Fraga, Hilda Carolina de Jesus Rios; Fukutani, Kiyoshi Ferreira; Celes, Fabiana Santana; Barral, Aldina Maria Prado; Oliveira, Camila Indiani de
2012-01-01
To evaluate the process of implementing a quality management system in a basic research laboratory of a public institution, particularly considering the feasibility and impacts of this improvement. This was a prospective and qualitative study. We employed the norm "NIT DICLA 035--Princípios das Boas Práticas de Laboratório (BPL)" and auxiliary documents of Organisation for Economic Co-operation and Development to complement the planning and implementation of a Quality System, in a basic research laboratory. In parallel, we used the PDCA tool to define the goals of each phase of the implementation process. This study enabled the laboratory to comply with the NIT DICLA 035 norm and to implement this norm during execution of a research study. Accordingly, documents were prepared and routines were established such as the registration of non-conformities, traceability of research data and equipment calibration. The implementation of a quality system, the setting of a laboratory focused on basic research is feasible once certain structural changes are made. Importantly, impacts were noticed during the process, which could be related to several improvements in the laboratory routine.
NASA Astrophysics Data System (ADS)
Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.
2018-05-01
This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.
The national labs and their future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crease, R.P.
National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less
Student Teachers' Attitudes about Basic Physics Laboratory
ERIC Educational Resources Information Center
Yesilyurt, Mustafa
2004-01-01
In this study an attitude questionnaire was developed and applied to identify student teachers' interests and attitudes for basic physics laboratory. In physics laboratory practices run by a higher education institution a new attitude questionnaire was developed and applied twice in two terms by researchers to increase student teachers' success…
Impact of Hearing Aid Technology on Outcomes in Daily Life III: Localization.
Johnson, Jani A; Xu, Jingjing; Cox, Robyn M
Compared to basic-feature hearing aids, premium-feature hearing aids have more advanced technologies and sophisticated features. The objective of this study was to explore the difference between premium-feature and basic-feature hearing aids in horizontal sound localization in both laboratory and daily life environments. We hypothesized that premium-feature hearing aids would yield better localization performance than basic-feature hearing aids. Exemplars of premium-feature and basic-feature hearing aids from two major manufacturers were evaluated. Forty-five older adults (mean age 70.3 years) with essentially symmetrical mild to moderate sensorineural hearing loss were bilaterally fitted with each of the four pairs of hearing aids. Each pair of hearing aids was worn during a 4-week field trial and then evaluated using laboratory localization tests and a standardized questionnaire. Laboratory localization tests were conducted in a sound-treated room with a 360°, 24-loudspeaker array. Test stimuli were high frequency and low frequency filtered short sentences. The localization test in quiet was designed to assess the accuracy of front/back localization, while the localization test in noise was designed to assess the accuracy of locating sound sources throughout a 360° azimuth in the horizontal plane. Laboratory data showed that unaided localization was not significantly different from aided localization when all hearing aids were combined. Questionnaire data showed that aided localization was significantly better than unaided localization in everyday situations. Regarding the difference between premium-feature and basic-feature hearing aids, laboratory data showed that, overall, the premium-feature hearing aids yielded more accurate localization than the basic-feature hearing aids when high-frequency stimuli were used, and the listening environment was quiet. Otherwise, the premium-feature and basic-feature hearing aids yielded essentially the same performance in other laboratory tests and in daily life. The findings were consistent for both manufacturers. Laboratory tests for two of six major manufacturers showed that premium-feature hearing aids yielded better localization performance than basic-feature hearing aids in one out of four laboratory conditions. There was no difference between the two feature levels in self-reported everyday localization. Effectiveness research with different hearing aid technologies is necessary, and more research with other manufacturers' products is needed. Furthermore, these results confirm previous observations that research findings in laboratory conditions might not translate to everyday life.
ERIC Educational Resources Information Center
Sidman, Murray
2011-01-01
I have written before about the importance of applied behavior analysis to basic researchers. That relationship is, however, reciprocal; it is also critical for practitioners to understand and even to participate in basic research. Although applied problems are rarely the same as those investigated in the laboratory, practitioners who understand…
Senior Computational Scientist | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),
Secretary | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides
75 FR 3737 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... days of this notice. Proposed Project Questionnaire Design Research Laboratory (QDRL) 2010-2012, (OMB... of health services in the United States. The Questionnaire Design Research Laboratory (QDRL) conducts... and more basic research on response errors in surveys. The most common questionnaire evaluation method...
Laboratory Directed Research and Development FY-10 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dena Tomchak
2011-03-01
The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.
ERIC Educational Resources Information Center
Klahr, David; Li, Junlei
2005-01-01
Can cognitive research generate usable knowledge for elementary science instruction? Can issues raised by classroom practice drive the agenda of laboratory cognitive research? Answering yes to both questions, we advocate building a reciprocal interface between basic and applied research. We discuss five studies of the teaching, learning, and…
Fish passage research: S.O. Conte Anadromous Fish Research Laboratory
Garebedian, Steve
2008-01-01
The Leetown Science Center’s S.O. Conte Anadromous Fish Research Laboratory conducts basic and applied scientific studies of fish passage and migration to define underlying principles and relationships of fish behavior and hydraulics, and to develop integrated, predictive research that can be applied to a wide range of fish passage problems.
Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA
USDA Forest Service
1991-01-01
When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...
Department of Defense Basic Research Program.
1980-08-01
Oamond Laboratories, ERADCOM. Foreword This report has been prepared by the Research Office, ffice of the Deputy Under Secretary of Defense for... Research and Engineering ( Research and Advanced Technology~jlt is the first report ever written for the express purpose of describing the Department of...Defense basic research program. The report is part of an overall effort to improve communications with the national research community by increasing the
NASA Astrophysics Data System (ADS)
Susilaningsih, E.; Khotimah, K.; Nurhayati, S.
2018-04-01
The assessment of laboratory skill in general hasn’t specific guideline in assessment, while the individual assessment of students during a performance and skill in performing laboratory is still not been observed and measured properly. Alternative assessment that can be used to measure student laboratory skill is use performance assessment. The purpose of this study was to determine whether the performance assessment instrument that the result of research can be used to assess basic skills student laboratory. This research was conducted by the Research and Development. The result of the data analysis performance assessment instruments developed feasible to implement and validation result 62.5 with very good categories for observation sheets laboratory skills and all of the components with the very good category. The procedure is the preliminary stages of research and development stages. Preliminary stages are divided in two, namely the field studies and literature studies. The development stages are divided into several parts, namely 1) development of the type instrument, 2) validation by an expert, 3) a limited scale trial, 4) large-scale trials and 5) implementation of the product. The instrument included in the category of effective because 26 from 29 students have very high laboratory skill and high laboratory skill. The research of performance assessment instrument is standard and can be used to assess basic skill student laboratory.
ERIC Educational Resources Information Center
Laboratory Design Notes, 1966
1966-01-01
A collection of laboratory design notes to set forth minimum criteria required in the design of basic medical research laboratory buildings. Recommendations contained are primarily concerned with features of design which affect quality of performance and future flexibility of facility systems. Subjects of economy and safety are discussed where…
[The current clinical laboratory in the public health system and medical science: a lecture].
Men'shikov, V V
2011-11-01
The analytic and diagnostic possibilities of current clinical laboratories are discussed. The roles of laboratory information in the formation of new research directions are characterized. The proposals on the development of economic basics of the development of laboratory medicine.
Lucero, Boris; Saracini, Chiara; Muñoz-Quezada, María Teresa; Mendez-Bustos, Pablo; Mora, Marco
2018-06-14
The Laboratory of the Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), located in the "Technological Park" building of the Catholic University of Maule (Universidad Católica del Maule, UCM) campus in Talca, Chile, has been established as "Psychology Lab" recently in July, 2016. Our lines of work include basic and applied research. Among the basic research, we study executive functions, decision-making, and spatial cognition. In the applied field, we have studied neuropsychological and neurobehavioral effects of pesticides exposure, among other interests. One of our aims is to develop collaboration both national and internationally. It is important to mention that to date there are only few psychology laboratories and research centers in Chile involved with the fields of neuropsychology and neurosciences. Thus, this scientific effort could be a groundbreaking initiative to develop specific knowledge in this area locally and interculturally through its international collaborations.
Computing Support for Basic Research in Perception and Cognition
1988-12-07
hearing aids and cochlear implants, this suggests that certain types of proposed coding schemes, specifically those employing periodicity tuning in...developing a computer model of the interaction of declarative and procedural knowledge in skill acquisition. In the Visual Psychophysics Laboratory... Psycholinguistics - Laboratory a computer model of text comprehension and recall has been constructed and several - experiments have been completed that verify basic
FY 2014 LDRD Annual Report Project Summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomchak, Dena
The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.
Secretary | Center for Cancer Research
We are looking for a pleasant, organized, dependable person to serve as a full-time secretary in the Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNCLR). The BSP provides procurement and logistical support to the laboratories of the Center for Cancer Research. Tasks include high volume procurement (blanket orders, purchase requests,
Stocks, G. Malcolm (Director, Center for Defect Physics in Structural Materials); CDP Staff
2017-12-09
'Center for Defect Physics - Energy Frontier Research Center' was submitted by the Center for Defect Physics (CDP) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; Brown University; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Lawrence Livermore National Laboratory; Ohio State University; and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
hundreds of feet below the Earth's surface, two laboratories are pushing basic scientific research to the miles through the Earth's crust from the Fermi National Accelerator Laboratory in Batavia, Illinois
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less
Technology | Frederick National Laboratory for Cancer Research
The Frederick National Laboratory develops and applies advanced, next-generation technologies to solve basic and applied problems in the biomedical sciences, and serves as a national resource of shared high-tech facilities.
Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J
2011-09-01
This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Koo, Kean Eng; Zain, Ahmad Nurulazam Md; Zainal, Siti Rohaida Mohamed
2012-01-01
The purpose of this conceptual research framework is to develop and integrate a safety training model using a behaviour-based safety training programme into laboratories for young adults, during their tertiary education, particularly in technical and vocational education. Hence, this research will be investigating the outcome of basic safety…
Laboratory Safety in the Biology Lab.
ERIC Educational Resources Information Center
Ritch, Donna; Rank, Jane
2001-01-01
Reports on a research project to determine if students possess and comprehend basic safety knowledge. Shows a significant increase in the amount of safety knowledge gained when students are exposed to various topics in laboratory safety and are held accountable for learning the information as required in a laboratory safety course. (Author/MM)
Quantitative Uncertainty Assessment and Numerical Simulation of Micro-Fluid Systems
2005-04-01
flow at Sandia, that was supported by the Laboratory Directed Research and Devel- opment program, and by the Dept. of Energy , Office of Basic Energy ...finite energy . 6 θ is used to denote the random nature of the corresponding quantity. Being symmetrical and positive definite, REE has all its...Laboratory Directed Research and Development Program at Sandia National Laboratories, funded by the U.S. Department of Energy . Support was also provided
Monnier, Stéphanie; Cox, David G; Albion, Tim; Canzian, Federico
2005-01-01
Background Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow. Results We propose a package of Visual Basic programs focused on sample management and on the parsing of input and output TaqMan files. The code is written in Visual Basic, embedded in the Microsoft Office package, and it allows anyone to have access to those tools, without any programming skills and with basic computer requirements. Conclusion We have created useful tools focused on management of TaqMan genotyping data, a critical issue in genotyping laboratories whithout a more sophisticated and expensive system, such as a LIMS. PMID:16221298
POLLUTION PREVENTION RESEARCH ONGOING - EPA'S RISK REDUCTION ENGINEERING LABORATORY
The mission of the Risk Reduction Engineering Laboratory is to advance the understanding, development and application of engineering solutions for the prevention or reduction of risks from environmental contamination. This mission is accomplished through basic and applied researc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stocks, G. Malcolm; Ice, Gene
"Center for Defect Physics - Energy Frontier Research Center" was submitted by the Center for Defect Physics (CDP) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from eight institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Ohio State University;more » University of Georgia and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara
CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as amore » dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation system. The in-cell crane in CA-5 was renovated to increase driving efficiency. At the renovation for the in-cell crane, full scale mockup test and 3D simulation test had been executed in advance. After the renovation, hot tests in the CPF had been resumed from JFY 2002. New equipments such as dissolver, extractor, electrolytic device, etc. were installed in CA-3 conformably to the new design laid out in order to ensure the function and space. Glove boxes in the analysis laboratory were renewed in order to let it have flexibility from the viewpoint of conducting basic experiments (ex. U crystallization). Glove boxes and hoods were newly installed in the laboratory A for basic research and analysis, especially on MA chemistries. One laboratory (the laboratory C) was established to research about dry reprocessing. The renovation of the CPF has been executed in order to contribute to the development on the advanced fast reactor fuel cycle system, which will give us many sort of technical subject and experimental theme to be solved in the 2. Generation of the CPF.« less
An Industrially Developed Basic Chemistry Course.
ERIC Educational Resources Information Center
Collins, L. W.; Haws, L. D.
1979-01-01
Describes a practical, job-related, 3 1/2 month long, basic chemistry course developed by Monsanto Research Corporation to train laboratory technicians and service employees. The course, centered around 31 chemistry topics, is designed to supplement university courses and stresses application of concepts. (BT)
Gas Dynamics Laboratory or Spheres NASA Langley
1965-07-22
L65-5505 In the Gas Dynamics Laboratory, completed in 1951, researchers explored basic aerodynamic, heating and fluid-mechanical problems in the speed range from Mach 1.5 to Mach 8.0. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 348.
Gortler, Leon; Weininger, Stephen J
2017-02-01
The Hickrill Chemical Research Foundation, located north of New York City on the estate of its patrons, Sylvan and Ruth Alice Norman Weil, had a short (1948-59) but productive life. Ruth Alice Weil received a Ph.D. in organic chemistry in 1947, directed by William von Eggers Doering of Columbia University. She intended that Hickrill contribute to cancer chemotherapy while providing resources for Doering's more speculative research. Ultimately, Doering's commitment to theoretical organic chemistry set Hickrill's research agenda. Lawrence Knox, an African American with a Harvard Ph.D., supervised the laboratory's daily activities. Hickrill's two dozen postdoctoral fellows produced path-breaking results in Hückel aromatic theory and reactive intermediate chemistry, fostering the postwar emphasis on "basic science." This essay places the Laboratory's successes in the wider context of postwar politics and scientific priorities. Private philanthropic support of basic science arose because it received little pre-World War II government support. In the immediate postwar period, modest organisations like Hickrill still met a need, but the increasing governmental defence- and non-defence-related support for science eventually rendered them unnecessary.
Code of Federal Regulations, 2011 CFR
2011-07-01
... training of scientists and engineers critical to meeting future needs of the Nation's defense workforce. (b... industrial research laboratories. (c) The DoD Components' conduct and support of basic research shall be...
Code of Federal Regulations, 2010 CFR
2010-07-01
... training of scientists and engineers critical to meeting future needs of the Nation's defense workforce. (b... industrial research laboratories. (c) The DoD Components' conduct and support of basic research shall be...
Truszczyński, M J
1998-08-01
Veterinary laboratories which deal with infectious diseases form three groups according to the tasks for which they are responsible. The first group includes central or national veterinary laboratories, national or international reference laboratories, high-security laboratories, district regional or state veterinary diagnostic laboratories. The major role of these laboratories is to assist national Veterinary Services in diagnosing infectious animal diseases. The second group comprises laboratories that produce veterinary diagnostic kits and those that produce veterinary vaccines. The third group is composed of veterinary research laboratories, which generally concentrate on basic research and do not contribute directly to the diagnosis and control of infectious animal diseases. The author describes the objectives of each of the three groups of laboratories.
Secretary | Center for Cancer Research
We are looking for a pleasant, organized, dependable person to serve as a full-time secretary in the Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNCLR). The BSP provides procurement and logistical support to the laboratories of the Center for Cancer Research. Tasks include high volume procurement (blanket orders, purchase requests, credit card), sorting and distributing mail, travel coordination, and spending/budget monitoring.
Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course
NASA Astrophysics Data System (ADS)
Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.
2017-09-01
The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.
NASA Technical Reports Server (NTRS)
1993-01-01
A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).
Nano-G research laboratory for a spacecraft
NASA Technical Reports Server (NTRS)
Vonbun, Friedrich O. (Inventor); Garriott, Owen K. (Inventor)
1991-01-01
An acceleration free research laboratory is provided that is confined within a satellite but free of any physical engagement with the walls of the satellite, wherein the laboratory has adequate power, heating, cooling, and communications services to conduct basic research and development. An inner part containing the laboratory is positioned at the center-of-mass of a satellite within the satellite's outer shell. The satellite is then positioned such that its main axes are in a position parallel to its flight velocity vector or in the direction of the residual acceleration vector. When the satellite is in its desired orbit, the inner part is set free so as to follow that orbit without contacting the inside walls of the outer shell. Sensing means detect the position of the inner part with respect to the outer shell, and activate control rockets to move the outer shell; thereby, the inner part is repositioned such that it is correctly positioned at the center-of-mass of the satellite. As a consequence, all disturbing forces, such as drag forces, act on the outer shell, and the inner part containing the laboratory is shielded and is affected only by gravitational forces. Power is supplied to the inner part and to the laboratory by a balanced microwave/laser link which creates the kind of environment necessary for basic research to study critical phenomena such as the Lambda transition in helium and crystal growth, and to perform special metals and alloys research, etc.
Training fellows in paediatric cardiology: the Harvard experience.
Brown, David W; Allan, Catherine K; Newburger, Jane W
2016-12-01
The Fellowship Program of the Department of Cardiology at Boston Children's Hospital seeks to train academically oriented leaders in clinical care and laboratory and clinical investigation of cardiovascular disease in the young. The core clinical fellowship involves 3 years in training, comprising 24 months of clinical rotations and 12 months of elective and research experience. Trainees have access to a vast array of research opportunities - clinical, basic, and translational. Clinical fellows interested in basic science may reverse the usual sequence and start their training in the laboratory, deferring clinical training for 1 or more years. An increasing number of clinical trainees apply to spend a fourth year as a senior fellow in one of the subspecialty areas of paediatric cardiology. From the founding of the Department to the present, we have maintained a fundamental and unwavering commitment to training and education in clinical care and research in basic science and clinical investigation, as well as to the training of outstanding young clinicians and investigators.
Coltrin, Mike (Acting Director, EFRC for Solid State Lighting Science); Simmons, Jerry; SSLS Staff
2017-12-09
'Enabling Energy Efficiency' was submitted by the EFRC for Solid-State Lighting Science (SSLS) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. SSLS is directed by Mike Coltrin (Acting) and Jerry Simmons at Sandia National Laboratories, and is a partnership of scientists from eight institutions: Sandia National Laboratories (lead); California Institute of Technology; Los Alamos National Laboratory; University of Massachusetts, Lowell; University of New Mexico; Northwestern University; Philips Lumileds Lighting; and Rensselaer Polytechnic Institute. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Intro & Basic R&D Overview for NRC RAP Administrator
2011-07-13
Air Force Research Laboratory (AFMC) AFRL /RZS 5 Pollux Drive Edwards AFB CA...NUMBER (include area code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 1 Air Force Research Laboratory Edwards Air Force ...BOUNDARY 0 5 10 SCALE IN MILES HWY 395 ROSAMOND BLVD. MERCURY BLVD. R O C K ET S IT E R O A D EDWARDS AIR FORCE BASE Air Force Research
The New Big Science at the NSLS
NASA Astrophysics Data System (ADS)
Crease, Robert
2016-03-01
The term ``New Big Science'' refers to a phase shift in the kind of large-scale science that was carried out throughout the U.S. National Laboratory system, when large-scale materials science accelerators rather than high-energy physics accelerators became marquee projects at most major basic research laboratories in the post-Cold War era, accompanied by important changes in the character and culture of the research ecosystem at these laboratories. This talk explores some aspects of this phase shift at BNL's National Synchrotron Light Source.
ERIC Educational Resources Information Center
Pederson, Kathleen Marshall
The status of research on computer-assisted language learning (CALL) is explored beginning with a historical perspective of research on the language laboratory, followed by analyses of applied research on CALL. A theoretical base is provided to illustrate the need for more basic research on CALL that considers computer capabilities, learner…
Inhalation Toxicology Research Institute annual report, October 1, 1994--September 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bice, D.E.; Hahn, F.F.; Hoover, M.D.
1995-12-01
The mission of the Inhalation Toxicology Research Institute (ITRI) is to conduct basic and applied research to improve the understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disordersmore » of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the largest laboratory dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
Binstock, Judith; Junsanto-Bahri, Tipsuda
2014-04-01
The relevance of current standard medical school science prerequisites is being reexamined. (1) To identify which science prerequisites are perceived to best prepare osteopathic medical students for their basic science and osteopathic manipulative medicine (OMM) coursework and (2) to determine whether science prerequisites for osteopathic medical school should be modified. Preclinical osteopathic medical students and their basic science and OMM faculty from 3 colleges of osteopathic medicine were surveyed about the importance of specific science concepts, laboratories, and research techniques to medical school coursework. Participants chose responses on a 5-point scale, with 1 indicating "strongly disagree" or "not important" and 5 indicating "strongly agree" or "extremely important." Participants were also surveryed on possible prerequisite modifications. Student responses (N=264) to the general statement regarding prerequisites were "neutral" for basic science coursework and "disagree" for OMM coursework, with mean (standard deviation [SD]) scores of 3.37 (1.1) and 2.68 (1.2), respectively. Faculty responses (N=49) were similar, with mean (SD) scores of 3.18 (1.1) for basic science coursework and 2.67 (1.2) for OMM coursework. Student mean (SD) scores were highest for general biology for basic science coursework (3.93 [1.1]) and physics for OMM coursework (2.5 [1.1]). Student mean (SD) scores were lowest for physics for basic science coursework (1.79 [1.2]) and organic chemistry for OMM coursework (1.2 [0.7]). Both basic science and OMM faculty rated general biology highest in importance (mean [SD] scores, 3.73 [0.9] and 4.22 [1.0], respectively). Students and faculty rated biochemistry high in importance for basic science coursework (mean [SD] scores of 3.66 [1.2] and 3.32 [1.2], respectively). For basic science coursework, students and faculty rated most laboratories as "important," with the highest mean (SD) ratings for general anatomy (students, 3.66 [1.5]; faculty, 3.72 [1.1]) and physiology (students, 3.56 [1.7]; faculty, 3.61 [1.1]). For their OMM coursework, students rated only general anatomy and physiology laboratories as "important" (mean [SD] scores, 3.22 [1.8] and 2.61 [1.6], respectively), whereas OMM faculty rated all laboratories as "important" (mean scores, >3). Both student and faculty respondents rated research techniques higher in importance for basic science coursework than for OMM coursework. For prerequisite modifications, all respondents indicated "no change" for biology and "reduce content" for organic chemistry and physics. All respondents favored adding physiology and biochemistry as prerequisites. General biology and laboratory were the only standard prerequisites rated as "important." Research techniques were rated as "important" for basic science coursework only. Physiology and biochemistry were identified as possible additions to prerequisites. It may be necessary for colleges of osteopathic medicine to modify science prerequisites to reflect information that is pertinent to their curricula.
Inhalation Toxicology Research Institute. Annual report, October 1, 1995--September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bice, D.E.; Hahn, F.F.; Henderson, R.F.
1996-12-01
The Inhalation Toxicology Research Institute (ITRI) is a Government-owned facility leased and operated by the Lovelace Biomedical and Environmental Research Institute (LBERI) as a private, nonprofit research and testing laboratory. LBERI is an operating subsidiary of the Lovelace Respiratory Research Institute. Through September 30, 1996, ITRI was a Federally Funded Research and Development Center operated by Lovelace for the US Department of Energy (DOE) as a {open_quotes}Single Program Laboratory{close_quotes} within the DOE Office of Health and Environmental Research, Office of Energy Research. Work for DOE continues in the privatized ITRI facility under a Cooperative Agreement. At the time of publication,more » approximately 70% of the Institute`s research is funded by DOE, and the remainder is funded by a variety of Federal agency, trade association, individual industry, and university customers. The principal mission of ITRI is to conduct basic and applied research to improve our understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the country`s largest facility dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry.« less
University Research Consortium annual review meeting program
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.
Memory: from the laboratory to everyday life.
Schacter, Daniel L
2013-12-01
One of the key goals of memory research is to develop a basic understanding of the nature and characteristics of memory processes and systems. Another important goal is to develop useful applications of basic research to everyday life. This editorial considers two lines of work that illustrate some of the prospects for applying memory research to everyday life: interpolated quizzing to enhance learning in educational settings, and specificity training to enhance memory and associated functions in individuals who have difficulties remembering details of their past experiences.
76 FR 14977 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... surveillance programs; (5) conducts epidemiologic, and basic and applied laboratory research to identify new... enhance antimicrobial resistance prevention and control, surveillance and response, and applied research..., response, surveillance, applied research, health communication, and public policy; and (15) advises the...
Vasilevsky, Nicole; Schafer, Morgan; Tibbitts, Deanne; Wright, Kirsten; Zwickey, Heather
2015-01-01
Training in fundamental laboratory methodologies is valuable to medical students because it enables them to understand the published literature, critically evaluate clinical studies, and make informed decisions regarding patient care. It also prepares them for research opportunities that may complement their medical practice. The National College of Natural Medicine's (NCNM) Master of Science in Integrative Medicine Research (MSiMR) program has developed an Introduction to Laboratory Methods course. The objective of the course it to train clinical students how to perform basic laboratory skills, analyze and manage data, and judiciously assess biomedical studies. Here we describe the course development and implementation as it applies to complementary and integrative medicine students. PMID:26500806
Views of Translational Research from a Somewhat Translational Scientist
Talman, William T.
2013-01-01
This review arose from a talk entitled “Identifying Targets” and given by the author at EB2011 at the invitation of the American Federation for Medical Research (AFMR). The presentation was part of the AFMR workshop entitled “Keys for Translation: Science and Strategy” and focused on identifying clinically relevant targets as a result of observations made during basic scientific studies. The review emphasizes that targets do not have to be the aim that drives basic discovery, but communication between the basic scientist and clinical investigators may aid recognition of such targets and their translation to clinical applications. Using one line of investigator-initiated research from his own laboratory as an example, the author emphasizes that basic discovery must be hypothesis driven and allowed to follow its logical sequence. Finding treatments, while always an aim of biomedical research, may arise as a result of basic studies that were not originally aimed at a target of translational research. PMID:22781556
Information-seeking behavior of basic science researchers: implications for library services.
Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A
2010-01-01
This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.
Information-seeking behavior of basic science researchers: implications for library services
Haines, Laura L.; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A.
2010-01-01
Objectives: This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. Methods: A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. Results: The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Conclusions: Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository. PMID:20098658
Eliminating cancer stem cells: an interview with CCR’s Steven Hou | Center for Cancer Research
Steven Hou, Ph.D., senior investigator in the Basic Research Laboratory at the Center for Cancer Research describes his latest research that has uncovered potential ways to eliminate cancer stem cells and may offer hope to patients with reoccurring tumors. Learn more...
Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory
NASA Astrophysics Data System (ADS)
Veal, William R.; Taylor, Dawne; Rogers, Amy L.
2009-03-01
Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.
A woman like you: Women scientists and engineers at Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benkovitz, Carmen; Bernholc, Nicole; Cohen, Anita
1991-01-01
This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
This publication by the women in Science and Engineering introduces career possibilities in science and engineering. It introduces what work and home life are like for women who have already entered these fields. Women at Brookhaven National Laboratory work in a variety of challenging research roles -- from biologist and environmental scientist to safety engineer, from patent lawyer to technician. Brookhaven National Laboratory is a multi-program laboratory which carries out basic and applied research in the physical, biomedical and environmental sciences and in selected energy technologies. The Laboratory is managed by Associated University, Inc., under contract with the US Departmentmore » of Energy. Brookhaven and the other national laboratories, because of their enormous research resources, can play a critical role in a education and training of the workforce.« less
Ergonomics in an oral pathology laboratory: Back to basics in microscopy
Sundaragiri, Krishna Sireesha; Shrivastava, Shikha; Sankhla, Bharat; Bhargava, Akshay
2014-01-01
Ergonomics is simply a science focused on “study of work” to reduce fatigue and discomfort through product design. A comprehensive ergonomics program for the pathology laboratory has become necessary to prevent the occurrence of work related musculoskeletal disorders (MSDs) and accidents. Most of the literature on ergonomics involve various web links or occasional studies on the effect of laboratory work and associated MSDs. A Google search was carried out corresponding to the terms “ergonomics”, “pathology laboratory”, “microscope”. All the relevant literature from web sources was sorted out and categorized. In this review, we intend to identify basic anthropometric factors, biomechanical risk factors, laboratory design considerations and specific microscopy-related considerations. The ultimate aim of ergonomics is to provide a safe environment for laboratory personnel to conduct their work and to allow maximum flexibility for safe research use. PMID:25364157
Goldenberg, Neil M; Steinberg, Benjamin E; Rutka, James T; Chen, Robert; Cabral, Val; Rosenblum, Norman D; Kapus, Andras; Lee, Warren L
2016-01-01
Physicians have traditionally been at the forefront of medical research, bringing clinical questions to the laboratory and returning with ideas for treatment. However, we have anecdotally observed a decline in the popularity of basic science research among trainees. We hypothesized that fewer resident physicians have been pursuing basic science research training over time. We examined records from residents in the Surgeon-Scientist and Clinician-Investigator programs at the University of Toronto (1987-2016). Research by residents was categorized independently by 2 raters as basic science, clinical epidemiology or education-related based on the title of the project, the name of the supervisor and Pubmed searches. The study population was divided into quintiles of time, and the proportion pursuing basic science training in each quintile was calculated. Agreement between the raters was 100%; the categorization of the research topic remained unclear in 9 cases. The proportion of trainees pursuing basic science training dropped by 60% from 1987 to 2016 ( p = 0.005). Significantly fewer residents in the Surgeon-Scientist and Clinician-Investigator Programs at the University of Toronto are pursuing training in the basic sciences as compared with previous years.
Sandia and General Motors: Advancing Clean Combustion Engines with
Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials
An IACUC Perspective on Songbirds and Their Use in Neurobiological Research
Schmidt, Marc F.
2011-01-01
Laboratory research using songbirds as a model system for investigating basic questions of neurobiological function has expanded rapidly and recently, with approximately 120 laboratories working with songbirds worldwide. In the United States alone, of the approximately 80 such laboratories nearly a third have been established in the past 10 years. Yet many animal facilities are not outfitted to manage these animals, and as a consequence laboratories often use alternative housing arrangements established by institutional animal care and use committees (IACUCs). These committees invariably differ in their expertise level with birds and thus guidelines also vary considerably from one institution to another. In this article I address a number of factors to consider for effective oversight of research involving songbirds. PMID:21131718
Animal Resource Program | Center for Cancer Research
CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Office:
Animal Resource Program | Center for Cancer Research
CCR Animal Resource Program The CCR Animal Resource Program plans, develops, and coordinates laboratory animal resources for CCR’s research programs. We also provide training, imaging, and technology development in support of moving basic discoveries to the clinic. The ARP Manager:
Center for the Integration of Optical Computing
1992-03-15
their photorefractive properties, calculating the possible interconnect capacities, and collaborating with industry( Brimrose Corp. and Hughes Research...cooperation with Hughes Research Laboratories and Brimrose Corporation we have proceeded with a basic study of CdTe, ZnTe, and the mixed crystals Cd
RLE (Research Laboratory of Electronics) Progress Report Number 129.
1987-01-01
8217," ’,/’.’t MICROCOP ,"Y RESOLUTION TEST C-’HA"-/’%’.’."."% "-’- -" "."o -- - -" " OI FILE COPYAJ MASSACHUSETTS INSTITUTE OF EHOGYD The RESEARCH LABORATORY of...Intercalation Compound Structures and Transitions .................................. 59 10.0 Semiconductor Surface Studies...understanding of the HEMT, which is the basic block in building surface superlattices on III-V compound materials, our device structure has been simu
Basic research needed for stimulating the development of behavioral technologies
Mace, F. Charles
1994-01-01
The costs of disconnection between the basic and applied sectors of behavior analysis are reviewed, and some solutions to these problems are proposed. Central to these solutions are collaborations between basic and applied behavioral scientists in programmatic research that addresses the behavioral basis and solution of human behavior problems. This kind of collaboration parallels the deliberate interactions between basic and applied researchers that have proven to be so profitable in other scientific fields, such as medicine. Basic research questions of particular relevance to the development of behavioral technologies are posed in the following areas: response allocation, resistance to change, countercontrol, formation and differentiation/discrimination of stimulus and response classes, analysis of low-rate behavior, and rule-governed behavior. Three interrelated strategies to build connections between the basic and applied analysis of behavior are identified: (a) the development of nonhuman animal models of human behavior problems using operations that parallel plausible human circumstances, (b) replication of the modeled relations with human subjects in the operant laboratory, and (c) tests of the generality of the model with actual human problems in natural settings. PMID:16812734
Young Investigator Research Program (YIP)
NASA Astrophysics Data System (ADS)
Robinson, Ellen
The Air Force YIP supports scientists and engineers who have received Ph.D. or equivalent degrees in the last five years and show exceptional ability and promise for conducting basic research. The objective of this program is to foster creative basic research in science and engineering; enhance early career development of outstanding young investigators; and increase opportunities for the young investigator to recognize the Air Force mission and related challenges in science and engineering. Individual awards will be made to U.S. institutions of higher education, industrial laboratories or non-profit research organizations where the principal investigator is a U.S. citizen, national or permanent resident; employed on a full-time basis and hold a regular position. Researchers working at the Federally Funded Research and Development Centers and DoD Laboratories will not be considered for the YIP competition. Each award will be funded at the 120K level for three years. Exceptional proposals will be considered individually for higher funding levels and longer duration. http://www.wpafb.af.mil/Welcome/Fact-Sheets/Display/Article/842100#anchor2 I will brief Air Force Office Of Scientific Research Young Investigator Research Program.
CLINIC-LABORATORY DESIGN BASED ON FUNCTION AND PHILOSOPHY AT PURDUE UNIVERSITY.
ERIC Educational Resources Information Center
HANLEY, T.D.; STEER, M.D.
THIS REPORT DESCRIBES THE DESIGN OF A NEW CLINIC AND LABORATORY FOR SPEECH AND HEARING TO ACCOMMODATE THE THREE BASIC PROGRAMS OF--(1) CLINICAL TRAINING OF UNDERGRADUATE AND GRADUATE STUDENT MAJORS, (2) SERVICES MADE AVAILABLE TO THE SPEECH AND HEARING HANDICAPPED, AND (3) RESEARCH IN SPEECH PATHOLOGY, AUDIOLOGY, PSYCHO-ACOUSTICS, AND…
ERIC Educational Resources Information Center
McIlvane, William J.
2009-01-01
Throughout its history, laboratory research in the experimental analysis of behavior has been successful in elucidating and clarifying basic learning principles and processes in both humans and nonhumans. In parallel, applied behavior analysis has shown how fundamental behavior-analytic principles and procedures can be employed to promote…
A cost-effective approach to establishing a surgical skills laboratory.
