a membrane protein structure

    PubMed Central

    Hasan, S. Saif; Cramer, William A.

    2012-01-01

    Lipid-binding sites and properties were compared in the hetero-oligomeric cytochrome (cyt) b6f and the yeast bc1 complexes that function, respectively, in photosynthetic and respiratory electron transport. Seven lipid-binding sites in the monomeric unit of the dimeric cyanobacterial b6f complex overlap four sites in the Chlamydomonas reinhardtii algal b6f complex and four in the yeast bc1 complex. The proposed lipid functions include: (i) interfacial–interhelix mediation between (a) the two 8-subunit monomers of the dimeric complex, (b) between the core domain (cyt b, subunit IV) and the six trans membrane helices of the peripheral domain (cyt f, iron–sulphur protein (ISP), and four small subunits in the boundary ‘picket fence’); (ii) stabilization of the ISP domain-swapped trans-membrane helix; (iii) neutralization of basic residues in the single helix of cyt f and of the ISP; (iv) a ‘latch’ to photosystem I provided by the β-carotene chain protruding through the ‘picket fence’; (v) presence of a lipid and chlorophyll a chlorin ring in b6f in place of the eighth helix in the bc1 cyt b polypeptide. The question is posed of the function of the lipid substitution in relation to the evolutionary change between the eight and seven helix structures of the cyt b polypeptide. On the basis of the known n-side activation of light harvesting complex II (LHCII) kinase by the p-side level of plastoquinol, one possibility is that the change was directed by the selective advantage of p- to n-side trans membrane signalling functions in b6f, with the lipid either mediating this function or substituting for the trans membrane helix of a signalling protein lost in crystallization. PMID:23148267

  20. The secondary structure of the ets domain of human Fli-1 resembles that of the helix-turn-helix DNA-binding motif of the Escherichia coli catabolite gene activator protein.

    PubMed Central

    Liang, H; Olejniczak, E T; Mao, X; Nettesheim, D G; Yu, L; Thompson, C B; Fesik, S W

    1994-01-01

    The ets family of eukaryotic transcription factors is characterized by a conserved DNA-binding domain of approximately 85 amino acids for which the three-dimensional structure is not known. By using multidimensional NMR spectroscopy, we have determined the secondary structure of the ets domain of one member of this gene family, human Fli-1, both in the free form and in a complex with a 16-bp cognate DNA site. The secondary structure of the Fli-1 ets domain consists of three alpha-helices and a short four-stranded antiparallel beta-sheet. This secondary structure arrangement resembles that of the DNA-binding domain of the catabolite gene activator protein of Escherichia coli, as well as those of several eukaryotic DNA-binding proteins including histone H5, HNF-3/fork head, and the heat shock transcription factor. Differences in chemical shifts of backbone resonances and amide exchange rates between the DNA-bound and free forms of the Fli-1 ets domain suggest that the third helix is the DNA recognition helix, as in the catabolite gene activator protein and other structurally related proteins. These results suggest that the ets domain is structurally similar to the catabolite gene activator protein family of helix-turn-helix DNA-binding proteins. Images PMID:7972119

  1. TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis

    PubMed Central

    Zhang, Bipei

    2017-01-01

    The flavonoid composition of various tissues throughout plant development is of biological relevance and particular interest for breeding. Arabidopsis thaliana TRANSPARENT TESTA GLABRA 1 (AtTTG1) is an essential regulator of late structural genes in flavonoid biosynthesis. Here, we provide a review of the regulation of the pathway’s core enzymes through AtTTG1-containing R2R3-MYELOBLASTOSIS-basic HELIX-LOOP-HELIX-WD40 repeat (MBW(AtTTG1)) complexes embedded in an evolutionary context. We present a comprehensive collection of A. thaliana ttg1 mutants and AtTTG1 orthologs. A plethora of MBW(AtTTG1) mechanisms in regulating the five major TTG1-dependent traits is highlighted. PMID:29261137

  2. The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain.

    PubMed

    Valsecchi, Isabel; Guittard-Crilat, Emilie; Maldiney, Régis; Habricot, Yvette; Lignon, Sabrina; Lebrun, Régine; Miginiac, Emile; Ruelland, Eric; Jeannette, Emmanuelle; Lebreton, Sandrine

    2013-09-01

    TCPs are plant specific transcription factors with non-canonical basic helix-loop-helix domains. While Arabidopsis thaliana has 24 TCPs involved in cell proliferation and differentiation, their mode of action has not been fully elucidated. Using bioinformatic tools, we demonstrate that TCP transcription factors belong to the intrinsically disordered proteins (IDP) family and that disorder is higher in class I TCPs than in class II TCPs. In particular, using bioinformatic and biochemical approaches, we have characterized TCP8, a class I TCP. TCP8 exhibits three intrinsically disordered regions (IDR) made of more than 50 consecutive residues, in which phosphorylable Ser residues are mainly clustered. Phosphorylation of Ser-211 that belongs to the central IDR was confirmed by mass spectrometry. Yeast two-hybrid assays also showed that the C-terminal IDR corresponds to a transactivation domain. Moreover, biochemical experiments demonstrated that TCP8 tends to oligomerize in dimers, trimers and higher-order multimers. Bimolecular fluorescence complementation (BiFC) experiments carried out on a truncated form of TCP8 lacking the C-terminal IDR indicated that it is effectively required for the pronounced self-assembly of TCP8. These data were reinforced by the prediction of a coiled coil domain in this IDR. The C-terminal IDR acts thus as an oligomerization domain and also a transactivation domain. Moreover, many Molecular Recognition Features (MoRFs) were predicted, indicating that TCP8 could interact with several partners to fulfill a fine regulation of transcription in response to various stimuli.

  3. A photoaffinity scan maps regions of the p85 SH2 domain involved in phosphoprotein binding.

    PubMed

    Williams, K P; Shoelson, S E

    1993-03-15

    Src homology 2 (SH2) domains are modular phosphotyrosine binding pockets found within a wide variety of cytoplasmic signaling molecules. Here we develop a new approach to analyzing protein-protein interfaces termed photoaffinity scanning, and apply the method to map regions of the phosphatidylinositol 3-kinase p85 SH2 domain that participate in phospho-protein binding. Each residue except phosphotyrosine (pY) within a tightly binding, IRS-1-derived phosphopeptide (GNGDpYMPMSPKS) was substituted with the photoactive amino acid, benzoylphenylalanine (Bpa). Whereas most substitutions had little effect on binding affinity, Bpa substitution of either Met (+1 and +3 with respect to pY) reduced affinity 50-100-fold to confirm their importance in the pYMXM recognition motif. In three cases photolysis of SH2 domain/Bpa phosphopeptide complexes led to cross-linking of > 50% of the SH2 domain; cross-link positions were identified by microsequence, amino acid composition, and electrospray mass spectrometric analyses. Bpa-1 cross-links within alpha-helix I, whereas Bpa+1 and Bpa+4 cross-link the SH2 domain within the flexible loop C-terminal to alpha-helix II. Moreover, cross-linking at any position prevents SH2 domain cleavage at a trypsin-sensitive site within the flexible loop between beta-strands 1 and 2. Therefore, at least three distinct SH2 regions in addition to the beta-sheet participate in phosphoprotein binding; the loop cross-linked by phosphopeptide residues C-terminal to pY appears to confer specificity to the phosphoprotein/SH2 domain interaction.

  4. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE PAGES

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; ...

    2015-07-22

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  5. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    PubMed

    Kang, Yanyong; Zhou, X Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W; Ke, Jiyuan; Tan, M H Eileen; Zhang, Chenghai; Moeller, Arne; West, Graham M; Pascal, Bruce D; Van Eps, Ned; Caro, Lydia N; Vishnivetskiy, Sergey A; Lee, Regina J; Suino-Powell, Kelly M; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie E; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N; Spence, John C H; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P; Katritch, Vsevolod; Gurevich, Vsevolod V; Griffin, Patrick R; Hubbell, Wayne L; Stevens, Raymond C; Cherezov, Vadim; Melcher, Karsten; Xu, H Eric

    2015-07-30

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.

  6. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang

    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotationmore » between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. In conclusion, this structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.« less

  7. The APSES family proteins in fungi: Characterizations, evolution and functions.

    PubMed

    Zhao, Yong; Su, Hao; Zhou, Jing; Feng, Huihua; Zhang, Ke-Qin; Yang, Jinkui

    2015-08-01

    The APSES protein family belongs to transcriptional factors of the basic helix-loop-helix (bHLH) class, the originally described members (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) are used to designate this group of proteins, and they have been identified as key regulators of fungal development and other biological processes. APSES proteins share a highly conserved DNA-binding domain (APSES domain) of about 100 amino acids, whose central domain is predicted to form a typical bHLH structure. Besides APSES domain, several APSES proteins also contain additional domains, such as KilA-N and ankyrin repeats. In recent years, an increasing number of APSES proteins have been identified from diverse fungi, and they involve in numerous biological processes, such as sporulation, cellular differentiation, mycelial growth, secondary metabolism and virulence. Most fungi, including Aspergillus fumigatus, Aspergillus nidulans, Candida albicans, Fusarium graminearum, and Neurospora crassa, contain five APSES proteins. However, Cryptococcus neoformans only contains two APSES proteins, and Saccharomyces cerevisiae contains six APSES proteins. The phylogenetic analysis showed the APSES domains from different fungi were grouped into four clades (A, B, C and D), which is consistent with the result of homologous alignment of APSES domains using DNAman. The roles of APSES proteins in clade C have been studied in detail, while little is known about the roles of other APSES proteins in clades A, B and D. In this review, the biochemical properties and functional domains of APSES proteins are predicted and compared, and the phylogenetic relationship among APSES proteins from various fungi are analyzed based on the APSES domains. Moreover, the functions of APSES proteins in different fungi are summarized and discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Thermodynamics of the pseudo-knot in helix 18 of 16S ribosomal RNA.

    PubMed

    Wojciechowska, Monika; Dudek, Marta; Trylska, Joanna

    2018-04-01

    A fragment of E. coli 16S rRNA formed by nucleotides 500 to 545 is termed helix 18. Nucleotides 505-507 and 524-526 form a pseudo-knot and its distortion affects ribosome function. Helix 18 isolated from the ribosome context is thus an interesting fragment to investigate the structural properties and folding of RNA with pseudo-knots. With all-atom molecular dynamics simulations, spectroscopic and gel electrophoresis experiments, we investigated thermodynamics of helix 18, with a focus on its pseudo-knot. In solution studies at ambient conditions we observed dimerization of helix 18. We proposed that the loop, containing nucleotides forming the pseudo-knot, interacts with another monomer of helix 18. The native dimer is difficult to break but introducing mutations in the pseudo-knot indeed assured a monomeric form of helix 18. Molecular dynamics simulations at 310 K confirmed the stability of the pseudo-knot but at elevated temperatures this pseudo-knot was the first part of helix 18 to lose the hydrogen bond pattern. To further determine helix 18 stability, we analyzed the interactions of helix 18 with short oligomers complementary to a nucleotide stretch containing the pseudo-knot. The formation of higher-order structures by helix 18 impacts hybridization efficiency of peptide nucleic acid and 2'-O methyl RNA oligomers. © 2018 Wiley Periodicals, Inc.

  9. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1.

    PubMed

    Herlo, Rasmus; Lund, Viktor K; Lycas, Matthew D; Jansen, Anna M; Khelashvili, George; Andersen, Rita C; Bhatia, Vikram; Pedersen, Thomas S; Albornoz, Pedro B C; Johner, Niklaus; Ammendrup-Johnsen, Ina; Christensen, Nikolaj R; Erlendsson, Simon; Stoklund, Mikkel; Larsen, Jannik B; Weinstein, Harel; Kjærulff, Ole; Stamou, Dimitrios; Gether, Ulrik; Madsen, Kenneth L

    2018-05-15

    BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis.

    PubMed

    Zhao, Hongtao; Wang, Xiaoxue; Zhu, Dandan; Cui, Sujuan; Li, Xia; Cao, Ying; Ma, Ligeng

    2012-04-20

    Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein transparent TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or werewolf (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or enhancer of GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors.

  11. A Single Amino Acid Substitution in IIIf Subfamily of Basic Helix-Loop-Helix Transcription Factor AtMYC1 Leads to Trichome and Root Hair Patterning Defects by Abolishing Its Interaction with Partner Proteins in Arabidopsis*

    PubMed Central

    Zhao, Hongtao; Wang, Xiaoxue; Zhu, Dandan; Cui, Sujuan; Li, Xia; Cao, Ying; Ma, Ligeng

    2012-01-01

    Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein TRANSPARENT TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or WEREWOLF (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors. PMID:22334670

  12. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  13. Reciprocal influence of protein domains in the cold-adapted acyl aminoacyl peptidase from Sporosarcina psychrophila.

    PubMed

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution.

  14. De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein.

    PubMed

    Faiella, Marina; Maglio, Ornella; Nastri, Flavia; Lombardi, Angela; Lista, Liliana; Hagen, Wilfred R; Pavone, Vincenzo

    2012-12-07

    A new artificial metalloenzyme, MP3 (MiniPeroxidase 3), designed by combining the excellent structural properties of four-helix bundle protein scaffolds with the activity of natural peroxidases, was synthesised and characterised. This new hemeprotein model was developed by covalently linking the deuteroporphyrin to two peptide chains of different compositions to obtain an asymmetric helix-loop-helix/heme/helix-loop-helix sandwich arrangement, characterised by 1) a His residue on one chain that acts as an axial ligand to the iron ion; 2) a vacant distal site that is able to accommodate exogenous ligands or substrates; and 3) an Arg residue in the distal site that should assist in hydrogen peroxide activation to give an HRP-like catalytic process. MP3 was synthesised and characterised as its iron complex. CD measurements revealed the high helix-forming propensity of the peptide, confirming the appropriateness of the model procedure; UV/Vis, MCD and EPR experiments gave insights into the coordination geometry and the spin state of the metal. Kinetic experiments showed that Fe(III)-MP3 possesses peroxidase-like activity comparable to R38A-hHRP, highlighting the possibility of mimicking the functional features of natural enzymes. The synergistic application of de novo design methods, synthetic procedures, and spectroscopic characterisation, described herein, demonstrates a method by which to implement and optimise catalytic activity for an enzyme mimetic. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structure of the Ebola virus envelope protein MPER/TM domain and its interaction with the fusion loop explains their fusion activity.

    PubMed

    Lee, Jinwoo; Nyenhuis, David A; Nelson, Elizabeth A; Cafiso, David S; White, Judith M; Tamm, Lukas K

    2017-09-19

    Ebolavirus (EBOV), an enveloped filamentous RNA virus causing severe hemorrhagic fever, enters cells by macropinocytosis and membrane fusion in a late endosomal compartment. Fusion is mediated by the EBOV envelope glycoprotein GP, which consists of subunits GP1 and GP2. GP1 binds to cellular receptors, including Niemann-Pick C1 (NPC1) protein, and GP2 is responsible for low pH-induced membrane fusion. Proteolytic cleavage and NPC1 binding at endosomal pH lead to conformational rearrangements of GP2 that include exposing the hydrophobic fusion loop (FL) for insertion into the cellular target membrane and forming a six-helix bundle structure. Although major portions of the GP2 structure have been solved in pre- and postfusion states and although current models place the transmembrane (TM) and FL domains of GP2 in close proximity at critical steps of membrane fusion, their structures in membrane environments, and especially interactions between them, have not yet been characterized. Here, we present the structure of the membrane proximal external region (MPER) connected to the TM domain: i.e., the missing parts of the EBOV GP2 structure. The structure, solved by solution NMR and EPR spectroscopy in membrane-mimetic environments, consists of a helix-turn-helix architecture that is independent of pH. Moreover, the MPER region is shown to interact in the membrane interface with the previously determined structure of the EBOV FL through several critical aromatic residues. Mutation of aromatic and neighboring residues in both binding partners decreases fusion and viral entry, highlighting the functional importance of the MPER/TM-FL interaction in EBOV entry and fusion.

  16. Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, John R.; Elgar, Stuart J.; Khan, Seema I.

    2008-09-17

    The SANT (Swi3, Ada2, N-Cor, and TFIIIB) module was first described as a putative DNA-binding domain with strong similarity to the helix-turn-helix DNA binding domain of Myb-related proteins. The X-ray structure of the C-terminal one third portion of the ATPase ISWI of Drosophila melangoaster, containing both SANT and SLIDE (SANT-Like ISWI Domain), confirmed the overall helix-turn-helix structural architecture of SANT as well as SLIDE. However, the DNA-contacting residues in Myb are not conserved in SANT and the structurally corresponding residues in the ISWI SANT domain are acidic, and therefore incompatible with DNA interaction. Recent studies suggested that SANT domains mightmore » be a histone-tail-binding module, including the DNA binding SANT domain of c-Myb. Here they present the X-ray structure of Xenopus laevis ISWI SANT domain, derived from limited proteolysis of a C-terminal fragment of ISWI protein.« less

  17. A curved RNA helix incorporating an internal loop with G·A and A·A non-Watson–Crick base pairing

    PubMed Central

    Baeyens, Katrien J.; De Bondt, Hendrik L.; Pardi, Arthur; Holbrook, Stephen R.

    1996-01-01

    The crystal structure of the RNA dodecamer 5′-GGCC(GAAA)GGCC-3′ has been determined from x-ray diffraction data to 2.3-Å resolution. In the crystal, these oligomers form double helices around twofold symmetry axes. Four consecutive non-Watson–Crick base pairs make up an internal loop in the middle of the duplex, including sheared G·A pairs and novel asymmetric A·A pairs. This internal loop sequence produces a significant curvature and narrowing of the double helix. The helix is curved by 34° from end to end and the diameter is narrowed by 24% in the internal loop. A Mn2+ ion is bound directly to the N7 of the first guanine in the Watson–Crick region following the internal loop and the phosphate of the preceding residue. This Mn2+ location corresponds to a metal binding site observed in the hammerhead catalytic RNA. PMID:8917508

  18. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance.

    PubMed

    Takeda, K; Takemoto, C; Kobayashi, I; Watanabe, A; Nobukuni, Y; Fisher, D E; Tachibana, M

    2000-01-01

    MITF (microphthalmia-associated transcription factor) is a basic-helix-loop-helix-leucine zipper (bHLHZip) factor which regulates expression of tyrosinase and other melanocytic genes via a CATGTG promoter sequence, and is involved in melanocyte differentiation. Mutations of MITF in mice or humans with Waardenburg syndrome type 2 (WS2) often severely disrupt the bHLHZip domain, suggesting the importance of this structure. Here, we show that Ser298, which locates downstream of the bHLHZip and was previously found to be mutated in individuals with WS2, plays an important role in MITF function. Glycogen synthase kinase 3 (GSK3) was found to phosphorylate Ser298 in vitro, thereby enhancing the binding of MITF to the tyrosinase promoter. The same serine was found to be phosphorylated in vivo, and expression of dominant-negative GSK3beta selectively suppressed the ability of MITF to transactivate the tyrosinase promoter. Moreover, mutation of Ser298, as found in a WS2 family, disabled phos-phorylation of MITF by GSK3beta and impaired MITF function. These findings suggest that the Ser298 is important for MITF function and is phosphorylated probably by GSK3beta.

  19. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    PubMed Central

    Naoumkina, Marina A; He, XianZhi; Dixon, Richard A

    2008-01-01

    Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs) are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE) or methyl jasmonate (MJ). From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH) family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ) transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2) and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance. PMID:19102779

  20. Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis.

    PubMed

    Monastirioti, Maria; Giagtzoglou, Nikolaos; Koumbanakis, Konstantinos A; Zacharioudaki, Evanthia; Deligiannaki, Myrto; Wech, Irmgard; Almeida, Mara; Preiss, Anette; Bray, Sarah; Delidakis, Christos

    2010-01-01

    bHLH-O proteins are a subfamily of the basic-helix-loop-helix transcription factors characterized by an 'Orange' protein-protein interaction domain. Typical members are the Hairy/E(spl), or Hes, proteins, well studied in their ability, among others, to suppress neuronal differentiation in both invertebrates and vertebrates. Hes proteins are often effectors of Notch signalling. In vertebrates, another bHLH-O protein group, the Hey proteins, have also been shown to be Notch targets and to interact with Hes. We have studied the single Drosophila Hey orthologue. We show that it is primarily expressed in a subset of newly born neurons, which receive Notch signalling during their birth. Unlike in vertebrates, however, Hey is not expressed in precursor cells and does not block neuronal differentiation. It rather promotes one of two alternative fates that sibling neurons adopt at birth. Although in the majority of cases Hey is a Notch target, it is also expressed independently of Notch in some lineages, most notably the larval mushroom body. The availability of Hey as a Notch readout has allowed us to study Notch signalling during the genesis of secondary neurons in the larval central nervous system.

  1. Sequence and Secondary Structure of the Mitochondrial Small-Subunit rRNA V4, V6, and V9 Domains Reveal Highly Species-Specific Variations within the Genus Agrocybe

    PubMed Central

    Gonzalez, Patrice; Labarère, Jacques

    1998-01-01

    A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same species were the same length and had the same sequence, while variations were found among the 10 species. Alignment of the sequences showed that nucleotide motifs encountered in the smallest sequence of each variable domain were also found in the largest sequence, indicating that the sequences evolved by insertion-deletion events. Determination of the secondary structure of each domain revealed that the insertion-deletion events commonly occurred in regions not directly involved in the secondary structure (i.e., the loops). Moreover, conserved sequences ranging from 4 to 25 nucleotides long were found at the beginning and end of each domain and could constitute genus-specific sequences. Comparisons of the V4, V6, and V9 secondary structures resulted in identification of the following four groups: (i) group I, which was characterized by the presence of additional P23-1 and P23-3 helices in the V4 domain and the lack of the P49-1 helix in V9 and included A. aegerita, A. chaxingu, and A. erebia; (ii) group II, which had the P23-3 helix in V4 and the P49-1 helix in V9 and included A. pediades; (iii) group III, which did not have additional helices in V4, had the P49-1 helix in V9 and included A. paludosa, A. firma, A. alnetorum, and A. praecox; and (iv) group IV, which lacked both the V4 additional helices and the P49-1 helix in V9 and included A. vervacti and A. dura. This grouping of species was supported by the structure of a consensus tree based on the variable domain sequences. The conservation of the sequences of the V4, V6, and V9 domains of the mitochondrial SSU rRNA within species and the high degree of interspecific variation found in the Agrocybe species studied open the way for these sequences to be used as specific molecular markers of the Basidiomycota. PMID:9797259

  2. Sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6, and V9 domains reveal highly species-specific variations within the genus Agrocybe.

    PubMed

    Gonzalez, P; Labarère, J

    1998-11-01

    A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same species were the same length and had the same sequence, while variations were found among the 10 species. Alignment of the sequences showed that nucleotide motifs encountered in the smallest sequence of each variable domain were also found in the largest sequence, indicating that the sequences evolved by insertion-deletion events. Determination of the secondary structure of each domain revealed that the insertion-deletion events commonly occurred in regions not directly involved in the secondary structure (i.e., the loops). Moreover, conserved sequences ranging from 4 to 25 nucleotides long were found at the beginning and end of each domain and could constitute genus-specific sequences. Comparisons of the V4, V6, and V9 secondary structures resulted in identification of the following four groups: (i) group I, which was characterized by the presence of additional P23-1 and P23-3 helices in the V4 domain and the lack of the P49-1 helix in V9 and included A. aegerita, A. chaxingu, and A. erebia; (ii) group II, which had the P23-3 helix in V4 and the P49-1 helix in V9 and included A. pediades; (iii) group III, which did not have additional helices in V4, had the P49-1 helix in V9 and included A. paludosa, A. firma, A. alnetorum, and A. praecox; and (iv) group IV, which lacked both the V4 additional helices and the P49-1 helix in V9 and included A. vervacti and A. dura. This grouping of species was supported by the structure of a consensus tree based on the variable domain sequences. The conservation of the sequences of the V4, V6, and V9 domains of the mitochondrial SSU rRNA within species and the high degree of interspecific variation found in the Agrocybe species studied open the way for these sequences to be used as specific molecular markers of the Basidiomycota.

  3. A genomewide survey of basic helix–loop–helix factors in Drosophila

    PubMed Central

    Moore, Adrian W.; Barbel, Sandra; Jan, Lily Yeh; Jan, Yuh Nung

    2000-01-01

    The basic helix–loop–helix (bHLH) transcription factors play important roles in the specification of tissue type during the development of animals. We have used the information contained in the recently published genomic sequence of Drosophila melanogaster to identify 12 additional bHLH proteins. By sequence analysis we have assigned these proteins to families defined by Atonal, Hairy-Enhancer of Split, Hand, p48, Mesp, MYC/USF, and the bHLH-Per, Arnt, Sim (PAS) domain. In addition, one single protein represents a unique family of bHLH proteins. mRNA in situ analysis demonstrates that the genes encoding these proteins are expressed in several tissue types but are particularly concentrated in the developing nervous system and mesoderm. PMID:10973473

  4. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    PubMed Central

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  5. The basic tilted helix bundle domain of the prolyl isomerase FKBP25 is a novel double-stranded RNA binding module

    PubMed Central

    Dilworth, David; Bonnafous, Pierre; Edoo, Amiirah Bibi; Bourbigot, Sarah; Pesek-Jardim, Francy; Gudavicius, Geoff; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.

    2017-01-01

    Abstract Prolyl isomerases are defined by a catalytic domain that facilitates the cis–trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets. PMID:29036638

  6. Prokaryotic and eukaryotic features observed on the secondary structures of Giardia SSU rRNAs and its phylogenetic implications.

    PubMed

    Hwang, Ui Wook

    2007-04-01

    Phylogenetic position of a diplomonad protist Giardia, a principle cause of diarrhea, among eukaryotes has been vigorously debated so far. Through the comparisons of primary and secondary structures of SSU rRNAs of G. intestinalis, G. microti, G. ardeae, and G. muris, I found two major indel regions (a 6-nt indel and a 22-26-nt indel), which correspond to the helix 10 of the V2 region and helices E23-8 to E23-9 of the V4 region, respectively. As generally shown in eukaryotes, G. intestinalis and G. microti have commonly a relatively longer helix 10 (a 7-bp stem and a 4-nt loop), and also the eukaryote-specific helices E23-6 to E23-9. On the other hand, G. muris and G. ardeae have a shorter helix 10: a 2-bp stem and a 6-nt loop in G. ardeae and a 3-bp stem and a 6-nt loop in G. muris. In the V4, they have a single long helix (like the P23-1 helix in prokaryotes) instead of the helices E23-6 to E23-9. Among the four Giardia species, co-appearance of prokaryote- and eukaryote-typical features might be significant evidence to suggest that Giardia (Archezoa) is a living fossil showing an "intermediate stage" during the evolution from prokaryotes to eukaryotes.

  7. Proprioceptor pathway development is dependent on Math1

    NASA Technical Reports Server (NTRS)

    Bermingham, N. A.; Hassan, B. A.; Wang, V. Y.; Fernandez, M.; Banfi, S.; Bellen, H. J.; Fritzsch, B.; Zoghbi, H. Y.

    2001-01-01

    The proprioceptive system provides continuous positional information on the limbs and body to the thalamus, cortex, pontine nucleus, and cerebellum. We showed previously that the basic helix-loop-helix transcription factor Math1 is essential for the development of certain components of the proprioceptive pathway, including inner-ear hair cells, cerebellar granule neurons, and the pontine nuclei. Here, we demonstrate that Math1 null embryos lack the D1 interneurons and that these interneurons give rise to a subset of proprioceptor interneurons and the spinocerebellar and cuneocerebellar tracts. We also identify three downstream genes of Math1 (Lh2A, Lh2B, and Barhl1) and establish that Math1 governs the development of multiple components of the proprioceptive pathway.

  8. Nature of the Charged-Group Effect on the Stability of the C-Peptide Helix

    NASA Astrophysics Data System (ADS)

    Shoemaker, Kevin R.; Kim, Peter S.; Brems, David N.; Marqusee, Susan; York, Eunice J.; Chaiken, Irwin M.; Stewart, John M.; Baldwin, Robert L.

    1985-04-01

    The residues responsible for the pH-dependent stability of the helix formed by the isolated C-peptide (residues 1-13 of ribonuclease A) have been identified by chemical synthesis of analogues and measurement of their helix-forming properties. Each of the residues ionizing between pH 2 and pH 8 has been replaced separately by an uncharged residue. Protonation of Glu-2- is responsible for the sharp decrease in helix stability between pH 5 and pH 2, and deprotonation of His-12+ causes a similar decrease between pH 5 and pH 8. Glu-9- is not needed for helix stability. The results cannot be explained by the Zimm-Bragg model and host-guest data for α -helix formation, which predict that the stability of the C-peptide helix should increase when Glu-2- is protonated or when His-12+ is deprotonated. Moreover, histidine+ is a strong helix-breaker in host-guest studies. In proteins, acidic and basic residues tend to occur at opposite ends of α -helices: acidic residues occur preferentially near the NH2-terminal end and basic residues near the COOH-terminal end. A possible explanation, based on a helix dipole model, has been given [Blagdon, D. E. & Goodman, M. (1975) Biopolymers 14, 241-245]. Our results are consistent with the helix dipole model and they support the suggestion that the distribution of charged residues in protein helices reflects the helix-stabilizing propensity of those residues. Because Glu-9 is not needed for helix stability, a possible Glu-9-\\cdots His-12+ salt bridge does not contribute significantly to helix stability. The role of a possible Glu-2-\\cdots Arg-10+ salt bridge has not yet been evaluated. A charged-group effect on α -helix stability in water has also been observed in a different peptide system [Ihara, S., Ooi, T. & Takahashi, S. (1982) Biopolymers 21, 131-145]: block copolymers containing (Ala)20 and (Glu)20 show partial helix formation at low temperatures, pH 7.5, where the glutamic acid residues are ionized. (Glu)20(Ala)20Phe forms a helix that is markedly more stable than (Ala)20(Glu)20Phe. The results are consistent with a helix dipole model.

  9. A Secondary Structural Transition in the C-helix Promotes Gating of Cyclic Nucleotide-regulated Ion Channels*

    PubMed Central

    Puljung, Michael C.; Zagotta, William N.

    2013-01-01

    Cyclic nucleotide-regulated ion channels bind second messengers like cAMP to a C-terminal domain, consisting of a β-roll, followed by two α-helices (B- and C-helices). We monitored the cAMP-dependent changes in the structure of the C-helix of a C-terminal fragment of HCN2 channels using transition metal ion FRET between fluorophores on the C-helix and metal ions bound between histidine pairs on the same helix. cAMP induced a change in the dimensions of the C-helix and an increase in the metal binding affinity of the histidine pair. cAMP also caused an increase in the distance between a fluorophore on the C-helix and metal ions bound to the B-helix. Stabilizing the C-helix of intact CNGA1 channels by metal binding to a pair of histidines promoted channel opening. These data suggest that ordering of the C-helix is part of the gating conformational change in cyclic nucleotide-regulated channels. PMID:23525108

  10. Local conformational dynamics in alpha-helices measured by fast triplet transfer.

    PubMed

    Fierz, Beat; Reiner, Andreas; Kiefhaber, Thomas

    2009-01-27

    Coupling fast triplet-triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix-coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in alpha-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 micros at 5 degrees C. Local helix formation occurs with a time constant of approximately 400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of approximately 50 ns for the addition and of approximately 65 ns for the removal of an alpha-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunhua; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 45108; Lv, Dashuai

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regionsmore » between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.« less

  12. Genetic modification of human B-cell development: B-cell development is inhibited by the dominant negative helix loop helix factor Id3.

    PubMed

    Jaleco, A C; Stegmann, A P; Heemskerk, M H; Couwenberg, F; Bakker, A Q; Weijer, K; Spits, H

    1999-10-15

    Transgenic and gene targeted mice have contributed greatly to our understanding of the mechanisms underlying B-cell development. We describe here a model system that allows us to apply molecular genetic techniques to the analysis of human B-cell development. We constructed a retroviral vector with a multiple cloning site connected to a gene encoding green fluorescent protein by an internal ribosomal entry site. Human CD34(+)CD38(-) fetal liver cells, cultured overnight in a combination of stem cell factor and interleukin-7 (IL-7), could be transduced with 30% efficiency. We ligated the gene encoding the dominant negative helix loop helix (HLH) factor Id3 that inhibits many enhancing basic HLH transcription factors into this vector. CD34(+)CD38(-) FL cells were transduced with Id3-IRES-GFP and cultured with the murine stromal cell line S17. In addition, we cultured the transduced cells in a reaggregate culture system with an SV-transformed human fibroblast cell line (SV19). It was observed that overexpression of Id3 inhibited development of B cells in both culture systems. B-cell development was arrested at a stage before expression of the IL-7Ralpha. The development of CD34(+)CD38(-) cells into CD14(+) myeloid cells in the S17 system was not inhibited by overexpression of Id3. Moreover, Id3(+) cells, although inhibited in their B-cell development, were still able to develop into natural killer (NK) cells when cultured in a combination of Flt-3L, IL-7, and IL-15. These findings confirm the essential role of bHLH factors in B-cell development and demonstrate the feasibility of retrovirus-mediated gene transfer as a tool to genetically modify human B-cell development.

  13. Control of regulatory T cell and Th17 cell differentiation by inhibitory helix-loop-helix protein Id3

    PubMed Central

    Maruyama, Takashi; Li, Jun; Vaque, Jose P.; Konkel, Joanne E.; Wang, Weifeng; Zhang, Baojun; Zhang, Pin; Zamarron, Brian; Yu, Dongyang; Wu, Yuntao; Zhuang, Yuan; Gutkind, J. Silvio; Chen, WanJun

    2010-01-01

    The molecular mechanisms directing Foxp3 gene transcription in CD4+ T cells remain ill defined. We show that deletion of the inhibitory helix-loop-helix (HLH) protein Id3 results in defective Foxp3+ Treg cell generation. We identified two transforming grothw factor-β1 (TGF-β1)-dependent mechanisms that are vital for activation of Foxp3 gene transcription, and are defective in Id3−/− CD4+ T cells. Enhanced binding of the HLH protein E2A to the Foxp3 promoter promoted Foxp3 gene transcription. Id3 was required to relieve inhibition by GATA-3 at the Foxp3 promoter. Further, Id3−/− T cells increased differentiation of Th17 cells in vitro and in a mouse asthma model. A network of factors therefore act in a TGF-β-dependent manner to control Foxp3 expression and inhibit Th17 cell development. PMID:21131965

  14. Thymocyte Maturation Is Regulated by the Activity of the Helix-Loop-Helix Protein, E47

    PubMed Central

    Bain, Gretchen; Quong, Melanie W.; Soloff, Rachel S.; Hedrick, Stephen M.; Murre, Cornelis

    1999-01-01

    The E2A proteins, E12 and E47, are required for progression through multiple developmental pathways, including early B and T lymphopoiesis. Here, we provide in vitro and in vivo evidence demonstrating that E47 activity regulates double-positive thymocyte maturation. In the absence of E47 activity, positive selection of both major histocompatibility complex (MHC) class I– and class II–restricted T cell receptors (TCRs) is perturbed. Additionally, development of CD8 lineage T cells in an MHC class I–restricted TCR transgenic background is sensitive to the dosage of E47. Mice deficient for E47 display an increase in production of mature CD4 and CD8 lineage T cells. Furthermore, ectopic expression of an E2A inhibitor helix-loop-helix protein, Id3, promotes the in vitro differentiation of an immature T cell line. These results demonstrate that E2A functions as a regulator of thymocyte positive selection. PMID:10587351

  15. Peptide Fragments of Odin-Sam1: Conformational Analysis and Interaction Studies with EphA2-Sam.

    PubMed

    Mercurio, Flavia A; Di Natale, Concetta; Pirone, Luciano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Saviano, Michele; Leone, Marilisa

    2015-07-27

    Odin is a protein belonging to the ANKS family, and has two tandem Sam domains. The first, Odin-Sam1, binds to the Sam domain of the EphA2 receptor (EphA2-Sam); this interaction could be crucial for the regulation of receptor endocytosis and might have an impact on cancer. Odin-Sam1 associates with EphA2-Sam by adopting a "mid-loop/end-helix" model. In this study three peptide sequences, encompassing the mid-loop interacting portion of Odin-Sam1 and its C-terminal α5 helix, were designed. Their conformational properties were analyzed by CD and NMR. In addition, their abilities to interact with EphA2-Sam were investigated by SPR studies. The peptides adopt a predominantly disordered state in aqueous buffer, but a higher helical content is evident in the presence of the cosolvent trifluoroethanol. Dissociation constants towards EphA2-Sam were in the high micromolar range. The structural findings suggest further routes for the design of potential anti-cancer therapeutics as inhibitors of EphA2-Sam heterotypic interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Crystal structures of the reverse transcriptase-associated ribonuclease H domain of xenotropic murine leukemia-virus related virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Dongwen; Chung, Suhman; Miller, Maria

    2012-06-19

    The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site {alpha}-hydroxytropolone inhibitor. Enzymatic assays showed that the intactmore » RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with {beta}-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.« less

  17. Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity.

    PubMed

    Harper, Shannon M; Christie, John M; Gardner, Kevin H

    2004-12-28

    Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.

  18. Flavonoids: biosynthesis, biological functions, and biotechnological applications

    PubMed Central

    Falcone Ferreyra, María L.; Rius, Sebastián P.; Casati, Paula

    2012-01-01

    Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds. PMID:23060891

  19. Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress.

    PubMed

    Mao, Ke; Dong, Qinglong; Li, Chao; Liu, Changhai; Ma, Fengwang

    2017-01-01

    The bHLH (basic helix-loop-helix) transcription factor family is the second largest in plants. It occurs in all three eukaryotic kingdoms, and plays important roles in regulating growth and development. However, family members have not previously been studied in apple. Here, we identified 188 MdbHLH proteins in apple "Golden Delicious" ( Malus × domestica Borkh.), which could be classified into 18 groups. We also investigated the gene structures and 12 conserved motifs in these MdbHLH s. Coupled with expression analysis and protein interaction network prediction, we identified several genes that might be responsible for abiotic stress responses. This study provides insight and rich resources for subsequent investigations of such proteins in apple.

