Sample records for basic lego reactor

  1. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, suchmore » as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.« less

  2. Project Luna Succendo: The Lunar Evolutionary Growth-Optimized (LEGO) Reactor

    NASA Astrophysics Data System (ADS)

    Bess, John Darrell

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched within lunar shipments from the Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides 5 kWe using a free-piston Stirling space converter. The overall envelope for a single unit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. The subunits can be placed with centerline distances of approximately 0.6 m in a hexagonal-lattice pattern to provide sufficient neutronic coupling while allowing room for heat rejection and interstitial control. A lattice of six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network Future improvements include advances in reactor control methods, fuel form and matrix, determination of shielding requirements, as well as power conversion and heat rejection techniques to generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces such as Mars, other moons, and asteroids.

  3. Introduction for Freshmen to Embedded Systems Using LEGO Mindstorms

    ERIC Educational Resources Information Center

    Kim, Seung Han; Jeon, Jae Wook

    2009-01-01

    The purpose of the course presented here is to introduce freshmen to embedded systems using LEGO Mindstorms, under an ANSI-C programming environment. The students build their own LEGO robots, make programs for them using ANSI-C, and operate them. By creating these LEGO robots, the students become more motivated, learning the basic concepts of…

  4. LEGO-Method--New Strategy for Chemistry Calculation

    ERIC Educational Resources Information Center

    Molnar, Jozsef; Molnar-Hamvas, Livia

    2011-01-01

    The presented strategy of chemistry calculation is based on mole-concept, but it uses only one fundamental relationship of the amounts of substance as a basic panel. The name of LEGO-method comes from the famous toy of LEGO[R] because solving equations by grouping formulas is similar to that. The relations of mole and the molar amounts, as small…

  5. A truly Lego®-like modular microfluidics platform

    NASA Astrophysics Data System (ADS)

    Vittayarukskul, Kevin; Lee, Abraham Phillip

    2017-03-01

    Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2  ×  2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.

  6. LEGO products have become more complex

    PubMed Central

    2018-01-01

    The LEGO Group has become the largest toy company in the world and they can look back to a proud history of more than 50 years of producing bricks and other toys. Starting with a simple set of basic bricks their range of toys appeared to have increased in complexity over the years. We processed the inventories of most sets from 1955–2015 and our analysis showed that LEGO sets have become bigger, more colorful and more specialized. The vocabulary of bricks has increased significantly resulting in sets sharing fewer bricks. The increased complexity of LEGO sets and bricks enables skilled builders to design ever more amazing models but it may also overwhelm less skilled or younger builders. PMID:29293655

  7. LEGO products have become more complex.

    PubMed

    Bartneck, Christoph; Moltchanova, Elena

    2018-01-01

    The LEGO Group has become the largest toy company in the world and they can look back to a proud history of more than 50 years of producing bricks and other toys. Starting with a simple set of basic bricks their range of toys appeared to have increased in complexity over the years. We processed the inventories of most sets from 1955-2015 and our analysis showed that LEGO sets have become bigger, more colorful and more specialized. The vocabulary of bricks has increased significantly resulting in sets sharing fewer bricks. The increased complexity of LEGO sets and bricks enables skilled builders to design ever more amazing models but it may also overwhelm less skilled or younger builders.

  8. Lego Car Race

    ERIC Educational Resources Information Center

    Preston, Christine

    2017-01-01

    Familiar toys can be used to scaffold young children's learning about basic physics as well as guide scientific inquiry. Teachers looking for resources to engage young children and develop science inquiry skills need look no further than the toy box. In this two-part activity, children first construct a Lego® car and use it to explore the effects…

  9. Teaching Evolution to Non-English Proficient Students by Using Lego Robotics

    ERIC Educational Resources Information Center

    Whittier, L. Elena; Robinson, Michael

    2007-01-01

    This article describes a teaching unit that used Lego Robotics to address state science standards for teaching basic principles of evolution in two middle school life science classes. All but two of 29 students in these classes were native Spanish speakers from Mexico. Both classes were taught using Sheltered Instruction Observation Protocol…

  10. Two-stages of chiral selectivity in the molecular self-assembly of tryptophan

    NASA Astrophysics Data System (ADS)

    Guisinger, Nathan

    Both chirality and molecular assembly are essential and key components to life. In this study we explore the molecular assembly of the amino acid tryptophan (both L- and D- chiralities) on Cu(111). Our investigation utilizes low temperature scanning tunneling microscopy to observe resulting assemblies at the molecular scale. We find that depositing a racemic mixture of both L- and D- tryptophan results in the assembly of basic 6 molecule ``Lego'' structures that are enantiopure. These enantiopure ``Legos'' further assemble into 1-dimensional chains one block at a time. These resulting chains are also enantiopure with chiral selectivity occurring at two stages of assembly. Utilizing scanning tunneling spectroscopy we are able to probe the electronic structure of the chiral Legos that give insight into the root of the observed selectivity. Two-stages of chiral selectivity in the molecular self-assembly of tryptophan.

  11. LEGO: A Modular Approach to Accelerator Alignment Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeCocq, Catherine M

    2003-05-14

    The underlying unity of the numerous surveying computational methods is hidden by many practical differences in data acquisition. Traditional programming languages have added to the confusion by requiring programmers to describe the numeric data in very concrete and low-level structures (mostly arrays). In fact the algorithms behind all coordinate determination from surveying observations come down to basic methods of linear algebra. Lego uses the paradigm of object oriented programming (OOP) to more closely model the fundamental mathematical structures of all geodetic methods. Once the methods are in OOP form, the commonality across them becomes more obvious and a general architecturemore » for a wide range of geodetic treatments becomes possible. This paper describes the fundamental concepts of this architecture and its advantages in terms of clarity (maintainability, testability and multi-author), portability and extensibility (observation types, resolution techniques and storage methods). The very first version of Lego was built in 1994 as a set of C routines to be used for the adjustment of theodolite data and tracker data. The routines were organized into six modules. Each module answered a specific task. The tasks had been identified as followed: general implementation, input, generic surveying formulas, statistical functions, matrix manipulation and specific resolution technique. This organization was the reason for the name Lego, but more seriously the purpose of this separation was to make Lego easily adaptable to any environment and easily expandable to new resolution techniques. At a second look, it was also a cry for being converted into a more modern language. Because C++ is primarily a superset of C, most C++ compilers have no problems compiling regular C code and may also handle a mixture of C and C++. This made the transformation of Lego very fast and painless. Up to now Lego is still using C functions for file access and dynamic memory allocation but is organized into classes allowing stronger data typing and, most of all, data hiding. It also benefits from some of the more advanced concepts of object programming such as encapsulation and virtual functions. Unlike with the C version where different executables coexisted there is only one C++ Lego.« less

  12. A Lego Robot on the ISS: Chronicles of a Successful Space Outreach Programme

    NASA Astrophysics Data System (ADS)

    Carl, S.; Mirra, C.

    2002-01-01

    In a recent effort, a space outreach project on the International Space Station (ISS) was initiated and successfully implemented. This project, named "Mindstorms in Space", was solely supported by industry. The Lego Company, being active in the non-space area, in co-operation with Intospace, a space industry service provider, developed a space education project aimed at developing, launching and operating a Lego Robot on the Space Station. The idea behind the project is part of a subsequent marketing campaign of Lego in Central Europe in order to promote their Lego Mindstorms series. This series is a highly sophisticated assembly set with programmable microchips and advanced reaction systems such as light-, touch or rotational sensors. The space environment of the ISS was perceived as the right scenario for this hi-tech project. Therefore a public competition was announced to create attention offering interested people to participate in developing a robot that will be in the condition to support the ISS crew during their daily routine work. The criteria of the competition were kept in line with the common Lego principles, i.e. creativity, innovation, fun and teamwork, as well as the basic manned space support parameters, i.e. usefulness, functionality in microgravity, interaction with the crew. Several steps were necessary to make this happen including the qualification of the hardware and selection of the competition winner by a jury. Furthermore integration preparation tasks, the actual launch and the final demonstration during a live transmission from onboard the ISS represented a good example of how such a project can be successfully accomplished in a short time. This paper will present the development and execution of this project and will provide a snapshot on the success of the public outreach campaign.

  13. Simple Machines Curriculum. [Teachers' Manual.

    ERIC Educational Resources Information Center

    Anoka-Hennepin Independent School District No. 11, Coon Rapids, MN.

    This manual provides suggestions for investigating simple machines and the teaching of certain basic concepts which pertain to them. Many of the lessons are designed to be used with the commercially available LEGO kits, in an effort to teach concepts in a way in which students must translate pictures shown in two dimension into three-dimensional…

  14. An Exploratory Study of a Robotics Educational Platform on STEM Career Interests in Middle School Students

    NASA Astrophysics Data System (ADS)

    Hinton, Tracy Barger

    With the large expected growth in STEM-related careers in American industries, there are not enough graduates to fill these positions (United States Department of Labor, 2015). Increased efforts are being made to reform STEM education from early childhood to college level studies, mainly through increased efforts to incorporate new technologies and project-based learning activities (Hegedorn & Purnamasari, 2012). At the middle school level, a robotics educational platform can be a worthwhile activity that provides hands-on learning as students learn basic programming and engineering skills (Grubbs, 2013). Based on the popularity of LEGO toys, LEGO Education developed an engaging and effective way to learn about computer programming and basic engineering concepts (Welch & Huffman, 2011). LEGO MINDSTORMS offers a project-based learning environment that engages students in real-life, problem-solving challenges. The purpose of this qualitative study was to investigate the instructional use of a robotics educational curriculum on middle school students' attitudes toward and interests in STEM and their experiences with LEGO Robotics activities. Participants included 23 seventh grade students who were enrolled in a Career Cluster Technologies I class in a suburban middle school. Data for the study were collected from three focus group interviews, open-ended surveys, classroom observations, and the Career Cruising program. Findings revealed that the robotics activities led to an increased interest and higher self-efficacy in STEM tasks. If students continue to nurture and develop their STEM interests, it is possible that many of them may develop higher confidence and eventually set personal goals related to STEM classes and careers. While other studies have been conducted on similar topics, this qualitative research is unique because it contributed to the gap in research that investigates the impact of an in-class robotics curriculum on middle school students' attitudes and interests in STEM. Throughout the robotics unit, students exhibited positive reactions, including much excitement and enjoyment as they solved the robotics challenges. In addition, students demonstrated a greater interest in STEM courses and careers as a result of this hands-on activity. Middle school teachers should incorporate STEM-based activities such as robotics to help students gain hands-on STEM skills.

  15. Have LEGO Products Become More Violent?

    PubMed

    Bartneck, Christoph; Min Ser, Qi; Moltchanova, Elena; Smithies, James; Harrington, Erin

    2016-01-01

    Although television, computer games and the Internet play an important role in the lives of children they still also play with physical toys, such as dolls, cars and LEGO bricks. The LEGO company has become the world's largest toy manufacturer. Our study investigates if the LEGO company's products have become more violent over time. First, we analyzed the frequency of weapon bricks in LEGO sets. Their use has significantly increased. Second, we empirically investigated the perceived violence in the LEGO product catalogs from the years 1978-2014. Our results show that the violence of the depicted products has increased significantly over time. The LEGO Company's products are not as innocent as they used to be.