Berg, David A; Milner, Richard E; Fisher, Carol A; Goldberg, Amy J; Dempsey, Daniel T; Grewal, Harsh
2007-11-01
Recent studies comparing inexpensive low-fidelity box trainers to expensive computer-based virtual reality systems demonstrate similar acquisition of surgical skills and transferability to the clinical setting. With new mandates emerging that all surgical residency programs have access to a surgical skills laboratory, we describe our cost-effective approach to teaching basic and advanced open and laparoscopic skills utilizing inexpensive bench models, box trainers, and animate models. Open models (basic skills, bowel anastomosis, vascular anastomosis, trauma skills) and laparoscopic models (basic skills, cholecystectomy, Nissen fundoplication, suturing and knot tying, advanced in vivo skills) are constructed using a combination of materials found in our surgical research laboratories, retail stores, or donated by industry. Expired surgical materials are obtained from our hospital operating room and animal organs from food-processing plants. In vivo models are performed in an approved research facility. Operation, maintenance, and administration of the surgical skills laboratory are coordinated by a salaried manager, and instruction is the responsibility of all surgical faculty from our institution. Overall, the cost analyses of our initial startup costs and operational expenditures over a 3-year period revealed a progressive decrease in yearly cost per resident (2002-2003, $1,151; 2003-2004, $1,049; and 2004-2005, $982). Our approach to surgical skills education can serve as a template for any surgery program with limited financial resources.
Sports Institute for Research/Change Agent Research--SIR/CAR.
ERIC Educational Resources Information Center
Moriarty, Dick; Duthie, James
1974-01-01
The decline of the independent, scholar-scientist closeted in a library and/or laboratory resulting from increased social stress on universities for "more scholar per dollar" and "more relevance for the real world" predicts an inevitable shift to action research. The shift in system from relatively independent basic researchers…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... household interviews, and experimental research in laboratory and field settings, both for applied questionnaire evaluation and more basic research on response errors in surveys. The most common evaluation...) Research on 600 1 75/60 (1.25) 750.0 computer-user interface design. Household Interview Volunteers (4...
ERIC Educational Resources Information Center
Okulu, Hasan Zuhtu; Oguz-Unver, Ayse
2015-01-01
From the perspective of teaching, the huge natural laboratory that astronomy provides constitutes the most prominent connection between astronomy and other branches of science. The purpose of this research was to provide educators with activities of observation using simple materials that were developed to facilitate the teaching of basic concepts…
A model for international border management systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggan, Ruth Ann
2008-09-01
To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.
Between Industry and Academia: A Physicist's Experiences at The Aerospace Corporation
NASA Astrophysics Data System (ADS)
Camparo, James
2005-03-01
The Aerospace Corporation is a nonprofit company whose purposes are exclusively scientific: to provide research, development, and advisory services for space programs that serve the national interest, primarily the Air Force's Space and Missile Systems Center and the National Reconnaissance Office. The corporation's laboratory has a staff of about 150 scientists who conduct research in fields ranging from Space Sciences to Material Sciences and from Analytical Chemistry to Atomic Physics. As a consequence, Aerospace stands midway between an industrial research laboratory, focused on product development, and academic/national laboratories focused on basic science. Drawing from Dr. Camparo's personal experiences, the presentation will discuss advantages and disadvantages of a career at Aerospace, including the role of publishing in peer-reviewed journals and the impact of work on family life. Additionally, the presentation will consider the balance between basic physics, applied physics, and engineering in the work at Aerospace. Since joining Aerospace in 1981, Dr. Camparo has worked as an atomic physicist specializing in the area of atomic clocks, and has had the opportunity to experiment and publish on a broad range of research topics including: the stochastic-field/atom interaction, radiation effects on semiconductor materials, and stellar scintillation.
Flow Cytometry Technician | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture
Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
NASA Astrophysics Data System (ADS)
Liu, Yu-long; Wang, Chong; Zhang, Jing; Liu, Yu-xi
2018-02-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2014CB921401), the Tsinghua University Initiative Scientific Research Program, and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation.
Secretary | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology, or human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick national Laboratory for Cancer Research (FNLCR). The BSP Office provides procurement and logistical assistance in support of the research activities of the Center for Cancer Research.KEY ROLES/RESPONSIBILITIES The Secretary III will: Provide heavy-volume procurement support to a large customer base of laboratory staff, both Leidos Biomed and CCR (gov’t), using blanket orders, purchase requisitions, credit card, and online warehouse system Data entry into appropriate financial system component (CostPoint, Cor360), status checks on orders, maintenance of orders log, reconciliation of credit card transactions, maintenance of electronic filing systems Providing logistical support for the facilitation of travel packages (both pre-travel and post travel) for Leidos Biomed employees, as well as the coordination of seminar speakers and subsequent reimbursements Composing and answering emails/correspondence Communicating with all levels of personnel, both verbally and in writing, to gather and clearly convey information
The Central Importance of Laboratories for Reducing Waste in Biomedical Research.
Stroth, Nikolas
2016-12-01
The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FOX, K.J.
Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE)more » annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.« less
1978-01-01
required for the trans- portation industry and particularly as required by our mobile defense systems. For the production of transportation fuels...nature of the refinery feedstock and the requirements of the market place which is being targeted for product distribution. As with refining, the end...arsenic levels. The nitrogen and oxygen levels dictate a higher hydro- processing severity to make stable products . Due to the small yield of 6500F
Software Engineering Laboratory (SEL) relationships, models, and management rules
NASA Technical Reports Server (NTRS)
Decker, William; Hendrick, Robert; Valett, Jon D.
1991-01-01
Over 50 individual Software Engineering Laboratory (SEL) research results, extracted from a review of published SEL documentation, that can be applied directly to managing software development projects are captured. Four basic categories of results are defined and discussed - environment profiles, relationships, models, and management rules. In each category, research results are presented as a single page that summarizes the individual result, lists potential uses of the result by managers, and references the original SEL documentation where the result was found. The document serves as a concise reference summary of applicable research for SEL managers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, Baris
2014-05-29
Baris Key, an employee at Argonne National Laboratory, discusses the importance of national lab researchers and how they merge basic science, analyze and process in a way that the industry can benefit from.
Key, Baris
2018-04-16
Baris Key, an employee at Argonne National Laboratory, discusses the importance of national lab researchers and how they merge basic science, analyze and process in a way that the industry can benefit from.
Basic Solar Energy Research in Japan (2011 EFRC Forum)
Domen, Kazunari
2018-02-06
Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE's mission to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE's Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE's Office of Energy Efficiency and Renewable Energy.« less
Earthquake prediction research at the Seismological Laboratory, California Institute of Technology
Spall, H.
1979-01-01
Nevertheless, basic earthquake-related information has always been of consuming interest to the public and the media in this part of California (fig. 2.). So it is not surprising that earthquake prediction continues to be a significant reserach program at the laboratory. Several of the current spectrum of projects related to prediction are discussed below.
ERIC Educational Resources Information Center
Fienup, Daniel M.; Mylan, Sanaa E.; Brodsky, Julia; Pytte, Carolyn
2016-01-01
Equivalence-based instruction (EBI) has been used to successfully teach college-level concepts in research laboratories, but few studies have examined the results of such instruction on classroom performance. The current study answered a basic question about the ordering of training stimuli as well as an applied question regarding the effects of…
Computing Support for Basic Research in Perception and Cognition.
1987-08-31
learning occurs in the verbal domain as well as the spatial domain. David Knopman, Marilyn Hartman, and Mary Jo Nissan are preparing a written report of... Mary Jo Nissen, and Neal F. Viemeister Department of PsychoLogy University of Minnesota 75 East River Road Nlinneapol is, MN 55455 :1 August 1987 Interim...Laboratory directed by Neal F. Viemeister, Mary Jo Nissen’s Cognitive Psychology Laboratory, and the Psycholinguistics Laboratory directed by Charles
ERIC Educational Resources Information Center
Sjöblom, Kirsi; Mälkki, Kaisu; Sandström, Niclas; Lonka, Kirsti
2016-01-01
The role of motivation and emotions in learning has been extensively studied in recent years; however, research on the role of the physical environment still remains scarce. This study examined the role of the physical environment in the learning process from the perspective of basic psychological needs. Although self-determination theory stresses…
The 1990 progress report and future plans
NASA Technical Reports Server (NTRS)
Friedland, Peter; Zweben, Monte; Compton, Michael
1990-01-01
This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers.
Found in Translation: What’s going on at the USDA’s Beltsville Bee Research Laboratory
USDA-ARS?s Scientific Manuscript database
Practical research discoveries follow a twisting path. Basic research driven by the human need to understand nature can, often years or even decades later, lead to huge advances that benefit people or the environment. Alternatively, sure-thing tests of a new product, management strategy, or breeding...
Basic haemoglobinopathy diagnostics in Dutch laboratories; providing an informative test result.
Kaufmann, J O; Smit, J W; Huisman, W; Idema, R N; Bakker, E; Giordano, P C
2013-08-01
After a first survey in 2001, the Dutch Association of Hematological Laboratory Research (VHL) advised its members to adopt a basic protocol for haemoglobinopathy carrier detection and to provide genetic information with all positive results to allow health-care professionals to inform carriers about potential genetic risks. This article reports on the compliance with these recommendations and their consequences. Clinical chemists of all 106 Dutch laboratories were invited to answer a survey on patient population, diagnostic techniques used, (self-reported) knowledge, use and effect of the additional information. The average increase in diagnostic output was over 60% and the recommended basic protocol was applied by 65% of the laboratories. Over 84% of the laboratories reported to be aware of the additional recommendations and 77% to be using them. Most laboratories with limited diagnostic requests were still sending their cases to other laboratories and included the genetic information received from these laboratories in their diagnostic reports. The effect of information on subsequent 'family analysis' was estimated to be between 26 and 50%. The present study shows an increase in diagnostic potential for haemoglobinopathy over the last decade, especially in the larger cities. Low 'family testing' rates were mostly found in areas with lower carrier prevalence or associated with local reluctance to pass the information to carriers. In spite of a dramatic improvement, too many carriers are still not informed because of lack of awareness among health-care providers and more education is needed. © 2012 John Wiley & Sons Ltd.
Research Associate | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.
NASA Astrophysics Data System (ADS)
Bakri, F.; Muliyati, D.
2018-05-01
This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.
Laboratory Directed Research and Development FY2001 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ayat, R
2002-06-20
Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts thatmore » started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.« less
The performance assessment of undergraduate students in physics laboratory by using guided inquiry
NASA Astrophysics Data System (ADS)
Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.
2018-03-01
The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.
Who should conduct aeronautical R and D for the Federal Government?
NASA Technical Reports Server (NTRS)
Album, H. H.
1977-01-01
It was found that Government laboratories, and especially NASA laboratories, should be the prime national producers of applied research in aeronautics. American aeronautic needs the new stimulus of markedly increased outputs of broad-based innovative research from NASA laboratories more than it needs most of the technology advancement and development-oriented programs currently underway in these laboratories. The Government should use manufacturing companies for the vast bulk of development and most technology advancement. However, the Government will have to implement programs to encourage the transfer of full information on technology and research advancements, from the companies that do this work for the Government, to competing companies. Universities should be the primary sources of basic research. Service R&D companies and non-profit R&D institutions provide valuable, specialized, supplementary technical capabilities and other unique attributes, which together span the entire spectrum of aeronautical R&D.
Future vaccination strategies against tuberculosis: thinking outside the box.
Kaufmann, Stefan H E
2010-10-29
With almost a dozen vaccine candidates in clinical trials, tuberculosis (TB) research and development is finally reaping the first fruits of its labors. Vaccine candidates in clinical trials may prevent TB disease reactivation by efficiently containing the pathogen Mycobacterium tuberculosis (Mtb). Future research should target vaccines that achieve sterile eradication of Mtb or even prevent stable infection. These are ambitious goals that can be reached only by highly cooperative engagement of basic immunologists, vaccinologists, and clinical researchers--or in other words, by translation from basic immunology to vaccine research and development, as well as reverse translation of insights from clinical trials back to hypothesis-driven research in the basic laboratory. Here, we review current and future strategies toward the rational design of novel vaccines against TB, as well as the progress made thus far, and the hurdles that need to be overcome in the near and distant future. Copyright © 2010 Elsevier Inc. All rights reserved.
Alivisatos, Paul; Crabtree, George; Dresselhaus, Mildred; Ratner, Mark
2018-05-14
A distinguished panel of speakers at the 2011 EFRC Summit looks at the EFRC Program and how it serves as a response to "Five Challenges for Science and the Imaginationâ, the culminating report that arose from a series of Basic Research Needs workshops. The panel members are Paul Alivisatos, the Director of Lawrence Berkeley National Laboratory, George Crabtree, Distinguished Fellow at Argonne National Laboratory, Mildred Dresselhause, Institute Professor at the Massachusetts Institute of Technology, and Mark Ratner, Professor at Northwestern University. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
The laboratory domestication of Caenorhabditis elegans.
Sterken, Mark G; Snoek, L Basten; Kammenga, Jan E; Andersen, Erik C
2015-05-01
Model organisms are of great importance to our understanding of basic biology and to making advances in biomedical research. However, the influence of laboratory cultivation on these organisms is underappreciated, and especially how that environment can affect research outcomes. Recent experiments led to insights into how the widely used laboratory reference strain of the nematode Caenorhabditis elegans compares with natural strains. Here we describe potential selective pressures that led to the fixation of laboratory-derived alleles for the genes npr-1, glb-5, and nath-10. These alleles influence a large number of traits, resulting in behaviors that affect experimental interpretations. Furthermore, strong phenotypic effects caused by these laboratory-derived alleles hinder the discovery of natural alleles. We highlight strategies to reduce the influence of laboratory-derived alleles and to harness the full power of C. elegans. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Wriedt, Mario; Sculley, Julian P.; Aulakh, Darpandeep; Zhou, Hong-Cai
2016-01-01
A simple and straightforward synthesis of an ultrastable porous metal-organic framework (MOF) based on copper(II) and a mixed N donor ligand system is described as a laboratory experiment for chemistry undergraduate students. These experiments and the resulting analysis are designed to teach students basic research tools and procedures while…
Code of Federal Regulations, 2014 CFR
2014-07-01
... higher education, other nonprofit research institutions, laboratories of other Federal agencies, and... 32 National Defense 2 2014-07-01 2014-07-01 false Policy. 272.4 Section 272.4 National Defense... AND SUPPORT OF BASIC RESEARCH BY THE DEPARTMENT OF DEFENSE § 272.4 Policy. It is DoD policy that: (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... higher education, other nonprofit research institutions, laboratories of other Federal agencies, and... 32 National Defense 2 2013-07-01 2013-07-01 false Policy. 272.4 Section 272.4 National Defense... AND SUPPORT OF BASIC RESEARCH BY THE DEPARTMENT OF DEFENSE § 272.4 Policy. It is DoD policy that: (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... higher education, other nonprofit research institutions, laboratories of other Federal agencies, and... 32 National Defense 2 2012-07-01 2012-07-01 false Policy. 272.4 Section 272.4 National Defense... AND SUPPORT OF BASIC RESEARCH BY THE DEPARTMENT OF DEFENSE § 272.4 Policy. It is DoD policy that: (a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-09
... cognitive interviews, focus groups, Pilot household interviews, and experimental research in laboratory and field settings, both for applied questionnaire evaluation and more basic research on response errors in surveys. The most common evaluation method is the cognitive interview, in which a questionnaire design...
The Translation of Basic Behavioral Research to School Psychology: A Citation Analysis
ERIC Educational Resources Information Center
Reed, Derek D.
2008-01-01
In recent years, school psychology has become increasingly grounded in data-based decision making and intervention design, based upon behavior analytic principles. This paradigm shift has occurred in part by recent federal legislation, as well as through advances in experimental research replicating laboratory based studies. Translating basic…
Laboratory animal studies that are designed to assess the effects of exposure of a test substance during postnatal development are commonly utilized in basic research and to evaluate potential hazard to children for chemical and pharmaceutical regulation. Direct dosing, defined ...
JPL basic research review. [research and advanced development
NASA Technical Reports Server (NTRS)
1977-01-01
Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.
Organism support for life sciences spacelab experiments
NASA Technical Reports Server (NTRS)
Drake, G. L.; Heppner, D. B.
1976-01-01
This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.
Taremwa, Ivan Mugisha; Ampaire, Lucas; Iramiot, Jacob; Muhwezi, Obed; Matte, Aloysius; Itabangi, Herbert; Mbabazi, Hope; Atwebembeire, Jeninah; Kamwine, Monicah; Katawera, Victoria; Mbalibulha, Yona; Orikiriza, Patrick; Boum, Yap
2017-01-01
While the laboratory represents more than 70% of clinical diagnosis and patient management, access to reliable and quality laboratory diagnostics in sub-Saharan Africa remains a challenge. To gain knowledge and suggest evidence based interventions towards laboratory improvement in Southwestern Uganda, we assessed the baseline laboratory quality standards in three medical and research laboratories in Southwestern Uganda. We conducted a cross sectional survey from October, 2013 to April, 2014. Selected laboratories, including one private research, one private for profit and one public laboratory, were assessed using the WHO AFRO_SLIPTA checklist and baseline scores were determined. The three laboratories assessed met basic facility requirements, had trained personnel, and safety measures in place. Sample reception was properly designed and executed with a well designated chain of custody. All laboratories had sufficient equipment for the nature of work they were involved in. However, we found that standard operating procedures were incomplete in all three laboratories, lack of quality audit schemes by two laboratories and only one laboratory enrolled into external quality assurance schemes. The SLIPTA scores were one star for the research laboratory and no star for both the public and private-for-profit laboratories. While most of the laboratory systems were in place, the low scores obtained by the assessed laboratories reflect the need for improvement to reach standards of quality assured diagnostics in the region. Therefore, routine mentorship and regional supportive supervision are necessary to increase the quality of laboratory services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coltrin, Mike; Simmons, Jerry
"Enabling Energy Efficiency" was submitted by the EFRC for Solid-State Lighting Science (SSLS) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. SSLS is directed by Mike Coltrin (Acting) and Jerry Simmons at Sandia National Laboratories, and is a partnership of scientists from eight institutions: Sandia National Laboratories (lead); California Institute of Technology; Los Alamos National Laboratoryl; University of New Mexico; Northwestern University; Philips Lumileds Lighting; University of Californiamore » Merced and Santa Barbara. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
McCann, Maureen (Director, Center for Direct Catalytic Conversion of Biomass to Biofuels); C3Bio Staff
2017-12-09
'Moving from Petroleum to Plants to Energize our World' was submitted by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. C3Bio, an EFRC directed by Maureen McCann at Purdue University is a partnership between five institutions: Purdue (lead), Argonne National Laboratory, National Renewable Energy Laboratory, Northeastern University, and the University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Moody, George B; Mark, Roger G; Goldberger, Ary L
2011-01-01
PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.
Sleep and Performance Research Center
2012-05-01
upon the placement of the work period with respect to the circadian rhythm. Additional studies were published by SPRC care factually during the...Research Center (SPRC) conducts human and animal studies in laboratory and field settings in support of basic and applied sleep research at Washington...Program of Research Field Studies in Humans In a field study of serving police officers, Charles, et al. (2011) found that perceived shorter
Artificial Intelligence Research Branch future plans
NASA Technical Reports Server (NTRS)
Stewart, Helen (Editor)
1992-01-01
This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.
Applied behavior analysis: New directions from the laboratory
Epling, W. Frank; Pierce, W. David
1983-01-01
Applied behavior analysis began when laboratory based principles were extended to humans inorder to change socially significant behavior. Recent laboratory findings may have applied relevance; however, the majority of basic researchers have not clearly communicated the practical implications of their work. The present paper samples some of the new findings and attempts to demonstrate their applied importance. Schedule-induced behavior which occurs as a by-product of contingencies of reinforcement is discussed. Possible difficulties in treatment and management of induced behaviors are considered. Next, the correlation-based law of effect and the implications of relative reinforcement are explored in terms of applied examples. Relative rate of reinforcement is then extended to the literature dealing with concurrent operants. Concurrent operant models may describe human behavior of applied importance, and several techniques for modification of problem behavior are suggested. As a final concern, the paper discusses several new paradigms. While the practical importance of these models is not clear at the moment, it may be that new practical advantages will soon arise. Thus, it is argued that basic research continues to be of theoretical and practical importance to applied behavior analysis. PMID:22478574
High Frequency Radar Astronomy With HAARP
2003-01-01
High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska, has increased in total...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with
Students Become Scientists at Science Skills Boot Camp | Poster
At the 2016 Science Skills Boot Camp (SSBC), a one-day training program designed for NIH summer interns with little or no prior research experience, students gathered to learn about basic research and laboratory skills. The boot camp provided a unique opportunity for interns to expand their knowledge of simple bench techniques, scientific papers, and ways to communicate their research.
National Synchrotron Light Source
BNL
2017-12-09
A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.
Facilities available for biomedical science research in the public universities in Lagos, Nigeria.
John, T A
2010-03-01
Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.
New Directions in Teacher Education: Foundations, Curriculum, Policy.
ERIC Educational Resources Information Center
Denton, Jon, Ed.; And Others
This publication includes presentations made at the Aikin-Stinnett Lecture Series and follow-up papers sponsored by the Instructional Research Laboratory at Texas A&M University. The papers in this collection focus upon the basic assumptions and conceptual bases of teacher education and the use of research in providing a foundation for…
Results of Research on Overcoming Pulse Shortening of GW Class HPM Sources
1997-05-29
The RPM sources basic research program of the Air Force has a major emphasis on the pulse shortening problem. This includes collaborative work in...universities and the Phillips Laboratory . We have demonstrated two fundamentally different RPM sources which radiate rf power in excess of 1 GW and are
Of Mice and Meth: A New Media-Based Neuropsychopharmacology Lab to Teach Research Methods
ERIC Educational Resources Information Center
Hatch, Daniel L.; Zschau, Tony; Hays, Arthur; McAllister, Kristin; Harrison, Michelle; Cate, Kelly L.; Shanks, Ryan A.; Lloyd, Steven A.
2014-01-01
This article describes an innovative neuropsychopharmacology laboratory that can be incorporated into any research methods class. The lab consists of a set of interconnected modules centered on observations of methamphetamine-induced behavioral changes in mice and is designed to provide students with an opportunity to acquire basic skills…
1991-12-01
UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 19k’ HIGH SCF-0)OL APPRENTICESHIP PROGRAM (HSAP) REtFOC2TS VOLUME 12 ROME LABORATORY ARNOLD...capacity requirements. In the United States and Japan, it has 1.544 Mbps channels (23B+D), and Europe has 2.048 Mbps channels (30B+D). Both are provided over...because of the standard 64 kbps and the layered protocols. Even though the United States and Europe have different primary access channels, the basic
[Biological research and security institutes].
Darsie, G; Falczuk, A J; Bergmann, I E
2006-04-01
The threat of using biological material for ago-bioterrorist ends has risen in recent years, which means that research and diagnostic laboratories, biological agent banks and other institutions authorised to carry out scientific activities have had to implement biosafety and biosecurity measures to counter the threat, while carrying out activities to help prevent and monitor the accidental or intentional introduction of exotic animal diseases. This article briefly sets outthe basic components of biosafety and biosecurity, as well as recommendations on organisational strategies to consider in laboratories that support agro-bioterrorist surveillance and prevention programs.
Baking sunflower hulls within an aluminum envelope in a common laboratory oven yields charcoal.
Arnal, Pablo Maximiliano
2015-01-01
Charcoals have been widely used by scientist to research the removal of contaminants from water and air. One key feature of charcoal is that it keeps macropores from the parent material - though anisotropically contracted - and can even develop meso- and micropores. However, the controlled thermochemical conversion of biomass into charcoal at laboratory scale normally requires special setups which involve either vacuum or inert gas. Those setups may not be affordable in research groups or educational institutions where the research of charcoals would be highly welcome. In this work, I propose a simple and effective method to steer the thermochemical process that converts sunflower hulls (SFH) into charcoal with basic laboratory resources. The carbonization method: •Place SFH in an airtight aluminum envelope.•Thermally treat SFH within the envelope in a common laboratory oven.•Open the envelope to obtain the carbonized sunflower hulls.
Transparent Conducting Oxides: Status and Opportunities in Basic Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coutts, T. J.; Perkins, J. D.; Ginley, D.S.
1999-08-01
In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss keymore » physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs.« less
Heinen, Christopher D
2016-02-01
We have currently entered a genomic era of cancer research which may soon lead to a genomic era of cancer treatment. Patient DNA sequencing information may lead to a personalized approach to managing an individual's cancer as well as future cancer risk. The success of this approach, however, begins not necessarily in the clinician's office, but rather at the laboratory bench of the basic scientist. The basic scientist plays a critical role since the DNA sequencing information is of limited use unless one knows the function of the gene that is altered and the manner by which a sequence alteration affects that function. The role of basic science research in aiding the clinical management of a disease is perhaps best exemplified by considering the case of Lynch syndrome, a hereditary disease that predisposes patients to colorectal and other cancers. This review will examine how the diagnosis, treatment and even prevention of Lynch syndrome-associated cancers has benefitted from extensive basic science research on the DNA mismatch repair genes whose alteration underlies this condition. Copyright © 2015 Elsevier B.V. All rights reserved.
Modular Laboratories—Cost-Effective and Sustainable Infrastructure for Resource-Limited Settings
Bridges, Daniel J.; Colborn, James; Chan, Adeline S. T.; Winters, Anna M.; Dengala, Dereje; Fornadel, Christen M.; Kosloff, Barry
2014-01-01
High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. PMID:25223943
Design and construction of functional AAV vectors.
Gray, John T; Zolotukhin, Serge
2011-01-01
Using the basic principles of molecular biology and laboratory techniques presented in this chapter, researchers should be able to create a wide variety of AAV vectors for both clinical and basic research applications. Basic vector design concepts are covered for both protein coding gene expression and small non-coding RNA gene expression cassettes. AAV plasmid vector backbones (available via AddGene) are described, along with critical sequence details for a variety of modular expression components that can be inserted as needed for specific applications. Protocols are provided for assembling the various DNA components into AAV vector plasmids in Escherichia coli, as well as for transferring these vector sequences into baculovirus genomes for large-scale production of AAV in the insect cell production system.
Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron; Slowing, Igor
Catalysis research at the U.S. Department of Energy's (DOE's) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/ molecular catalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through trans-formative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to attack scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appoint-ments at a university and a National Laboratory.« less
Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruski, Marek; Sadow, Aaron D.; Slowing, Igor I.
Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D)more » in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory.« less
Modular laboratories--cost-effective and sustainable infrastructure for resource-limited settings.
Bridges, Daniel J; Colborn, James; Chan, Adeline S T; Winters, Anna M; Dengala, Dereje; Fornadel, Christen M; Kosloff, Barry
2014-12-01
High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. © The American Society of Tropical Medicine and Hygiene.
Garrett, Teresa A; Osmundson, Joseph; Isaacson, Marisa; Herrera, Jennifer
2015-01-01
In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory. Students are prepared for a 6-8 week discovery-driven project on the purification of the Escherichia coli cytidylate kinase (CMP kinase) through in class problems and other laboratory exercises on bioinformatics and protein structure analysis. After a minimal amount of guidance on how to perform the CMP kinase in vitro enzyme assay, SDS-PAGE, and the basics of protein purification, students, working in groups of three to four, develop a protein purification protocol based on the scientific literature and investigate some aspect of CMP kinase that interests them. Through this process, students learn how to implement a new but perhaps previously worked out procedure to answer their research question. In addition, they learn the importance of keeping a clear and thorough laboratory notebook and how to interpret their data and use that data to inform the next set of experiments. Following this module, students had increased confidence in their ability to do basic biochemistry techniques and reported that the "self-directed" nature of this lab increased their engagement in the project. © 2015 The International Union of Biochemistry and Molecular Biology.
Life sciences and environmental sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less
Determination of resilient modulus values for typical plastic soils in Wisconsin.
DOT National Transportation Integrated Search
2011-09-01
"The objectives of this research are to establish a resilient modulus test results database and to develop : correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A : laboratory testing program ...
Baseline Skills Assessment of the US Army Research Laboratory
2015-01-01
level definitions Level Definition 1 Basic understanding, minimal experience 2 More specific understanding, some level of application 3 Expertise...polymers 1 Energy absorbers 2 Computational material modeling 1 Powder metallurgy 1 Tribology 1 Non-destructive inspection 1 Advanced
Barona, Josep L
2007-01-01
The policy of promoting fellowships abroad by the JAE for young scientist had an important complement in the foundation of a series of small scientific laboratories and research centres joined basically under the National Institute of Science and the Residencia de Estudiantes. The present article offers a general perspective of the activities developed by some of those laboratories, their main protagonists and research groups, particularly those related to biomedical research. The scientific task developed by the Instituto Cajal and the Natural Sciences Museum is not directly considered, since other contributions in this monographic issue regard those institutions. The process of creation of small teaching and research laboratories since 1912 is shown, and their participation in the university experimental teaching during the 1920s, especially regarding the Residencia de Estudiantes laboratories. Among them, the Laboratory of General Physiology lead by Juan Negrín. The significance of his physiological school is shown as well as the starting point of the scientific career of Severo Ochoa.
[The need for experiments using primates from a scientific point of view].
Kaup, F J
2007-03-01
Concerning the public discussion on animal experiments using primates, various research fields are demonstrated where non-human primates are necessary for certain scientific reasons at this time. Non-human Primates are used in Germany mainly in regulatory toxicology and pharmaceutical safety studies.A small amount is disposed in different fields of biological or biomedical basic research. This includes in particular neurosciences and infection research. 2006 New and Old World monkeys were needed in Germany in 2005. No chimpanzees are used anymore as laboratory animals in Germany since many years. Several examples are presented to demonstrate that certain research fields need non-human primates as laboratory animals in the foreseeable future.
Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Curtis, S. B.
1989-01-01
The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.
Seed, Thomas M; Xiao, Shiyun; Manley, Nancy; Nikolich-Zugich, Janko; Pugh, Jason; Van den Brink, Marcel; Hirabayashi, Yoko; Yasutomo, Koji; Iwama, Atsushi; Koyasu, Shigeo; Shterev, Ivo; Sempowski, Gregory; Macchiarini, Francesca; Nakachi, Kei; Kunugi, Keith C; Hammer, Clifford G; Dewerd, Lawrence A
2016-01-01
An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.
Bode, Michael F; Hilgendorf, Ingo
2018-06-09
Political bodies and professional societies acknowledge that translational research benefits from researchers trained in both, clinical medicine and basic science. Yet, few physicians undergoing clinical training in cardiology seek this dual career (Milewicz et al. J Clin Invest 125:3742-3747, 2015). The reasons are likely manifold, but with cardiology having become increasingly interventional and facing economic pressure, how much attention, credit, and encouragement is given to physicians interested in basic cardiovascular science? Having studied and worked in hospitals and laboratories, in both Germany and the USA, we aim to compare in this article how basic science education is currently integrated into cardiology training at German and US university hospitals, from medical school to more advanced career stages. By doing so, we hope to provide some outside perspectives to young physicians and decision makers alike, that may inspire changes to curricula in the respective countries and around the world.
NASA Astrophysics Data System (ADS)
Takada, Tohru; Nakamura, Jin; Suzuki, Masaru
All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.
ERIC Educational Resources Information Center
International Atomic Energy Agency, Vienna (Austria).
Radiolabelled pesticides are used: in studies involving improved formulations of pesticides, to assist in developing standard residue analytical methodology, and in obtaining metabolism data to support registration of pesticides. This manual is designed to give the scientist involved in pesticide research the basic terms and principles for…
The Science Workbook of Student Research Projects in Food - Agriculture - Natural Resources.
ERIC Educational Resources Information Center
Darrow, Edward E., Ed.
This workbook provides descriptions of research projects for high school and middle school science teachers and students. The projects can be used as demonstrations in the laboratory or classroom to help teachers illustrate the practical application of basic science principles. They can also be used by students, under the guidance of the teachers,…
NORSAR Basic Seismological Research
1990-11-29
AZ 85721 Prof. Christopher H. Scholz Dr. William Wortman Lamont-Doherty Geological Observatory Mission Research Corporation of Columbia University 735...Reston, VA 22091 Mr. William J. Best Prof. Robert W. Clayton 907 Westwood Drive Seismological Laboratory Vienna, VA 22180 Division of Geological...Planetary Sciences California Institute of Technology Pasadena, CA 91125 Dr. N. Biswas Prof. F. A. Dahlen Geophysical Institute Geological and Geophysical
The Problem of Convergence and Commitment in Multigroup Evaluation Planning.
ERIC Educational Resources Information Center
Hausken, Chester A.
This paper outlines a model for multigroup evaluation planning in a rural-education setting wherein the commitment to the structure necessary to evaluate a program is needed on the part of a research and development laboratory, the state departments of education, county supervisors, and the rural schools. To bridge the gap between basic research,…
Analysis of data on Air Force personnel collected at Lackland Air Force Base
DOT National Transportation Integrated Search
1969-10-01
In July, 1967, a report was published by the Personnel Research Laboratory, Lackland Air Force Base, entitled "An Attempt to Predict Automobile Accidents Among Air Force Personnnel". Approximately twelve thousand basic airmen and eleven hundred offic...
Pollen Germination--A Challenging and Educational Experiment.
ERIC Educational Resources Information Center
Tse, H. L. H.; Chan, G. Y. S.
2001-01-01
Summarizes the recent research on pollen germination and introduces some basic studies on pollen tube growth that can be conducted in a secondary school laboratory. Discusses the use of a light microscope and refrigerator to study pollen. (Contains 13 references.) (Author/YDS)
Cardinale, Jean A
2011-01-01
Longer term research activities that may be incorporated in undergraduate courses are a powerful tool for promoting student interest and learning, developing cognitive process skills, and allowing undergraduates to experience real research activities in which they may not otherwise have the opportunity to participate. The challenge to doing so in lower-level courses is that students may have not fully grasped the scientific concepts needed to undertake such research endeavors, and that they may be discouraged if activities are perceived to be too challenging. The paper describes how a bacterial protein:protein interaction detection system was adapted and incorporated into the laboratory component of a sophomore-level Molecular Cell Biology course. The project was designed to address multiple learning objectives connecting course content to the laboratory activities, as well as teach basic molecular biology laboratory skills and procedures in the context of a primary research activity. Pre- and posttesting and student surveys both suggest that the laboratory curriculum resulted in significant learning gains, as well as being well received and valued by the students.
[Organization of clinical research: in a large scale department for cardiothoracic surgery].
Sarikouch, S; Schilling, T; Haverich, A
2010-04-01
Translation of basic research results into routine patient care is delayed in parts by lack of institutionalization in clinical research. In this article the research structure and organization of our Department of Cardiac, Thoracic, Transplantation and Vascular Surgery are described.Basic research, separately directed, is accomplished in the Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and within the scope of the Excellence cluster "REBIRTH--from Regenerative Biology to Reconstructive Therapy".Clinical research is directed by heads of the subdepartments of our institution (valve and coronary surgery, aortic surgery, surgical electrophysiology, vascular surgery, thoracic surgery, cardiac assist systems, thoracic transplantation, intensive care and pediatric heart surgery).A separate subdepartment for clinical research is responsible for study coordination and accompanies clinical studies from study design and patient screening to publication. This subdepartment also serves as a constant contact to sponsors and superordinated research organizations within the Hannover Medical School.