  20. Emerging role of Twist1 in fibrotic diseases.

    PubMed

    Ning, Xiaoxuan; Zhang, Kun; Wu, Qingfeng; Liu, Minna; Sun, Shiren

    2018-03-01

    Epithelial-mesenchymal transition (EMT) is a pathological process that occurs in a variety of diseases, including organ fibrosis. Twist1, a basic helix-loop-helix transcription factor, is involved in EMT and plays significant roles in various fibrotic diseases. Suppression of the EMT process represents a promising approach for the treatment of fibrotic diseases. In this review, we discuss the roles and the underlying molecular mechanisms of Twist1 in fibrotic diseases, including those affecting kidney, lung, skin, oral submucosa and other tissues. We aim at providing new insight into the pathogenesis of various fibrotic diseases and facilitating the development of novel diagnostic and therapeutic methods for their treatment. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress

    PubMed Central

    Mao, Ke; Dong, Qinglong; Li, Chao; Liu, Changhai; Ma, Fengwang

    2017-01-01

    The bHLH (basic helix-loop-helix) transcription factor family is the second largest in plants. It occurs in all three eukaryotic kingdoms, and plays important roles in regulating growth and development. However, family members have not previously been studied in apple. Here, we identified 188 MdbHLH proteins in apple “Golden Delicious” (Malus × domestica Borkh.), which could be classified into 18 groups. We also investigated the gene structures and 12 conserved motifs in these MdbHLHs. Coupled with expression analysis and protein interaction network prediction, we identified several genes that might be responsible for abiotic stress responses. This study provides insight and rich resources for subsequent investigations of such proteins in apple. PMID:28443104

  2. Conformational Dissection of a Viral Intrinsically Disordered Domain Involved in Cellular Transformation

    PubMed Central

    Perrone, Sebastián; Salvay, Andres G.; Chemes, Lucía B.; de Prat-Gay, Gonzalo

    2013-01-01

    Intrinsic disorder is abundant in viral genomes and provides conformational plasticity to its protein products. In order to gain insight into its structure-function relationships, we carried out a comprehensive analysis of structural propensities within the intrinsically disordered N-terminal domain from the human papillomavirus type-16 E7 oncoprotein (E7N). Two E7N segments located within the conserved CR1 and CR2 regions present transient α-helix structure. The helix in the CR1 region spans residues L8 to L13 and overlaps with the E2F mimic linear motif. The second helix, located within the highly acidic CR2 region, presents a pH-dependent structural transition. At neutral pH the helix spans residues P17 to N29, which include the retinoblastoma tumor suppressor LxCxE binding motif (residues 21–29), while the acidic CKII-PEST region spanning residues E33 to I38 populates polyproline type II (PII) structure. At pH 5.0, the CR2 helix propagates up to residue I38 at the expense of loss of PII due to charge neutralization of acidic residues. Using truncated forms of HPV-16 E7, we confirmed that pH-induced changes in α-helix content are governed by the intrinsically disordered E7N domain. Interestingly, while at both pH the region encompassing the LxCxE motif adopts α-helical structure, the isolated 21–29 fragment including this stretch is unable to populate an α-helix even at high TFE concentrations. Thus, the E7N domain can populate dynamic but discrete structural ensembles by sampling α-helix-coil-PII-ß-sheet structures. This high plasticity may modulate the exposure of linear binding motifs responsible for its multi-target binding properties, leading to interference with key cell signaling pathways and eventually to cellular transformation by the virus. PMID:24086265

  3. NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide

    PubMed Central

    Wang, Tuo; Cady, Sarah D.; Hong, Mei

    2012-01-01

    The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use 31P and 13C solid-state NMR to examine M2-induced membrane curvature. M2(22–46), which includes only the transmembrane (TM) helix, and M2(21–61), which contains an additional amphipathic helix, are studied. 31P chemical shift lineshapes indicate that M2(21–61) causes a high-curvature isotropic phase to both cholesterol-rich virus-mimetic membranes and 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers, whereas M2(22–46) has minimal effect. The lamellar and isotropic domains have distinct 31P isotropic chemical shifts, indicating perturbation of the lipid headgroup conformation by the amphipathic helix. 31P- and 13C-detected 1H T2 relaxation and two-dimensional peptide-lipid correlation spectra show that M2(21–61) preferentially binds to the high-curvature domain. 31P linewidths indicate that the isotropic vesicles induced by M2(21–61) are 10–35 nm in diameter, and the virus-mimetic vesicles are smaller than the 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles. A strong correlation is found between high membrane curvature and weak drug-binding ability of the TM helix. Thus, the M2 amphipathic helix causes membrane curvature, which in turn perturbs the TM helix conformation, abolishing drug binding. These NMR experiments are applicable to other curvature-inducing membrane proteins such as fusion proteins and antimicrobial peptides. PMID:22385849

  4. Extension of helix II of an HIV-1-directed hammerhead ribozyme with long antisense flanks does not alter kinetic parameters in vitro but causes loss of the inhibitory potential in living cells.

    PubMed Central

    Homann, M; Tabler, M; Tzortzakaki, S; Sczakiel, G

    1994-01-01

    When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo. Images PMID:7524030

  5. Atypical binding of the Swa2p UBA domain to ubiquitin.

    PubMed

    Matta-Camacho, Edna; Kozlov, Guennadi; Trempe, Jean-François; Gehring, Kalle

    2009-02-20

    Swa2p is an auxilin-like yeast protein that is involved in vesicular transport and required for uncoating of clathrin-coated vesicles. Swa2p contains a ubiquitin-associated (UBA) domain, which is present in a variety of proteins involved in ubiquitin (Ub)-mediated processes. We have determined a structural model of the Swa2p UBA domain in complex with Ub using NMR spectroscopy and molecular docking. Ub recognition occurs predominantly through an atypical interaction in which UBA helix alpha1 and the N-terminal part of helix alpha2 bind to Ub. Mutation of Ala148, a key residue in helix alpha1, to polar residues greatly reduced the affinity of the UBA domain for Ub and revealed a second low-affinity Ub-binding site located on the surface formed by helices alpha1 and alpha3. Surface plasmon resonance showed that the Swa2p UBA domain binds K48- and K63-linked di-Ub in a non-linkage-specific manner. These results reveal convergent evolution of a Ub-binding site on helix alpha1 of UBA domains involved in membrane protein trafficking.

  6. The mechanism of the converter domain rotation in the recovery stroke of myosin motor protein

    PubMed Central

    Baumketner, Andrij

    2012-01-01

    Upon ATP binding, myosin motor protein is found in two alternative conformations, pre-recovery state M* and post-recovery state M**. The transition from one state to the other, known as the recovery stroke, plays a key role in the myosin functional cycle. Despite much recent research, the microscopic details of this transition remain elusive. A critical step in the recovery stroke is the rotation of the converter domain from “up” position in pre-recovery state to “down” position in post-recovery state that leads to the swing of the lever arm attached to it. In this work, we demonstrate that the two rotational states of the converter domain are determined by the interactions within a small structural motif in the force-generating region of the protein that can be accurately modeled on computers using atomic representation and explicit solvent. Our simulations show that the transition between the two states is controlled by a small helix (SH1) located next to the relay helix and relay loop. A small translation in the position of SH1 away from the relay helix is seen to trigger the transition from “up” state to “down” state. The transition is driven by a cluster of hydrophobic residues I687, F487 and F506 that make significant contributions to the stability of both states. The proposed mechanism agrees well with the available structural and mutational studies. PMID:22855405

  7. Determination of the force systems produced by different configurations of tear drop orthodontic loops.

    PubMed

    Thiesen, Guilherme; Shimizu, Roberto Hideo; do Valle, Caio Vinicius Martins; do Valle-Corotti, Karyna Martins; Pereira, Jefferson Ricardo; Conti, Paulo Cesar Rodrigues

    2013-03-15

    To determine the mechanical characteristics of teardrop loop with and without helix fabricated using different metal alloy compositions (stainless steel and beta-titanium), submitted to different intensities of bends preactivation (0° and 40°), and with different cross-sectional dimension of the wire used to build these loops (0.017 x 0.025-in and 0.019 x 0.025-in). Eighty loops used to close spaces were submitted to mechanical tests. The magnitudes of horizontal force, the moment/force ratio, and the load/deflection ratio produced by the specimens were quantified. Loops were submitted to a total activation of 5.0 mm and the values were registered for each 1.0 mm of activation. For statistic data analysis, a analysis of variance was performed and a Tukey's Multiple Comparison test was used as supplement, considering a 5% level of significance. In general, teardrop loops with helix produced lower magnitudes of horizontal force and load/deflection ratio, and higher moment/force ratio than teardrop loops without helix. Among all analyzed variables, metal alloy composition presented greater influence in the horizontal force and in the load/deflection ratio. The moment/force ratio showed to be more influenced by the preactivation of loops for space closure.

  8. Trimerization and Triple Helix Stabilization of the Collagen XIX NC2 Domain*

    PubMed Central

    Boudko, Sergei P.; Engel, Jürgen; Bächinger, Hans Peter

    2008-01-01

    The mechanisms of chain selection and assembly of fibril-associated collagens with interrupted triple helices (FACITs) must differ from that of fibrillar collagens, since they lack the characteristic C-propeptide. We analyzed two carboxyl-terminal noncollagenous domains, NC2 and NC1, of collagen XIX as potential trimerization units and found that NC2 forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. In contrast, the NC1 domain requires formation of an adjacent collagen triple helix to form interchain disulfide bridges. The NC2 domain of collagen XIX and probably of other FACITs is responsible for chain selection and trimerization. PMID:18845531

  9. Molecular Dynamics Simulation of Rap1 Myb-type domain in Saccharomyces cerevisiae

    PubMed Central

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2012-01-01

    Telomere is a nucleoprotein complex that plays important role in stability and their maintenance and consists of random repeats of species specific motifs. In budding Saccharomyces cerevisiae, Repressor Activator Protein 1 (Rap1) is a sequence specific protein that involved in transcriptional regulation. Rap1 consist of three active domains like N-terminal BRCT-domain, DNA-binding domain and C-terminal RCT-domain. In this study the unknown 3D structure of Myb-type domain (having 61 residues) within DNAbinding domain was modeled by Modeller7, and verified using different online bioinformatics tools (ProCheck, WhatIf, Verify3D). Dynamics of Myb-type domain of Rap1was carried out through simulation studies using GROMACS software. Time dependent interactions among the molecules were analyzed by Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) plots. Motional properties in reduced dimension were also performed by Principal Component Analysis (PCA). Result indicated that Rap1 interacts with DNA major groove through its Helix Turn Helix motifs. Helix 3 was rigid, less amount of fluctuation was found as it interacts with DNA major groove. Helix2 and N-terminal having considerable fluctuation in the time scale. PMID:23144544

  10. Molecular Dynamics Simulation of Rap1 Myb-type domain in Saccharomyces cerevisiae.

    PubMed

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2012-01-01

    Telomere is a nucleoprotein complex that plays important role in stability and their maintenance and consists of random repeats of species specific motifs. In budding Saccharomyces cerevisiae, Repressor Activator Protein 1 (Rap1) is a sequence specific protein that involved in transcriptional regulation. Rap1 consist of three active domains like N-terminal BRCT-domain, DNA-binding domain and C-terminal RCT-domain. In this study the unknown 3D structure of Myb-type domain (having 61 residues) within DNAbinding domain was modeled by Modeller7, and verified using different online bioinformatics tools (ProCheck, WhatIf, Verify3D). Dynamics of Myb-type domain of Rap1was carried out through simulation studies using GROMACS software. Time dependent interactions among the molecules were analyzed by Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) plots. Motional properties in reduced dimension were also performed by Principal Component Analysis (PCA). Result indicated that Rap1 interacts with DNA major groove through its Helix Turn Helix motifs. Helix 3 was rigid, less amount of fluctuation was found as it interacts with DNA major groove. Helix2 and N-terminal having considerable fluctuation in the time scale.

  11. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization

    PubMed Central

    Yan, Qian; Liu, Hou-Sheng; Yao, Dan; Li, Xin; Chen, Han; Dou, Yang; Wang, Yi; Pei, Yan; Xiao, Yue-Hua

    2015-01-01

    Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus. PMID:25992947

  12. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization.

    PubMed

    Yan, Qian; Liu, Hou-Sheng; Yao, Dan; Li, Xin; Chen, Han; Dou, Yang; Wang, Yi; Pei, Yan; Xiao, Yue-Hua

    2015-01-01

    Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus.

  13. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    PubMed

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  14. Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY

    PubMed Central

    Ohashi-Ito, Kyoko; Bergmann, Dominique C.

    2011-01-01

    Complex organisms consist of a multitude of cell types arranged in precise spatial relation to each other. Arabidopsis roots generally exhibit radial tissue organization; however, within a tissue layer, cells are not identical. Specific vascular cell types are arranged in diametrically opposed longitudinal files that maximize the distance between them and create a bilaterally symmetric (diarch) root. Mutations in the LONESOME HIGHWAY (LHW) gene eliminate bilateral symmetry and reduce the number of cells in the center of the root, resulting in roots with only single and xylem and phloem poles. LHW does not appear to be required for the creation of any specific cell type, but coordinately controls the number of all vascular cell types by regulating the size of the pool of cells from which they arise. We cloned LHW and found that it encodes a protein with weak sequence similarity to basic helix-loop-helix (bHLH) domain proteins. LHW is a transcriptional activator in vitro. In plants, LHW is nuclear localized and is expressed in the root meristems where we hypothesize it acts independently of other known root patterning genes to promote the production of stele cells, but may also indirectly feed into established regulatory networks for the maintenance of the root meristem. PMID:17626058

  15. Effect of the g.-723G-->T polymorphism in the bovine myogenic factor 5 (Myf5) gene promoter region on gene transcript level in the longissimus dorsi muscle and on meat traits of Polish Holstein-Friesian cattle.

    PubMed

    Robakowska-Hyzorek, Dagmara; Oprzadek, Jolanta; Zelazowska, Beata; Olbromski, Rafał; Zwierzchowski, Lech

    2010-06-01

    Myogenic factor 5 (Myf5), a product of the Myf5 gene, belongs to the MRF family of basic helix-loop-helix transcription factors that regulate myogenesis. Their roles in muscle growth and development make their genes candidates for molecular markers of meat production in livestock, but nucleotide sequence polymorphism has not been thoroughly studied in MRF genes. We detected four single nucleotide polymorphisms (SNPs) within exon 1 of the Myf5 gene, encoding the NH-terminal transactivation domain of the Myf5 protein. Three of these mutations change the amino acid sequence. The distribution of these SNPs was highly skewed in cattle populations; most of the mutations were found in only a few or even single individuals. Of the nine SNPs found in the promoter region of Myf5, one (transversion g.-723G-->T) was represented by all three genotypes distributed in the cattle populations studied. This polymorphism showed an influence on Myf5 gene expression in the longissimus dorsi muscle and was associated with sirloin weight and fat weight in sirloin in carcasses of Holstein-Friesian cattle.

  16. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    NASA Astrophysics Data System (ADS)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  17. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN- binding defined by EPR-based hybrid method

    NASA Astrophysics Data System (ADS)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN-, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane.

  18. Crystal structure of inhibitor of growth 4 (ING4) dimerization domain reveals functional organization of ING family of chromatin-binding proteins.

    PubMed

    Culurgioni, Simone; Muñoz, Inés G; Moreno, Alberto; Palacios, Alicia; Villate, Maider; Palmero, Ignacio; Montoya, Guillermo; Blanco, Francisco J

    2012-03-30

    The protein ING4 binds to histone H3 trimethylated at Lys-4 (H3K4me3) through its C-terminal plant homeodomain, thus recruiting the HBO1 histone acetyltransferase complex to target promoters. The structure of the plant homeodomain finger bound to an H3K4me3 peptide has been described, as well as the disorder and flexibility in the ING4 central region. We report the crystal structure of the ING4 N-terminal domain, which shows an antiparallel coiled-coil homodimer with each protomer folded into a helix-loop-helix structure. This arrangement suggests that ING4 can bind simultaneously two histone tails on the same or different nucleosomes. Dimerization has a direct impact on ING4 tumor suppressor activity because monomeric mutants lose the ability to induce apoptosis after genotoxic stress. Homology modeling based on the ING4 structure suggests that other ING dimers may also exist.

  19. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORα (PPARα) AGONISTS DIFFERENTIALLY REGULATE INHIBITOR OF DNA BINDING (ID2) EXPRESSION IN RODENTS AND HUMAN CELLS

    EPA Science Inventory

    Abstract Inhibitor of DNA binding (Id2) is a member of the helix-loop-helix (HLH) transcription factor family whose members play important roles in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones,...

  20. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less

  1. Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface.

    PubMed

    Jiang, Jianwen; Taylor, Alexander B; Prasad, Kondury; Ishikawa-Brush, Yumiko; Hart, P John; Lafer, Eileen M; Sousa, Rui

    2003-05-20

    J-domains are widespread protein interaction modules involved in recruiting and stimulating the activity of Hsp70 family chaperones. We have determined the crystal structure of the J-domain of auxilin, a protein which is involved in uncoating clathrin-coated vesicles. Comparison to the known structures of J-domains from four other proteins reveals that the auxilin J-domain is the most divergent of all J-domain structures described to date. In addition to the canonical J-domain features described previously, the auxilin J-domain contains an extra N-terminal helix and a long loop inserted between helices I and II. The latter loop extends the positively charged surface which forms the Hsc70 binding site, and is shown by directed mutagenesis and surface plasmon resonance to contain side chains important for binding to Hsc70.

  2. A Point Mutation in the N-Terminal Amphipathic Helix α0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding

    PubMed Central

    Yan, Yu; He, Ying; Boson, Bertrand; Wang, Xuesong; Cosset, François-Loïc

    2017-01-01

    ABSTRACT The assembly of hepatitis C virus (HCV), a complicated process in which many viral and cellular factors are involved, has not been thoroughly deciphered. NS3 is a multifunctional protein that contains an N-terminal amphipathic α helix (designated helix α0), which is crucial for the membrane association and stability of NS3 protein, followed by a serine protease domain and a C-terminal helicase/NTPase domain. NS3 participates in HCV assembly likely through its C-terminal helicase domain, in which all reported adaptive mutations enhancing virion assembly reside. In this study, we determined that the N-terminal helix α0 of NS3 may contribute to HCV assembly. We identified a single mutation from methionine to threonine at amino acid position 21 (M21T) in helix α0, which significantly promoted viral production while having no apparent effect on the membrane association and protease activity of NS3. Subsequent analyses demonstrated that the M21T mutation did not affect HCV genome replication but rather promoted virion assembly. Further study revealed a shift in the subcellular localization of core protein from lipid droplets (LD) to the endoplasmic reticulum (ER). Finally, we showed that the M21T mutation increased the colocalization of core proteins and viral envelope proteins, leading to a more efficient envelopment of viral nucleocapsids. Collectively, the results of our study revealed a new function of NS3 helix α0 and aid understanding of the role of NS3 in HCV virion morphogenesis. IMPORTANCE HCV NS3 protein possesses the protease activity in its N-terminal domain and the helicase activity in its C-terminal domain. The role of NS3 in virus assembly has been mainly attributed to its helicase domain, because all adaptive mutations enhancing progeny virus production are found to be within this domain. Our study identified, for the first time to our knowledge, an adaptive mutation within the N-terminal helix α0 domain of NS3 that significantly enhanced virus assembly while having no effect on viral genome replication. The mechanistic studies suggested that this mutation promoted the relocation of core proteins from LD to the ER, leading to a more efficient envelopment of viral nucleocapsids. Our results revealed a possible new function of helix α0 in the HCV life cycle and provided new clues to understanding the molecular mechanisms for the action of NS3 in HCV assembly. PMID:28053108

  3. Hey1- and p53-dependent TrkC proapoptotic activity controls neuroblastoma growth.

    PubMed

    Ménard, Marie; Costechareyre, Clélia; Ichim, Gabriel; Blachier, Jonathan; Neves, David; Jarrosson-Wuilleme, Loraine; Depping, Reinhard; Koster, Jan; Saintigny, Pierre; Mehlen, Patrick; Tauszig-Delamasure, Servane

    2018-05-01

    The neurotrophin-3 (NT-3) receptor tropomyosin receptor kinase C (TrkC/NTRK3) has been described as a dependence receptor and, as such, triggers apoptosis in the absence of its ligand NT-3. This proapoptotic activity has been proposed to confer a tumor suppressor activity to this classic tyrosine kinase receptor (RTK). By investigating interacting partners that might facilitate TrkC-induced cell death, we have identified the basic helix-loop-helix (bHLH) transcription factor Hey1 and importin-α3 (karyopherin alpha 4 [KPNA4]) as direct interactors of TrkC intracellular domain, and we show that Hey1 is required for TrkC-induced apoptosis. We propose here that the cleaved proapoptotic portion of TrkC intracellular domain (called TrkC killer-fragment [TrkC-KF]) is translocated to the nucleus by importins and interacts there with Hey1. We also demonstrate that Hey1 and TrkC-KF transcriptionally silence mouse double minute 2 homolog (MDM2), thus contributing to p53 stabilization. p53 transcriptionally regulates the expression of TrkC-KF cytoplasmic and mitochondrial interactors cofactor of breast cancer 1 (COBRA1) and B cell lymphoma 2-associated X (BAX), which will subsequently trigger the intrinsic pathway of apoptosis. Of interest, TrkC was proposed to constrain tumor progression in neuroblastoma (NB), and we demonstrate in an avian model that TrkC tumor suppressor activity requires Hey1 and p53.

  4. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model

    NASA Astrophysics Data System (ADS)

    Li, Chunhua; Lv, Dashuai; Zhang, Lei; Yang, Feng; Wang, Cunxin; Su, Jiguo; Zhang, Yang

    2016-07-01

    Riboswitches are noncoding mRNA segments that can regulate the gene expression via altering their structures in response to specific metabolite binding. We proposed a coarse-grained Gaussian network model (GNM) to examine the unfolding and folding dynamics of adenosine deaminase (add) A-riboswitch upon the adenine dissociation, in which the RNA is modeled by a nucleotide chain with interaction networks formed by connecting adjoining atomic contacts. It was shown that the adenine binding is critical to the folding of the add A-riboswitch while the removal of the ligand can result in drastic increase of the thermodynamic fluctuations especially in the junction regions between helix domains. Under the assumption that the native contacts with the highest thermodynamic fluctuations break first, the iterative GNM simulations showed that the unfolding process of the adenine-free add A-riboswitch starts with the denature of the terminal helix stem, followed by the loops and junctions involving ligand binding pocket, and then the central helix domains. Despite the simplified coarse-grained modeling, the unfolding dynamics and pathways are shown in close agreement with the results from atomic-level MD simulations and the NMR and single-molecule force spectroscopy experiments. Overall, the study demonstrates a new avenue to investigate the binding and folding dynamics of add A-riboswitch molecule which can be readily extended for other RNA molecules.

  5. The Homeodomain of PDX-1 Mediates Multiple Protein-Protein Interactions in the Formation of a Transcriptional Activation Complex on the Insulin Promoter

    PubMed Central

    Ohneda, Kinuko; Mirmira, Raghavendra G.; Wang, Juehu; Johnson, Jeffrey D.; German, Michael S.

    2000-01-01

    Activation of insulin gene transcription specifically in the pancreatic β cells depends on multiple nuclear proteins that interact with each other and with sequences on the insulin gene promoter to build a transcriptional activation complex. The homeodomain protein PDX-1 exemplifies such interactions by binding to the A3/4 region of the rat insulin I promoter and activating insulin gene transcription by cooperating with the basic-helix-loop-helix (bHLH) protein E47/Pan1, which binds to the adjacent E2 site. The present study provides evidence that the homeodomain of PDX-1 acts as a protein-protein interaction domain to recruit multiple proteins, including E47/Pan1, BETA2/NeuroD1, and high-mobility group protein I(Y), to an activation complex on the E2A3/4 minienhancer. The transcriptional activity of this complex results from the clustering of multiple activation domains capable of interacting with coactivators and the basal transcriptional machinery. These interactions are not common to all homeodomain proteins: the LIM homeodomain protein Lmx1.1 can also activate the E2A3/4 minienhancer in cooperation with E47/Pan1 but does so through different interactions. Cooperation between Lmx1.1 and E47/Pan1 results not only in the aggregation of multiple activation domains but also in the unmasking of a potent activation domain on E47/Pan1 that is normally silent in non-β cells. While more than one activation complex may be capable of activating insulin gene transcription through the E2A3/4 minienhancer, each is dependent on multiple specific interactions among a unique set of nuclear proteins. PMID:10629047

  6. Peptide mimics of the M13 coat protein transmembrane segment. Retention of helix-helix interaction motifs.

    PubMed

    Wang, C; Deber, C M

    2000-05-26

    Sequence-specific noncovalent helix-helix interactions between transmembrane (TM) segments in proteins are investigated by incorporating selected TM sequences into synthetic peptides using the construct CKKK-TM-KKK. The peptides are of suitable hydrophobicity for spontaneous membrane insertion, whereas formation of an N-terminal S-S bond can bring pairs of TM helices into proximity and promote their parallel orientation. Using the propensity of the protein to undergo thermally induced alpha-helix --> beta-sheet transitions as a parameter for helix stability, we compared the wild type and mutant (V29A and V31A) bacteriophage M13 coat proteins with their corresponding TM peptide constructs (M13 residues 24-42). Our results demonstrated that the relevant helix-helix tertiary contacts found in the intact proteins persist in the peptide mimics. Molecular dynamics simulations support the tight "two in-two out" dimerization motif for V31A consistent with mutagenesis data. The overall results reinforce the notion of TM segments as autonomous folding domains and suggest that the generic peptide construct provides a viable reductionist system for membrane protein structural and computational analysis.

  7. A gain-of-function mutation in the M-domain of cardiac myosin-binding protein-C increases binding to actin.

    PubMed

    Bezold, Kristina L; Shaffer, Justin F; Khosa, Jaskiran K; Hoye, Elaine R; Harris, Samantha P

    2013-07-26

    The M-domain is the major regulatory subunit of cardiac myosin-binding protein-C (cMyBP-C) that modulates actin and myosin interactions to influence muscle contraction. However, the precise mechanism(s) and the specific residues involved in mediating the functional effects of the M-domain are not fully understood. Positively charged residues adjacent to phosphorylation sites in the M-domain are thought to be critical for effects of cMyBP-C on cross-bridge interactions by mediating electrostatic binding with myosin S2 and/or actin. However, recent structural studies revealed that highly conserved sequences downstream of the phosphorylation sites form a compact tri-helix bundle. Here we used site-directed mutagenesis to probe the functional significance of charged residues adjacent to the phosphorylation sites and conserved residues within the tri-helix bundle. Results confirm that charged residues adjacent to phosphorylation sites and residues within the tri-helix bundle are important for mediating effects of the M-domain on contraction. In addition, four missense variants within the tri-helix bundle that are associated with human hypertrophic cardiomyopathy caused either loss-of-function or gain-of-function effects on force. Importantly, the effects of the gain-of-function variant, L348P, increased the affinity of the M-domain for actin. Together, results demonstrate that functional effects of the M-domain are not due solely to interactions with charged residues near phosphorylatable serines and provide the first demonstration that the tri-helix bundle contributes to the functional effects of the M-domain, most likely by binding to actin.

  8. An Intramolecular Salt Bridge in Bacillus thuringiensis Cry4Ba Toxin Is Involved in the Stability of Helix α-3, Which Is Needed for Oligomerization and Insecticidal Activity.

    PubMed

    Pacheco, Sabino; Gómez, Isabel; Sánchez, Jorge; García-Gómez, Blanca-Ines; Soberón, Mario; Bravo, Alejandra

    2017-10-15

    Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity. Copyright © 2017 American Society for Microbiology.

  9. Differential regulation of transcription through distinct Suppressor of Hairless DNA binding site architectures during Notch signaling in proneural clusters.

    PubMed

    Cave, John W; Xia, Li; Caudy, Michael

    2011-01-01

    In Drosophila melanogaster, achaete (ac) and m8 are model basic helix-loop-helix activator (bHLH A) and repressor genes, respectively, that have the opposite cell expression pattern in proneural clusters during Notch signaling. Previous studies have shown that activation of m8 transcription in specific cells within proneural clusters by Notch signaling is programmed by a "combinatorial" and "architectural" DNA transcription code containing binding sites for the Su(H) and proneural bHLH A proteins. Here we show the novel result that the ac promoter contains a similar combinatorial code of Su(H) and bHLH A binding sites but contains a different Su(H) site architectural code that does not mediate activation during Notch signaling, thus programming a cell expression pattern opposite that of m8 in proneural clusters.

  10. Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation

    PubMed Central

    Goult, Benjamin T; Bouaouina, Mohamed; Elliott, Paul R; Bate, Neil; Patel, Bipin; Gingras, Alexandre R; Grossmann, J Günter; Roberts, Gordon C K; Calderwood, David A; Critchley, David R; Barsukov, Igor L

    2010-01-01

    Talin is a 270-kDa protein that activates integrins and couples them to cytoskeletal actin. Talin contains an N-terminal FERM domain comprised of F1, F2 and F3 domains, but it is atypical in that F1 contains a large insert and is preceded by an extra domain F0. Although F3 contains the binding site for β-integrin tails, F0 and F1 are also required for activation of β1-integrins. Here, we report the solution structures of F0, F1 and of the F0F1 double domain. Both F0 and F1 have ubiquitin-like folds joined in a novel fixed orientation by an extensive charged interface. The F1 insert forms a loop with helical propensity, and basic residues predicted to reside on one surface of the helix are required for binding to acidic phospholipids and for talin-mediated activation of β1-integrins. This and the fact that basic residues on F2 and F3 are also essential for integrin activation suggest that extensive interactions between the talin FERM domain and acidic membrane phospholipids are required to orientate the FERM domain such that it can activate integrins. PMID:20150896

  11. Salt bridge interactions within the β2 integrin α7 helix mediate force-induced binding and shear resistance ability.

    PubMed

    Zhang, Xiao; Li, Linda; Li, Ning; Shu, Xinyu; Zhou, Lüwen; Lü, Shouqin; Chen, Shenbao; Mao, Debin; Long, Mian

    2018-01-01

    The functional performance of the αI domain α 7 helix in β 2 integrin activation depends on the allostery of the α 7 helix, which axially slides down; therefore, it is critical to elucidate what factors regulate the allostery. In this study, we determined that there were two conservative salt bridge interaction pairs that constrain both the upper and bottom ends of the α 7 helix. Molecular dynamics (MD) simulations for three β 2 integrin members, lymphocyte function-associated antigen-1 (LFA-1; α L β 2 ), macrophage-1 antigen (Mac-1; α M β 2 ) and α x β 2 , indicated that the magnitude of the salt bridge interaction is related to the stability of the αI domain and the strength of the corresponding force-induced allostery. The disruption of the salt bridge interaction, especially with double mutations in both salt bridges, significantly reduced the force-induced allostery time for all three members. The effects of salt bridge interactions of the αI domain α 7 helix on β 2 integrin conformational stability and allostery were experimentally validated using Mac-1 constructs. The results demonstrated that salt bridge mutations did not alter the conformational state of Mac-1, but they did increase the force-induced ligand binding and shear resistance ability, which was consistent with MD simulations. This study offers new insight into the importance of salt bridge interaction constraints of the αI domain α 7 helix and external force for β 2 integrin function. © 2017 Federation of European Biochemical Societies.

  12. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction.

    PubMed

    Stranava, Martin; Man, Petr; Skálová, Tereza; Kolenko, Petr; Blaha, Jan; Fojtikova, Veronika; Martínek, Václav; Dohnálek, Jan; Lengalova, Alzbeta; Rosůlek, Michal; Shimizu, Toru; Martínková, Markéta

    2017-12-22

    The heme-based oxygen sensor histidine kinase Af GcHK is part of a two-component signal transduction system in bacteria. O 2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His 183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH - and -CN - complexes of Af GcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN - and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length Af GcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of Af GcHK. We conclude that Af GcHK functions as an ensemble of molecules sampling at least two conformational states. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. High thermodynamic stability of parametrically designed helical bundles

    DOE PAGES

    Huang, Po -Ssu; Oberdorfer, Gustav; Xu, Chunfu; ...

    2014-10-24

    Here we describe a procedure for designing proteins with backbones produced by varying the parameters in the Crick coiled coil–generating equations. Combinatorial design calculations identify low-energy sequences for alternative helix supercoil arrangements, and the helices in the lowest-energy arrangements are connected by loop building. We design an antiparallel monomeric untwisted three-helix bundle with 80-residue helices, an antiparallel monomeric right-handed four-helix bundle, and a pentameric parallel left-handed five-helix bundle. The designed proteins are extremely stable (extrapolated ΔG fold > 60 kilocalories per mole), and their crystal structures are close to those of the design models with nearly identical core packing betweenmore » the helices. The approach enables the custom design of hyperstable proteins with fine-tuned geometries for a wide range of applications.« less

  14. Identifying Novel Helix-Loop-Helix Genes in "Caenorhabditis elegans" through a Classroom Demonstration of Functional Genomics

    ERIC Educational Resources Information Center

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.

    2003-01-01

    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the "Caenorhabditis elegans" genome and further characterized three sequences that were predicted to encode…

  15. A single peptide loop in an alpha-Helix

    USDA-ARS?s Scientific Manuscript database

    Pitch is not a height but a ratio of rise/run. In an alpha-helix, run can be as the radius (r) from the center of the circle, as a diameter (d) measured across/bisecting a circumference, or as a distance (c) along a circumference; rise in each case can corresponds to same height (h) increase. For ...

  16. Right- and left-handed three-helix proteins. I. Experimental and simulation analysis of differences in folding and structure.

    PubMed

    Glyakina, Anna V; Pereyaslavets, Leonid B; Galzitskaya, Oxana V

    2013-09-01

    Despite the large number of publications on three-helix protein folding, there is no study devoted to the influence of handedness on the rate of three-helix protein folding. From the experimental studies, we make a conclusion that the left-handed three-helix proteins fold faster than the right-handed ones. What may explain this difference? An important question arising in this paper is whether the modeling of protein folding can catch the difference between the protein folding rates of proteins with similar structures but with different folding mechanisms. To answer this question, the folding of eight three-helix proteins (four right-handed and four left-handed), which are similar in size, was modeled using the Monte Carlo and dynamic programming methods. The studies allowed us to determine the orders of folding of the secondary-structure elements in these domains and amino acid residues which are important for the folding. The obtained data are in good correlation with each other and with the experimental data. Structural analysis of these proteins demonstrated that the left-handed domains have a lesser number of contacts per residue and a smaller radius of cross section than the right-handed domains. This may be one of the explanations of the observed fact. The same tendency is observed for the large dataset consisting of 332 three-helix proteins (238 right- and 94 left-handed). From our analysis, we found that the left-handed three-helix proteins have some less-dense packing that should result in faster folding for some proteins as compared to the case of right-handed proteins. Copyright © 2013 Wiley Periodicals, Inc.

  17. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix

    PubMed Central

    Brown, Jessica A.; Bulkley, David; Wang, Jimin; Valenstein, Max L.; Yario, Therese A.; Steitz, Thomas A.; Steitz, Joan A.

    2014-01-01

    Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a highly-abundant nuclear long noncoding RNA that promotes malignancy. A 3′-stem-loop structure is predicted to confer stability by engaging a downstream A-rich tract in a triple helix, similar to the expression and nuclear retention element (ENE) from the KSHV polyadenylated nuclear RNA. The 3.1-Å resolution crystal structure of the human MALAT1 ENE and A-rich tract reveals a bipartite triple helix containing stacks of five and four U•A-U triples separated by a C+•G-C triplet and C-G doublet, extended by two A-minor interactions. In vivo decay assays indicate that this blunt-ended triple helix, with the 3′ nucleotide in a U•A-U triple, inhibits rapid nuclear RNA decay. Interruption of the triple helix by the C-G doublet induces a “helical reset” that explains why triple-helical stacks longer than six do not occur in nature. PMID:24952594

  18. Mechanical unfolding reveals stable 3-helix intermediates in talin and α-catenin

    PubMed Central

    2018-01-01

    Mechanical stability is a key feature in the regulation of structural scaffolding proteins and their functions. Despite the abundance of α-helical structures among the human proteome and their undisputed importance in health and disease, the fundamental principles of their behavior under mechanical load are poorly understood. Talin and α-catenin are two key molecules in focal adhesions and adherens junctions, respectively. In this study, we used a combination of atomistic steered molecular dynamics (SMD) simulations, polyprotein engineering, and single-molecule atomic force microscopy (smAFM) to investigate unfolding of these proteins. SMD simulations revealed that talin rod α-helix bundles as well as α-catenin α-helix domains unfold through stable 3-helix intermediates. While the 5-helix bundles were found to be mechanically stable, a second stable conformation corresponding to the 3-helix state was revealed. Mechanically weaker 4-helix bundles easily unfolded into a stable 3-helix conformation. The results of smAFM experiments were in agreement with the findings of the computational simulations. The disulfide clamp mutants, designed to protect the stable state, support the 3-helix intermediate model in both experimental and computational setups. As a result, multiple discrete unfolding intermediate states in the talin and α-catenin unfolding pathway were discovered. Better understanding of the mechanical unfolding mechanism of α-helix proteins is a key step towards comprehensive models describing the mechanoregulation of proteins. PMID:29698481

  19. Protein-mediated loops in supercoiled DNA create large topological domains

    PubMed Central

    Yan, Yan; Ding, Yue; Leng, Fenfei; Dunlap, David; Finzi, Laura

    2018-01-01

    Abstract Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites. PMID:29538766

  20. A direct repeat of E-box-like elements is required for cell-autonomous circadian rhythm of clock genes

    PubMed Central

    Nakahata, Yasukazu; Yoshida, Mayumi; Takano, Atsuko; Soma, Haruhiko; Yamamoto, Takuro; Yasuda, Akio; Nakatsu, Toru; Takumi, Toru

    2008-01-01

    Background The circadian expression of the mammalian clock genes is based on transcriptional feedback loops. Two basic helix-loop-helix (bHLH) PAS (for Period-Arnt-Sim) domain-containing transcriptional activators, CLOCK and BMAL1, are known to regulate gene expression by interacting with a promoter element termed the E-box (CACGTG). The non-canonical E-boxes or E-box-like sequences have also been reported to be necessary for circadian oscillation. Results We report a new cis-element required for cell-autonomous circadian transcription of clock genes. This new element consists of a canonical E-box or a non-canonical E-box and an E-box-like sequence in tandem with the latter with a short interval, 6 base pairs, between them. We demonstrate that both E-box or E-box-like sequences are needed to generate cell-autonomous oscillation. We also verify that the spacing nucleotides with constant length between these 2 E-elements are crucial for robust oscillation. Furthermore, by in silico analysis we conclude that several clock and clock-controlled genes possess a direct repeat of the E-box-like elements in their promoter region. Conclusion We propose a novel possible mechanism regulated by double E-box-like elements, not to a single E-box, for circadian transcriptional oscillation. The direct repeat of the E-box-like elements identified in this study is the minimal required element for the generation of cell-autonomous transcriptional oscillation of clock and clock-controlled genes. PMID:18177499

  1. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  2. Structural basis for the appearance of a molten globule state in chimeric molecules derived from lysozyme and alpha-lactalbumin.

    PubMed

    Joniau, M; Haezebrouck, P; Noyelle, K; Van Dael, H

    2001-07-01

    The problem as to why alpha-lactalbumin, in the absence of Ca(2+), forms a molten globule intermediate, in contrast to its structural homologue lysozyme, has been addressed by the construction of chimeras of human lysozyme in which either the Ca(2+)-binding loop or a part of helix C of bovine alpha-lactalbumin were transplanted. Previously, we have shown that the introduction of both structural elements together in the lysozyme matrix causes the apo form of the resulting chimera to display molten globule behavior during the course of thermal denaturation. In this article, we demonstrate that this molten globule character is not correlated with the Ca(2+)-binding loop. Also, the Del 101 mutant in which Arg101 was deleted to simulate the alpha-lactalbumin conformation of the connecting loop between helix C and helix D, does not show a stable equilibrium intermediate. Rather, the molten globule character of the chimeras has to be related with a specific part of helix C. More particularly, attention is drawn to the four hydrophobic side-chains I93, V96, I99, and L100, the lysozyme counterparts of which are constituted of less bulky valines and alanine. Our observations are discussed in terms of decreased stability of the native form and increased stability of the intermediate molten globule. Copyright 2001 Wiley-Liss, Inc.

  3. The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation

    PubMed Central

    Mobli, Mehdi; Ke, Ying; Kuchel, Philip W.; King, Glenn F.; Stock, Daniela; Vandenberg, Jamie I.

    2011-01-01

    The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic α–helix (residues 13–23) and an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or replacement of the α–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N–terminal α–helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel. PMID:21249148

  4. Structural studies of MFE-1: the 1.9 A crystal structure of the dehydrogenase part of rat peroxisomal MFE-1.

    PubMed

    Taskinen, Jukka P; Kiema, Tiila R; Hiltunen, J Kalervo; Wierenga, Rik K

    2006-01-27

    The 1.9 A structure of the C-terminal dehydrogenase part of the rat peroxisomal monomeric multifunctional enzyme type 1 (MFE-1) has been determined. In this construct (residues 260-722 and referred to as MFE1-DH) the N-terminal hydratase part of MFE-1 has been deleted. The structure of MFE1-DH shows that it consists of an N-terminal helix, followed by a Rossmann-fold domain (domain C), followed by two tightly associated helical domains (domains D and E), which have similar topology. The structure of MFE1-DH is compared with the two known homologous structures: human mitochondrial 3-hydroxyacyl-CoA dehydrogenase (HAD; sequence identity is 33%) (which is dimeric and monofunctional) and with the dimeric multifunctional alpha-chain (alphaFOM; sequence identity is 28%) of the bacterial fatty acid beta-oxidation alpha2beta2-multienzyme complex. Like MFE-1, alphaFOM has an N-terminal hydratase part and a C-terminal dehydrogenase part, and the structure comparisons show that the N-terminal helix of MFE1-DH corresponds to the alphaFOM linker helix, located between its hydratase and dehydrogenase part. It is also shown that this helix corresponds to the C-terminal helix-10 of the hydratase/isomerase superfamily, suggesting that functionally it belongs to the N-terminal hydratase part of MFE-1.