  16. Have LEGO Products Become More Violent?

    PubMed Central

    Min Ser, Qi; Moltchanova, Elena; Smithies, James; Harrington, Erin

    2016-01-01

    Although television, computer games and the Internet play an important role in the lives of children they still also play with physical toys, such as dolls, cars and LEGO bricks. The LEGO company has become the world’s largest toy manufacturer. Our study investigates if the LEGO company’s products have become more violent over time. First, we analyzed the frequency of weapon bricks in LEGO sets. Their use has significantly increased. Second, we empirically investigated the perceived violence in the LEGO product catalogs from the years 1978–2014. Our results show that the violence of the depicted products has increased significantly over time. The LEGO Company’s products are not as innocent as they used to be. PMID:27203424

  17. System Concepts for Children via LEGO TC logo.

    ERIC Educational Resources Information Center

    Gorbunov, Andrei L.

    1994-01-01

    Discussion of knowledge constructionism focuses on LEGO TC logo, a program that permits control of LEGO toys by means of a computer. A project for 9- and 10-year-old students that uses LEGO TC logo to develop concepts related to automatic control systems is explained. (three references) (LRW)

  18. Hierarchical Bio-Inspired Cooperative Control for Nonlinear Dynamical Systems and Hardware Demonstration

    DTIC Science & Technology

    2013-04-03

    cooperative control, LEGO robotic testbed, non-linear dynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...testbed The architecture of the LEGO robots (® LEGO is a trademark and/or copyright of the LEGO Group) used in tests were based off the quick-start

  19. Innovation management based on proactive engagement of customers: A case study on LEGO Group. Part II: Challenge of engaging the digital customer

    NASA Astrophysics Data System (ADS)

    Avasilcăi, S.; Rusu, G.

    2015-11-01

    To foster the development of innovative products and new technologies, nowadays companies use an open innovation system, encouraging stakeholders to contribute, using the companies’ online platforms for open innovation or social media, bringing and sharing creative solutions and ideas in order to respond to challenging needs the company directly expresses. Accordingly, the current research continues the analysis of the LEGO Group innovation efforts, aiming to provide a case study approach based on describing the most important projects and online instruments company uses to interact with customers and other external stakeholders. Thus, by analysing the experience of the company in developing projects of involving stakeholders in the innovation processes, the article emphasizes the objective of these past projects developed by LEGO Group, outlining their objectives regarding the focus on the product or process innovation, the team management and stakeholders involved in the innovation actions and the results they obtained. Moreover, the case study highlights the features of the most important online instruments LEGO Group uses at the moment for engaging LEGO fans, children, parents, and other external stakeholders in developing new LEGO sets. Thus, LEGO online instruments provide the opportunity for customers to be creative and to respond to LEGO management team challenges. Accordingly, LEGO involve customers in bringing innovative ideas for LEGO sets through LEGO Ideas instrument, which aims to engage customers in submitting projects, voting and supporting ideas and also sharing them on social media. Also, the research emphasizes the role of supporting the open dialogue and interaction with customers and other external stakeholders through LEGO.com Create & Share Galleries instrument, using their creativity to upload innovative models in the public galleries. The continuous challenges LEGO launches for their fans create a long-term connection between company and its customers, supporting the value co-creation process, as the submitted ideas can materialize in new LEGO products which can be found on the market. As a consequence, customers’ engagement in the co-creation process facilitated by the multiple online instruments provided by LEGO, resulted in positive outcomes for the company regarding new product development for the sets launched on the market to satisfy changing needs of their customers. The results provided by this case study approach can be useful for the business environment and academia as well in order to understand the role of engaging customers in the open innovation process, creating a competitive advantage on the market for companies.

  20. 3D Digital Legos for Teaching Security Protocols

    ERIC Educational Resources Information Center

    Yu, Li; Harrison, L.; Lu, Aidong; Li, Zhiwei; Wang, Weichao

    2011-01-01

    We have designed and developed a 3D digital Lego system as an education tool for teaching security protocols effectively in Information Assurance courses (Lego is a trademark of the LEGO Group. Here, we use it only to represent the pieces of a construction set.). Our approach applies the pedagogical methods learned from toy construction sets by…

  1. A Comparison of the Effects of Lego TC Logo and Problem Solving Software on Elementary Students' Problem Solving Skills.

    ERIC Educational Resources Information Center

    Palumbo, Debra L; Palumbo, David B.

    1993-01-01

    Computer-based problem-solving software exposure was compared to Lego TC LOGO instruction. Thirty fifth graders received either Lego LOGO instruction, which couples Lego building block activities with LOGO computer programming, or instruction with various problem-solving computer programs. Although both groups showed significant progress, the Lego…

  2. 2011 FIRST LEGO League

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Matthew Myles (left) and Agrippa Kellum from Armstrong Middle School in Starkville, watch as their LEGO robot competes during a Dec. 4 tournament. Elementary and middle school students from across Mississippi gathered in Hattiesburg to participate in the Mississippi Championship FIRST (For Inspiration and Recognition of Science and Technology) LEGO League Tournament. Stennis supports FIRST LEGO League each year by providing mentors, training and tournament volunteers.

  3. 2011 FIRST LEGO League

    NASA Image and Video Library

    2010-12-04

    Matthew Myles (left) and Agrippa Kellum from Armstrong Middle School in Starkville, watch as their LEGO robot competes during a Dec. 4 tournament. Elementary and middle school students from across Mississippi gathered in Hattiesburg to participate in the Mississippi Championship FIRST (For Inspiration and Recognition of Science and Technology) LEGO League Tournament. Stennis supports FIRST LEGO League each year by providing mentors, training and tournament volunteers.

  4. Demonstrating Basic Properties of Spectroscopy Using a Self-Constructed Combined Fluorimeter and UV-Photometer

    ERIC Educational Resources Information Center

    Kvittingen, Eivind V.; Kvittingen, Lise; Melø, Thor Bernt; Sjursnes, Birte Johanne; Verley, Richard

    2017-01-01

    This article describes a combined UV-photometer and fluorimeter constructed from 3 LEDs and a few wires, all held in place with Lego bricks. The instrument has a flexible design. In its simplest version, two UV-LEDs (355 nm) are used as light source and to detect absorption, and a third LED, in the visible spectrum (e.g., 525 nm), is used to…

  5. LEGO therapy and the social use of language programme: an evaluation of two social skills interventions for children with high functioning autism and Asperger Syndrome.

    PubMed

    Owens, Gina; Granader, Yael; Humphrey, Ayla; Baron-Cohen, Simon

    2008-11-01

    LEGO therapy and the Social Use of Language Programme (SULP) were evaluated as social skills interventions for 6-11 year olds with high functioning autism and Asperger Syndrome. Children were matched on CA, IQ, and autistic symptoms before being randomly assigned to LEGO or SULP. Therapy occurred for 1 h/week over 18 weeks. A no-intervention control group was also assessed. Results showed that the LEGO therapy group improved more than the other groups on autism-specific social interaction scores (Gilliam Autism Rating Scale). Maladaptive behaviour decreased significantly more in the LEGO and SULP groups compared to the control group. There was a non-significant trend for SULP and LEGO groups to improve more than the no-intervention group in communication and socialisation skills.

  6. KSC-2010-5438

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks hosts children and adults. There, they are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  7. KSC-2010-5445

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks hosts children and adults. There, they are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  8. KSC-2010-5448

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, school children build LEGO space vehicles inside a 40- by 70-foot activity tent. There, children of all ages are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  9. KSC-2010-5442

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks hosts children, adults and a space person. There, they are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  10. KSC-2010-5418

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-5421

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  12. KSC-2010-5447

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, Leland Melvin, NASA's associate administrator for Education, center, and Stephan Turnipseed, president of LEGO Education North America, right, help a student build LEGO space vehicles inside a 40- by 70-foot activity tent. There, children of all ages are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  13. KSC-2010-5437

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks is ready to welcome children of all ages. There, they will have the opportunity to build their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  14. KSC-2010-5433

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- A sign welcomes children of all ages to a 40- by 70-foot activity tent chock full of LEGO bricks on the NASA Causeway at Kennedy Space Center in Florida. Inside the tent, they will have the opportunity to build their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  15. KSC-2010-5436

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks is ready to welcome children of all ages. There, they will have the opportunity to build their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  16. KSC-2010-5446

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, school children arrive at a 40- by 70-foot activity tent chock full of LEGO bricks. There, they will build their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  17. KSC-2010-5440

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks hosts children and adults. There, they are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  18. KSC-2010-5449

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, school children build LEGO space vehicles inside a 40- by 70-foot activity tent. There, children of all ages are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  19. KSC-2010-5443

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks hosts children, adults and a space person. There, they are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  20. KSC-2010-5417

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  1. KSC-2010-5434

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks is ready to welcome children of all ages. There, they will have the opportunity to build their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  2. KSC-2010-5444

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks hosts children and adults. There, they are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  3. KSC-2010-5432

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- A 40- by 70-foot activity tent chock full of LEGO bricks is set up on the NASA Causeway at Kennedy Space Center in Florida. Inside, children of all ages will have the opportunity to build their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  4. KSC-2010-5435

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- On the NASA Causeway at Kennedy Space Center in Florida, a 40- by 70-foot activity tent chock full of LEGO bricks is ready to welcome children of all ages. There, they will have the opportunity to build their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement between NASA and The LEGO Group. The partnership is meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  5. 2011 FIRST LEGO League

    NASA Image and Video Library

    2011-12-03

    The 2011 Mississippi FIRST LEGO League Championship Tournament attracted more than 1,000 participants and guests to the Lake Terrace Convention Center in Hattiesburg. In partnership with the LEGO Group, registered participants use the MINDSTORMSTM NXT system to build robots prior to each year's annual competition.