A new approach to electrophoresis in space
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.
1990-01-01
Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.
NASA Astrophysics Data System (ADS)
Zhong, Hairong; Xu, Wei; Hu, Haojun; Duan, Chengfang
2017-08-01
This article analyzes the features of fostering optoelectronic students' innovative practical ability based on the knowledge structure of optoelectronic disciplines, which not only reveals the common law of cultivating students' innovative practical ability, but also considers the characteristics of the major: (1) The basic theory is difficult, and the close combination of science and technology is obvious; (2)With the integration of optics, mechanics, electronics and computer, the system technology is comprehensive; (3) It has both leading-edge theory and practical applications, so the benefit of cultivating optoelectronic students is high ; (4) The equipment is precise and the practice is costly. Considering the concept and structural characteristics of innovative and practical ability, and adhering to the idea of running practice through the whole process, we put forward the construction of three-dimensional innovation and practice platform which consists of "Synthetically Teaching Laboratory + Innovation Practice Base + Scientific Research Laboratory + Major Practice Base + Joint Teaching and Training Base", and meanwhile build a whole-process progressive training mode to foster optoelectronic students' innovative practical ability, following the process of "basic experimental skills training - professional experimental skills training - system design - innovative practice - scientific research project training - expanded training - graduation project": (1) To create an in - class practical ability cultivation environment that has distinctive characteristics of the major, with the teaching laboratory as the basic platform; (2) To create an extra-curricular innovation practice activities cultivation environment that is closely linked to the practical application, with the innovation practice base as a platform for improvement; (3) To create an innovation practice training cultivation environment that leads the development of cutting-edge, with the scientific research laboratory as a platform to explore; (4) To create an out-campus expanded training environment of optoelectronic major practice and optoelectronic system teaching and training, with the major practice base as an expansion of the platform; (5) To break students' "pre-job training barriers" between school and work, with graduation design as the comprehensive training and testing link.
NASA Technical Reports Server (NTRS)
Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.
1974-01-01
The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.
How Big Science Came to Long Island: The Birth of Brookhaven Laboratory (429th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crease, Robert P.
Robert P. Crease, historian for the U.S. Department of Energy's Brookhaven National Laboratory and Chair of the Philosophy Department at Stony Brook University, will give two talks on the Laboratory's history on October 31 and December 12. Crease's October 31 talk, titled "How Big Science Came to Long Island: The Birth of Brookhaven Lab," will cover the founding of the Laboratory soon after World War II as a peacetime facility to construct and maintain basic research facilities, such as nuclear reactors and particle accelerators, that were too large for single institutions to build and operate. He will discuss the keymore » figures involved in starting the Laboratory, including Nobel laureates I.I. Rabi and Norman Ramsey, as well as Donald Dexter Van Slyke, one of the most renowned medical researchers in American history. Crease also will focus on the many problems that had to be overcome in creating the Laboratory and designing its first big machines, as well as the evolving relations of the Laboratory with the surrounding Long Island community and news media. Throughout his talk, Crease will tell fascinating stories about Brookhaven's scientists and their research.« less
1986-08-01
Technology Laboratory, Watertown, MA AIR FORCE BASIC RESEARCH IN DYNAMICS AND CONTROL OF LARGE SPACE STRUCTURES Anthony K. Amos, Boiling Air Force Base...Engineering, Watchun$, NJ TEMPERATURE SHIFT CONSIDERATIONS FOR DAMPING MATERIALS L. Rogers, Air Force Wright Aeronautictl Laboratories, Wright...INDUCED CAVITY ACOUSTICS L.L. Shaw,. Air Force Wr4ht Aeroaauical Laborawrics, Wri•ht-Paucswon AFB. OH i 4i SESSION CHAIRMEN AND COCHAIRMEN 56th Shock and
Soil moisture mapping by ground and airborne microwave radiometry
NASA Technical Reports Server (NTRS)
Poe, G.; Edgerton, A. T.
1972-01-01
Extensive ground-based and airborne investigations were undertaken in conjunction with laboratory dielectric measurements of soils and analytical modeling. Radiometric measurements were made in the vicinity of Phoenix, Arizona at observational wavelengths ranging from 0.81 to 21 cm. Ground experiments were conducted with a microwave field laboratory and airborne measurements were obtained from a CV-990 aircraft. Research activities were focused on establishing basic relationships between microwave emission and the distribution of moisture.
Fong, Eliza L.S.; Watson, Brendan M.; Kasper, F. Kurtis
2013-01-01
Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery and gene therapy, especially as related to applications in bone and cartilage tissue engineering. PMID:22821772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drryl P. Butt; Brian Jaques
Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, James A.; O'Hagan, Molly J.; Ho, Ming-Hsun
2013-12-09
The [Ni(PR2NR’2)2]2+ catalysts, (where PR2NR´2 is 1,5-R´-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), are some of the fastest reported for hydrogen production and oxidation, however, chair/boat isomerization and the presence of a fifth solvent ligand have the potential to slow catalysis by incorrectly positioning the pendant amines or blocking the addition of hydrogen. Here, we report the structural dynamics of a series of [Ni(PR2NR’2)2]n+ complexes, characterized by NMR spectroscopy and theoretical modeling. A fast exchange process was observed for the [Ni(CH3CN)(PR2NR’2)2]2+ complexes which depends on the ligand. This exchange process was identified to occur through a three step mechanism including dissociation of the acetonitrile, boat/chair isomerizationmore » of each of the four rings identified by the phosphine ligands (including nitrogen inversion), and reassociation of acetonitrile on the opposite side of the complex. The rate of the chair/boat inversion can be influenced by varying the substituent on the nitrogen atom, but the rate of the overall exchange process is at least an order of magnitude faster than the catalytic rate in acetonitrile demonstrating that the structural dynamics of the [Ni(PR2NR´2)2]2+ complexes does not hinder catalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP56073. Research by J.A.F., M.O., M-H. H., M.L.H, D.L.D. A.M.A., S. R. and R.M.B. was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. W.J.S. and S.L. were funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences. T.L. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory; and the Jaguar supercomputer at Oak Ridge National Laboratory (INCITE 2008-2011 award supported by the Office of Science of the U.S. DOE under Contract No. DE-AC0500OR22725).« less
Johnson, Jani A; Xu, Jingjing; Cox, Robyn M
2016-01-01
Modern hearing aid (HA) devices include a collection of acoustic signal-processing features designed to improve listening outcomes in a variety of daily auditory environments. Manufacturers market these features at successive levels of technological sophistication. The features included in costlier premium hearing devices are designed to result in further improvements to daily listening outcomes compared with the features included in basic hearing devices. However, independent research has not substantiated such improvements. This research was designed to explore differences in speech-understanding and listening-effort outcomes for older adults using premium-feature and basic-feature HAs in their daily lives. For this participant-blinded, repeated, crossover trial 45 older adults (mean age 70.3 years) with mild-to-moderate sensorineural hearing loss wore each of four pairs of bilaterally fitted HAs for 1 month. HAs were premium- and basic-feature devices from two major brands. After each 1-month trial, participants' speech-understanding and listening-effort outcomes were evaluated in the laboratory and in daily life. Three types of speech-understanding and listening-effort data were collected: measures of laboratory performance, responses to standardized self-report questionnaires, and participant diary entries about daily communication. The only statistically significant superiority for the premium-feature HAs occurred for listening effort in the loud laboratory condition and was demonstrated for only one of the tested brands. The predominant complaint of older adults with mild-to-moderate hearing impairment is difficulty understanding speech in various settings. The combined results of all the outcome measures used in this research suggest that, when fitted using scientifically based practices, both premium- and basic-feature HAs are capable of providing considerable, but essentially equivalent, improvements to speech understanding and listening effort in daily life for this population. For HA providers to make evidence-based recommendations to their clientele with hearing impairment it is essential that further independent research investigates the relative benefit/deficit of different levels of hearing technology across brands and manufacturers in these and other real-world listening domains.
Science, environment and technology summit: A long term national science strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trivelpiece, A.W.
1995-06-01
This document contains the text of the testimony given by Alvin W. Trivelpiece, Director, Oak Ridge National Laboratory, before the Subcommittee on Basic Research, Committee on Science, US House of Representatives in Oak Ridge, TN on June 1, 1995.
The Development of a Post-Baccalaureate Certificate Program in Molecular Diagnostics
Williams, Gail S.; Brown, Judith D.; Keagle, Martha B.
2000-01-01
A post-baccalaureate certificate program in diagnostic molecular sciences was created in 1995 by the Diagnostic Genetic Sciences Program in the School of Allied Health at the University of Connecticut. The required on-campus lecture and laboratory courses include basic laboratory techniques, health care issues, cell biology, immunology, human genetics, research, management, and molecular diagnostic techniques and laboratory in molecular diagnostics. These courses precede a 6-month, full-time practicum at an affiliated full-service molecular laboratory. The practicum includes amplification and blotting methods, a research project, and a choice of specialized electives including DNA sequencing, mutagenesis, in situ hybridization methods, or molecular diagnostic applications in microbiology. Graduates of the program are immediately eligible to sit for the National Credentialing Agency examination in molecular biology to obtain the credential Clinical Laboratory Specialist in Molecular Biology (CLSp(MB). This description of the University of Connecticut program may assist other laboratory science programs in creating similar curricula. PMID:11232107
Future Generation Network Architecture (New Arch)
2004-06-01
Laboratory/IFKF, Rome NY. Other, unfunded, participants in the project included the UC Berkeley ICSI Center for Internet Research (Mark Handley), and an...developed in the late 1970s under DARPA’s Internet research program. The global technical principles, or architecture, of the Internet design represented a...wide range of key aspects of the basic architecture, in search of unifying principles. The success of the original DARPA Internet research program
NASA Astrophysics Data System (ADS)
Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.
2007-04-01
The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wesolowski, David J.; FIRST Staff
2011-05-01
'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University ofmore » Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.« less
Wesolowski, David J. (Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center); FIRST Staff
2017-12-09
'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.
DePaolo, Donald J. (Director, Center for Nanoscale Control of Geologic CO2); NCGC Staff
2017-12-09
'Carbon in Underland' was submitted by the Center for Nanoscale Control of Geologic CO2 (NCGC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'entertaining animation and engaging explanations of carbon sequestration'. NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from seven institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO{sub 2} is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO{sub 2}. Research topics are: bio-inspired, CO{sub 2} (store), greenhouse gas, and interfacial characterization.
Unique life sciences research facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.
1994-01-01
The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.
Students Become Scientists at Science Skills Boot Camp | Poster
At the 2016 Science Skills Boot Camp (SSBC), a one-day training program designed for NIH summer interns with little or no prior research experience, students gathered to learn about basic research and laboratory skills. The boot camp provided a unique opportunity for interns to expand their knowledge of simple bench techniques, scientific papers, and ways to communicate their
ERIC Educational Resources Information Center
McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.
2006-01-01
We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…
McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M
2006-03-01
We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For the laboratory-based program, selected students from Baltimore City Schools working in groups of three were teamed with undergraduate research assistants at Morgan State University. Teams were assigned a project that was indirectly related to our laboratory research on the characterization of gene expression in Caenorhabditis elegans. At the end of the program, teams prepared posters detailing their accomplishments, and presented their findings to parents and faculty members during a mini-symposium. The posters were also submitted to the respective schools and the interns were offered a presentation of their research at local high school science fairs. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
Report of the Defense Science Board Task Force on Basic Research
2012-01-01
Applied Research Navy $2.5 Laboratory University of Maryland, College Park: Center for National Security $18.7 Advanced Study of Language Agency ( NSA ...Stevens Institute of Technology: Systems ASD{R&E) and $7.2 Engineering Research Center NSA DOD Federally Funded Research and Development Centers...Navy USD(AT&L) Army USD(AT&L) Air Force Air Force USD(AT&L) NSA USD(AT&L) USD(AT&L) FFRDCs that are sponsored by agencies other than DOD
Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff
2017-12-09
'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-31
The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the followingmore » areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.« less
Housing and maintenance of Ambystoma mexicanum, the Mexican axolotl.
Farkas, Johanna E; Monaghan, James R
2015-01-01
The aim of this paper is to assemble a significant amount of information on Ambystoma mexicanum, the axolotl salamander, to assist in the basic knowledge needed to raise, breed, and study most aspects of axolotl biology. It is important to understand the basic biology of the axolotl in order to make informed decisions on their proper care and use in experiments. Therefore, we will provide necessary information to the non-herpetologist that will assist in their study of this unique and fascinating animal. We also aim to provide a resource on the general anatomy, behavior, and experimental tips specific to the Mexican axolotl that will be of use to most axolotl laboratories. Axolotls have been actively researched since the 1860s, giving testament to their relatively straightforward maintenance and their versatility as an animal model for development and regeneration. Interest in using the axolotl in laboratory research has grown tremendously over the past decade, so dedicated resources to support the study of this species are needed and encouraged.
Basic Hydrodynamics of Richtmyer-Meshkov-type Growth and Oscillations in the ICF-Relevant Conditions
2010-01-01
Washington, DC 20375 3ARTEP Inc ., Ellicott City, Maryland 21042 4Department of Mechanical Engineering, Ben Gurion University, Beer Sheva, Israel...the 56-beam Nike KrF laser facility at the Naval Research Laboratory (3 kJ in 0.248 μm, see Obenschain et al. 1996). Basic hydrodynamics of Richtmyer...2000 Nike (NRL) 0.248 8-13 4 400 40 30, 45 1.85 Si monochrom. Ablative RMI, feedout, classical RMI, impulsive loading, re- shock
[RABIN MEDICAL CENTER - A TERTIARY CENTER OF EXCELLENCE IN SERVICE, TEACHING AND RESEARCH].
Niv, Yaron; Halpern, Eyran
2017-04-01
Rabin Medical Center (RMC) belongs to Clalit Health Services and is a tertiary, academic medical center with all the facilities of modern and advanced medicine. Annually in the RMC, 650,000 patients are treated in the outpatient clinics, and 100,000 patients are hospitalized in the hospital departments. All these patients are treated by 4500 devoted staff members, including 1000 physicians and 2000 nurses. RMC is one of the largest, centrally located medical centers for medical and nursing students' education in Israel, taking place in clinical departments, as well as in basic sciences courses. We also have a nursing school attached to the hospital. Our vision supports excellence in research. We have a special Research Department that supports RMC researchers, with research coordinators, and all the relevant facilities to assist in clinical and basic science studies. We also promote collaboration efforts with many academic centers in Israel and abroad. The scope of RMC research is broad, including 700 new studies every year and 1500 active studies currently. This issue of Harefuah is dedicated to the clinical and basic science research conducted at RMC with original papers presenting research performed by our departments and laboratories.
The Science of Cancer Prevention
The science of cancer prevention is described by Dr. Barnett S. Kramer, M.D., M.P.H., director of the Division of Cancer Prevention, National Cancer Institute (NCI). The Division of Cancer Prevention administers a broad spectrum of research that spans basic pre-clinical, laboratory research, supportive and palliative care research, early detection, and randomized controlled clinical trials. The Division also supports the Cancer Prevention Fellowship Program and is devoted to the balanced communication of scientific results.
Ecott, Cheryl L; Critchfield, Thomas S
2004-01-01
Basic researchers, but not most applied researchers, have assumed that the behavior-decelerating effects of noncontingent reinforcement result at least partly from adventitious reinforcement of competing behaviors. The literature contains only sketchy evidence of these effects because few noncontingent reinforcement studies measure alternative behaviors. A laboratory model is presented in which concurrent schedules of contingent reinforcement were used to establish a "target" and an "alternative" behavior. Imposing noncontingent reinforcement decreased target behavior rates and increased alternative behavior rates, outcomes that were well described by the standard quantitative account of alternative reinforcement, the generalized matching law. These results suggest that adventitious reinforcement of alternative behaviors can occur during noncontingent reinforcement interventions, although the range of conditions under which this occurs remains to be determined in future studies. As an adjunct to applied studies, laboratory models permit easy measurement of alternative behaviors and parametric manipulations needed to answer many research questions. PMID:15529885
Manual of Basic Techniques for a Health Laboratory.
ERIC Educational Resources Information Center
World Health Organization, Geneva (Switzerland).
Described are basic laboratory methods for diagnosing and investigating diseases of importance to developing countries. Intended primarily for the training of technicians who will work in peripheral laboratories, the manual is designed so that student laboratory assistants can be taught to use it with minimal supervision from a teacher. The…
BASIC STEPS IN DESIGNING SCIENCE LABORATORIES.
ERIC Educational Resources Information Center
WHITNEY, FRANK L.
PLANNERS OF CURRENT UNIVERSITY LABORATORIES OFTEN MAKE THE SAME MISTAKES MADE BY INDUSTRIAL LABORATORIES 20 YEARS AGO. THIS CAN BE REMEDIED BY INCREASED COMMUNICATION BETWEEN SCIENTISTS AND DESIGNERS IN SEMINARS DEFINING THE BASIC NEEDS OF A PARTICULAR LABORATORY SITUATION. ELECTRONIC AND MECHANICAL EQUIPMENT ACCOUNT FOR OVER 50 PER CENT OF TOTAL…
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of themore » US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.« less
Laboratory Design for Microbiological Safety
Phillips, G. Briggs; Runkle, Robert S.
1967-01-01
Of the large amount of funds spent each year in this country on construction and remodeling of biomedical research facilities, a significant portion is directed to laboratories handling infectious microorganisms. This paper is intended for the scientific administrators, architects, and engineers concerned with the design of new microbiological facilities. It develops and explains the concept of primary and secondary barriers for the containment of microorganisms. The basic objectives of a microbiological research laboratory, (i) protection of the experimenter and staff, (ii) protection of the surrounding community, and (iii) maintenance of experimental validity, are defined. In the design of a new infectious-disease research laboratory, early identification should be made of the five functional zones of the facility and their relation to each other. The following five zones and design criteria applicable to each are discussed: clean and transition, research area, animal holding and research area, laboratory support, engineering support. The magnitude of equipment and design criteria which are necessary to integrate these five zones into an efficient and safe facility are delineated. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:4961771
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.H.
1995-07-01
The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following severalmore » years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.« less
Nuclear Science Teaching Aids and Activities.
ERIC Educational Resources Information Center
Woodburn, John H.
This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…
The Basic Science Program will receive genomic DNA at a concentration of 50 ng/ul.Human leukocyte antigen (HLA) typing will be performed using atargeted next-generation sequencing (NGS) method.Briefly, locus-specific primers are use
U.S. Army Aeromedical Research Laboratory Annual Progress Report, Calendar Year 1999
2000-03-01
has continued basic flat panel research with the intent of transitioning the approach to applied, in-flight examination of flat panel technology...Department of Psychology was executed in CY99 for cooperative investigation of hierarchically ordered information in intelligent multifunction displays...1999 Instructional courses on fatigue management were given at the Aviation Precommand Course, the Aviation Psychology Course, the Flight Surgeon’s
NCI Core Open House Shines Spotlight on Supportive Science and Basic Research | Poster
The lobby of Building 549 at NCI at Frederick bustled with activity for two hours on Tuesday, May 1, as several dozen scientists and staff gathered for the NCI Core Open House. The event aimed to encourage discussion and educate visitors about the capabilities of the cores, laboratories, and facilities that offer support to NCI’s Center for Cancer Research.
Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff
2017-12-09
'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halabi, Linda
"Undergraduate Research at the Center for Energy Efficient Materials (CEEM)" was submitted by CEEM to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.« less
[The experimental surgery and your relation with the university: an experience report].
Yamaki, Vitor Nagai; Teixeira, Renan Kleber Costa; Feijo, Daniel Haber; Silva, José Antonio Cordero da; Botelho, Nara Macedo; Henriques, Marcus Vinicius
2014-01-01
The laboratory of experimental surgery represents one of the key points for the university, especially in the biomedical area. This focuses on the university's tripod of primary structure that are teaching, research and extension, which are essential for formation of humanistic and practice of a good doctor that is based, first of all, on scientific evidence and critical knowledge. The importance of a laboratory of experimental surgery centers for medical education was regulated from the new curriculum guidelines of the Ministério da Educação e Cultura, establishing a mandatory laboratory within college centers. Therefore, it is of great importance to the contribution of the laboratories of experimental surgery in the curriculum, both in the discipline of surgical technics and experimental surgery, and an incentive for basic research. Thus, the study presents the experience of 15 years of the Laboratory of Experimental Surgery from Universidade do Estado do Pará, with the goal show the importance of this to medical graduation and the university.
LLE 2009 annual report, October 2008-September 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
none, none
2010-01-01
The fiscal year ending September 2009 (FY2009) concluded the second year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year. It also reports on LLE’s progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the National Laser Users’ Facility (NLUF), and other external users; and programs focusingon the education of high school, undergraduate, and graduate students during the year.
Shurtleff, Amy C; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S; Bavari, Sina
2012-12-01
We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review.
Shurtleff, Amy C.; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S.; Bavari, Sina
2012-01-01
We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review. PMID:23342380
Deichmann, Ute
2012-01-01
For centuries the question of the origin of life had focused on the question of the spontaneous generation of life, at least primitive forms of life, from inanimate matter, an idea that had been promoted most prominently by Aristotle. The widespread belief in spontaneous generation, which had been adopted by the Church, too, was finally abandoned at the beginning of the twentieth century, when the question of the origin of life became related to that of the artificial generation of life in the laboratory. This paper examines the role of social authorities, researchers' basic beliefs, crucial experiments, and scientific advance in the controversies about spontaneous generation from the seventeenth to the nineteenth centuries and analyzes the subsequent debates about the synthesis of artificial life in the changing scientific contexts of the nineteenth and early-twentieth centuries. It shows that despite the importance of social authorities, basic beliefs, and crucial experiments scientific advances, especially those in microbiology, were the single most important factor in the stepwise abandoning of the doctrine of spontaneous generation. Research on the origin of life and the artificial synthesis of life became scientifically addressed only when it got rid of the idea of constant smooth transitions between inanimate matter and life and explored possible chemical and physical mechanisms of the specificity of basic molecules and processes of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Jeff
"Carbon in Underland" was submitted by the Center for Nanoscale Controls on Geologic CO2 (NCGC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its "entertaining animation and engaging explanations of carbon sequestration". NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from sevenmore » institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO2 is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO2. Research topics are: bio-inspired, CO2 (store), greenhouse gas, and interfacial characterization.« less
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
1988-07-01
I Activities 1. Potential Low Energy Antiproton Sources in the United States 15 D.C. Peaslee (University of Maryland) 2. Low Energy Antiproton...Nieto, R.J. Hughes (Los Alamos National Laboratory) 2. Basic Physics Program for a Low Energy Antiproton Source in North America 245 B.E. Bonner (Rice...J.L. Callas (Jet Propulsioi< Laboratory) 5r> Energy Transfer in Antiproton Annihilation Rockets 577 B.N. Cassenti (United Technologies Research Center
2016-03-16
PIs at Boise State University. . . . 39 3.16 Phase noise measurement results via mm-wave test bed. . . . . . . . 40 iv Chapter 1 Foreword WIRELESS...enabling the PI to acquire various testing 1 and measurement equipment that can be used to enhance instructional, research, and outreach activities at...etc. Although the Digital Signal Processing and Communication Laboratory (DSPCL) at CSUB was equipped with basic testing and measurement equipment and
The success of the NERL quality system relies on participation by all managers and staff. This training was developed for the purpose of communicating the basic features of the quality system in a convenient and efficient manner. The total time to complete a review of all five ...
A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an ex...
The Command and Control Reference Model for Modeling, Simulations, and Technology Applications
1994-01-20
NUMBER Basic Research Group (BRG), Technical Panel for C3 (TPC3) Joint Directors of Laboratories (JDL) JDL TPC3 BRG NRaD, San Diego , CA 92152; RADC...wind, ionization, pressure, pollution, ... mesofeature (weather, man-made) cloud, storm, fog, smog, dust, fire, jet stream, smoke, aurora borealis
DISCUS Interactive System Users' Manual. Final Report.
ERIC Educational Resources Information Center
Silver, Steven S.; Meredith, Joseph C.
The results of the second 18 months (December 15, 1968-June 30, 1970) of effort toward developing an Information Processing Laboratory for research and education in library science is reported in six volumes. This volume contains: the basic on-line interchange, DISCUS operations, programming in DISCUS, concise DISCUS specifications, system author…
A Biosafety Level 2 Virology Lab for Biotechnology Undergraduates
ERIC Educational Resources Information Center
Matza-Porges, Sigal; Nathan, Dafna
2017-01-01
Medical, industrial, and basic research relies heavily on the use of viruses and vectors. Therefore, it is important that bioscience undergraduates learn the practicalities of handling viruses. Teaching practical virology in a student laboratory setup presents safety challenges, however. The aim of this article is to describe the design and…
Key Challenges and New Trends in Battery Research (2011 EFRC Forum)
Tarascon, Jean Marie
2018-02-13
Jean-Marie Tarascon, Professor at the University de Picardie Jules Verne, France, was the fourth speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Tarascon recounted European basic research activates in electrical energy storage. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasielewski, Michael R.; ANSER Staff
2011-05-01
'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy'smore » Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.« less
Wasielewski, Michael R. (Director, Argonne-Northwestern Solar Energy Research Center); ANSER Staff
2017-12-09
'Search for the ANSER' was submitted by the Argonne-Northwestern Solar Energy Research Center (ANSER) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. ANSER, an EFRC directed by Michael Wasielewski at Argonne National Laboratory is a partnership of scientists from five institutions: Argonne National Laboratory, Northwestern University, University of Chicago, University of Illinois at Urbana-Champaign, and Yale. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. At ANSER, the mission is 'to revolutionize our understanding of molecules, materials and methods necessary to create dramatically more efficient technologies for solar fuels and electricity production.' Research topics are: catalysis (water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar photovoltaic, solar fuels, solar electrodes, photosynthesis, transportation fuels, bio-inspired, spin dynamics, hydrogen (fuel), ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.
FY08 Engineering Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minichino, C; McNichols, D
2009-02-24
This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technologymore » development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
1992-03-11
calcim phosphate ceranuc- organic acid composites were prepared from hydroxyapatite , tricalcium phosphate, or zinc calcium phosphate, with malic acid...pressures during deposition. The film processing parameters and the basic mechanisms for the optimized conditions have been established for a possible...encountered laboratory influences detrimental to your Proposed research? Explain. Comments: JI - ve r " i O wt4 w 4 h0 - Ic hto cm pxtc 1/C Brie.f resume oa
NASA Technical Reports Server (NTRS)
1986-01-01
The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.
Holdcroft, Anita
2007-01-01
The research process -- from study design and selecting a species and its husbandry, through the experiment, analysis, peer review, and publication -- is rarely subject to questions about sex or gender differences in mainstream life sciences research. However, the impact of sex and gender on these processes is important in explaining biological variations and presentation of symptoms and diseases. This review aims to challenge assumptions and to develop opportunities to mainstream sex and gender in basic scientific research. Questions about the mechanisms of sex and gender effects were reviewed in relation to biological, environmental, social, and psychological interactions. Gender variations, in respect to aging, socializing, and reproduction, that are present in human populations but are rarely featured in laboratory research were considered to more effectively translate animal research into clinical health care. Methodologic approaches to address the present lack of a gender dimension in research include actively reducing variations through attention to physical factors, biological rhythms, and experimental design. In addition, through genomic and acute nongenomic activity, hormones may compound effects through multiple small sex differences that occur during the course of an acute pathologic event. Furthermore, the many exogenous sex steroid hormones and their congeners used in medicine (eg, in contraception and cancer therapies) may add to these effects. The studies reviewed provide evidence that sex and gender are determinants of many outcomes in life science research. To embed the gender dimension into basic scientific research, a broad approach -- gender mainstreaming -- is warranted. One example is the use of review boards (eg, animal ethical review boards and journal peer-review boards) in which gender-related standardized questions can be asked about study design and analysis. A more fundamental approach is to question the relevance of present-day laboratory models to design methods to best represent the age-related changes, comorbidity, and variations experienced by each sex in clinical medicine.
Laboratory Astrophysics White Paper: Summary of Laboratory Astrophysics Needs
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA Laboratory Astrophysics Workshop (NASA LAW) met at NASA Ames Research Center from 1-3 May 2002 to assess the role that laboratory astrophysics plays in the optimization of NASA missions, both at the science conception level and at the science return level. Space missions provide understanding of fundamental questions regarding the origin and evolution of galaxies, stars, and planetary systems. In all of these areas the interpretation of results from NASA's space missions relies crucially upon data obtained from the laboratory. We stress that Laboratory Astrophysics is important not only in the interpretation of data, but also in the design and planning of future missions. We recognize a symbiosis between missions to explore the universe and the underlying basic data needed to interpret the data from those missions. In the following we provide a summary of the consensus results from our Workshop, starting with general programmatic findings and followed by a list of more specific scientific areas that need attention. We stress that this is a 'living document' and that these lists are subject to change as new missions or new areas of research rise to the fore.
An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological
Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA
2016-01-01
Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121
NASA Astrophysics Data System (ADS)
Karube, Norio
1991-03-01
I am to report on some aspects of industrial lasers in Japan. Mostly centering on the market. In Japan, the history of laser developnent is rather profound. And long. Ever since the first invention of the laser in this country in 1960. This is partly because of the fact that in Japan the spectroscopic studies of the ruby was very popular in the late 1950's. Ever since niost of the work has been done in the research laboratories of the industry, not in the universities or not in the governmental laboratories. And since that time our first activity was mainly centering on the basic research, but after that time we have the evolution of the technology. One of the features in Japan is that the activity of developement and research of laser technology from the very basic phase up to the present commercialization has been done by the same group of people, including ine. We had a national project which ended about six years ago which was sponsored by MITI. MITI is Ministry of International Trade and Industry in Japan. And because of this national project, the effect of this project had a very enlightening effect in Japan. And after that our Japanese laser market became very flourishing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM
Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidationmore » with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
Endryansyah; Wanarti Rusimamto, Puput; Ridianto, Adam; Sugiarto, Hariyadi
2018-04-01
In the Department of Electrical Engineering FT Unesa, there are 3 majors: S1 Electrical Engineering Education, S1 Electrical Engineering, and D3 Electrical Engineering. Courses the Basic System Settings go to in the curriculum of the three programs. Team lecturer college of basic system settings seek learning innovation, focused on the development of trainer to student practicum at the laboratory of systems control. Trainer developed is a servo motor along with the lab module that contains a wide variety of theories about the servo motor and guide the practicum. This research type is development research using methods Research & development (R & D). In which the steps are applied in this study is as follows: pay attention to the potential and existing problems, gather information and study the literature, design the product, validate the design, revise the design, a limited trial. The results of the validation of learning device in the form of modules and trainer obtained as follows: score validation of learning device is 3,64; score validation lab module Servo Motor is 3,47; and questionnaire responses of students is 3,73. The result of the whole validation value is located in the interval >of 3.25 s/d 4 with the category of “Very Valid”, so it can be concluded that all instruments have a level of validity “Very Valid” and worthy of use for further learning.
Radtke, Christine; Wewetzer, Konstantin
2009-06-12
Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that have been shown to promote axonal regeneration and remyelination in a variety of different lesion paradigms. It is still a matter of debate in how far OECs differ from Schwann cells regarding their regenerative potential and molecular setup. The fact that OECs have been already used for transplantation in humans may imply that the need of the hour is the fine-tuning of clinical application details rather than to cross the bridge between laboratory animal and man. Considering the therapeutic transplantation of OECs, however, the basic question to date is not 'how' to translate but rather 'what' to translate into clinical practice. The aim of the present article is to provide a summary of the current literature and to define the open issues relevant for translating basic research on OECs into clinical practice.
Computer Architecture for Energy Efficient SFQ
2014-08-27
IBM Corporation (T.J. Watson Research Laboratory) 1101 Kitchawan Road Yorktown Heights, NY 10598 -0000 2 ABSTRACT Number of Papers published in peer...accomplished during this ARO-sponsored project at IBM Research to identify and model an energy efficient SFQ-based computer architecture. The... IBM Windsor Blue (WB), illustrated schematically in Figure 2. The basic building block of WB is a "tile" comprised of a 64-bit arithmetic logic unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, David
"The Center for Materials Science of Nuclear Fuels (CMSNF)" was submitted by the CMSNF to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from five institutions: INL (lead), University of Florida, Oak Ridge National Laboratory, Purdue University and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels (CMSNF) is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.« less
1989-02-10
to the AIDS virus , in a presentation titled "Marine Invertebrate Immunity: The AIDS Cqnnectlon." Funding for "Biomedical Applications of Basic...ibl itY Codes iAv ~li anti/or Dist. Spoc al The February evening in 1975 after MV Islander hit the Gould are Alan G. Lunn, left, marine contractor...discovery 25 years ago in the mtnt, Dr. Kornberg pointed out. is that the AIDS virus is covea, they are abundant only where laboratory of Frederik B
Hetherington, Marion M; Rolls, Barbara J
2018-05-11
In a 1987 paper, addressing questions about factors that influence the initiation, maintenance, and termination of food intake, we wrote, "development of systematic procedures to measure eating behaviour is essential if descriptive and inferential statistics are to be applied to answering such questions, giving them power and replicability" (Hetherington & Rolls, 1987 page 77). Therefore, as longstanding advocates of rigorous procedures in laboratory-based investigations of food intake, we welcome Robinson et al.'s (2018) clear recommendations for laboratory studies. However, this is akin to voting for "motherhood and apple pie", and few would argue against deployment of improved procedures for these studies. What then can we contribute to the debate in order to refine the recommendations made or add to them? Our most important message for researchers is that the central hypothesis or main research question will determine the most appropriate methods for any study. If a laboratory-based study is planned, then there are basic methodological questions that must be answered before proceeding to a final protocol. While such guidelines are needed to ensure basic methodological rigour, these should not be so prescriptive as to inhibit creativity. Here we provide several thoughts on how to advance studies of ingestive behaviour, including the need to apply appropriate controls, encouragement to move beyond convenience samples, and to remember the value of exploratory, observational, and naturalistic studies to complement laboratory-based studies. Copyright © 2018. Published by Elsevier Ltd.
Standard Mutation Nomenclature in Molecular Diagnostics
Ogino, Shuji; Gulley, Margaret L.; den Dunnen, Johan T.; Wilson, Robert B.
2007-01-01
To translate basic research findings into clinical practice, it is essential that information about mutations and variations in the human genome are communicated easily and unequivocally. Unfortunately, there has been much confusion regarding the description of genetic sequence variants. This is largely because research articles that first report novel sequence variants do not often use standard nomenclature, and the final genomic sequence is compiled over many separate entries. In this article, we discuss issues crucial to clear communication, using examples of genes that are commonly assayed in clinical laboratories. Although molecular diagnostics is a dynamic field, this should not inhibit the need for and movement toward consensus nomenclature for accurate reporting among laboratories. Our aim is to alert laboratory scientists and other health care professionals to the important issues and provide a foundation for further discussions that will ultimately lead to solutions. PMID:17251329
Hearing in Laboratory Animals: Strain Differences and Nonauditory Effects of Noise
Parrish, Jennifer L.; Hughes, Larry F.; Toth, Linda A.; Caspary, Donald M.