  5. Common fold in helix–hairpin–helix proteins

    PubMed Central

    Shao, Xuguang; Grishin, Nick V.

    2000-01-01

    Helix–hairpin–helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein–protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)2 domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)2 domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each α-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the α-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glyco­s­y­lases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)2 domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)2 functional unit. PMID:10908318

  6. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor

    PubMed Central

    Spurny, Radovan; Debaveye, Sarah; Farinha, Ana; Veys, Ken; Vos, Ann M.; Gossas, Thomas; Atack, John; Bertrand, Sonia; Bertrand, Daniel; Danielson, U. Helena; Tresadern, Gary; Ulens, Chris

    2015-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential. PMID:25918415

  7. The NMR solution structure of Mycobacterium tuberculosis F-ATP synthase subunit ε provides new insight into energy coupling inside the rotary engine.

    PubMed

    Joon, Shin; Ragunathan, Priya; Sundararaman, Lavanya; Nartey, Wilson; Kundu, Subhashri; Manimekalai, Malathy S S; Bogdanović, Nebojša; Dick, Thomas; Grüber, Gerhard

    2018-03-01

    Mycobacterium tuberculosis (Mt) F 1 F 0 ATP synthase (α 3 :β 3 :γ:δ:ε:a:b:b':c 9 ) is essential for the viability of growing and nongrowing persister cells of the pathogen. Here, we present the first NMR solution structure of Mtε, revealing an N-terminal β-barrel domain (NTD) and a C-terminal domain (CTD) composed of a helix-loop-helix with helix 1 and -2 being shorter compared to their counterparts in other bacteria. The C-terminal amino acids are oriented toward the NTD, forming a domain-domain interface between the NTD and CTD. The Mtε structure provides a novel mechanistic model of coupling c-ring- and ε rotation via a patch of hydrophobic residues in the NTD and residues of the CTD to the bottom of the catalytic α 3 β 3 -headpiece. To test our model, genome site-directed mutagenesis was employed to introduce amino acid changes in these two parts of the epsilon subunit. Inverted vesicle assays show that these mutations caused an increase in ATP hydrolysis activity and a reduction in ATP synthesis. The structural and enzymatic data are discussed in light of the transition mechanism of a compact and extended state of Mtε, which provides the inhibitory effects of this coupling subunit inside the rotary engine. Finally, the employment of these data with molecular docking shed light into the second binding site of the drug Bedaquiline. Structural data are available in the PDB under the accession number 5YIO. © 2018 Federation of European Biochemical Societies.

  8. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    PubMed

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-02-01

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Role of the Cytoplasmic N-terminal Cap and Per-Arnt-Sim (PAS) Domain in Trafficking and Stabilization of Kv11.1 Channels*

    PubMed Central

    Ke, Ying; Hunter, Mark J.; Ng, Chai Ann; Perry, Matthew D.; Vandenberg, Jamie I.

    2014-01-01

    The N-terminal cytoplasmic region of the Kv11.1a potassium channel contains a Per-Arnt-Sim (PAS) domain that is essential for the unique slow deactivation gating kinetics of the channel. The PAS domain has also been implicated in the assembly and stabilization of the assembled tetrameric channel, with many clinical mutants in the PAS domain resulting in reduced stability of the domain and reduced trafficking. Here, we use quantitative Western blotting to show that the PAS domain is not required for normal channel trafficking nor for subunit-subunit interactions, and it is not necessary for stabilizing assembled channels. However, when the PAS domain is present, the N-Cap amphipathic helix must also be present for channels to traffic to the cell membrane. Serine scan mutagenesis of the N-Cap amphipathic helix identified Leu-15, Ile-18, and Ile-19 as residues critical for the stabilization of full-length proteins when the PAS domain is present. Furthermore, mutant cycle analysis experiments support recent crystallography studies, indicating that the hydrophobic face of the N-Cap amphipathic helix interacts with a surface-exposed hydrophobic patch on the core of the PAS domain to stabilize the structure of this critical gating domain. Our data demonstrate that the N-Cap amphipathic helix is critical for channel stability and trafficking. PMID:24695734

  10. The structure of the lipid-embedded potassium channel voltage sensor determined by double-electron–electron resonance spectroscopy

    PubMed Central

    Vamvouka, Magdalini; Cieslak, John; Van Eps, Ned; Hubbell, Wayne; Gross, Adrian

    2008-01-01

    A four-pulse electron paramagnetic resonance experiment was used to measure long-range inter-subunit distances in reconstituted KvAP, a voltage-dependent potassium (Kv) channel. The measurements have allowed us to reach the following five conclusions about the native structure of the voltage sensor of KvAP. First, the S1 helix of the voltage sensor engages in a helix packing interaction with the pore domain. Second, the crystallographically observed antiparallel helix-turn-helix motif of the voltage-sensing paddle is retained in the membrane-embedded voltage sensor. Third, the paddle is oriented in such a way as to expose one face to the pore domain and the opposite face to the membrane. Fourth, the paddle and the pore domain appear to be separated by a gap that is sufficiently wide for lipids to penetrate between the two domains. Fifth, the critical voltage-sensing arginine residues on the paddle appear to be lipid exposed. These results demonstrate the importance of the membrane for the native structure of Kv channels, suggest that lipids are an integral part of their native structure, and place the voltage-sensing machinery into a complex lipid environment near the pore domain. PMID:18287283

  11. A Point Mutation in the N-Terminal Amphipathic Helix α0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding.

    PubMed

    Yan, Yu; He, Ying; Boson, Bertrand; Wang, Xuesong; Cosset, François-Loïc; Zhong, Jin

    2017-03-15

    The assembly of hepatitis C virus (HCV), a complicated process in which many viral and cellular factors are involved, has not been thoroughly deciphered. NS3 is a multifunctional protein that contains an N-terminal amphipathic α helix (designated helix α 0 ), which is crucial for the membrane association and stability of NS3 protein, followed by a serine protease domain and a C-terminal helicase/NTPase domain. NS3 participates in HCV assembly likely through its C-terminal helicase domain, in which all reported adaptive mutations enhancing virion assembly reside. In this study, we determined that the N-terminal helix α 0 of NS3 may contribute to HCV assembly. We identified a single mutation from methionine to threonine at amino acid position 21 (M21T) in helix α 0 , which significantly promoted viral production while having no apparent effect on the membrane association and protease activity of NS3. Subsequent analyses demonstrated that the M21T mutation did not affect HCV genome replication but rather promoted virion assembly. Further study revealed a shift in the subcellular localization of core protein from lipid droplets (LD) to the endoplasmic reticulum (ER). Finally, we showed that the M21T mutation increased the colocalization of core proteins and viral envelope proteins, leading to a more efficient envelopment of viral nucleocapsids. Collectively, the results of our study revealed a new function of NS3 helix α 0 and aid understanding of the role of NS3 in HCV virion morphogenesis. IMPORTANCE HCV NS3 protein possesses the protease activity in its N-terminal domain and the helicase activity in its C-terminal domain. The role of NS3 in virus assembly has been mainly attributed to its helicase domain, because all adaptive mutations enhancing progeny virus production are found to be within this domain. Our study identified, for the first time to our knowledge, an adaptive mutation within the N-terminal helix α 0 domain of NS3 that significantly enhanced virus assembly while having no effect on viral genome replication. The mechanistic studies suggested that this mutation promoted the relocation of core proteins from LD to the ER, leading to a more efficient envelopment of viral nucleocapsids. Our results revealed a possible new function of helix α 0 in the HCV life cycle and provided new clues to understanding the molecular mechanisms for the action of NS3 in HCV assembly. Copyright © 2017 American Society for Microbiology.

  12. Structure of the kinase domain of Gilgamesh from Drosophila melanogaster

    PubMed Central

    Han, Ni; Chen, CuiCui; Shi, Zhubing; Cheng, Dianlin

    2014-01-01

    The CK1 family kinases regulate multiple cellular aspects and play important roles in Wnt/Wingless and Hedgehog signalling. The kinase domain of Drosophila Gilgamesh isoform I (Gilgamesh-I), a homologue of human CK1-γ, was purified and crystallized. Crystals of methylated Gilgamesh-I kinase domain with a D210A mutation diffracted to 2.85 Å resolution and belonged to space group P43212, with unit-cell parameters a = b = 52.025, c = 291.727 Å. The structure of Gilgamesh-I kinase domain, which was determined by molecular replacement, has conserved catalytic elements and an active conformation. Structural comparison indicates that an extended loop between the α1 helix and the β4 strand exists in the Gilgamesh-I kinase domain. This extended loop may regulate the activity and function of Gilgamesh-I. PMID:24699734

  13. The X-ray structure of Paramecium bursaria Chlorella virus arginine decarboxylase: insight into the structural basis for substrate specificity

    PubMed Central

    Shah, Rahul; Akella, Radha; Goldsmith, Elizabeth J.; Phillips, Margaret A.

    2008-01-01

    The group IV pyridoxal-5′-phosphate (PLP)-dependent decarboxylases belong to the β/α barrel structural family, and include enzymes with substrate specificity for a range of basic amino acids. A unique homolog of this family, the Paramecium bursaria Chlorella virus arginine decarboxylase (cvADC), shares about 40% amino acid sequence identity with the eukaryotic ornithine decarboxylases (ODCs). The X-ray structure of cvADC has been solved to 1.95 and 1.8 Å resolution for the free and agmatine (product)-bound enzymes. The global structural differences between cvADC and eukaryotic ODC are minimal (rmsd of 1.2 – 1.4 Å), however, the active site has significant structural rearrangements. The key “specificity element,” is identified as the 310-helix that contains and positions substrate-binding residues such as E296 cvADC (D332 in T. brucei ODC). In comparison to the ODC structures, the 310-helix in cvADC is shifted over 2 Å away from the PLP cofactor, thus accommodating the larger arginine substrate. Within the context of this conserved fold, the protein is designed to be flexible in the positioning and amino acid sequence of the 310-helix, providing a mechanism to evolve different substrate preferences within the family without large structural rearrangements. Also, in the structure, the “K148-loop” (homologous to the “K169-loop” of ODC) is observed in a closed, substrate-bound conformation for the first time. Apparently the K148 loop is a mobile loop, analogous to those observed in triose phosphate isomerase and tryptophan synthetase. In conjunction with prior structural studies these data predict that this loop adopts different conformations throughout the catalytic cycle, and that loop movement may be kinetically linked to the rate-limiting step of product release. PMID:17305368

  14. The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis

    PubMed Central

    Lee, Nayoung; Park, Jeongmoo; Kim, Keunhwa; Choi, Giltsu

    2015-01-01

    PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a basic helix-loop-helix transcription factor that inhibits light-dependent seed germination in Arabidopsis thaliana. However, it remains unclear whether PIF1 requires other factors to regulate its direct targets. Here, we demonstrate that LEUNIG_HOMOLOG (LUH), a Groucho family transcriptional corepressor, binds to PIF1 and coregulates its targets. Not only are the transcriptional profiles of the luh and pif1 mutants remarkably similar, more than 80% of the seeds of both genotypes germinate in the dark. We show by chromatin immunoprecipitation that LUH binds a subset of PIF1 targets in a partially PIF1-dependent manner. Unexpectedly, we found LUH binds and coregulates not only PIF1-activated targets but also PIF1-repressed targets. Together, our results indicate LUH functions with PIF1 as a transcriptional coregulator to inhibit seed germination. PMID:26276832

  15. The Twist Box Domain is Required for Twist1-induced Prostate Cancer Metastasis

    PubMed Central

    Gajula, Rajendra P.; Chettiar, Sivarajan T.; Williams, Russell D.; Thiyagarajan, Saravanan; Kato, Yoshinori; Aziz, Khaled; Wang, Ruoqi; Gandhi, Nishant; Wild, Aaron T.; Vesuna, Farhad; Ma, Jinfang; Salih, Tarek; Cades, Jessica; Fertig, Elana; Biswal, Shyam; Burns, Timothy F.; Chung, Christine H.; Rudin, Charles M.; Herman, Joseph M.; Hales, Russell K.; Raman, Venu; An, Steven S.; Tran, Phuoc T.

    2013-01-01

    Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial-mesenchymal transition (EMT) that promotes cancer metastasis. Structure-function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer (PCa). Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in PCa cells using in vitro assays which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extra-thoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for PCa cells to colonize metastatic lung lesions and extra-thoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in PCa cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and PCa metastasis. PMID:23982216

  16. Molecular characterization of hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) from Taiwan voles (Microtus kikuchii).

    PubMed

    Jiang, Yi-Fan; Chou, Chung-Hsi; Lin, En-Chung; Chiu, Chih-Hsien

    2011-02-01

    Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that senses and adapts cells to hypoxic environmental conditions. HIF-1 is composed of an oxygen-regulated α subunit (HIF-1α) and a constitutively expressed β subunit (HIF-1β). Taiwan voles (Microtus kikuchii) are an endemic species in Taiwan, found only in mountainous areas greater than 2000m above sea level. In this study, the full-length HIF-1α cDNA was cloned and sequenced from liver tissues of Taiwan voles. We found that HIF-1α of Taiwan voles had high sequence similarity to HIF-1α of other species. Sequence alignment of HIF-1α functional domains indicated basic helix-loop-helix (bHLH), PER-ARNT-SIM (PAS) and C-terminal transactivation (TAD-C) domains were conserved among species, but sequence variations were found between the oxygen-dependent degradation domains (ODDD). To measure Taiwan vole HIF-1α responses to hypoxia, animals were challenged with cobalt chloride, and HIF-1α mRNA and protein expression in brain, lung, heart, liver, kidney, and muscle was assessed by quantitative RT-PCR and Western blot analysis. Upon induction of hypoxic stress with cobalt chloride, an increase in HIF-1α mRNA levels was detected in lung, heart, kidney, and muscle tissue. In contrast, protein expression levels showed greater variation between individual animals. These results suggest that the regulation of HIF-1α may be important to the Taiwan vole under cobalt chloride treatments. But more details regarding the evolutionary effect of environmental pressure on HIF-1α primary sequence, HIF-1α function and regulation in Taiwan voles remain to be identified. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. The Molecular Dynamics Study of the Structural Conversions in the Transformer Protein RfaH

    NASA Astrophysics Data System (ADS)

    Gc, Jeevan; Gerstman, Bernard; Chapagain, Prem

    Recently, a class of multi-domain proteins such as RfaH transcription factor are labelled as the transformer proteins as they undergo major conformational transformation for performing multiple functions. In the absence of the inter-domain contacts, the C-terminal domain of RfaH transforms from its alpha-helix conformation to a beta-barrel structure. Each of these states have their own functional role: in its alpha-helx state, RfaH-CTD inhibits the transcription by masking the binding site of RNAP, but in its beta state it facilitates the translation. We used various molecular dynamics simulations to study its transformer-like behavior of full-RfaH and identified key amino acid residues that are important in modulating such behavior. Our results show that the inter domain interactions constitute the major barrier in the alpha-helix to beta-barrel conversion. Once the interfacial interactions are broken, structural conversion is easier. The structural conversion from beta-barrel to alpha-helix proceeds with the rearrangement of the hydrophobic residues followed by the inter domain contacts formation via non-native, transient salt-bridge formation, leading to the formation of the native inter domain salt-bridge and hydrophobic contacts to give the final alpha-helix structure.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Rhodri M. L.; Pal, Mohinder; Roe, S. Mark

    A helix swap involving the fifth helix between two adjacently bound Tah1 molecules restores the normal binding environment of the conserved MEEVD peptide of Hsp90. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes with Hsp90 and Tah1. Specific co-chaperone adaptors facilitate the recruitment of client proteins to the Hsp90 system. Tah1 binds the C-terminal conserved MEEVD motif of Hsp90, thus linking an eclectic set of client proteins to the R2TP complex for their assembly and regulation by Hsp90. Rather than the normal complement of seven α-helices seen in other tetratricopeptide repeat (TPR)more » domains, Tah1 unusually consists of the first five only. Consequently, the methionine of the MEEVD peptide remains exposed to solvent when bound by Tah1. In solution Tah1 appears to be predominantly monomeric, and recent structures have failed to explain how Tah1 appears to prevent the formation of mixed TPR domain-containing complexes such as Cpr6–(Hsp90){sub 2}–Tah1. To understand this further, the crystal structure of Tah1 in complex with the MEEVD peptide of Hsp90 was determined, which shows a helix swap involving the fifth α-helix between two adjacently bound Tah1 molecules. Dimerization of Tah1 restores the normal binding environment of the bound Hsp90 methionine residue by reconstituting a TPR binding site similar to that in seven-helix-containing TPR domain proteins. Dimerization also explains how other monomeric TPR-domain proteins are excluded from forming inappropriate mixed co-chaperone complexes.« less

  19. Heat Shock Protein 83 (Hsp83) Facilitates Methoprene-tolerant (Met) Nuclear Import to Modulate Juvenile Hormone Signaling*

    PubMed Central

    He, Qianyu; Wen, Di; Jia, Qiangqiang; Cui, Chunlai; Wang, Jian; Palli, Subba R.; Li, Sheng

    2014-01-01

    Juvenile hormone (JH) receptors, methoprene-tolerant (Met) and Germ-cell expressed (Gce), transduce JH signals to induce Kr-h1 expression in Drosophila. Dual luciferase assay identified a 120-bp JH response region (JHRR) in the Kr-h1α promoter. Both in vitro and in vivo experiments revealed that Met and Gce transduce JH signals to induce Kr-h1 expression through the JHRR. DNA affinity purification identified chaperone protein Hsp83 as one of the proteins bound to the JHRR in the presence of JH. Interestingly, Hsp83 physically interacts with PAS-B and basic helix-loop-helix domains of Met, and JH induces Met-Hsp83 interaction. As determined by immunohistochemistry, Met is mainly distributed in the cytoplasm of fat body cells of the larval when the JH titer is low and JH induces Met nuclear import. Hsp83 was accumulated in the cytoplasm area adjunct to the nucleus in the presence of JH and Met/Gce. Loss-of-function of Hsp83 attenuated JH binding and JH-induced nuclear import of Met, resulting in a decrease in the JHRR-driven reporter activity leading to reduction of Kr-h1 expression. These data show that Hsp83 facilitates the JH-induced nuclear import of Met that induces Kr-h1 expression through the JHRR. PMID:25122763

  20. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress

    PubMed Central

    Nataraja, Karaba N.; Udayakumar, M.

    2015-01-01

    Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses. PMID:26366726

  1. A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean

    PubMed Central

    Zhao, Yuanling; Chang, Xin; Qi, Dongyue; Dong, Lidong; Wang, Guangjin; Fan, Sujie; Jiang, Liangyu; Cheng, Qun; Chen, Xi; Han, Dan; Xu, Pengfei; Zhang, Shuzhen

    2017-01-01

    Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean ‘Suinong 10.’ Sequence analysis suggested that the protein encoded by GmERF113 contained a conserved AP2/ERF domain of 58 amino acid and belonged to the B-4 subgroup of the ERF subfamily. Expression of GmERF113 was significantly induced by P. sojae, ethylene, and methyl jasmonate. GmERF113 protein localized to the nucleus when transiently expressed in Arabidopsis protoplasts, could bind to the GCC-box, and acted as a transcription activator. In addition, a region of the full-length GmERF113, GmERF113-II, interacted with a basic helix-loop-helix transcription factor (GmbHLH) in yeast cells. Full-length GmERF113 also interacted with GmbHLH in planta. GmERF113-overexpressing transgenic plants in susceptible cultivar ‘Dongnong 50’ soybean exhibited increased resistance to P. sojae and positively regulated the expression of the pathogenesis-related genes, PR1 and PR10-1. These results indicate that GmERF113 may play a crucial role in the defense of soybean against P. sojae infection. PMID:28326092

  2. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control

    PubMed Central

    Raft, Steven; Groves, Andrew K.

    2014-01-01

    The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained. PMID:24902666

  3. CryoEM structure of the spliceosome immediately after branching

    PubMed Central

    Galej, Wojciech P.; Wilkinson, Max E.; Fica, Sebastian M.; Oubridge, Chris; Newman, Andrew J.; Nagai, Kiyoshi

    2016-01-01

    Pre-mRNA splicing proceeds by two consecutive trans-esterification reactions via a lariat-intron intermediate. We present the 3.8Å cryoEM structure of the spliceosome immediately after lariat formation. The 5’-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 snRNA triplex, and the 5’-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2’OH. The 5’-exon is held between the Prp8 N-terminal and Linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5’-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step one factors Yju2 and Cwc25 stabilise docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 RT and Linker domains and extends towards Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation. PMID:27459055

  4. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    PubMed Central

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  5. Aβ1-25-Derived Sphingolipid-Domain Tracer Peptide SBD Interacts with Membrane Ganglioside Clusters via a Coil-Helix-Coil Motif

    PubMed Central

    Wang, Yaofeng; Kraut, Rachel; Mu, Yuguang

    2015-01-01

    The Amyloid-β (Aβ)-derived, sphingolipid binding domain (SBD) peptide is a fluorescently tagged probe used to trace the diffusion behavior of sphingolipid-containing microdomains in cell membranes through binding to a constellation of glycosphingolipids, sphingomyelin, and cholesterol. However, the molecular details of the binding mechanism between SBD and plasma membrane domains remain unclear. Here, to investigate how the peptide recognizes the lipid surface at an atomically detailed level, SBD peptides in the environment of raft-like bilayers were examined in micro-seconds-long molecular dynamics simulations. We found that SBD adopted a coil-helix-coil structural motif, which binds to multiple GT1b gangliosides via salt bridges and CH–π interactions. Our simulation results demonstrate that the CH–π and electrostatic forces between SBD monomers and GT1b gangliosides clusters are the main driving forces in the binding process. The presence of the fluorescent dye and linker molecules do not change the binding mechanism of SBD probes with gangliosides, which involves the helix-turn-helix structural motif that was suggested to constitute a glycolipid binding domain common to some sphingolipid interacting proteins, including HIV gp120, prion, and Aβ. PMID:26540054

  6. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga.

    PubMed Central

    Li, Shi-Sheng; Gullbo, Joachim; Lindholm, Petra; Larsson, Rolf; Thunberg, Eva; Samuelsson, Gunnar; Bohlin, Lars; Claeson, Per

    2002-01-01

    A new basic protein, designated ligatoxin B, containing 46 amino acid residues has been isolated from the mistletoe Phoradendron liga (Gill.) Eichl. (Viscaceae). The protein's primary structure, determined unambiguously using a combination of automated Edman degradation, trypsin enzymic digestion, and tandem MS analysis, was 1-KSCCPSTTAR-NIYNTCRLTG-ASRSVCASLS-GCKIISGSTC-DSGWNH-46. Ligatoxin B exhibited in vitro cytotoxic activities on the human lymphoma cell line U-937-GTB and the primary multidrug-resistant renal adenocarcinoma cell line ACHN, with IC50 values of 1.8 microM and 3.2 microM respectively. Sequence alignment with other thionins identified a new member of the class 3 thionins, ligatoxin B, which is similar to the earlier described ligatoxin A. As predicted by the method of homology modelling, ligatoxin B shares a three-dimensional structure with the viscotoxins and purothionins and so may have the same mode of cytotoxic action. The novel similarities observed by structural comparison of the helix-turn-helix (HTH) motifs of the thionins, including ligatoxin B, and the HTH DNA-binding proteins, led us to propose the working hypothesis that thionins represent a new group of DNA-binding proteins. This working hypothesis could be useful in further dissecting the molecular mechanisms of thionin cytotoxicity and of thionin opposition to multidrug resistance, and useful in clarifying the physiological function of thionins in plants. PMID:12049612

  7. The Arabidopsis Histone Methyltransferase SUVR4 Binds Ubiquitin via a Domain with a Four-Helix Bundle Structure

    PubMed Central

    Rahman, Mohummad Aminur; Kristiansen, Per E.; Veiseth, Silje V.; Andersen, Jan Terje; Yap, Kyoko L.; Zhou, Ming-Ming; Sandlie, Inger; Thorstensen, Tage; Aalen, Reidunn B.

    2014-01-01

    In eukaryotes, different chromatin states facilitate or repress gene expression and restrict the activity of transposable elements. Post-translational modifications (PTMs) of amino acid residues on the N-terminal tails of histones are suggested to define such states. The histone lysine methyltransferase (HKMTase) SU(VAR)3-9 RELATED4 (SUVR4) of Arabidopsis thaliana functions as a repressor of transposon activity. Binding of ubiquitin by the WIYLD domain facilitates the addition of two methyl groups to monomethylated lysine 9 of histone H3. By using nuclear magnetic resonance (NMR) spectroscopy, we identified SUVR4 WIYLD (S4WIYLD) as a domain with a four-helix bundle structure, in contrast to three-helix bundles of other ubiquitin binding domains. NMR titration analyses showed that residues of helix α1 (Q38, L39, and D40) and helix α4 (N68, T70, A71, V73, D74, I76, S78, and E82) of S4WIYLD and residues between the first and second β-strands (T9 and G10) and on β-strands 3 (R42, G47, K48, and Q49) and 4 (H68, R72, and L73) undergo significant chemical shift changes when the two proteins interact. A model of the complex, generated using HADDOCK, suggests that the N-terminal and C-terminal parts of S4WIYLD constitute a surface that interacts with charged residues close to the hydrophobic patch of ubiquitin. The WIYLD domains of the closely related SUVR1 and SUVR2 Arabidopsis proteins also bind ubiquitin, indicating that this is a general feature of this domain. The question of whether SUVR proteins act as both readers of monoubiquitinated H2B and writers of histone PTMs is discussed. PMID:24625295

  8. High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers.

    PubMed

    Doherty, Tim; Su, Yongchao; Hong, Mei

    2010-08-27

    The opening and closing of voltage-gated potassium (Kv) channels are controlled by several conserved Arg residues in the S4 helix of the voltage-sensing domain. The interaction of these positively charged Arg residues with the lipid membrane has been of intense interest for understanding how membrane proteins fold to allow charged residues to insert into lipid bilayers against free-energy barriers. Using solid-state NMR, we have now determined the orientation and insertion depth of the S4 peptide of the KvAP channel in lipid bilayers. Two-dimensional (15)N correlation experiments of macroscopically oriented S4 peptide in phospholipid bilayers revealed a tilt angle of 40 degrees and two possible rotation angles differing by 180 degrees around the helix axis. Remarkably, the tilt angle and one of the two rotation angles are identical to those of the S4 helix in the intact voltage-sensing domain, suggesting that interactions between the S4 segment and other helices of the voltage-sensing domain are not essential for the membrane topology of the S4 helix. (13)C-(31)P distances between the S4 backbone and the lipid (31)P indicate a approximately 9 A local thinning and 2 A average thinning of the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphochloline)/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) bilayer, consistent with neutron diffraction data. Moreover, a short distance of 4.6 A from the guanidinium C(zeta) of the second Arg to (31)P indicates the existence of guanidinium phosphate hydrogen bonding and salt bridges. These data suggest that the structure of the Kv gating helix is mainly determined by protein-lipid interactions instead of interhelical protein-protein interactions, and the S4 amino acid sequence encodes sufficient information for the membrane topology of this crucial gating helix. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  10. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  11. Analysis of eco-innovation with triple helix approach: case-study of biofloc catfish farming in Yogyakarta

    NASA Astrophysics Data System (ADS)

    Purwadi, D.; Nurlaily, I.

    2018-03-01

    Concerning environmental into focus of innovation process will expand the number of actor involved. Eco-innovation and triple helix are often frameworks applied to analyse how environmental concern are integrated in innovation process and how different stakeholder groups are having inter relation. Case study from biofloc catfish farming in Yogyakarta is presented to demonstrate a possible approach for researching the success of triple helix frameworks. This case is considered on basic of the result of a survey among farmers, academician and government. The paper concludes the creating of full triple helix encounters problem in practice. It also includes suggestion for further research on fisheries development.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajan, Rakhi; Taneja, Bhupesh; Mondragón, Alfonso

    Topoisomerase V is an archaeal type I topoisomerase that is unique among topoisomerases due to presence of both topoisomerase and DNA repair activities in the same protein. It is organized as an N-terminal topoisomerase domain followed by 24 tandem helix-hairpin-helix (HhH) motifs. Structural studies have shown that the active site is buried by the (HhH) motifs. Here we show that the N-terminal domain can relax DNA in the absence of any HhH motifs and that the HhH motifs are required for stable protein-DNA complex formation. Crystal structures of various topoisomerase V fragments show changes in the relative orientation of themore » domains mediated by a long bent linker helix, and these movements are essential for the DNA to enter the active site. Phosphate ions bound to the protein near the active site helped model DNA in the topoisomerase domain and show how topoisomerase V may interact with DNA.« less

  13. Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin-pyrin-mediated effector domain signaling in innate immunity.

    PubMed

    Pinheiro, Anderson S; Proell, Martina; Eibl, Clarissa; Page, Rebecca; Schwarzenbacher, Robert; Peti, Wolfgang

    2010-08-27

    The innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins. Their N-terminal effector domains (typically a pyrin or caspase activation and recruitment domain) are responsible for driving downstream signaling and initiating the formation of inflammasomes, multi-component complexes necessary for cytokine activation. However, the currently available structures of NLR effector domains have not yet revealed the mechanism of their differential modes of interaction. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP7 (NLRP7 PYD) obtained by NMR spectroscopy. The NLRP7 PYD adopts a six-alpha-helix bundle death domain fold. A comparison of conformational and dynamics features of the NLRP7 PYD with other PYDs showed distinct differences for helix alpha3 and loop alpha2-alpha3, which, in NLRP7, is stabilized by a strong hydrophobic cluster. Moreover, the NLRP7 and NLRP1 PYDs have different electrostatic surfaces. This is significant, because death domain signaling is driven by electrostatic contacts and stabilized by hydrophobic interactions. Thus, these results provide new insights into NLRP signaling and provide a first molecular understanding of inflammasome formation.

  14. Dimerization of the EphA1 Receptor Tyrosine Kinase Transmembrane Domain: Insights into the Mechanism of Receptor Activation

    PubMed Central

    2014-01-01

    EphA1 is a receptor tyrosine kinase (RTK) that plays a key role in developmental processes, including guidance of the migration of axons and cells in the nervous system. EphA1, in common with other RTKs, contains an N-terminal extracellular domain, a single transmembrane (TM) α-helix, and a C-terminal intracellular kinase domain. The TM helix forms a dimer, as seen in recent NMR studies. We have modeled the EphA1 TM dimer using a multiscale approach combining coarse-grain (CG) and atomistic molecular dynamics (MD) simulations. The one-dimensional potential of mean force (PMF) for this system, based on interhelix separation, has been calculated using CG MD simulations. This provides a view of the free energy landscape for helix–helix interactions of the TM dimer in a lipid bilayer. The resulting PMF profiles suggest two states, consistent with a rotation-coupled activation mechanism. The more stable state corresponds to a right-handed helix dimer interacting via an N-terminal glycine zipper motif, consistent with a recent NMR structure (2K1K). A second metastable state corresponds to a structure in which the glycine zipper motif is not involved. Analysis of unrestrained CG MD simulations based on representative models from the PMF calculations or on the NMR structure reveals possible pathways of interconversion between these two states, involving helix rotations about their long axes. This suggests that the interaction of TM helices in EphA1 dimers may be intrinsically dynamic. This provides a potential mechanism for signaling whereby extracellular events drive a shift in the repopulation of the underlying TM helix dimer energy landscape. PMID:25286141

  15. Helix-length compensation studies reveal the adaptability of the VS ribozyme architecture.

    PubMed

    Lacroix-Labonté, Julie; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2012-03-01

    Compensatory mutations in RNA are generally regarded as those that maintain base pairing, and their identification forms the basis of phylogenetic predictions of RNA secondary structure. However, other types of compensatory mutations can provide higher-order structural and evolutionary information. Here, we present a helix-length compensation study for investigating structure-function relationships in RNA. The approach is demonstrated for stem-loop I and stem-loop V of the Neurospora VS ribozyme, which form a kissing-loop interaction important for substrate recognition. To rapidly characterize the substrate specificity (k(cat)/K(M)) of several substrate/ribozyme pairs, a procedure was established for simultaneous kinetic characterization of multiple substrates. Several active substrate/ribozyme pairs were identified, indicating the presence of limited substrate promiscuity for stem Ib variants and helix-length compensation between stems Ib and V. 3D models of the I/V interaction were generated that are compatible with the kinetic data. These models further illustrate the adaptability of the VS ribozyme architecture for substrate cleavage and provide global structural information on the I/V kissing-loop interaction. By exploring higher-order compensatory mutations in RNA our approach brings a deeper understanding of the adaptability of RNA structure, while opening new avenues for RNA research.

  16. Crystal Structure of the Passenger Domain of the Escherichia coli Autotransporter EspP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shekeb; Mian, Hira S.; Sandercock, Linda E.

    2013-03-07

    Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal 'passenger domain' responsible for the specific effector functions of the molecule and a C-terminal '{beta}-domain' responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-{angstrom} crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel {beta}-helix precededmore » by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this {beta}-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the {beta}-helix within SPATEs.« less

  17. Probing sequence dependence of folding pathway of α-helix bundle proteins through free energy landscape analysis.

    PubMed

    Shao, Qiang

    2014-06-05

    A comparative study on the folding of multiple three-α-helix bundle proteins including α3D, α3W, and the B domain of protein A (BdpA) is presented. The use of integrated-tempering-sampling molecular dynamics simulations achieves reversible folding and unfolding events in individual short trajectories, which thus provides an efficient approach to sufficiently sample the configuration space of protein and delineate the folding pathway of α-helix bundle. The detailed free energy landscape analyses indicate that the folding mechanism of α-helix bundle is not uniform but sequence dependent. A simple model is then proposed to predict folding mechanism of α-helix bundle on the basis of amino acid composition: α-helical proteins containing higher percentage of hydrophobic residues than charged ones fold via nucleation-condensation mechanism (e.g., α3D and BdpA) whereas proteins having opposite tendency in amino acid composition more likely fold via the framework mechanism (e.g., α3W). The model is tested on various α-helix bundle proteins, and the predicted mechanism is similar to the most approved one for each protein. In addition, the common features in the folding pathway of α-helix bundle protein are also deduced. In summary, the present study provides comprehensive, atomic-level picture of the folding of α-helix bundle proteins.

  18. Design, selection, and characterization of a split chorismate mutase

    PubMed Central

    Müller, Manuel M; Kries, Hajo; Csuhai, Eva; Kast, Peter; Hilvert, Donald

    2010-01-01

    Split proteins are versatile tools for detecting protein–protein interactions and studying protein folding. Here, we report a new, particularly small split enzyme, engineered from a thermostable chorismate mutase (CM). Upon dissecting the helical-bundle CM from Methanococcus jannaschii into a short N-terminal helix and a 3-helix segment and attaching an antiparallel leucine zipper dimerization domain to the individual fragments, we obtained a weakly active heterodimeric mutase. Using combinatorial mutagenesis and in vivo selection, we optimized the short linker sequences connecting the leucine zipper to the enzyme domain. One of the selected CMs was characterized in detail. It spontaneously assembles from the separately inactive fragments and exhibits wild-type like CM activity. Owing to the availability of a well characterized selection system, the simple 4-helix bundle topology, and the small size of the N-terminal helix, the heterodimeric CM could be a valuable scaffold for enzyme engineering efforts and as a split sensor for specifically oriented protein–protein interactions. PMID:20306491

  19. A three-nucleotide helix I is sufficient for full activity of a hammerhead ribozyme: advantages of an asymmetric design.

    PubMed Central

    Tabler, M; Homann, M; Tzortzakaki, S; Sczakiel, G

    1994-01-01

    Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed. Images PMID:7937118

  20. Structures of the transmembrane helices of the G-protein coupled receptor, rhodopsin.

    PubMed

    Katragadda, M; Chopra, A; Bennett, M; Alderfer, J L; Yeagle, P L; Albert, A D

    2001-07-01

    An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.

  1. IFITM3 requires an amphipathic helix for antiviral activity.

    PubMed

    Chesarino, Nicholas M; Compton, Alex A; McMichael, Temet M; Kenney, Adam D; Zhang, Lizhi; Soewarna, Victoria; Davis, Matthew; Schwartz, Olivier; Yount, Jacob S

    2017-10-01

    Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that blocks virus fusion with cell membranes. IFITM3 has been suggested to alter membrane curvature and fluidity, though its exact mechanism of action is unclear. Using a bioinformatic approach, we predict IFITM3 secondary structures and identify a highly conserved, short amphipathic helix within a hydrophobic region of IFITM3 previously thought to be a transmembrane domain. Consistent with the known ability of amphipathic helices to alter membrane properties, we show that this helix and its amphipathicity are required for the IFITM3-dependent inhibition of influenza virus, Zika virus, vesicular stomatitis virus, Ebola virus, and human immunodeficiency virus infections. The homologous amphipathic helix within IFITM1 is also required for the inhibition of infection, indicating that IFITM proteins possess a conserved mechanism of antiviral action. We further demonstrate that the amphipathic helix of IFITM3 is required to block influenza virus hemagglutinin-mediated membrane fusion. Overall, our results provide evidence that IFITM proteins utilize an amphipathic helix for inhibiting virus fusion. © 2017 The Authors.

  2. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex

    PubMed Central

    Wiedemann, Christoph; Szambowska, Anna; Häfner, Sabine; Ohlenschläger, Oliver; Gührs, Karl-Heinz; Görlach, Matthias

    2015-01-01

    The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ‘wings’ of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain. PMID:25712103

  3. Impairment of different protein domains causes variable clinical presentation within Pitt-Hopkins syndrome and suggests intragenic molecular syndromology of TCF4.

    PubMed

    Bedeschi, Maria Francesca; Marangi, Giuseppe; Calvello, Maria Rosaria; Ricciardi, Stefania; Leone, Francesca Pia Chiara; Baccarin, Marco; Guerneri, Silvana; Orteschi, Daniela; Murdolo, Marina; Lattante, Serena; Frangella, Silvia; Keena, Beth; Harr, Margaret H; Zackai, Elaine; Zollino, Marcella

    2017-11-01

    Pitt-Hopkins syndrome is a neurodevelopmental disorder characterized by severe intellectual disability and a distinctive facial gestalt. It is caused by haploinsufficiency of the TCF4 gene. The TCF4 protein has different functional domains, with the NLS (nuclear localization signal) domain coded by exons 7-8 and the bHLH (basic Helix-Loop-Helix) domain coded by exon 18. Several alternatively spliced TCF4 variants have been described, allowing for translation of variable protein isoforms. Typical PTHS patients have impairment of at least the bHLH domain. To which extent impairment of the remaining domains contributes to the final phenotype is not clear. There is recent evidence that certain loss-of-function variants disrupting TCF4 are associated with mild ID, but not with typical PTHS. We describe a frameshift-causing partial gene deletion encompassing exons 4-6 of TCF4 in an adult patient with mild ID and nonspecific facial dysmorphisms but without the typical features of PTHS, and a c.520C > T nonsense variant within exon 8 in a child presenting with a severe phenotype largely mimicking PTHS, but lacking the typical facial dysmorphism. Investigation on mRNA, along with literature review, led us to suggest a preliminary phenotypic map of loss-of-function variants affecting TCF4. An intragenic phenotypic map of loss-of-function variants in TCF4 is suggested here for the first time: variants within exons 1-4 and exons 4-6 give rise to a recurrent phenotype with mild ID not in the spectrum of Pitt-Hopkins syndrome (biallelic preservation of both the NLS and bHLH domains); variants within exons 7-8 cause a severe phenotype resembling PTHS but in absence of the typical facial dysmorphism (impairment limited to the NLS domain); variants within exons 9-19 cause typical Pitt-Hopkins syndrome (impairment of at least the bHLH domain). Understanding the TCF4 molecular syndromology can allow for proper nosology in the current era of whole genomic investigations. Copyright © 2017. Published by Elsevier Masson SAS.

  4. NMR and Bioinformatics Discovery of Exosites That Tune Metalloelastase Specificity for Solubilized Elastin and Collagen Triple Helices*

    PubMed Central

    Palmier, Mark O.; Fulcher, Yan G.; Bhaskaran, Rajagopalan; Duong, Vinh Q.; Fields, Gregg B.; Van Doren, Steven R.