  6. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-01

    NASA Officials, LEGO Group management, students, teachers and parents create their vision of the future in space with LEGO bricks and elements as part of a “Build the Future” activity inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  7. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-03

    NASA Officials, LEGO Group management, students, teachers and parents create their vision of the future in space with LEGO bricks and elements as part of a “Build the Future” activity inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Wednesday, Nov. 3, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  8. KSC-2010-5439

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- Stephan Turnipseed, president of LEGO Education North America, left, and Leland Melvin, NASA's associate administrator for Education, discuss the new partnership between the U.S. space agency and the toy company inside a 40- by 70-foot activity tent chock full of LEGO bricks on the NASA Causeway at Kennedy Space Center in Florida. There, children of all ages are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  9. KSC-2010-5419

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Debbie Biggs, education specialist for International Space Station National Lab Education Projects, Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  10. KSC-2010-5414

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- Space shuttle and rover models built of LEGO bricks are on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-5420

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Debbie Biggs, education specialist for International Space Station National Lab Education Projects, Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  12. KSC-2010-5411

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- A space shuttle model built of LEGO bricks is on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  13. KSC-2010-5412

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- Space shuttle and rover models built of LEGO bricks are on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  14. KSC-2010-5415

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Debbie Biggs, education specialist for International Space Station National Lab Education Projects, Stephan Turnipseed, president of LEGO Education North America, Leland Melvin, NASA's associate administrator for Education, and Ann Marie Trotta, NASA Public Affairs officer. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  15. KSC-2010-5416

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Debbie Biggs, education specialist for International Space Station National Lab Education Projects, Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  16. KSC-2010-5441

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- Stephan Turnipseed, president of LEGO Education North America, left, a space person, and Leland Melvin, NASA's associate administrator for Education, show off toy space people inside a 40- by 70-foot activity tent chock full of LEGO bricks on the NASA Causeway at Kennedy Space Center in Florida. There, children of all ages are building their vision of the future with LEGO bricks, marking the beginning of a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM). To commemorate the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station and the company will release four NASA-inspired products in its LEGO CITY line next year. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  17. KSC-2010-5413

    NASA Image and Video Library

    2010-11-02

    CAPE CANAVERAL, Fla. -- A space shuttle model built of LEGO bricks is on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller

  18. Using a Lego-based communications simulation to introduce medical students to patient-centered interviewing.

    PubMed

    Harding, S R; D'Eon, M F

    2001-01-01

    Teaching patient-centered interviewing skills to medical students can be challenging. We have observed that 1st-year medical students, in particular, do not feel free to concentrate on the interviewing skills because they are preoccupied with complicated technical medical knowledge. The Lego simulation we use with our 1st-year students as part of a professional-skills course overcomes that difficulty. The Lego activity is a role play analogous to a doctor-patient interview that uses identical sets of Legos for the "doctor" and for the "patients" and a small construction that represents a patient history. With a simple questionnaire, data were collected from students at different points during instruction. Results indicate that the Lego activity was very effective in helping students learn the importance of open-ended questioning. It also was rated as highly as the very dynamic interactive part of the instructional session. The effectiveness of the Lego activity may be due to the properties of analogies.

  19. Long-term outcome of social skills intervention based on interactive LEGO play.

    PubMed

    Legoff, Daniel B; Sherman, Michael

    2006-07-01

    LEGO building materials have been adapted as a therapeutic modality for increasing motivation to participate in social skills intervention, and providing a medium through which children with social and communication handicaps can effectively interact. A 3 year retrospective study of long-term outcome for autistic spectrum children participating in LEGO therapy (N = 60) compared Vineland Adaptive Behavior Scale socialization domain (VABS-SD) and Gilliam Autism Rating Scale social interaction subscale (GARS-SI) scores preand post-treatment with a matched comparison sample (N = 57) who received comparable non-LEGO therapy. Although both groups made significant gains on the two outcome measures, LEGO participants improved significantly more than the comparison subjects. Diagnosis and pre-treatment full-scale IQ scores did not predict outcome scores; however, Vineland adaptive behavior composite, Vineland communication domain, and verbal IQ all predicted outcome on the VABS-SD, especially for the LEGO therapy group. Results are discussed in terms of implications for methods of social skills intervention for autistic spectrum disorders.

  20. 3D printed Lego®-like modular microfluidic devices based on capillary driving.

    PubMed

    Nie, Jing; Gao, Qing; Qiu, Jing-Jiang; Sun, Miao; Liu, An; Shao, Lei; Fu, Jian-Zhong; Zhao, Peng; He, Yong

    2018-03-12

    The field of how to rapidly assemble microfluidics with modular components continuously attracts researchers' attention, however, extra efforts must be devoted to solving the problems of leaking and aligning between individual modules. This paper presents a novel type of modular microfluidic device, driven by capillary force. There is no necessity for a strict seal or special alignment, and its open structures make it easy to integrate various stents and reactants. The key rationale for this method is to print different functional modules with a low-cost three-dimensional (3D) printer, then fill the channels with capillary materials and assemble them with plugs like Lego ® bricks. This rapidly reconstructed modular microfluidic device consists of a variety of common functional modules and other personalized modules, each module having a unified standard interface for easy assembly. As it can be printed by a desktop 3D printer, the manufacturing process is simple and efficient, with controllable regulation of the flow channel scale. Through diverse combinations of different modules, a variety of different functions can be achieved, without duplicating the manufacturing process. A single module can also be taken out for testing and analysis. What's more, combined with basic circuit components, it can serve as a low-cost Lego ® -like modular microfluidic circuits. As a proof of concept, the modular microfluidic device has been successfully demonstrated and used for stent degradation and cell cultures, revealing the potential use of this method in both chemical and biological research.

  1. LEGO Robotics: An Authentic Problem Solving Tool?

    ERIC Educational Resources Information Center

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  2. Mathematics and "Lego" Robots

    ERIC Educational Resources Information Center

    Hansen, Janus Halkier; Traeholt, Rune

    2007-01-01

    For the last four years, Soenderholm School, near the town of Aalborg, Northjutland, Denmark, has had an optional subject in the seventh grade called First "Lego" League (FLL). FLL is an international contest which aims to advance pupils' scientific interest. The task is for participants to build and program a "Lego" robot able…

  3. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-03

    Associate Administrator for Education and Astronaut Leland Melvin, left, and President of LEGO Education USA Stephan Turnipseed, right, talk with a student during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  4. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-03

    Associate Administrator for Education and Astronaut Leland Melvin, left, and President of LEGO Education USA Stephan Turnipseed, right, help students during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  5. LEGO: a novel method for gene set over-representation analysis by incorporating network-based gene weights.

    PubMed

    Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong

    2016-01-11

    Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.

  6. Lego Robotics: STEM Sport of the Mind

    ERIC Educational Resources Information Center

    Gura, Mark

    2012-01-01

    Lego robotics is engaging, hands-on, and encompasses every one of the NETS for Students. It also inspires a love of science, technology, engineering, and mathematics (STEM) and provides the experience students need to use digital age skills in the real world. In this article, the author discusses how schools get involved with Lego Robotics and…

  7. Control Systems Lab Using a LEGO Mindstorms NXT Motor System

    ERIC Educational Resources Information Center

    Kim, Y.

    2011-01-01

    This paper introduces a low-cost LEGO Mindstorms NXT motor system for teaching classical and modern control theories in standard third-year undergraduate courses. The LEGO motor system can be used in conjunction with MATLAB, Simulink, and several necessary toolboxes to demonstrate: 1) a modeling technique; 2) proportional-integral-differential…

  8. Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab

    NASA Astrophysics Data System (ADS)

    Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.

    2018-01-01

    Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.

  9. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-01

    Actress Nichelle Nichols, known for her most famous role as communications officer Lieutenant Uhura aboard the USS Enterprise in the popular Star Trek television series, displays her Lego astronaut ring while visiting the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  10. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-03

    President of LEGO Education USA Stephan Turnipseed, back left, and Associate Administrator for Education and Astronaut Leland Melvin, 2nd from right, talk with a student during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  11. Using LEGO Blocks for Technology-Mediated Task-Based English Language Learning

    ERIC Educational Resources Information Center

    Gadomska, Agnieszka

    2015-01-01

    LEGO blocks have been played with by generations of children worldwide since the 1950s. It is undeniable that they boost creativity, eye-hand coordination, focus, planning, problem solving and many other skills. LEGO bricks have been also used by educators across the curricula as they are extremely motivating and engaging and, in effect, make…

  12. Lightweight Expression of Granular Objects (LEGO) Content Modeling Using the SNOMED CT Observables Model to Represent Nursing Assessment Data.

    PubMed

    Johnson, Christie

    2016-01-01

    This poster presentation presents a content modeling strategy using the SNOMED CT Observable Model to represent large amounts of detailed clinical data in a consistent and computable manner that can support multiple use cases. Lightweight Expression of Granular Objects (LEGOs) represent question/answer pairs on clinical data collection forms, where a question is modeled by a (usually) post-coordinated SNOMED CT expression. LEGOs transform electronic patient data into a normalized consumable, which means that the expressions can be treated as extensions of the SNOMED CT hierarchies for the purpose of performing subsumption queries and other analytics. Utilizing the LEGO approach for modeling clinical data obtained from a nursing admission assessment provides a foundation for data exchange across disparate information systems and software applications. Clinical data exchange of computable LEGO patient information enables the development of more refined data analytics, data storage and clinical decision support.

  13. Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis.

    PubMed

    Weber, K; Mock, U; Petrowitz, B; Bartsch, U; Fehse, B

    2010-04-01

    Vector-encoded fluorescent proteins (FPs) facilitate unambiguous identification or sorting of gene-modified cells by fluorescence-activated cell sorting (FACS). Exploiting this feature, we have recently developed lentiviral gene ontology (LeGO) vectors (www.LentiGO-Vectors.de) for multi-gene analysis in different target cells. In this study, we extend the LeGO principle by introducing 10 different drug-selectable FPs created by fusing one of the five selection marker (protecting against blasticidin, hygromycin, neomycin, puromycin and zeocin) and one of the five FP genes (Cerulean, eGFP, Venus, dTomato and mCherry). All tested fusion proteins allowed both fluorescence-mediated detection and drug-mediated selection of LeGO-transduced cells. Newly generated codon-optimized hygromycin- and neomycin-resistance genes showed improved expression as compared with their ancestors. New LeGO constructs were produced at titers >10(6) per ml (for non-concentrated supernatants). We show efficient combinatorial marking and selection of various cells, including mesenchymal stem cells, simultaneously transduced with different LeGO constructs. Inclusion of the cytomegalovirus early enhancer/chicken beta-actin promoter into LeGO vectors facilitated robust transgene expression in and selection of neural stem cells and their differentiated progeny. We suppose that the new drug-selectable markers combining advantages of FACS and drug selection are well suited for numerous applications and vector systems. Their inclusion into LeGO vectors opens new possibilities for (stem) cell tracking and functional multi-gene analysis.

  14. Maternal Experience of Lego Therapy in Families with Children with Autism Spectrum Conditions: What Is the Impact on Family Relationships?

    ERIC Educational Resources Information Center

    Peckett, Helen; MacCallum, Fiona; Knibbs, Jacky

    2016-01-01

    This study aimed to explore mothers' experience of implementing Lego Therapy at home within the family. Following a Lego Therapy training session, mothers carried out hourly sessions with their child with an autism spectrum condition and the child's sibling, once a week, for 6 weeks. Mothers were interviewed following the intervention, and the…

  15. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-03

    LEGOs are seen assembled by students as part of a “Build the Future” activity inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Wednesday, Nov. 3, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  16. Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels.

    PubMed

    Ma, Chunxin; Li, Tiefeng; Zhao, Qian; Yang, Xuxu; Wu, Jingjun; Luo, Yingwu; Xie, Tao

    2014-08-27

    Inspired by the assembly of Lego toys, hydrogel building blocks with heterogeneous responsiveness are assembled utilizing macroscopic supramolecular recognition as the adhesion force. The Lego hydrogel provides 3D transformation upon pH variation. After disassembly of the building blocks by changing the oxidation state, they can be re-assembled into a completely new shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Lego Bricks and the Octet Rule: Molecular Models for Biochemical Pathways with Plastic, Interlocking Toy Bricks

    ERIC Educational Resources Information Center

    Lin, Henry J.; Lehoang, Jennifer; Kwan, Isabel; Baghaee, Anita; Prasad, Priya; Ha-Chen, Stephanie J.; Moss, Tanesha; Woods, Jeremy D.