2013-01-01
Hearing in laboratory animals is a topic that traditionally has been the domain of the auditory researcher. However, hearing loss and exposure to various environmental sounds can lead to changes in multiple organ systems, making what laboratory animals hear of consequence for researchers beyond those solely interested in hearing. For example, several inbred mouse strains commonly used in biomedical research (e.g., C57BL/6, DBA/2, and BALB/c) experience a genetically determined, progressive hearing loss that can lead to secondary changes in systems ranging from brain neurochemistry to social behavior. Both researchers and laboratory animal facility personnel should be aware of both strain and species differences in hearing in order to minimize potentially confounding variables in their research and to aid in the interpretation of data. Independent of genetic differences, acoustic noise levels in laboratory animal facilities can have considerable effects on the inhabitants. A large body of literature describes the nonauditory impact of noise on the biology and behavior of various strains and species of laboratory animals. The broad systemic effects of noise exposure include changes in endocrine and cardiovascular function, sleep–wake cycle disturbances, seizure susceptibility, and an array of behavioral changes. These changes are determined partly by species and strain; partly by noise intensity level, duration, predictability, and other characteristics of the sound; and partly by animal history and exposure context. This article reviews some of the basic strain and species differences in hearing and outlines how the acoustic environment affects different mammals. PMID:15766204
Perspectives in Energy Research: How Can We Change the Game? (2011 Summit)
Isaacs, Eric
2018-02-12
Eric Issacs, Director of DOE's Argonne National Laboratory, discussed the role of the EFRC Program and National Laboratories in developing game-changing energy technologies in the EFRC Summit session titled "Leading Perspectives in Energy Research." The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xing; Liu, Lin; Jiang, Yu
The need for inexpensive and high-activity oxygen reduction reaction (ORR) electrocatalysts has attracted considerable research interest over the past years. Here we report a novel hybrid that contains cobalt nitride/nitrogen-rich hollow carbon spheres (CoxN/NHCS) as a high-performance catalyst for ORR. The CoxN nanoparticles were uniformly dispersed and confined in the hollow NHCS shell. The performance of the resulting CoxN/NHCS hybrid was comparable with that of a commercial Pt/C at the same catalyst loading toward ORR, but the mass activity of the former was 5.7 times better than that of the latter. The nitrogen in both CoxN and NHCS, especially CoxN,more » could weaken the adsorption of reaction intermediates (O and OOH), which follows the favourable reaction pathway on CoxN/NHCS according to the DFT-calculated Gibbs free energy diagrams. Our results demonstrated a new strategy for designing and developing inexpensive, non-precious metal electrocatalysts for next-generation fuels. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). Dr. D. Mei is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
NASA Technical Reports Server (NTRS)
Tishkoff, Julian M.; Drummond, J. Philip; Edwards, Tim; Nejad, Abdollah S.
1997-01-01
The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: (1) examine the current state-of-the-art in hydrocarbon and/or hydrogen fueled scramjet research; (2) define the future direction and needs of basic research in support of scramjet technology; and (3) when appropriate, help transition basic research findings to solve the needs of developmental engineering programs in the area of supersonic combustion and fuels. A series of topical sessions were planned. Opening presentations were designed to focus and encourage group discussion and scientific exchange. The last half-day of the workshop was set aside for group discussion of the issues that were raised during the meeting for defining future research opportunities and directions. The following text attempts to summarize the discussions that took place at the workshop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Gary A.
"The Center for Frontiers of Subsurface Energy Security (CFSES)" was submitted to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conductmore » fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
"Electricity: the Energy of Tomorrow" was submitted by the Energy Materials Center at Cornell (emc2) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs)more » in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Pope, Gary A. (Director, Center for Frontiers of Subsurface Energy Security); CFSES Staff
2017-12-09
'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Abruna, Hector D. (Director, Energy Materials Center at Cornell); emc2 Staff
2017-12-09
'Electricity: the Energy of Tomorrow' was submitted by the Energy Materials Center at Cornell (emc2) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Improvement of Allocentric Spatial Memory Resolution in Children from 2 to 4 Years of Age
ERIC Educational Resources Information Center
Lambert, Farfalla Ribordy; Lavenex, Pierre; Lavenex, Pamela Banta
2015-01-01
Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably…
Effects of rainfall and surface flow on chemical diffusion from soil to runoff water
USDA-ARS?s Scientific Manuscript database
Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...
Fueling Around - Hazardous to Your Health. A Basic Teaching Unit on Energy. Revised.
ERIC Educational Resources Information Center
McDermott, Hugh, Ed.; Scharmann, Larry, Ed.
Seven activities are included in this 10 day secondary school science unit in which students determine the effect that auto exhaust fumes have on the air they breathe by utilizing laboratory experiences, independent research, and in-class discussions. Rationale, objectives, and instructional strategies are provided for each activity. Following two…
Basic science faculty in surgical departments: advantages, disadvantages and opportunities.
Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W
2005-01-01
The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery.
NASA Technical Reports Server (NTRS)
Cheng, Robert K.
2001-01-01
The Combustion Technologies Group at Lawrence Berkeley National Laboratory has developed simple, low-cost, yet robust combustion technologies that may change the fundamental design concept of burners for boilers and furnaces, and injectors for gas turbine combustors. The new technologies utilize lean premixed combustion and could bring about significant pollution reductions from commercial and industrial combustion processes and may also improve efficiency. The technologies are spinoffs of two fundamental research projects: An inner-ring burner insert for lean flame stabilization developed for NASA- sponsored reduced-gravity combustion experiments. A low-swirl burner developed for Department of Energy Basic Energy Sciences research on turbulent combustion.
Basic Laboratory Skills. Training Module 5.300.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the basic chemical and microbiological laboratory equipment and procedures used in water and wastewater treatment plant laboratories. Included are objectives, instructor guides, student handouts and transparency masters. This module…
Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G
2016-10-03
Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.
Janosko, Krisztina; Holbrook, Michael R.; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B.; Kuhn, Jens H.; Lackemeyer, Matthew G.
2016-01-01
Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure (“space”) suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits. PMID:27768063
Flow Cytometry Scientist | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) in the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of the immune system, cancer, and inflammation processes. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Scientist will be responsible for: Daily management of the Flow Cytometry Core, to include the supervision and guidance of technical staff members Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Provide scientific expertise to the user community and facilitate the development of cutting edge technologies Interact with Flow Core users and customers, and provide technical and scientific advice, and guidance regarding their experiments, including possible collaborations Train staff and scientific end users on the use of flow cytometry in their research, as well as teach them how to operate and troubleshoot the bench-top analyzer instruments Prepare and deliver lectures, as well as one-on-one training sessions, with customers/users Ensure that protocols are up-to-date, and appropriately adhered to Experience with sterile technique and tissue culture
Teacher Professional Development to Foster Authentic Student Research Experiences
NASA Astrophysics Data System (ADS)
Conn, K.; Iyengar, E.
2004-12-01
This presentation reports on a new teacher workshop design that encourages teachers to initiate and support long-term student-directed research projects in the classroom setting. Teachers were recruited and engaged in an intensive marine ecology learning experience at Shoals Marine Laboratory, Appledore Island, Maine. Part of the weeklong summer workshop was spent in field work, part in laboratory work, and part in learning experimental design and basic statistical analysis of experimental results. Teachers were presented with strategies to adapt their workshop learnings to formulate plans for initiating and managing authentic student research projects in their classrooms. The authors will report on the different considerations and constraints facing the teachers in their home school settings and teachers' progress in implementing their plans. Suggestions for replicating the workshop will be offered.
Mason, Timothy J; Matthews, Monte
2012-01-01
The eighth edition of the Guide for the Care and Use of Laboratory Animals recognizes the widespread use of aquatic and semiaquatic research animals by including, among other references, an entire section on aquatic animals in its chapter on environment, housing, and management. Recognizing the large number of aquatic and semiaquatic species used in research and the inherent diversity in animal needs, the Guide refers the reader to texts and journal reviews for specific recommendations and suggests consultations with persons experienced in caring for aquatic species. Here we present considerations that may add to the basic information presented in the Guide and offer some recommendations that may be useful for aquatic animal model caregivers and researchers. PMID:22776190
Improving Army Basic Research: Report of an Expert Panel on the Future of Army Laboratories
2012-01-01
commercial use only. Unauthorized posting of RAND electronic documents to a non-RAND website is prohibited. RAND electronic documents are protected under...complete. Copies may not be duplicated for commercial purposes. Unauthorized posting of RAND documents to a non-RAND website is prohibited. RAND...Inspired senior scientists and technologists with vision will be essential in research as well as in the design , development, evaluation, and
Defense Biometric and Forensic Office Research, Development, Test and Evaluation Strategy
2015-01-06
investments in biometric and forensic RDT&E. From refining biometric modalities to exploring ‘ game changing’ forensic technologies such as rapid DNA to the... ASD (R&E)), is to identify, fund, manage and transition projects that support biometric and/or forensic requirements. In the second role, the DBFO...forensic stakeholders cannot fund, to the COIs for consideration. Increase contacts with ASD (R&E) divisions/laboratories focused on basic research
Study of Effectiveness of Army Continuing Education System
1981-08-01
Laboratories fI BASIC SKILLS INSTRUCTIONAL SYSTEMS TECHNICAL AREA OTIC C• U. S. Army Research rnstioute for the Behavioral and Social Sciences LU LL...Columbus, Ohio 43201 2Q263731A770 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE US Army Research Institute for the Behavioral and August 1981...FOR THE BEHAVIORAL AND SOCIAL SCIENCES 5001 Eisenhower Avenue, Alexandria, Virginia 22333 Office, Deputy Chief of Staff for PersonnelI Department of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-06-01
The report represents responses by agencies of DHHS, and by DOE and EPA, to requests by the Director of NTP for information on agency programs in basic toxicology research, toxicology testing, and toxicology methods development. Information on dollar and manpower support for agency activities in basic toxicology research, toxicology testing, and toxicology methods development, by DHHS, DOE and EPA, is summarized on pages 4 to 10. All agencies were requested to provide summary information on their programs related to toxicology methods development, whether essential or peripheral to their missions. The information provided in response to the request is summarized inmore » tables on pages 48 to 81. Information was provided on chemical compounds currently being studied for their toxicological properties in intramural laboratories, or on contracts, or through grants.« less
Development of the HERMIES III mobile robot research testbed at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manges, W.W.; Hamel, W.R.; Weisbin, C.R.
1988-01-01
The latest robot in the Hostile Environment Robotic Machine Intelligence Experiment Series (HERMIES) is now under development at the Center for Engineering Systems Advanced Research (CESAR) in the Oak Ridge National Laboratory. The HERMIES III robot incorporates a larger than human size 7-degree-of-freedom manipulator mounted on a 2-degree-of-freedom mobile platform including a variety of sensors and computers. The deployment of this robot represents a significant increase in research capabilities for the CESAR laboratory. The initial on-board computer capacity of the robot exceeds that of 20 Vax 11/780s. The navigation and vision algorithms under development make extensive use of the on-boardmore » NCUBE hypercube computer while the sensors are interfaced through five VME computers running the OS-9 real-time, multitasking operating system. This paper describes the motivation, key issues, and detailed design trade-offs of implementing the first phase (basic functionality) of the HERMIES III robot. 10 refs., 7 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.
Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M.
2014-01-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, via and Investigational New Drug (IND) application, into early phase clinical trials. The roadmap describes four key areas; basic and preclinical research, resource development, translational research and good manufacturing practice (GMP), and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value using a model of the relevant disease. During resource development the appropriate specialists and the required expertise to bring this product into the clinic are identified (e.g., researchers, regulatory specialists, GMP manufacturing staff, clinicians, and clinical trials staff, etc.). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase the plan to translate the research product into a clinical grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States this is done by filing an IND application with the Food and Drug Administration. The NHLBI-funded Production Assistance for Cellular Therapies (PACT) program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five PACT facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly, and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. PMID:25484311
FY10 Engineering Innovations, Research and Technology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, M A; Aceves, S M; Paulson, C N
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less
ERIC Educational Resources Information Center
Hayes, Joseph M.
2014-01-01
A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…
Laboratory for Energy-Related Health Research: Annual report, fiscal year 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, D.L.
1989-04-01
The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization. Our purpose is to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactive substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear-medical diagnostic and therapeutic methods are also involved. This program is interdisciplinary; it involves physics, chemistry, environmental engineering, biophysics andmore » biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less
Translational Epidemiology in Psychiatry
Weissman, Myrna M.; Brown, Alan S.; Talati, Ardesheer
2012-01-01
Translational research generally refers to the application of knowledge generated by advances in basic sciences research translated into new approaches for diagnosis, prevention, and treatment of disease. This direction is called bench-to-bedside. Psychiatry has similarly emphasized the basic sciences as the starting point of translational research. This article introduces the term translational epidemiology for psychiatry research as a bidirectional concept in which the knowledge generated from the bedside or the population can also be translated to the benches of laboratory science. Epidemiologic studies are primarily observational but can generate representative samples, novel designs, and hypotheses that can be translated into more tractable experimental approaches in the clinical and basic sciences. This bedside-to-bench concept has not been explicated in psychiatry, although there are an increasing number of examples in the research literature. This article describes selected epidemiologic designs, providing examples and opportunities for translational research from community surveys and prospective, birth cohort, and family-based designs. Rapid developments in informatics, emphases on large sample collection for genetic and biomarker studies, and interest in personalized medicine—which requires information on relative and absolute risk factors—make this topic timely. The approach described has implications for providing fresh metaphors to communicate complex issues in interdisciplinary collaborations and for training in epidemiology and other sciences in psychiatry. PMID:21646577
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
The OSTP Working Group was commissioned to advise on the scope and quality of basic research conducted by and on behalf of DOE. The Group formed Subgroups in these areas: large-scale solar, fossil, fusion, small technology, and geothermal, environment and life sciences, social sciences, transportation, and fission. Work of the Subgroups forms the basis of much of this report, which has five sections. Following the introduction, preface, and executive summary (Section II), there is discussion of broad problem areas as they pertain to research (Section III). Section IV consists of general recommendations regarding policies for, as well as management andmore » scope of, research within the DOE: this section has four parts: Part A pertains to research in programmatic areas under the aegis of the Assistant Secretaries; Part B deals with the role and structure of the Office of Energy Research; Part C is concerned with broad research issues; and Part D addresses DOE Laboratories and Energy Research Centers. In Section V, research needs and opportunities for selected programs are discussed.« less
Zhu, Xiaoyang (Director, Understanding Charge Separation and Transfer at Interfaces in Energy Materials); CST Staff
2017-12-09
'EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center' was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC:CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Introduction to the Plant World, Science (Experimental): 5311.11.
ERIC Educational Resources Information Center
Payne, Leonard O.
This unit of instruction was designed as a laboratory-oriented course for very low achievers to show how plants are involved in every aspect of their lives. Detailed practical experience in handling and investigating plants, and the use of films, models, and field trips are combined with basic minimal research to guide the student to a better…
ERIC Educational Resources Information Center
Valcik, Nicolas A.
2010-01-01
Research advancements into different fields of study have increased the risks for accidents, criminal acts, or a potential breach of national security, and the types of hazardous materials (HAZMAT) stored and used at universities and colleges are under new scrutiny. Before, a chemistry laboratory might only have basic substances such as sulfur,…
ERIC Educational Resources Information Center
Bugarcic, A.; Zimbardi, K.; Macaranas, J.; Thorn, P.
2012-01-01
Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny,…
ERIC Educational Resources Information Center
De Mattos, J. C. P.; Dantas, F. J. S.; Caldeira-de-Araujo, A.; Moraes, M. O.
2004-01-01
Good quality scientific teaching depends on the ability of researchers to translate laboratory experiments into high school and undergraduate classes, bridging the advanced and basic science with common knowledge. A fast-growing field in biomedical sciences is oxidative stress, which has been associated to several diseases, including cancer and…
ERIC Educational Resources Information Center
Karsai, Istvan; Kampis, George
2010-01-01
Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…
Laboratory for Energy-Related Health Research annual report, fiscal year 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, D.L.
1989-02-01
This report to the US Department of Energy summarizes research activities for the period from 1 October 1985--30 September 1986 at the Laboratory for Energy-related Health Research (LEHR) which is operated by the University of California, Davis. The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactivemore » substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear medical diagnostic and therapeutic methods are also involved. This is an interdisciplinary program spanning physics, chemistry, environmental engineering, biophysics and biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less
Syphilis testing practices in the Americas.
Trinh, Thuy T; Kamb, Mary L; Luu, Minh; Ham, D Cal; Perez, Freddy
2017-09-01
To present the findings of the Pan American Health Organization's 2014 survey on syphilis testing policies and practices in the Americas. Representatives of national/regional reference and large, lower-level laboratories from 35 member states were invited to participate. A semi-structured, electronically administered questionnaire collected data on syphilis tests, algorithms, equipment/commodities, challenges faced and basic quality assurance (QA) strategies employed (i.e. daily controls, standard operating procedures, technician training, participating in external QA programmes, on-site evaluations). The 69 participating laboratories from 30 (86%) member states included 41 (59%) national/regional reference and 28 (41%) lower-level laboratories. Common syphilis tests conducted were the rapid plasma reagin (RPR) (62% of surveyed laboratories), venereal disease research laboratory (VDRL) (54%), fluorescent treponemal antibody absorption (FTA-ABS) (41%) and Treponema pallidum haemagglutination assay (TPHA) (32%). Only three facilities reported using direct detection methods, and 28 (41% overall, 32% of lower-level facilities) used rapid tests. Most laboratories (62%) used only traditional testing algorithms (non-treponemal screening and treponemal confirmatory testing); however, 12% used only a reverse sequence algorithm (treponemal test first), and 14% employed both algorithms. Another nine (12%) laboratories conducted only one type of serologic test. Although most reference (97%) and lower-level (89%) laboratories used at least one QA strategy, only 16% reported using all five basic strategies. Commonly reported challenges were stock-outs of essential reagents or commodities (46%), limited staff training (73%) and insufficient equipment (39%). Many reference and clinical laboratories in the Americas face challenges in conducting appropriate syphilis testing and in ensuring quality of testing. © 2017 John Wiley & Sons Ltd The Pan-American Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.
NASA Astrophysics Data System (ADS)
The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Divisionmore » operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.« less
Materials sciences programs: Fiscal year 1994
NASA Astrophysics Data System (ADS)
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.
Materials sciences programs, fiscal year 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less
NASA Astrophysics Data System (ADS)
Laughton, C.
2008-12-01
For the last half century the physics community has increasingly turned to the use of underground space to conduct basic research. The community is currently planning to conduct a new generation of underground experiments at the Deep Underground Science and Engineering Laboratory (DUSEL). DUSEL will be constructed within the footprint of the defunct Homestake Gold Mine, located in Lead, South Dakota. Physics proposals call for the construction of new caverns in which to conduct major new experiments. Some of the proposed laboratory facilities will be significantly larger and deeper than any previously constructed. The talk will highlight possible opportunities for integrating multi-disciplinary research in to the cavern construction program, and will stress the need to work closely with design and construction contractors to ensure that research goals can be achieve with minimal impact on project work. The constructors of large caverns should be particularly receptive to, and encouraging of geoscience research that could improve the engineering characterization of the rock mass. An improved understanding of the rock mass, as the host construction material, would result in a more reliable cavern design and construction process, and a reduced construction risk to the Project.
Mogil, Jeffrey S
2017-03-22
The poor record of basic-to-clinical translation in recent decades has led to speculation that preclinical research is "irreproducible", and this irreproducibility in turn has largely been attributed to deficiencies in reporting and statistical practices. There are, however, a number of other reasonable explanations of both poor translation and difficulties in one laboratory replicating the results of another. This article examines these explanations as they pertain to preclinical pain research. I submit that many instances of apparent irreproducibility are actually attributable to interactions between the phenomena and interventions under study and "latent" environmental factors affecting the rodent subjects. These environmental variables-often causing stress, and related to both animal husbandry and the specific testing context-differ greatly between labs, and continue to be identified, suggesting that our knowledge of their existence is far from complete. In pain research in particular, laboratory stressors can produce great variability of unpredictable direction, as stress is known to produce increases (stress-induced hyperalgesia) or decreases (stress-induced analgesia) in pain depending on its parameters. Much greater attention needs to be paid to the study of the laboratory environment if replication and translation are to be improved.
Laboratory studies in ultraviolet solar physics
NASA Technical Reports Server (NTRS)
Parkinson, W. H.; Kohl, J. L.; Gardner, L. D.; Raymond, J. C.; Smith, P. L.
1991-01-01
The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided.
Calculating cost savings in utilization management.
MacMillan, Donna
2014-01-01
A major motivation for managing the utilization of laboratory testing is to reduce the cost of medical care. For this reason it is important to understand the basic principles of cost accounting in the clinical laboratory. The process of laboratory testing includes three distinct components termed the pre-analytic, analytic and post-analytic phases. Utilization management efforts may impact the cost structure of these three phases in different ways depending on the specific details of the initiative. Estimates of cost savings resulting from utilization management programs reported in the literature have often been fundamentally flawed due to a failure to understand basic concepts such as the difference between laboratory costs versus charges and the impact of reducing laboratory test volumes on the average versus marginal cost structure in the laboratory. This article will provide an overview of basic cost accounting principles in the clinical laboratory including both job order and process cost accounting. Specific examples will be presented to illustrate these concepts in various different scenarios. © 2013.
Laboratory Directed Research and Development Program Assessment for FY 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, J P; Fox, K J
2008-03-31
Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within existing mission areas, as well as to develop new research mission areas in response to DOE and National needs. As the largest expense in BNL's LDRD program is the support graduate students, post-docs, and young scientists, LDRD provides base for continually refreshing the research staff as well as the education and training of the next generation of scientists. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.« less
Patient-derived Xenograft (PDX) Models In Basic and Translational Breast Cancer Research
Dobrolecki, Lacey E.; Airhart, Susie D.; Alferez, Denis G.; Aparicio, Samuel; Behbod, Fariba; Bentires-Alj, Mohamed; Brisken, Cathrin; Bult, Carol J.; Cai, Shirong; Clarke, Robert B.; Dowst, Heidi; Ellis, Matthew J.; Gonzalez-Suarez, Eva; Iggo, Richard D.; Kabos, Peter; Li, Shunqiang; Lindeman, Geoffrey J.; Marangoni, Elisabetta; McCoy, Aaron; Meric-Bernstam, Funda; Piwnica-Worms, Helen; Poupon, Marie-France; Reis-Filho, Jorge; Sartorius, Carol A.; Scabia, Valentina; Sflomos, George; Tu, Yizheng; Vaillant, François; Visvader, Jane E.; Welm, Alana; Wicha, Max S.
2017-01-01
Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational pre-clinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and “Triple-negative” (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward “credentialing” of PDX models as surrogates to represent individual patients for use in pre-clinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research. PMID:28025748
NASA Technical Reports Server (NTRS)
Miller, Kate (Editor)
1995-01-01
On July 5, 1945, Dr. Vannevar Bush delivered a report to President Truman known as 'Science: The Endless Frontier'. In the report, Dr. Bush stated that 'scientific progress is one essential key to our security as a nation, to our better health, to more jobs, to a higher standard of living, and to our cultural progress'. Bush addressed job creation, the independence of basic research, the ties between research and application, and the nations's need for new talent. In 1995, there are strong similarities between the issues addressed in the Congress, Administration, and the public and those following World War 2. Federal funds and research funding are under severe pressure, including that from fiscal constraints in the federal budget due to the large and growing deficit and the escalating cost of health care. Defense conversion is addressed in the Congress and in industry, where many jobs are at stake. Conversion of the national laboratories, particularly nuclear weapons laboratories, has been a subject of a governmental commission and is the subject of draft legislation. Health care costs and the appropriate role of the federal government in funding basic and applied research has become a major topic of debate. Discussion on education in science has grown from the issue of how to produce more Ph.D.'s to how to improve the understanding of technology and science among the general public.
The NASA Space Radiation Research Program
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2006-01-01
We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.
RESPIRATORY INFECTIONS RESEARCH IN AFGHANISTAN: BIBLIOMETRIC ANALYSIS WITH THE DATABASE PUBMED.
Pilsczek, Florian H
2015-01-01
Infectious diseases research in a low-income country like Afghanistan is important. In this study an internet-based database Pubmed was used for bibliometric analysis of infectious diseases research activity. Research publications entries in PubMed were analysed according to number of publications, topic, publication type, and country of investigators. Between 2002-2011, 226 (77.7%) publications with the following research topics were identified: respiratory infections 3 (1.3%); parasites 8 (3.5%); diarrhoea 10 (4.4%); tuberculosis 10 (4.4%); human immunodeficiency virus (HIV) 11 (4.9%); multi-drug resistant bacteria (MDR) 18 (8.0%); polio 31 (13.7%); leishmania 31 (13.7%); malaria 46 (20.4%). From 2002-2011, 11 (4.9%) publications were basic science laboratory-based research studies. Between 2002-2011, 8 (3.5%) publications from Afghan institutions were identified. In conclusion, the internet-based database Pubmed can be consulted to collect data for guidance of infectious diseases research activity of low-income countries. The presented data suggest that infectious diseases research in Afghanistan is limited for respiratory infections research, has few studies conducted by Afghan institutions, and limited laboratory-based research contributions.
NASA Astrophysics Data System (ADS)
Miranda, David A.; Sanchez, Melba J.; Forero, Oscar M.
2017-06-01
The implementation of the JiTT (Just in Time Teaching) strategy is presented to increase the previous preparation of students enrolled in the subject Physics Laboratory I offered at the Industrial University of Santander (UIS), Colombia. In this study, a laboratory preparation questionnaire (CPL) was applied as a tool for the implementation of JiTT combined with elements of mediated learning. It was found that the CPL allows to improve the students’ experience regarding the preparation of the laboratory and the development of the experimental session. These questionnaires were implemented in an academic manager (Moodle) and a web application (lab.ciencias.uis.edu.co) was used to publish the contents essential for the preparation of the student before each practical session. The most significant result was that the students performed the experimental session with the basic knowledge to improve their learning experience.
Saccharomyces cerevisiae metabolism in ecological context.
Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon; Patil, Kiran R
2016-11-01
The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype-metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype-phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype-environment-phenotype relationships. © FEMS 2016.
Saccharomyces cerevisiae metabolism in ecological context
Jouhten, Paula; Ponomarova, Olga; Gonzalez, Ramon
2016-01-01
The architecture and regulation of Saccharomyces cerevisiae metabolic network are among the best studied owing to its widespread use in both basic research and industry. Yet, several recent studies have revealed notable limitations in explaining genotype–metabolic phenotype relations in this yeast, especially when concerning multiple genetic/environmental perturbations. Apparently unexpected genotype–phenotype relations may originate in the evolutionarily shaped cellular operating principles being hidden in common laboratory conditions. Predecessors of laboratory S. cerevisiae strains, the wild and the domesticated yeasts, have been evolutionarily shaped by highly variable environments, very distinct from laboratory conditions, and most interestingly by social life within microbial communities. Here we present a brief review of the genotypic and phenotypic peculiarities of S. cerevisiae in the context of its social lifestyle beyond laboratory environments. Accounting for this ecological context and the origin of the laboratory strains in experimental design and data analysis would be essential in improving the understanding of genotype–environment–phenotype relationships. PMID:27634775
Biosafety and biosecurity measures: management of biosafety level 3 facilities.
Zaki, Adel N
2010-11-01
With the increasing biological threat from emerging infectious diseases and bioterrorism, it has become essential for governments around the globe to increase awareness and preparedness for identifying and containing those agents. This article introduces the basic concepts of laboratory management, laboratory biosafety and laboratory biosecurity. Assessment criteria for laboratories' biorisk should include both biosafety and biosecurity measures. The assessment requires setting specific goals and selecting management approaches. In order to implement technologies at the laboratory working level, a management team should be created whose role is to implement biorisk policies, rules and regulations appropriate for that facility. Rules and regulations required by government authorities are presented, with special emphasis on methods for air control, and liquid and solid waste management. Management and biorisk measures and appropriate physical facilities must keep pace, ensuring efficient facilities that protect workers, the environment, the product (research, diagnostic and/or vaccine) and the biological pathogen. Published by Elsevier B.V.
Training Under-Represented Students in Biological Research at Fisk University
NASA Technical Reports Server (NTRS)
Gunasekaran, Muthukumaran
1999-01-01
The objectives of our training and research project in biology at Fisk are to motivate and train our African-American undergraduate and graduate students by (a) teaching the basic principles and applications of different biological, biochemical and biophysical research techniques; (b) providing a "hands on experience" with laboratory instrumentation (c) requiring the students to participate in the proposed research project entitled "Cyanobacterial Bioreactors for Oxygen and Ammonia Production under "CELSS" Conditions" to gain confidence in independently conducting experiments and (d) providing training in scientific data collection and presentation to peers in scientific conferences or meetings.
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Stoeffler, R. C.
1972-01-01
Investigations of various phases of gaseous nuclear rocket technology have been conducted. The principal research efforts have recently been directed toward the closed-cycle, vortex-stabilized nuclear light bulb engine and toward a small-scale fissioning uranium plasma experiment that could be conducted in the Los Alamos Scientific Laboratory's Nuclear Furnace. The engine concept is based on the transfer of energy by thermal radiation from gaseous fissioning uranium, through a transparent wall, to hydrogen propellant. The reference engine configuration is comprised of seven unit cavities, each having its own fuel transparent wall and propellant duct. The basic design of the engine is described. Subsequent studies performed to supplement and investigate the basic design are reported. Summaries of other nuclear light bulb research programs are included.
Mickley, G Andrew; Kenmuir, Cynthia; Remmers-Roeber, Dawn
2003-01-01
As neuroscience research and discovery undergoes phenomenal growth worldwide, undergraduate students are seeking complete laboratory experiences that go beyond the classic classroom curriculum and provide mentoring in all aspects of science. Stock, in-class, laboratory experiences with known outcomes are less desirable than discovery-based projects in which students become full partners with faculty in the design, conduct and documentation of experiments that find their way into the peer-reviewed literature. The challenges of providing such experiences in the context of a primarily undergraduate institution (PUI) can be daunting. Faculty teaching loads are high, and student time is spread over a variety of courses and co-curricular activities. In this context, undergraduates are often reluctant, or ill equipped, to take individual initiative to generate and perform empirical studies. They are more likely to become involved in a sustained, faculty-initiated research program. This paper describes such a program at Baldwin-Wallace College. Students frequently start their laboratory activities in the freshman or sophomore year and enter into a system of faculty and peer mentoring that leads them to experience all aspects of the research enterprise. Students begin with learning basic laboratory tasks and may eventually achieve the status of "Senior Laboratory Associate" (SLA). SLAs become involved in laboratory management, training of less-experienced students, manuscript preparation, and grant proposal writing. The system described here provides a structured, but encouraging, community in which talented undergraduates can develop and mature as they are mentored in the context of a modern neuroscience laboratory. Retention is very good - as most students continue their work in the laboratory for 2-3 years. Student self-reports regarding their growth and satisfaction with the experiences in the laboratory have been excellent and our neuroscience students' acceptance rate in graduate, medical and veterinary schools has been well above the College average. The system also fosters faculty productivity and satisfaction in the context of the typical challenges of conducting research at a PUI.
Lampis, Valentina; Maziade, Michel; Battaglia, Marco
2011-05-01
We are witnessing a tremendous expansion of strategies and techniques that derive from basic and preclinical science to study the fine genetic, epigenetic, and proteomic regulation of behavior in the laboratory animal. In this endeavor, animal models of psychiatric illness are becoming the almost exclusive domain of basic researchers, with lesser involvement of clinician researchers in their conceptual design, and transfer into practice of new paradigms. From the side of human behavioral research, the growing interest in gene-environment interplay and the fostering of valid endophenotypes are among the few substantial innovations in the effort of linking common mental disorders to cutting-edge clinical research questions. We argue that it is time for cross-fertilization between these camps. In this article, we a) observe that the "translational divide" can-and should-be crossed by having investigators from both the basic and the clinical sides cowork on simpler, valid "endophenotypes" of neurodevelopmental relevance; b) emphasize the importance of unambiguous physiological readouts, more than behavioral equivalents of human symptoms/syndromes, for animal research; c) indicate and discuss how this could be fostered and implemented in a developmental framework of reference for some common anxiety disorders and ultimately lead to better animal models of human mental disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nastasi, Michael
"Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL" was submitted by CMIME to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegie Mellon University, the University of Illinois at Urbana-Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff
2017-12-09
'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M
2015-04-01
A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
2005-09-20
Institutions Lawrence Livermore National Laboratory conduct similar or complementary research often excel through collaboration. Indeed, much of Lawrence Livermore's research involves collaboration with other institutions, including universities, other national laboratories, government agencies, and private industry. In particular, Livermore's strategic collaborations with other University of California (UC) campuses have proven exceptionally successful in combining basic science and applied multidisciplinary research. In joint projects, the collaborating institutions benefit from sharing expertise and resources as they work toward their distinctive missions in education, research, and public service. As Laboratory scientists and engineers identify resources needed to conduct their work, they often turn tomore » university researchers with complementary expertise. Successful projects can expand in scope to include additional scientists and engineers both from the Laboratory and from UC, and these projects may become an important element of the research portfolios of the cognizant Livermore directorate and the university department. Additional funding may be provided to broaden or deepen a research project or perhaps develop it for transfer to the private sector for commercial release. Occasionally, joint projects evolve into a strategic collaboration at the institutional level, attracting the attention of the Laboratory director and the UC chancellor. Government agencies or private industries may contribute funding in recognition of the potential payoff of the joint research, and a center may be established at one of the UC campuses. Livermore scientists and engineers and UC faculty are recruited to these centers to focus on a particular area and achieve goals through interdisciplinary research. Some of these researchers hold multilocation appointments, allowing them to work at Livermore and another UC campus. Such centers also attract postdoctoral researchers and graduate students pursuing careers in the centers specialized areas of science. foster university collaboration is through the Laboratory's institutes, which have been established to focus university outreach efforts in fields of scientific importance to Livermore's programs and missions. Some of these joint projects may grow to the level of a strategic collaboration. Others may assist in Livermore's national security mission; provide a recruiting pipeline from universities to the Laboratory; or enhance university interactions and the vitality of Livermore's science and technology environment through seminars, workshops, and visitor programs.« less
Senior Laboratory Animal Technician | Center for Cancer Research
PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused on the design, generation, characterization and application of genetically engineered and biological animal models of human disease, which are aimed at the development of targeted diagnostics and therapies. LASP contributes to advancing human health, developing new treatments, and improving existing treatments for cancer and other diseases while ensuring safe and humane treatment of animals. KEY ROLES/RESPONSIBILITIES The Senior Laboratory Animal Technician will be responsible for: Daily tasks associated with the care, breeding and treatment of research animals for experimental purposes Management of rodent breeding colonies consisting of multiple, genetically complex strains and associated record keeping and database management Colony management procedures including: tail clipping, animal identification, weaning Data entry consistent with complex colony management Collection of routine diagnostic samples Coordinating shipment of live animals and specimens Performing rodent experimental procedures including basic necropsy and blood collection Observation and recording of physical signs of animal health Knowledge of safe working practices using chemical carcinogen and biological hazards Work schedule may include weekend and holiday hours This position is in support of the Center for Cancer Research (CCR).