    2010-01-01

    The catalytic domain of metalloelastase (matrix metalloproteinase-12 or MMP-12) is unique among MMPs in exerting high proteolytic activity upon fibrils that resist hydrolysis, especially elastin from lungs afflicted with chronic obstructive pulmonary disease or arteries with aneurysms. How does the MMP-12 catalytic domain achieve this specificity? NMR interface mapping suggests that α-elastin species cover the primed subsites, a strip across the β-sheet from β-strand IV to the II–III loop, and a broad bowl from helix A to helix C. The many contacts may account for the comparatively high affinity, as well as embedding of MMP-12 in damaged elastin fibrils in vivo. We developed a strategy called BINDSIght, for bioinformatics and NMR discovery of specificity of interactions, to evaluate MMP-12 specificity without a structure of a complex. BINDSIght integration of the interface mapping with other ambiguous information from sequences guided choice mutations in binding regions nearer the active site. Single substitutions at each of ten locations impair specific activity toward solubilized elastin. Five of them impair release of peptides from intact elastin fibrils. Eight lesions also impair specific activity toward triple helices from collagen IV or V. Eight sites map to the “primed” side in the III–IV, V–B, and S1′ specificity loops. Two map to the “unprimed” side in the IV–V and B–C loops. The ten key residues circumscribe the catalytic cleft, form an exosite, and are distinctive features available for targeting by new diagnostics or therapeutics. PMID:20663866

  5. δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function

    PubMed Central

    Arakel, Eric C.; Richter, Kora P.; Clancy, Anne; Schwappach, Blanche

    2016-01-01

    Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of δ-COP via functional complementation in yeast, we dissect the domains of the δ-COP subunit. We show that the μ-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer. PMID:27298352

  6. Electrostatic networks control plug stabilization in the PapC usher.

    PubMed

    Pham, Thieng; Henderson, Nadine S; Werneburg, Glenn T; Thanassi, David G; Delcour, Anne H

    2015-01-01

    The PapC usher, a β-barrel pore in the outer membrane of uropathogenic Escherichia coli, is used for assembly of the P pilus, a key virulence factor in bacterial colonization of human kidney cells. Each PapC protein is composed of a 24-stranded β-barrel channel, flanked by N- and C-terminal globular domains protruding into the periplasm, and occluded by a plug domain (PD). The PD is displaced from the channel towards the periplasm during pilus biogenesis, but the molecular mechanism for PD displacement remains unclear. Two structural features within the β-barrel, an α-helix and β5-6 hairpin loop, may play roles in controlling plug stabilization. Here we have tested clusters of residues at the interface of the plug, barrel, α-helix and hairpin, which participate in electrostatic networks. To assess the roles of these residues in plug stabilization, we used patch-clamp electrophysiology to compare the activity of wild-type and mutant PapC channels containing alanine substitutions at these sites. Mutations interrupting each of two salt bridge networks were relatively ineffective in disrupting plug stabilization. However, mutation of two pairs of arginines located at the inner and the outer surfaces of the PD resulted in an enhanced propensity for plug displacement. One arginine pair involved in a repulsive interaction between the linkers that tether the plug to the β-barrel was particularly sensitive to mutation. These results suggest that plug displacement, which is necessary for pilus assembly and translocation, may require a weakening of key electrostatic interactions between the plug linkers, and the plug and the α-helix.

  7. Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein.

    PubMed

    Massiah, M A; Starich, M R; Paschall, C; Summers, M F; Christensen, A M; Sundquist, W I

    1994-11-25

    The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away from the beta-sheet to expose carboxyl-terminal residues essential for early steps in the HIV-1 infectious cycle. Basic residues implicated in membrane binding and nuclear localization functions cluster about an extruded cationic loop that connects beta-strands 1 and 2. The structure suggests that both membrane binding and nuclear localization may be mediated by complex tertiary structures rather than simple linear determinants.

  8. Conformationally constrained peptides target the allosteric kinase dimer interface and inhibit EGFR activation.

    PubMed

    Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J

    2018-03-15

    Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Optical Properties of Laminarin Using Terahertz Time-Domain Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Shin, Hee Jun; Maeng, Inhee; Oh, Seung Jae; Kim, Sung In; Kim, Ha Won; Son, Joo-Hiuk

    2009-04-01

    Terahertz spectroscopy is important in the study of biomolecular structure because the vibration and rotation energy of large molecules such as DNA, proteins, and polysaccharides are laid in terahertz regions. Terahertz time-domain spectroscopy (THz-TDS), using terahertz pulses generated and detected by femto-second pulses laser, has been used in the study of biomolecular dynamics, as well as carrier dynamics of semiconductors. Laminarin is a polysaccharide of glucose in brown algae. It is made up of β(1-3)-glucan and β(1-6)-glucan. β-glucan is an anticancer material that activates the immune reaction of human cells and inhibits proliferation of cancer cells. β-glucan with a single-strand structure has been reported to activate the immune reaction to a greater extent than β-glucan with a triple-strand helix structure. We used THz-TDS to characterize the difference between single-strand and triple-strand β-glucan. We obtained single-strand β-glucan by chemical treatment of triple-strand β-glucan. We measured the frequency dependent optical constants of Laminarin using THz-TDS. Power absorption of the triple-strand helix is larger than the single-strand helix in terahertz regions. The refractive index of the triple-strand helix is also larger than that of the single-strand helix.

  10. Structures and mechanism of dipeptidyl peptidases 8 and 9, important players in cellular homeostasis and cancer.

    PubMed

    Ross, Breyan; Krapp, Stephan; Augustin, Martin; Kierfersauer, Reiner; Arciniega, Marcelino; Geiss-Friedlander, Ruth; Huber, Robert

    2018-02-13

    Dipeptidyl peptidases 8 and 9 are intracellular N-terminal dipeptidyl peptidases (preferentially postproline) associated with pathophysiological roles in immune response and cancer biology. While the DPP family member DPP4 is extensively characterized in molecular terms as a validated therapeutic target of type II diabetes, experimental 3D structures and ligand-/substrate-binding modes of DPP8 and DPP9 have not been reported. In this study we describe crystal and molecular structures of human DPP8 (2.5 Å) and DPP9 (3.0 Å) unliganded and complexed with a noncanonical substrate and a small molecule inhibitor, respectively. Similar to DPP4, DPP8 and DPP9 molecules consist of one β-propeller and α/β hydrolase domain, forming a functional homodimer. However, they differ extensively in the ligand binding site structure. In intriguing contrast to DPP4, where liganded and unliganded forms are closely similar, ligand binding to DPP8/9 induces an extensive rearrangement at the active site through a disorder-order transition of a 26-residue loop segment, which partially folds into an α-helix (R-helix), including R160/133, a key residue for substrate binding. As vestiges of this helix are also seen in one of the copies of the unliganded form, conformational selection may contributes to ligand binding. Molecular dynamics simulations support increased flexibility of the R-helix in the unliganded state. Consistently, enzyme kinetics assays reveal a cooperative allosteric mechanism. DPP8 and DPP9 are closely similar and display few opportunities for targeted ligand design. However, extensive differences from DPP4 provide multiple cues for specific inhibitor design and development of the DPP family members as therapeutic targets or antitargets.

  11. The Bridge Helix of RNA polymerase acts as a central nanomechanical switchboard for coordinating catalysis and substrate movement.

    PubMed

    Weinzierl, Robert O J

    2011-01-01

    The availability of in vitro assembly systems to produce recombinant archaeal RNA polymerases (RNAPs) offers one of the most powerful experimental tools for investigating the still relatively poorly understood molecular mechanisms underlying RNAP function. Over the last few years, we pioneered new robot-based high-throughput mutagenesis approaches to study structure/function relationships within various domains surrounding the catalytic center. The Bridge Helix domain, which appears in numerous X-ray structures as a 35-amino-acid-long alpha helix, coordinates the concerted movement of several other domains during catalysis through kinking of two discrete molecular hinges. Mutations affecting these kinking mechanisms have a direct effect on the specific catalytic activity of RNAP and can in some instances more than double it. Molecular dynamics simulations have established themselves as exceptionally useful for providing additional insights and detailed models to explain the underlying structural motions.

  12. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    PubMed

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-10-27

    2,3,7,8-Tetrachlorodibenzo- p -dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The bHLH transcription factor, hairy, refines the terminal cell fate in the Drosophila embryonic trachea.

    PubMed

    Zhan, Yaoyao; Maung, Saw W; Shao, Bing; Myat, Monn Monn

    2010-11-30

    The pair-rule gene, hairy, encodes a basic helix-loop-helix transcription factor and is required for patterning of the early Drosophila embryo and for morphogenesis of the embryonic salivary gland. Although hairy was shown to be expressed in the tracheal primordia and in surrounding mesoderm, whether hairy plays a role in tracheal development is not known. Here, we report that hairy is required for refining the terminal cell fate in the embryonic trachea and that hairy's tracheal function is distinct from its earlier role in embryonic patterning. In hairy mutant embryos where the repressive activity of hairy is lost due to lack of its co-repressor binding site, extra terminal cells are specified in the dorsal branches. We show that hairy functions in the muscle to refine the terminal cell fate to a single cell at the tip of the dorsal branch by limiting the expression domain of branchless (bnl), encoding the FGF ligand, in surrounding muscle cells. Abnormal activation of the Bnl signaling pathway in hairy mutant tracheal cells is exemplified by increased number of dorsal branch cells expressing Bnl receptor, Breathless (Btl) and Pointed, a downstream target of the Bnl/Btl signaling pathway. We also show that hairy genetically interacts with bnl in TC fate restriction and that overexpression of bnl in a subset of the muscle surrounding tracheal cells phenocopied the hairy mutant phenotype. Our studies demonstrate a novel role for Hairy in restriction of the terminal cell fate by limiting the domain of bnl expression in surrounding muscle cells such that only a single dorsal branch cell becomes specified as a terminal cell. These studies provide the first evidence for Hairy in regulation of the FGF signaling pathway during branching morphogenesis.

  14. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    NASA Astrophysics Data System (ADS)

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-09-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.

  15. The SCL gene specifies haemangioblast development from early mesoderm.

    PubMed

    Gering, M; Rodaway, A R; Göttgens, B; Patient, R K; Green, A R

    1998-07-15

    The SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of all haematopoietic lineages. SCL is also expressed in endothelial cells, but its function is not essential for specification of endothelial progenitors and the role of SCL in endothelial development is obscure. We isolated the zebrafish SCL homologue and show that it was co-expressed in early mesoderm with markers of haematopoietic, endothelial and pronephric progenitors. Ectopic expression of SCL mRNA in zebrafish embryos resulted in overproduction of common haematopoietic and endothelial precursors, perturbation of vasculogenesis and concomitant loss of pronephric duct and somitic tissue. Notochord and neural tube formation were unaffected. These results provide the first evidence that SCL specifies formation of haemangioblasts, the proposed common precursor of blood and endothelial lineages. Our data also underline the striking similarities between the role of SCL in haematopoiesis/vasculogenesis and the function of other bHLH proteins in muscle and neural development.

  16. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    PubMed

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  17. Specification of jaw identity by the Hand2 transcription factor

    PubMed Central

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  18. Coordinated regulation of Arabidopsis microRNA biogenesis and red light signaling through Dicer-like 1 and phytochrome-interacting factor 4

    PubMed Central

    Sun, Zhenfei; Li, Min; Zhou, Ying; Guo, Tongtong; Liu, Yin; Zhang, Hui

    2018-01-01

    Light and microRNAs (miRNAs) are key external and internal signals for plant development, respectively. However, the relationship between the light signaling and miRNA biogenesis pathways remains unknown. Here we found that miRNA processer proteins DCL1 and HYL1 interact with a basic helix-loop-helix (bHLH) transcription factor, phytochrome-interacting factor 4 (PIF4), which mediates the destabilization of DCL1 during dark-to-red-light transition. PIF4 acts as a transcription factor for some miRNA genes and is necessary for the proper accumulation of miRNAs. DCL1, HYL1, and mature miRNAs play roles in the regulation of plant hypocotyl growth. These results uncovered a previously unknown crosstalk between miRNA biogenesis and red light signaling through the PIF4-dependent regulation of miRNA transcription and processing to affect red-light-directed plant photomorphogenesis. PMID:29522510

  19. Molecular aspects of flower senescence and strategies to improve flower longevity

    PubMed Central

    Shibuya, Kenichi

    2018-01-01

    Flower longevity is one of the most important traits for ornamental plants. Ethylene plays a crucial role in flower senescence in some plant species. In several species that show ethylene-dependent flower senescence, genetic modification targeting genes for ethylene biosynthesis or signaling has improved flower longevity. Although little is known about regulatory mechanisms of petal senescence in flowers that show ethylene-independent senescence, a recent study of Japanese morning glory revealed that a NAC transcription factor, EPHEMERAL1 (EPH1), is a key regulator in ethylene-independent petal senescence. EPH1 is induced in an age-dependent manner irrespective of ethylene signal, and suppression of EPH1 expression dramatically delays petal senescence. In ethylene-dependent petal senescence, comprehensive transcriptome analyses revealed the involvement of transcription factors, a basic helix-loop-helix protein and a homeodomain-leucine zipper protein, in the transcriptional regulation of the ethylene biosynthesis enzymes. This review summarizes molecular aspects of flower senescence and discusses strategies to improve flower longevity by molecular breeding. PMID:29681752

  20. MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle.

    PubMed

    Morosetti, Roberta; Mirabella, Massimiliano; Gliubizzi, Carla; Broccolini, Aldobrando; De Angelis, Luciana; Tagliafico, Enrico; Sampaolesi, Maurilio; Gidaro, Teresa; Papacci, Manuela; Roncaglia, Enrica; Rutella, Sergio; Ferrari, Stefano; Tonali, Pietro Attilio; Ricci, Enzo; Cossu, Giulio

    2006-11-07

    Inflammatory myopathies (IM) are acquired diseases of skeletal muscle comprising dermatomyositis (DM), polymyositis (PM), and inclusion-body myositis (IBM). Immunosuppressive therapies, usually beneficial for DM and PM, are poorly effective in IBM. We report the isolation and characterization of mesoangioblasts, vessel-associated stem cells, from diagnostic muscle biopsies of IM. The number of cells isolated, proliferation rate and lifespan, markers expression, and ability to differentiate into smooth muscle do not differ among normal and IM mesoangioblasts. At variance with normal, DM and PM mesoangioblasts, cells isolated from IBM, fail to differentiate into skeletal myotubes. These data correlate with lack in connective tissue of IBM muscle of alkaline phosphatase (ALP)-positive cells, conversely dramatically increased in PM and DM. A myogenic inhibitory basic helix-loop-helix factor B3 is highly expressed in IBM mesoangioblasts. Indeed, silencing this gene or overexpressing MyoD rescues the myogenic defect of IBM mesoangioblasts, opening novel cell-based therapeutic strategies for this crippling disorder.

  1. Mechanical stress mediated by both endosperm softening and embryo growth underlies endosperm elimination in Arabidopsis seeds.

    PubMed

    Fourquin, Chloé; Beauzamy, Léna; Chamot, Sophy; Creff, Audrey; Goodrich, Justin; Boudaoud, Arezki; Ingram, Gwyneth

    2016-09-15

    Seed development in angiosperms demands the tightly coordinated development of three genetically distinct structures. The embryo is surrounded by the endosperm, which is in turn enclosed within the maternally derived seed coat. In Arabidopsis, final seed size is determined by early expansion of the coenocytic endosperm, which then cellularises and subsequently undergoes developmental programmed cell death, breaking down as the embryo grows. Endosperm breakdown requires the endosperm-specific basic helix-loop-helix transcription factor ZHOUPI. However, to date, the mechanism underlying the Arabidopsis endosperm breakdown process has not been elucidated. Here, we provide evidence that ZHOUPI does not induce the developmental programmed cell death of the endosperm directly. Instead ZHOUPI indirectly triggers cell death by regulating the expression of cell wall-modifying enzymes, thus altering the physical properties of the endosperm to condition a mechanical environment permitting the compression of the cellularised endosperm by the developing embryo. © 2016. Published by The Company of Biologists Ltd.

  2. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steen, Hakan; Lindholm, Dan; Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent tomore » the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.« less

  3. Aryl hydrocarbon receptor and intestinal immunity.

    PubMed

    Lamas, Bruno; Natividad, Jane M; Sokol, Harry

    2018-04-07

    Aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix-(bHLH) superfamily of transcription factors, which are associated with cellular responses to environmental stimuli, such as xenobiotics and oxygen levels. Unlike other members of bHLH, AhR is the only bHLH transcription factor that is known to be ligand activated. Early AhR studies focused on understanding the role of AhR in mediating the toxicity and carcinogenesis properties of the prototypic ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In recent years, however, it has become apparent that, in addition to its toxicological involvement, AhR is highly receptive to a wide array of endogenous and exogenous ligands, and that its activation leads to a myriad of key host physiological functions. In this study, we review the current understanding of the functions of AhR in the mucosal immune system with a focus on its role in intestinal barrier function and intestinal immune cells, as well as in intestinal homeostasis.

  4. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei

    PubMed Central

    Maricich, Stephen M.; Xia, Anping; Mathes, Erin L.; Wang, Vincent Y.; Oghalai, John S.; Fritzsch, Bernd; Zoghbi, Huda Y.

    2009-01-01

    Atoh1 is a basic helix-loop-helix transcription factor necessary for the specification of inner ear hair cells and central auditory system neurons derived from the rhombic lip. We used the Cre-loxP system and two Cre-driver lines (Egr2Cre and Hoxb1Cre) to delete Atoh1 from different regions of the cochlear nucleus (CN) and accessory auditory nuclei (AAN). Adult Atoh1-conditional knockout mice (Atoh1CKO) are behaviorally deaf, have diminished auditory brainstem evoked responses and disrupted CN and AAN morphology and connectivity. In addition, Egr2; Atoh1CKO mice lose spiral ganglion neurons in the cochlea and AAN neurons during the first 3 days of life, revealing a novel critical period in the development of these neurons. These new mouse models of predominantly central deafness illuminate the importance of the CN for support of a subset of peripheral and central auditory neurons. PMID:19741118

  5. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development.

    PubMed

    Busch, Hauke; Boerries, Melanie; Bao, Jie; Hanke, Sebastian T; Hiss, Manuel; Tiko, Theodhor; Rensing, Stefan A

    2013-01-01

    Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems.

  6. Molecular mechanism of Mg2+-dependent gating in CorA

    NASA Astrophysics Data System (ADS)

    Dalmas, Olivier; Sompornpisut, Pornthep; Bezanilla, Francisco; Perozo, Eduardo

    2014-04-01

    CorA is the major transport system responsible for Mg2+ uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg2+ uptake remains to be established. Here we use electron paramagnetic resonance spectroscopy, electrophysiology and molecular dynamic simulations to show that CorA is regulated by cytoplasmic Mg2+ acting as a ligand and elucidate the basic conformational rearrangements responsible for Mg2+-dependent gating. Mg2+ unbinding at the divalent cation sensor triggers a conformational change that leads to the inward motion of the stalk helix, which propagates to the pore-forming transmembrane helix TM1. Helical tilting and rotation in TM1 generates an iris-like motion that increases the diameter of the permeation pathway, triggering ion conduction. This work establishes the molecular basis of a Mg2+-driven negative feedback loop in CorA as the key physiological event controlling Mg2+ uptake and homeostasis in prokaryotes.

  7. Repression by PRDM13 is critical for generating precision in neuronal identity

    PubMed Central

    Kollipara, Rahul K; Ma, Zhenzhong; Borromeo, Mark D; Chang, Joshua C

    2017-01-01

    The mechanisms that activate some genes while silencing others are critical to ensure precision in lineage specification as multipotent progenitors become restricted in cell fate. During neurodevelopment, these mechanisms are required to generate the diversity of neuronal subtypes found in the nervous system. Here we report interactions between basic helix-loop-helix (bHLH) transcriptional activators and the transcriptional repressor PRDM13 that are critical for specifying dorsal spinal cord neurons. PRDM13 inhibits gene expression programs for excitatory neuronal lineages in the dorsal neural tube. Strikingly, PRDM13 also ensures a battery of ventral neural tube specification genes such as Olig1, Olig2 and Prdm12 are excluded dorsally. PRDM13 does this via recruitment to chromatin by multiple neural bHLH factors to restrict gene expression in specific neuronal lineages. Together these findings highlight the function of PRDM13 in repressing the activity of bHLH transcriptional activators that together are required to achieve precise neuronal specification during mouse development. PMID:28850031

  8. Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.

    PubMed

    Xue, Gongda; Hemmings, Brian A

    2012-02-01

    The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.

  9. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

    PubMed Central

    Kang, Yanyong; Zhou, X. Edward; Gao, Xiang; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; Barty, Anton; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Ke, Jiyuan; Eileen Tan, M. H.; Zhang, Chenghai; Moeller, Arne; West, Graham M.; Pascal, Bruce; Van Eps, Ned; Caro, Lydia N.; Vishnivetskiy, Sergey A.; Lee, Regina J.; Suino-Powell, Kelly M.; Gu, Xin; Pal, Kuntal; Ma, Jinming; Zhi, Xiaoyong; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Gati, Cornelius; Zatsepin, Nadia A.; Wang, Dingjie; James, Daniel; Basu, Shibom; Roy-Chowdhury, Shatabdi; Conrad, Chelsie; Coe, Jesse; Liu, Haiguang; Lisova, Stella; Kupitz, Christopher; Grotjohann, Ingo; Fromme, Raimund; Jiang, Yi; Tan, Minjia; Yang, Huaiyu; Li, Jun; Wang, Meitian; Zheng, Zhong; Li, Dianfan; Howe, Nicole; Zhao, Yingming; Standfuss, Jörg; Diederichs, Kay; Dong, Yuhui; Potter, Clinton S; Carragher, Bridget; Caffrey, Martin; Jiang, Hualiang; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Ernst, Oliver P.; Katritch, Vsevolod; Gurevich, Vsevolod V.; Griffin, Patrick R.; Hubbell, Wayne L.; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2015-01-01

    G protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signaling to numerous G protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly, in which rhodopsin uses distinct structural elements, including TM7 and Helix 8 to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ~20° rotation between the N- and C- domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signaling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology. PMID:26200343

  10. The archaeo-eukaryotic primase of plasmid pRN1 requires a helix bundle domain for faithful primer synthesis

    PubMed Central

    Beck, Kirsten; Vannini, Alessandro; Cramer, Patrick; Lipps, Georg

    2010-01-01

    The plasmid pRN1 encodes for a multifunctional replication protein with primase, DNA polymerase and helicase activity. The minimal region required for primase activity encompasses amino-acid residues 40–370. While the N-terminal part of that minimal region (residues 47–247) folds into the prim/pol domain and bears the active site, the structure and function of the C-terminal part (residues 248–370) is unknown. Here we show that the C-terminal part of the minimal region folds into a compact domain with six helices and is stabilized by a disulfide bond. Three helices superimpose well with the C-terminal domain of the primase of the bacterial broad host range plasmid RSF1010. Structure-based site-directed mutagenesis shows that the C-terminal helix of the helix bundle domain is required for primase activity although it is distant to the active site in the crystallized conformation. Furthermore, we identified mutants of the C-terminal domain, which are defective in template binding, dinucleotide formation and conformation change prior to DNA extension. PMID:20511586

  11. The Structural Basis for Matrix Metalloproteinase 1 Catalyzed Collagenolysis

    PubMed Central

    Bertini, Ivano; Fragai, Marco; Luchinat, Claudio; Melikian, Maxime; Toccafondi, Mirco; Lauer, Janelle L.; Fields, Gregg B.

    2012-01-01

    The proteolysis of collagen triple-helical structure (collagenolysis) is a poorly understood yet critical physiological process. Presently, matrix metalloproteinase 1 (MMP-1) and collagen triple-helical peptide models have been utilized to characterize the events and calculate the energetics of collagenolysis via NMR spectroscopic analysis of 12 enzyme-substrate complexes. The triple-helix is bound initially by the MMP-1 hemopexin-like (HPX) domain via a four amino acid stretch (analogous to type I collagen residues 782–785). The triple-helix is then presented to the MMP-1 catalytic (CAT) domain in a distinct orientation. The HPX and CAT domains are rotated with respect to one another compared with the X-ray “closed” conformation of MMP-1. Back-rotation of the CAT and HPX domains to the X-ray closed conformation releases one chain out of the triple-helix, and this chain is properly positioned in the CAT domain active site for subsequent hydrolysis. The aforementioned steps provide a detailed, experimentally-derived, and energetically favorable collagenolytic mechanism, as well as significant insight into the roles of distinct domains in extracellular protease function. PMID:22239621

  12. Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide.

    PubMed

    Bhate, Manjiri; Wang, Xin; Baum, Jean; Brodsky, Barbara

    2002-05-21

    The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.

  13. Structures of minimal catalytic fragments of topoisomerase V reveals conformational changes relevant for DNA binding

    PubMed Central

    Rajan, Rakhi; Taneja, Bhupesh; Mondragón, Alfonso

    2010-01-01

    Summary Topoisomerase V is an archaeal type I topoisomerase that is unique among topoisomerases due to presence of both topoisomerase and DNA repair activities in the same protein. It is organized as an N-terminal topoisomerase domain followed by 24 tandem helix hairpin helix (HhH) motifs. Structural studies have shown that the active site is buried by the (HhH) motifs. Here we show that the N-terminal domain can relax DNA in the absence of any HhH motifs and that the HhH motifs are required for stable protein-DNA complex formation. Crystal structures of various topoisomerase V fragments show changes in the relative orientation of the domains mediated by a long bent linker helix, and these movements are essential for the DNA to enter the active site. Phosphate ions bound to the protein near the active site helped model DNA in the topoisomerase domain and shows how topoisomerase V may interact with DNA. PMID:20637419

  14. Right- and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins.

    PubMed

    Glyakina, Anna V; Likhachev, Ilya V; Balabaev, Nikolay K; Galzitskaya, Oxana V

    2014-01-01

    Here, we study mechanical properties of eight 3-helix proteins (four right-handed and four left-handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right-handed three-helix domains are more mechanically resistant than the left-handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.1, 0.05, and 0.01 Å ps(-1) , T = 300 K) and under constant stretching force (64 trajectories, F = 800 pN, T = 300 K). We can explain this by the fact, at least in part, that the right-handed domains have a larger number of contacts per residue and the radius of cross section than the left-handed domains. Copyright © 2013 Wiley Periodicals, Inc.

  15. Molecular metamorphosis in polcalcin allergens by EF-hand rearrangements and domain swapping.

    PubMed

    Magler, Iris; Nüss, Dorota; Hauser, Michael; Ferreira, Fatima; Brandstetter, Hans

    2010-06-01

    Polcalcins such as Bet v 4 and Phl p 7 are pollen allergens that are constructed from EF-hand motifs, which are very common and well characterized helix-loop-helix motifs with calcium-binding functions, as elementary building blocks. Being members of an exceptionally well-characterized protein superfamily, these allergens highlight the fundamental challenge in explaining what features distinguish allergens from nonallergenic proteins. We found that Bet v 4 and Phl p 7 undergo oligomerization transitions with characteristics that are markedly different from those typically found in proteins: transitions from monomers to dimers and to distinct higher oligomers can be induced by increasing temperature; similarly, low concentrations of destabilizing agents, e.g. SDS, induce oligomerization transitions of Bet v 4. The changes in the quaternary structure, termed molecular metamorphosis, are induced and controlled by a combination of EF-hand rearrangements and domain swapping rather than by the classical law of mass action. Using an EF-hand-pairing model, we provide a two-step model that consistently explains and substantiates the observed metamorphosis. Moreover, the unusual oligomerization behavior suggests a straightforward explanation of how allergens can accomplish the crosslinking of IgE on mast cells, a hallmark of allergens.

  16. The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion.

    PubMed

    Khunweeraphong, Narakorn; Stockner, Thomas; Kuchler, Karl

    2017-10-23

    The human ABC transporter ABCG2 (Breast Cancer Resistance Protein, BCRP) is implicated in anticancer resistance, in detoxification across barriers and linked to gout. Here, we generate a novel atomic model of ABCG2 using the crystal structure of ABCG5/G8. Extensive mutagenesis verifies the structure, disclosing hitherto unrecognized essential residues and domains in the homodimeric ABCG2 transporter. The elbow helix, the first intracellular loop (ICL1) and the nucleotide-binding domain (NBD) constitute pivotal elements of the architecture building the transmission interface that borders a central cavity which acts as a drug trap. The transmission interface is stabilized by salt-bridge interactions between the elbow helix and ICL1, as well as within ICL1, which is essential to control the conformational switch of ABCG2 to the outward-open drug-releasing conformation. Importantly, we propose that ICL1 operates like a molecular spring that holds the NBD dimer close to the membrane, thereby enabling efficient coupling of ATP hydrolysis during the catalytic cycle. These novel mechanistic data open new opportunities to therapeutically target ABCG2 in the context of related diseases.

  17. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  18. The antagonistic basic helix-loop-helix partners BEE and IBH1 contribute to control plant tolerance to abiotic stress.

    PubMed

    Moreno, Javier E; Moreno-Piovano, Guillermo; Chan, Raquel L

    2018-06-01

    The bHLH family is composed by canonical and non-canonical transcription factors (TFs) that differ in the presence or absence of their DNA-binding domain, respectively. Since both types of bHLH proteins are able to dimerize, their relative abundance impacts their biological activity. Among this TF family BEE and IBH are canonical and non-canonical bHLHs, respectively and previous reports indicated that BEE2 and IBH1 dimerize. Wondering whether BEE TFs participate in the abiotic stress response and how the dimerization with IBH1 could regulate their role in Arabidopsis, double bee1/bee2 and triple bee1/bee2/bee3 mutants were tested under salinity and drought stresses. The bee1/bee2/bee3 mutant showed an enhanced tolerance whereas the double mutant behaved similar to wild type plants. These results indicated that BEE genes play a role in the stress response and also put in evidence the redundancy within the BEE family. Moreover, ectopic expression of IBH1 on different mutant backgrounds improved plant tolerance to abiotic stress, independently of the background. However, the yield of these transgenic plants was penalized with abortive seeds. Our results suggest that BEE genes are negative regulators of physiological responses to abiotic stress whereas IBH1 is a positive modulator via different pathways, one of them involving BEE TFs. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum

    PubMed Central

    Chen, Wenjie; Zhang, Bo; Wang, Daowen; Liu, Dengcai; Zhang, Huaigang

    2017-01-01

    Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1) transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH) transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like) of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding. PMID:28704468

  20. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    PubMed

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Identification of Candidate Genes Underlying an Iron Efficiency Quantitative Trait Locus in Soybean1

    PubMed Central

    Peiffer, Gregory A.; King, Keith E.; Severin, Andrew J.; May, Gregory D.; Cianzio, Silvia R.; Lin, Shun Fu; Lauter, Nicholas C.; Shoemaker, Randy C.

    2012-01-01

    Prevalent on calcareous soils in the United States and abroad, iron deficiency is among the most common and severe nutritional stresses in plants. In soybean (Glycine max) commercial plantings, the identification and use of iron-efficient genotypes has proven to be the best form of managing this soil-related plant stress. Previous studies conducted in soybean identified a significant iron efficiency quantitative trait locus (QTL) explaining more than 70% of the phenotypic variation for the trait. In this research, we identified candidate genes underlying this QTL through molecular breeding, mapping, and transcriptome sequencing. Introgression mapping was performed using two related near-isogenic lines in which a region located on soybean chromosome 3 required for iron efficiency was identified. The region corresponds to the previously reported iron efficiency QTL. The location was further confirmed through QTL mapping conducted in this study. Transcriptome sequencing and quantitative real-time-polymerase chain reaction identified two genes encoding transcription factors within the region that were significantly induced in soybean roots under iron stress. The two induced transcription factors were identified as homologs of the subgroup lb basic helix-loop-helix (bHLH) genes that are known to regulate the strategy I response in Arabidopsis (Arabidopsis thaliana). Resequencing of these differentially expressed genes unveiled a significant deletion within a predicted dimerization domain. We hypothesize that this deletion disrupts the Fe-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)/bHLH heterodimer that has been shown to induce known iron acquisition genes. PMID:22319075

  2. When proteome meets genome: the alpha helix and the beta strand of proteins are eschewed by mRNA splice junctions and may define the minimal indivisible modules of protein architecture.

    PubMed

    Barik, Sailen

    2004-09-01

    The significance of the intron-exon structure of genes is a mystery. As eukaryotic proteins are made up of modular functional domains, each exon was suspected to encode some form of module; however, the definition of a module remained vague. Comparison of pre-mRNA splice junctions with the three-dimensional architecture of its protein product from different eukaryotes revealed that the junctions were far less likely to occur inside the alpha-helices and beta-strands of proteins than within the more flexible linker regions ('turns' and 'loops') connecting them. The splice junctions were equally distributed in the different types of linkers and throughout the linker sequence, although a slight preference for the central region of the linker was observed. The avoidance of the alpha-helix and the beta-strand by splice junctions suggests the existence of a selection pressure against their disruption, perhaps underscoring the investment made by nature in building these intricate secondary structures. A corollary is that the helix and the strand are the smallest integral architectural units of a protein and represent the minimal modules in the evolution of protein structure. These results should find use in comparative genomics, designing of cloning strategies, and in the mutual verification of genome sequences with protein structures.

  3. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins.

    PubMed

    Haddad, John Faissal; Yang, Yidai; Yeung, Sylvain; Couture, Jean-François

    2017-11-01

    An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X. Among those, some X-helix bundle proteins bind to the hydrophobic section of an amphipathic α-helix in a seemingly orientation and sequence specific manner. In this review, we will compare the binding mode of amphipathic α-helices to X-helix bundle and α-helical bundle proteins. From these structures, we will highlight potential regulatory paradigms that may control the specific interactions of X-helix bundle proteins to amphipathic α-helices. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit.

    PubMed

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, Tina M; Meiler, Jens; Hamm, Heidi E

    2014-08-29

    G protein activation by G protein-coupled receptors is one of the critical steps for many cellular signal transduction pathways. Previously, we and other groups reported that the α5 helix in the G protein α subunit plays a major role during this activation process. However, the precise signaling pathway between the α5 helix and the guanosine diphosphate (GDP) binding pocket remains elusive. Here, using structural, biochemical, and computational techniques, we probed different residues around the α5 helix for their role in signaling. Our data showed that perturbing the Phe-336 residue disturbs hydrophobic interactions with the β2-β3 strands and α1 helix, leading to high basal nucleotide exchange. However, mutations in β strands β5 and β6 do not perturb G protein activation. We have highlighted critical residues that leverage Phe-336 as a relay. Conformational changes are transmitted starting from Phe-336 via β2-β3/α1 to Switch I and the phosphate binding loop, decreasing the stability of the GDP binding pocket and triggering nucleotide release. When the α1 and α5 helices were cross-linked, inhibiting the receptor-mediated displacement of the C-terminal α5 helix, mutation of Phe-336 still leads to high basal exchange rates. This suggests that unlike receptor-mediated activation, helix 5 rotation and translocation are not necessary for GDP release from the α subunit. Rather, destabilization of the backdoor region of the Gα subunit is sufficient for triggering the activation process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. ATP Hydrolysis Induced Conformational Changes in the Vitamin B12 Transporter BtuCD Revealed by MD Simulations

    PubMed Central

    Pan, Chao; Weng, Jingwei; Wang, Wenning

    2016-01-01

    ATP binding cassette (ABC) transporters utilize the energy of ATP hydrolysis to uni-directionally transport substrates across cell membrane. ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface of ABC transporters, whereas substrate translocation takes place at the translocation pathway between the transmembrane domains (TMDs), which is more than 30 angstroms away from the NBD dimer interface. This raises the question of how the hydrolysis energy released at NBDs is “transmitted” to trigger the conformational changes at TMDs. Using molecular dynamics (MD) simulations, we studied the post-hydrolysis state of the vitamin B12 importer BtuCD. Totally 3-μs MD trajectories demonstrate a predominantly asymmetric arrangement of the NBD dimer interface, with the ADP-bound site disrupted and the ATP-bound site preserved in most of the trajectories. TMDs response to ATP hydrolysis by separation of the L-loops and opening of the cytoplasmic gate II, indicating that hydrolysis of one ATP could facilitate substrate translocation by opening the cytoplasmic end of translocation pathway. It was also found that motions of the L-loops and the cytoplasmic gate II are coupled with each other through a contiguous interaction network involving a conserved Asn83 on the extended stretch preceding TM3 helix plus the cytoplasmic end of TM2/6/7 helix bundle. These findings entail a TMD-NBD communication mechanism for type II ABC importers. PMID:27870912

  6. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baowei; Lowry, David; Mayer, M. Uljana

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H- 15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH.more » Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M -1 sec -1 to 370 M -1 sec -1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain linker that release helix A, thereby facilitating the formation of calcium binding sites in the amino-terminal lobe and linked tertiary structural rearrangements to form a high-affinity binding cleft that can associate with target proteins.« less

  7. A conserved glutamine plays a central role in LOV domain signal transmission and duration

    PubMed Central

    Nash, Abigail I.; Ko, Wen-Huang; Harper, Shannon M.; Gardner, Kevin H.

    2009-01-01

    Light is a key stimulus for plant biological functions, several of which are controlled by light-activated kinases known as phototropins, a group of kinases that contain two light-sensing domains (LOV, Light-Oxygen-Voltage domains) and a C-terminal serine/threonine kinase domain. The second sensory domain, LOV2, plays a key role in regulating kinase enzymatic activity via the photochemical formation of a covalent adduct between a LOV2 cysteine residue and an internally-bound flavin mononucleotide (FMN) chromophore. Subsequent conformational changes in LOV2 lead to the unfolding of a peripheral Jα helix, and ultimately, phototropin kinase activation. To date, the mechanism coupling bond formation and helix dissociation has remained unclear. Previous studies found that a conserved glutamine residue (Q513 in the Avena sativa phototropin 1 LOV2 (AsLOV2) domain) switches its hydrogen-bonding pattern with FMN upon light stimulation. Located in the immediate vicinity of the FMN binding site, this Gln residue is provided by the Iβ strand that interacts with the Jα helix, suggesting a route for signal propagation from the core of the LOV domain to its peripheral Jα helix. To test whether Q513 plays a key role in tuning the photochemical and transduction properties of AsLOV2, we designed two point mutations, Q513L and Q513N, and monitored the effects on the chromophore and protein using a combination of UV-visible absorbance and circular dichroism spectroscopy, limited proteolysis, and solution NMR. The results show that these mutations significantly dampen the changes between the dark and lit state AsLOV2 structures, leaving the protein in a pseudo-dark state (Q513L) or a pseudo-lit state (Q513N) conformation. Further, both mutations changed the photochemical properties of this receptor, particularly the lifetime of the photoexcited signaling states. Together, these data establish that this residue plays a central role in both spectral tuning and signal propagation from the core of the LOV domain through the Iβ strand to the peripheral Jα helix. PMID:19063612

  8. Conformational Flexibility of a Short Loop near the Active Site of the SARS-3CLpro is Essential to Maintain Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Teng, Xin; Qi, Yifei; Tang, Bo; Shi, Hailing; Ma, Xiaomin; Lai, Luhua

    2016-02-01

    The SARS 3C-like proteinase (SARS-3CLpro), which is the main proteinase of the SARS coronavirus, is essential to the virus life cycle. This enzyme has been shown to be active as a dimer in which only one protomer is active. However, it remains unknown how the dimer structure maintains an active monomer conformation. It has been observed that the Ser139-Leu141 loop forms a short 310-helix that disrupts the catalytic machinery in the inactive monomer structure. We have tried to disrupt this helical conformation by mutating L141 to T in the stable inactive monomer G11A/R298A/Q299A. The resulting tetra-mutant G11A/L141T/R298A/Q299A is indeed enzymatically active as a monomer. Molecular dynamics simulations revealed that the L141T mutation disrupts the 310-helix and helps to stabilize the active conformation. The coil-310-helix conformational transition of the Ser139-Leu141 loop serves as an enzyme activity switch. Our study therefore indicates that the dimer structure can stabilize the active conformation but is not a required structure in the evolution of the active enzyme, which can also arise through simple mutations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjasetty, Babu A.; Halavaty, Andrei S.; Luan, Chi-Hao

    Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56 Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices a4 and a7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helixmore » a4 is stabilized by the hydrogen bond between Glu67 (helix a4) and Gln130 (helix a7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix a4. This local conformational switch of helix a4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution smallmolecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.« less

  10. Pore Helices Play a Dynamic Role as Integrators of Domain Motion during Kv11.1 Channel Inactivation Gating*

    PubMed Central

    Perry, Matthew D.; Ng, Chai Ann; Vandenberg, Jamie I.