    2018-01-01

    The 8 studs on a 2 × 4 Lego brick conveniently represent the outer shell of electrons for carbon, nitrogen, and oxygen atoms. We used Lego bricks to model these atoms, which are then joined together to form molecules by following the Lewis octet rule. A variety of small biological molecules can be modeled in this way, such as most amino acids,…

  18. "Creative Blocs": Action Research Study on the Implementation of Lego as a Tool for Reflective Practice with Social Care Practitioners

    ERIC Educational Resources Information Center

    Cavaliero, Tamsin

    2017-01-01

    The aim of this study is to investigate whether Lego could be used as a tool for reflective practice with social care practitioners (SCPs) and student practitioners. This article outlines an action research study conducted in an institute of higher education in Ireland. Findings from this study suggest that Lego can be used to support student…

  19. LEGO: a novel method for gene set over-representation analysis by incorporating network-based gene weights

    PubMed Central

    Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong

    2016-01-01

    Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher’s exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO’s usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher. PMID:26750448

  20. Orthognathic model surgery with LEGO key-spacer.

    PubMed

    Tsang, Alfred Chee-Ching; Lee, Alfred Siu Hong; Li, Wai Keung

    2013-12-01

    A new technique of model surgery using LEGO plates as key-spacers is described. This technique requires less time to set up compared with the conventional plaster model method. It also retains the preoperative setup with the same set of models. Movement of the segments can be measured and examined in detail with LEGO key-spacers. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. 2012 FIRST LEGO League

    NASA Image and Video Library

    2012-12-01

    Observers cheer on student teams during the 2012 FIRST LEGO League Mississippi Championship Tournament in Hattiesburg, Miss., on Dec. 1. The annual competition attracted 46 teams from across Mississippi.

  2. A Lego Mindstorms NXT based test bench for multiagent exploratory systems and distributed network partitioning

    NASA Astrophysics Data System (ADS)

    Patil, Riya Raghuvir

    Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for selfpartitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the LegoRTM Mindstorms' NXT on a graphical programming platform using National Instruments' LabVIEW(TM) forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented.

  3. LEGO[R] Therapy and the Social Use of Language Programme: An Evaluation of Two Social Skills Interventions for Children with High Functioning Autism and Asperger Syndrome

    ERIC Educational Resources Information Center

    Owens, Gina; Granader, Yael; Humphrey, Ayla; Baron-Cohen, Simon

    2008-01-01

    LEGO[R] therapy and the Social Use of Language Programme (SULP) were evaluated as social skills interventions for 6-11 year olds with high functioning autism and Asperger Syndrome. Children were matched on CA, IQ, and autistic symptoms before being randomly assigned to LEGO or SULP. Therapy occurred for 1 h/week over 18 weeks. A no-intervention…

  4. Using LEGO for learning fractions, supporting or distracting?

    NASA Astrophysics Data System (ADS)

    Rejeki, Sri; Setyaningsih, Nining; Toyib, Muhamad

    2017-05-01

    The role of games used for learning mathematics is still in debate. However, many research revealed that it gave positive effects on both students' motivation and performance in mathematics. Therefore, this study aims at investigating the effects of using LEGO-as one of games which students are familiar with, for learning mathematics, on both students' conceptual knowledge of fractions and students' attitude in learning mathematics. A set of learning activities consisting three meetings of fractions learning was designed for this study. The activities were mainly about solving word-context problems using LEGO as the model. Thirty students of seven grade with high-ability in mathematics and thirty two students with low-ability in mathematics were involved in this study. The data were collected through students' written works, video registration and field notes during the teaching and learning activities. The results indicate that in general the use of LEGO in learning activities support the conceptual understanding on fractions for both students with high-ability and low-ability in mathematics. Moreover, for students with low-ability in mathematics, it promotes the computational skill of fractions operation. The evidences also suggest that bringing LEGO into classroom activities improve students' motivation and engagement. However, in some cases, students were more focus on playing than learning. Therefore, teachers play important roles on providing clear pedagogical instructions about the way to use LEGO properly.

  5. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips.

    PubMed

    Loskill, Peter; Marcus, Sivan G; Mathur, Anurag; Reese, Willie Mae; Healy, Kevin E

    2015-01-01

    Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates.

  6. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips

    PubMed Central

    Loskill, Peter; Marcus, Sivan G.; Mathur, Anurag; Reese, Willie Mae; Healy, Kevin E.

    2015-01-01

    Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates. PMID:26440672

  7. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-03

    Associate Administrator for Education and Astronaut Leland Melvin, 3rd from left, talks with school children during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  8. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-03

    Associate Administrator for Education and Astronaut Leland Melvin talks with school children during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  9. 2012 FIRST LEGO League

    NASA Image and Video Library

    2012-12-01

    Mississippi students monitor performance of their robots during the 2012 FIRST LEGO League Mississippi Championship Tournament in Hattiesburg, Miss., on Dec. 1. The tournament is an annual high-energy robotics competition for children 9-14.

  10. 2012 FIRST LEGO League

    NASA Image and Video Library

    2012-12-01

    The 2012 FIRST LEGO League Mississippi Championship Tournament in Hattiesburg, Miss., on Dec. 1, drew 46 teams from across Mississippi. The focus of the annual competition celebrates science and technology through hands-on participation and learning.

  11. KSC-2011-7891

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – LEGO blocks are spread out on the floor of an exhibition hall at the Kennedy Space Center Visitor Complex in Florida for easy access during the LEGO "Build the Future" event. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-7890

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – LEGO NXT robots, designed to look like Mars rovers, are on display at the LEGO "Build the Future" event at the Kennedy Space Center Visitor Complex in Florida. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett

  13. Maternal experience of Lego Therapy in families with children with autism spectrum conditions: What is the impact on family relationships?

    PubMed

    Peckett, Helen; MacCallum, Fiona; Knibbs, Jacky

    2016-10-01

    This study aimed to explore mothers' experience of implementing Lego Therapy at home within the family. Following a Lego Therapy training session, mothers carried out hourly sessions with their child with an autism spectrum condition and the child's sibling, once a week, for 6 weeks. Mothers were interviewed following the intervention, and the data were analysed using interpretative phenomenological analysis. Themes emerged around improved family relationships, a positive impact on the child as an individual, and changed maternal, sibling and child perspectives. Challenging and facilitative aspects also emerged, as did some ambivalence about the impact of the intervention in the wider context. The findings are supportive of previous Lego Therapy studies and have implications for strengths-based service provision. © The Author(s) 2016.

  14. Pulsed Irradiation Improves Target Selectivity of Infrared Laser-Evoked Gene Operator for Single-Cell Gene Induction in the Nematode C. elegans

    PubMed Central

    Suzuki, Motoshi; Toyoda, Naoya; Takagi, Shin

    2014-01-01

    Methods for turning on/off gene expression at the experimenter’s discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms. PMID:24465705

  15. LEGO-MM: LEarning structured model by probabilistic loGic Ontology tree for MultiMedia.

    PubMed

    Tang, Jinhui; Chang, Shiyu; Qi, Guo-Jun; Tian, Qi; Rui, Yong; Huang, Thomas S

    2016-09-22

    Recent advances in Multimedia ontology have resulted in a number of concept models, e.g., LSCOM and Mediamill 101, which are accessible and public to other researchers. However, most current research effort still focuses on building new concepts from scratch, very few work explores the appropriate method to construct new concepts upon the existing models already in the warehouse. To address this issue, we propose a new framework in this paper, termed LEGO1-MM, which can seamlessly integrate both the new target training examples and the existing primitive concept models to infer the more complex concept models. LEGOMM treats the primitive concept models as the lego toy to potentially construct an unlimited vocabulary of new concepts. Specifically, we first formulate the logic operations to be the lego connectors to combine existing concept models hierarchically in probabilistic logic ontology trees. Then, we incorporate new target training information simultaneously to efficiently disambiguate the underlying logic tree and correct the error propagation. Extensive experiments are conducted on a large vehicle domain data set from ImageNet. The results demonstrate that LEGO-MM has significantly superior performance over existing state-of-the-art methods, which build new concept models from scratch.

  16. FIRST LEGO League announces State Championship winners

    NASA Technical Reports Server (NTRS)

    2007-01-01

    PEAK Home School Network Team 1832 'Techno Warriors' of Brandon sport the Champions Award they won during the Dec. 8 FIRST (For Inspiration and Recognition of Science and Technology) LEGO League 2007 Mississippi Championship Tournament.

  17. FIRST LEGO League announces State Championship winners

    NASA Image and Video Library

    2007-12-08

    PEAK Home School Network Team 1832 'Techno Warriors' of Brandon sport the Champions Award they won during the Dec. 8 FIRST (For Inspiration and Recognition of Science and Technology) LEGO League 2007 Mississippi Championship Tournament.

  18. Performance Analysis of the Enhanced Bio-Inspired Planning Algorithm for Rapid Situation Awareness Response

    DTIC Science & Technology

    2013-10-18

    low cost robot testbed. 15. SUBJECT TERMS Bio-inspired trajectory generation, in-situ obstacle avoidance, low-cost LEGO robots, vision- based...will not affect the solution optimality and thus will be regarded as zero. Following the LP motion strategy Eq. (1), the position vector of the Lego ...Lobatto (LGL) method [14], the position of Lego robot can be further represented as ’ 1 ,( )j p jD   ζ ζ (6) in which ,0 ,,..., T j j j

  19. KSC-2011-3140

    NASA Image and Video Library

    2011-04-27

    CAPE CANAVERAL, Fla. -- In the Press Site bull pen at NASA's Kennedy Space Center in Florida, The LEGO Group's Daire McCabe and NASA's Associate Administrator for Education Leland Melvin talk about the LEGO sets going up to the International Space Station aboard space shuttle Endeavour's STS-134 mission. NASA and The LEGO Group will send 23 LEGO sets to the station and some of those sets include a space shuttle, an ISS model, a Global Positioning Satellite and NASA's Hubble Space Telescope. The sets will be used for NASA's Teaching From Space Project, which is part of a three-year Space Act Agreement with the toy maker to spark the interest of children in science, technology, engineering and mathematics (STEM). Liftoff is scheduled for April 29 at 3:47 p.m. EDT. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin

  20. KSC-2011-3141

    NASA Image and Video Library

    2011-04-27

    CAPE CANAVERAL, Fla. -- In the Press Site bull pen at NASA's Kennedy Space Center in Florida, The LEGO Group's Daire McCabe and NASA's Associate Administrator for Education Leland Melvin talk about the LEGO sets going up to the International Space Station aboard space shuttle Endeavour's STS-134 mission. NASA and The LEGO Group will send 23 LEGO sets to the station and some of those sets include a space shuttle, an ISS model, a Global Positioning Satellite and NASA's Hubble Space Telescope. The sets will be used for NASA's Teaching From Space Project, which is part of a three-year Space Act Agreement with the toy maker to spark the interest of children in science, technology, engineering and mathematics (STEM). Liftoff is scheduled for April 29 at 3:47 p.m. EDT. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin

  1. KSC-2011-3139

    NASA Image and Video Library

    2011-04-27

    CAPE CANAVERAL, Fla. -- In the Press Site bull pen at NASA's Kennedy Space Center in Florida, NASA Education Specialist Teresa Sindelar and The LEGO Group's Daire McCabe talk about the LEGO sets going up to the International Space Station aboard space shuttle Endeavour's STS-134 mission. NASA and The LEGO Group will send 23 LEGO sets to the station and some of those sets include a space shuttle, an ISS model, a Global Positioning Satellite and NASA's Hubble Space Telescope. The sets will be used for NASA's Teaching From Space Project, which is part of a three-year Space Act Agreement with the toy maker to spark the interest of children in science, technology, engineering and mathematics (STEM). Liftoff is scheduled for April 29 at 3:47 p.m. EDT. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin

  2. Lattice Commissioning Stretgy Simulation for the B Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.; Whittum, D.; Yan, Y.