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny
2016-04-01
While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between theory and practice. Along with its usage in graduate and postgraduate education, "Climate" is used as a framework for a developed basic information course on climate change for common public. In this course basic concepts and problems of modern climate change and its possible consequences are described for non-specialists. The course will also include links to relevant information resources on topical issues of Earth Sciences and a number of case studies, which are carried out for a selected region to consolidate the received knowledge.
ERIC Educational Resources Information Center
Selli, Cigdem; Yildirim, Gokce; Kaymak, Aysegul; Karacicek, Bilge; Ogut, Deniz; Gungor, Turkan; Erem, Erdem; Ege, Mehmet; Bümen, Nilay; Tosun, Metiner
2014-01-01
This study includes the results of a 2-day education project titled "Molecular Biology Laboratory Summer School, MoBiLYO." The project was held at a University Research Center by scientists from Department of Pharmacology and graduate students. The project was composed of introductory lectures, model construction, DNA isolation,…
ERIC Educational Resources Information Center
Berber, Nilufer Cerit
2013-01-01
Science anxiety, which is one of the affective dimensions in science learning, is one of the factors affecting success in Science and has been studied for 35 years. The existence of considerable negative attitudes towards Physics courses, which is one of the basic branches of Science, is a fact. This research has been designed to identify the…
Recent developments in ejector technology in the Air Force: An overview
NASA Technical Reports Server (NTRS)
Nagaraja, K. S.
1979-01-01
Basic and applied studies in thrust augmentation conducted at the Aerospace Research Laboratory at Wright-Patterson AFB which led to an effective configuration of the jet flap diffuser ejector, are reviewed. A method for compressible ejector flow analysis, developed in support of the preliminary design of an ejector thrust aircraft, is discussed and applied to single- and two-stage ejectors.
Sound absorption characteristics of tree bark and forest floor
G. Reethof; O. H. McDaniel; G. M. Heisler
1977-01-01
Results of basic research on absorption of sound by tree bark and forest floors are presented. Amount of sound absorption by tree bark was determined by laboratory experiments with bark samples in a standing-wave tube. A modified portable standing-wave tube was used to measure absorption of sound by forest floors with different moisture contents, with and without leaf...
Di Meglio, Paola; Villanova, Federica; Nestle, Frank O
2014-08-01
Psoriasis is a common chronic inflammatory skin disease with a spectrum of clinical phenotypes and results from the interplay of genetic, environmental, and immunological factors. Four decades of clinical and basic research on psoriasis have elucidated many of the pathogenic mechanisms underlying disease and paved the way to effective targeted therapies. Here, we review this progress and identify future directions of study that are supported by a more integrative research approach and aim at further improving the patients' life. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jun; Hu, Hai-Yang; He, Yun-Rui; Deng, Can; Wang, Qi; Duan, Xiao-Feng; Huang, Yong-Qing; Ren, Xiao-Min
2015-08-01
Not Available Supported by the Fund of State Key Laboratory of Information Photonics and Optical Communications of Beijing University of Posts and Telecommunications, the National Basic Research Program of China under Grant No 2010CB327601, the Natural Science Foundational Science and Technology Cooperation Projects under Grant No 2011RR000100, the 111 Project of China under Grant No B07005, and the Doctoral Program of Higher Specialized Research Fund under Grant No 20130005130001.
1988-04-01
Engineering Educa- -Zhejiang Provincial Society of tion College Mechanical Engineering - Bejing Institute of Technology -Zhejiang Commission, China ...17,445 50 50 ( China Lake), and the Air Force Cam- 1970 16,316 52 48 bridge Research Laboratory. 1975 14,537 51 49 1980 16,542 50 50 The FFRDCs basically...Army ( Opera - Brassey’s International Defense tions Research). She holds a B.A. Gains Publishers, 1984), p. 9. degree in mathematics from the Col
Axial pico turbine - construction and experimental research
NASA Astrophysics Data System (ADS)
Peczkis, G.; Goryca, Z.; Korczak, A.
2017-08-01
The paper concerns axial water turbine of power equal to 1 kW. The example of axial water turbine constructional calculations was provided, as well as turbine rotor construction with NACA profile blades. The laboratory test rig designed and built to perform measurements on pico turbine was described. The turbine drove three-phase electrical generator. On the basis of highest efficiency parameters, pico turbine basic characteristics were elaborated. The experimental research results indicated that pico turbine can achieve maximum efficiency close to the values of larger water turbines.
Mineback Stimulation Research Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
The objective of the Mineback Stimulation Research Experiments is to improve hydraulic fracture stimulation technology by providing an in situ laboratory where basic processes and mechanisms that control and influence fracture propagation can be observed, measured and understood. While previous tests have been instrumental in providing an understanding of the mechanisms controlling fracture height, current experiments are focused on fluid flow through the created fracture and the associated pressure drops and crack widths. Work performed, accomplishments and future plans are presented. 7 refs., 2 figs.
Measuring Networking as an Outcome Variable in Undergraduate Research Experiences
Hanauer, David I.; Hatfull, Graham
2015-01-01
The aim of this paper is to propose, present, and validate a simple survey instrument to measure student conversational networking. The tool consists of five items that cover personal and professional social networks, and its basic principle is the self-reporting of degrees of conversation, with a range of specific discussion partners. The networking instrument was validated in three studies. The basic psychometric characteristics of the scales were established by conducting a factor analysis and evaluating internal consistency using Cronbach’s alpha. The second study used a known-groups comparison and involved comparing outcomes for networking scales between two different undergraduate laboratory courses (one involving a specific effort to enhance networking). The final study looked at potential relationships between specific networking items and the established psychosocial variable of project ownership through a series of binary logistic regressions. Overall, the data from the three studies indicate that the networking scales have high internal consistency (α = 0.88), consist of a unitary dimension, can significantly differentiate between research experiences with low and high networking designs, and are related to project ownership scales. The ramifications of the networking instrument for student retention, the enhancement of public scientific literacy, and the differentiation of laboratory courses are discussed. PMID:26538387
Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho
Crosthwaite, E. G.
1976-01-01
meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.
Properties of the ion-ion hybrid resonator in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, George J.
2015-10-06
The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts betweenmore » experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.« less
Charavay, Céline; Segard, Stéphane; Pochon, Nathalie; Nussaume, Laurent; Javot, Hélène
2017-01-01
Plant research is supported by an ever-growing collection of mutant or transgenic lines. In the past, a typical basic research laboratory would focus on only a few plant lines that were carefully isolated from collections of lines containing random mutations. The subsequent technological breakthrough in high-throughput sequencing, combined with novel and highly efficient mutagenesis techniques (including site-directed mutagenesis), has led to a recent exponential growth in plant line collections used by individual researchers. Tracking the generation and genetic properties of these genetic resources is thus becoming increasingly challenging for researchers. Another difficulty for researchers is controlling the use of seeds protected by a Material Transfer Agreement, as often only the original recipient of the seeds is aware of the existence of such documents. This situation can thus lead to difficult legal situations. Simultaneously, various institutions and the general public now demand more information about the use of genetically modified organisms (GMOs). In response, researchers are seeking new database solutions to address the triple challenge of research competition, legal constraints, and institutional/public demands. To help plant biology laboratories organize, describe, store, trace, and distribute their seeds, we have developed the new program SeedUSoon, with simplicity in mind. This software contains data management functions that allow the separate tracking of distinct mutations, even in successive crossings or mutagenesis. SeedUSoon reflects the biotechnological diversity of mutations and transgenes contained in any specific line, and the history of their inheritance. It can facilitate GMO certification procedures by distinguishing mutations on the basis of the presence/absence of a transgene, and by recording the technology used for their generation. Its interface can be customized to match the context and rules of any laboratory. In addition, SeedUSoon includes functions to help the laboratory protect intellectual property, export data, and facilitate seed exchange between laboratories. The SeedUSoon program, which is customizable to match individual practices and preferences, provides a powerful toolkit to plant laboratories searching for innovative approaches in laboratory management. PMID:28163712
Fundamental research in artificial intelligence at NASA
NASA Technical Reports Server (NTRS)
Friedland, Peter
1990-01-01
This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.
Behavioural science at work for Canada: National Research Council laboratories.
Veitch, Jennifer A
2007-03-01
The National Research Council is Canada's principal research and development agency. Its 20 institutes are structured to address interdisciplinary problems for industrial sectors, and to provide the necessary scientific infrastructure, such as the national science library. Behavioural scientists are active in five institutes: Biological Sciences, Biodiagnostics, Aerospace, Information Technology, and Construction. Research topics include basic cellular neuroscience, brain function, human factors in the cockpit, human-computer interaction, emergency evacuation, and indoor environment effects on occupants. Working in collaboration with NRC colleagues and with researchers from universities and industry, NRC behavioural scientists develop knowledge, designs, and applications that put technology to work for people, designed with people in mind.
Pacific Northwest National Laboratory institutional plan FY 1997--2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected nationalmore » security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.« less
Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadsworth, Jeffrey; Carlson, David E.; Chiang, Yet-Ming
2011-05-25
A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' Inmore » August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less
Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)
Wadsworth, Jeffrey; Carlson, David E.; Chiang, Yet-Ming; Hunt, Catherine T.
2018-05-08
A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
NASA Technical Reports Server (NTRS)
Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.
1985-01-01
Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.
Badiola, Katrina A.; Bird, Colin; Brocklesby, William S.; Casson, John; Chapman, Richard T.; Coles, Simon J.; Cronshaw, James R.; Fisher, Adam; Gloria, Danmar; Grossel, Martin C.; Hibbert, D. Brynn; Knight, Nicola; Mapp, Lucy K.; Marazzi, Luke; Matthews, Brian; Milsted, Andy; Minns, Russell S.; Mueller, Karl T.; Murphy, Kelly; Parkinson, Tim; Quinnell, Rosanne; Robinson, John S.; Robertson, Murray N.; Robins, Michael; Springate, Emma; Tizzard, Graham; Todd, Matthew H.; Williamson, Alice E.; Willoughby, Cerys; Yang, Erica; Ylioja, Paul M.
2015-01-01
Electronic Laboratory Notebooks (ELNs) are progressively replacing traditional paper books in both commercial research establishments and academic institutions. University researchers require specific features from ELNs, given the need to promote cross-institutional collaborative working, to enable the sharing of procedures and results, and to facilitate publication. The LabTrove ELN, which we use as our exemplar, was designed to be researcher-centric (i.e., not only aimed at the individual researcher's basic needs rather than to a specific institutional or subject or disciplinary agenda, but also able to be tailored because it is open source). LabTrove is being used in a heterogeneous set of academic laboratories, for a range of purposes, including analytical chemistry, X-ray studies, drug discovery and a biomaterials project. Researchers use the ELN for recording experiments, preserving data collected, and for project coordination. This perspective article describes the experiences of those researchers from several viewpoints, demonstrating how a web-based open source electronic notebook can meet the diverse needs of academic researchers. PMID:29308130
Senior Computational Scientist | Center for Cancer Research
The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP), Basic Science Program, HLA Immunogenetics Section, under the leadership of Dr. Mary Carrington, studies the influence of human leukocyte antigens (HLA) and specific KIR/HLA genotypes on risk of and outcomes to infection, cancer, autoimmune disease, and maternal-fetal disease. Recent studies have focused on the impact of HLA gene expression in disease, the molecular mechanism regulating expression levels, and the functional basis for the effect of differential expression on disease outcome. The lab’s further focus is on the genetic basis for resistance/susceptibility to disease conferred by immunogenetic variation. KEY ROLES/RESPONSIBILITIES The Senior Computational Scientist will provide research support to the CIP-BSP-HLA Immunogenetics Section performing bio-statistical design, analysis and reporting of research projects conducted in the lab. This individual will be involved in the implementation of statistical models and data preparation. Successful candidate should have 5 or more years of competent, innovative biostatistics/bioinformatics research experience, beyond doctoral training Considerable experience with statistical software, such as SAS, R and S-Plus Sound knowledge, and demonstrated experience of theoretical and applied statistics Write program code to analyze data using statistical analysis software Contribute to the interpretation and publication of research results
Swanson, William F
2003-01-01
Tremendous strides have been made in recent years to broaden our understanding of reproductive processes in nondomestic felid species and further our capacity to use this basic knowledge to control and manipulate reproduction of endangered cats. Much of that progress has culminated from detailed scientific studies conducted in nontraditional laboratory settings, frequently at collaborating zoological parks but also under more primitive conditions, including in the field. A mobile laboratory approach is described, which incorporates a diverse array of disciplines and research techniques. This approach has been extremely useful, especially for conducting gamete characterization and function studies as well as reproductive surveys, and for facilitating the development of assisted reproductive technology. With continuing advances in assisted reproduction in rare felids, more procedures are being conducted primarily as service-related activities, targeted to increase effectiveness of species propagation and population management. It can be a challenge for both investigators and institutional animal care and use committees (IACUCs) to differentiate these service-based procedures from traditional research studies (that require IACUC oversight). For research with rare cat species, multi-institutional collaboration frequently is necessary to gain access to scientifically meaningful numbers of study subjects. Similarly, for service-based efforts, the ability to perform reproductive procedures across institutions under nonstandard laboratory conditions is critical to applying reproductive sciences for managing and preserving threatened cat populations. Reproductive sciences can most effectively assist population management programs (e.g., Species Survival Plans) in addressing conservation priorities if these research and service-related procedures can be conducted "on the road" at distant national and international locales. This mobile laboratory approach has applications beyond endangered species research, notably for other scientific fields (e.g., studies of hereditary disease in domestic cat models) in which bringing the laboratory to the subject is of value.
Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A.; Shen, Mingmin
The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department ofmore » Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
LANDSAT TM image data quality analysis for energy-related applications
NASA Technical Reports Server (NTRS)
Wukelic, G. E.; Foote, H. P.; Petrie, G. M.; Barnard, J. C.; Eliason, J. R.
1985-01-01
This project represents a no-cost agreement between National Aeronautic Space Administration Goddard Space Flight Center (NASA GSFC) and the Pacific Northwest Laboratory (PNL). PNL is a Department of Energy (DOE) national laboratory operted by Battelle Memorial Institute at its Pacific Northwest Laboratories in Richland, Washington. The objective of this investigation is to evaluate LANDSAT's thematic mapper (TM) data quality and utility characteristics from an energy research and technological perspective. Of main interest is the extent to which repetitive TM data might support DOE efforts relating to siting, developing, and monitoring energy-related facilities, and to basic geoscientific research. The investigation utilizes existing staff and facility capabilities, and ongoing programmatic activities at PNL and other DOE national laboratories to cooperatively assess the potential usefulness of the improved experimental TM data. The investigation involves: (1) both LANDSAT 4 and 5 TM data, (2) qualitative and quantitative use consideration, and 3) NASA P (corrected) and A (uncorrected) CCT analysis for a variety of sites of DOE interest. Initial results were presented at the LANDSAT Investigator's Workshops and at specialized LANDSAT TM sessions at various conferences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, T
I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. Themore » LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.« less
Kehinde, Elijah O.
2013-01-01
The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. PMID:24217224
Kehinde, Elijah O
2013-01-01
The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. © 2013 S. Karger AG, Basel.
Turbulence in laboratory and natural plasmas: Connecting the dots
NASA Astrophysics Data System (ADS)
Jenko, Frank
2015-11-01
It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Papri; Prokopchuk, Demyan E.; Mock, Michael T.
2017-03-01
This review examines the synthesis and acid reactivity of transition metal dinitrogen complexes bearing diphosphine ligands containing pendant amine groups in the second coordination sphere. This manuscript is a review of the work performed in the Center for Molecular Electrocatalysis. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences. EPR studies on Fe were performed using EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located atmore » PNNL. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the U.S. DOE.« less
Aronson, Benjamin D; Silveira, Linda A
2009-01-01
In the laboratory, students can actively explore concepts and experience the nature of scientific research. We have devised a 5-wk laboratory project in our introductory college biology course whose aim was to improve understanding in five major concepts that are central to basic cellular, molecular biology, and genetics while teaching molecular biology techniques. The project was focused on the production of adenine in Saccharomyces cerevisiae and investigated the nature of mutant red colonies of this yeast. Students created red mutants from a wild-type strain, amplified the two genes capable of giving rise to the red phenotype, and then analyzed the nucleotide sequences. A quiz assessing student understanding in the five areas was given at the start and the end of the course. Analysis of the quiz showed significant improvement in each of the areas. These areas were taught in the laboratory and the classroom; therefore, students were surveyed to determine whether the laboratory played a role in their improved understanding of the five areas. Student survey data demonstrated that the laboratory did have an important role in their learning of the concepts. This project simulated steps in a research project and could be adapted for an advanced course in genetics.
LLE 2010 Annual Report October 2009 - September 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-01-01
The fiscal year ending September 2010 (FY10) concluded the third year of the third five-year renewal of Cooperative Agreement DE-FC52-08NA28302 with the U.S. Department of Energy (DOE). This annual report summarizes progress in inertial fusion research at the Laboratory for Laser Energetics (LLE) during the past fiscal year including work on the National Ignition Campaign (NIC). It also reports on LLE's progress on laboratory basic science research; laser, optical materials, and advanced technology development; operation of OMEGA and OMEGA EP for the NIC and high-energy density (HED) campaigns, the National Laser Users Facility (NLUF), and for other external users; andmore » programs focusing on the education of high school, undergraduate, and graduate students during the year.« less
Postdoctoral Positions and Career Growth
NASA Astrophysics Data System (ADS)
Manka, R. H.
2001-12-01
Career choices begin to diverge at the time the doctorate is received. A variety of career options are available to pursue including positions in academia, government, and industry as well as non-traditional services. A postdoctoral appointment is worth considering as preparation for a career in academia or basic research. The postdoctoral appointment can expand the recent graduate's background and broaden their scientific perspective and reputation. Postdoctoral experience may even be essential to be competitive for some faculty and research laboratory appointments. However, there is a wide range of postdoctoral choices to consider. There are many opportunities for postdoctoral appointments in universities, and emerging opportunities in some corporate laboratories. We will mention opportunities in federal laboratories such as the National Research Council programs in NASA, NOAA, EPA, and the Dept. of Defense, which are open to U.S. citizens and in some cases to non-U.S. applicants, to pursue research in all areas of the Earth and space sciences. And there are exciting new interdisciplinary programs such as the NASA Astrobiology Institute, as well as international opportunities including the von Humboldt fellowships in Germany and similar programs elsewhere in Europe, Japan, and other countries.
Savannah River Ecology Laboratory. Annual technical progress report of ecological research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.H.
1996-07-31
The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles andmore » book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaoyang
"EFRC: CST at the University of Texas at Austin- A DOE Energy Frontier Research Center" was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC: CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Qiuxia; Wang, Jianguo; Wang, Yang-Gang
The effects of structure and size on the selectivity of catalytic furfural conversion over supported Pt catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Four Pt model systems, i.e., periodic Pt(111), Pt(211) surfaces, as well as small nanoclusters (Pt13 and Pt55) are chosen to represent the terrace, step, and corner sites of Pt nanoparticles. Our DFT results show that the reaction routes for furfural hydrogenation and decarbonylation are strongly dependent on the type of reactive sites, which lead to the different selectivity. On the basis of the size-dependentmore » site distribution rule, we correlate the site distributions as a function of the Pt particle size. Our microkinetic results indicate the critical particle size that controls the furfural selectivity is about 1.0 nm, which is in good agreement with the reported experimental value under reaction conditions. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501) and the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001, 21101137 and 91334103). This work was also partially supported by the US Department of Energy (DOE), the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Make it better but don't change anything.
Wright, Jerry M
2009-11-19
With massive amounts of data being generated in electronic format, there is a need in basic science laboratories to adopt new methods for tracking and analyzing data. An electronic laboratory notebook (ELN) is not just a replacement for a paper lab notebook, it is a new method of storing and organizing data while maintaining the data entry flexibility and legal recording functions of paper notebooks. Paper notebooks are regarded as highly flexible since the user can configure it to store almost anything that can be written or physically pasted onto the pages. However, data retrieval and data sharing from paper notebooks are labor intensive processes and notebooks can be misplaced, a single point of failure that loses all entries in the volume. Additional features provided by electronic notebooks include searchable indices, data sharing, automatic archiving for security against loss and ease of data duplication. Furthermore, ELNs can be tasked with additional functions not commonly found in paper notebooks such as inventory control. While ELNs have been on the market for some time now, adoption of an ELN in academic basic science laboratories has been lagging. Issues that have restrained development and adoption of ELN in research laboratories are the sheer variety and frequency of changes in protocols with a need for the user to control notebook configuration outside the framework of professional IT staff support. In this commentary, we will look at some of the issues and experiences in academic laboratories that have proved challenging in implementing an electronic lab notebook.
Department of Energy - Office of Science Early Career Research Program
NASA Astrophysics Data System (ADS)
Horwitz, James
The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/
Gardner, Stephanie M; Adedokun, Omolola A; Weaver, Gabriela C; Bartlett, Edward L
2011-01-01
Inquiry-based laboratory instruction has been shown to actively engage students in the content and skills being taught. These courses are further intended to teach students not only what is known, but also the process by which investigators come to know it. We sought to take this approach one step further and incorporate novel research questions into an inquiry-based laboratory model early in the undergraduate course of study. In this research-based introductory laboratory course, first-year students acquired basic lab skills not just for their own sake, but rather within the context of a research question of a member of the faculty. Student projects investigated potential neuroanatomical changes in animal models of dyslexia and aging and included measurements of neuron numbers and levels and distribution of neuronal proteins. Students played an active role in designing and implementing an experimental plan, explored data analysis techniques, and reflected on the results that they obtained in scholarly forms such as research papers and a departmental poster session. Student feedback on this approach has been extremely positive, and the data collected were research quality preliminary data that are being actively pursued for further study. Based on our encouraging experiences, we conclude that designing an introductory course around novel research, including some assessments modeled after scholarly practices, provides motivation and excitement for the students, instills good scientific habits, and can potentially benefit departmental research.
Oxytocin and potential benefits for obesity treatment.
Olszewski, Pawel K; Klockars, Anica; Levine, Allen S
2017-10-01
Laboratory animal experiments have consistently shown that oxytocin causes early termination of food intake, thereby promoting a decrease in body weight in a long term. Recent studies have also assessed some of oxytocin's effects on appetite and energy balance in humans. The present study examines the findings of the key basic research and of the few clinical studies published thus far in the context of potential benefits and challenges stemming from the use of oxytocin in obese patients. Basic research indicates the involvement of oxytocin in satiety, processing, in reducing a drive to eat for pleasure and because of psychosocial factors. Although the results of clinical studies are very scarce, they suggest that oxytocin administered intranasally in humans decreases energy-induced and reward-induced eating, supports cognitive control of food choices, and improves glucose homeostasis, and its effectiveness may be BMI dependent. Despite the wealth of basic research showing broad anorexigenic effects of oxytocin, clinical studies on oxytocin's therapeutic potential in obesity, are still in their infancy. Future implementation of oxytocin-based pharmacological strategies in controlling energy balance will likely depend on our ability to integrate diverse behavioral and metabolic effects of oxytocin in obesity treatment regimens.
Stampfl, Thomas G.
1987-01-01
Why do human phobias last for months or years when such behavior should undergo extinction? This failure of extinction or persistence of self-defeating behavior of human disorders was labeled by Mowrer as the neurotic paradox. The paradox is cited by an ever-increasing number of critics who challenge any laboratory-based learning model of human psychopathology. Laboratory research, of course, omits essential requirements in the analysis of behavior, and the principles derived from such analyses must be combined in order to explain complex human behavaior. Validation for a behavioral model can thus be achieved if (a) basic principles inferred from observation of humans treated with a laboratory-derived extinction procedure (e.g., implosive therapy) are combined with (b) principles examined in laboratory research that are combined to generate unique predictions that correspond to known features of human phobic behavior. The latter evidence is briefly reviewed in research demonstrating sustained responding over one thousand consecutive active avoidance responses with complete avoidance of the “phobic” CS for an initial single shock trial. Differential reinforcement for responses to early sequential stimuli depends on minimal work requirement, and reinforcement by timeout from avoidance. This combination of factors effectively precludes extinction to main conditioned aversive stimuli for nonhumans, as it does for human phobias. Support for a laboratory model of human phobia is thereby attained. PMID:22477974
Drosophila Genetic Resource and Stock Center; The National BioResource Project.
Yamamoto, Masa-Toshi
2010-01-01
The fruit fly, Drosophila melanogaster, is not categorized as a laboratory animal, but it is recognised as one of the most important model organisms for basic biology, life science, and biomedical research. This tiny fly continues to occupy a core place in genetics and genomic approaches to studies of biology and medicine. The basic principles of genetics, including the variations of phenotypes, mutations, genetic linkage, meiotic chromosome segregation, chromosome aberrations, recombination, and precise mapping of genes by genetic as well as cytological means, were all derived from studies of Drosophila. Recombinant DNA technology was developed in the 1970s and Drosophila DNA was the first among multicellular organisms to be cloned. It provided a detailed characterization of genes in combination of classical cytogenetic data. Drosophila thus became the pioneering model organism for various fields of life science research into multicellular organisms. Here, I briefly describe the history of Drosophila research and provide a few examples of the application of the abundant genetic resources of Drosophila to basic biology and medical investigations. A Japanese national project, the National BioResource Project (NBRP) for collection, maintainance, and provision of Drosophila resources, that is well known and admired by researchers in other countries as an important project, is also briefly described.
Incorporating Basic Optical Microscopy in the Instrumental Analysis Laboratory
ERIC Educational Resources Information Center
Flowers, Paul A.
2011-01-01
A simple and versatile approach to incorporating basic optical microscopy in the undergraduate instrumental analysis laboratory is described. Attaching a miniature CCD spectrometer to the video port of a standard compound microscope yields a visible microspectrophotometer suitable for student investigations of fundamental spectrometry concepts,…
Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.
2012-10-05
The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introducemore » enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.« less
2010-03-01
MILITARY COMPENSATION .....................7 1. Basic Pay and Allowances ......................8 2. Other Monetary and Non-Monetary Benefits ......9...3. Deferred Benefits ............................10 4. Special Pays and Bonuses .....................10 C. THE SRB PROGRAM (MARINE CORPS...or flexible benefits packages, to military personnel. Much of the thesis builds on this prior research. Chapter II provides an overview of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Carl
Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"
AI Tools for Foreign Language Training
1989-07-01
certain of the four basic language skills (reading, writing, speak- ing, hearing ) are supported in this envircnmnnt. hile this argument is valid, we... skills . While this paper will not review the psycholinguistic parameters pertaining to foreign language learning, we mention it as cne of the essential...Institute Technologies for Skill Acquisition and Retention Technical Area Zita M. Simutis, Chief Training Research Laboratory Jack H. HiJler, Director U.S
NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010
Dan; Arvizu; Barbara; Goodman; Robert; McCormick; Tony; Markel; Matt; Keyser; Sreekant; Narumanchi; Rob; Farrington
2017-12-09
We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles.
United States Air Force Summer Research Program -- 1993. Volume 7. Armstrong Laboratory
1993-12-01
formulation, absorption, plasma binding affinity, biomembrane barriers, and relative extraction by the specific organ of the body concerned with...simultaneously administered or a drug may "interact" with itself. The concomitant administration of phenobarbital and warfarin results in lower plasma ... plasma protein which binds to basic lipophilic drugs including propranolol, meperidine, quinidine, and chlorpromazine. If a variation in the plasma
Conceptual planning for Space Station life sciences human research project
NASA Technical Reports Server (NTRS)
Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.
1986-01-01
The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
Standardizing in vitro diagnostics tasks in clinical trials: a call for action.
Lippi, Giuseppe; Simundic, Ana-Maria; Rodriguez-Manas, Leocadio; Bossuyt, Patrick; Banfi, Giuseppe
2016-05-01
Translational research is defined as the process of applying ideas, insights and discoveries generated through basic scientific inquiry to treatment or prevention of human diseases. Although precise information is lacking, several lines of evidence attest that up to 95% early-phase studies may not translate into tangible outcomes for improving clinical management. Major theoretical hurdles exist in the translational process, but is it also undeniable that many studies may have failed for practical reasons, such as the use of inappropriate diagnostic testing for evaluating efficacy, effectiveness or safety of a given medical intervention, or poor quality in laboratory testing. This can generate biased test results and result in misconceptions during data interpretation, eventually leading to no clinical benefit, possible harm, and a waste of valuable resources. From a genuine economic perspective, it can be estimated that over 10 million euros of funding may be lost each year in clinical trials in the European Union due to preanalytical and analytical problems. These are mostly attributions to the heterogeneity of current guidelines and recommendations for the testing process, to the poor evidence base for basic pre-analytical, analytical and post-analytical requirements in clinical trials, and to the failure to thoughtfully integrate the perspectives of clinicians, patients, nurses and diagnostic companies in laboratory best practices. The most rational means for filling the gap between what we know and what we practice in clinical trials cannot discount the development of multidisciplinary teams including research scientists, clinicians, nurses, patients associations and representative of in vitro diagnostic (IVD) companies, who should actively interplay and collaborate with laboratory professionals to adapt and disseminate evidence-based recommendations about biospecimen collection and management into the research settings, from preclinical to phase III studies.
Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klobe, L.E.
1988-12-01
The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNLmore » by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xing; Wang, Lei; Zhou, Hu
A novel PtCo alloy in situ etched and embedded in graphene nanopores (PtCo/NPG) as a high-performance catalyst for ORR was reported. Graphene nanopores were fabricated in situ while forming PtCo nanoparticles that were uniformly embedded in the graphene nanopores. Given the synergistic effect between PtCo alloy and nanopores, PtCo/NPG exhibited 11.5 times higher mass activity than that of the commercial Pt/C cathode electrocatalyst. DFT calculations indicated that the nanopores in NPG cannot only stabilize PtCo nanoparticles but can also definitely change the electronic structures, thereby change its adsorption abilities. This enhancement can lead to a favorable reaction pathway on PtCo/NPGmore » for ORR. This study showed that PtCo/NPG is a potential candidate for the next generation of Pt-based catalysts in fuel cells. This study also offered a promising alternative strategy and enabled the fabrication of various kinds of metal/graphene nanopore nanohybrids with potential applications in catalysts and potential use for other technological devices. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501), Zhejiang Provincial Education Department Research Program (Y201326554) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less
Laboratory medicine education in Lithuania.
Kucinskiene, Zita Ausrele; Bartlingas, Jonas
2011-01-01
In Lithuania there are two types of specialists working in medical laboratories and having a university degree: laboratory medicine physicians and medical biologists. Both types of specialists are officially being recognized and regulated by the Ministry of Health of Lithuania. Laboratory medicine physicians become specialists in laboratory medicine after an accredited 4-year multidisciplinary residency study program in Laboratory Medicine. The residency program curriculum for laboratory medicine physicians is presented. On December 9, 2009 the Equivalence of Standards for medical specialists was accepted and Lithuanian medical specialists in Clinical Chemistry and Laboratory Medicine can now apply for EC4 registration. Medical biologists become specialists in laboratory medicine after an accredited 2-year master degree multidisciplinary study program in Medical Biology, consisting of 80 credits. Various postgraduate advanced training courses for the continuous education of specialists in laboratory medicine were first introduced in 1966. Today it covers 1-2-week courses in different subspecialties of laboratory medicine. They are obligatory for laboratory medicine physicians for the renewal of their license. It is not compulsory for medical biologists to participate in these courses. The Centre of Laboratory Diagnostics represents a place for the synthesis and application of the basic sciences, the performance of research in various fields of laboratory medicine, as well as performance of thousands of procedures daily and provision of specific teaching programs.
Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferres, Laurent
Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutronmore » source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.« less
Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.
2003-01-01
A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the Caenorhabditis elegans genome and further characterized three sequences that were predicted to encode helix–loop–helix proteins. Students then used reverse transcription–polymerase chain reaction to determine which of the three genes is normally expressed in C. elegans. At the end of this laboratory activity, students were 1) to demonstrate a rudimentary knowledge of bioinformatics, including the ability to differentiate between “having” a gene and “expressing” a gene, and 2) to understand basic approaches to functional genomics, including one specific technique for assaying for gene expression. It was also anticipated that students would increase their skills at effectively communicating their research activities through written and/or oral presentation. This article describes the laboratory activity and the assessment of the effectiveness of the activity. PMID:12822036
Gurdita, Akshay; Vovko, Heather; Ungrin, Mark
2016-01-01
Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a "Raspberry Pi" single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them.
Flow Induced Vibration Program at Argonne National Laboratory
NASA Astrophysics Data System (ADS)
1984-01-01
The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.
Manca, Claudia; Hill, Carol; Hujer, Andrea M; Patel, Robin; Evans, Scott R; Bonomo, Robert A; Kreiswirth, Barry N
2017-03-15
The Antibacterial Resistance Leadership Group (ARLG) Laboratory Center (LC) leads the evaluation, development, and implementation of laboratory-based research by providing scientific leadership and supporting standard/specialized laboratory services. The LC has developed a physical biorepository and a virtual biorepository. The physical biorepository contains bacterial isolates from ARLG-funded studies located in a centralized laboratory and they are available to ARLG investigators. The Web-based virtual biorepository strain catalogue includes well-characterized gram-positive and gram-negative bacterial strains published by ARLG investigators. The LC, in collaboration with the ARLG Leadership and Operations Center, developed procedures for review and approval of strain requests, guidance during the selection process, and for shipping strains from the distributing laboratories to the requesting investigators. ARLG strains and scientific and/or technical guidance have been provided to basic research laboratories and diagnostic companies for research and development, facilitating collaboration between diagnostic companies and the ARLG Master Protocol for Evaluating Multiple Infection Diagnostics (MASTERMIND) initiative for evaluation of multiple diagnostic devices from a single patient sampling event. In addition, the LC has completed several laboratory-based studies designed to help evaluate new rapid molecular diagnostics by developing, testing, and applying a MASTERMIND approach using purified bacterial strains. In collaboration with the ARLG's Statistical and Data Management Center (SDMC), the LC has developed novel analytical strategies that integrate microbiologic and genetic data for improved and accurate identification of antimicrobial resistance. These novel approaches will aid in the design of future ARLG studies and help correlate pathogenic markers with clinical outcomes. The LC's accomplishments are the result of a successful collaboration with the ARLG's Leadership and Operations Center, Diagnostics and Devices Committee, and SDMC. This interactive approach has been pivotal for the success of LC projects. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
The opportunities for space biology research on the Space Station
NASA Technical Reports Server (NTRS)
Ballard, Rodney W.; Souza, Kenneth A.
1987-01-01
The life sciences research facilities for the Space Station are being designed to accommodate both animal and plant specimens for long durations studies. This will enable research on how living systems adapt to microgravity, how gravity has shaped and affected life on earth, and further the understanding of basic biological phenomena. This would include multigeneration experiments on the effects of microgravity on the reproduction, development, growth, physiology, behavior, and aging of organisms. To achieve these research goals, a modular habitat system and on-board variable gravity centrifuges, capable of holding various animal, plant, cells and tissues, is proposed for the science laboratory.