    2013-01-01

    Proteins that form ion-selective pores in the membrane of cells are integral to many rapid signaling processes, including regulating the rhythm of the heartbeat. In potassium channels, the selectivity filter is critical for both endowing an exquisite selectivity for potassium ions, as well as for controlling the flow of ions through the pore. Subtle rearrangements in the complex hydrogen-bond network that link the selectivity filter to the surrounding pore helices differentiate conducting (open) from nonconducting (inactivated) conformations of the channel. Recent studies suggest that beyond the selectivity filter, inactivation involves widespread rearrangements of the channel protein. Here, we use rate equilibrium free energy relationship analysis to probe the structural changes that occur during selectivity filter gating in Kv11.1 channels, at near atomic resolution. We show that the pore helix plays a crucial dynamic role as a bidirectional interface during selectivity filter gating. We also define the molecular bases of the energetic coupling between the pore helix and outer helix of the pore domain that occurs early in the transition from open to inactivated states, as well as the coupling between the pore helix and inner helix late in the transition. Our data demonstrate that the pore helices are more than just static structural elements supporting the integrity of the selectivity filter; instead they play a crucial dynamic role during selectivity filter gating. PMID:23471968

  11. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikura, Mitsuhiko; Kay, L.E.; Bax, A.

    Heteronuclear 3D and 4D NMR experiments have been used to obtain {sup 1}H, {sup 13}C, and {sup 15}N backbone chemical shift assignments in Ca{sup 2+}-loaded clamodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-bionding domain (residues 577-602) of rabbit skeletal muscle muosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca{sup 2+}-binding site 1 (E11-E14), the N-terminal portionmore » of the central helix (M72-D78), and the second helix of the Ca{sup 2+}-binding site 4 (F141-M145). Analysis of backbone NOE connectivities indicates a change from {alpha}-helical to an extended conformation for residues 75-77 upon complexation with M13. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site 3.« less

  12. Response of the flat cochlear epithelium to forced expression of Atoh1.

    PubMed

    Izumikawa, Masahiko; Batts, Shelley A; Miyazawa, Toru; Swiderski, Donald L; Raphael, Yehoash

    2008-06-01

    Following hair cell elimination in severely traumatized cochleae, differentiated supporting cells are often replaced by a simple epithelium with cuboidal or flat appearance. Atoh1 (previously Math1) is a basic helix-loop-helix transcription factor critical to hair cell differentiation during mammalian embryogenesis. Forced expression of Atoh1 in the differentiated supporting cell population can induce transdifferentiation leading to hair cell regeneration. Here, we examined the outcome of adenovirus mediated over-expression of Atoh1 in the non-sensory cells of the flat epithelium. We determined that seven days after unilateral elimination of hair cells with neomycin, differentiated supporting cells are absent, replaced by a flat epithelium. Nerve processes were also missing from the auditory epithelium, with the exception of infrequent looping nerve processes above the habenula perforata. We then inoculated an adenovirus vector with Atoh1 insert into the scala media of the deafened cochlea. The inoculation resulted in upregulation of Atoh1 in the flat epithelium. However, two months after the inoculation, Atoh1-treated ears did not exhibit clear signs of hair cell regeneration. Combined with previous data on induction of supporting cell to hair cell transdifferentiation by forced expression of Atoh1, these results suggest that the presence of differentiated supporting cells in the organ of Corti is necessary for transdifferentiation to occur.

  13. Basic Helix-Loop-Helix Transcription Factor Bmsage Is Involved in Regulation of fibroin H-chain Gene via Interaction with SGF1 in Bombyx mori

    PubMed Central

    Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix–loop–helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells. PMID:24740008

  14. A prohormone convertase cleavage site within a predicted alpha-helix mediates sorting of the neuronal and endocrine polypeptide VGF into the regulated secretory pathway.

    PubMed

    Garcia, Angelo L; Han, Shan-Kuo; Janssen, William G; Khaing, Zin Z; Ito, Timothy; Glucksman, Marc J; Benson, Deanna L; Salton, Stephen R J

    2005-12-16

    Distinct intracellular pathways are involved in regulated and constitutive protein secretion from neuronal and endocrine cells, yet the peptide signals and molecular mechanisms responsible for targeting and retention of soluble proteins in secretory granules are incompletely understood. By using confocal microscopy and subcellular fractionation, we examined trafficking of the neuronal and endocrine peptide precursor VGF that is stored in large dense core vesicles and undergoes regulated secretion. VGF cofractionated with secretory vesicle membranes but was not detected in detergent-resistant lipid rafts. Deletional analysis using epitope-tagged VGF suggested that the C-terminal 73-amino acid fragment of VGF, containing two predicted alpha-helical loops and four potential prohormone convertase (PC) cleavage sites, was necessary and sufficient with an N-terminal signal peptide-containing domain, for large dense core vesicle sorting and regulated secretion from PC12 and INS-1 cells. Further transfection analysis identified the sorting sequence as a compact C-terminal alpha-helix and embedded 564RRR566 PC cleavage site; mutation of the 564RRR566 PC site in VGF-(1-65): GFP:VGF-(545-617) blocked regulated secretion, whereas disruption of the alpha-helix had no effect. Mutation of the adjacent 567HFHH570 motif, a charged region that might enhance PC cleavage in acidic environments, also blocked regulated release. Finally, inhibition of PC cleavage in PC12 cells using the membrane-permeable synthetic peptide chloromethyl ketone (decanoyl-RVKR-CMK) blocked regulated secretion of VGF. Our studies define a critical RRR-containing C-terminal domain that targets VGF into the regulated pathway in neuronal PC12 and endocrine INS-1 cells, providing additional support for the proposed role that PCs and their cleavage sites play in regulated peptide secretion.

  15. DEVELOPMENTAL EXPRESSION OF TWO MEMBERS OF A NEW CLASS OF TRANSCRIPTION FACTORS: II. EXPRESSION OF ARYL HYDROCARBON RECEPTOR NUCLEAR TRANSLOCATOR IN THE C57BL/6N MOUSE EMBRYO

    EPA Science Inventory

    The Aryl hydrocarbon receptor (AhR) is a ligand-activated, transcription factor with a basic region/helix (bHLH) motif. hR has been sequenced and the functional domains defined and there is information on the formation of complexes with other peptides and interactions with DNA, a...

  16. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    PubMed Central

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  17. Structural insights into the unusually strong ATPase activity of the AAA domain of the Caenorhabditis elegans fidgetin-like 1 (FIGL-1) protein.

    PubMed

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-10-11

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.

  18. Kinks, loops, and protein folding, with protein A as an example

    PubMed Central

    Krokhotin, Andrey; Liwo, Adam; Maisuradze, Gia G.; Niemi, Antti J.; Scheraga, Harold A.

    2014-01-01

    The dynamics and energetics of formation of loops in the 46-residue N-terminal fragment of the B-domain of staphylococcal protein A has been studied. Numerical simulations have been performed using coarse-grained molecular dynamics with the united-residue (UNRES) force field. The results have been analyzed in terms of a kink (heteroclinic standing wave solution) of a generalized discrete nonlinear Schrödinger (DNLS) equation. In the case of proteins, the DNLS equation arises from a Cα-trace-based energy function. Three individual kink profiles were identified in the experimental three-α-helix structure of protein A, in the range of the Glu16-Asn29, Leu20-Asn29, and Gln33-Asn44 residues, respectively; these correspond to two loops in the native structure. UNRES simulations were started from the full right-handed α-helix to obtain a clear picture of kink formation, which would otherwise be blurred by helix formation. All three kinks emerged during coarse-grained simulations. It was found that the formation of each is accompanied by a local free energy increase; this is expressed as the change of UNRES energy which has the physical sense of the potential of mean force of a polypeptide chain. The increase is about 7 kcal/mol. This value can thus be considered as the free energy barrier to kink formation in full α-helical segments of polypeptide chains. During the simulations, the kinks emerge, disappear, propagate, and annihilate each other many times. It was found that the formation of a kink is initiated by an abrupt change in the orientation of a pair of consecutive side chains in the loop region. This resembles the formation of a Bloch wall along a spin chain, where the Cα backbone corresponds to the chain, and the amino acid side chains are interpreted as the spin variables. This observation suggests that nearest-neighbor side chain–side chain interactions are responsible for initiation of loop formation. It was also found that the individual kinks are reflected as clear peaks in the principal modes of the analyzed trajectory of protein A, the shapes of which resemble the directional derivatives of the kinks along the chain. These observations suggest that the kinks of the DNLS equation determine the functionally important motions of proteins. PMID:24437917

  19. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.

    PubMed

    Sauvé, Simon; Tremblay, Luc; Lavigne, Pierre

    2004-09-17

    Basic region-helix1-loop-helix2-leucine zipper (b/H(1)LH(2)/LZ) transcription factors bind specific DNA sequence in their target gene promoters as dimers. Max, a b/H(1)LH(2)/LZ transcription factor, is the obligate heterodimeric partner of the related b/H(1)LH(2)/LZ proteins of the Myc and Mad families. These heterodimers specifically bind E-box DNA sequence (CACGTG) to activate (e.g. c-Myc/Max) and repress (e.g. Mad1/Max) transcription. Max can also homodimerize and bind E-box sequences in c-Myc target gene promoters. While the X-ray structure of the Max b/H(1)LH(2)/LZ/DNA complex and that of others have been reported, the precise sequence of events leading to the reversible and specific binding of these important transcription factors is still largely unknown. In order to provide insights into the DNA binding mechanism, we have solved the NMR solution structure of a covalently homodimerized version of a Max b/H(1)LH(2)/LZ protein with two stabilizing mutations in the LZ, and characterized its backbone dynamics from (15)N spin-relaxation measurements in the absence of DNA. Apart from minor differences in the pitch of the LZ, possibly resulting from the mutations in the construct, we observe that the packing of the helices in the H(1)LH(2) domain is almost identical to that of the two crystal structures, indicating that no important conformational change in these helices occurs upon DNA binding. Conversely to the crystal structures of the DNA complexes, the first 14 residues of the basic region are found to be mostly unfolded while the loop is observed to be flexible. This indicates that these domains undergo conformational changes upon DNA binding. On the other hand, we find the last four residues of the basic region form a persistent helical turn contiguous to H(1). In addition, we provide evidence of the existence of internal motions in the backbone of H(1) that are of larger amplitude and longer time-scale (nanoseconds) than the ones in the H(2) and LZ domain. Most interestingly, we note that conformers in the ensemble of calculated structures have highly conserved basic residues (located in the persistent helical turn of the basic region and in the loop) known to be important for specific binding in a conformation that matches that of the DNA-bound state. These partially prefolded conformers can directly fit into the major groove of DNA and as such are proposed to lie on the pathway leading to the reversible and specific DNA binding. In these conformers, the conserved basic side-chains form a cluster that elevates the local electrostatic potential and could provide the necessary driving force for the generation of the internal motions localized in the H(1) and therefore link structural determinants with the DNA binding function. Overall, our results suggests that the Max homodimeric b/H(1)LH(2)/LZ can rapidly and preferentially bind DNA sequence through transient and partially prefolded states and subsequently, adopt the fully helical bound state in a DNA-assisted mechanism or induced-fit.

  20. The structure of a protein primer-polymerase complex in the initiation of genome replication.

    PubMed

    Ferrer-Orta, Cristina; Arias, Armando; Agudo, Rubén; Pérez-Luque, Rosa; Escarmís, Cristina; Domingo, Esteban; Verdaguer, Nuria

    2006-02-22

    Picornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues. In both complexes, VPg fits the RNA binding cleft of the polymerase and projects the key residue Tyr3 into the active site of 3D. This is achieved by multiple interactions with residues of motif F and helix alpha8 of the fingers domain and helix alpha13 of the thumb domain of the polymerase. The complex obtained in the presence of the oligoadenylate showed the product of the VPg uridylylation (VPg-UMP). Two metal ions and the catalytic aspartic acids of the polymerase active site, together with the basic residues of motif F, have been identified as participating in the priming reaction.

  1. Structure and mechanism of maximum stability of isolated alpha-helical protein domains at a critical length scale.

    PubMed

    Qin, Zhao; Fabre, Andrea; Buehler, Markus J

    2013-05-01

    The stability of alpha helices is important in protein folding, bioinspired materials design, and controls many biological properties under physiological and disease conditions. Here we show that a naturally favored alpha helix length of 9 to 17 amino acids exists at which the propensity towards the formation of this secondary structure is maximized. We use a combination of thermodynamical analysis, well-tempered metadynamics molecular simulation and statistical analyses of experimental alpha helix length distributions and find that the favored alpha helix length is caused by a competition between alpha helix folding, unfolding into a random coil and formation of higher-order tertiary structures. The theoretical result is suggested to be used to explain the statistical distribution of the length of alpha helices observed in natural protein structures. Our study provides mechanistic insight into fundamental controlling parameters in alpha helix structure formation and potentially other biopolymers or synthetic materials. The result advances our fundamental understanding of size effects in the stability of protein structures and may enable the design of de novo alpha-helical protein materials.

  2. Nogo goes in the pure water: solution structure of Nogo-60 and design of the structured and buffer-soluble Nogo-54 for enhancing CNS regeneration.

    PubMed

    Li, Minfen; Liu, Jingxian; Song, Jianxing

    2006-08-01

    The inability to determine the structure of the buffer-insoluble Nogo extracellular domain retarded further design of Nogo receptor (NgR) antagonists to treat CNS axonal injuries. Very surprisingly, we recently discovered that Nogo-60 was soluble and structured in salt-free water, thus allowing the determination of the first Nogo structure by heteronuclear NMR spectroscopy. Nogo-60 adopts an unusual helical structure with the N- and C-terminal helices connected by a long middle helix. While the N-helix has no contact with the rest of the molecule, the C-helix flips back to pack against the 20-residue middle helix. This packing appears to trigger the formation of the stable Nogo-60 structure because Nogo-40 with the last helix truncated is unstructured. The Nogo-60 structure offered us rationales for further design of the structured and buffer-soluble Nogo-54, which may be used as a novel NgR antagonist. Furthermore, our discovery may imply a general solution to solubilizing a category of buffer-insoluble proteins for urgent structural investigations.

  3. Alternative C-Terminal Helix Orientation Alters Chemokine Function

    PubMed Central

    Kuo, Je-Hung; Chen, Ya-Ping; Liu, Jai-Shin; Dubrac, Alexandre; Quemener, Cathy; Prats, Hervé; Bikfalvi, Andreas; Wu, Wen-guey; Sue, Shih-Che

    2013-01-01

    Chemokines, a subfamily of cytokines, are small, secreted proteins that mediate a variety of biological processes. Various chemokines adopt remarkable conserved tertiary structure comprising an anti-parallel β-sheet core domain followed by a C-terminal helix that packs onto the β-sheet. The conserved structural feature has been considered critical for chemokine function, including binding to cell surface receptor. The recently isolated variant, CXCL4L1, is a homologue of CXCL4 chemokine (or platelet factor 4) with potent anti-angiogenic activity and differed only in three amino acid residues of P58L, K66E, and L67H. In this study we show by x-ray structural determination that CXCL4L1 adopts a previously unrecognized structure at its C terminus. The orientation of the C-terminal helix protrudes into the aqueous space to expose the entire helix. The alternative helix orientation modifies the overall chemokine shape and surface properties. The L67H mutation is mainly responsible for the swing-out effect of the helix, whereas mutations of P58L and K66E only act secondarily. This is the first observation that reports an open conformation of the C-terminal helix in a chemokine. This change leads to a decrease of its glycosaminoglycan binding properties and to an enhancement of its anti-angiogenic and anti-tumor effects. This unique structure is recent in evolution and has allowed CXCL4L1 to gain novel functional properties. PMID:23536183

  4. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha.

    PubMed

    Weljie, Aalim M; Gagné, Stéphane M; Vogel, Hans J

    2004-12-07

    Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.

  5. Integrity of Helix 2-Helix 3 Domain of the PrP Protein Is Not Mandatory for Prion Replication*

    PubMed Central

    Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel

    2012-01-01

    The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrPSc. We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrPSc and elucidate the conformational changes underlying prions generation. PMID:22511770

  6. Integrity of helix 2-helix 3 domain of the PrP protein is not mandatory for prion replication.

    PubMed

    Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel

    2012-06-01

    The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrP(Sc). We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrP(Sc) and elucidate the conformational changes underlying prions generation.

  7. Basis for ligand discrimination between ON and OFF state riboswitch conformations: The case of the SAM-I riboswitch

    PubMed Central

    Boyapati, Vamsi Krishna; Huang, Wei; Spedale, Jessica; Aboul-ela, Fareed

    2012-01-01

    Riboswitches are RNA elements that bind to effector ligands and control gene expression. Most consist of two domains. S-Adenosyl Methionine (SAM) binds the aptamer domain of the SAM-I riboswitch and induces conformational changes in the expression domain to form an intrinsic terminator (transcription OFF state). Without SAM the riboswitch forms the transcription ON state, allowing read-through transcription. The mechanistic link between the SAM/aptamer recognition event and subsequent secondary structure rearrangement by the riboswitch is unclear. We probed for those structural features of the Bacillus subtilis yitJ SAM-I riboswitch responsible for discrimination between the ON and OFF states by SAM. We designed SAM-I riboswitch RNA segments forming “hybrid” structures of the ON and OFF states. The choice of segment constrains the formation of a partial P1 helix, characteristic of the OFF state, together with a partial antiterminator (AT) helix, characteristic of the ON state. For most choices of P1 vs. AT helix lengths, SAM binds with micromolar affinity according to equilibrium dialysis. Mutational analysis and in-line probing confirm that the mode of SAM binding by hybrid structures is similar to that of the aptamer. Altogether, binding measurements and in-line probing are consistent with the hypothesis that when SAM is present, stacking interactions with the AT helix stabilize a partially formed P1 helix in the hybrids. Molecular modeling indicates that continuous stacking between the P1 and the AT helices is plausible with SAM bound. Our findings raise the possibility that conformational intermediates may play a role in ligand-induced aptamer folding. PMID:22543867

  8. Distinct polymer physics principles govern chromatin dynamics in mouse and Drosophila topological domains.

    PubMed

    Ea, Vuthy; Sexton, Tom; Gostan, Thierry; Herviou, Laurie; Baudement, Marie-Odile; Zhang, Yunzhe; Berlivet, Soizik; Le Lay-Taha, Marie-Noëlle; Cathala, Guy; Lesne, Annick; Victor, Jean-Marc; Fan, Yuhong; Cavalli, Giacomo; Forné, Thierry

    2015-08-15

    In higher eukaryotes, the genome is partitioned into large "Topologically Associating Domains" (TADs) in which the chromatin displays favoured long-range contacts. While a crumpled/fractal globule organization has received experimental supports at higher-order levels, the organization principles that govern chromatin dynamics within these TADs remain unclear. Using simple polymer models, we previously showed that, in mouse liver cells, gene-rich domains tend to adopt a statistical helix shape when no significant locus-specific interaction takes place. Here, we use data from diverse 3C-derived methods to explore chromatin dynamics within mouse and Drosophila TADs. In mouse Embryonic Stem Cells (mESC), that possess large TADs (median size of 840 kb), we show that the statistical helix model, but not globule models, is relevant not only in gene-rich TADs, but also in gene-poor and gene-desert TADs. Interestingly, this statistical helix organization is considerably relaxed in mESC compared to liver cells, indicating that the impact of the constraints responsible for this organization is weaker in pluripotent cells. Finally, depletion of histone H1 in mESC alters local chromatin flexibility but not the statistical helix organization. In Drosophila, which possesses TADs of smaller sizes (median size of 70 kb), we show that, while chromatin compaction and flexibility are finely tuned according to the epigenetic landscape, chromatin dynamics within TADs is generally compatible with an unconstrained polymer configuration. Models issued from polymer physics can accurately describe the organization principles governing chromatin dynamics in both mouse and Drosophila TADs. However, constraints applied on this dynamics within mammalian TADs have a peculiar impact resulting in a statistical helix organization.

  9. Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch.

    PubMed

    Boyapati, Vamsi Krishna; Huang, Wei; Spedale, Jessica; Aboul-Ela, Fareed

    2012-06-01

    Riboswitches are RNA elements that bind to effector ligands and control gene expression. Most consist of two domains. S-Adenosyl Methionine (SAM) binds the aptamer domain of the SAM-I riboswitch and induces conformational changes in the expression domain to form an intrinsic terminator (transcription OFF state). Without SAM the riboswitch forms the transcription ON state, allowing read-through transcription. The mechanistic link between the SAM/aptamer recognition event and subsequent secondary structure rearrangement by the riboswitch is unclear. We probed for those structural features of the Bacillus subtilis yitJ SAM-I riboswitch responsible for discrimination between the ON and OFF states by SAM. We designed SAM-I riboswitch RNA segments forming "hybrid" structures of the ON and OFF states. The choice of segment constrains the formation of a partial P1 helix, characteristic of the OFF state, together with a partial antiterminator (AT) helix, characteristic of the ON state. For most choices of P1 vs. AT helix lengths, SAM binds with micromolar affinity according to equilibrium dialysis. Mutational analysis and in-line probing confirm that the mode of SAM binding by hybrid structures is similar to that of the aptamer. Altogether, binding measurements and in-line probing are consistent with the hypothesis that when SAM is present, stacking interactions with the AT helix stabilize a partially formed P1 helix in the hybrids. Molecular modeling indicates that continuous stacking between the P1 and the AT helices is plausible with SAM bound. Our findings raise the possibility that conformational intermediates may play a role in ligand-induced aptamer folding.

  10. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    PubMed Central

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  11. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX.

    PubMed

    Argentaro, Anthony; Yang, Ji-Chun; Chapman, Lynda; Kowalczyk, Monika S; Gibbons, Richard J; Higgs, Douglas R; Neuhaus, David; Rhodes, Daniela

    2007-07-17

    The chromatin-associated protein ATRX was originally identified because mutations in the ATRX gene cause a severe form of syndromal X-linked mental retardation associated with alpha-thalassemia. Half of all of the disease-associated missense mutations cluster in a cysteine-rich region in the N terminus of ATRX. This region was named the ATRX-DNMT3-DNMT3L (ADD) domain, based on sequence homology with a family of DNA methyltransferases. Here, we report the solution structure of the ADD domain of ATRX, which consists of an N-terminal GATA-like zinc finger, a plant homeodomain finger, and a long C-terminal alpha-helix that pack together to form a single globular domain. Interestingly, the alpha-helix of the GATA-like finger is exposed and highly basic, suggesting a DNA-binding function for ATRX. The disease-causing mutations fall into two groups: the majority affect buried residues and hence affect the structural integrity of the ADD domain; another group affects a cluster of surface residues, and these are likely to perturb a potential protein interaction site. The effects of individual point mutations on the folding state and stability of the ADD domain correlate well with the levels of mutant ATRX protein in patients, providing insights into the molecular pathophysiology of ATR-X syndrome.

  12. A Multidisciplinary Workshop: Self-Assembling Peptide Systems in Biology, Medicine and Engineering, Crete, Greece, July 1-6, 1999

    DTIC Science & Technology

    1999-07-06

    Properties of a Proline-Rich Domain from Serum Apolipoprotein B 3:50-4:10 Coffee break 4:10-4:50 Debbie Kendall University of Conn, USA...reversible transition between an alpha-helix and a 3(10) helix in a fluorescence labeled peptide G. Hungerford, M. Martinez-Insua. DJS Birch and B.D. Moore

  13. The L49F mutation in alpha erythroid spectrin induces local disorder in the tetramer association region: Fluorescence and molecular dynamics studies of free and bound alpha spectrin

    PubMed Central

    Song, Yuanli; Pipalia, Nina H; Fung, L W-M

    2009-01-01

    The bundling of the N-terminal, partial domain helix (Helix C′) of human erythroid α-spectrin (αI) with the C-terminal, partial domain helices (Helices A′ and B′) of erythroid β-spectrin (βI) to give a spectrin pseudo structural domain (triple helical bundle A′B′C′) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern–Volmer quenching constants of Helix C′ of αI bound to Helices A′ and B′ of βI, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and αI mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C′ was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation-induced blood disorder. PMID:19593814

  14. Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex*

    PubMed Central

    Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.

    2017-01-01

    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171

  15. Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli.

    PubMed

    Buchner, Sophie; Schlundt, Andreas; Lassak, Jürgen; Sattler, Michael; Jung, Kirsten

    2015-07-31

    The pH-responsive one-component signaling system CadC in Escherichia coli belongs to the family of ToxR-like proteins, whose members share a conserved modular structure, with an N-terminal cytoplasmic winged helix-turn-helix DNA-binding domain being followed by a single transmembrane helix and a C-terminal periplasmic pH-sensing domain. In E. coli CadC, a cytoplasmic linker comprising approximately 50 amino acids is essential for transmission of the signal from the sensor to the DNA-binding domain. However, the mechanism of transduction is poorly understood. Using NMR spectroscopy, we demonstrate here that the linker region is intrinsically disordered in solution. Furthermore, mutational analyses showed that it tolerates a range of amino acid substitutions (altering polarity, rigidity and α-helix-forming propensity), is robust to extension but is sensitive to truncation. Indeed, truncations either reversed the expression profile of the target operon cadBA or decoupled expression from external pH altogether. CadC dimerizes via its periplasmic domain, but light-scattering analysis provided no evidence for dimerization of the isolated DNA-binding domain, with or without the linker region. However, bacterial two-hybrid analysis revealed that CadC forms stable dimers in a stimulus- and linker-dependent manner, interacting only at pH<6.8. Strikingly, a variant with inversed cadBA expression profile, which lacks most of the linker, dimerizes preferentially at higher pH. Thus, we propose that the disordered CadC linker is required for transducing the pH-dependent response of the periplasmic sensor into a structural rearrangement that facilitates dimerization of the cytoplasmic CadC DNA-binding domain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. pH Dependence of a 310-Helix versus a Turn in the M-Loop Region of PDE4: Observations on PDB Entries and an Electronic Structure Study.

    PubMed

    Usharani, Dandamudi; Srivani, Palakuri; Sastry, G Narahari; Jemmis, Eluvathingal D

    2008-06-01

    Available X-ray crystal structures of phosphodiesterase 4 (PDE 4) are classified into two groups based on a secondary structure difference of a 310-helix versus a turn in the M-loop region. The only variable that was discernible between these two sets is the pH at the crystallization conditions. Assuming that at lower pH there is a possibility of protonation, thermodynamics of protonation and deprotonation of the aspartic acid, cysteine side chains, and amide bonds are calculated. The models in the gas phase and in the explicit solvent using the ONIOM method are calculated at the B3LYP/6-31+G* and B3LYP/6-31+G*:UFF levels of theory, respectively. The molecular dynamics (MD) simulations are also performed on the M-loop region of a 310-helix and a turn with explicit water for 10 ns under NPT conditions. The isodesmic equations of the various protonation states show that the turn containing structure is thermodynamically more stable when proline or cysteine is protonated. The preference for the turn structure on protonation (pH = 6.5-7.5) is due to an increase in the number of the hydrogen bonding and electrostatic interactions gained by the surrounding environment such as adjacent residues and solvent molecules.

  17. Localizome: a server for identifying transmembrane topologies and TM helices of eukaryotic proteins utilizing domain information

    PubMed Central

    Lee, Sunghoon; Lee, Byungwook; Jang, Insoo; Kim, Sangsoo; Bhak, Jong

    2006-01-01

    The Localizome server predicts the transmembrane (TM) helix number and TM topology of a user-supplied eukaryotic protein and presents the result as an intuitive graphic representation. It utilizes hmmpfam to detect the presence of Pfam domains and a prediction algorithm, Phobius, to predict the TM helices. The results are combined and checked against the TM topology rules stored in a protein domain database called LocaloDom. LocaloDom is a curated database that contains TM topologies and TM helix numbers of known protein domains. It was constructed from Pfam domains combined with Swiss-Prot annotations and Phobius predictions. The Localizome server corrects the combined results of the user sequence to conform to the rules stored in LocaloDom. Compared with other programs, this server showed the highest accuracy for TM topology prediction: for soluble proteins, the accuracy and coverage were 99 and 75%, respectively, while for TM protein domain regions, they were 96 and 68%, respectively. With a graphical representation of TM topology and TM helix positions with the domain units, the Localizome server is a highly accurate and comprehensive information source for subcellular localization for soluble proteins as well as membrane proteins. The Localizome server can be found at . PMID:16845118

  18. Co-Conserved MAPK Features Couple D-Domain Docking Groove to Distal Allosteric Sites via the C-Terminal Flanking Tail

    PubMed Central

    Nguyen, Tuan; Ruan, Zheng; Oruganty, Krishnadev; Kannan, Natarajan

    2015-01-01

    Mitogen activated protein kinases (MAPKs) form a closely related family of kinases that control critical pathways associated with cell growth and survival. Although MAPKs have been extensively characterized at the biochemical, cellular, and structural level, an integrated evolutionary understanding of how MAPKs differ from other closely related protein kinases is currently lacking. Here, we perform statistical sequence comparisons of MAPKs and related protein kinases to identify sequence and structural features associated with MAPK functional divergence. We show, for the first time, that virtually all MAPK-distinguishing sequence features, including an unappreciated short insert segment in the β4-β5 loop, physically couple distal functional sites in the kinase domain to the D-domain peptide docking groove via the C-terminal flanking tail (C-tail). The coupling mediated by MAPK-specific residues confers an allosteric regulatory mechanism unique to MAPKs. In particular, the regulatory αC-helix conformation is controlled by a MAPK-conserved salt bridge interaction between an arginine in the αC-helix and an acidic residue in the C-tail. The salt-bridge interaction is modulated in unique ways in individual sub-families to achieve regulatory specificity. Our study is consistent with a model in which the C-tail co-evolved with the D-domain docking site to allosterically control MAPK activity. Our study provides testable mechanistic hypotheses for biochemical characterization of MAPK-conserved residues and new avenues for the design of allosteric MAPK inhibitors. PMID:25799139

  19. Molecular dynamics simulation of hepatitis C virus IRES IIId domain: structural behavior, electrostatic and energetic analysis.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Di-Giorgio, Audrey; Condom, Roger; Cabrol-Bass, Daniel

    2004-02-01

    The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding.

  20. Hey bHLH Proteins Interact with a FBXO45 Containing SCF Ubiquitin Ligase Complex and Induce Its Translocation into the Nucleus.

    PubMed

    Salat, Daniela; Winkler, Anja; Urlaub, Henning; Gessler, Manfred

    2015-01-01

    The Hey protein family, comprising Hey1, Hey2 and HeyL in mammals, conveys Notch signals in many cell types. The helix-loop-helix (HLH) domain as well as the Orange domain, mediate homo- and heterodimerization of these transcription factors. Although distinct interaction partners have been identified so far, their physiological relevance for Hey functions is still largely unclear. Using a tandem affinity purification approach and mass spectrometry analysis we identified members of an ubiquitin E3-ligase complex consisting of FBXO45, PAM and SKP1 as novel Hey1 associated proteins. There is a direct interaction between Hey1 and FBXO45, whereas FBXO45 is needed to mediate indirect Hey1 binding to SKP1. Expression of Hey1 induces translocation of FBXO45 and PAM into the nucleus. Hey1 is a short-lived protein that is degraded by the proteasome, but there is no evidence for FBXO45-dependent ubiquitination of Hey1. On the contrary, Hey1 mediated nuclear translocation of FBXO45 and its associated ubiquitin ligase complex may extend its spectrum to additional nuclear targets triggering their ubiquitination. This suggests a novel mechanism of action for Hey bHLH factors.

  1. NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity

    PubMed Central

    Xu, Fang; Kapos, Paul; Cheng, Yu Ti; Li, Meng; Zhang, Yuelin; Li, Xin

    2014-01-01

    In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. PMID:25144198

  2. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer.

    PubMed

    Vogel, Christoph F A; Haarmann-Stemmann, Thomas

    2017-02-01

    The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.

  3. Homozygous Mutations in NEUROD1 Are Responsible for a Novel Syndrome of Permanent Neonatal Diabetes and Neurological Abnormalities

    PubMed Central

    Rubio-Cabezas, Oscar; Minton, Jayne A.L.; Kantor, Iren; Williams, Denise; Ellard, Sian; Hattersley, Andrew T.

    2010-01-01

    OBJECTIVE NEUROD1 is expressed in both developing and mature β-cells. Studies in mice suggest that this basic helix-loop-helix transcription factor is critical in the development of endocrine cell lineage. Heterozygous mutations have previously been identified as a rare cause of maturity-onset diabetes of the young (MODY). We aimed to explore the potential contribution of NEUROD1 mutations in patients with permanent neonatal diabetes. RESEARCH DESIGN AND METHODS We sequenced the NEUROD1 gene in 44 unrelated patients with permanent neonatal diabetes of unknown genetic etiology. RESULTS Two homozygous mutations in NEUROD1 (c.427_ 428del and c.364dupG) were identified in two patients. Both mutations introduced a frameshift that would be predicted to generate a truncated protein completely lacking the activating domain. Both patients had permanent diabetes diagnosed in the first 2 months of life with no evidence of exocrine pancreatic dysfunction and a morphologically normal pancreas on abdominal imaging. In addition to diabetes, they had learning difficulties, severe cerebellar hypoplasia, profound sensorineural deafness, and visual impairment due to severe myopia and retinal dystrophy. CONCLUSIONS We describe a novel clinical syndrome that results from homozygous loss of function mutations in NEUROD1. It is characterized by permanent neonatal diabetes and a consistent pattern of neurological abnormalities including cerebellar hypoplasia, learning difficulties, sensorineural deafness, and visual impairment. This syndrome highlights the critical role of NEUROD1 in both the development of the endocrine pancreas and the central nervous system in humans. PMID:20573748

  4. Molecular characterization of Myf5 and comparative expression patterns of myogenic regulatory factors in Siniperca chuatsi.

    PubMed

    Zhu, Xin; Li, Yu-Long; Liu, Li; Wang, Jian-Hua; Li, Hong-Hui; Wu, Ping; Chu, Wu-Ying; Zhang, Jian-She

    2016-01-01

    Myogenic regulatory factors (MRFs) are muscle-specific basic helix-loop-helix (bHLH) transcription factor that plays an essential role in regulating skeletal muscle development and growth. To investigate molecular characterization of Myf5 and compare the expressional patterns of the four MRFs, we cloned the Myf5 cDNA sequence and analyzed the MRFs expressional patterns using quantitative real-time polymerase chain reaction in Chinese perch (Siniperca chuatsi). Sequence analysis indicated that Chinese perch Myf5 and other MRFs shared a highly conserved bHLH domain with those of other vertebrates. Sequence alignment and phylogenetic tree showed that Chinese perch MRFs had the highest identity with the MRFs of Epinephelus coioides. Spatio-temporal expressional patterns revealed that the MRFs were primarily expressed in muscle, especially in white muscle. During embryonic development period, Myf5, MyoD and MyoG mRNAs had a steep increase at neurula stage, and their highest expressional level was predominantly observed at hatching period. Whereas the highest expressional level of the MRF4 was observed at the muscular effect stage. The expressional patterns of post-embryonic development showed that the Myf5, MyoD and MyoG mRNAs were highest at 90 days post-hatching (dph). Furthermore, starvation and refeeding results showed that the transcription of the MRFs in the fast skeletal muscle of Chinese perch responded quickly to a single meal after 7 days of fasting. It indicated that the MRFs might contribute to muscle recovery after refeeding in Chinese perch. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-mediated deregulation of myeloid and sebaceous gland stem/progenitor cell homeostasis.

    PubMed

    Bock, Karl Walter

    2017-06-01

    Studies of TCDD toxicity stimulated identification of the responsible aryl hydrocarbon receptor (AHR), a multifunctional, ligand-activated transcription factor of the basic helix-loop-helix/Per-Arnt-Sim family. Accumulating evidence suggests a role of this receptor in homeostasis of stem/progenitor cells, in addition to its known role in xenobiotic metabolism. (1) Regulation of myelopoiesis is complex. As one example, AHR-mediated downregulation of human CD34+ progenitor differentiation to monocytes/macrophages is discussed. (2) Accumulation of TCDD in sebum leads to deregulation of sebocyte differentiation via Blimp1-mediated inhibition of c-Myc signaling and stimulation of Wnt-mediated proliferation of interfollicular epidermis. The resulting sebaceous gland atrophy and formation of dermal cysts may explain the pathogenesis of chloracne, the hallmark of TCDD toxicity. (3) TCDD treatment of confluent liver stem cell-like rat WB-F344 cells leads to release from cell-cell contact inhibition via AHR-mediated crosstalk with multiple signaling pathways. Further work is needed to delineate AHR function in crosstalk with other signaling pathways.

  6. Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination

    PubMed Central

    Soundarapandian, Mangala M.; Selvaraj, Vimal; Lo, U-Ging; Golub, Mari S.; Feldman, Daniel H.; Pleasure, David E.; Deng, Wenbin

    2011-01-01

    Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role in oligodendrogenesis of adult neural progenitor cells is not known. In this study, we tested whether Zfp488 could promote an oligodendrogenic fate in adult subventricular zone (SVZ) neural stem/progenitor cells (NSPCs). Using a cuprizone-induced demyelination model in mice, we examined the effect of retrovirus-mediated Zfp488 overexpression in SVZ NSPCs. Our results showed that Zfp488 efficiently promoted the differentiation of the SVZ NSPCs into mature oligodendrocytes in vivo. After cuprizone-induced demyelination injury, Zfp488-transduced mice also showed significant restoration of motor function to levels comparable to control mice. Together, these findings identify a previously unreported role for Zfp488 in adult oligodendrogenesis and functional remyelination after injury. PMID:22355521

  7. An upstream open reading frame represses expression of Lc, a member of the R/B family of maize transcriptional activators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, R.D. Jr.; Wessler, S.R.