    2011-08-26

    To prepare for the PEP-II turn on, we have studied one commissioning strategy with simulated lattice errors. Features such as difference and absolute orbit analysis and correction are discussed. To prepare for the commissioning of the PEP-II injection line and high energy ring (HER), we have developed a system for on-line orbit analysis by merging two existing codes: LEGO and RESOLVE. With the LEGO-RESOLVE system, we can study the problem of finding quadrupole alignment and beam position (BPM) offset errors with simulated data. We have increased the speed and versatility of the orbit analysis process by using a command filemore » written in a script language designed specifically for RESOLVE. In addition, we have interfaced the LEGO-RESOLVE system to the control system of the B-Factory. In this paper, we describe online analysis features of the LEGO-RESOLVE system and present examples of practical applications.« less

  3. Spiral CT scanning technique in the detection of aspiration of LEGO foreign bodies.

    PubMed

    Applegate, K E; Dardinger, J T; Lieber, M L; Herts, B R; Davros, W J; Obuchowski, N A; Maneker, A

    2001-12-01

    Radiolucent foreign bodies (FBs) such as plastic objects and toys remain difficult to identify on conventional radiographs of the neck and chest. Children may present with a variety of respiratory complaints, which may or may not be due to a FB. To determine whether radiolucent FBs such as plastic LEGOs and peanuts can be seen in the tracheobronchial tree or esophagus using low-dose spiral CT, and, if visible, to determine the optimal CT imaging technique. Multiple spiral sequences were performed while varying the CT parameters and the presence and location of FBs in either the trachea or the esophagus first on a neck phantom and then a cadaver. Sequences were rated by three radiologists blinded to the presence of a FB using a single scoring system. The LEGO was well visualized in the trachea by all three readers (both lung and soft-tissue windowing: combined sensitivity 89 %, combined specificity 89 %) and to a lesser extent in the esophagus (combined sensitivity 31 %, combined specificity 100 %). The peanut was not well visualized (combined sensitivity < 35 %). The optimal technique for visualizing the LEGO was 120 kV, 90 mA, 3-mm collimation, 0.75 s/revolution, and 2.0 pitch. This allowed for coverage of the cadaver tracheobronchial tree (approximately 11 cm) in about 18 s. Although statistical power was low for detecting significant differences, all three readers noted higher average confidence ratings with lung windowing among 18 LEGO-in-trachea scans. Rapid, low-dose spiral CT may be used to visualize LEGO FBs in the airway or esophagus. Peanuts were not well visualized.

  4. 2011 FIRST LEGO League

    NASA Image and Video Library

    2011-12-03

    Two 2011 Mississippi FIRST LEGO League competitors from Stokes-Beard Magnet Elementary School in Columbus urge their robots on during the annual tournament Dec. 3. The competition attracted more than 1,000 participants and guests to the Lake Terrace Convention Center in Hattiesburg.

  5. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  6. 2012 FIRST LEGO League

    NASA Image and Video Library

    2012-12-01

    Two students anxiously watch their robot during the 2012 FIRST LEGO League Mississippi Championship Tournament in Hattiesburg, Miss., on Dec. 1. In addition to competing with robots, students presented research on this year's 'Senior Solutions' theme, which focused on addressing problems faced by senior adults.

  7. Technotown: A LEGO Experience. [and] Technotown: A School-Wide Design Technology Project.

    ERIC Educational Resources Information Center

    Belch, Harry; Knobloch, Stephan F.

    1994-01-01

    Describes how 900 elementary students planned, designed, and constructed Technotown out of 1 million LEGO pieces. Presents a learning activity (objectives, materials, challenge, evaluation, and closing thoughts) on the building of a subway system for Technotown. (SK)

  8. LEGO "Build The Future" Activity

    NASA Image and Video Library

    2010-11-01

    Actress Nichelle Nichols, known for her most famous role as communications officer Lieutenant Uhura aboard the USS Enterprise in the popular Star Trek television series, talks with school children during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)

  9. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  10. Liquid-handling Lego robots and experiments for STEM education and research

    PubMed Central

    Gerber, Lukas C.; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday

    2017-01-01

    Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research. PMID:28323828

  11. Liquid-handling Lego robots and experiments for STEM education and research.

    PubMed

    Gerber, Lukas C; Calasanz-Kaiser, Agnes; Hyman, Luke; Voitiuk, Kateryna; Patil, Uday; Riedel-Kruse, Ingmar H

    2017-03-01

    Liquid-handling robots have many applications for biotechnology and the life sciences, with increasing impact on everyday life. While playful robotics such as Lego Mindstorms significantly support education initiatives in mechatronics and programming, equivalent connections to the life sciences do not currently exist. To close this gap, we developed Lego-based pipetting robots that reliably handle liquid volumes from 1 ml down to the sub-μl range and that operate on standard laboratory plasticware, such as cuvettes and multiwell plates. These robots can support a range of science and chemistry experiments for education and even research. Using standard, low-cost household consumables, programming pipetting routines, and modifying robot designs, we enabled a rich activity space. We successfully tested these activities in afterschool settings with elementary, middle, and high school students. The simplest robot can be directly built from the widely used Lego Education EV3 core set alone, and this publication includes building and experiment instructions to set the stage for dissemination and further development in education and research.

  12. Color dithering methods for LEGO-like 3D printing

    NASA Astrophysics Data System (ADS)

    Sun, Pei-Li; Sie, Yuping

    2015-01-01

    Color dithering methods for LEGO-like 3D printing are proposed in this study. The first method is work for opaque color brick building. It is a modification of classic error diffusion. Many color primaries can be chosen. However, RGBYKW is recommended as its image quality is good and the number of color primary is limited. For translucent color bricks, multi-layer color building can enhance the image quality significantly. A LUT-based method is proposed to speed the dithering proceeding and make the color distribution even smoother. Simulation results show the proposed multi-layer dithering method can really improve the image quality of LEGO-like 3D printing.

  13. DIME Participants Working on a Legos(TM) Challenge

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Members from all four teams were mixed into pairs to work on a Lego (TM) Challenge device to operate in the portable drop tower demonstrator (background). These two team members are about to try out their LEGO (TM) creation. This was part of the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  14. Inventors in the Making

    ERIC Educational Resources Information Center

    Murray, Jenny; Bartelmay, Kathy

    2005-01-01

    Can second-grade students construct an understanding of sophisticated science processes and explore physics concepts while creating their own inventions? Yes! Students accomplished this and much more through a month-long project in which they used Legos and Robolab, the Lego computer programing software, to create their own inventions. One…

  15. Innovation management based on proactive engagement of customers: A case study on LEGO Group. Part I: Innovation Management at Lego Group

    NASA Astrophysics Data System (ADS)

    Rusu, G.; Avasilcăi, S.

    2015-11-01

    Customers' proactive engagement in the innovation process represents a business priority for companies which adopt the open innovation business model. In such a context, it is of outmost importance for companies to use the online environment and social media, in order to create an interactive and open dialogue with customers and other important external stakeholders, achieving to gather creative solutions and innovative ideas by involving them in the process of co-creating value. Thus, the current paper is based on a case study approach, which aims to highlight the open innovation business model of the LEGO Group, one of the most successful and active company in engaging customers in submitting ideas and creative solutions for developing new products and new technologies, through online platforms. The study then proceeds to analyze the innovation management at LEGO Group, emphasizing the most important elements regarding the management team, the success and failures, the evolution of the LEGO products focusing on the innovation efforts of the company, its mission, vision, and values, emphasizing the innovation terms which guide the actions and objectives of the LEGO Group. Also, the research based on the case study approach, outlines the most important policies and strategies of the company, the organizational structure consisting of flat structures which facilitate the orientation of the team management on the innovation process and the proactive involvement of consumers and other external stakeholders in product development, highlighting also the most important activities developed by the management team in exploring the new opportunities which may occur on the market, involving customers in sharing their ideas at festivals, participating to discussions of adult fans on web-based platforms and establishing partnerships with the external stakeholders in order to create value. Moreover, the paper is focused on identifying the company's concerns regarding the competitive strategies, new technologies developed for sustainable development and innovation, emphasizing also the concerns of the LEGO Group for a long-term orientation strategy which implies developing innovative products, made by ecological materials, reducing the negative impact on the environment. In addition, the company aims to foster innovation maintaining a clear vision, multiple contacts with the internal and external environment, and the flat structures which enable the communication between innovative management teams and top management team. Consequently, the study provides the insights regarding the innovation management of the LEGO Group, emphasizing the role of engaging customers and other external stakeholders in the co-creation of value.

  16. A scoping review of the role of LEGO® therapy for improving inclusion and social skills among children and youth with autism.

    PubMed

    Lindsay, Sally; Hounsell, Kara Grace; Cassiani, Celia

    2017-04-01

    LEGO ® therapy uses children's natural interest in play to help motivate behavioural change and may be an effective teaching tool to increase social competency and communication skills. Although the literature is growing it has not been synthesized. To review the literature on the role of LEGO ® therapy on social skills and inclusion among children and youth with Autism Spectrum Disorder (ASD). A scoping review was conducted, involving comprehensive searches of international databases. Eligible articles included: (a) youth aged 19 or younger, with ASD; (b) empirical research on LEGO ® therapy interventions; (c) published from 1996 to 2016 in a peer-reviewed journal, conference proceedings, or dissertation. Of the 6964 studies identified, 15 articles-involving 293 participants, aged 5-16 (mean age 8.7 years), across five countries-met the inclusion criteria. Although the outcomes of the LEGO ® therapy varied across the studies, 14 studies reported at least one improvement in social and communication skills (e.g., building friendships, improved social interactions and social competence), ASD-specific behaviors, belonging, family relationships, coping, and reductions in playing alone. Although LEGO ® therapy shows promise as an intervention for children and youth with ASD, more rigorously designed studies are needed to fully understand its impact. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Low-cost diffuse optical tomography for the classroom

    NASA Astrophysics Data System (ADS)

    Minagawa, Taisuke; Zirak, Peyman; Weigel, Udo M.; Kristoffersen, Anna K.; Mateos, Nicolas; Valencia, Alejandra; Durduran, Turgut

    2012-10-01

    Diffuse optical tomography (DOT) is an emerging imaging modality with potential applications in oncology, neurology, and other clinical areas. It allows the non-invasive probing of the tissue function using relatively inexpensive and safe instrumentation. An educational laboratory setup of a DOT system could be used to demonstrate how photons propagate through tissues, basics of medical tomography, and the concepts of multiple scattering and absorption. Here, we report a DOT setup that could be introduced to the advanced undergraduate or early graduate curriculum using inexpensive and readily available tools. The basis of the system is the LEGO Mindstorms NXT platform which controls the light sources, the detectors (photo-diodes), a mechanical 2D scanning platform, and the data acquisition. A basic tomographic reconstruction is implemented in standard numerical software, and 3D images are reconstructed. The concept was tested and developed in an educational environment that involved a high-school student and a group of post-doctoral fellows.