Reference Mission Operational Analysis Document (RMOAD) for the Life Sciences Research Facilities
NASA Technical Reports Server (NTRS)
1987-01-01
The space station will be constructed during the next decade as an orbiting, low-gravity, permanent facility. The facility will provide a multitude of research opportunities for many different users. The pressurized research laboratory will allow life scientists to study the effects of long-term exposure to microgravity on humans, animals, and plants. The results of these studies will increase our understanding of this foreign environment on basic life processes and ensure the safety of man's long-term presence in space. This document establishes initial operational requirements for the use of the Life Sciences Research Facility (LSRF) during its construction.
Basic Laboratory Skills for Water and Wastewater Analysis. Report No. 125.
ERIC Educational Resources Information Center
Clark, Douglas W.
Designed for individuals wanting to acquire an introductory knowledge of basic skills necessary to function in a water or wastewater laboratory, this handbook emphasizes current use of routine equipment and proper procedures. Explanations and illustrations focus on underlying techniques and principles rather than processes for conducting specific…
The Computer as a Tutorial Laboratory: The Stanford BIP Project.
ERIC Educational Resources Information Center
Barr, Avron; And Others
The BASIC Instructional Program (BIP) is an interactive problem-solving laboratory that offers tutorial assistance to students solving introductory programing problems in the BASIC language. After a brief review of the rationale and origins of the BIP instructional system, the design and implementation of BIP's curriculum information network are…
Operational Philosophy for the Advanced Test Reactor National Scientific User Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Benson; J. Cole; J. Jackson
2013-02-01
In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less
Institutional research and development, FY 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institutemore » funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.« less
Turner, A K; Paterson, S
2013-11-01
Individuals vary in their susceptibility to infectious disease, and it is now well established that host genetic factors form a major component of this variation. The discovery of genes underlying susceptibility has the potential to lead to improved disease control, through the identification and management of vulnerable individuals and the discovery of novel therapeutic targets. Laboratory rodents have proved invaluable for ascertaining the function of genes involved in immunity to infection. However, these captive animals experience conditions very different to the natural environment, lacking the genetic diversity and environmental pressures characteristic of natural populations, including those of humans. It has therefore often proved difficult to translate basic laboratory research to the real world. In order to further our understanding of the genetic basis of infectious disease resistance, and the evolutionary forces that drive variation in susceptibility, we propose that genetic research traditionally conducted on laboratory animals is expanded to the more ecologically valid arena of natural populations. In this article, we highlight the potential of using wild rodents as a new resource for biomedical research, to link the functional genetic knowledge gained from laboratory rodents with the variation in infectious disease susceptibility observed in humans and other natural populations. © 2013 John Wiley & Sons Ltd.
Monitoring and investigating natural disease by veterinary pathologists in diagnostic laboratories.
O'Toole, D
2010-01-01
Many emerging diseases in animals are initially recognized by diagnostic pathologists in animal health laboratories using routine laboratory submissions, in conjunction with clinical veterinarians and wildlife biologists. Familiar recent examples are chronic wasting disease, bovine spongiform encephalopathy, West Nile encephalomyelitis in North America, and postweaning multisystemic wasting syndrome in pigs. The recognition of new diseases in animals requires that the curiosity of diagnosticians be articulated with the capacity of animal health laboratories to create effective diagnostic teams, solicit additional cases from the field at minimal cost to clients, and develop relationships with basic researchers. Bovine neosporosis is used as an example to illustrate how a disease investigation triggered by routine clinical accessions can have international ramifications. Between the late 1980s and 1995, diagnosticians with California's animal health laboratory system identified neosporosis as a cause of reproductive wastage in cattle, characterized the lesions, isolated the agent, defined routes of transmission, met Koch's postulates, and developed diagnostic assays. Diagnostic pathologists catalyzed the process. The neosporosis investigation in California suggests useful attributes of veterinary diagnostic laboratories that pursue emerging diseases identified through routine laboratory accessions.
Amaral, Isabel Maria
2011-01-01
This paper aims to demonstrate that with Marck Athias, the Portuguese medicine inaugurated a new chapter in its history, in the Republic period, characterized by the experimental training at the laboratory. Thus, book-based knowledge gave way to a more clinically based approach favouring laboratory practice and basic research within several scientific domains. This new perspective operated important changes in the Portuguese medical community in the first half of century XX. Marck Athias (1857-1946), a Portuguese, was a physician trained at the University of Paris under Mathias Duval (a former student of Santiago Rámon y Cajal). It was in his laboratory that Athias began his career as researcher. Returning to Portugal, Athias founded a research school in physiology and histology which stressed a new approach in medicine based on experimental research. At the beginning of the twentieth century, scientific research in Portugal was virtually devoid of any of the practical clinic aspects. It is in fact Athias who introduced a new scientific perspective in Portuguese scientific community as well as influenced generations of graduate students in several national higher education and scientific research centres associated with Medicine. His influence and impact was due in great part to the underlying ideology of a positivist nature which succeeded in attracting several generations of followers, promoting a new step for the modernization of Portuguese medicine.
NASA Astrophysics Data System (ADS)
Hecker, S. S.
1987-07-01
The basic research community is responding splendidly in pushing the limits of superconductivity. The race to commercialize these new materials is on. The US will face unprecedented international competition, especially from the Japanese. The US needs to develop a partnership among universities, federal laboratories, and private industry. Universities have begun to team with industry while some of the large industrial companies like AT and T and IBM are competing effectively. But it will take more to make the mainstream of US industry competitive. Therefore, an initiative is proposed to develop an industry-DOE national laboratory partnership by establishing Exploratory R and D Centers at these laboratories. The centers will concentrate on the R and D for enabling technologies required to commercialize high-temperature superconductors. This initiative will in part help US industry to be competitive in this new and exciting field.
2009-01-01
Virtually, all research on basic mechanisms of aging has used species that are short lived and thus demonstrably unsuccessful at combating basic aging processes. A novel comparative approach would use a diversity of populations and species, focusing on those with particularly long, healthy lives, seeking the causative mechanisms that distinguish them from shorter lived relatives. Species of interest from this perspective include the naked mole rat, a mouse-size rodent that lives up to 30 years in the laboratory, and the little brown bat, which lives up to 34 years in the wild. Comparisons among dogs of different sizes, which differ by more than 50% in health span might also prove rewarding, as might novel species chosen because of their similarity to humans in certain key traits. Primates, because of their sophisticated cognitive ability, are a group of special value, and small, short-lived primates like the common marmoset might prove especially beneficial. Cell repositories and tissue banks from key species, as well as genomic and analytic tools optimized for comparative studies, would make valuable contributions to a new comparative approach to basic aging research. PMID:19223603
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Maureen; Yohe, Sara
"Moving from Petroleum to Plants to Energize our World" was submitted by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. C3Bio, an EFRC directed by Maureen McCann at Purdue University is a partnership between five institutions: Purdue (lead), National Renewable Energy Laboratory, Northeastern University, University of California Santa Barbara and the University of Tennessee. The Office ofmore » Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
Molecular Foundry Workshop draws overflow crowd to BerkeleyLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Art
2002-11-27
Nanoscale science and technology is now one of the top research priorities in the United States. With this background, it is no surprise that an overflow crowd or more than 350 registrants filled two auditoriums to hear about and contribute ideas for the new Molecular Foundry during a two-day workshop at the Lawrence Berkeley National Laboratory (Berkeley Lab). Scheduled to open for business at Berkeley Labin early 2006, the Molecular Foundry is one of three Nanoscale Science Research Centers (NSRCs) put forward for funding by the DOE's Office of Basic Energy Sciences (BES).
Paul Polani and the development of medical genetics
Harper, Peter S.
2007-01-01
Paul Polani (1914-2006) was one of the key figures internationally in the beginnings and development of medical genetics. Best remembered scientifically for his highly original work on the basis of human sex chromosome disorders, notably Turner syndrome, he pioneered the application of basic biological research to clinical genetic problems. The unit that he founded in 1960, at Guys Hospital, London, provided an unparalleled model for combined research and service in medical genetics across a wide range of laboratory areas and helped to establish medical genetics as a specific discipline. PMID:17066298
Aeronautics and Space Report of the President: Fiscal Year 2009 Activities
NASA Technical Reports Server (NTRS)
2009-01-01
In fiscal year 2009 (FY 09), the Exploration Systems Mission Directorate's (ESMD) Advanced Capabilities Division (ACD) provided critical research and technology products that reduced operational and technical risks for the flight systems being developed by the Constellation Program.1 These products addressed high-priority technology requirements for lunar exploration; risk mitigation related to astronaut health and performance; basic research in life and physical sciences using the International Space Station (ISS), free-flying spacecraft, and ground-based laboratories; and lunar robotic missions to gather data relevant to future human lunar missions.
Program director`s overview report for the Office of Health & Environmental Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, D.
1994-02-01
LBL performs basic and applied research and develops technologies in support of the Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are cross-cutting, or underlie, many of the core competencies. Attention is focused on the following: Facilities and resources; research management practices; research in progress; program accomplishments and research highlights; program orientation; work formore » non-OHER organizations DOE; critical issues; and resource orientation.« less
Laboratory Directed Research and Development Program Activities for FY 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman,L.
2007-12-31
Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annuallymore » in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.« less
Burdo, Joseph R
2013-01-01
Since 2009 at Boston College, we have been offering a Research in Neuroscience course using cultured neurons in an in vitro model of stroke. The students work in groups to learn how to perform sterile animal cell culture and run several basic bioassays to assess cell viability. They are then tasked with analyzing the scientific literature in an attempt to identify and predict the intracellular pathways involved in neuronal death, and identify dietary antioxidant compounds that may provide protection based on their known effects in other cells. After each group constructs a hypothesis pertaining to the potential neuroprotection, we purchase one compound per group and the students test their hypotheses using a commonly performed viability assay. The groups generate quantitative data and perform basic statistics on that data to analyze it for statistical significance. Finally, the groups compile their data and other elements of their research experience into a poster for our departmental research celebration at the end of the spring semester.
Burdo, Joseph R.
2013-01-01
Since 2009 at Boston College, we have been offering a Research in Neuroscience course using cultured neurons in an in vitro model of stroke. The students work in groups to learn how to perform sterile animal cell culture and run several basic bioassays to assess cell viability. They are then tasked with analyzing the scientific literature in an attempt to identify and predict the intracellular pathways involved in neuronal death, and identify dietary antioxidant compounds that may provide protection based on their known effects in other cells. After each group constructs a hypothesis pertaining to the potential neuroprotection, we purchase one compound per group and the students test their hypotheses using a commonly performed viability assay. The groups generate quantitative data and perform basic statistics on that data to analyze it for statistical significance. Finally, the groups compile their data and other elements of their research experience into a poster for our departmental research celebration at the end of the spring semester. PMID:23805059
Bugarcic, A; Zimbardi, K; Macaranas, J; Thorn, P
2012-01-01
Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny, http://naplesccsunysbedu/Pres/boyernsf/1998). However, embedding such experiences into the curriculum is particularly difficult when dealing with early stage students, who are in larger cohorts and often lack the background content knowledge necessary to engage with primary research literature and research level methods and equipment. We report here the design, delivery, assessment, and subsequent student learning outcomes of a 4-week practical module for 120 students at the beginning of their second year of university, which successfully engages students in designing cell culture experiments and in understanding the molecular processes and machinery involved in the basic cellular process of macropinocytosis. Copyright © 2011 Wiley Periodicals, Inc.
Electrophoresis experiments in microgravity
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.
1991-01-01
The use of the microgravity environment to separate and purify biological cells and proteins has been a major activity since the beginning of the NASA Microgravity Science and Applications program. Purified populations of cells are needed for research, transplantation and analysis of specific cell constituents. Protein purification is a necessary step in research areas such as genetic engineering where the new protein has to be separated from the variety of other proteins synthesized from the microorganism. Sufficient data are available from the results of past electrophoresis experiments in space to show that these experiments were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. However, electrophoresis is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.
Effluent-Monitoring Procedures: Basic Laboratory Skills. Student Reference Manual.
ERIC Educational Resources Information Center
Engel, William T.; And Others
This is one of several short-term courses developed to assist in the training of waste water treatment plant operational personnel in the tests, measurements, and report preparation required for compliance with their NPDES Permits. This Student Reference Manual provides a review of basic mathematics as it applies to the chemical laboratory. The…
ERIC Educational Resources Information Center
Demaray, Bryan
Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…
Brooks, Antone L
2013-11-01
My scientific journey started at the University of Utah chasing fallout. It was on everything, in everything, and was distributed throughout the ecosystem. This resulted in radiation doses to humans and caused me great concern. From this concern I asked the question, "Are there health effects from these radiation doses and levels of radioactive contamination?" I have invested my scientific career trying to address this basic question. While conducting research, I got acquainted with many of the What ifs of radiation biology. The major What if in my research was, "What if we have underestimated the radiation risk for internally-deposited radioactive material?" While conducting research to address this important question, many other What ifs came up related to dose, dose rate, and dose distribution. I also encountered a large number of Wows. One of the first was when I went from conducting environmental fallout studies to research in a controlled laboratory. The activity in fallout was expressed as pCi L⁻¹, whereas it was necessary to inject laboratory animals with μCi g⁻¹ body weight to induce measurable biological changes, chromosome aberrations, and cancer. Wow! That is seven to nine orders of magnitude above the activity levels found in the environment. Other Wows have made it necessary for the field of radiation biology to make important paradigm shifts. For example, one shift involved changing from "hit theory" to total tissue responses as the result of bystander effects. Finally, Who cares? While working at U.S. Department of Energy headquarters and serving on many scientific committees, I found that science does not drive regulatory and funding decisions. Public perception and politics seem to be major driving forces. If scientific data suggested that risk had been underestimated, everyone cared. When science suggested that risk had been overestimated, no one cared. This result-dependent Who cares? was demonstrated as we tried to generate interactions by holding meetings with individuals involved in basic low-dose research, regulators, and the news media. As the scientists presented their "exciting data" that suggested that risk was overestimated, many of the regulators simply said, "We cannot use such data." The newspaper people said, "It is not possible to get such information by my editors." In spite of these difficulties, research results from basic science must be made available and considered by members of the public as well as by those that make regulatory recommendations. Public outreach of the data is critical and must continue to be a future focus to address properly the question of, "Who cares?" My journey in science, like many of yours, has been a mixture of chasing money, beatings, and the joys of unique and interesting research results. Perhaps through our experiences, we can improve research environments, funding, and use of the valuable information that is generated. Scientists that study at all levels of biological organization, from the environment to the laboratory and human epidemiology, must share expertise and data to address the What Ifs, Wows, and Who Cares of radiation biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John L.; Bylaska, Eric J.; Bogatko, Stuart A.
DFT-MD simulations (PBE96 and PBE0) with MD-XAFS scattering calculations (FEFF9) show near quantitative agreement with new and existing XAFS measurements for a comprehensive series of transition metal ions which interact with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. DOE by Battelle. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the U.S. DOE's Office ofmore » Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less
Translational Partnership Development Lead | Center for Cancer Research
PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership Development Lead (TPDL) who will work closely with the Office of Translational Resources (OTR) within the Office of the Director (OD) of NCI’s Center for Cancer Research (CCR) to facilitate the successful translation of CCR’s basic and preclinical research advances into new therapeutics and diagnostics. The TPDL with be strategically aligned within FNLCR’s Partnership Development Office (PDO), to maximally leverage the critical mass of expertise available within the PDO. CCR comprises the basic and clinical components of the NCI’s Intramural Research Program (IRP) and consists of ~230 basic and clinical Investigators located at either the NIH main campus in Bethesda or the NCI-Frederick campus. CCR Investigators are focused primarily on cancer and HIV/AIDS, with special emphasis on the most challenging and important high-risk/high-reward problems driving the fields. (See https://ccr.cancer.gov for a full delineation of CCR Investigators and their research activities.) The process of developing research findings into new clinical applications is high risk, complex, variable, and requires multiple areas of expertise seldom available within the confines of a single Investigator’s laboratory. To accelerate this process, OTR serves as a unifying force within CCR for all aspects of translational activities required to achieve success and maintain timely progress. A key aspect of OTR’s function is to develop and strengthen essential communications and collaborations within NIH, with extramural partners and with industry to bring together experts in chemistry, human subjects research, intellectual property, mouse study design, pharmacokinetics (PK), drug screening, industrial project management and other areas needed to facilitate rapid translation. Currently, FNLCR is seeking an expert who can work across organizational boundaries to catalyze these interactions with the primary objective to develop and enable strategies that will facilitate the identification of partners who can collaborate with CCR Investigators. The TPDL will work with the partners and NCI to facilitate the swift and effective translation of pre-clinical discoveries with high potential toward clinical application. A critical part of the TPDL function will be to strengthen interactions among groups with strong translational interests located at NCI-Frederick, including the Molecular Targets Laboratory (MTL), and the NIH main campus, including the National Center for Advancing Translational Science (NCATS). KEY ROLES/RESPONSIBILITIES Advise Principal Investigators and senior leadership on project-based and organizational/translational strategies for discoveries. Enable partnerships and strengthen communications/collaborations within and outside of NIH with biotech industry and groups with strong translational interests/expertise. This includes continuing and strengthening the close collaboration with the Molecular Targets Laboratory (MTL) in Frederick as well as increasing interactions with groups that can facilitate drug development and translational work such as those at NCATS, the NCI’s Division of Cancer Treatment and Diagnosis (DCTD) and with current and potential industry partners. Facilitate outreach to biotech/pharma to develop partnerships furthering translational research projects that may lead to licensing or other agreements. Create outreach opportunities aimed at engaging PIs with potential drug development projects and provide guidance through the translational pipeline. Identify strategic improvements in CCR's technology and drug development process and infrastructure.
Genuine Onion: Simple, Fast, Flexible, and Cheap Website Authentication
2015-05-21
Genuine onion : Simple, Fast, Flexible, and Cheap Website Authentication Paul Syverson U.S. Naval Research Laboratory paul.syverson@nrl.navy.mil...access to Internet websites. Tor is also used to access sites on the . onion virtual domain. The focus of . onion use and discussion has traditionally... onion system can be used to provide an entirely separate benefit: basic website authentication. We also argue that not only can onionsites provide
Indicators for the use of robotic labs in basic biomedical research: a literature analysis
2017-01-01
Robotic labs, in which experiments are carried out entirely by robots, have the potential to provide a reproducible and transparent foundation for performing basic biomedical laboratory experiments. In this article, we investigate whether these labs could be applicable in current experimental practice. We do this by text mining 1,628 papers for occurrences of methods that are supported by commercial robotic labs. Using two different concept recognition tools, we find that 86%–89% of the papers have at least one of these methods. This and our other results provide indications that robotic labs can serve as the foundation for performing many lab-based experiments. PMID:29134146
Ma, Bin; Xu, Jia-Ke; Wu, Wen-Jing; Liu, Hong-Yan; Kou, Cheng-Kun; Liu, Na; Zhao, Lulu
2017-01-01
To investigate the awareness and use of the Systematic Review Center for Laboratory Animal Experimentation's (SYRCLE) risk-of-bias tool, the Animal Research: Reporting of In Vivo Experiments (ARRIVE) reporting guidelines, and Gold Standard Publication Checklist (GSPC) in China in basic medical researchers of animal experimental studies. A national questionnaire-based survey targeting basic medical researchers was carried in China to investigate the basic information and awareness of SYRCLE's risk of bias tool, ARRIVE guidelines, GSPC, and animal experimental bias risk control factors. The EpiData3.1 software was used for data entry, and Microsoft Excel 2013 was used for statistical analysis in this study. The number of cases (n) and percentage (%) of classified information were statistically described, and the comparison between groups (i.e., current students vs. research staff) was performed using chi-square test. A total of 298 questionnaires were distributed, and 272 responses were received, which included 266 valid questionnaires (from 118 current students and 148 research staff). Among the 266 survey participants, only 15.8% was aware of the SYRCLE's risk of bias tool, with significant difference between the two groups (P = 0.003), and the awareness rates of ARRIVE guidelines and GSPC were only 9.4% and 9.0%, respectively; 58.6% survey participants believed that the reports of animal experimental studies in Chinese literature were inadequate, with significant difference between the two groups (P = 0.004). In addition, only approximately 1/3 of the survey participants had read systematic reviews and meta-analysis reports of animal experimental studies; only 16/266 (6.0%) had carried out/participated in and 11/266 (4.1%) had published systematic reviews/meta-analysis of animal experimental studies. The awareness and use rates of SYRCLE's risk-of-bias tool, the ARRIVE guidelines, and the GSPC were low among Chinese basic medical researchers. Therefore, specific measures are necessary to promote and popularize these standards and specifications and to introduce these standards into guidelines of Chinese domestic journals as soon as possible to raise awareness and increase use rates of researchers and journal editors, thereby improving the quality of animal experimental methods and reports.
Gardner, Stephanie M.; Adedokun, Omolola A.; Weaver, Gabriela C.; Bartlett, Edward L.
2011-01-01
Inquiry-based laboratory instruction has been shown to actively engage students in the content and skills being taught. These courses are further intended to teach students not only what is known, but also the process by which investigators come to know it. We sought to take this approach one step further and incorporate novel research questions into an inquiry-based laboratory model early in the undergraduate course of study. In this research-based introductory laboratory course, first-year students acquired basic lab skills not just for their own sake, but rather within the context of a research question of a member of the faculty. Student projects investigated potential neuroanatomical changes in animal models of dyslexia and aging and included measurements of neuron numbers and levels and distribution of neuronal proteins. Students played an active role in designing and implementing an experimental plan, explored data analysis techniques, and reflected on the results that they obtained in scholarly forms such as research papers and a departmental poster session. Student feedback on this approach has been extremely positive, and the data collected were research quality preliminary data that are being actively pursued for further study. Based on our encouraging experiences, we conclude that designing an introductory course around novel research, including some assessments modeled after scholarly practices, provides motivation and excitement for the students, instills good scientific habits, and can potentially benefit departmental research. PMID:23626490
Study of the Interaction of the HIV-1 Fusion Peptide with Lipid Bilayer Membranes
NASA Astrophysics Data System (ADS)
Heller, William; Rai, Durgesh
HIV-1 undergoes fusion with the cell membrane through interactions between its coat proteins and the target cell. Visualization of fusion with sufficient detail to determine the molecular mechanism remains elusive. Here, the interaction between a synthetic variant of the HIV-1 gp41 fusion peptide with vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was studied. The peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet that is accompanied by a transition in the structure of the lipid bilayer vesicle. The peptide changes the distribution of lipids between the vesicle leaflets. Further, it creates two regions having different thicknesses. The results shed new light on how the peptide modifies the membrane structure to favor fusion. A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.
A Laboratory Exercise Relating Soil Energy Budgets to Soil Temperature
ERIC Educational Resources Information Center
Koenig, Richard T.; Cerny-Koenig, Teresa; Kotuby-Amacher, Janice; Grossl, Paul R.
2008-01-01
Enrollment by students in degree programs other than traditional horticulture, agronomy, and soil science has increased in basic plant and soil science courses. In order to broaden the appeal of these courses to students from majors other than agriculture, we developed a hands-on laboratory exercise relating the basic concepts of a soil energy…
Effluent Monitoring Procedures: Basic Laboratory Skills. Staff Guide for Conducting the Course.
ERIC Educational Resources Information Center
Engel, William T.; And Others
This manual is designed for use by instructors who will have to teach others the basic laboratory skills needed to perform National Pollution Discharge Elimination System (NPDES) Analyses. It includes topics related to the presentation of training courses in which the NPDES analyses would be taught. These topics include: examples of course…
[Actual state and problems in neurology training at graduate school].
Kira, Jun-ichi; Ohyagi, Yasumasa; Taniwaki, Takayuki; Inuzuka, Takashi; Yoshii, Fumihito; Aoki, Masashi; Amano, Takahiro; Toyoshima, Itaru; Fukutake, Toshio; Hashimoto, Yoichiro
2014-01-01
To understand the status of postgraduate education in neurology in Japan, the Committee for the Education of Undergraduate Students and Junior Residents within the Japanese Society of Neurology investigated the four-year trend at 80 medical schools from 2009 to 2012. The mean number of new students to each postgraduate school increased from 1.24 to 1.67 during these four years. After training clinical neurology, more than half of the neurological residents entered the postgraduate schools. Students in the postgraduate schools seemed to be researching major neurological diseases using various methods at each neurology laboratory. However, some problems were suggested. First, the mean number of newcomers to the neurology departments of the universities decreased gradually from 2.29/year to 1.96/year. Second, many of the postgraduate students were working in patient services at university hospitals or as part-time workers at other hospitals, and may not have sufficient time for their research projects. Third, many of the postgraduate students were carrying out research at each affiliated department of neurology, and may not have the opportunity to work in laboratories specializing in basic science. Finally, there may not be sufficient opportunities for further research at other laboratories in Japan or overseas after they finished their work at postgraduate school.
Physics division annual report 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, J.; Physics
2008-02-28
This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways tomore » address this mission.« less
Antal, János; Timár, Attila
2011-11-20
Translational medicine is the emerging scientific discipline of the last decade which will set the benchmark for the pharmaceutical industry research and development, integrates inputs from the basic sciences of computer modeling and laboratory research through the pre-clinical and clinical phases of human research to the assimilation of new therapies and treatments into everyday practice of patient care and prevention. With this brief insight authors tried in their humble way to summarize the underlying basis, the present and the potential future of this emerging view, to draw attention to some of the challenges and tasks it faces and to highlight some of the promising approaches, trends and model developments and applications.
Integrated fundamental research on current collection
NASA Astrophysics Data System (ADS)
Kuhlmann-Wilsdorf, Doris
1992-10-01
The aim of our research has been to add to basic understanding in the area of current collection with particular emphasis on topics likely to benefit practical objectives. Under sponsorship of this contract twenty three papers were published in the international literature as listed in the last section. Additionally, thirteen invited lectures and eleven contributed lectures on various aspects of this research were delivered at Universities, Research Laboratories and International Conferences by the Principal Investigator and co-workers. Last not least, development of a novel metal fiber material for sliding electrical contacts has been continued with much success. This is expected to become very useful for making metal fiber brushes for homopolar motors/generators as well as for EML armatures.
Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the k · p Model
NASA Astrophysics Data System (ADS)
Wang, Chang; Pan, Wenwu; Kolokolov, Konstantin; Wang, Shumin
2018-05-01
Not Available Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492.
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang
2017-08-01
This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.
Russell, Thomas P; Lahti, Paul M. (PHaSE - Polymer-Based Materials for Harvesting Solar Energy); PHaSE Staff
2017-12-09
'Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst' was submitted by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PHaSE, an EFRC co-directed by Thomas P. Russell and Paul M. Lahti at the University of Massachusetts, Amherst, is a partnership of scientists from six institutions: UMass (lead), Oak Ridge National Laboratory, Pennyslvania State University, Rensselaer Polytechnic Institute, and the University of Pittsburgh. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pentzer, Emily
"Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst" was submitted by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE) EFRC to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PHaSE, an EFRC co-directed by Thomas P. Russell and Paul M. Lahti at the University of Massachusetts, Amherst, is a partnership of scientists from six institutions: UMass (lead), Oak Ridge National Laboratory, Pennsylvania Statemore » University, Rensselaer Polytechnic Institute, and the University of Pittsburgh. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less
30 CFR 795.10 - Qualified laboratories.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Qualified laboratories. 795.10 Section 795.10... laboratories. (a) Basic qualifications. To be designated a qualified laboratory, a firm shall demonstrate that... necessary field samples and making hydrologic field measurements and analytical laboratory determinations by...
Synergy between medicinal chemistry and biological research.
Moncada, Salvador; Coaker, Hannah
2014-09-01
Salvador Moncada studied medicine at the University of El Salvador (El Salvador) before coming to the UK in 1971 to work on a PhD with Professor John Vane at the Institute of Basic Medical Sciences, Royal College of Surgeons (UK). After a short period of research at the University of Honduras (Honduras), he joined the Wellcome Research Laboratories (UK) where he became Head of the Department of Prostaglandin Research and later, Director of Research. He returned to academic life in 1996 as founder and director of the Wolfson Institute for Biomedical Research at University College London (UK). Moncada played a role in the discovery of the mechanism of action of aspirin-like drugs and later led the teams which discover prostacyclin and identified nitric oxide as a biological mediator. In his role as a Director of Research of the Wellcome Laboratories, he oversaw the discovery and development of medicines for epilepsy, migraine, malaria and cancer. Currently, he is working on the regulation of cell proliferation as Director of the Institute of Cancer Sciences at the University of Manchester (UK). Moncada has won numerous awards from the international scientific community and in 2010, he received a knighthood from Her Majesty Queen Elizabeth II for his services to science.
NASA Astrophysics Data System (ADS)
Perruchoud, David; Pisotta, Iolanda; Carda, Stefano; Murray, Micah M.; Ionta, Silvio
2016-08-01
Objective. Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed. Approach. The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI’s actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms. Main results. Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users’ needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications. Significance. The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use.
Perruchoud, David; Pisotta, Iolanda; Carda, Stefano; Murray, Micah M; Ionta, Silvio
2016-08-01
Brain-machine interfaces (BMIs) re-establish communication channels between the nervous system and an external device. The use of BMI technology has generated significant developments in rehabilitative medicine, promising new ways to restore lost sensory-motor functions. However and despite high-caliber basic research, only a few prototypes have successfully left the laboratory and are currently home-deployed. The failure of this laboratory-to-user transfer likely relates to the absence of BMI solutions for providing naturalistic feedback about the consequences of the BMI's actions. To overcome this limitation, nowadays cutting-edge BMI advances are guided by the principle of biomimicry; i.e. the artificial reproduction of normal neural mechanisms. Here, we focus on the importance of somatosensory feedback in BMIs devoted to reproducing movements with the goal of serving as a reference framework for future research on innovative rehabilitation procedures. First, we address the correspondence between users' needs and BMI solutions. Then, we describe the main features of invasive and non-invasive BMIs, including their degree of biomimicry and respective advantages and drawbacks. Furthermore, we explore the prevalent approaches for providing quasi-natural sensory feedback in BMI settings. Finally, we cover special situations that can promote biomimicry and we present the future directions in basic research and clinical applications. The continued incorporation of biomimetic features into the design of BMIs will surely serve to further ameliorate the realism of BMIs, as well as tremendously improve their actuation, acceptance, and use.
BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less
Synchrotron radiation laboratories at the Bonn electron accelerators. a status report
NASA Astrophysics Data System (ADS)
Hormes, J.
1987-07-01
At the Physikalisches Institut of the University in Bonn experiments with synchrotron radiation were carried out ever since 1962. At the moment (June 1986) all work takes place in the SR-laboratory at the 2.5 GeV synchrotron. A 3.5 GeV stretcher ring (ELSA) is under construction and will come into operation at the end of 1986. This accelerator will also run as a storage ring for synchrotron radiation experiments and a laboratory to be used at this machine is also under consideration. The SR experiments which are carried out in Bonn try to take advantage of the fact that we are still using a high energy synchrotron for our work. Besides basic research also applied work is done using synchrotron radiation even as a production tool for X-ray lithography.
Teaching internet use to adult learners: The LANL experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.; Comstock, D.
The Research library at Los Alamos National Laboratory has been teaching an Internet class to adult learners since May 1994. The class is a team effort, combining lecture/demo with hands-on practice using Gopher and the World Wide Web. What started out as a small short-term project has become a weekly class available to any Lab employee or associate. More than 250 people have been taught to find basic reference materials and to navigate the Internet on the Gopher and World Wide Web. The class is one of the first classes offered by the Research Library to be filled every month,more » and one Laboratory group has recommended that their staff attend this class in preparation for more advanced Internet and HTML classes as part of their group training. The success of this class spurred development by the Research Library of more specific subject classes using Internet resources, specifically business and general science resources.« less
Building international genomics collaboration for global health security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.
Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less
2011-09-09
CAPE CANAVERAL, Fla. – Panelists conduct a question and answer session with news media after NASA awards a cooperative agreement with the Center for the Advancement of Science in Space (CASIS) to manage the portion of the International Space Station that operates as a U.S. national laboratory. From left are: Waleed Abdalati, NASA chief scientist; Mark Uhran, NASA assistant associate administrator for the International Space Station; and Jeanne Becker, CASIS executive director. CASIS will be located at the Space Life Sciences Laboratory at NASA’s Kennedy Space Center in Florida. The organization will increase station use to maximize the public’s return on its investment by managing its diversified research and development portfolio based on needs for basic and applied research in a variety of fields. CASIS will identify opportunities for non-NASA uses linking scientific review and economic value, and will match potential research and development opportunities with funding sources. The organization also will increase awareness among schools and students about using the station as a learning platform. Photo credit: NASA/Kim Shiflett
Building international genomics collaboration for global health security
Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; ...
2015-12-07
Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less
Affordable proteomics: the two-hybrid systems.
Gillespie, Marc
2003-06-01
Numerous proteomic methodologies exist, but most require a heavy investment in expertise and technology. This puts these approaches out of reach for many laboratories and small companies, rarely allowing proteomics to be used as a pilot approach for biomarker or target identification. Two proteomic approaches, 2D gel electrophoresis and the two-hybrid systems, are currently available to most researchers. The two-hybrid systems, though accommodating to large-scale experiments, were originally designed as practical screens, that by comparison to current proteomics tools were small-scale, affordable and technically feasible. The screens rapidly generated data, identifying protein interactions that were previously uncharacterized. The foundation for a two-hybrid proteomic investigation can be purchased as separate kits from a number of companies. The true power of the technique lies not in its affordability, but rather in its portability. The two-hybrid system puts proteomics back into laboratories where the output of the screens can be evaluated by researchers with experience in the particular fields of basic research, cancer biology, toxicology or drug development.
University of Kansas Medical center Cancer Research Equipment Award Type: Construction Grant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, Jamie
A major mechanism to strengthen the overall cancer focus of KUCC and expand specific research programs is through targeted recruitment of additional cancer researchers to increase the national and international status of the Cancer Center, enhance the number of NCI/cancer-related grants, fill critical research needs, and enable new collaborative projects. Over the last five years KUCC has demonstrated the ability to recruit nationally recognized basic, translational and clinical scientists to fill key leadership positions and strengthen our research programs. These researchers require new and renovated research facilities require state-of-the-art laboratory equipment. This includes standard equipment for the renovated laboratories andmore » more specialized equipment as part of new investigator start-up packages. This funding is used to support recruitment, facilities, equipment, shared resources, administration, and patient care services. KUCC is committed to recruiting additional cancer researchers to increase the national and international status of the Cancer Center, enhance the number of NCI/cancer-related grants, fill critical research positions and build the four cancer research programs. Each purposeful hire aims to further the scientific vision, mission, and goals of the Cancer Center research programs. The funds requested will be used to supplement the recruitment packages of future cancer center recruits primarily through purchase of key equipment items.« less
2000-01-01
laser- plasma , laser-electron beam, and laser- matter interactions. The division also has an 11 m3 space chamber capable of reproducing the near- Earth ...Airborne, Real Aperture Radar M. Sletten and D.J. McLaughlin ENERGETIC PARTICLES, PLASMAS , AND BEAMS 123 Arabian Gulf Clutter Measurements with the AN/SPS...During the years since the war, the areas of study at the Laboratory have in- cluded basic research concerning the Navy’s envi- ronments of Earth , sea
Laboratory evaluation of advanced battery technologies for electric vehicle applications
NASA Astrophysics Data System (ADS)
Deluca, W. H.; Kulaga, J. E.; Hogrefe, R. L.; Tummilo, A. F.; Webster, C. E.