    1993-09-01

    The R/B genes of maize encode a family of basic helix-loop-helix proteins that determine where and when the anthocyanin-pigment pathway will be expressed in the plant. Previous studies showed that allelic diversity among family members reflects differences in gene expression, specifically in transcription initiation. The authors present evidence that the R gene Lc is under translational control. They demonstrate that the 235-nt transcript leader of Lc represses expression 25- to 30-fold in an in vivo assay. Repression is mediated by the presence in cis of a 38-codon upstream open reading frame. Furthermore, the coding capacity of the upstream open readingmore » frame influences the magnitude of repression. It is proposed that translational control does not contribute to tissue specificity but prevents overexpression of the Lc protein. The diversity of promoter and 5' untranslated leader sequences among the R/B genes provides an opportunity to study the coevolution of transcriptional and translational mechanisms of gene regulation. 36 refs., 5 figs.« less

  8. The heterologous expression of a chrysanthemum TCP-P transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana.

    PubMed

    Zhang, Ting; Qu, Yixin; Wang, Haibin; Wang, Jingjing; Song, Aiping; Hu, Yueheng; Chen, Sumei; Jiang, Jiafu; Chen, Fadi

    2017-06-01

    TCP transcription factors are important for plant growth and development, but their activity in chrysanthemum (Chrysanthemum morifolium) has not been thoroughly explored. Here, a chrysanthemum TCP-P sequence, which encodes a protein harboring the conserved basic helix-loop-helix (bHLH) motif, was shown to be related phylogenetically to the Arabidopsis thaliana gene AtTCP14. A yeast-one hybrid assay showed that the encoding protein had no transcriptional activation ability, and a localization experiment indicated that it was localized in the nucleus. Transcription profiling established that the gene was most active in the stem and leaf. Its heterologous expression in A. thaliana down-regulated certain cell cycle-related genes, reduced the size of various organs and increased the chlorophyll and carotenoid contents of the leaf which led to delayed senescence and a prolonged flowering period. Moreover, by screening the cDNA library of chrysanthemum, we found that the CmTCP14 can interact with CmFTL2 and some CmDELLAs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. β-Catenin Is Required for Hair-Cell Differentiation in the Cochlea

    PubMed Central

    Hu, Lingxiang; Jacques, Bonnie E.; Mulvaney, Joanna F.; Dabdoub, Alain

    2014-01-01

    The development of hair cells in the auditory system can be separated into steps; first, the establishment of progenitors for the sensory epithelium, and second, the differentiation of hair cells. Although the differentiation of hair cells is known to require the expression of basic helix-loop-helix transcription factor, Atoh1, the control of cell proliferation in the region of the developing cochlea that will ultimately become the sensory epithelium and the cues that initiate Atoh1 expression remain obscure. We assessed the role of Wnt/β-catenin in both steps in gain- and loss-of-function models in mice. The canonical Wnt pathway mediator, β-catenin, controls the expression of Atoh1. Knock-out of β-catenin inhibited hair-cell, as well as pillar-cell, differentiation from sensory progenitors but was not required to maintain a hair-cell fate once specified. Constitutive activation of β-catenin expanded sensory progenitors by inducing additional cell division and resulted in the differentiation of extra hair cells. Our data demonstrate that β-catenin plays a role in cell division and differentiation in the cochlear sensory epithelium. PMID:24806673

  10. PRMT1 Is a Novel Regulator of Epithelial-Mesenchymal-Transition in Non-small Cell Lung Cancer*

    PubMed Central

    Avasarala, Sreedevi; Van Scoyk, Michelle; Karuppusamy Rathinam, Manoj Kumar; Zerayesus, Sereke; Zhao, Xiangmin; Zhang, Wei; Pergande, Melissa R.; Borgia, Jeffrey A.; DeGregori, James; Port, J. David; Winn, Robert A.; Bikkavilli, Rama Kamesh

    2015-01-01

    Protein arginine methyl transferase 1 (PRMT1) was shown to be up-regulated in cancers and important for cancer cell proliferation. However, the role of PRMT1 in lung cancer progression and metastasis remains incompletely understood. In the present study, we show that PRMT1 is an important regulator of epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion, which are essential processes during cancer progression, and metastasis. Additionally, we have identified Twist1, a basic helix-loop-helix transcription factor and a well-known E-cadherin repressor, as a novel PRMT1 substrate. Taken together, we show that PRMT1 is a novel regulator of EMT and arginine 34 (Arg-34) methylation of Twist1 as a unique “methyl arginine mark” for active E-cadherin repression. Therefore, targeting PRMT1-mediated Twist1 methylation might represent a novel strategy for developing new anti-invasive/anti-metastatic drugs. Moreover, methylated Twist1 (Arg-34), as such, could also emerge as a potential important biomarker for lung cancer. PMID:25847239

  11. The Origin, Development and Molecular Diversity of Rodent Olfactory Bulb Glutamatergic Neurons Distinguished by Expression of Transcription Factor NeuroD1.

    PubMed

    Roybon, Laurent; Mastracci, Teresa L; Li, Joyce; Stott, Simon R W; Leiter, Andrew B; Sussel, Lori; Brundin, Patrik; Li, Jia-Yi

    2015-01-01

    Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1) is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced - the mitral cells - can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers.

  12. Spider toxin inhibits gating pore currents underlying periodic paralysis.

    PubMed

    Männikkö, Roope; Shenkarev, Zakhar O; Thor, Michael G; Berkut, Antonina A; Myshkin, Mikhail Yu; Paramonov, Alexander S; Kulbatskii, Dmitrii S; Kuzmin, Dmitry A; Sampedro Castañeda, Marisol; King, Louise; Wilson, Emma R; Lyukmanova, Ekaterina N; Kirpichnikov, Mikhail P; Schorge, Stephanie; Bosmans, Frank; Hanna, Michael G; Kullmann, Dimitri M; Vassilevski, Alexander A

    2018-04-24

    Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel Na V 1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3-S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP. Copyright © 2018 the Author(s). Published by PNAS.

  13. Structural Rearrangement in an RsmA/CsrA Ortholog of Pseudomonas aeruginosa Creates a Dimeric RNA-Binding Protein, RsmN

    PubMed Central

    Morris, Elizabeth R.; Hall, Gareth; Li, Chan; Heeb, Stephan; Kulkarni, Rahul V.; Lovelock, Laura; Silistre, Hazel; Messina, Marco; Cámara, Miguel; Emsley, Jonas; Williams, Paul; Searle, Mark S.

    2013-01-01

    Summary In bacteria, the highly conserved RsmA/CsrA family of RNA-binding proteins functions as global posttranscriptional regulators acting on mRNA translation and stability. Through phenotypic complementation of an rsmA mutant in Pseudomonas aeruginosa, we discovered a family member, termed RsmN. Elucidation of the RsmN crystal structure and that of the complex with a hairpin from the sRNA, RsmZ, reveals a uniquely inserted α helix, which redirects the polypeptide chain to form a distinctly different protein fold to the domain-swapped dimeric structure of RsmA homologs. The overall β sheet structure required for RNA recognition is, however, preserved with compensatory sequence and structure differences, allowing the RsmN dimer to target binding motifs in both structured hairpin loops and flexible disordered RNAs. Phylogenetic analysis indicates that, although RsmN appears unique to P. aeruginosa, homologous proteins with the inserted α helix are more widespread and arose as a consequence of a gene duplication event. PMID:23954502

  14. Conformation Changes, N-terminal Involvement, and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain*

    PubMed Central

    Wang, Huanchen; Robinson, Howard; Ke, Hengming

    2010-01-01

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98–147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes. PMID:20861010

  15. Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Robinson, H.; Ke, H.

    2010-12-03

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  16. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  17. NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia.

    PubMed

    Moberg, Per; Nilsson, Stefan; Ståhl, Annelie; Eriksson, Anna-Carin; Glaser, Elzbieta; Mäler, Lena

    2004-03-05

    We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.

  18. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand

    NASA Astrophysics Data System (ADS)

    Zhang, Xianjun; Zhao, Fei; Wu, Yiran; Yang, Jun; Han, Gye Won; Zhao, Suwen; Ishchenko, Andrii; Ye, Lintao; Lin, Xi; Ding, Kang; Dharmarajan, Venkatasubramanian; Griffin, Patrick R.; Gati, Cornelius; Nelson, Garrett; Hunter, Mark S.; Hanson, Michael A.; Cherezov, Vadim; Stevens, Raymond C.; Tan, Wenfu; Tao, Houchao; Xu, Fei

    2017-05-01

    The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.

  19. Nanohelices from planar polymer self-assembled in carbon nanotubes

    PubMed Central

    Fu, Hongjin; Xu, Shuqiong; Li, Yunfang

    2016-01-01

    The polymer possessing with planar structure can be activated and guided to encapsulate the inner space of SWNT and form a helix through van der Waals interaction and the π-π stacking effect between the polymer and the inner surface of SWNT. The SWNT size, the nanostructure and flexibility of polymer chain are all determine the final structures. The basic interaction between the polymer and the nanotubes is investigated, and the condition and mechanism of the helix-forming are explained particularly. Hybrid polymers improve the ability of the helix formation. This study provides scientific basis for fabricating helical polymers encapsulated in SWNTs and eventually on their applications in various areas. PMID:27440493

  20. Structure of a Double Transmembrane Fragment of a G-Protein-Coupled Receptor in Micelles

    PubMed Central

    Neumoin, Alexey; Cohen, Leah S.; Arshava, Boris; Tantry, Subramanyam; Becker, Jeffrey M.; Zerbe, Oliver; Naider, Fred

    2009-01-01

    Abstract The structure and dynamic properties of an 80-residue fragment of Ste2p, the G-protein-coupled receptor for α-factor of Saccharomyces cerevisiae, was studied in LPPG micelles with the use of solution NMR spectroscopy. The fragment Ste2p(G31-T110) (TM1-TM2) consisted of 19 residues from the N-terminal domain, the first TM helix (TM1), the first cytoplasmic loop, the second TM helix (TM2), and seven residues from the first extracellular loop. Multidimensional NMR experiments on [15N], [15N, 13C], [15N, 13C, 2H]-labeled TM1-TM2 and on protein fragments selectively labeled at specific amino acid residues or protonated at selected methyl groups resulted in >95% assignment of backbone and side-chain nuclei. The NMR investigation revealed the secondary structure of specific residues of TM1-TM2. TALOS constraints and NOE connectivities were used to calculate a structure for TM1-TM2 that was highlighted by the presence of three α-helices encompassing residues 39–47, 49–72, and 80–103, with higher flexibility around the internal Arg58 site of TM1. RMSD values of individually superimposed helical segments 39–47, 49–72, and 80–103 were 0.25 ± 0.10 Å, 0.40 ± 0.13 Å, and 0.57 ± 0.19 Å, respectively. Several long-range interhelical connectivities supported the folding of TM1-TM2 into a tertiary structure typified by a crossed helix that splays apart toward the extracellular regions and contains considerable flexibility in the G56VRSG60 region. 15N-relaxation and hydrogen-deuterium exchange data support a stable fold for the TM parts of TM1-TM2, whereas the solvent-exposed segments are more flexible. The NMR structure is consistent with the results of biochemical experiments that identified the ligand-binding site within this region of the receptor. PMID:19383463

  1. An inducible amphipathic helix within the intrinsically disordered C terminus can participate in membrane curvature generation by peripherin-2/rds.

    PubMed

    Milstein, Michelle L; Kimler, Victoria A; Ghatak, Chiranjib; Ladokhin, Alexey S; Goldberg, Andrew F X

    2017-05-12

    Peripherin-2/rds is required for biogenesis of vertebrate photoreceptor outer segment organelles. Its localization at the high-curvature rim domains of outer segment disk membranes suggests that it may act to shape these structures; however, the molecular function of this protein is not yet resolved. Here, we apply biochemical, biophysical, and imaging techniques to elucidate the role(s) played by the protein's intrinsically disordered C-terminal domain and an incipient amphipathic α-helix contained within it. We investigated a deletion mutant lacking only this α-helix in stable cell lines and Xenopus laevis photoreceptors. We also studied a soluble form of the full-length ∼7-kDa cytoplasmic C terminus in cultured cells and purified from Escherichia coli The α-helical motif was not required for protein biosynthesis, tetrameric subunit assembly, tetramer polymerization, localization at disk rims, interaction with GARP2, or the generation of membrane curvature. Interestingly, however, loss of the helical motif up-regulated membrane curvature generation in cellulo , introducing the possibility that it may regulate this activity in photoreceptors. Furthermore, the incipient α-helix (within the purified soluble C terminus) partitioned into membranes only when its acidic residues were neutralized by protonation. This suggests that within the context of full-length peripherin-2/rds, partitioning would most likely occur at a bilayer interfacial region, potentially adjacent to the protein's transmembrane domains. In sum, this study significantly strengthens the evidence that peripherin-2/rds functions directly to shape the high-curvature rim domains of the outer segment disk and suggests that the protein's C terminus may modulate membrane curvature-generating activity present in other protein domains. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xianjun; Zhao, Fei; Wu, Yiran

    Here, the Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combiningmore » the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.« less

  3. NMR Studies of the C-Terminus of alpha4 Reveal Possible Mechanism of Its Interaction with MID1 and Protein Phosphatase 2A

    PubMed Central

    Du, Haijuan; Massiah, Michael A.

    2011-01-01

    Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1. PMID:22194938

  4. Activation gating kinetics of GIRK channels are mediated by cytoplasmic residues adjacent to transmembrane domains.

    PubMed

    Sadja, Rona; Reuveny, Eitan

    2009-01-01

    G-protein-coupled inwardly rectifying potassium channels (GIRK/Kir3.x) are involved in neurotransmission-mediated reduction of excitability. The gating mechanism following G protein activation of these channels likely proceeds from movement of inner transmembrane helices to allow K(+) ions movement through the pore of the channel. There is limited understanding of how the binding of G-protein betagamma subunits to cytoplasmic regions of the channel transduces the signal to the transmembrane regions. In this study, we examined the molecular basis that governs the activation kinetics of these channels, using a chimeric approach. We identified two regions as being important in determining the kinetics of activation. One region is the bottom of the outer transmembrane helix (TM1) and the cytoplasmic domain immediately adjacent (the slide helix); and the second region is the bottom of the inner transmembrane helix (TM2) and the cytoplasmic domain immediately adjacent. Interestingly, both of these regions are sufficient in mediating the kinetics of fast activation gating. This result suggests that there is a cooperative movement of either one of these domains to allow fast and efficient activation gating of GIRK channels.

  5. Use of Molecular Dynamics Data in Biochemistry Courses: An Amphipathy Scale to Determine Protein [alpha]-Helix Transmembrane Segments

    ERIC Educational Resources Information Center

    Mazze, Fernanda M.; Fuzo, Carlos A.; Degreve, Leo; Ciancaglini, Pietro

    2008-01-01

    The aim of this manuscript is to explain the application of an amphipathy scale obtained from molecular dynamics simulations and to demonstrate how it can be useful in the protein structure field. It is shown that this scale is easy to be used with the advantage of revealing domains of transmembrane [alpha]-helix of proteins without the need of…

  6. The three-dimensional structure of TrmB, a transcriptional regulator of dual function in the hyperthermophilic archaeon Pyrococcus furiosus in complex with sucrose

    PubMed Central

    Krug, Michael; Lee, Sung-Jae; Boos, Winfried; Diederichs, Kay; Welte, Wolfram

    2013-01-01

    TrmB is a repressor that binds maltose, maltotriose, and sucrose, as well as other α-glucosides. It recognizes two different operator sequences controlling the TM (Trehalose/Maltose) and the MD (Maltodextrin) operon encoding the respective ABC transporters and sugar-degrading enzymes. Binding of maltose to TrmB abrogates repression of the TM operon but maintains the repression of the MD operon. On the other hand, binding of sucrose abrogates repression of the MD operon but maintains repression of the TM operon. The three-dimensional structure of TrmB in complex with sucrose was solved and refined to a resolution of 3.0 Å. The structure shows the N-terminal DNA binding domain containing a winged-helix-turn-helix (wHTH) domain followed by an amphipathic helix with a coiled-coil motif. The latter promotes dimerization and places the symmetry mates of the putative recognition helix in the wHTH motif about 30 Å apart suggesting a canonical binding to two successive major grooves of duplex palindromic DNA. This suggests that the structure resembles the conformation of TrmB recognizing the pseudopalindromic TM promoter but not the conformation recognizing the nonpalindromic MD promoter. PMID:23576322

  7. Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases.

    PubMed

    Zhou, Zhi-Dong; Saw, Wuan-Ting; Tan, Eng-King

    2017-09-01

    The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.

  8. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors.

    PubMed

    Batkhishig, Dashdavaa; Bilguun, Khurelbaatar; Enkhbayar, Purevjav; Miyashita, Hiroki; Kretsinger, Robert H; Matsushima, Norio

    2018-06-01

    Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20-30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs-DSSP-PPII, PROSS, SEGNO, and XTLSSTR-and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.

  9. Transmembrane helix prediction: a comparative evaluation and analysis.

    PubMed

    Cuthbertson, Jonathan M; Doyle, Declan A; Sansom, Mark S P

    2005-06-01

    The prediction of transmembrane (TM) helices plays an important role in the study of membrane proteins, given the relatively small number (approximately 0.5% of the PDB) of high-resolution structures for such proteins. We used two datasets (one redundant and one non-redundant) of high-resolution structures of membrane proteins to evaluate and analyse TM helix prediction. The redundant (non-redundant) dataset contains structure of 434 (268) TM helices, from 112 (73) polypeptide chains. Of the 434 helices in the dataset, 20 may be classified as 'half-TM' as they are too short to span a lipid bilayer. We compared 13 TM helix prediction methods, evaluating each method using per segment, per residue and termini scores. Four methods consistently performed well: SPLIT4, TMHMM2, HMMTOP2 and TMAP. However, even the best methods were in error by, on average, about two turns of helix at the TM helix termini. The best and worst case predictions for individual proteins were analysed. In particular, the performance of the various methods and of a consensus prediction method, were compared for a number of proteins (e.g. SecY, ClC, KvAP) containing half-TM helices. The difficulties of predicting half-TM helices suggests that current prediction methods successfully embody the two-state model of membrane protein folding, but do not accommodate a third stage in which, e.g., short helices and re-entrant loops fold within a bundle of stable TM helices.

  10. Control of Transmembrane Helix Dynamics by Interfacial Tryptophan Residues.

    PubMed

    McKay, Matthew J; Martfeld, Ashley N; De Angelis, Anna A; Opella, Stanley J; Greathouse, Denise V; Koeppe, Roger E

    2018-06-05

    Transmembrane protein domains often contain interfacial aromatic residues, which may play a role in the insertion and stability of membrane helices. Residues such as Trp or Tyr, therefore, are often found situated at the lipid-water interface. We have examined the extent to which the precise radial locations of interfacial Trp residues may influence peptide helix orientation and dynamics. To address these questions, we have modified the GW 5,19 ALP23 (acetyl-GGALW 5 (LA) 6 LW 19 LAGA-[ethanol]amide) model peptide framework to relocate the Trp residues. Peptide orientation and dynamics were analyzed by means of solid-state nuclear magnetic resonance (NMR) spectroscopy to monitor specific 2 H- and 15 N-labeled residues. GW 5,19 ALP23 adopts a defined, tilted orientation within lipid bilayer membranes with minimal evidence of motional averaging of NMR observables, such as 2 H quadrupolar or 15 N- 1 H dipolar splittings. Here, we examine how peptide dynamics are impacted by relocating the interfacial Trp (W) residues on both ends and opposing faces of the helix, for example by a 100° rotation on the helical wheel for positions 4 and 20. In contrast to GW 5,19 ALP23, the modified GW 4,20 ALP23 helix experiences more extensive motional averaging of the NMR observables in several lipid bilayers of different thickness. Individual and combined Gaussian analyses of the 2 H and 15 N NMR signals confirm that the extent of dynamic averaging, particularly rotational "slippage" about the helix axis, is strongly coupled to the radial distribution of the interfacial Trp residues as well as the bilayer thickness. Additional 2 H labels on alanines A3 and A21 reveal partial fraying of the helix ends. Even within the context of partial unwinding, the locations of particular Trp residues around the helix axis are prominent factors for determining transmembrane helix orientation and dynamics within the lipid membrane environment. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors

    PubMed Central

    Rietz, Anne; Petrov, Dino P.; Bartolowits, Matthew; DeSmet, Marsha; Davisson, V. Jo; Androphy, Elliot J.

    2016-01-01

    The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6. PMID:26915086

  12. Structure of the apo form of the catabolite control protein A (CcpA) from Bacillus megaterium with a DNA-binding domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh Kumar; Palm, Gottfried J.; Panjikar, Santosh

    2007-04-01

    Crystal structure analysis of the apo form of catabolite control protein A reveals the three-helix bundle of the DNA-binding domain. In the crystal packing, this domain interacts with the binding site for the corepressor protein. Crystal structure determination of catabolite control protein A (CcpA) at 2.6 Å resolution reveals for the first time the structure of a full-length apo-form LacI-GalR family repressor protein. In the crystal structures of these transcription regulators, the three-helix bundle of the DNA-binding domain has only been observed in cognate DNA complexes; it has not been observed in other crystal structures owing to its mobility. Inmore » the crystal packing of apo-CcpA, the protein–protein contacts between the N-terminal three-helix bundle and the core domain consisted of interactions between the homodimers that were similar to those between the corepressor protein HPr and the CcpA N-subdomain in the ternary DNA complex. In contrast to the DNA complex, the apo-CcpA structure reveals large subdomain movements in the core, resulting in a complete loss of contacts between the N-subdomains of the homodimer.« less

  13. Crystal Structure of the Eukaryotic Origin Recognition Complex

    PubMed Central

    Bleichert, Franziska; Botchan, Michael R.; Berger, James M.

    2015-01-01

    Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. The 3.5 Å resolution crystal structure of Drosophila ORC reveals that the 270 kDa initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ ATPase folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident, including highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighboring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate a ~20 Å wide channel in the center of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the MCM2-7 complex during replicative helicase loading; however, an observed >90° out-of-plane rotation for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions. PMID:25762138

  14. Structural characterization of Mumps virus fusion protein core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong

    2006-09-29

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus,more » forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins.« less

  15. Harmonic Analysis of the Fluorescence Response of Bimane Adducts of Colicin E1 at Helices 6, 7, and 10*

    PubMed Central

    Ho, Derek; Lugo, Miguel R.; Merrill, A. Rod

    2013-01-01

    The pre-channel state of helices 6, 7, and 10 (Val447–Gly475 and Ile508–Ile522) of colicin E1 was investigated by a site-directed fluorescence labeling technique. A total of 44 cysteine variants were purified and covalently labeled with monobromobimane fluorescent probe. A variety of fluorescence properties of the bimane fluorophore were measured for both the soluble and membrane-bound states of the channel peptide, including the fluorescence emission maximum, fluorescence anisotropy, and membrane bilayer penetration depth. Using site-directed fluorescence labeling combined with our novel helical periodicity analysis method, the data revealed that helices 6, 7, and 10 are separate amphipathic α-helices with a calculated periodicity of T = 3.34 ± 0.08 for helix 6, T = 3.56 ± 0.03 for helix 7, and T = 2.99 ± 0.12 for helix 10 in the soluble state. In the membrane-bound state, the helical periodicity was determined to be T = 3.00 ± 0.15 for helix 6, T = 3.68 ± 0.03 for helix 7, and T = 3.47 ± 0.04 for helix 10. Dual fluorescence quencher analysis showed that both helices 6 and 7 adopt a tilted topology that correlates well with the analysis based on the fluorescence anisotropy profile. These data provide further support for the umbrella model of the colicin E1 channel domain. PMID:23264635

  16. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting.

    PubMed

    Liphardt, J; Napthine, S; Kontos, H; Brierley, I

    1999-05-07

    RNA pseudoknots are structural elements that participate in a variety of biological processes. At -1 ribosomal frameshifting sites, several types of pseudoknot have been identified which differ in their organisation and functionality. The pseudoknot found in infectious bronchitis virus (IBV) is typical of those that possess a long stem 1 of 11-12 bp and a long loop 2 (30-164 nt). A second group of pseudoknots are distinguishable that contain stems of only 5 to 7 bp and shorter loops. The NMR structure of one such pseudoknot, that of mouse mammary tumor virus (MMTV), has revealed that it is kinked at the stem 1-stem 2 junction, and that this kinked conformation is essential for efficient frameshifting. We recently investigated the effect on frameshifting of modulating stem 1 length and stability in IBV-based pseudoknots, and found that a stem 1 with at least 11 bp was needed for efficient frameshifting. Here, we describe the sequence manipulations that are necessary to bypass the requirement for an 11 bp stem 1 and to convert a short non-functional IBV-derived pseudoknot into a highly efficient, kinked frameshifter pseudoknot. Simple insertion of an adenine residue at the stem 1-stem 2 junction (an essential feature of a kinked pseudoknot) was not sufficient to create a functional pseudoknot. An additional change was needed: efficient frameshifting was recovered only when the last nucleotide of loop 2 was changed from a G to an A. The requirement for an A at the end of loop 2 is consistent with a loop-helix contact similar to those described in other RNA tertiary structures. A mutational analysis of both partners of the proposed interaction, the loop 2 terminal adenine residue and two G.C pairs near the top of stem 1, revealed that the interaction was essential for efficient frameshifting. The specific requirement for a 3'-terminal A residue was lost when loop 2 was increased from 8 to 14 nt, suggesting that the loop-helix contact may be required only in those pseudoknots with a short loop 2. Copyright 1999 Academic Press.

  17. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

    NASA Astrophysics Data System (ADS)

    Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte S.; Thomsen, Rasmus P.; Midtgaard, Søren Roi; Christensen, Niels Johan; Kjems, Jørgen; Thulstrup, Peter W.; Wengel, Jesper; Jensen, Knud J.

    2016-07-01

    Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design.

  18. Involvement of transcription factor encoded by the mouse mi locus (MITF) in apoptosis of cultured mast cells induced by removal of interleukin-3.

    PubMed Central

    Tsujimura, T.; Hashimoto, K.; Morii, E.; Tunio, G. M.; Tsujino, K.; Kondo, T.; Kanakura, Y.; Kitamura, Y.

    1997-01-01

    Mast cells develop when spleen cells of mice are cultured in the medium containing interleukin (IL)-3. Cultured mast cells (CMCs) show apoptosis when they are incubated in the medium without IL-3. We obtained CMCs from tg/tg mice that did not express the transcription factor encoded by the mi gene (MITF) due to the integration of a transgene at its 5' flanking region. MITF is a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors. We investigated the effect of MITF on the apoptosis of CMCs after removal of IL-3. When cDNA encoding normal MITF ((+)-MITF) was introduced into tg/tg CMCs with the retroviral vector, the apoptosis of tg/tg CMCs was significantly accelerated. The mutant mi allele represents a deletion of an arginine at the basic domain of MITF. The apoptosis of tg/tg CMCs was not accelerated by the introduction of cDNA encoding mi-MITF. The overexpression of (+)-MITF was not prerequisite to the acceleration of the apoptosis, as the apoptotic process proceeded faster in +/+ CMCs than in mi/mi CMCs. The Ba/F3 lymphoid cell line is also dependent on IL-3, and Ba/F3 cells show apoptosis after removal of IL-3. The c-myc gene encodes another transcription factor of the bHLH-Zip family, and the overexpression of the c-myc gene accelerated the apoptosis of Ba/F3 cells. However, the overexpression of (+)-MITF did not accelerate the apoptosis of Ba/F3 cells. The (+)-MITF appeared to play some roles for the acceleration of the apoptosis specifically in the mast cell lineage. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9327738

  19. Comparative and Evolutionary Analysis of the HES/HEY Gene Family Reveal Exon/Intron Loss and Teleost Specific Duplication Events

    PubMed Central

    Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    Background HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. Methods and Findings In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Conclusions Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication. PMID:22808219

  20. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events.

    PubMed

    Zhou, Mi; Yan, Jun; Ma, Zhaowu; Zhou, Yang; Abbood, Nibras Najm; Liu, Jianfeng; Su, Li; Jia, Haibo; Guo, An-Yuan

    2012-01-01

    HES/HEY genes encode a family of basic helix-loop-helix (bHLH) transcription factors with both bHLH and Orange domain. HES/HEY proteins are direct targets of the Notch signaling pathway and play an essential role in developmental decisions, such as the developments of nervous system, somitogenesis, blood vessel and heart. Despite their important functions, the origin and evolution of this HES/HEY gene family has yet to be elucidated. In this study, we identified genes of the HES/HEY family in representative species and performed evolutionary analysis to elucidate their origin and evolutionary process. Our results showed that the HES/HEY genes only existed in metazoans and may originate from the common ancestor of metazoans. We identified HES/HEY genes in more than 10 species representing the main lineages. Combining the bHLH and Orange domain sequences, we constructed the phylogenetic trees by different methods (Bayesian, ML, NJ and ME) and classified the HES/HEY gene family into four groups. Our results indicated that this gene family had undergone three expansions, which were along with the origins of Eumetazoa, vertebrate, and teleost. Gene structure analysis revealed that the HES/HEY genes were involved in exon and/or intron loss in different species lineages. Genes of this family were duplicated in bony fishes and doubled than other vertebrates. Furthermore, we studied the teleost-specific duplications in zebrafish and investigated the expression pattern of duplicated genes in different tissues by RT-PCR. Finally, we proposed a model to show the evolution of this gene family with processes of expansion, exon/intron loss, and motif loss. Our study revealed the evolution of HES/HEY gene family, the expression and function divergence of duplicated genes, which also provide clues for the research of Notch function in development. This study shows a model of gene family analysis with gene structure evolution and duplication.

  1. Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis

    PubMed Central

    Liiv, Aivar; Karitkina, Diana; Maiväli, Ülo; Remme, Jaanus

    2005-01-01

    Background The ribosome is a two-subunit enzyme known to exhibit structural dynamism during protein synthesis. The intersubunit bridges have been proposed to play important roles in decoding, translocation, and the peptidyl transferase reaction; yet the physical nature of their contributions is ill understood. An intriguing intersubunit bridge, B2a, which contains 23S rRNA helix 69 as a major component, has been implicated by proximity in a number of catalytically important regions. In addition to contacting the small ribosomal subunit, helix 69 contacts both the A and P site tRNAs and several translation factors. Results We scanned the loop of helix 69 by mutagenesis and analyzed the mutant ribosomes using a plasmid-borne IPTG-inducible expression system. We assayed the effects of 23S rRNA mutations on cell growth, contribution of mutant ribosomes to cellular polysome pools and the ability of mutant ribosomes to function in cell-free translation. Mutations A1912G, and A1919G have very strong growth phenotypes, are inactive during in vitro protein synthesis, and under-represented in the polysomes. Mutation Ψ1917C has a very strong growth phenotype and leads to a general depletion of the cellular polysome pool. Mutation A1916G, having a modest growth phenotype, is apparently defective in the assembly of the 70S ribosome. Conclusion Mutations A1912G, A1919G, and Ψ1917C of 23S rRNA strongly inhibit translation. Mutation A1916G causes a defect in the 50S subunit or 70S formation. Mutations Ψ1911C, A1913G, C1914A, Ψ1915C, and A1918G lack clear phenotypes. PMID:16053518

  2. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor

    PubMed Central

    Pandini, Alessandro; Kleinjung, Jens; Rasool, Shafqat; Khan, Shahid

    2015-01-01

    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) “torque” helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity. PMID:26561852

  3. Probing the mechanistic role of the long α-helix in subunit L of respiratory Complex I from Escherichia coli by site-directed mutagenesis

    PubMed Central

    Belevich, Galina; Knuuti, Juho; Verkhovsky, Michael I; Wikström, Mårten; Verkhovskaya, Marina

    2011-01-01

    The C-terminus of the NuoL subunit of Complex I includes a long amphipathic α-helix positioned parallel to the membrane, which has been considered to function as a piston in the proton pumping machinery. Here, we have introduced three types of mutations into the nuoL gene to test the piston-like function. First, NuoL was truncated at its C- and N-termini, which resulted in low production of a fragile Complex I with negligible activity. Second, we mutated three partially conserved residues of the amphipathic α-helix: Asp and Lys residues and a Pro were substituted for acidic, basic or neutral residues. All these variants exhibited almost a wild-type phenotype. Third, several substitutions and insertions were made to reduce rigidity of the amphipathic α-helix, and/or to change its geometry. Most insertions/substitutions resulted in a normal growth phenotype, albeit often with reduced stability of Complex I. In contrast, insertion of six to seven amino acids at a site of the long α-helix between NuoL and M resulted in substantial loss of proton pumping efficiency. The implications of these results for the proton pumping mechanism of Complex I are discussed. PMID:22060017

  4. Visualizing Key Hinges and a Potential Major Source of Compliance in the Lever Arm of Myosin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Brown; V Senthil Kumar; E ONeall-Hennessey

    2011-12-31

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during themore » contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.« less

  5. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.H.; Robinson, H.; Senthil Kumar, V. S.

    2011-01-04

    We have determined the 2.3-{angstrom}-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ('smooth') muscle. This structure reveals hinges that may function in the 'on' and 'off' states of myosin. The molecule adopts two different conformations about the heavy chain 'hook' and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 {angstrom}. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during themore » contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.« less

  6. The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion

    PubMed Central

    Dölker, Nicole; Górna, Maria W.; Sutto, Ludovico; Torralba, Antonio S.; Superti-Furga, Giulio; Gervasio, Francesco L.

    2014-01-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors. PMID:25299346

  7. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.

    PubMed

    Dölker, Nicole; Górna, Maria W; Sutto, Ludovico; Torralba, Antonio S; Superti-Furga, Giulio; Gervasio, Francesco L

    2014-10-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.

  8. The C-terminal priming domain is strongly associated with the main body of bacteriophage ϕ6 RNA-dependent RNA polymerase.

    PubMed

    Sarin, L Peter; Wright, Sam; Chen, Qing; Degerth, Linda H; Stuart, David I; Grimes, Jonathan M; Bamford, Dennis H; Poranen, Minna M

    2012-10-10

    Double-stranded RNA viruses encode a single protein species containing RNA-dependent RNA polymerase (RdRP) motifs. This protein is responsible for RNA transcription and replication. The architecture of viral RdRPs resembles that of a cupped right hand with fingers, palm and thumb domains. Those using de novo initiation have a flexible structural elaboration that constitutes the priming platform. Here we investigate the properties of the C-terminal priming domain of bacteriophage ϕ6 to get insights into the role of an extended loop connecting this domain to the main body of the polymerase. Proteolyzed ϕ6 RdRP that possesses a nick in the hinge region of this loop was better suited for de novo initiation. The clipped C-terminus remained associated with the main body of the polymerase via the anchor helix. The structurally flexible hinge region appeared to be involved in the control of priming platform movement. Moreover, we detected abortive initiation products for a bacteriophage RdRP. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. High diversification of CD94 by alternative splicing in New World primates.

    PubMed

    Galindo, John A; Cadavid, Luis F

    2013-04-01

    CD94 forms heterodimers with NKG2A, -C, or -E to constitute lectin-like natural killer cell receptors for MHC-E. Its structure differs from other C-type lectins in that the second α-helix is replaced by a loop that forms the interacting interface with the NKG2 molecules. Although CD94 has remained highly conserved mammals, several alternative splicing variants have been detected in some species. To evaluate the prevalence and significance of this phenomenon, we have cloned and sequenced CD94 cDNAs in six species of New World primates from the Cebidae and Atelidae families. Full-length sequences had a mean similarity of 96 % amongst New World primates and of 90 % to the human orthologue, with little variation in the residues interacting with NKG2 or MHC-E molecules. Despite this high conservation, a total of 14 different splice variants were identified, half of which were shared by two or more primate species. Homology-based modeling of the C-type lectin domain showed that most isoforms folded stably, although they had modifications that prevented its interaction with NKG2 and MHC-E. Two isoforms were predicted to replace the typical CD94 loop by a second α-helix, evidencing a domain fold transition from a CD94 structure to a canonical C-type lectin. These two structures were more similar to members of the CLEC lectin family than to the native CD94. Thus, CD94 has remained conserved in primates to maintain functional interactions with NKG2 and MHC-E, while at the same time has diversified by alternative splicing potentially providing additional functional scenarios.

  10. Characterization of the Interactions between Calmodulin and Death Receptor 5 in Triple-negative and Estrogen Receptor-positive Breast Cancer Cells

    PubMed Central

    Fancy, Romone M.; Wang, Lingyun; Zeng, Qinghua; Wang, Hong; Zhou, Tong; Buchsbaum, Donald J.; Song, Yuhua

    2016-01-01

    Activation of death receptor-5 (DR5) leads to the formation of death inducing signaling complex (DISC) for apoptotic signaling. Targeting DR5 to induce breast cancer apoptosis is a promising strategy to circumvent drug resistance and present a target for breast cancer treatment. Calmodulin (CaM) has been shown to regulate DR5-mediated apoptotic signaling, however, its mechanism remains unknown. In this study, we characterized CaM and DR5 interactions in breast cancer cells with integrated experimental and computational approaches. Results show that CaM directly binds to DR5 in a calcium dependent manner in breast cancer cells. The direct interaction of CaM with DR5 is localized at DR5 death domain. We have predicted and verified the CaM-binding site in DR5 being 354WEPLMRKLGL363 that is located at the α2 helix and the loop between α2 helix and α3 helix of DR5 DD. The residues of Trp-354, Arg-359, Glu-355, Leu-363, and Glu-367 in DR5 death domain that are important for DR5 recruitment of FADD and caspase-8 for DISC formation to signal apoptosis also play an important role for CaM-DR5 binding. The changed electrostatic potential distribution in the CaM-binding site in DR5 DD by the point mutations of W354A, E355K, R359A, L363N, or E367K in DR5 DD could directly contribute to the experimentally observed decreased CaM-DR5 binding by the point mutations of the key residues in DR5 DD. Results from this study provide a key step for the further investigation of the role of CaM-DR5 binding in DR5-mediated DISC formation for apoptosis in breast cancer cells. PMID:27129269

  11. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.

    PubMed

    Koppole, Sampath; Smith, Jeremy C; Fischer, Stefan

    2006-08-18

    During the recovery stroke, the myosin motor is primed for the next power stroke by a 60 degree rotation of its lever arm. This reversible motion is coupled to the activation of the ATPase function of myosin through conformational changes along the relay helix, which runs from the Switch-2 loop near the ATP to the converter domain carrying the lever arm. Via a hydrogen bond between the side-chain of Asn475 on the relay helix and the Gly457/Ser456 peptide group on the Switch-2, the rotation of the converter domain is coupled to the formation of a hydrogen bond between Gly457 and gamma-phosphate that is essential for ATP hydrolysis. Here, molecular dynamics simulations of Dictyostelium discoideum myosin II in the two end conformations of the recovery stroke with different nucleotide states (ATP, ADP x Pi, ADP) reveal that the side-chain of Asn475 breaks away from Switch-2 upon ATP hydrolysis to make a hydrogen bond with Tyr573. This sensing of the nucleotide state is achieved by a small displacement of the cleaved gamma-phosphate towards Gly457 which in turn pushes Asn475 away. The sensing plays a dual role by (i) preventing the wasteful reversal of the recovery stroke while the nucleotide is in the ADP x Pi state, and (ii) decoupling the relay helix from Switch-2, thus allowing the power stroke to start upon initial binding to actin while Gly457 of Switch-2 keeps interacting with the Pi (known to be released only later after tight actin binding). A catalytically important salt bridge between Arg238 (on Switch-1) and Glu459 (on Switch-2), which covers the hydrolysis site, is seen to form rapidly when ATP is added to the pre-recovery stroke conformer and remains stable after the recovery stroke, indicating that it has a role in shaping the ATP binding site by induced fit.

  12. Targeting of Drosophila Rhodopsin Requires Helix 8 but Not the Distal C-Terminus

    PubMed Central

    Kock, Ines; Bulgakova, Natalia A.; Knust, Elisabeth; Sinning, Irmgard; Panneels, Valérie

    2009-01-01

    Background The fundamental role of the light receptor rhodopsin in visual function and photoreceptor cell development has been widely studied. Proper trafficking of rhodopsin to the photoreceptor membrane is of great importance. In human, mutations in rhodopsin involving its intracellular mislocalization, are the most frequent cause of autosomal dominant Retinitis Pigmentosa, a degenerative retinal pathology characterized by progressive blindness. Drosophila is widely used as an animal model in visual and retinal degeneration research. So far, little is known about the requirements for proper rhodopsin targeting in Drosophila. Methodology/Principal Findings Different truncated fly-rhodopsin Rh1 variants were expressed in the eyes of Drosophila and their localization was analyzed in vivo or by immunofluorescence. A mutant lacking the last 23 amino acids was found to properly localize in the rhabdomeres, the light-sensing organelle of the photoreceptor cells. This constitutes a major difference to trafficking in vertebrates, which involves a conserved QVxPA motif at the very C-terminus. Further truncations of Rh1 indicated that proper localization requires the last amino acid residues of a region called helix 8 following directly the last transmembrane domain. Interestingly, the very C-terminus of invertebrate visual rhodopsins is extremely variable but helix 8 shows conserved amino acid residues that are not conserved in vertebrate homologs. Conclusions/Significance Despite impressive similarities in the folding and photoactivation of vertebrate and invertebrate visual rhodopsins, a striking difference exists between mammalian and fly rhodopsins in their requirements for proper targeting. Most importantly, the distal part of helix 8 plays a central role in invertebrates. Since the last amino acid residues of helix 8 are dispensable for rhodopsin folding and function, we propose that this domain participates in the recognition of targeting factors involved in transport to the rhabdomeres. PMID:19572012

  13. "helix Nebula - the Science Cloud", a European Science Driven Cross-Domain Initiative Implemented in via AN Active Ppp Set-Up

    NASA Astrophysics Data System (ADS)

    Lengert, W.; Mondon, E.; Bégin, M. E.; Ferrer, M.; Vallois, F.; DelaMar, J.