  18. Generation NXT: Building Young Engineers with LEGOs

    ERIC Educational Resources Information Center

    Karp, T.; Gale, R.; Lowe, L. A.; Medina, V.; Beutlich, E.

    2010-01-01

    This paper describes key success factors for the implementation and development of a LEGO robotics engineering outreach program for elementary school students in West Texas. The outreach program not only aims at getting young students excited about engineering but at the same time aims at improving retention rates among electrical and computer…

  19. A Day at FIRST Lego League

    ERIC Educational Resources Information Center

    McIntyre, Nancy

    2012-01-01

    This article features an after-school FIRST Lego League (FLL) program at Chaminade Middle School in Chatsworth, California, USA. The after-school FLL program feeds into the high school FIRST Robotics Competition (FRC) program wherein aspiring young engineers come to the high school team with several years of FLL experience. Through the FLL…

  20. Enriching K-12 Science and Mathematics Education Using LEGOs

    ERIC Educational Resources Information Center

    Williams, Keeshan; Igel, Irina; Poveda, Ronald; Kapila, Vikram; Iskander, Magued

    2012-01-01

    This paper presents a series of illustrative LEGO Mindstorms-based science and math activities, developed under an NSF GK-12 Fellows project, for elementary, middle, and high school grades. The activities, developed by engineering and science graduate Fellows in partnership with K-12 teachers, are grade appropriate, address pertinent learning…

  1. Listening and Legos[TM

    ERIC Educational Resources Information Center

    Morris, Pamela

    2012-01-01

    This simple exercise, performed in teams, gives students practice in listening to instructions, particularly when there are restrictions for the communication. The teams compete in a limited amount of time to build a Lego[TM] structure based on the instructions of one team member. Which team listens the best and is most successful?

  2. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  3. Developing Conceptual Understanding of Mechanical Advantage through the Use of Lego Robotic Technology

    ERIC Educational Resources Information Center

    Chambers, Joan M.; Carbonaro, Mike; Murray, Hana

    2008-01-01

    Science educators advocate hands on experiences and the use of manipulatives as important for children's conceptual development. Consequently, the utilisation of "Lego" robotic technologies in teaching and learning has become more prevalent in school science classrooms. It is important to investigate their value as educational tools, particularly…

  4. Innovative Methods in Teaching Programming for Future Informatics Teachers

    ERIC Educational Resources Information Center

    Majherová, Janka; Králík, Václav

    2017-01-01

    In the training of future informatics teachers the students obtain experience with different methods of programming. As well, the students become familiar with programming by using the robotic system Lego Mindstorms. However, the small number of Lego systems available is a limiting factor for the teaching process. Use of virtual robotic…

  5. Teacher workshop

    NASA Image and Video Library

    2012-10-20

    The John C. Stennis Space Center Educator Resource Center hosted an Oct. 20 workshop to equip teachers of grades 3 through 12 in using the LEGO Bricks in Space curriculum issued by NASA. Participants in the professional development workshop built their own LEGO simple machine prototypes and explored the engineering principles that make them work (on Earth and in space).

  6. An Exploration of the Nanoworld with LEGO Bricks

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Miller, Josiah D.; Bannon, Stephen J.; Obermaier, Lauren M.

    2011-01-01

    LEGO bricks can be used for a number of demonstrations of chemical structures and properties, especially at the nanoscale level. These bricks can also be used to model instrumentation that probes these structures and properties. Detailed resources about many of these demonstrations are located on the extensive Web site "Exploring the Nanoworld…

  7. Equipment Proposal for the Autonomous Vehicle Systems Laboratory at UIW

    DTIC Science & Technology

    2015-04-29

    testing, 5) 38 Lego Mindstorm EV3 and Hitechnic Sensors for use in feedback control and autonomous systems for STEM undergraduate and High School...autonomous robots using the Lego Mindstorm EV3. This robotics workshop will be used as a pilot study for next summer when more High School students

  8. Teaching of Computer Science Topics Using Meta-Programming-Based GLOs and LEGO Robots

    ERIC Educational Resources Information Center

    Štuikys, Vytautas; Burbaite, Renata; Damaševicius, Robertas

    2013-01-01

    The paper's contribution is a methodology that integrates two educational technologies (GLO and LEGO robot) to teach Computer Science (CS) topics at the school level. We present the methodology as a framework of 5 components (pedagogical activities, technology driven processes, tools, knowledge transfer actors, and pedagogical outcomes) and…

  9. Long-Term Outcome of Social Skills Intervention Based on Interactive LEGO[C] Play

    ERIC Educational Resources Information Center

    Legoff, Daniel B.; Sherman, Michael

    2006-01-01

    LEGO[C] building materials have been adapted as a therapeutic modality for increasing motivation to participate in social skills intervention, and providing a medium through which children with social and communication handicaps can effectively interact. A 3 year retrospective study of long-term outcome for autistic spectrum children participating…

  10. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector

    ERIC Educational Resources Information Center

    Asheim, Jonas; Kvittingen, Eivind V.; Kvittingen, Lise; Verley, Richard

    2014-01-01

    This article describes how to construct a simple, inexpensive, and robust colorimeter from a few Lego bricks, in which one light-emitting diode (LED) is used as a light source and a second LED as a light detector. The colorimeter is suited to various grades and curricula.

  11. An attentional bias for LEGO® people using a change detection task: Are LEGO® people animate?

    PubMed

    LaPointe, Mitchell R P; Cullen, Rachael; Baltaretu, Bianca; Campos, Melissa; Michalski, Natalie; Sri Satgunarajah, Suja; Cadieux, Michelle L; Pachai, Matthew V; Shore, David I

    2016-09-01

    Animate objects have been shown to elicit attentional priority in a change detection task. This benefit has been seen for both human and nonhuman animals compared with inanimate objects. One explanation for these results has been based on the importance animate objects have served over the course of our species' history. In the present set of experiments, we present stimuli, which could be perceived as animate, but with which our distant ancestors would have had no experience, and natural selection could have no direct pressure on their prioritization. In the first experiment, we compared LEGO® "people" with LEGO "nonpeople" in a change detection task. In a second experiment, we attempt to control the heterogeneity of the nonanimate objects by using LEGO blocks, matched in size and colour to LEGO people. In the third experiment, we occlude the faces of the LEGO people to control for facial pattern recognition. In the final 2 experiments, we attempt to obscure high-level categorical information processing of the stimuli by inverting and blurring the scenes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Reviews Book: How to Teach Quantum Physics to Your Dog Equipment: LEGO Renewable Energy Add-on Set 9688 Book: The Rough Guide to the Future Book: Seven Tales of the Pendulum Equipment: Genecon DUE Equipment: Manual Electrostatic Generator Book: Quantify! A Crash Course in Smart Thinking Book: Fads and Fallacies in the Name of Science Book: The Strangest Man Book: The Ultimate Quotable Einstein Web Watch

    NASA Astrophysics Data System (ADS)

    2011-05-01

    WE RECOMMEND How to Teach Quantum Physics to Your Dog The key theories of quantum physics explained using canine behaviour LEGO Renewable Energy Add-on Set 9688 Set builds a hand generator, solar station, wind turbine, hydro turbine, boat pulley, solar vehicle, and much more The Rough Guide to the Future Book explores the insights that science can contribute to predicting the future Seven Tales of the Pendulum This book deals with the significance of the pendulum in science, history and culture Genecon DUE Equipment demonstrates generation of electricity Fads and Fallacies in the Name of Science Book investigates the nature of human gullibility The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius Biography charts the life of Paul Dirac WORTH A LOOK Manual Electrostatic Generator Kit acts as a miniature Van de Graaff Quantify! A Crash Course in Smart Thinking Various topics illustrate the application of basic physical laws The Ultimate Quotable Einstein A compilation of Einstein's famous quotes WEB WATCH Open Source Physics simulations are worth a look

  13. Form, Content, and Gender Differences in Lego[R] Block Creations by Japanese Adolescents

    ERIC Educational Resources Information Center

    Kato, Daiki; Morita, Miyako

    2009-01-01

    This study examined general features of Lego block creations produced by Japanese adolescents with no known mental health disorders. The block creations of 33 participants were assessed for form, content, and gender differences. Time spent on the task, amount of area covered, and quantity and types of blocks used were measured and correlated with…

  14. The Serious Use of Play and Metaphor: Legos and Labyrinths

    ERIC Educational Resources Information Center

    James, Alison; Brookfield, Stephen

    2013-01-01

    In this paper the authors wish to examine kinesthetic forms of learning involving the body and the physical realm. The authors look at two particular techniques; using Legos to build metaphorical models and living the physical experience of metaphors in the shape of labyrinth-walking and its attendant activities. The authors begin by discussing…

  15. Using LEGO NXT Mobile Robots with LabVIEW for Undergraduate Courses on Mechatronics

    ERIC Educational Resources Information Center

    Gomez-de-Gabriel, J. M.; Mandow, A.; Fernandez-Lozano, J.; Garcia-Cerezo, A.

    2011-01-01

    The paper proposes lab work and student competitions based on the LEGO NXT Mindstorms kits and standard LabVIEW. The goal of this combination is to stimulate design and experimentation with real hardware and representative software in courses where mobile robotics is adopted as a motivating platform to introduce mechatronics competencies. Basic…

  16. An Intelligent Agent Approach for Teaching Neural Networks Using LEGO[R] Handy Board Robots

    ERIC Educational Resources Information Center

    Imberman, Susan P.

    2004-01-01

    In this article we describe a project for an undergraduate artificial intelligence class. The project teaches neural networks using LEGO[R] handy board robots. Students construct robots with two motors and two photosensors. Photosensors provide readings that act as inputs for the neural network. Output values power the motors and maintain the…

  17. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics.

    PubMed

    Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa

    2017-04-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Does Lego Training Stimulate Pupils' Ability to Solve Logical Problems?