1989-03-01
During 1988, battery technology evaluations were performed for the Department of Energy and Electric Power Research Institute at the Argonne Analysis and Diagnostic Laboratory. Cells and multicell modules from four developers were examined to determine their performance and life characteristics for electric vehicle propulsion applications. The results provide an interim measure of the progress being made in battery R and D programs, a comparison of battery technologies, and a source of basic data for modeling and continuing R and D. This paper summarizes the performance and life characterizations of twelve single cells and six 3- to 24-cell modules that encompass four technologies (Na/S, Ni/Fe, lead-acid, and Fe/Air).
A biosafety level 2 virology lab for biotechnology undergraduates
Matza‐Porges, Sigal
2017-01-01
Abstract Medical, industrial, and basic research relies heavily on the use of viruses and vectors. Therefore, it is important that bioscience undergraduates learn the practicalities of handling viruses. Teaching practical virology in a student laboratory setup presents safety challenges, however. The aim of this article is to describe the design and implementation of a virology laboratory, with emphasis on student safety, for biotechnology undergraduates. Cell culture techniques, animal virus infection, quantification, and identification are taught at a biosafety level 2 for a diverse group of undergraduates ranging from 20 to 50 students per group. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):537–543, 2017. PMID:28758332
GUIDANCE UNITS FOR THE LEARNING LABORATORY TO TEACH BASIC SKILLS IN A CULTURALLY DEPRIVED AREA.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
THE PURPOSE OF THIS HANDBOOK IS TO PROVIDE GUIDANCE UNITS FOR THE LEARNING LABORATORY. THE 10 UNITS ARE STRUCTURED TO TEACH BASIC SKILLS TO CULTURALLY DISADVANTAGED STUDENTS. THE FOLLOWING AREAS ARE SUBJECTS FOR INSTRUCTIONAL UNITS OF STUDY--(1) EXPLORING THE SELF-CONCEPT, (2) ATTITUDES, (3) HOW TO STUDY, (4) HOW TO PASS EXAMINATIONS, (5) GROUP…
Investigation of a Chaotic Double Pendulum in the Basic Level Physics Teaching Laboratory
ERIC Educational Resources Information Center
Vanko, Peter
2007-01-01
First-year physics students at the Technical University of Budapest carry out a wide range of measurements in the Basic Level Physics Teaching Laboratory. One of the most exciting experiments is the investigation of a chaotic double pendulum by a V-scope, a powerful three-dimensional motion tracking system. After a brief introduction to the…
Emerging technology: applications of Raman spectroscopy for prostate cancer.
Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W
2014-09-01
There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.
Opportunities for Undergraduate Research in Nuclear Physics
Hicks, S. F.; Nguyen, T. D.; Jackson, D. T.; ...
2017-10-26
University of Dallas (UD) physics majors are offered a variety of undergraduate research opportunities in nuclear physics through an established program at the University of Kentucky Accelerator Laboratory (UKAL). The 7-MV Model CN Van de Graaff accelerator and the neutron production and detection facilities located there are used by UD students to investigate how neutrons scatter from materials that are important in nuclear energy production and for our basic understanding of how neutrons interact with matter. Recent student projects include modeling of the laboratory using the neutron transport code MCNP to investigate the effectiveness of laboratory shielding, testing the long-termmore » gain stability of C 6D 6 liquid scintillation detectors, and deducing neutron elastic and inelastic scattering cross sections for 12C. Finally, results of these student projects are presented that indicate the pit below the scattering area reduces background by as much as 30%; the detectors show no significant gain instabilities; and new insights into existing 12C neutron inelastic scattering cross-section discrepancies near a neutron energy of 6.0 MeV are obtained.« less
Gurdita, Akshay; Vovko, Heather; Ungrin, Mark
2016-01-01
Basic equipment such as incubation and refrigeration systems plays a critical role in nearly all aspects of the traditional biological research laboratory. Their proper functioning is therefore essential to ensure reliable and repeatable experimental results. Despite this fact, in many academic laboratories little attention is paid to validating and monitoring their function, primarily due to the cost and/or technical complexity of available commercial solutions. We have therefore developed a simple and low-cost monitoring system that combines a “Raspberry Pi” single-board computer with USB-connected sensor interfaces to track and log parameters such as temperature and pressure, and send email alert messages as appropriate. The system is controlled by open-source software, and we have also generated scripts to automate software setup so that no background in programming is required to install and use it. We have applied it to investigate the behaviour of our own equipment, and present here the results along with the details of the monitoring system used to obtain them. PMID:26771659
Opportunities for Undergraduate Research in Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, S. F.; Nguyen, T. D.; Jackson, D. T.
University of Dallas (UD) physics majors are offered a variety of undergraduate research opportunities in nuclear physics through an established program at the University of Kentucky Accelerator Laboratory (UKAL). The 7-MV Model CN Van de Graaff accelerator and the neutron production and detection facilities located there are used by UD students to investigate how neutrons scatter from materials that are important in nuclear energy production and for our basic understanding of how neutrons interact with matter. Recent student projects include modeling of the laboratory using the neutron transport code MCNP to investigate the effectiveness of laboratory shielding, testing the long-termmore » gain stability of C 6D 6 liquid scintillation detectors, and deducing neutron elastic and inelastic scattering cross sections for 12C. Finally, results of these student projects are presented that indicate the pit below the scattering area reduces background by as much as 30%; the detectors show no significant gain instabilities; and new insights into existing 12C neutron inelastic scattering cross-section discrepancies near a neutron energy of 6.0 MeV are obtained.« less
Interview: from Down's syndrome to basic epigenetics and back again.
Lawrence, Jeanne; Telfer, Caroline
2013-12-01
Dr Jeanne Lawrence talks to Caroline Telfer, Commissioning Editor. Dr Jeanne Lawrence is an internationally recognized leader in the study of chromosome regulation by noncoding RNA and nuclear and genome organization. Her research bridges fundamental questions about genome regulation with clinical implications of recent advances in epigenetics. Her interest in chromosome structure and regulation has been a theme throughout her career and she has been honored for her work developing sensitive FISH technology for the detection of single copy genes, as well as RNAs. Her laboratory's publications include the initial demonstration of cell type-specific gene organization with nuclear subdomains; the novel biology of a noncoding RNA, XIST, which coats a whole X-chromosome to induce its silencing; and a new architectural role for a large noncoding RNA to scaffold a nuclear body. Her laboratory's work on epigenetic chromosome regulation in stem cells led to recent studies regarding unanticipated roles of repeat sequences in normal chromosome regulation and deregulation in cancer. Most recently, her laboratory has demonstrated a new approach to translate the basic mechanism of X-chromosome inactivation to correct a chromosomal dosage imbalance in patient-derived cells with trisomy 21 (Down's syndrome). Dr Lawrence has received awards from numerous agencies, including a Research Career Development Award from the National Center for Human Genome Research, career awards from the American Society of Cell Biology, the German Society for Biochemistry, the Muscular Dystrophy Association and a John Merck Fund Translational Research Award. She has served on the NIH National Advisory Council for Human Genome Research, numerous study sections and is currently a monitoring editor for the Journal of Cell Biology. Dr Lawrence has a BA in Biology and Music from Stephens College (MO, USA), a MS in Human Genetics and Genetic Counseling from Rutgers University (NJ, USA) and a PhD in Developmental Biology from Brown University (RI, USA). She is currently a Professor and Interim Chair of the Department of Cell and Developmental Biology at the University of Massachusetts Medical School (MA, USA).
High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems
NASA Technical Reports Server (NTRS)
Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)
2001-01-01
Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In addition, the temperature dependence of the coil's resistance was measured from 77 to 300 K. Following this series of tests, the coil was transported to NHMFL facilities in Los Alamos, NM, and pulsed to 2 T using an existing capacitor bank pulse generator. The coil was completely successful in producing the desired field without damage to the windings.
Strategies for optimizing the thermoelectricity of PbTe alloys
NASA Astrophysics Data System (ADS)
Zhai, Jinze; Wang, Teng; Wang, Hongchao; Su, Wenbin; Wang, Xue; Chen, Tingting; Wang, Chunlei
2018-04-01
Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CB632506), the National Natural Science Foundation of China (Grant Nos. 51501105, 51672159, and 51611540342), the Young Scholars Program of Shandong University (Grant No. 2015WLJH21), the China Postdoctoral Science Foundation (Grant Nos. 2015M580588 and 2016T90631), the Postdoctoral Innovation Foundation of Shandong Province, China (Grant No. 201603027), the Fundamental Research Funds of Shandong University (Grant No. 2015TB019), and the Foundation of the State Key Laboratory of Metastable Materials Science and Technology (Grant No. 201703).
NASA Technical Reports Server (NTRS)
Mixon, Randolph W.; Hankins, Walter W., III; Wise, Marion A.
1988-01-01
Research at Langley AFB concerning automated space assembly is reviewed, including a Space Shuttle experiment to test astronaut ability to assemble a repetitive truss structure, testing the use of teleoperated manipulators to construct the Assembly Concept for Construction of Erectable Space Structures I truss, and assessment of the basic characteristics of manipulator assembly operations. Other research topics include the simultaneous coordinated control of dual-arm manipulators and the automated assembly of candidate Space Station trusses. Consideration is given to the construction of an Automated Space Assembly Laboratory to study and develop the algorithms, procedures, special purpose hardware, and processes needed for automated truss assembly.
Soucy, Katie; Fairhurst, Rick M; Lynn, Geoffrey M; Fomalont, Kevin; Wynn, Thomas A; Siegel, Richard M
2016-12-01
Immunology is an increasingly interdisciplinary field. Here we describe a new model for interinstitutional graduate training as partnerships between complementary laboratories. This collaborative model reduces time to graduation without compromising productivity or alumni outcomes. We offer our experience with one such program and thoughts on the ingredients for their success. Despite tremendous recent advances in technology, communications, and the translation of basic scientific discoveries into new diagnostics and therapies for human diseases, graduate training in immunology and other areas of biomedical research in the United States has remained remarkably unchanged since the early 20th century, with coursework and laboratory rotations taking up much of the first 2 years, and a single mentor shepherding the student through a research project over 3 or more subsequent years. The time to graduation still averages more than 6 years in the biomedical sciences field (http://www.nsf.gov/statistics/2016/nsf16300/), with uncertain benefit of this extended time to research productivity and career advancement. Published by Elsevier Ltd.
Enhancing In-Flight Transoceanic Communications Using Swift-64 Packet Mode Service
NASA Technical Reports Server (NTRS)
Slywczak, Richard A.
2004-01-01
Current aeronautical communications can be divided into two segments. The first provides state of the art, packet switched technology to the cabin passengers so that they have access to e-mail and web services. The second provides basic circuit switch communication technology to the cockpit, which does not use bandwidth as efficiently as packet switching nor promotes resource sharing. This paper explores the research efforts currently being conducted by the NASA/Glenn Research Center (GRC) for transoceanic communications. The goal is to bring packet mode services to both the cabin and the cockpit of the aircraft and be able to attain benefits by sharing the data link with cabin services. First, this paper will outline the goals of the program and detail the benefits and issues related to this research. We will explain our current laboratory setup and show an architecture implemented in the testbed. Finally, we will present a work plan that will show the progression of research over the next year. This plan will describe a complete cycle from conceptual design and laboratory implementation to the final flight testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derrick, M.
These proceedings document a number of aspects of a big science facility and its impact on science, on technology, and on the continuing program of a major US research institution. The Zero Gradient Synchrotron (ZGS) was a 12.5 GeV weak focusing proton accelerator that operated at Argonne for fifteen years--from 1964 to 1979. It was a major user facility which led to new close links between the Laboratory and university groups: in the research program; in the choice of experiments to be carried out; in the design and construction of beams and detectors; and even in the Laboratory management. Formore » Argonne, it marked a major move from being a Laboratory dominated by nuclear reactor development to one with a stronger basic research orientation. The present meeting covered the progress in accelerator science, in the applications of technology pioneered or developed by people working at the ZGS, as well as in physics research and detector construction. At this time, when the future of the US research programs in science is being questioned as a result of the ending of the Cold War and plans to balance the Federal budget, the specific place of the National Laboratories in the spectrum of research activities is under particular examination. This Symposium highlights one case history of a major science program that was completed more than a decade ago--so that the further developments of both the science and the technology can be seen in some perspective. The subsequent activities of the people who had worked in the ZGS program as well as the redeployment of the ZGS facilities were addressed. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, J.H.; Im, C.J.
The following report presents the technical progress achieved during the first quarter. The completion of this contract entails engineering evaluation in conjunction with basic laboratory research to determine overall process improvements, associated cost savings and the effect of these savings on product price as they relate to the UCC Physical Beneficiation Process for coal-water slurry manufacture. The technical effort for this quarter has concentrated on two basic areas of concern as they relate to the above-mentioned process. First, an engineering evaluation was carried out to examine the critical areas of improvement in the existing UCC Research Corporation single-stage cleaning circuitmore » (coarse coal, heavy media washer). When the plant runs for low ash coal product, at the specific gravity near 1.30, it was found that substantial product contamination resulted from magnetite carry over in the clean coal product. The reduction of the magnetite contamination would entail the application of more spray water to the clean coal drain and rinse screen, and the refinement of the existing dilute media handling system, to accept the increased quality of rinse water. It was also determined that a basic mechanical overhaul is needed on the washbox to ensure dependable operation during the future production of low-ash coal. The various cost elements involved with this renovation were determined by UCC personnel in the operational division. The second area of investigation was concerned with the laboratory evaluation of three separate source coals obtained from United Coal Company (UCC) and nearby mines to determine probable cleanability when using each seam of coal as a feed in the existing beneficiation process. Washability analyses were performed on each sample utilizing a specific gravity range from 1.25 to 1.50. 4 figures, 3 tables.« less
Line Parameters Of CH3CN From 305 To 415 cm-1
NASA Astrophysics Data System (ADS)
Brown, Linda R.; Kamadjeu, D. A.; Kleiner, I.; Orphal, J.; Sams, R. L.
2006-12-01
Mapping important compounds, such as hydrocarbons and nitriles, is needed in order to understand the photochemical cycle of Titan and how it couples with the dynamics to produce organic aerosols. For this, the CIRS spectrometer (Composite Infrared Spectrometer) on board Cassini is currently recording rotation and vibration-rotation spectra of Titan between 10 and 1400 cm-1. To support analysis of these data, high resolution laboratory spectra of CH3CN have been recorded using Fourier transform spectrometers at PNL and LISA. This paper presents a prediction of line positions and intensities of CH3 CN for the ν&8 fundamental and the 2ν8 -ν8 hot band (located near 360 cm&-1). Analyses of the two fundamentals near 10 microns are in progress. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with The National Aeronautics and Space Administration. I.K, J. O and A. D. also want to thank the Programme National de Planétologie for funding part of this research. This research was supported, in part, by the United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and the experimental part was performed at the W. R, Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC06-76RLO 1830. We wish to thank Drs R. Antilla and S. Alanko for kindly making available supplemental data in electronic and paper forms. #
Spinal cord injury: promising interventions and realistic goals.
McDonald, John W; Becker, Daniel
2003-10-01
Long regarded as impossible, spinal cord repair is approaching the realm of reality as efforts to bridge the gap between bench and bedside point to novel approaches to treatment. It is important to recognize that the research playing field is rapidly changing and that new mechanisms of resource development are required to effectively make the transition from basic science discoveries to effective clinical treatments. This article reviews recent laboratory studies and phase 1 clinical trials in neural and nonneural cell transplantation, stressing that the transition from basic science to clinical applications requires a parallel rather than serial approach, with continuous, two-way feedback to most efficiently translate basic science findings, through evaluation and optimization, to clinical treatments. An example of mobilizing endogenous stem cells for repair is reviewed, with emphasis on the rapid application of basic science to clinical therapy. Successful and efficient transition from basic science to clinical applications requires (1) a parallel rather than a serial approach; (2) development of centers that integrate three spheres of science, translational, transitional, and clinical trials; and (3) development of novel resources to fund the most critically limited step of transitional to clinical trials.
Conducting interactive experiments online.
Arechar, Antonio A; Gächter, Simon; Molleman, Lucas
2018-01-01
Online labor markets provide new opportunities for behavioral research, but conducting economic experiments online raises important methodological challenges. This particularly holds for interactive designs. In this paper, we provide a methodological discussion of the similarities and differences between interactive experiments conducted in the laboratory and online. To this end, we conduct a repeated public goods experiment with and without punishment using samples from the laboratory and the online platform Amazon Mechanical Turk. We chose to replicate this experiment because it is long and logistically complex. It therefore provides a good case study for discussing the methodological and practical challenges of online interactive experimentation. We find that basic behavioral patterns of cooperation and punishment in the laboratory are replicable online. The most important challenge of online interactive experiments is participant dropout. We discuss measures for reducing dropout and show that, for our case study, dropouts are exogenous to the experiment. We conclude that data quality for interactive experiments via the Internet is adequate and reliable, making online interactive experimentation a potentially valuable complement to laboratory studies.
Bringing Earth Magnetism Research into the High School Physics Classroom
NASA Astrophysics Data System (ADS)
Smirnov, A. V.; Bluth, G.; Engel, E.; Kurpier, K.; Foucher, M. S.; Anderson, K. L.
2015-12-01
We present our work in progress from an NSF CAREER project that aims to integrate paleomagnetic research and secondary school physics education. The research project is aimed at quantifying the strength and geometry of the Precambrian geomagnetic field. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, and the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. High school science teachers have participated in each summer field and research component of the project, gaining field and laboratory research experience, sets of rock and mineral samples, and classroom-tested laboratory magnetism activities for secondary school physics and earth science courses. We report on three field seasons of teacher field experiences and two years of classroom testing of paleomagnetic research materials merged into physics instruction on magnetism. Students were surveyed before and after dedicated instruction for both perceptions and attitude towards earth science in general, then more specifically on earth history and earth magnetism. Students were also surveyed before and after instruction on major earth system and magnetic concepts and processes, particularly as they relate to paleomagnetic research. Most students surveyed had a strongly positive viewpoint towards the study of Earth history and the importance of studying Earth Sciences in general, but were significantly less drawn towards more specific topics such as mineralogy and magnetism. Students demonstrated understanding of Earth model and the basics of magnetism, as well as the general timing of life, atmospheric development, and magnetic field development. However, detailed knowledge such as the magnetic dynamo, how the magnetic field has changed over time, and connections between earth magnetism and the development of an atmosphere remained largely misunderstood even after specific instruction, laboratory activities, and research examples. Ongoing work is examining the effectiveness of specific classroom and laboratory activities on student perceptions and misconceptions - which models work best to develop deeper understanding and appreciation of paleomagnetic research.
NASA Astrophysics Data System (ADS)
Bennett, Kristin
2004-03-01
As one of the lead agencies for nanotechnology research and development, the Department of Energy (DOE) is revolutionizing the way we understand and manipulate materials at the nanoscale. As the Federal government's single largest supporter of basic research in the physical sciences in the United States, and overseeing the Nation's cross-cutting research programs in high-energy physics, nuclear physics, and fusion energy sciences, the DOE guides the grand challenges in nanomaterials research that will have an impact on everything from medicine, to energy production, to manufacturing. Within the DOE's Office of Science, the Office of Basic Energy Sciences (BES) leads research and development at the nanoscale, which supports the Department's missions of national security, energy, science, and the environment. The cornerstone of the program in nanoscience is the establishment and operation of five new Nanoscale Science Research Centers (NSRCs), which are under development at six DOE Laboratories. Throughout its history, DOE's Office of Science has designed, constructed and operated many of the nation's most advanced, large-scale research and development user facilities, of importance to all areas of science. These state-of-the art facilities are shared with the science community worldwide and contain technologies and instruments that are available nowhere else. Like all DOE national user facilities, the new NSRCs are designed to make novel state-of-the-art research tools available to the world, and to accelerate a broad scale national effort in basic nanoscience and nanotechnology. The NSRCs will be sited adjacent to or near existing DOE/BES major user facilities, and are designed to enable national user access to world-class capabilities for the synthesis, processing, fabrication, and analysis of materials at the nanoscale, and to transform the nation's approach to nanomaterials.
ERIC Educational Resources Information Center
Booth, Paula; Henderson-Begg, Stephanie
2011-01-01
Invited as a paper from E-Learn 2009 This study compared two programmes developed as a learning tool for students to practise basic laboratory procedures. One was a Flash simulation programme, the other a Second Life virtual reality programme. A cohort of 93 bioscience students participated in the between trial. A control group was used to…
A Radar-like Iron based Nanohybrid as an Efficient and Stable Electrocatalyst for Oxygen Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, X. Y.; Liu, Lin; Wang, Xinde
2014-05-21
The present study shows a design concept for fabricating Fe-PyNG hybrid via strong coupling between FePc and pyridine-N. The prominent features of the Fe-PyNG hybrid include high electrocatalytic activity, superior durability, and better performance than Pt/C toward ORR in alkaline media. These features potentially make Fe-PyNG an outstanding nonprecious metal cathode catalyst for fuel cells. The incorporation of Fe ion and pyridine-N afforded effective bonding and synergetic coupling effects, which lead to significant electrocatalytic performance. DFT calculations indicate that N-modified Fe is a superior site for OOH adsorption and ORR reaction. Meanwhile, the strong chemical bonding between FePc and pyridynemore » in PyNG leads to its superior stability. We believe that our present synthetic strategy can be further extended to develop other metal complexes/N-doped carbon materials for broad applications in the field of catalysts, batteries, and supercapacitors. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001 and 21101137), Zhejiang Provincial Natural Science Foundation of China (ZJNSF-R4110345) and the New Century Excellent Talents in University Program (NCET-10-0979). We thank Prof. Youqun Zhu for Instruments support. D. Mei is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
International Society for the Advancement of Cytometry Cell Sorter Biosafety Standards
Holmes, Kevin L.; Fontes, Benjamin; Hogarth, Philip; Konz, Richard; Monard, Simon; Pletcher, Charles H.; Wadley, Robert B.; Schmid, Ingrid; Perfetto, Stephen P.
2014-01-01
Flow cytometric cell sorting of biological specimens has become prevalent in basic and clinical research laboratories. These specimens may contain known or unknown infectious agents, necessitating precautions to protect instrument operators and the environment from biohazards arising from the use of sorters. To this end the International Society of Analytical Cytology (ISAC) was proactive in establishing biosafety guidelines in 1997 (Schmid et al., Cytometry 1997;28:99–117) and subsequently published revised biosafety standards for cell sorting of unfixed samples in 2007 (Schmid et al., Cytometry Part A J Int Soc Anal Cytol 2007;71A:414–437). Since their publication, these documents have become recognized worldwide as the standard of practice and safety precautions for laboratories performing cell sorting experiments. However, the field of cytometry has progressed since 2007, and the document requires an update. The new Standards provides guidance: (1) for laboratory design for cell sorter laboratories; (2) for the creation of laboratory or instrument specific Standard Operating Procedures (SOP); and (3) on procedures for the safe operation of cell sorters, including personal protective equipment (PPE) and validation of aerosol containment. PMID:24634405
Impact of Hearing Aid Technology on Outcomes in Daily Life I: the Patients’ Perspective
Cox, Robyn M; Johnson, Jani A; Xu, Jingjing
2016-01-01
Objectives One of the challenges facing hearing care providers when recommending hearing aids is the choice of device technology level. Major manufacturers market families of hearing aids that are described as spanning the range from basic technology to premium technology. Premium technology hearing aids include acoustical processing capabilities (features) that are not found in basic technology instruments. These premium features are intended to yield improved hearing in daily life compared to basic-feature devices. However, independent research that establishes the incremental effectiveness of premium-feature devices compared to basic-feature devices is lacking. This research was designed to explore reported differences in hearing abilities for adults using premium-feature and basic-feature hearing aids in their daily lives. Design This was a single-blinded, repeated, crossover trial in which the participants were blinded. All procedures were carefully controlled to limit researcher bias. Forty-five participants used carefully fitted bilateral hearing aids for one month and then provided data to describe the hearing improvements or deficiencies noted in daily life. Typical participants were 70 years old with mild to moderate adult-onset hearing loss bilaterally. Each participant used 4 pairs of hearing aids: premium- and basic-feature devices from brands marketed by each of two major manufacturers. Participants were blinded about the devices they used and about the research questions. Results All of the outcomes were designed to capture the participant’s point of view about the benefits of the hearing aids. Three types of data were collected: change in hearing-related quality of life, extent of agreement with six positively worded statements about everyday hearing with the hearing aids, and reported preferences between the premium- and basic-feature devices from each brand as well as across all four research hearing aids combined. None of these measures yielded a statistically significant difference in outcomes between premium- and basic-feature devices. Participants did not report better outcomes with premium processing with any measure. Conclusions It could reasonably be asserted that the patient’s perspective is the gold standard for hearing aid effectiveness. While the acoustical processing provided by premium features can potentially improve scores on tests conducted in contrived conditions in a laboratory, or on specific items in a questionnaire, this does not ensure that the processing will be of noteworthy benefit when the hearing aid is used in the real world challenges faced by the patient. If evidence suggests the patient cannot detect that premium features yield improvements over basic features in daily life, what is the responsibility of the provider in recommending hearing aid technology level? In the current research, there was no evidence to suggest that premium-feature devices yielded better outcomes than basic-feature devices from the patient’s point of view. All of the research hearing aids were substantially, but equally, helpful. Further research is needed on this topic with other hearing aids and other manufacturers. In the meantime, providers should insist on scientifically credible independent evidence to support effectiveness claims for any hearing help devices. PMID:26881981
2011-01-01
flow rates which were held constant from trial to trial by critical orifices, were checked with several different calibrated mass flow meters. None of...processes or products in mind”. ECBC views the ILIR program as a critical part of its efforts to ensure a high level of basic science, foster innovation in...missions. The ILIR program solicits innovative proposals from the Center’s principal investigators (PI) that correspond to ECBC’s critical core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjoreen, Terrence P
The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data andmore » an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.« less
Integrated fundamental research on current collection
NASA Astrophysics Data System (ADS)
Kuhlmann-Wilsdorf, Doris; Tran, Leo
1993-06-01
The aim of our research was to add to the basic understanding in the area of current collection with particular emphasis on topics likely to benefit practical objectives. Under sponsorship of this contract, 23 papers were published in the international literature. Additionally, 13 invited lectures and 11 contributed lectures on various aspects of this research were delivered at universities, research laboratories, and international conferences by the principal investigator and co-workers. The development of a novel metal fiber material for sliding electrical contacts was continued with much success. This is expected to become very useful for making metal fiber brushed for homopolar motors/generators, as well as for EML armatures. Included in this report are title pages (and abstracts) for the 23 published papers.
NASA Astrophysics Data System (ADS)
Turinsky, Paul J.; Martin, William R.
2017-04-01
In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.
NASA Astrophysics Data System (ADS)
Lagowski, J. J.
1996-02-01
Increasingly, new science and technology are expected to solve the nation's current economic malaise. Unfortunately, virtually no industrial laboratories are devoted to anything close to basic research, which, historically, has been the source of many of the innovations on which industry has flourished in the past. For example, a number of industrial laboratories contributed significantly to our basic understanding of polymer science and, in the course of doing so, made better and more useful plastics. The strength of the American system of higher education has always been basic research, which is also the cornerstone of the process of graduate education. Before World War II, academic research was the vehicle by which advanced students learned advanced skills--both cognitive and manipulative. It was the structure devised to produce exemplary scientists who could then apply their skills in a number of different kinds of environments; the research results produced were generally of only secondary interest. Now, the academic research establishment has evolved into the source of the "strategic," "relevant," or "targeted" research that will solve the nation's economic problems. As expectations in this regard grow higher, guidelines are bound to become even more specific. Excessive over-direction of basic research activities can have the effect of throttling down the very industry-building discoveries that are so eagerly sought. From one point of view, targeted academic research often goes in the wrong direction. While it is true that most academic research starts off in some direction, it often does not finish going in that direction. The work that stands behind theses and dissertations often bears little resemblance to the problem that was defined when the student began his/her research. Almost every paper that is written as the result of a piece of academic research is either unsophisticatedin itsdetails or irrelevant, in spite of the initial hopes and promises. That process upon which academic research builds its ability to develop skilled scientists--a process that is not really dependent upon reaching a specific target--will not produce the science and technology that some say the nation needs to solve its economic problems. It is highly probable that the academic research now being supported will not have much effect upon our economic future; however, the people produced by that system will. Many careful observers have concluded that having universities do industry-relevant research would necessarily mean the abandonment of basic inquiry, a process akin to eating our seed corn. The collective wisdom of some industry executives is that undirected, long-term research does not pay off, a conclusion that is consonant with the general abandonment of research efforts in that sector. With industry increasingly disinclined to invest its resources in long-term or unfocussed projects, and NSF and other agency resources inadequate, basic research funding continues to be the target of politicians, calling for more industry-related effort. Research--a process designed to make discoveries or acquire knowledge--has many shades of meaning, which often muddies discussions. Academic research is designed to decrease our collective store of ignorance. Unanswered questions are the single-most valuable commodity we can lay before our graduate students and use as a focus for their advanced education. We do not understand how the vast store of information that exists, together with our ignorance, can be used to solve the nation's problems, which may have only a relatively short time base. Research that impacts products in six months is different in detail from research done as part of an academic graduate program. The focus and outcomes are different. Both are important for the well-being of the nation. The one produces skilled people and the other, short-term results of use to industry. Both extremes need to be supported--using separate kinds of arguments. If industry will not support developmental research, the Federal government should not confuse its efforts to encourage the development of well-qualified people with those designed to help industry do what it should do, but will not do. Economic pressures currently affect both kinds of research, but clear thinking is required to make effective use of extant resources.
The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion
NASA Astrophysics Data System (ADS)
Miller, J. D.
1986-11-01
One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.
A Roadmap for Academic Health Centers to Establish Good Laboratory Practice-Compliant Infrastructure
Adamo, Joan E.; Bauer, Gerhard; Berro, Marlene; Burnett, Bruce K.; Hartman, Karen A.; Masiello, Lisa M.; Moorman-White, Diane; Rubinstein, Eric P.; Schuff, Kathryn G.
2012-01-01
Prior to human clinical trials, nonclinical safety and toxicology studies are required to demonstrate that a new product appears safe for human testing; these nonclinical studies are governed by good laboratory practice (GLP) regulations. As academic health centers (AHCs) embrace the charge to increase the translation of basic science research into clinical discoveries, researchers at these institutions increasingly will be conducting GLP-regulated nonclinical studies. Because the consequences for noncompliance are severe and many AHC researchers are unfamiliar with Food and Drug Administration (FDA) regulations, the authors describe the regulatory requirements for conducting GLP research, including the strict documentation requirements, the necessary personnel training, the importance of study monitoring, and the critical role that compliance oversight plays in the process. They then explain the process that AHCs interested in conducting GLP studies should take prior to the start of their research program, including conducting a needs assessment and a gap analysis and selecting a model for GLP compliance. Finally, the authors identify and analyze several critical barriers to developing and implementing a GLP-compliant infrastructure at an AHC. Despite these challenges, the capacity to perform such research will help AHCs to build and maintain competitive research programs and to facilitate the successful translation of faculty-initiated research from nonclinical studies to first-in-human clinical trials. PMID:22373618
Internet-Based Laboratory Immersion: When The Real Deal is Not Available
NASA Astrophysics Data System (ADS)
Meisner, Gerald; Hoffman, Harol
2004-11-01
Do you want all of your students to investigate equilibrium conditions in the physics lab, but don't have time for lab investigations? Do your under-prepared students need basic, careful and detailed remedial work to help them succeed? LAAPhysics provides an answer to these questions by means of robust online physics courseware based on: (1) a sound, research-based pedagogy (2) a rich laboratory environment with skills and operational knowledge transferable to the wet lab' and (3) a paradigm which is economically scalable. LAAPhysics provides both synchronous and asynchronous learning experiences for an introductory, algebra-based course for students (undergraduate, AP High School, seekers of a second degree), those seeking career changes, and pre-service and in-service teachers. We have developed a simulated physics laboratory comprised of virtual lab equipment and instruments, associated curriculum modules and virtual guidance for real time feedback, formative assessment and collaborative learning.
[Surgical laboratory in pregraduate medicine.
Tapia-Jurado, Jesús
2011-01-01
Surgical laboratory in pregraduate students in medicine is beneficial and improves learning processes in cognitive aspects and skills acquisition. It is also an early initiation into scientific research. The laboratory is the introductory pathway into basic concepts of medical science (meaningful learning). It is also where students gain knowledge in procedures and abilities to obtain professional skills, an interactive teacher-student process. Medicine works rapidly to change from an art to a science. This fact compromises all schools and medical faculties to analyze their actual lesson plans. Simulators give students confidence and ability and save time, money and resources, eliminating at the same time the ethical factor of using live animals and the fear of patient safety. Multimedia programs may give a cognitive context evolving logically with an explanation based on written and visual animation followed by a clinical problem and its demonstration in a simulator, all before applying knowledge to the patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FOX,K.J.
Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually inmore » March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2004. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, the LDRD activities have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2004 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2005. The BNL LDRD budget authority by DOE in FY 2004 was $9.5 million. The actual allocation totaled $8.5 million. The following sections in this report contain the management processes, peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.« less
[Clinical and experimental research on chronic bronchitis treated with ke chuan ping decoction].
Cheng, C L
1991-04-01
This paper presents the results of clinical observation and experimental research of ke chuan ping (KCP) in treating 31 cases of chronic bronchitis compared with that of traditional prescription qing jin hua tan decoction (QJHT) in other 31 patients with the same conditions randomized as control. The total effective rate of KCP group was 93.55% including 67.74% of basically cured and markedly effective cases. The total effective rate of QJHT group was 74.19% including 41.94% basically cured and markedly effective cases. There were significant differences between them (P less than 0.05). According to laboratory observation KCP had the ability to dilute sputum viscosity, promote pulmonary ventilation function, decrease WBC and raise PO2. Animal experimental research suggested that KCP had the effects on reducing sputum, relieving cough, modifying stridor and inhibiting bacteria. It was proved that KCP is a highly effective recipe for patients with chronic bronchitis. It was also shown that clearing away heat and dispersing phlegm therapy is an important measure for chronic bronchitis with Biao Zheng.
The impact factor and journals in laboratory medicine.