    2015-12-01

    Helix Nebula, a European science cross-domain initiative building on an active PPP, is aiming to implement the concept of an open science commons[1] while using a cloud hybrid model[2] as the proposed implementation solution. This approach allows leveraging and merging of complementary data intensive Earth Science disciplines (e.g. instrumentation[3] and modeling), without introducing significant changes in the contributors' operational set-up. Considering the seamless integration with life-science (e.g. EMBL), scientific exploitation of meteorological, climate, and Earth Observation data and models open an enormous potential for new big data science. The work of Helix Nebula has shown that is it feasible to interoperate publicly funded infrastructures, such as EGI [5] and GEANT [6], with commercial cloud services. Such hybrid systems are in the interest of the existing users of publicly funded infrastructures and funding agencies because they will provide "freedom and choice" over the type of computing resources to be consumed and the manner in which they can be obtained. But to offer such freedom and choice across a spectrum of suppliers, various issues such as intellectual property, legal responsibility, service quality agreements and related issues need to be addressed. Finding solutions to these issues is one of the goals of the Helix Nebula initiative. [1] http://www.egi.eu/news-and-media/publications/OpenScienceCommons_v3.pdf [2] http://www.helix-nebula.eu/events/towards-the-european-open-science-cloud [3] e.g. https://sentinel.esa.int/web/sentinel/sentinel-data-access [5] http://www.egi.eu/ [6] http://www.geant.net/

  14. A Highly Conserved Salt Bridge Stabilizes the Kinked Conformation of β2,3-Sheet Essential for Channel Function of P2X4 Receptors.

    PubMed

    Zhao, Wen-Shan; Sun, Meng-Yang; Sun, Liang-Fei; Liu, Yan; Yang, Yang; Huang, Li-Dong; Fan, Ying-Zhe; Cheng, Xiao-Yang; Cao, Peng; Hu, You-Min; Li, Lingyong; Tian, Yun; Wang, Rui; Yu, Ye

    2016-04-08

    Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the β2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked β2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop β7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the β2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the β2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of β2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled β2,3-sheet to the function of P2X receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Retrovirus-specific differences in matrix and nucleocapsid protein-nucleic acid interactions: implications for genomic RNA packaging.

    PubMed

    Sun, Meng; Grigsby, Iwen F; Gorelick, Robert J; Mansky, Louis M; Musier-Forsyth, Karin

    2014-01-01

    Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging.

  16. Crystal Structure of the Minimalist Max-E47 Protein Chimera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadpour, Faraz; Ghirlando, Rodolfo; De Jong, Antonia T.

    Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47more » dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.« less

  17. Cyclin D1 Repression of Peroxisome Proliferator-Activated Receptor γ Expression and Transactivation

    PubMed Central

    Wang, Chenguang; Pattabiraman, Nagarajan; Zhou, Jian Nian; Fu, Maofu; Sakamaki, Toshiyuki; Albanese, Chris; Li, Zhiping; Wu, Kongming; Hulit, James; Neumeister, Peter; Novikoff, Phyllis M.; Brownlee, Michael; Scherer, Philipp E.; Jones, Joan G.; Whitney, Kathleen D.; Donehower, Lawrence A.; Harris, Emily L.; Rohan, Thomas; Johns, David C.; Pestell, Richard G.

    2003-01-01

    The cyclin D1 gene is overexpressed in human breast cancers and is required for oncogene-induced tumorigenesis. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor selectively activated by ligands of the thiazolidinedione class. PPARγ induces hepatic steatosis, and liganded PPARγ promotes adipocyte differentiation. Herein, cyclin D1 inhibited ligand-induced PPARγ function, transactivation, expression, and promoter activity. PPARγ transactivation induced by the ligand BRL49653 was inhibited by cyclin D1 through a pRB- and cdk-independent mechanism, requiring a region predicted to form an helix-loop-helix (HLH) structure. The cyclin D1 HLH region was also required for repression of the PPARγ ligand-binding domain linked to a heterologous DNA binding domain. Adipocyte differentiation by PPARγ-specific ligands (BRL49653, troglitazone) was enhanced in cyclin D1−/− fibroblasts and reversed by retroviral expression of cyclin D1. Homozygous deletion of the cyclin D1 gene, enhanced expression by PPARγ ligands of PPARγ and PPARγ-responsive genes, and cyclin D1−/− mice exhibit hepatic steatosis. Finally, reduction of cyclin D1 abundance in vivo using ponasterone-inducible cyclin D1 antisense transgenic mice, increased expression of PPARγ in vivo. The inhibition of PPARγ function by cyclin D1 is a new mechanism of signal transduction cross talk between PPARγ ligands and mitogenic signals that induce cyclin D1. PMID:12917338

  18. Regulation of Six1 expression by evolutionarily conserved enhancers in tetrapods.

    PubMed

    Sato, Shigeru; Ikeda, Keiko; Shioi, Go; Nakao, Kazuki; Yajima, Hiroshi; Kawakami, Kiyoshi

    2012-08-01

    The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    PubMed

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  20. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Two IIIf Clade-bHLHs from Freesia hybrida Play Divergent Roles in Flavonoid Biosynthesis and Trichome Formation when Ectopically Expressed in Arabidopsis

    PubMed Central

    Li, Yueqing; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Wang, Shucai; Gao, Xiang; Wang, Li

    2016-01-01

    The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation. PMID:27465838

  2. Two IIIf Clade-bHLHs from Freesia hybrida Play Divergent Roles in Flavonoid Biosynthesis and Trichome Formation when Ectopically Expressed in Arabidopsis.

    PubMed

    Li, Yueqing; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Wang, Shucai; Gao, Xiang; Wang, Li

    2016-07-28

    The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation.

  3. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    PubMed Central

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  4. Genome-wide analyses of the bHLH superfamily in crustaceans: reappraisal of higher-order groupings and evidence for lineage-specific duplications

    PubMed Central

    2018-01-01

    The basic helix-loop-helix (bHLH) proteins represent a key group of transcription factors implicated in numerous eukaryotic developmental and signal transduction processes. Characterization of bHLHs from model species such as humans, fruit flies, nematodes and plants have yielded important information on their functions and evolutionary origin. However, relatively little is known about bHLHs in non-model organisms despite the availability of a vast number of high-throughput sequencing datasets, enabling previously intractable genome-wide and cross-species analyses to be now performed. We extensively searched for bHLHs in 126 crustacean species represented across major Crustacea taxa and identified 3777 putative bHLH orthologues. We have also included seven whole-genome datasets representative of major arthropod lineages to obtain a more accurate prediction of the full bHLH gene complement. With focus on important food crop species from Decapoda, we further defined higher-order groupings and have successfully recapitulated previous observations in other animals. Importantly, we also observed evidence for lineage-specific bHLH expansions in two basal crustaceans (branchiopod and copepod), suggesting a mode of evolution through gene duplication as an adaptation to changing environments. In-depth analysis on bHLH-PAS members confirms the phenomenon coined as ‘modular evolution’ (independently evolved domains) typically seen in multidomain proteins. With the amphipod Parhyale hawaiensis as the exception, our analyses have focused on crustacean transcriptome datasets. Hence, there is a clear requirement for future analyses on whole-genome sequences to overcome potential limitations associated with transcriptome mining. Nonetheless, the present work will serve as a key resource for future mechanistic and biochemical studies on bHLHs in economically important crustacean food crop species. PMID:29657824

  5. Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors.

    PubMed

    Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.

  6. Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors

    PubMed Central

    Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. PMID:22615585

  7. Destabilization of Atoh1 by E3 Ubiquitin Ligase Huwe1 and Casein Kinase 1 Is Essential for Normal Sensory Hair Cell Development*

    PubMed Central

    Cheng, Yen-Fu; Tong, Mingjie; Edge, Albert S. B.

    2016-01-01

    Proneural basic helix-loop-helix transcription factor, Atoh1, plays a key role in the development of sensory hair cells. We show here that the level of Atoh1 must be accurately controlled by degradation of the protein in addition to the regulation of Atoh1 gene expression to achieve normal cellular patterning during development of the cochlear sensory epithelium. The stability of Atoh1 was regulated by the ubiquitin proteasome system through the action of Huwe1, a HECT-domain, E3 ubiquitin ligase. An interaction between Huwe1 and Atoh1 could be visualized by a proximity ligation assay and was confirmed by co-immunoprecipitation and mass spectrometry. Transfer of a lysine 48-linked polyubiquitin chain to Atoh1 by Huwe1 could be demonstrated both in intact cells and in a cell-free system, and proteasome inhibition or Huwe1 silencing increased Atoh1 levels. The interaction with Huwe1 and polyubiquitylation were blocked by disruption of casein kinase 1 (CK1) activity, and mass spectrometry and mutational analysis identified serine 334 as an important phosphorylation site for Atoh1 ubiquitylation and subsequent degradation. Phosphorylation by CK1 thus targeted the protein for degradation. Development of an extra row of inner hair cells in the cochlea and an approximate doubling in the number of afferent synapses was observed after embryonic or early postnatal deletion of Huwe1 in cochlear-supporting cells, and hair cells died in the early postnatal period when Huwe1 was knocked out in the developing cochlea. These data indicate that the regulation of Atoh1 by the ubiquitin proteasome pathway is necessary for hair cell fate determination and survival. PMID:27542412

  8. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.

    PubMed

    Stoyan, T; Gloeckner, G; Diekmann, S; Carbon, J

    2001-08-01

    The CBF1 (centromere binding factor 1) gene of Candida glabrata was cloned by functional complementation of the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 deletion mutant. The C. glabrata-coded protein, CgCbf1, contains a basic-helix-loop-helix leucine zipper domain and has features similar to those of other budding yeast Cbf1 proteins. CgCbf1p binds in vitro to the centromere DNA element I (CDEI) sequence GTCACATG with high affinity (0.9 x 10(9) M(-1)). Bandshift experiments revealed a pattern of protein-DNA complexes on CgCEN DNA different from that known for S. cerevisiae. We examined the effect of altering the CDEI binding site on CEN plasmid segregation, using a newly developed colony-sectoring assay. Internal deletion of the CDEI binding site led only to a fivefold increase in rates of plasmid loss, indicating that direct binding of Cbf1p to the centromere DNA is not required for full function. Additional deletion of sequences to the left of CDEI, however, led to a 70-fold increase in plasmid loss rates. Deletion of the CBF1 gene proved to be lethal in C. glabrata. C. glabrata cells containing the CBF1 gene under the influence of a shutdown promoter (tetO-ScHOP) arrested their growth after 5 h of cultivation in the presence of the reactive drug doxycycline. DAPI (4',6'-diamidino-2-phenylindole) staining of the arrested cells revealed a significant increase in the number of large-budded cells with single nuclei, 2C DNA content, and short spindles, indicating a defect in the G(2)/M transition of the cell cycle. Thus, we conclude that Cbf1p is required for chromosome segregation in C. glabrata.

  9. Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore

    PubMed Central

    Marquardt, Joseph R.; Perkins, Jennifer L.; Beuoy, Kyle J.; Fisk, Harold A.

    2016-01-01

    Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus. PMID:27339139

  10. Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore.

    PubMed

    Marquardt, Joseph R; Perkins, Jennifer L; Beuoy, Kyle J; Fisk, Harold A

    2016-07-12

    Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus.

  11. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations

    PubMed Central

    Han, Jing; Pluhackova, Kristyna; Wassenaar, Tsjerk A.; Böckmann, Rainer A.

    2015-01-01

    Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin’s TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes. PMID:26287628

  12. Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.

    PubMed

    Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning

    2017-12-01

    The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.

  13. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2].

    PubMed

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun

    2008-04-01

    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  14. Genetic dissection of endothelial transcriptional activity of zebrafish aryl hydrocarbon receptors (AHRs).

    PubMed

    Sugden, Wade W; Leonardo-Mendonça, Roberto C; Acuña-Castroviejo, Darío; Siekmann, Arndt F

    2017-01-01

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor conserved across phyla from flies to humans. Activated by a number of endogenous ligands and environmental toxins, studies on AHR function and gene regulation have largely focused on a toxicological perspective relating to aromatic hydrocarbons generated by human activities and the often-deleterious effects of exposure on vertebrates mediated by AHR activation. A growing body of work has highlighted the importance of AHR in physiologic processes, including immune cell differentiation and vascular patterning. Here we dissect the contribution of the 3 zebrafish AHRs, ahr1a, ahr1b and ahr2, to endothelial cyp1a1/b1 gene regulation under physiologic conditions and upon exposure to the AHR ligand Beta-naphthoflavone. We show that in fish multiple AHRs are functional in the vasculature, with vessel-specific differences in the ability of ahr1b to compensate for the loss of ahr2 to maintain AHR signaling. We further provide evidence that AHR can regulate the expression of the chemokine receptor cxcr4a in endothelial cells, a regulatory mechanism that may provide insight into AHR function in the endothelium.

  15. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis1[OPEN

    PubMed Central

    Zhao, Qiang; Wang, Qing-Jie; Wang, Xiao-Fei; You, Chun-Xiang

    2016-01-01

    Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants. PMID:27660166

  16. Genomic cloning and chromosomal localization of HRY, the human homolog to the Drosophila segmentation gene, hairy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feder, J.N.; Jan, L.Y.; Jan, Y.N.

    The Drosophila hairy gene encodes a basic helix- loop-helix protein that functions in at least two steps during Drosophila development: (1) during embryogenesis, when it partakes in the establishment of segments, and (2) during the larval stage, when it functions negatively in determining the pattern of sensory bristles on the adult fly. In the rat, a structurally homologous gene (RHL) behaves as an immediate-early gene in its response to growth factors and can, like that in Drosophila, suppress neuronal differentiation events. Here, the authors report the genomic cloning of the human hairy gene homolog (HRY). The coding region of themore » gene is contained within four exons. The predicted amino acid sequence reveals only four amino acid differences between the human and rat genes. Analysis of the DNA sequence 5[prime] to the coding region reveals a putatitve untranslated exon. To increase the value of the HRY gene as a genetic marker and to assess its potential involvement in genetic disorders, they sublocalized the locus to chromosome 3q28-q29 by fluorescence in situ hybridization. 34 refs., 4 figs., 1 tab.« less

  17. Repression of ESR1 transcription by MYOD potentiates letrozole-resistance in ERα-positive breast cancer cells.

    PubMed

    Zhang, Qiang; Liu, Xiao-Yan; Li, Shuang; Zhao, Zhao; Li, Juan; Cui, Ming-Ke; Wang, En-Hua

    2017-10-21

    Transcriptional silencing of estrogen receptor α (ERα) expression is an important etiology contributing to the letrozole-resistance in ERα-positive breast cancer (BCa) cells, but the transcription factors responsible for this transcriptional repression remain largely unidentified. Here we report that the expression of the basic helix-loop-helix myogenic regulatory factor MYOD was abnormally up-regulated in letrozole-resistant BCa tissues and in experimentally-induced letrozole-resistant BCa cells. Overexpression of the exogenous MYOD impaired ERα expression and potentiated letrozole-resistance in letrozole-sensitive MCF7 cells, whereas MYOD knockdown could effectively restore ERα expression and thereby promote letrozole-sensitivity in letrozole-resistant MCF-7/LR cells. Mechanistically, MYOD was shown to be a potent corepressor of ESR1 transcription, and this transcriptional repression was significantly enhanced in the presence of letrozole treatment. Thus, targeted inhibition of MYOD may restore ERα level and lead to resensitization to letrozole-based hormone therapy, providing a novel therapeutic strategy for relapsed ERα-positive BCa patients. Our data also underscore an unexpected chemotherapeutic facet of MYOD, which may operate as a novel regulator of BCa biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells.

    PubMed

    Xue, Haipeng; Wu, Sen; Papadeas, Sophia T; Spusta, Steve; Swistowska, Anna Maria; MacArthur, Chad C; Mattson, Mark P; Maragakis, Nicholas J; Capecchi, Mario R; Rao, Mahendra S; Zeng, Xianmin; Liu, Ying

    2009-08-01

    In this study, we targeted Olig2, a basic helix-loop-helix transcription factor that plays an important role in motoneuron and oligodendrocyte development, in human embryonic stem cell (hESC) line BG01 by homologous recombination. One allele of Olig2 locus was replaced by a green fluorescent protein (GFP) cassette with a targeting efficiency of 5.7%. Targeted clone R-Olig2 (like the other clones) retained pluripotency, typical hESC morphology, and a normal parental karyotype 46,XY. Most importantly, GFP expression recapitulated endogenous Olig2 expression when R-Olig2 was induced by sonic hedgehog and retinoic acid, and GFP-positive cells could be purified by fluorescence-activated cell sorting. Consistent with previous reports on rodents, early GFP-expressing cells appeared biased to a neuronal fate, whereas late GFP-expressing cells appeared biased to an oligodendrocytic fate. This was corroborated by myoblast coculture, transplantation into the rat spinal cords, and whole genome expression profiling. The present work reports an hESC reporter line generated by homologous recombination targeting a neural lineage-specific gene, which can be differentiated and sorted to obtain pure neural progenitor populations.

  19. GTL1 and DF1 regulate root hair growth through transcriptional repression of ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis

    PubMed Central

    Breuer, Christian; Kawamura, Ayako; Clark, Natalie M.; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N.; Sozzani, Rosangela

    2018-01-01

    ABSTRACT How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis. Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. PMID:29439132

  20. Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance[C][W

    PubMed Central

    Li, Ran; Weldegergis, Berhane T.; Li, Jie; Jung, Choonkyun; Qu, Jing; Sun, Yanwei; Qian, Hongmei; Tee, ChuanSia; van Loon, Joop J.A.; Dicke, Marcel; Chua, Nam-Hai; Liu, Shu-Sheng

    2014-01-01

    A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified βC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. βC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector. PMID:25490915

  1. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths.

    PubMed

    Wang, Ming; Yang, Kezhen; Le, Jie

    2015-03-01

    In Arabidopsis, stomatal development initiates after protodermal cells acquire stomatal lineage cell fate. Stomata or their precursors communicate with their neighbor epidermal cells to ensure the "one cell spacing" rule. The signals from EPF/EPFL peptide ligands received by Too Many Mouths (TMM) and ERECTA-family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix-loop-helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cell fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinosteroid (BR) signaling, one of the most well characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ-specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is controlled by BR levels. YODA and CYCD4 are not essential for BR stomata-promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ-specific effects on stomatal production might coordinate with the TMM organ-specific actions. © 2014 Institute of Botany, Chinese Academy of Sciences.

  2. DAPT mediates atoh1 expression to induce hair cell-like cells.

    PubMed

    Ren, Hongmiao; Guo, Weiwei; Liu, Wei; Gao, Weiqiang; Xie, Dinghua; Yin, Tuanfang; Yang, Shiming; Ren, Jihao

    2016-01-01

    Hearing loss is currently an incurable degenerative disease characterized by a paucity of hair cells (HCs), which cannot be spontaneously replaced in mammals. Recent technological advancements in gene therapy and local drug delivery have shed new light for hearing loss. Atoh1, also known as Math1, Hath1, and Cath1, is a proneural basic helix-loop-helix (bHLH) transcription factor that is essential for HC differentiation. At various stages in development, Atoh1 activity is sufficient to drive HC differentiation in the cochlea. Thus, Atoh1 related gene therapy is the most promising option for HC induction. DAPT, an inhibitor of Notch signaling, enhances the expression of Atoh1 indirectly, which in turn promotes the induction of a HC fate. Here, we show that DAPT cooperates with Atoh1 to synergistically promote HC fate in ependymal cells in vitro and promote hair cell regeneration in the cultured basilar membrane (BM) which mimics the microenvironment in vivo. Taken together, our findings demonstrated that DAPT is sufficient to induce HC-like cells via enhancing of the expression of Atoh1 to inhibit the progression of HC apoptosis and to induce new HC formation.

  3. MDL-1, a growth- and tumor-suppressor, slows aging and prevents germline hyperplasia and hypertrophy in C. elegans

    PubMed Central

    Riesen, Michèle; Feyst, Inna; Rattanavirotkul, Nattaphong; Ezcurra, Marina; Tullet, Jennifer M.A.; Papatheodorou, Irene; Ziehm, Matthias; Au, Catherine; Gilliat, Ann F.; Hellberg, Josephine; Thornton, Janet M.; Gems, David

    2014-01-01

    In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality. PMID:24531613

  4. Linear signaling in the Toll-Dorsal pathway of Drosophila: activated Pelle kinase specifies all threshold outputs of gene expression while the bHLH protein Twist specifies a subset.

    PubMed

    Stathopoulos, Angelike; Levine, Michael

    2002-07-01

    Differential activation of the Toll receptor leads to the formation of a broad Dorsal nuclear gradient that specifies at least three patterning thresholds of gene activity along the dorsoventral axis of precellular embryos. We investigate the activities of the Pelle kinase and Twist basic helix-loop-helix (bHLH) transcription factor in transducing Toll signaling. Pelle functions downstream of Toll to release Dorsal from the Cactus inhibitor. Twist is an immediate-early gene that is activated upon entry of Dorsal into nuclei. Transgenes misexpressing Pelle and Twist were introduced into different mutant backgrounds and the patterning activities were visualized using various target genes that respond to different thresholds of Toll-Dorsal signaling. These studies suggest that an anteroposterior gradient of Pelle kinase activity is sufficient to generate all known Toll-Dorsal patterning thresholds and that Twist can function as a gradient morphogen to establish at least two distinct dorsoventral patterning thresholds. We discuss how the Dorsal gradient system can be modified during metazoan evolution and conclude that Dorsal-Twist interactions are distinct from the interplay between Bicoid and Hunchback, which pattern the anteroposterior axis.

  5. PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings[W][OA

    PubMed Central

    Liu, Xuncheng; Chen, Chia-Yang; Wang, Ko-Ching; Luo, Ming; Tai, Ready; Yuan, Lianyu; Zhao, Minglei; Yang, Songguang; Tian, Gang; Cui, Yuhai; Hsieh, Hsu-Liang; Wu, Keqiang

    2013-01-01

    PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II–associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings. PMID:23548744

  6. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.

    PubMed

    Chiasson, David M; Loughlin, Patrick C; Mazurkiewicz, Danielle; Mohammadidehcheshmeh, Manijeh; Fedorova, Elena E; Okamoto, Mamoru; McLean, Elizabeth; Glass, Anthony D M; Smith, Sally E; Bisseling, Ton; Tyerman, Stephen D; Day, David A; Kaiser, Brent N

    2014-04-01

    Glycine max symbiotic ammonium transporter 1 was first documented as a putative ammonium (NH4(+)) channel localized to the symbiosome membrane of soybean root nodules. We show that Glycine max symbiotic ammonium transporter 1 is actually a membrane-localized basic helix-loop-helix (bHLH) DNA-binding transcription factor now renamed Glycine max bHLH membrane 1 (GmbHLHm1). In yeast, GmbHLHm1 enters the nucleus and transcriptionally activates a unique plasma membrane NH4(+) channel Saccharomyces cerevisiae ammonium facilitator 1. Ammonium facilitator 1 homologs are present in soybean and other plant species, where they often share chromosomal microsynteny with bHLHm1 loci. GmbHLHm1 is important to the soybean rhizobium symbiosis because loss of activity results in a reduction of nodule fitness and growth. Transcriptional changes in nodules highlight downstream signaling pathways involving circadian clock regulation, nutrient transport, hormone signaling, and cell wall modification. Collectively, these results show that GmbHLHm1 influences nodule development and activity and is linked to a novel mechanism for NH4(+) transport common to both yeast and plants.

  7. Mammalian prions

    PubMed Central

    Salamat, Muhammad Khalid; Munoz-Montesino, Carola; Moudjou, Mohammed; Rezaei, Human; Laude, Hubert; Béringue, Vincent; Dron, Michel

    2013-01-01

    Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region. PMID:23232499

  8. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence.

    PubMed

    Lahr, Roni M; Mack, Seshat M; Héroux, Annie; Blagden, Sarah P; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc; Berman, Andrea J

    2015-09-18

    La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence

    DOE PAGES

    Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; ...

    2015-07-22

    La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. Amore » putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.« less

  10. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites

    PubMed Central

    Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke

    2010-01-01

    The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101

  11. Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings.

    PubMed Central

    Huyghues-Despointes, B. M.; Scholtz, J. M.; Baldwin, R. L.

    1993-01-01

    The helix-stabilizing effects of repeating pairs of Asp-Arg and Glu-Arg residues have been characterized using a peptide system of the same design used earlier to study Glu-Lys (Marqusee, S. & Baldwin, R.L., 1987, Proc. Natl. Acad. Sci. USA 84, 8898-8902) and Asp-Lys ion pairs (Marqusee, S. & Baldwin, R.L., 1990, In Protein Folding [Gierasch, L.M. & King, J., Eds.], pp. 85-94, AAAS, Washington, D.C.). The consequences of breaking ion pair and charge-helix dipole interactions by titration to pH 2 have been compared with the results of screening these interactions with NaCl at pH 7.0 and pH 2.5. The four peptides in each set contain three pairs of acidic (A) and basic (B) residues spaced either i, i + 4 or i, i + 3 apart. In one peptide of each kind the pairwise order of residues is AB, with the charges oriented favorably to the helix macrodipole, and in the other peptide the order is BA. The results are as follows: (1) Remarkably, both Asp-Arg and Glu-Arg peptides show the same pattern of helix stabilization at pH 7.0 found earlier for Glu-Lys and Asp-Lys peptides: i + 4 AB > i + 4 BA approximately i + 3 AB > i + 3 BA. (2) The ion pairs and charge-helix dipole interactions cannot be cleanly separated, but the results suggest that both interactions make important contributions to helix stability.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8443591

  12. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation

    PubMed Central

    Corrada, Dario; Soshilov, Anatoly A.; Denison, Michael S.

    2016-01-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the functional activity of the AhR. PMID:27295348

  13. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    PubMed

    Corrada, Dario; Soshilov, Anatoly A; Denison, Michael S; Bonati, Laura

    2016-06-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the functional activity of the AhR.

  14. Effect of polarization on the stability of a helix dimer

    NASA Astrophysics Data System (ADS)

    Wang, Xing Y.; Zhang, John Z. H.

    2011-01-01

    Molecular dynamics (MD) simulations have been carried out to study helix-helix interaction using both standard AMBER and polarized force fields. Comparison of the two simulations shows that electrostatic polarization of intra-protein hydrogen bonds plays a significant role in stabilizing the structure of helix dimer. This stabilizing effect is clearly demonstrated by examining the monomer structure, helix crossing angle and stability of backbone hydrogen bonds under AMBER and PPC. Since reliable prediction of protein-protein structure is a significant challenge, the current study should help shed light on the importance of electrostatic polarization of protein in helix-helix interaction and helix bundle structures.

  15. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase

    PubMed Central

    Monroe, Nicole; Han, Han; Shen, Peter S; Sundquist, Wesley I; Hill, Christopher P

    2017-01-01

    Many important cellular membrane fission reactions are driven by ESCRT pathways, which culminate in disassembly of ESCRT-III polymers by the AAA ATPase Vps4. We report a 4.3 Å resolution cryo-EM structure of the active Vps4 hexamer with its cofactor Vta1, ADP·BeFx, and an ESCRT-III substrate peptide. Four Vps4 subunits form a helix whose interfaces are consistent with ATP binding, is stabilized by Vta1, and binds the substrate peptide. The fifth subunit approximately continues this helix but appears to be dissociating. The final Vps4 subunit completes a notched-washer configuration as if transitioning between the ends of the helix. We propose that ATP binding propagates growth at one end of the helix while hydrolysis promotes disassembly at the other end, so that Vps4 ‘walks’ along ESCRT-III until it encounters the ordered N-terminal domain to destabilize the ESCRT-III lattice. This model may be generally applicable to other protein-translocating AAA ATPases. DOI: http://dx.doi.org/10.7554/eLife.24487.001 PMID:28379137

  16. Direct Ubiquitin Independent Recognition and Degradation of a Folded Protein by the Eukaryotic Proteasomes-Origin of Intrinsic Degradation Signals

    PubMed Central

    Singh Gautam, Amit Kumar; Balakrishnan, Satish; Venkatraman, Prasanna

    2012-01-01

    Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a) origin and identification of an intrinsic degradation signal in the substrate, b) identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c) identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably catalyzed by the ATPases. Apomyoglobin emerges as a new model substrate to further explore the role of ATPases and protein structure in proteasomal degradation PMID:22506054

  17. Molecular and Structural Characterization of the Tegumental 20.6-kDa Protein in Clonorchis sinensis as a Potential Druggable Target.

    PubMed

    Kim, Yu-Jung; Yoo, Won Gi; Lee, Myoung-Ro; Kang, Jung-Mi; Na, Byoung-Kuk; Cho, Shin-Hyeong; Park, Mi-Yeoun; Ju, Jung-Won

    2017-03-04

    The tegument, representing the membrane-bound outer surface of platyhelminth parasites, plays an important role for the regulation of the host immune response and parasite survival. A comprehensive understanding of tegumental proteins can provide drug candidates for use against helminth-associated diseases, such as clonorchiasis caused by the liver fluke Clonorchis sinensis . However, little is known regarding the physicochemical properties of C. sinensis teguments. In this study, a novel 20.6-kDa tegumental protein of the C. sinensis adult worm (CsTegu20.6) was identified and characterized by molecular and in silico methods. The complete coding sequence of 525 bp was derived from cDNA clones and encodes a protein of 175 amino acids. Homology search using BLASTX showed CsTegu20.6 identity ranging from 29% to 39% with previously-known tegumental proteins in C. sinensis . Domain analysis indicated the presence of a calcium-binding EF-hand domain containing a basic helix-loop-helix structure and a dynein light chain domain exhibiting a ferredoxin fold. We used a modified method to obtain the accurate tertiary structure of the CsTegu20.6 protein because of the unavailability of appropriate templates. The CsTegu20.6 protein sequence was split into two domains based on the disordered region, and then, the structure of each domain was modeled using I-TASSER. A final full-length structure was obtained by combining two structures and refining the whole structure. A refined CsTegu20.6 structure was used to identify a potential CsTegu20.6 inhibitor based on protein structure-compound interaction analysis. The recombinant proteins were expressed in Escherichia coli and purified by nickel-nitrilotriacetic acid affinity chromatography. In C. sinensis , CsTegu20.6 mRNAs were abundant in adult and metacercariae, but not in the egg. Immunohistochemistry revealed that CsTegu20.6 localized to the surface of the tegument in the adult fluke. Collectively, our results contribute to a better understanding of the structural and functional characteristics of CsTegu20.6 and homologs of flukes. One compound is proposed as a putative inhibitor of CsTegu20.6 to facilitate further studies for anthelmintics.

  18. Functionally Similar WRKY Proteins Regulate Vacuolar Acidification in Petunia and Hair Development in Arabidopsis

    PubMed Central

    de Vries, Michel

    2016-01-01

    The WD40 proteins ANTHOCYANIN11 (AN11) from petunia (Petunia hybrida) and TRANSPARENT TESTA GLABRA1 (TTG1) from Arabidopsis thaliana and associated basic helix-loop-helix (bHLH) and MYB transcription factors activate a variety of differentiation processes. In petunia petals, AN11 and the bHLH protein AN1 activate, together with the MYB protein AN2, anthocyanin biosynthesis and, together with the MYB protein PH4, distinct genes, such as PH1 and PH5, that acidify the vacuole. To understand how AN1 and AN11 activate anthocyanin biosynthetic and PH genes independently, we isolated PH3. We found that PH3 is a target gene of the AN11-AN1-PH4 complex and encodes a WRKY protein that can bind to AN11 and is required, in a feed-forward loop, together with AN11-AN1-PH4 for transcription of PH5. PH3 is highly similar to TTG2, which regulates hair development, tannin accumulation, and mucilage production in Arabidopsis. Like PH3, TTG2 can bind to petunia AN11 and the Arabidopsis homolog TTG1, complement ph3 in petunia, and reactivate the PH3 target gene PH5. Our findings show that the specificity of WD40-bHLH-MYB complexes is in part determined by interacting proteins, such as PH3 and TTG2, and reveal an unanticipated similarity in the regulatory circuitry that controls petunia vacuolar acidification and Arabidopsis hair development. PMID:26977085

  19. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand

    DOE PAGES

    Zhang, Xianjun; Zhao, Fei; Wu, Yiran; ...

    2017-05-17

    Here, the Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combiningmore » the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.« less

  20. Non-Periodic Helix TWT Study.

    DTIC Science & Technology

    1980-05-01

    IA-A087 413 LITTON SYSTEMS INC SAN CARLOS CA ELECTRON TUBE DIV F/6 9/1 NON-PERIODIC HELIX TWT STUDY.(U) MAY 80 N00173-76C-014 UNCLASSIFIED ML...IEEEEEEmhEEI U-80 - ’l////////,, 11111 128 25 L1. = *""L 1- 1.8 MICROCOPY RESOLUTION TEST CHART ’IT-, ( (NO-PERIODIC HELIX WTSTUDY0 I EXTENSION OF CONTRACT... Helix Circuit 4 - 2 Non-Periodic Helix Structure 7 3 Unwound Tape for Non-Periodic Helix 8 4 Typical Helix Assembly 10 5 Typical Ladder Assembly 11 6

  1. Mechanistic Insight into Human ether-à-go-go-related Gene (hERG) K+ Channel Deactivation Gating from the Solution Structure of the EAG Domain

    PubMed Central

    Muskett, Frederick W.; Thouta, Samrat; Thomson, Steven J.; Bowen, Alexander; Stansfeld, Phillip J.; Mitcheson, John S.

    2011-01-01

    Human ether-à-go-go-related gene (hERG) K+ channels have a critical role in cardiac repolarization. hERG channels close (deactivate) very slowly, and this is vital for regulating the time course and amplitude of repolarizing current during the cardiac action potential. Accelerated deactivation is one mechanism by which inherited mutations cause long QT syndrome and potentially lethal arrhythmias. hERG deactivation is highly dependent upon an intact EAG domain (the first 135 amino acids of the N terminus). Importantly, deletion of residues 2–26 accelerates deactivation to a similar extent as removing the entire EAG domain. These and other experiments suggest the first 26 residues (NT1–26) contain structural elements required to slow deactivation by stabilizing the open conformation of the pore. Residues 26–135 form a Per-Arnt-Sim domain, but a structure for NT1–26 has not been forthcoming, and little is known about its site of interaction on the channel. In this study, we present an NMR structure for the entire EAG domain, which reveals that NT1–26 is structurally independent from the Per-Arnt-Sim domain and contains a stable amphipathic helix with one face being positively charged. Mutagenesis and electrophysiological studies indicate that neutralizing basic residues and breaking the amphipathic helix dramatically accelerate deactivation. Furthermore, scanning mutagenesis and molecular modeling studies of the cyclic nucleotide binding domain suggest that negatively charged patches on its cytoplasmic surface form an interface with the NT1–26 domain. We propose a model in which NT1–26 obstructs gating motions of the cyclic nucleotide binding domain to allosterically stabilize the open conformation of the pore. PMID:21135103

  2. Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase

    PubMed Central

    Wang, Shan; Yang, Shuo; An, Baiyi; Wang, Shichen; Yin, Yuejia; Lu, Yang; Xu, Ying; Hao, Dongyun

    2011-01-01

    CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase. PMID:21858078

  3. Insights into the Photoprotective Switch of the Major Light-harvesting Complex II (LHCII)

    PubMed Central

    Sunku, Kiran; de Groot, Huub. J. M.; Pandit, Anjali

    2013-01-01

    Light-harvesting antennae of the LHC family form transmembrane three-helix bundles of which two helices are interlocked by conserved arginine-glutamate (Arg-Glu) ion pairs that form ligation sites for chlorophylls. The antenna proteins of photosystem II have an intriguing dual function. In excess light, they can switch their conformation from a light-harvesting into a photoprotective state, in which the excess and harmful excitation energies are safely dissipated as heat. Here we applied magic angle spinning NMR and selective Arg isotope enrichment as a noninvasive method to analyze the Arg structures of the major light-harvesting complex II (LHCII). The conformations of the Arg residues that interlock helix A and B appear to be preserved in the light-harvesting and photoprotective state. Several Arg residues have very downfield-shifted proton NMR responses, indicating that they stabilize the complex by strong hydrogen bonds. For the Arg Cα chemical shifts, differences are observed between LHCII in the active, light-harvesting and in the photoprotective, quenched state. These differences are attributed to a conformational change of the Arg residue in the stromal loop region. We conclude that the interlocked helices of LHCII form a rigid core. Consequently, the LHCII conformational switch does not involve changes in A/B helix tilting but likely involves rearrangements of the loops and helical segments close to the stromal and lumenal ends. PMID:23629658

  4. Structural analysis of the Quaking homodimerization interface

    PubMed Central

    Beuck, Christine; Qu, Song; Fagg, W. Samuel; Ares, Manuel; Williamson, James R.

    2012-01-01

    Quaking is a prototypical member of the STAR protein family, which plays key roles in posttranscriptional gene regulation by controlling mRNA translation, stability and splicing. QkI-5 has been shown to regulate mRNA expression in the central nervous system, but little is known about its roles in other tissues. STAR proteins function as dimers and bind to bipartite RNA sequences, however, the structural and functional roles of homo- and hetero-dimerization are still unclear. Here, we present the crystal structure of the QkI dimerization domain, which adopts a similar stacked helix-turn-helix arrangement as its homologs GLD-1 and Sam68, but differs by an additional helix inserted in the dimer interface. Variability of the dimer interface residues likely ensures selective homodimerization by preventing association with non-cognate STAR family proteins in the cell. Mutations that inhibit dimerization also significantly impair RNA binding in vitro, alter QkI-5 protein levels, and impair QkI function in a splicing assay in vivo. Together our results indicate that a functional Qua1 homodimerization domain is required for QkI-5 function in mammalian cells. PMID:22982292

  5. A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield

    DOE PAGES

    Lim, Sung Don; Yim, Won Choel; Liu, Degao; ...

    2018-04-16

    Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix–loop–helix transcription factor (VvCEB1 opt) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1 opt-overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased Kmore » content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1 opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen–defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1 opt-overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1 opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.« less

  6. A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Sung Don; Yim, Won Choel; Liu, Degao

    Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix–loop–helix transcription factor (VvCEB1 opt) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1 opt-overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased Kmore » content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1 opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen–defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1 opt-overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1 opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.« less

  7. Structural characterization of CFA/III and Longus type IVb pili from enterotoxigenic Escherichia coli.

    PubMed

    Kolappan, Subramaniapillai; Roos, Justin; Yuen, Alex S W; Pierce, Owen M; Craig, Lisa

    2012-05-01

    The type IV pili are helical filaments found on many Gram-negative pathogenic bacteria, with multiple diverse roles in pathogenesis, including microcolony formation, adhesion, and twitching motility. Many pathogenic enterotoxigenic Escherichia coli (ETEC) isolates express one of two type IV pili belonging to the type IVb subclass: CFA/III or Longus. Here we show a direct correlation between CFA/III expression and ETEC aggregation, suggesting that these pili, like the Vibrio cholerae toxin-coregulated pili (TCP), mediate microcolony formation. We report a 1.26-Å resolution crystal structure of CofA, the major pilin subunit from CFA/III. CofA is very similar in structure to V. cholerae TcpA but possesses a 10-amino-acid insertion that replaces part of the α2-helix with an irregular loop containing a 3(10)-helix. Homology modeling suggests a very similar structure for the Longus LngA pilin. A model for the CFA/III pilus filament was generated using the TCP electron microscopy reconstruction as a template. The unique 3(10)-helix insert fits perfectly within the gap between CofA globular domains. This insert, together with differences in surface-exposed residues, produces a filament that is smoother and more negatively charged than TCP. To explore the specificity of the type IV pilus assembly apparatus, CofA was expressed heterologously in V. cholerae by replacing the tcpA gene with that of cofA within the tcp operon. Although CofA was synthesized and processed by V. cholerae, no CFA/III filaments were detected, suggesting that the components of the type IVb pilus assembly system are highly specific to their pilin substrates.

  8. Converting One-Face α-Helix Mimetics into Amphiphilic α-Helix Mimetics as Potent Inhibitors of Protein-Protein Interactions.