    ERIC Educational Resources Information Center

    Lindh, Jorgen; Holgersson, Thomas

    2007-01-01

    The purpose of this study is to investigate the effect of a one-year regular robotic toys (lego) training on school pupils' performance. The underlying pedagogical perspective is the "constructionist theory," where the main idea is that knowledge is constructed in the mind of the pupil by active learning. The investigation has been made…

  19. Automation Technology in Elementary Technology Education.

    ERIC Educational Resources Information Center

    Hiltunen, Jukka; Jarvinen, Esa-Matti

    2000-01-01

    Finnish fifth-graders (n=20) and sixth-graders (n=23) worked in teams in a Lego/Logo-Control Lab to complete Lego design activities. Observations showed that they became familiar with automation technology but their skills were not always up to their ideas. Activities based on real-life situations gave them ownership and engaged them in learning.…

  20. Block Party: Legos in the Library

    ERIC Educational Resources Information Center

    Klebanoff, Abbe

    2009-01-01

    Toys don't belong in the library. That's probably what some people still think. But the author's library outside Philadelphia was having such a hard time attracting boys who had outgrown storytime that he and his colleagues decided to try something new. So his school started a Lego club. Since their June 2008 kickoff, they've been amazed by how…

  1. Learning with LEGO

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2017-12-01

    I have lost count of the number of wheezes to get people hooked on particle physics. There have been straightforward scientific accounts, personal tales of discovery, books filled with cartoons, essays and even historical vignettes. In Particle Physics Brick by Brick, science communicator Ben Still has decided to use LEGO bricks to coax readers into learning more about the subatomic world.

  2. The Lego Story: Remolding Education Policy and Practice

    ERIC Educational Resources Information Center

    Pirrie, Anne

    2017-01-01

    The aim of this article is to develop a more nuanced understanding of the complex nature of learning as it relates to both the educational and social aims of education as manifested in contemporary European education policy. The article explores tensions in education policy and practice by exploring the evolution of the global brand Lego. The…

  3. KSC-2011-7889

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – Families visiting the Kennedy Space Center Visitor Complex in Florida participate in a LEGO "Build the Future" event. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett

  4. The parametric resonance—from LEGO Mindstorms to cold atoms

    NASA Astrophysics Data System (ADS)

    Kawalec, Tomasz; Sierant, Aleksandra

    2017-07-01

    We show an experimental setup based on a popular LEGO Mindstorms set, allowing us to both observe and investigate the parametric resonance phenomenon. The presented method is simple but covers a variety of student activities like embedded software development, conducting measurements, data collection and analysis. It may be used during science shows, as part of student projects and to illustrate the parametric resonance in mechanics or even quantum physics, during lectures or classes. The parametrically driven LEGO pendulum gains energy in a spectacular way, increasing its amplitude from 10° to about 100° within a few tens of seconds. We provide also a short description of a wireless absolute orientation sensor that may be used in quantitative analysis of driven or free pendulum movement.

  5. Lego bricks and the octet rule: Molecular models for biochemical pathways with plastic, interlocking toy bricks.

    PubMed

    Lin, Henry J; Lehoang, Jennifer; Kwan, Isabel; Baghaee, Anita; Prasad, Priya; Ha-Chen, Stephanie J; Moss, Tanesha; Woods, Jeremy D

    2018-01-01

    The 8 studs on a 2 × 4 Lego brick conveniently represent the outer shell of electrons for carbon, nitrogen, and oxygen atoms. We used Lego bricks to model these atoms, which are then joined together to form molecules by following the Lewis octet rule. A variety of small biological molecules can be modeled in this way, such as most amino acids, fatty acids, glucose, and various intermediate metabolites. Model building with these familiar toys can be a helpful, hands-on exercise for learning-or re-learning-biochemical pathways. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):54-57, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  6. Single molecule magnets from magnetic building blocks

    NASA Astrophysics Data System (ADS)

    Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.

    2013-03-01

    We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.

  7. LEGO bricks used as chemotactic chambers: evaluation by a computer-assisted image analysis technique.

    PubMed

    Azzarà, A; Chimenti, M

    2004-01-01

    One of the main techniques used to explore neutrophil motility, employs micropore filters in chemotactic chambers. Many new models have been proposed, in order to perform multiple microassays in a rapid, inexpensive and reproducible way. In this work, LEGO bricks have been used as chemotactic chambers in the evaluation of neutrophil random motility and chemotaxis and compared with conventional Boyden chambers in a "time-response" experiment. Neutrophil motility throughout the filters was evaluated by means of an image-processing workstation, in which a dedicated algorithm recognizes and counts the cells in several fields and focal planes throughout the whole filter; correlates counts and depth values; performs a statistical analysis of data; calculates the true value of neutrophil migration; determines the distribution of cells; and displays the migration pattern. By this method, we found that the distances travelled by the cells in conventional chambers and in LEGO bricks were perfectly identical, both in random migration and under chemotactic conditions. Moreover, no interference with the physiological behaviour of neutrophils was detectable. In fact, the kinetics of migration was identical both in random migration (characterized by a gaussian pattern) and in chemotaxis (characterized by a typical stimulation peak, previously identified by our workstation). In conclusion, LEGO bricks are extremely precise devices. They are simple to use and allow the use of small amounts of chemoattractant solution and cell suspension, supplying by itself a triplicate test. LEGO bricks are inexpensive, fast and suitable for current diagnostic activity or for research investigations in every laboratory.

  8. Still in the LEGO (LEGOS) Room: Female Teachers Designing Curriculum around Girls' Popular Culture for the Coeducational Classroom in Australia

    ERIC Educational Resources Information Center

    McKnight, Lucinda

    2015-01-01

    While the issue of boys' dominance of the curriculum has a long history, the article examines this phenomenon in a contemporary context, through an empirical study with female teachers designing English curriculum around girls' media in a coeducational secondary school in Victoria, Australia. In this space, teachers, and the researcher, produce…

  9. A LEGO Mindstorms NXT Approach for Teaching at Data Acquisition, Control Systems Engineering and Real-Time Systems Undergraduate Courses

    ERIC Educational Resources Information Center

    Cruz-Martin, A.; Fernandez-Madrigal, J. A.; Galindo, C.; Gonzalez-Jimenez, J.; Stockmans-Daou, C.; Blanco-Claraco, J. L.

    2012-01-01

    LEGO Mindstorms NXT robots are being increasingly used in undergraduate courses, mostly in robotics-related subjects. But other engineering topics, like the ones found in data acquisition, control and real-time subjects, also have difficult concepts that can be well understood only with good lab exercises. Such exercises require physical…

  10. Organizational System for the LEGO WeDo 2.0 Robotics System

    ERIC Educational Resources Information Center

    Dolecheck, Suzann Hagan; Ewers, Timothy

    2017-01-01

    In this article, we explain an organizational system for the new LEGO Education WeDo 2.0 Core Set used in 4-H robotics; in school enrichment, afterschool, and other youth robotics programs; and by hobbyists. The system presented is for organizing WeDo parts into a translucent parts tray that includes part names and numbers. The article provides…

  11. Comparison of the LEGO Mindstorms NXT and EV3 Robotics Education Platforms

    ERIC Educational Resources Information Center

    Sherrard, Ann; Rhodes, Amy

    2014-01-01

    The release of the latest LEGO Mindstorms EV3 robotics platform in September 2013 has provided a dilemma for many youth robotics leaders. There is a need to understand the differences in the Mindstorms NXT and EV3 in order to make future robotics purchases. In this article the differences are identified regarding software, hardware, sensors, the…

  12. The Effect on Pupils' Science Performance and Problem-Solving Ability through Lego: An Engineering Design-Based Modeling Approach

    ERIC Educational Resources Information Center

    Li, Yanyan; Huang, Zhinan; Jiang, Menglu; Chang, Ting-Wen

    2016-01-01

    Incorporating scientific fundamentals via engineering through a design-based methodology has proven to be highly effective for STEM education. Engineering design can be instantiated for learning as they involve mental and physical stimulation and develop practical skills especially in solving problems. Lego bricks, as a set of toys based on design…

  13. The Effects of Integrating LEGO Robotics into a Mathematics Curriculum to Promote the Development of Proportional Reasoning

    ERIC Educational Resources Information Center

    Casler-Failing, Shelli L.

    2017-01-01

    This mixed methods, action research case study sought to investigate the effects of incorporating LEGO robotics into a seventh grade mathematics curriculum focused on the development of proportional reasoning through the lens of Social Constructivist Theory. Quantitative data was collected via pre- and post-tests from the mathematics class of six…

  14. Improving the Teaching of Discrete-Event Control Systems Using a LEGO Manufacturing Prototype

    ERIC Educational Resources Information Center

    Sanchez, A.; Bucio, J.

    2012-01-01

    This paper discusses the usefulness of employing LEGO as a teaching-learning aid in a post-graduate-level first course on the control of discrete-event systems (DESs). The final assignment of the course is presented, which asks students to design and implement a modular hierarchical discrete-event supervisor for the coordination layer of a…

  15. Wave scattering from random sets of closely spaced objects through linear embedding via Green's operators

    NASA Astrophysics Data System (ADS)

    Lancellotti, V.; de Hon, B. P.; Tijhuis, A. G.

    2011-08-01

    In this paper we present the application of linear embedding via Green's operators (LEGO) to the solution of the electromagnetic scattering from clusters of arbitrary (both conducting and penetrable) bodies randomly placed in a homogeneous background medium. In the LEGO method the objects are enclosed within simple-shaped bricks described in turn via scattering operators of equivalent surface current densities. Such operators have to be computed only once for a given frequency, and hence they can be re-used to perform the study of many distributions comprising the same objects located in different positions. The surface integral equations of LEGO are solved via the Moments Method combined with Adaptive Cross Approximation (to save memory) and Arnoldi basis functions (to compress the system). By means of purposefully selected numerical experiments we discuss the time requirements with respect to the geometry of a given distribution. Besides, we derive an approximate relationship between the (near-field) accuracy of the computed solution and the number of Arnoldi basis functions used to obtain it. This result endows LEGO with a handy practical criterion for both estimating the error and keeping it in check.

  16. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis.

    PubMed

    Weber, Kristoffer; Bartsch, Udo; Stocking, Carol; Fehse, Boris

    2008-04-01

    Functional gene analysis requires the possibility of overexpression, as well as downregulation of one, or ideally several, potentially interacting genes. Lentiviral vectors are well suited for this purpose as they ensure stable expression of complementary DNAs (cDNAs), as well as short-hairpin RNAs (shRNAs), and can efficiently transduce a wide spectrum of cell targets when packaged within the coat proteins of other viruses. Here we introduce a multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors designed according to the "building blocks" principle. Using a wide spectrum of different fluorescent markers, including drug-selectable enhanced green fluorescent protein (eGFP)- and dTomato-blasticidin-S resistance fusion proteins, LeGO vectors allow simultaneous analysis of multiple genes and shRNAs of interest within single, easily identifiable cells. Furthermore, each functional module is flanked by unique cloning sites, ensuring flexibility and individual optimization. The efficacy of these vectors for analyzing multiple genes in a single cell was demonstrated in several different cell types, including hematopoietic, endothelial, and neural stem and progenitor cells, as well as hepatocytes. LeGO vectors thus represent a valuable tool for investigating gene networks using conditional ectopic expression and knock-down approaches simultaneously.

  17. The basic features of a closed fuel cycle without fast reactors

    NASA Astrophysics Data System (ADS)

    Bobrov, E. A.; Alekseev, P. N.; Teplov, P. S.