Lippi, Giuseppe; Favaloro, Emmanuel J; Guidi, Gian Cesare
2009-01-01
The impact factor, originally devised by Eugene Garfield, offsets the advantages of journal size and age, and is a tool often used for the evaluation of journals and scientists, and is considered to provide a reliable trend of basic and clinical research worldwide. Overall, the median impact factor of all medical laboratory journals increased by 23% from 2001 to 2007, but it was slightly decreased from that of the previous year (-4.1%). Moreover, the aggregate impact factor of all these journals, which takes into account the number of citations for all journals in this category and the number of articles from all journals in the same category, increased from 2.042 in 2003 to 2.153 in 2004, but decreased to 2.060 in 2005 and has remained fairly stable in subsequent years (2.054 in 2006 and 2.080 in 2007), reflecting remarkable increases and substantial reductions observed for individual journals. This trend mirrored that of biochemistry and molecular biology journals, whereas journals listed under the subject categories "pathology", "surgery" and "Medicine, general and internal" substantially increased their aggregate impact factor from 2003 to 2007. According to the impact factor trend of laboratory medicine journals, it appears that medical laboratory science has reached a steady state. This might be partially due to the radical changes that have occurred within medical laboratory science since the beginning of the last millennium and raises the question of whether laboratory professionals should consider embracing new areas of research, such as the role of laboratory diagnostics in surgery and internal medicine.
Historical Contributions to Vertical Flight at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.
2016-01-01
The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
Inertial Fusion and High-Energy-Density Science in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarter, C B
2001-09-06
Inertial fusion and high-energy density science worldwide is poised to take a great leap forward. In the US, programs at the University of Rochester, Sandia National Laboratories, Los Alamos National Laboratory, Lawrence Livermore National Laboratory (LLNL), the Naval Research Laboratory, and many smaller laboratories have laid the groundwork for building a facility in which fusion ignition can be studied in the laboratory for the first time. The National Ignition Facility (NIF) is being built by the Department of Energy's National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program (SSP) to ensure the dependabilitymore » of the country's nuclear deterrent without underground nuclear testing. NIF and other large laser systems being planned such as the Laser MegaJoule (LMJ) in France will also make important contributions to basic science, the development of inertial fusion energy, and other scientific and technological endeavors. NIF will be able to produce extreme temperatures and pressures in matter. This will allow simulating astrophysical phenomena (on a tiny scale) and measuring the equation of state of material under conditions that exist in planetary cores.« less
DOE R&D Accomplishments Database
2002-01-01
For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.
NASA Astrophysics Data System (ADS)
Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.
2017-09-01
The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.
NACA Mechanics in an Allison Engine Training Class
1943-10-21
The Allison Engine Company's A.G. Covell instructs mechanics from various divisions at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on the operation of the Allison Basic Engine. The military had asked that the laboratory undertake an extensive program to improve the performance of the Allison V–1710 engine. The V–1710 was the only liquid-cooled engine used during World War II, and the military counted on it to power several types of fighter aircraft. The NACA instituted an Apprentice Program during the war to educate future mechanics, technicians, and electricians. The program was suspended for a number of years due to the increasing rates of military service by its participants. The laboratory continued its in-house education during the war, however, by offering a number of classes to its employees and lectures for the research staff. The classes and lectures were usually taught by fellow members of the staff, but occasionally external experts were brought in. The students in the Allison class in the Engine Research Building were taught how to completely disassemble and reassemble the engine components and systems. From left to right are Don Vining, Ed Cudlin, Gus DiNovo, George Larsen, Charles Diggs, Martin Lipes, Harley Roberts, Martin Berwaldt and John Dempsey. A.G. Covell is standing.
Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K
2015-01-01
Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.
Tyl, Rochelle W.
2009-01-01
Background Myers et al. [Environ Health Perspect 117:309–315 (2009)] argued that Good Laboratory Practices (GLPs) cannot be used as a criterion for selecting data for risk assessment, using bisphenol A (BPA) as a case study. They did not discuss the role(s) of guideline-compliant studies versus basic/exploratory research studies, and they criticized both GLPs and guideline-compliant studies and their roles in formal hazard evaluation and risk assessment. They also specifically criticized our published guideline-compliant dietary studies on BPA in rats and mice and 17β-estradiol (E2) in mice. Objectives As the study director/first author of the criticized E2 and BPA studies, I discuss the uses of basic research versus guideline-compliant studies, how testing guidelines are developed and revised, how new end points are validated, and the role of GLPs. I also provide an overview of the BPA guideline-compliant and exploratory research animal studies and describe BPA pharmacokinetics in rats and humans. I present responses to specific criticisms by Myers et al. Discussion and conclusions Weight-of-evidence evaluations have consistently concluded that low-level BPA oral exposures do not adversely affect human developmental or reproductive health, and I encourage increased validation efforts for “new” end points for inclusion in guideline studies, as well as performance of robust long-term studies to follow early effects (observed in small exploratory studies) to any adverse consequences. PMID:20049112
Koenig, Alexander; Luft, Andreas; Cajigas, Iahn
2013-01-21
Several new approaches for treatment of Central Nervous System (CNS) disorders are currently under investigation, including the use of rehabilitation training strategies, which are often combined with electrical and/or pharmacological modulation of spinal locomotor circuitries. While these approaches show great promise in the laboratory setting, there still exists a large gap in knowledge on how to transfer these treatments to daily clinical use. This thematic series presents a cross section of cutting edge approaches with the goal of transferring basic neuroscience principles from the laboratory to the proverbial "bedside".
BASIC Instructional Program: System Documentation.
ERIC Educational Resources Information Center
Dageforde, Mary L.
This report documents the BASIC Instructional Program (BIP), a "hands-on laboratory" that teaches elementary programming in the BASIC language, as implemented in the MAINSAIL language, a machine-independent revision of SAIL which should facilitate implementation of BIP on other computing systems. Eight instructional modules which make up…
78 FR 12103 - Manufacturer of Controlled Substances; Notice of Registration; Cody Laboratories, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
...; Notice of Registration; Cody Laboratories, Inc. By Notice dated November 1, 2012, and published in the Federal Register on November 9, 2012, 77 FR 67398, Cody Laboratories, Inc., ATTN: Richard Asherman, 601... of Cody Laboratories, Inc., to manufacture the listed basic classes of controlled substances is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
...; Notice of Registration; Chemic Laboratories, Inc. By Notice dated September 25, 2012, and published in the Federal Register on October 2, 2012, 77 FR 60144, Chemic Laboratories, Inc., 480 Neponset Street... Chemic Laboratories, Inc., to manufacture the listed basic class of controlled substance is consistent...
Elementary! A Nuclear Forensics Workshop Teaches Vital Skills to International Practitioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brim, Cornelia P.; Minnema, Lindsay T.
The article describes the Nuclear Forensics Workshop sponsored by the International Atomic Energy Agency (IAEA), the Office of Nonproliferation and International Security (NIS) and hosted by Pacific Northwest National Laboratory October 28-November 8, 2013 in Richland,Washington. Twenty-six participants from 10 countries attended the workshop. Experts from from Los Alamos, Lawrence Livermore, and Pacific Northwest national laboratories collaborated with an internationally recognized cadre of experts from the U.S. Department of Homeland Security and other U.S. agencies, IAEA, the Australian Nuclear Science and Technology Organisation, the United Kingdom Atomic Weapons Establishment (AWE), and the European Union Joint Research Center Institute for Transuraniummore » Elements, to train practitioners in basic methodologies of nuclear forensic examinations.« less
Introduction to clinical and laboratory (small-animal) image registration and fusion.
Zanzonico, Pat B; Nehmeh, Sadek A
2006-01-01
Imaging has long been a vital component of clinical medicine and, increasingly, of biomedical research in small-animals. Clinical and laboratory imaging modalities can be divided into two general categories, structural (or anatomical) and functional (or physiological). The latter, in particular, has spawned what has come to be known as "molecular imaging". Image registration and fusion have rapidly emerged as invaluable components of both clinical and small-animal imaging and has lead to the development and marketing of a variety of multi-modality, e.g. PET-CT, devices which provide registered and fused three-dimensional image sets. This paper briefly reviews the basics of image registration and fusion and available clinical and small-animal multi-modality instrumentation.
NASA Astrophysics Data System (ADS)
Tobin, R. G.
2018-01-01
Abundant research leaves little question that pedagogical approaches involving active student engagement with the material, and opportunities for student-to-student discussions, lead to much better learning outcomes than traditional instructor-led, expository instructional formats, in physics and in many other fields. In introductory college physics classes, some departments have departed radically from conventional lecture-recitation-laboratory course structures, but many, including my own, retain the basic format of large-group classroom sessions (lectures) supplemented by smaller-group meetings focused on problem solving (recitations) and separate laboratory meetings. Active student engagement in the lectures is encouraged through approaches such as Peer Instruction and Interactive Lecture Demonstrations, and these approaches have been demonstrably successful.
Das Sprachlabor in der Schule (The Language Laboratory in Schools).
ERIC Educational Resources Information Center
Cabus, Hans-Joachim; Freudenstein, Reinhold
This technical manual for the use of language laboratories includes information on the following topics: (1) types of laboratories, (2) the tape, (3) the tape recorder, (4) other basic technical equipment, (5) the audio-active laboratory, the audio-active-compare laboratory, and an evaluation of the two, (6) possibilities for expanded use, (7)…
How do we make models that are useful in understanding partial epilepsies?
Prince, David A
2014-01-01
The goals of constructing epilepsy models are (1) to develop approaches to prophylaxis of epileptogenesis following cortical injury; (2) to devise selective treatments for established epilepsies based on underlying pathophysiological mechanisms; and (3) use of a disease (epilepsy) model to explore brain molecular, cellular and circuit properties. Modeling a particular epilepsy syndrome requires detailed knowledge of key clinical phenomenology and results of human experiments that can be addressed in critically designed laboratory protocols. Contributions to understanding mechanisms and treatment of neurological disorders has often come from research not focused on a specific disease-relevant issue. Much of the foundation for current research in epilepsy falls into this category. Too strict a definition of the relevance of an experimental model to progress in preventing or curing epilepsy may, in the long run, slow progress. Inadequate exploration of the experimental target and basic laboratory results in a given model can lead to a failed effort and false negative or positive results. Models should be chosen based on the specific issues to be addressed rather than on convenience of use. Multiple variables including maturational age, species and strain, lesion type, severity and location, latency from injury to experiment and genetic background will affect results. A number of key issues in clinical and basic research in partial epilepsies remain to be addressed including the mechanisms active during the latent period following injury, susceptibility factors that predispose to epileptogenesis, injury - induced adaptive versus maladaptive changes, mechanisms of pharmaco-resistance and strategies to deal with multiple pathophysiological processes occurring in parallel.
Teaching the Teachers: Physical Science for the Non-Scientific
NASA Astrophysics Data System (ADS)
Michels, D. J.; Pickert, S. M.; Montrose, C. J.; Thompson, J. L.
2004-12-01
The Catholic University of America, in collaboration with the Solar Physics Branch of the Naval Research Laboratory and the Goddard Space Flight Center, has begun development of an experimental, inquiry-driven and standards-referenced physical science course for undergraduate, pre-service K-8 teachers. The course is team-taught by faculty from the University's Departments of Education and Physics and NRL solar physics research personnel. Basic physical science concepts are taught in the context of the Sun and Sun-Earth Connections, through direct observation, web-based solar data, and images and movies from ongoing space missions. The Sun can illuminate, in ways that cannot be duplicated with comparable clarity in the laboratory, the basics of magnetic and gravitational force fields, Newton's Laws, and light and optics. The immediacy of the connection to ongoing space research and live mission data serves as well to inspire student interest and curiosity. Teaching objectives include pedagogical methods, especially hands-on and observational experiences appropriate to the physics content and the K-8 classroom. The CUA Program, called TOPS! (Top Teachers of Physical Science!) has completed its first year of classroom experience; the first few batches of Program graduates should be in K-8 classrooms in time to capitalize on the motivational opportunities offered by the 2007-2008 IHY and IPY. We present data on the attitudinal and scientific progress of fifteen pre-service Early Childhood and Elementary Education majors as they experienced, many for the first time, the marvels of attractive and repulsive forces, live observations of solar system dynamics, access to real-time satellite data and NASA educational resources.
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, Timothy P.
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less
Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.
2013-06-27
The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less
Arctic research in the classroom: A teacher's experiences translated into data driven lesson plans
NASA Astrophysics Data System (ADS)
Kendrick, E. O.; Deegan, L.
2011-12-01
Incorporating research into high school science classrooms can promote critical thinking skills and provide a link between students and the scientific community. Basic science concepts become more relevant to students when taught in the context of research. A vital component of incorporating current research into classroom lessons is involving high school teachers in authentic research. The National Science Foundation sponsored Research Experience for Teachers (RET) program has inspired me to bring research to my classroom, communicate the importance of research in the classroom to other teachers and create lasting connections between students and the research community. Through my experiences as an RET at Toolik Field Station in Alaska, I have created several hands-on lessons and laboratory activities that are based on current arctic research and climate change. Each lesson uses arctic research as a theme for exemplifying basic biology concepts as well as increasing awareness of current topics such as climate change. For instance, data collected on the Kuparuk River will be incorporated into classroom activities that teach concepts such as primary production, trophic levels in a food chain and nutrient cycling within an ecosystem. Students will not only understand the biological concepts but also recognize the ecological implications of the research being conducted in the arctic. By using my experience in arctic research as a template, my students will gain a deeper understanding of the scientific process. I hope to create a crucial link of information between the science community and science education in public schools.
Bullock, R. Morris (Director, Center for Molecular Electrocatalysis); CME Staff
2017-12-09
'Saving the Sun for a Rainy Day' was submitted by the Center for Molecular Electrocatalysis (CME) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CME, an EFRC directed by R. Morris Bullock at Pacific Northwest National Laboratory is a partnership of scientists from four institutions: PNNL (lead), Pensylvania State University, University of Washington, and the University of Wyoming. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Molecular Electrocatalysis is 'to understand, design and develop molecular electrocatalysts for solar fuel production and use.' Research topics are: catalysis (water), electrocatalysis, bio-inspired, electrical energy storage, fuel cells, hydrogen (fuel), matter by design, novel materials synthesis, and charge transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, R. Morris
"Saving the Sun for a Rainy Day" was submitted by the Center for Molecular Electrocatalysis (CME) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CME, an EFRC directed by R. Morris Bullock at Pacific Northwest National Laboratory is a partnership of scientists from four institutions: PNNL (lead), Pennsylvania State University, University of Washington, and the University of Wyoming. The Office of Basic Energy Sciences in the U.S. Departmentmore » of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Molecular Electrocatalysis is 'to understand, design and develop molecular electrocatalysts for solar fuel production and use.' Research topics are: catalysis (water), electrocatalysis, bio-inspired, electrical energy storage, fuel cells, hydrogen (fuel), matter by design, novel materials synthesis, and charge transport.« less
NASA Astrophysics Data System (ADS)
Burkhart, John F.; Decker, Sven; Filhol, Simon; Hulth, John; Nesje, Atle; Schuler, Thomas V.; Sobolowski, Stefan; Tallaksen, Lena M.
2017-04-01
The Finse Alpine Research Station provides convenient access to the Hardangervidda mountain plateau in Southern Norway (60 deg N, 1222 m asl). The station is located above the tree-line in vicinity to the west-eastern mountain water divide and is easily accessible by train from Bergen and Oslo. The station itself offers housing and basic laboratory facilities and has been used for ecological monitoring. Over the past years, studies on small-scale snow distribution and ground temperature have been performed and accompanied by a suite of meteorological measurements. Supported by strategic investments by the University of Oslo and ongoing research projects, these activities are currently expanded and the site is developed towards a mountain field laboratory for studies on Land-Atmosphere Interaction in Cold Environments, facilitated by the LATICE project (www.mn.uio.no/latice). Additional synergy comes from close collaborations with a range of institutions that perform operational monitoring close to Finse, including long-term time series of meteorological data and global radiation. Through our activities, this infrastructure has been complemented by a permanent tower for continuous Eddy-Covariance measurements along with associated gas fluxes. A second, mobile covariance system is in preparation and will become operational in 2017. In addition, a wireless sensor network is set up to grasp the spatial distributions of basic meteorological variables, snow depth and glacier mass balance on the nearby Hardangerjøkulen ice cap. While the research focus so far was on small scale processes (snow redistribution), this is now being expanded to cover hydrological processes on the catchment and regional scale. To this end, two discharge stations have been installed to gauge discharge from two contrasting catchments (glacier dominated and non-glacierized). In this presentation, we provide an overview over existing and planned infrastructure, field campaigns and research activities, accompanied by available data, the result of some preliminary analysis and discuss opportunities for future collaboration.
CESAR robotics and intelligent systems research for nuclear environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1992-07-01
The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less
CESAR robotics and intelligent systems research for nuclear environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1992-01-01
The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less
2012-01-01
mind." ECBC views the ILIR as a critical part of its efforts at ensuring a high level of basic science, to foster innovation in the areas of...program solicits innovative proposals from the center’s principal investigators that correspond to ECBC’s critical core capability areas: Inhalation...are compiled and used, with the numerical score, as a critical assessment of the proposal. This written feedback is essential for ECBC’s mentoring
Life is three-dimensional, and it begins with molecules.
Bourne, Philip E
2017-03-01
The iconic image of the DNA double helix embodies the central role that three-dimensional structures play in understanding biological processes, which, in turn, impact health and well-being. Here, that role is explored through the eyes of one scientist, who has been lucky enough to have over 150 talented people pass through his laboratory. Each contributed to that understanding. What follows is a small fraction of their story, with an emphasis on basic research outcomes of importance to society at large.
Belarusian female physicists: Statistics and perspectives
NASA Astrophysics Data System (ADS)
Fedotova, Julia; Tashlykova-Bushkevich, Iya
2013-03-01
The experience for women in physics remains challenging in Belarus. The proportion of female physics master's degree recipients is approximately 30%, while the percentage of female physics PhD recipients is 50%. Still, only a few female physicists occupy top positions in research laboratories, institutes, or universities. The basic problem for career-oriented female physicists in Belarus is public opinion, which cultivates a passive and dependent life philosophy for women. The Belarusian Women in Physics group was formed in 2003 as part of the Belarusian Physical Society.
Haber, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-01-23
Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"
Airman Classification Batteries from 1948 to 1975: A Review and Evaluation
1975-12-01
1975 6 PERFORMING ORG REPORT NUMBER 7. AUTI4ORWe S. CONTRACT OR GRANT NUMBER(S) Joseph L. Weeks Cecil J. Mullins Bart M. %’itola 9 PERF’rRMING...norms were developed by the equi-percentile method based on a random sample of 3,936 basic trainees (Vitola, Massey, & Wilbourn , 1971). The TALENT test...661 996. Lackland AFB. Tex.: Personnel Research Laboratory, Aerospace Medical Division, August 1967. Vitola, B.M., Massey, 1.11., & Wilbourn , J .M
Naturalistic Field Studies of Sleep and Performance
2010-05-01
AD_________________ Award Number: W81XWH-05-1-0099 TITLE: Naturalistic Field Studies of Sleep and...5a. CONTRACT NUMBER Naturalistic Field Studies of Sleep and Performance 5b. GRANT NUMBER W81XWH-05-1-0099 5c. PROGRAM ELEMENT NUMBER 6...Center (SPRC) conducts human and animal studies in laboratory and field settings in support of basic and applied sleep research at Washington State
Integration of the CLS doctorate into the healthcare organization.
Montoya, Isaac; Kimball, Olive
2009-01-01
A review of how the doctorally prepared CLS fits into the healthcare organization. Literature review. Numerous national studies have called for a reshaping of the health care delivery system and the need to improve patient outcomes. Because of unprecedented advances in laboratory related technology as well as the need for economic retrenchment strategies in health care, with its significant influence on patient care, the laboratory has become the subject of intensive study. It has been concluded that the traditional organizational structure of the laboratory information process and the required personnel skills both need rethinking. In order to foster change in the laboratory, an advanced degreed CLS laboratory professional is needed, one already equipped with a broad scientific base developed via a baccalaureate/masters level of education. With the addition of advanced technical expertise, basic medical skills, data interpretation skills and patient interaction abilities, and medical research experience, this laboratory professional can enhance the effective and efficient use of laboratory information and ultimately improve patient care. The clinical doctorates in CLS are educationally and experientially prepared to recommend support and enhance appropriate testing. They translate and transform complex laboratory data into an understandable product necessary for clinicians to be able to assess the validity of current and new assays to ensure better patient care. In addition, they assist in reducing questionable test usage, thereby reducing costs for both the patient and the laboratory.
[Public policies of research].
Ruiz Cantero, M T; Alvarez-Dardet, C
1995-01-01
With its present configuration, the Spanish public device of research in health sciences has limited possibilities to achieve properly the aims of the Ley General de Sanidad, due to its reduced financial importance as well as its thematic and lack of mechanisms of interterritorial compensation. These limitations are effective according to its small capacity to provide information for the development of a health system, oriented to the overcoming of territorial and social imbalance as well as the promotion of health and prevention of diseases. The capacity of public policies of research in Spain to affect the work of researchers is very small due to the importance of the widespread practice of not using funds which are not specifically dedicated to research of the institutions employing the researchers, among other reasons. Most of the public resources of research are concentrated in Madrid and Barcelona. This situation can seriously jeopardize in a near future the development and quality of the attention given in Regional Health Services transferred to Autonomic Communities without big cities. The funds are mostly used to finance researches of basic sciences, medical specialties and clinic laboratories. Investigation in Public Health is only 0.8% of the research budgets, and the funds dedicated to research in Health Primary Care are also very small. The present predominant thematic and methodological orientation of health research in our country, with medicalized research aims, subindividual observation units, experimental designs, and analysis which are basically quantitative, can endanger the possibilities of Spain to achieve the health aims established by the OMS.
Interfacial nanobubbles produced by long-time preserved cold water
NASA Astrophysics Data System (ADS)
Zhou, Li-Min; Wang, Shuo; Qiu, Jie; Wang, Lei; Wang, Xing-Ya; Li, Bin; Zhang, Li-Juan; Hu, Jun
2017-09-01
Not Available Project supported by the Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, the Open Research Project of the Large Scientific Facility of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 11079050, 11290165, 11305252, 11575281, and U1532260), the National Key Basic Research Program of China (Grant Nos. 2012CB825705 and 2013CB932801), the National Natural Science Foundation for Outstanding Young Scientists, China (Grant No. 11225527), the Shanghai Academic Leadership Program, China (Grant No. 13XD1404400), and the Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-EW-W09 and QYZDJ-SSW-SLH019)
Curriculum optimization of College of Optical Science and Engineering
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui
2017-08-01
The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.
Electrochemistry, biosensors and microfluidics: a convergence of fields.
Rackus, Darius G; Shamsi, Mohtashim H; Wheeler, Aaron R
2015-08-07
Electrochemistry, biosensors and microfluidics are popular research topics that have attracted widespread attention from chemists, biologists, physicists, and engineers. Here, we introduce the basic concepts and recent histories of electrochemistry, biosensors, and microfluidics, and describe how they are combining to form new application-areas, including so-called "point-of-care" systems in which measurements traditionally performed in a laboratory are moved into the field. We propose that this review can serve both as a useful starting-point for researchers who are new to these topics, as well as being a compendium of the current state-of-the art for experts in these evolving areas.
Developing Basic Math Skills for Marketing. Student Manual and Laboratory Guide.
ERIC Educational Resources Information Center
Klewer, Edwin D.
Field tested with students in grades 10-12, this manual is designed to teach students in marketing courses basic mathematical concepts. The instructional booklet contains seven student assignments covering the following topics: why basic mathematics is so important, whole numbers, fractions, decimals, percentages, weights and measures, and dollars…
The BASIC Instructional Program: Conversion into MAINSAIL Language.
ERIC Educational Resources Information Center
Dageforde, Mary L.
This report summarizes the rewriting of the BASIC Instructional Program (BIP) (a "hands-on laboratory" that teaches elementary programming in the BASIC language) from SAIL (a programming language available only on PDP-10 computers) into MAINSAIL (a language designed for portability on a broad class of computers). Four sections contain…
Workbook, Basic Mathematics and Wastewater Processing Calculations.
ERIC Educational Resources Information Center
New York State Dept. of Environmental Conservation, Albany.
This workbook serves as a self-learning guide to basic mathematics and treatment plant calculations and also as a reference and source book for the mathematics of sewage treatment and processing. In addition to basic mathematics, the workbook discusses processing and process control, laboratory calculations and efficiency calculations necessary in…
78 FR 49546 - Importer of Controlled Substances, Notice of Registration, Wildlife Laboratories Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
... Registration, Wildlife Laboratories Inc. By Notice dated May 14, 2013, and published in the Federal Register on May 22, 2013, 78 FR 30329, Wildlife Laboratories Inc., 1401 Duff Drive, Suite 400, Fort Collins...) and determined that the registration of Wildlife Laboratories Inc. to import the basic class of...
NASA Astrophysics Data System (ADS)
Yang, Li-Tao; Li, Hau-Bin; Yue, Qian; Kang, Ke-Jun; Cheng, Jian-Ping; Li, Yuan-Jing; Tsz-King Wong, Henry; Aǧartioǧlu, M.; An, Hai-Peng; Chang, Jian-Ping; Chen, Jing-Han; Chen, Yun-Hua; Deng, Zhi; Du, Qiang; Gong, Hui; He, Li; Hu, Jin-Wei; Hu, Qing-Dong; Huang, Han-Xiong; Jia, Li-Ping; Jiang, Hao; Li, Hong; Li, Jian-Min; Li, Jin; Li, Xia; Li, Xue-Qian; Li, Yu-Lan; Lin, Fong-Kay; Lin, Shin-Ted; Liu, Shu-Kui; Liu, Zhong-Zhi; Ma, Hao; Ma, Jing-Lu; Pan, Hui; Ren, Jie; Ruan, Xi-Chao; Sevda, B.; Sharma, Vivek; Shen, Man-Bin; Singh, Lakhwinder; Singh, Manoj Kumar; Tang, Chang-Jian; Tang, Wei-You; Tian, Yang; Wang, Ji-Min; Wang, Li; Wang, Qing; Wang, Yi; Wu, Shi-Yong; Wu, Yu-Cheng; Xing, Hao-Yang; Xu, Yin; Xue, Tao; Yang, Song-Wei; Yi, Nan; Yu, Chun-Xu; Yu, Hai-Jun; Yue, Jian-Feng; Zeng, Xiong-Hui; Zeng, Ming; Zeng, Zhi; Zhang, Yun-Hua; Zhao, Ming-Gang; Zhao, Wei; Zhou, Ji-Fang; Zhou, Zu-Ying; Zhu, Jing-Jun; Zhu, Zhong-Hua; CDEX Collaboration
2018-01-01
We report results of a search for light weakly interacting massive particle (WIMP) dark matter from the CDEX-1 experiment at the China Jinping Underground Laboratory (CJPL). Constraints on WIMP-nucleon spin-independent (SI) and spin-dependent (SD) couplings are derived with a physics threshold of 160 eVee, from an exposure of 737.1 kg-days. The SI and SD limits extend the lower reach of light WIMPs to 2 GeV and improve over our earlier bounds at WIMP mass less than 6 GeV. Supported by the National Key Research and Development Program of China (2017YFA0402200, 2017YFA0402201), the National Natural Science Foundation of China (11175099, 11275107, 11475117, 11475099, 11475092, 11675088), the National Basic Research Program of China (973 Program) (2010CB833006). We thank the support of grants from the Tsinghua University Initiative Scientific Research Program (20121088494, 20151080354) and the Academia Sinica Investigator Award 2011-15, contracts 103-2112-M-001-024 and 104-2112-M-001-038-MY3 from the Ministry of Science and Technology of Taiwan.
Clase, Kari L; Hein, Patrick W; Pelaez, Nancy J
2008-12-01
Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary boundaries, students need to practice interdisciplinary communication in academic programs that connect students in diverse disciplines. This report surveys policy documents relevant to this emphasis on interdisciplinary training and suggests a changing role for physiology courses in bioscience and engineering programs. A role for a physiology course is increasingly recommended for engineering programs, but the study of physiology from an engineering perspective might differ from the study of physiology as a basic science. Indeed, physiology laboratory courses provide an arena where biomedical engineering and bioscience students can apply knowledge from both fields while cooperating in multidisciplinary teams under specified technical constraints. Because different problem-solving approaches are used by students of engineering and bioscience, instructional innovations are needed to break down stereotypes between the disciplines and create an educational environment where interdisciplinary teamwork is used to bridge differences.
Culturing and Using Protozoans in the Laboratory.
ERIC Educational Resources Information Center
Hummer, Paul J., Jr.
1993-01-01
Provides instructions for teachers and students to culture protozoans for use in science laboratories. Sections include setting up a culture area, basic culture media, amoeba culture technique, powdered milk-wheat-rice medium, alfalfa medium, and uses of the protozoa in the laboratory. (PR)
Bringing ayahuasca to the clinical research laboratory.
Riba, Jordi; Barbanoj, Manel J
2005-06-01
Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.
Remarks from Congressional Leaders: Congressman Daniel Lipinski (2011 EFRC Summit)
Lipinski, Daniel
2018-01-09
Congressman Daniel Lipinski (D-Illinois) spoke during the opening session of the EFRC Summit. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
Remarks from Congressional Leaders: Congresswoman Zoe Lofgren (2011 EFRC Summit)
Lofgren, Zoe (Congresswoman, California)
2017-12-09
Congresswoman Zoe Lofgren (D-California) spoke during the opening session of the EFRC Summit. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several âgrand challengesâ and use-inspired âbasic research needsâ recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingaman, Jeff
During the opening session of the EFRC Summit, Senator Jeff Bingaman (D-NM) explained how the EFRCs play an important role in the U.S. energy innovation ecosystem. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofitmore » organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less
Remarks from Congressional Leaders: Congressman Daniel Lipinski (2011 EFRC Summit)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipinski, Daniel
2011-05-25
Congressman Daniel Lipinski (D-Illinois) spoke during the opening session of the EFRC Summit. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review.more » They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.« less
Integration of Multidisciplinary Sensory Data:
Miller, Perry L.; Nadkarni, Prakash; Singer, Michael; Marenco, Luis; Hines, Michael; Shepherd, Gordon
2001-01-01
The paper provides an overview of neuroinformatics research at Yale University being performed as part of the national Human Brain Project. This research is exploring the integration of multidisciplinary sensory data, using the olfactory system as a model domain. The neuroinformatics activities fall into three main areas: 1) building databases and related tools that support experimental olfactory research at Yale and can also serve as resources for the field as a whole, 2) using computer models (molecular models and neuronal models) to help understand data being collected experimentally and to help guide further laboratory experiments, 3) performing basic neuroinformatics research to develop new informatics technologies, including a flexible data model (EAV/CR, entity-attribute-value with classes and relationships) designed to facilitate the integration of diverse heterogeneous data within a single unifying framework. PMID:11141511
Crystal Growth and Other Materials Physical Researches in Space Environment
NASA Astrophysics Data System (ADS)
Pan, Mingxiang
Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.
Physics division. Progress report, January 1, 1995--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, M.; Bacon, D.S.; Aine, C.J.
1997-10-01
This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the fivemore » groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.« less
Bench to beside: motivation for university industry partnership.
Thakor, Nitish V
2009-01-01
This paper discusses the motivation for entrepreneurship in academia and for forging a relationship between an academic laboratory and a startup. University based personnel, faculty and students, priorities basic bench research. On the other side, industry, particularly startups, prioritize technology development for clinical and commercial translation. The paper presents personal experience as a case study. University based researchers, faculty and students, might participate in and benefit from such an entrepreneurial activity. A University spin off would facilitate translational of bench research ideas and results to technologies for bedside use. Attention to issues such as conflict of interest and concern and ethics of working with human subjects need to be managed by the investigators and the institution. While entrepreneurial activity is not for everyone, it does provide the benefit and satisfaction to see research reach practice.
Bishop, Michael R.; Alyea, Edwin P.; Cairo, Mitchell S.; Falkenburg, J.H. Frederik; June, Carl H.; Kröger, Nicolaus; Little, Richard F.; Miller, Jeffrey S.; Pavletic, Steven Z.; Porter, David L.; Riddell, Stanley R.; van Besien, Koen; Wayne, Alan S.; Weisdorf, Daniel J.; Wu, Roy S.; Giralt, Sergio
2011-01-01
The First International Workshop on The Biology, Prevention, and Treatment of Relapse After Allogeneic Hematopoietic Stem Cell Transplantation was organized and convened to identify, prioritize, and coordinate future research activities related to relapse after allogeneic hematopoietic stem cell transplantation (alloHSCT). Each of the Workshop’s six working committees have published individual reports of ongoing basic, translational and clinical research and recommended areas for future research related to the areas of relapse biology, epidemiology, prevention and treatment. This document summarizes each of the committees’ recommendations and suggests three major initiatives for a coordinated research effort to address the problem of relapse after alloHSCT. The first is the need to establish multi-center correlative and clinical trials networks for basic/translational, epidemiological, and clinical research. Second, there is a need for a network of biorepositories for the collection of samples pre- and post-alloHSCT to aid in laboratory and clinical studies. Third, there should be further refinement, implementation, and study of the proposed Workshop disease-specific response and relapse definitions and the recommendations for monitoring of minimal residual disease. These recommendations, in coordination with ongoing research initiatives and transplant organizations, provide a research framework to rapidly and efficiently address the significant problem of relapse following alloHSCT. PMID:21224011
Debue-Barazer, Christine
2007-01-01
The synthetic local anaesthetic Stovaine was commercialised in France in 1904. Its inventor, Ernest Fourneau, began his career as a pharmaceutical chemist in organic chemistry laboratories in Germany, where from 1899 to 1901 he discovered how basic research could benefit from the modern chemistry theories which had developed in Germany starting in the 1860s. Using the complex structure of cocaine, he invented an original molecule, with comparable activity, but less toxic. The knowledge and the know-how which he acquired in Germany nourished his reflection in the field of the chemistry of the relationships between structure and activity, and led him to the development of Stovaïne. Emile Roux, Director of the Pasteur Institute in Paris, was interested in his work and invited him to head the first French therapeutic chemistry laboratory, in which research on medicinal chemistry was organised scientifically. The industrial development of new medicines resulting from the Pasteur Institute's therapeutic chemistry laboratory was supported by the Etablissements Poulenc frères, France thus gaining international reputation in the domain of pharmaceutical chemistry.
Boal, C.W.; Wallace, M.C.; Strobel, B.
2010-01-01
Concern for the welfare of animals used in research and teaching has increased over the last 50 yr. Animal welfare legislation has resulted in guidelines for the use of animals in research, but the guidelines can be problematic because they focus on animals used in laboratory and agriculture research. Raptor biologists can be constrained by guidelines, restrictions, and oversight that were not intended for field research methods or wild animals in the wild or captivity. Field researchers can be further hampered by not understanding animal welfare legislation, who is subject to oversight, or that oversight is often provided by a committee consisting primarily of scientists who work with laboratory animals. Raptor researchers in particular may experience difficulty obtaining approval due to use of various species-specific trapping and handling methods. We provide a brief review of animal welfare legislation and describe the basic components and responsibilities of an Institutional Animal Care and Use Committee (IACUC) in the United States. We identify topics in raptor research that are especially problematic to obtaining IACUC approval, and we provide insight on how to address these issues. Finally, we suggest that all raptor researchers, regardless of legal requirements, abide by the spirit of the animal welfare principles. Failure to do so may bring about further regulatory and permitting restrictions. ?? 2010 The Raptor Research Foundation, Inc.