    PubMed

    Lee, Ji Hoon; Oh, Misook; Kim, Hyun Soo; Lee, Huisun; Im, Wonpil; Lim, Hyun-Suk

    2016-01-11

    Many biologically active α-helical peptides adopt amphiphilic helical structures that contain hydrophobic residues on one side and hydrophilic residues on the other side. Therefore, α-helix mimetics capable of mimicking such amphiphilic helical peptides should possess higher binding affinity and specificity to target proteins. Here we describe an efficient method for generating amphiphilic α-helix mimetics. One-face α-helix mimetics having hydrophobic side chains on one side was readily converted into amphiphilic α-helix mimetics by introducing appropriate charged residues on the opposite side. We also demonstrate that such two-face amphiphilic α-helix mimetics indeed show remarkably improved binding affinity to a target protein, compared to one-face hydrophobic α-helix mimetics. We believe that generating a large combinatorial library of these amphiphilic α-helix mimetics can be valuable for rapid discovery of highly potent and specific modulators of protein-protein interactions.

  9. Molecular Dynamics Simulations of Orai Reveal How the Third Transmembrane Segment Contributes to Hydration and Ca2+ Selectivity in Calcium Release-Activated Calcium Channels.

    PubMed

    Alavizargar, Azadeh; Berti, Claudio; Ejtehadi, Mohammad Reza; Furini, Simone

    2018-04-26

    Calcium release-activated calcium (CRAC) channels open upon depletion of Ca 2+ from the endoplasmic reticulum, and when open, they are permeable to a selective flux of calcium ions. The atomic structure of Orai, the pore domain of CRAC channels, from Drosophila melanogaster has revealed many details about conduction and selectivity in this family of ion channels. However, it is still unclear how residues on the third transmembrane helix can affect the conduction properties of the channel. Here, molecular dynamics and Brownian dynamics simulations were employed to analyze how a conserved glutamate residue on the third transmembrane helix (E262) contributes to selectivity. The comparison between the wild-type and mutated channels revealed a severe impact of the mutation on the hydration pattern of the pore domain and on the dynamics of residues K270, and Brownian dynamics simulations proved that the altered configuration of residues K270 in the mutated channel impairs selectivity to Ca 2+ over Na + . The crevices of water molecules, revealed by molecular dynamics simulations, are perfectly located to contribute to the dynamics of the hydrophobic gate and the basic gate, suggesting a possible role in channel opening and in selectivity function.

  10. Archaeal MCM has separable processivity, substrate choice and helicase domains

    PubMed Central

    Barry, Elizabeth R.; McGeoch, Adam T.; Kelman, Zvi; Bell, Stephen D.

    2007-01-01

    The mini-chromosome maintenance (MCM) complex is the principal candidate for the replicative helicase of archaea and eukaryotes. Here, we describe a functional dissection of the roles of the three principal structural modules of the homomultimeric MCM of the hyperthermophilic archaeon Sulfolobus solfataricus. Our results include the first analysis of the central AAA+ domain in isolation. This domain possesses ATPase and helicase activity, defining this as the minimal helicase domain. Reconstitution experiments show that the helicase activity of the AAA+ domain can be stimulated by addition of the isolated N-terminal half in trans. Addition of the N-terminus influences both the processivity of the helicase and the choice of substrate that can be melted by the ATPase domain. The degenerate helix-turn-helix domain at the C-terminus of MCM exerts a negative effect on the helicase activity of the complex. These results provide the first evidence for extensive regulatory inter-domain communication within the MCM complex. PMID:17259218

  11. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2)

    PubMed Central

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-01-01

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (Ncyt/Cexo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. PMID:26797119

  12. The Pseudomonas aeruginosa AmrZ C-terminal domain mediates tetramerization and is required for its activator and repressor functions

    PubMed Central

    Xu, Binjie; Ju, Yue; Soukup, Randal J.; Ramsey, Deborah M.; Fishel, Richard; Wysocki, Vicki H.; Wozniak, Daniel J.

    2015-01-01

    Summary Pseudomonas aeruginosa is an important bacterial opportunistic pathogen, presenting a significant threat towards individuals with underlying diseases such as cystic fibrosis. The transcription factor AmrZ regulates expression of multiple P. aeruginosa virulence factors. AmrZ belongs to the ribbon-helix-helix protein superfamily, in which many members function as dimers, yet others form higher-order oligomers. In this study, four independent approaches were undertaken and demonstrated that the primary AmrZ form in solution is tetrameric. Deletion of the AmrZ C-terminal domain leads to loss of tetramerization and reduced DNA binding to both activated and repressed target promoters. Additionally, the C-terminal domain is essential for efficient AmrZ-mediated activation and repression of its targets. PMID:26549743

  13. Computational study of stability of an H-H-type pseudoknot motif.

    PubMed

    Wang, Jun; Zhao, Yunjie; Wang, Jian; Xiao, Yi

    2015-12-01

    Motifs in RNA tertiary structures are important to their structural organizations and biological functions. Here we consider an H-H-type pseudoknot (HHpk) motif that consists of two hairpins connected by a junction loop and with kissing interactions between the two hairpin loops. Such a tertiary structural motif is recurrently found in RNA tertiary structures, but is difficult to predict computationally. So it is important to understand the mechanism of its formation and stability. Here we investigate the stability of the HHpk tertiary structure by using an all-atom molecular dynamics simulation. The results indicate that the HHpk tertiary structure is stable. However, it is found that this stability is not due to the helix-helix packing, as is usually expected, but is maintained by the combined action of the kissing hairpin loops and junctions, although the former plays the main role. Stable HHpk motifs may form structural platforms for the molecules to realize their biological functions. These results are useful for understanding the construction principle of RNA tertiary structures and structure prediction.

  14. An Amino Acid Packing Code for α-helical Structure and Protein Design

    PubMed Central

    Joo, Hyun; Chavan, Archana G.; Phan, Jamie; Day, Ryan; Tsai, Jerry

    2012-01-01

    This work demonstrates that all packing in α-helices can be simplified to repetitive patterns of a single motif: the knob-socket. Using the precision of Voronoi Polyhedra/Deluaney Tessellations to identify contacts, the knob-socket is a 4 residue tetrahedral motif: a knob residue on one α-helix packs into the 3 residue socket on another α-helix. The principle of the knob-socket model relates the packing between levels of protein structure: the intra-helical packing arrangements within secondary structure that permit inter-helix tertiary packing interactions. Within an α-helix, the 3 residue sockets arrange residues into a uniform packing lattice. Inter-helix packing results from a definable pattern of interdigitated knob-socket motifs between 2 α-helices. Furthermore, the knob-socket model classifies 3 types of sockets: 1) free: favoring only intra-helical packing, 2) filled: favoring inter-helical interactions and 3) non: disfavoring α-helical structure. The amino acid propensities in these 3 socket classes essentially represent an amino acid code for structure in α-helical packing. Using this code, a novel yet straightforward approach for the design of α-helical structure was used to validate the knob-socket model. Unique sequences for 3 peptides were created to produce a predicted amount of α-helical structure: mostly helical, some helical, and no-helix. These 3 peptides were synthesized and helical content assessed using CD spectroscopy. The measured α-helicity of each peptide was consistent with the expected predictions. These results and analysis demonstrate that the knob-socket motif functions as the basic unit of packing and presents an intuitive tool to decipher the rules governing packing in protein structure. PMID:22426125

  15. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase

    PubMed Central

    2012-01-01

    Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. Conclusions Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation. PMID:22676913

  16. Role of the Simian Virus 5 Fusion Protein N-Terminal Coiled-Coil Domain in Folding and Promotion of Membrane Fusion

    PubMed Central

    West, Dava S.; Sheehan, Michael S.; Segeleon, Patrick K.; Dutch, Rebecca Ellis

    2005-01-01

    Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt α-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion. PMID:15650180

  17. Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus.

    PubMed

    Zhu, Yuwei; Fan, Xiaojiao; Zhang, Xu; Jiang, Xuguang; Niu, Liwen; Teng, Maikun; Li, Xu

    2014-09-01

    Staphylococcus aureus is a highly versatile pathogen that can infect human tissue by producing a large arsenal of virulence factors that are tightly regulated by a complex regulatory network. Rot, which shares sequence similarity with SarA homologues, is a global regulator that regulates numerous virulence genes. However, the recognition model of Rot for the promoter region of target genes and the putative regulation mechanism remain elusive. In this study, the 1.77 Å resolution X-ray crystal structure of Rot is reported. The structure reveals that two Rot molecules form a compact homodimer, each of which contains a typical helix-turn-helix module and a β-hairpin motif connected by a flexible loop. Fluorescence polarization results indicate that Rot preferentially recognizes AT-rich dsDNA with ~30-base-pair nucleotides and that the conserved positively charged residues on the winged-helix motif are vital for binding to the AT-rich dsDNA. It is proposed that the DNA-recognition model of Rot may be similar to that of SarA, SarR and SarS, in which the helix-turn-helix motifs of each monomer interact with the major grooves of target dsDNA and the winged motifs contact the minor grooves. Interestingly, the structure shows that Rot adopts a novel dimerization model that differs from that of other SarA homologues. As expected, perturbation of the dimer interface abolishes the dsDNA-binding ability of Rot, suggesting that Rot functions as a dimer. In addition, the results have been further confirmed in vivo by measuring the transcriptional regulation of α-toxin, a major virulence factor produced by most S. aureus strains.

  18. A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor.

    PubMed

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, T M; Meiler, Jens; Hamm, Heidi E

    2016-09-09

    G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Stabilizing interactions between aromatic and basic side chains in alpha-helical peptides and proteins. Tyrosine effects on helix circular dichroism.

    PubMed

    Andrew, Charles D; Bhattacharjee, Samita; Kokkoni, Nicoleta; Hirst, Jonathan D; Jones, Gareth R; Doig, Andrew J

    2002-10-30

    Here we investigate the structures and energetics of interactions between aromatic (Phe or Tyr) and basic (Lys or Arg) amino acids in alpha-helices. Side chain interaction energies are measured using helical peptides, by quantifying their helicities with circular dichroism at 222 nm and interpreting the results with Lifson-Roig-based helix/coil theory. A difficulty in working with Tyr is that the aromatic ring perturbs the CD spectrum, giving an incorrect helicity. We calculated the effect of Tyr on the CD at 222 nm by deriving the intensities of the bands directly from the electronic and magnetic transition dipole moments through the rotational strengths corresponding to each excited state of the polypeptide. This gives an improved value of the helix preference of Tyr (from 0.48 to 0.35) and a correction to the helicity for the peptides containing Tyr. We find that Phe-Lys, Lys-Phe, Phe-Arg, Arg-Phe, and Tyr-Lys are all stabilizing by -0.10 to -0.18 kcal.mol-1 when placed i, i + 4 on the surface of a helix in aqueous solution, despite the great difference in polarity between these residues. Interactions between these side chains have previously been attributed to cation-pi bonds. A survey of protein structures shows that they are in fact predominantly hydrophobic interactions between the CH2 groups of Lys or Arg and the aromatic rings.

  20. Possible role of region 152–156 in the structural duality of a peptide fragment from sheep prion protein

    PubMed Central

    Megy, Simon; Bertho, Gildas; Kozin, Sergey A.; Debey, Pascale; Hui Bon Hoa, Gaston; Girault, Jean-Pierre

    2004-01-01

    The conformational conversion of the nonpathogenic “cellular” prion isoform into a pathogenic “scrapie” protease-resistant isoform is a fundamental event in the onset of transmissible spongiform encephalopathies (TSE). During this pathogenic conversion, helix H1 and its two flanking loops of the normal prion protein are thought to undergo a conformational transition into a β-like structure. A peptide spanning helix H1 and β-strand S2 (residues 142–166 in human numbering) was studied by circular dichroism and nuclear magnetic resonance spectroscopies. This peptide in aqueous solution, in contrast to many prion fragments studied earlier (1) is highly soluble and (2) does not aggregate until the millimolar concentration range, and (3) exhibits an intrinsic propensity to a β-hairpin-like conformation at neutral pH. We found that this peptide can also fold into a helix H1 conformation when dissolved in a TFE/PB mixture. The structures of the peptide calculated by MD showed solvent-dependent internal stabilizing forces of the structures and evidenced a higher mobility of the residues following the end of helix H1. These data suggest that the molecular rearrangement of this peptide in region 152–156, particularly in position 155, could be associated with the pathogenic conversion of the prion protein. PMID:15537751

  1. Localization of functional receptor epitopes on the structure of ciliary neurotrophic factor indicates a conserved, function-related epitope topography among helical cytokines.

    PubMed

    Panayotatos, N; Radziejewska, E; Acheson, A; Somogyi, R; Thadani, A; Hendrickson, W A; McDonald, N Q

    1995-06-09

    By rational mutagenesis, receptor-specific functional analysis, and visualization of complex formation in solution, we identified individual amino acid side chains involved specifically in the interaction of ciliary neurotrophic factor (CNTF) with CNTFR alpha and not with the beta-components, gp130 and LIFR. In the crystal structure, the side chains of these residues, which are located in helix A, the AB loop, helix B, and helix D, are surface accessible and are clustered in space, thus constituting an epitope for CNTFR alpha. By the same analysis, a partial epitope for gp130 was also identified on the surface of helix A that faces away from the alpha-epitope. Superposition of the CNTF and growth hormone structures showed that the location of these epitopes on CNTF is analogous to the location of the first and second receptor epitopes on the surface of growth hormone. Further comparison with proposed binding sites for alpha- and beta-receptors on interleukin-6 and leukemia inhibitory factor indicated that this epitope topology is conserved among helical cytokines. In each case, epitope I is utilized by the specificity-conferring component, whereas epitopes II and III are used by accessory components. Thus, in addition to a common fold, helical cytokines share a conserved order of receptor epitopes that is function related.

  2. DNA stabilization at the Bacillus subtilis PolX core—a binding model to coordinate polymerase, AP-endonuclease and 3′-5′ exonuclease activities

    PubMed Central

    Baños, Benito; Villar, Laurentino; Salas, Margarita; de Vega, Miguel

    2012-01-01

    Family X DNA polymerases (PolXs) are involved in DNA repair. Their binding to gapped DNAs relies on two conserved helix-hairpin-helix motifs, one located at the 8-kDa domain and the other at the fingers subdomain. Bacterial/archaeal PolXs have a specifically conserved third helix-hairpin-helix motif (GFGxK) at the fingers subdomain whose putative role in DNA binding had not been established. Here, mutagenesis at the corresponding residues of Bacillus subtilis PolX (PolXBs), Gly130, Gly132 and Lys134 produced enzymes with altered DNA binding properties affecting the three enzymatic activities of the protein: polymerization, located at the PolX core, 3′-5′ exonucleolysis and apurinic/apyrimidinic (AP)-endonucleolysis, placed at the so-called polymerase and histidinol phosphatase domain. Furthermore, we have changed Lys192 of PolXBs, a residue moderately conserved in the palm subdomain of bacterial PolXs and immediately preceding two catalytic aspartates of the polymerization reaction. The results point to a function of residue Lys192 in guaranteeing the right orientation of the DNA substrates at the polymerization and histidinol phosphatase active sites. The results presented here and the recently solved structures of other bacterial PolX ternary complexes lead us to propose a structural model to account for the appropriate coordination of the different catalytic activities of bacterial PolXs. PMID:22844091

  3. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGES

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  4. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  5. A dihydropyridine receptor alpha1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor.

    PubMed

    Cui, Yanfang; Tae, Han-Shen; Norris, Nicole C; Karunasekara, Yamuna; Pouliquin, Pierre; Board, Philip G; Dulhunty, Angela F; Casarotto, Marco G

    2009-03-01

    The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.

  6. Teaching helix and problems connected with helix using GeoGebra

    NASA Astrophysics Data System (ADS)

    Bímová, Daniela

    2017-12-01

    The contribution presents the dynamic applets created in GeoGebra that show the origin and main properties of a helix and it also presents some constructive problems connected with the helix. There are created the step by step algorithms of some constructions in the chosen applets. Three-dimensional applets include illustrative helix samples and spatial animations that help students better see problems concerning the helix spatially. There is mentioned the website in the contribution on which there is situated GeoGebra book dedicated to the topic "Helix" and containing the mentioned applets. The created applets and materials of the GeoGebra book "Helix" help in teaching and studying the course Constructive Geometry determined for the students of the Faculty of Mechanical Engineering of the Technical University of Liberec.

  7. Structures of the Signal Recognition Particle Receptor from the Archaeon Pyrococcus furiosus: Implications for the Targeting Step at the Membrane

    PubMed Central

    Egea, Pascal F.; Tsuruta, Hiro; de Leon, Gladys P.; Napetschnig, Johanna; Walter, Peter; Stroud, Robert M.

    2008-01-01

    In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP•magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution. Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRP•SR targeting complexes. PMID:18978942

  8. Optical fiber loops and helices: tools for integrated photonic device characterization and microfluidic trapping

    NASA Astrophysics Data System (ADS)

    Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang

    2016-09-01

    Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.

  9. Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations.

    PubMed

    Jiang, Jun; Aduri, Raviprasad; Chow, Christine S; SantaLucia, John

    2014-04-01

    Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson-Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.

  10. Structural and mechanistic insights into Mps1 kinase activation.

    PubMed

    Wang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong

    2009-08-01

    Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.

  11. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    PubMed

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Unfolding of a temperature-sensitive domain controls voltage-gated channel activation

    PubMed Central

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A.; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S.; Minor, Daniel L.

    2016-01-01

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNaV) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNaV CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNaV CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNaV voltage dependencies, and demonstrate that a discrete domain can encode the temperature dependent response of a channel. PMID:26919429

  13. Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism.

    PubMed

    Lugo, Miguel R; Ho, Derek; Merrill, A Rod

    2016-10-15

    Current evidence suggests that the closed-state membrane model for the channel-forming domain of colicin E1 involves eight amphipathic α-helices (helices I-VII and X) that adopt a two-dimensional arrangement on the membrane surface. Two central hydrophobic α-helices in colicin E1 (VIII and IX) adopt a transmembrane location-the umbrella model. Helices I and II have been shown to participate in the channel by forming a transmembrane segment (TM1) in the voltage-induced open channel state. Consequently, it is paramount to determine the relative location and orientation of helix I in the two-dimensional arrangement of the membrane. A new, low-resolution, three-dimensional model of the closed state of the colicin E1 channel was constructed based on FRET measurements between three naturally occurring Trp residues and three sites in helix I, in addition to previously reported FRET distances for the channel domain. Furthermore, a new mechanism for the channel integration process involving the transition of the soluble to membrane-bound form is presented based on a plethora of kinetic data for this process. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  14. Role of the DELSEED Loop in Torque Transmission of F1-ATPase

    PubMed Central

    Tanigawara, Mizue; Tabata, Kazuhito V.; Ito, Yuko; Ito, Jotaro; Watanabe, Rikiya; Ueno, Hiroshi; Ikeguchi, Mitsunori; Noji, Hiroyuki

    2012-01-01

    F1-ATPase is an ATP-driven rotary motor that generates torque at the interface between the catalytic β-subunits and the rotor γ-subunit. The β-subunit inwardly rotates the C-terminal domain upon nucleotide binding/dissociation; hence, the region of the C-terminal domain that is in direct contact with γ—termed the DELSEED loop—is thought to play a critical role in torque transmission. We substituted all the DELSEED loop residues with alanine to diminish specific DELSEED loop-γ interactions and with glycine to disrupt the loop structure. All the mutants rotated unidirectionally with kinetic parameters comparable to those of the wild-type F1, suggesting that the specific interactions between DELSEED loop and γ is not involved in cooperative interplays between the catalytic β-subunits. Glycine substitution mutants generated half the torque of the wild-type F1, whereas the alanine mutant generated comparable torque. Fluctuation analyses of the glycine/alanine mutants revealed that the γ-subunit was less tightly held in the α3β3-stator ring of the glycine mutant than in the wild-type F1 and the alanine mutant. Molecular dynamics simulation showed that the DELSEED loop was disordered by the glycine substitution, whereas it formed an α-helix in the alanine mutant. Our results emphasize the importance of loop rigidity for efficient torque transmissions. PMID:23009846

  15. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm

    NASA Astrophysics Data System (ADS)

    Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian

    2018-04-01

    Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.

  16. The Bmi-1 helix-turn and ring finger domains are required for Bmi-1 antagonism of (-) epigallocatechin-3-gallate suppression of skin cancer cell survival.

    PubMed

    Balasubramanian, Sivaprakasam; Scharadin, Tiffany M; Han, Bingshe; Xu, Wen; Eckert, Richard L

    2015-07-01

    The Bmi-1 Polycomb group (PcG) protein is an important epigenetic regulator of chromatin status. Elevated Bmi-1 expression is observed in skin cancer and contributes to cancer cell survival. (-) Epigallocatechin-3-gallate (EGCG), an important green tea-derived cancer prevention agent, reduces Bmi-1 level resulting in reduced skin cancer cell survival. This is associated with increased p21(Cip1) and p27(Kip1) expression, reduced cyclin, and cyclin dependent kinase expression, and increased cleavage of apoptotic markers. These EGCG-dependent changes are attenuated by vector-mediated maintenance of Bmi-1 expression. In the present study, we identify Bmi-1 functional domains that are required for this response. Bmi-1 expression reverses the EGCG-dependent reduction in SCC-13 cell survival, but Bmi-1 mutants lacking the helix-turn-helix-turn-helix-turn (Bmi-1ΔHT) or ring finger (Bmi-1ΔRF) domains do not reverse the EGCG impact. The reduction in Ring1B ubiquitin ligase activity, observed in the presence of mutant Bmi-1, is associated with reduced ability of these mutants to interact with and activate Ring1B ubiquitin ligase, the major ligase responsible for the ubiquitination of histone H2A during chromatin condensation. This results in less chromatin condensation leading to increased tumor suppressor gene expression and reduced cell survival; thereby making the cells more susceptible to the anti-survival action of EGCG. We further show that these mutants act in a dominant-negative manner to inhibit the action of endogenous Bmi-1. Our results suggest that the HT and RF domains are required for Bmi-1 ability to maintain skin cancer cell survival in response to cancer preventive agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.

    PubMed

    Register, A C; Leonard, Stephen E; Maly, Dustin J

    2014-11-11

    Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.

  18. The N-Terminal Amphipathic Helix of the Topological Specificity Factor MinE Is Associated with Shaping Membrane Curvature

    PubMed Central

    Shih, Yu-Ling; Huang, Kai-Fa; Lai, Hsin-Mei; Liao, Jiahn-Haur; Lee, Chai-Siah; Chang, Chiao-Min; Mak, Huey-Ming; Hsieh, Cheng-Wei; Lin, Chu-Chi

    2011-01-01

    Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE2–9, which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature. PMID:21738659

  19. Structure of bacteriophage [phi]29 head fibers has a supercoiled triple repeating helix-turn-helix motif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Ye; Rossmann, Michael G.

    2011-12-22

    The tailed bacteriophage {phi}29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 {angstrom} in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 {angstrom}. The structure is about 150 {angstrom} long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described.more » When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless {phi}29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.« less

  20. Understanding the EF-hand closing pathway using non-biased interatomic potentials.

    PubMed

    Dupuis, L; Mousseau, Normand

    2012-01-21

    The EF-hand superfamily of proteins is characterized by the presence of calcium binding helix-loop-helix structures. Many of these proteins undergo considerable motion responsible for a wide range of properties upon binding but the exact mechanism at the root of this motion is not fully understood. Here, we use an unbiased accelerated multiscale simulation scheme, coupled with two force fields - CHARMM-EEF1 and the extended OPEP - to explore in details the closing pathway, from the unbound holo state to the closed apo state, of two EF-hand proteins, the Calmodulin and Troponin C N-terminal nodules. Based on a number of closing simulations for these two sequences, we show that the EF-hand β-scaffold, identified as crucial by Grabarek for the EF-hand opening driven by calcium binding, is also important in closing the EF-hand. We also show the crucial importance of the phenylalanine situated at the end of first EF-hand helix, and identify an intermediate state modulating its behavior, providing a detailed picture of the closing mechanism for these two representatives of EF-hand proteins. © 2012 American Institute of Physics

  1. Conformational Preference of ‘CαNN’ Short Peptide Motif towards Recognition of Anions

    PubMed Central

    Banerjee, Raja

    2013-01-01

    Among several ‘anion binding motifs’, the recently described ‘CαNN’ motif occurring in the loop regions preceding a helix, is conserved through evolution both in sequence and its conformation. To establish the significance of the conserved sequence and their intrinsic affinity for anions, a series of peptides containing the naturally occurring ‘CαNN’ motif at the N-terminus of a designed helix, have been modeled and studied in a context free system using computational techniques. Appearance of a single interacting site with negative binding free-energy for both the sulfate and phosphate ions, as evidenced in docking experiments, establishes that the ‘CαNN’ segment has an intrinsic affinity for anions. Molecular Dynamics (MD) simulation studies reveal that interaction with anion triggers a conformational switch from non-helical to helical state at the ‘CαNN’ segment, which extends the length of the anchoring-helix by one turn at the N-terminus. Computational experiments substantiate the significance of sequence/structural context and justify the conserved nature of the ‘CαNN’ sequence for anion recognition through “local” interaction. PMID:23516403

  2. The SWI/SNF Subunit INI1 Contains an N-Terminal Winged Helix DNA Binding Domain that Is a Target for Mutations in Schwannomatosis

    PubMed Central

    Allen, Mark D.; Freund, Stefan M.V.; Zinzalla, Giovanna; Bycroft, Mark

    2015-01-01

    Summary SWI/SNF complexes use the energy of ATP hydrolysis to remodel chromatin. In mammals they play a central role in regulating gene expression during differentiation and proliferation. Mutations in SWI/SNF subunits are among the most frequent gene alterations in cancer. The INI1/hSNF5/SMARCB1 subunit is mutated in both malignant rhabdoid tumor, a highly aggressive childhood cancer, and schwannomatosis, a tumor-predisposing syndrome characterized by mostly benign tumors of the CNS. Here, we show that mutations in INI1 that cause schwannomatosis target a hitherto unidentified N-terminal winged helix DNA binding domain that is also present in the BAF45a/PHF10 subunit of the SWI/SNF complex. The domain is structurally related to the SKI/SNO/DAC domain, which is found in a number of metazoan chromatin-associated proteins. PMID:26073604

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo

    Proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain a canonicalmore » PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo

    Here, proliferating cell nuclear antigen (PCNA) forms a trimeric ring that encircles duplex DNA and acts as an anchor for a number of proteins involved in DNA metabolic processes. PCNA has two structurally similar domains (I and II) linked by a long loop (inter-domain connector loop, IDCL) on the outside of each monomer of the trimeric structure that makes up the DNA clamp. All proteins that bind to PCNA do so via a PCNA-interacting peptide (PIP) motif that binds near the IDCL. A small protein, called TIP, binds to PCNA and inhibits PCNA-dependent activities although it does not contain amore » canonical PIP motif. The X-ray crystal structure of TIP bound to PCNA reveals that TIP binds to the canonical PIP interaction site, but also extends beyond it through a helix that relocates the IDCL. TIP alters the relationship between domains I and II within the PCNA monomer such that the trimeric ring structure is broken, while the individual domains largely retain their native structure. Small angle X-ray scattering (SAXS) confirms the disruption of the PCNA trimer upon addition of the TIP protein in solution and together with the X-ray crystal data, provides a structural basis for the mechanism of PCNA inhibition by TIP.« less

  5. Super-secondary structure peptidomimetics: design and synthesis of an α-α hairpin analogue

    PubMed Central

    Nevola, Laura; Rodriguez, Johanna M.; Thompson, Sam; Hamilton, Andrew D.

    2015-01-01

    The α-α helix motif presents key recognition domains in protein-protein and protein-oligonucleotide binding, and is one of the most common super-secondary structures. Herein we describe the design, synthesis and structural characterization of an α-α hairpin analogue based on a tetra-coordinated Pd(II) bis-(iminoisoquinoline) complex as a template for the display of two α-helix mimics. This approach is exemplified by the attachment of two biphenyl peptidomimetics to reproduce the side-chains of the i and i+4 residues of two helices. PMID:26052191

  6. Conservation of Three-Dimensional Helix-Loop-Helix Structure through the Vertebrate Lineage Reopens the Cold Case of Gonadotropin-Releasing Hormone-Associated Peptide.

    PubMed

    Pérez Sirkin, Daniela I; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M; Vissio, Paula G; Dufour, Sylvie

    2017-01-01

    GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.

  7. Conservation of Three-Dimensional Helix-Loop-Helix Structure through the Vertebrate Lineage Reopens the Cold Case of Gonadotropin-Releasing Hormone-Associated Peptide

    PubMed Central

    Pérez Sirkin, Daniela I.; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M.; Vissio, Paula G.; Dufour, Sylvie

    2017-01-01

    GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation. PMID:28878737

  8. pH-induced conformational changes in human ABO(H) blood group glycosyltransferases confirm the importance of electrostatic interactions in the formation of the semi-closed state.

    PubMed

    Johal, Asha R; Blackler, Ryan J; Alfaro, Javier A; Schuman, Brock; Borisova, Svetlana; Evans, Stephen V

    2014-03-01

    The homologous human ABO(H) A and B blood group glycosyltransferases GTA and GTB have two mobile polypeptide loops surrounding their active sites that serve to allow substrate access and product egress and to recognize and sequester substrates for catalysis. Previous studies have established that these enzymes can move from the "open" state to the "semi-closed" then "closed" states in response to addition of a substrate. The contribution of electrostatic interactions to these conformational changes has now been demonstrated by the determination at various pH of the structures of GTA, GTB and the chimeric enzyme ABBA. At near-neutral pH, GTA displays the closed state in which both mobile loops order around the active site, whereas ABBA and GTB display the open state. At low pH, the apparent protonation of the DXD motif in GTA leads to the expulsion of the donor analog to yield the open state, whereas at high pH, both ABBA and GTB form the semi-closed state in which the first mobile loop becomes an ordered α-helix. Step-wise deprotonation of GTB in increments of 0.5 between pH 6.5 and 10.0 shows that helix ordering is gradual, which indicates that the formation of the semi-closed state is dependent on electrostatic forces consistent with the binding of substrate. Spectropolarimetric studies of the corresponding stand-alone peptide in solution reveal no tendency toward helix formation from pH 7.0 to 10.0, which shows that pH-dependent stability is a product of the larger protein environment and underlines the importance of substrate in active site ordering.

  9. Insights into the conformational switching mechanism of the human vascular endothelial growth factor receptor type 2 kinase domain.

    PubMed

    Chioccioli, Matteo; Marsili, Simone; Bonaccini, Claudia; Procacci, Piero; Gratteri, Paola

    2012-02-27

    Human vascular endothelial growth factor receptor type 2 (h-VEFGR2) is a receptor tyrosine kinase involved in the angiogenesis process and regarded as an interesting target for the design of anticancer drugs. Its activation/inactivation mechanism is related to conformational changes in its cytoplasmatic kinase domain, involving first among all the αC-helix in N-lobe and the A-loop in C-lobe. Affinity of inhibitors for the active or inactive kinase form could dictate the open or closed conformation of the A-loop, thus making the different conformations of the kinase domain receptor (KDR) domain different drug targets in drug discovery. In this view, a detailed knowledge of the conformational landscape of KDR domain is of central relevance to rationalize the efficiency and selectivity of kinase inhibitors. Here, molecular dynamics simulations were used to gain insight into the conformational switching activity of the KDR domain and to identify intermediate conformations between the two limiting active and inactive conformations. Specific energy barriers have been selectively removed to induce, and hence highlight at the atomistic level, the regulation mechanism of the A-loop opening. The proposed strategy allowed to repeatedly observe the escape of the KDR domain from the DFG-out free energy basin and to identify rare intermediate conformations between the DFG-out and the DFG-in structures to be employed in a structure-based drug discovery process.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tarini Shankar; Chaitanya, S. Krishna; Sankararamakrishnan, Ramasubbu, E-mail: rsankar@iitk.ac.in

    New classes of helix–helix interactions in protein structures are reported in which interactions only occur at the terminal regions or between the terminal region of one helix and the middle region of another helix. Helix–helix interactions are important for the structure, stability and function of α-helical proteins. Helices that either cross in the middle or show extensive contacts between each other, such as coiled coils, have been investigated in previous studies. Interactions between two helices can also occur only at the terminal regions or between the terminal region of one helix and the middle region of another helix. Examples ofmore » such helix pairs are found in aquaporin, H{sup +}/Cl{sup −} transporter and Bcl-2 proteins. The frequency of the occurrence of such ‘end-to-end’ (EE) and ‘end-to-middle’ (EM) helix pairs in protein structures is not known. Questions regarding the residue preferences in the interface and the mode of interhelical interactions in such helix pairs also remain unanswered. In this study, high-resolution structures of all-α proteins from the PDB have been systematically analyzed and the helix pairs that interact only in EE or EM fashion have been extracted. EE and EM helix pairs have been categorized into five classes (N–N, N–C, C–C, N–MID and C–MID) depending on the region of interaction. Nearly 13% of 5725 helix pairs belonged to one of the five classes. Analysis of single-residue propensities indicated that hydrophobic and polar residues prefer to occur in the C-terminal and N-terminal regions, respectively. Hydrophobic C-terminal interacting residues and polar N-terminal interacting residues are also highly conserved. A strong correlation exists between some of the residue properties (surface area/volume and length of side chains) and their preferences for occurring in the interface of EE and EM helix pairs. In contrast to interacting non-EE/EM helix pairs, helices in EE and EM pairs are farther apart. In these helix pairs, residues with large surface area/volume and longer side chains are preferred in the interfacial region.« less

  11. Effects of side chains in helix nucleation differ from helix propagation

    PubMed Central

    Miller, Stephen E.; Watkins, Andrew M.; Kallenbach, Neville R.; Arora, Paramjit S.

    2014-01-01

    Helix–coil transition theory connects observable properties of the α-helix to an ensemble of microstates and provides a foundation for analyzing secondary structure formation in proteins. Classical models account for cooperative helix formation in terms of an energetically demanding nucleation event (described by the σ constant) followed by a more facile propagation reaction, with corresponding s constants that are sequence dependent. Extensive studies of folding and unfolding in model peptides have led to the determination of the propagation constants for amino acids. However, the role of individual side chains in helix nucleation has not been separately accessible, so the σ constant is treated as independent of sequence. We describe here a synthetic model that allows the assessment of the role of individual amino acids in helix nucleation. Studies with this model lead to the surprising conclusion that widely accepted scales of helical propensity are not predictive of helix nucleation. Residues known to be helix stabilizers or breakers in propagation have only a tenuous relationship to residues that favor or disfavor helix nucleation. PMID:24753597

  12. Identification of natural and artificial DNA substrates for the light-activated LOV-HTH transcription factor EL222

    PubMed Central

    Rivera-Cancel, Giomar; Motta-Mena, Laura B.; Gardner, Kevin H.

    2012-01-01

    Light-oxygen-voltage (LOV) domains serve as the photosensory modules for a wide range of plant and bacterial proteins, conferring blue light dependent regulation to effector activities as diverse as enzymes and DNA binding. LOV domains can also be engineered into a variety of exogenous targets, enabling similar regulation for new protein-based reagents. Common to these proteins is the ability for LOV domains to reversibly form a photochemical adduct between an internal flavin chromophore and the surrounding protein, using this to trigger conformational changes that affect output activity. Using the Erythrobacter litoralis protein EL222 model system which links LOV regulation to a helix-turn-helix (HTH) DNA binding domain, we demonstrated that the LOV domain binds and inhibits the HTH domain in the dark, releasing these interactions upon illumination [Nash et al. (2011) Proc. Natl. Acad. Sci. USA 108, 9449–9454]. Here we combine genomic and in vitro selection approaches to identify optimal DNA binding sites for EL222. Within the bacterial host, we observe binding several genomic sites using a 12 bp sequence consensus that is also found by in vitro selection methods. Sequence-specific alterations in the DNA consensus reduce EL222-binding affinity in a manner consistent with the expected binding mode: a protein dimer binding to two repeats. Finally, we demonstrate the light-dependent activation of transcription of two genes adjacent to an EL222 binding site. Taken together, these results shed light on the native function of EL222 and provide useful reagents for further basic and applications research of this versatile protein. PMID:23205774

  13. Structural Basis of the Induced-Fit Mechanism of 1,4-Dihydroxy-2-Naphthoyl Coenzyme A Synthase from the Crotonase Fold Superfamily

    PubMed Central

    Li, Jie; Li, Yan; Jiang, Ming; Zhou, Jiahai; Guo, Zhihong

    2013-01-01

    1, 4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase fold enzyme with an implicated role of conformational changes in catalysis. We have identified these conformational changes by determining the structures of its Escherichia coli and Synechocystis sp. PCC6803 orthologues in complex with a product analog. The structural changes include the folding of an active-site loop into a β-hairpin and significant reorientation of a helix at the carboxy terminus. Interestingly, a new interface is formed between the ordered loop and the reoriented helix, both of which also form additional interactions with the coenzyme A moiety of the ligand. Site-directed mutation of the amino acid residues involved in these ligand-induced interactions significantly diminishes the enzyme activity. These results suggest a catalytically essential induced-fit that is likely initiated by the enzyme-ligand interactions at the active site. PMID:23658663

  14. A parallel implementation of the Wuchty algorithm with additional experimental filters to more thoroughly explore RNA conformational space.

    PubMed

    Stone, Jonathan W; Bleckley, Samuel; Lavelle, Sean; Schroeder, Susan J

    2015-01-01

    We present new modifications to the Wuchty algorithm in order to better define and explore possible conformations for an RNA sequence. The new features, including parallelization, energy-independent lonely pair constraints, context-dependent chemical probing constraints, helix filters, and optional multibranch loops, provide useful tools for exploring the landscape of RNA folding. Chemical probing alone may not necessarily define a single unique structure. The helix filters and optional multibranch loops are global constraints on RNA structure that are an especially useful tool for generating models of encapsidated viral RNA for which cryoelectron microscopy or crystallography data may be available. The computations generate a combinatorially complete set of structures near a free energy minimum and thus provide data on the density and diversity of structures near the bottom of a folding funnel for an RNA sequence. The conformational landscapes for some RNA sequences may resemble a low, wide basin rather than a steep funnel that converges to a single structure.

  15. Trigger loop folding determines transcription rate of Escherichia coli’s RNA polymerase

    DOE PAGES

    Mejia, Yara X.; Nudler, Evgeny; Bustamante, Carlos

    2014-12-31

    Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP’s pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kineticmore » model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. The model suggests a finely tuned mechanism that balances transcription speed and fidelity.« less

  16. Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma

    PubMed Central

    Kasim, Mumtaz; Heß, Vicky; Scholz, Holger; Persson, Pontus B.; Fähling, Michael

    2016-01-01

    Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy. PMID:28066180

  17. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1997-01-01

    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  18. Generation and characterization of Atoh1-Cre knock-in mouse line

    PubMed Central

    Yang, Hua; Xie, Xiaoling; Deng, Min; Chen, Xiaowei; Gan, Lin

    2010-01-01

    Summary Atoh1 encodes a basic helix-loop-helix (bHLH) transcription factor required for the development of the inner ear sensory epithelia, the dorsal spinal cord, brainstem, cerebellum, and intestinal secretory cells. In this study to create a genetic tool for the research on gene function in the ear sensory organs, we generated an Atoh1-Cre knock-in mouse line by replacing the entire Atoh1 coding sequences with the Cre coding sequences. Atoh1Cre/+mice were viable, fertile, and displayed no visible defects whereas the Atoh1Cre/Cremice died perinatally. The spatiotemporal activities of Cre recombinase were examined by crossing Atoh1-Cre mice with the R26R-lacZ conditional reporter mice. Atoh1-Cre activities were detected in the developing inner ear, the hindbrain, the spinal cord, and the intestine. In the inner ear, Atoh1-Cre activities were confined to the sensory organs in which lacZ expression is detected in nearly all of the hair cells and in many supporting cells. Thus, Atoh1-Cre mouse line serves as a useful tool for the functional study of genes in the inner ear. In addition, our results demonstrate that Atoh1 is expressed in the common progenitors destined for both hair and supporting cells. PMID:20533400

  19. A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis.

    PubMed

    Han, Xiang Hua; Jin, Yong-Ri; Seto, Marianne; Yoon, Jeong Kyo

    2011-03-25

    R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway.

  20. A WNT/β-Catenin Signaling Activator, R-spondin, Plays Positive Regulatory Roles during Skeletal Myogenesis*

    PubMed Central

    Han, Xiang Hua; Jin, Yong-Ri; Seto, Marianne; Yoon, Jeong Kyo

    2011-01-01

    R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway. PMID:21252233

Top