    2017-01-01

    In this paper the basic features of a closed fuel cycle with thermal reactors are considered. The three variants of multiple Pu and U recycling in VVER reactors was investigated. The comparison of MOX and REMIX fuel approaches for closed fuel cycle with thermal reactors is presented. All variants make possible to recycle several times the total amount of Pu and U obtained from spent fuel. The reported study was funded by RFBR according to the research project № 16-38-00021

  18. KSC-2011-7888

    NASA Image and Video Library

    2011-11-23

    CAPE CANAVERAL, Fla. – Parents and children of all ages participate in a LEGO "Build the Future" event at the Kennedy Space Center Visitor Complex in Florida. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett

  19. Examining Students' Proportional Reasoning Strategy Levels as Evidence of the Impact of an Integrated LEGO Robotics and Mathematics Learning Experience

    ERIC Educational Resources Information Center

    Martínez Ortiz, Araceli

    2015-01-01

    The presented study used a problem-solving experience in engineering design with LEGO robotics materials as the real-world mathematics-learning context. The goals of the study were (a) to determine if a short but intensive extracurricular learning experience would lead to significant student learning of a particular academic topic and (b) to…

  20. The Effect of LEGO Training on Pupils' School Performance in Mathematics, Problem Solving Ability and Attitude: Swedish Data

    ERIC Educational Resources Information Center

    Hussain, Shakir; Lindh, Jorgen; Shukur, Ghazi

    2006-01-01

    The purpose of this study is to investigate the effect of one year of regular "LEGO" training on pupils' performances in schools. The underlying pedagogical perspective is the constructivist theory, where the main idea is that knowledge is constructed in the mind of the pupil by active learning. The investigation has been made in two…

  1. Investigating the Impact of a LEGO(TM)-Based, Engineering-Oriented Curriculum Compared to an Inquiry-Based Curriculum on Fifth Graders' Content Learning of Simple Machines

    ERIC Educational Resources Information Center

    Marulcu, Ismail

    2010-01-01

    This mixed method study examined the impact of a LEGO-based, engineering-oriented curriculum compared to an inquiry-based curriculum on fifth graders' content learning of simple machines. This study takes a social constructivist theoretical stance that science learning involves learning scientific concepts and their relations to each other. From…

  2. Statistics of Shared Components in Complex Component Systems

    NASA Astrophysics Data System (ADS)

    Mazzolini, Andrea; Gherardi, Marco; Caselle, Michele; Cosentino Lagomarsino, Marco; Osella, Matteo

    2018-04-01

    Many complex systems are modular. Such systems can be represented as "component systems," i.e., sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set reflect a target architecture, which can be built following a set-specific list of instructions. In other component systems, instead, the underlying functional design and constraints are not obvious a priori, and their detection is often a challenge of both scientific and practical importance, requiring a clear understanding of component statistics. Importantly, some quantitative invariants appear to be common to many component systems, most notably a common broad distribution of component abundances, which often resembles the well-known Zipf's law. Such "laws" affect in a general and nontrivial way the component statistics, potentially hindering the identification of system-specific functional constraints or generative processes. Here, we specifically focus on the statistics of shared components, i.e., the distribution of the number of components shared by different system realizations, such as the common bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider a simple null model, which builds system realizations by random draws from a universe of possible components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this simple null model can positively explain important features of empirical component-occurrence distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters. Specific architectural features and functional constraints can be detected from occurrence patterns as deviations from these null predictions, as we show for the illustrative case of the "core" genome in bacteria.

  3. FIRST LEGO League Kickoff

    NASA Technical Reports Server (NTRS)

    2006-01-01

    FIRST LEGO League participants listen to Aerospace Education Specialist Chris Copelan explain the playing field for 'Nano Quest' during a recent FLL kickoff event at StenniSphere, the visitor center at NASA Stennis Space Center. The kickoff began the 2006 FLL competition season. Eighty-five teachers, mentors, parents and 9- to 14-year-old students from southern and central Mississippi came to SSC to hear the rules for Nano Quest. The challenge requires teams to spend eight weeks building and programming robots from LEGO Mindstorms kits. They'll battle their creations in local and regional competitions. The Dec. 2 competition at Mississippi Gulf Coast Community College will involve about 200 students. FIRST LEGO League, considered the 'little league' of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, partners FIRST and the LEGO Group. Competitions aim to inspire and celebrate science and technology using real-world context and hands-on experimentation, and to promote the principles of team play and gracious professionalism. Because NASA advocates robotics and science-technology education, the agency and SSC support FIRST by providing team coaches, mentors and training, as well as competition event judges, referees, audio-visual and other volunteer staff personnel. Two of Mississippi's NASA Explorer Schools, Bay-Waveland Middle and Hattiesburg's Lillie Burney Elementary, were in attendance. The following schools were also represented: Ocean Springs Middle, Pearl Upper Elementary, Long Beach Middle, Jackson Preparatory Academy, North Woolmarket Middle, D'Iberville Middle, West Wortham Middle, Picayune's Roseland Park Baptist Academy and Nicholson Elementary, as well as two home-school groups from McComb and Brandon. Gulfport and Picayune Memorial-Pearl River high schools' FIRST Robotics teams conducted robotics demonstrations for the FLL crowd.

  4. FIRST LEGO League Kickoff

    NASA Image and Video Library

    2006-09-23

    FIRST LEGO League participants listen to Aerospace Education Specialist Chris Copelan explain the playing field for 'Nano Quest' during a recent FLL kickoff event at StenniSphere, the visitor center at NASA Stennis Space Center. The kickoff began the 2006 FLL competition season. Eighty-five teachers, mentors, parents and 9- to 14-year-old students from southern and central Mississippi came to SSC to hear the rules for Nano Quest. The challenge requires teams to spend eight weeks building and programming robots from LEGO Mindstorms kits. They'll battle their creations in local and regional competitions. The Dec. 2 competition at Mississippi Gulf Coast Community College will involve about 200 students. FIRST LEGO League, considered the 'little league' of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, partners FIRST and the LEGO Group. Competitions aim to inspire and celebrate science and technology using real-world context and hands-on experimentation, and to promote the principles of team play and gracious professionalism. Because NASA advocates robotics and science-technology education, the agency and SSC support FIRST by providing team coaches, mentors and training, as well as competition event judges, referees, audio-visual and other volunteer staff personnel. Two of Mississippi's NASA Explorer Schools, Bay-Waveland Middle and Hattiesburg's Lillie Burney Elementary, were in attendance. The following schools were also represented: Ocean Springs Middle, Pearl Upper Elementary, Long Beach Middle, Jackson Preparatory Academy, North Woolmarket Middle, D'Iberville Middle, West Wortham Middle, Picayune's Roseland Park Baptist Academy and Nicholson Elementary, as well as two home-school groups from McComb and Brandon. Gulfport and Picayune Memorial-Pearl River high schools' FIRST Robotics teams conducted robotics demonstrations for the FLL crowd.

  5. The Effect of Scratch- and Lego Mindstorms Ev3-Based Programming Activities on Academic Achievement, Problem-Solving Skills and Logical-Mathematical Thinking Skills of Students

    ERIC Educational Resources Information Center

    Korkmaz, Özgen

    2016-01-01

    The aim of this study was to investigate the effect of the Scratch and Lego Mindstorms Ev3 programming activities on academic achievement with respect to computer programming, and on the problem-solving and logical-mathematical thinking skills of students. This study was a semi-experimental, pretest-posttest study with two experimental groups and…

  6. High School Students' Views on the PBL Activities Supported via Flipped Classroom and LEGO Practices

    ERIC Educational Resources Information Center

    Cukurbasi, Baris; Kiyici, Mubin

    2018-01-01

    The purpose of this study was to investigate the high school students' views on instructions based on Flipped Classroom Model (FC) and LEGO applications. The case study, which is one of the qualitative research methods, was used within the scope of the study, the duration of which was 7 weeks. In order to choose the research group of the study,…

  7. Consumer mechatronics: a challenging playground for transducing materials and devices

    NASA Astrophysics Data System (ADS)

    Skjolstrup, Carl E.; Vonsild, Asbjorn L.

    2003-03-01

    The authors of this article are characterised by having a background within robotics technology, and have within the last 2-3 years moved into a material & process dominated environment. The authors are among other things responsible within LEGO Company; an internationally known toy developer and producer, for identification, prioritisation and procurement of new technological opportunities within materials, processes and devices providing new functionalities for the LEGO product.

  8. Improving Collaborative Play between Children with Autism Spectrum Disorders and Their Siblings: The Effectiveness of a Robot-Mediated Intervention Based on Lego® Therapy

    ERIC Educational Resources Information Center

    Huskens, Bibi; Palmen, Annemiek; Van der Werff, Marije; Lourens, Tino; Barakova, Emilia

    2015-01-01

    The aim of the study was to investigate the effectiveness of a brief robot-mediated intervention based on Lego® therapy on improving collaborative behaviors (i.e., interaction initiations, responses, and play together) between children with ASD and their siblings during play sessions, in a therapeutic setting. A concurrent multiple baseline design…

  9. Manipulation of gene expression by infrared laser heat shock and its application to the study of tracheal development in Drosophila.

    PubMed

    Miao, Guangxia; Hayashi, Shigeo

    2015-03-01

    Induction of gene expression in a specific cell and a defined time window is desirable to investigate gene function at the cellular level during morphogenesis. To achieve this, we attempted to introduce the infrared laser-evoked gene operator system (IR-LEGO, Kamei et al., 2009) in the Drosophila embryo. In this technique, infrared laser light illumination induces genes to be expressed under the control of heat shock promoters at the single cell level. We applied IR-LEGO to a transgenic fly stock, HS-eGFP, in which the enhanced green fluorescent protein (eGFP) gene is placed under the control of heat shock protein 70 promoter, and showed that eGFP expression can be induced in single cells within 1-2 hr after IR illumination. Furthermore, induction of HS-Branchless transgene encoding the Drosophila fibroblast growth factor (FGF) effectively altered the migration and branching patterns of the tracheal system. Our results indicated that IR-LEGO is a promising choice for the timely control of gene expression in a small group of cells in the Drosophila embryo. By using IR-LEGO, we further demonstrated that the tracheal terminal branching program is sensitive to localized expression of exogenous FGF. © 2014 Wiley Periodicals, Inc.

  10. Triple Helix

    DTIC Science & Technology

    2008-08-01

    and sponsoring FIRST teams at the Junior FIRST Lego League (JFLL) and the FIRST Lego League (FLL) levels in elementary and middle school . As such, the...a Final Technical Report for Year I Grant W911NF-07-1-0663 with the Newport News Public School District for the Menchville High School Robotics Team...August 2008 TRIPL HELIX 0 Menchville High School Newport News, VA 20080829081 w DEFENSE TECHNICAL INFORMATION CENTER bfro do.A icfr tkw, Def&*ue, Cow

  11. The Effect of Lego Mindstorms Ev3 Based Design Activities on Students' Attitudes towards Learning Computer Programming, Self-Efficacy Beliefs and Levels of Academic Achievement

    ERIC Educational Resources Information Center

    Korkmaz, Özgen

    2016-01-01

    The aim of the study was to present the effect of Lego Mindstorms Ev3 based design activities on students' attitudes towards learning computer programming, self-efficacy beliefs and levels of academic achievement. The research is a pretest-posttest with control group semi-experimental study. The study group of the research consisted of 53 students…

  12. KSC-2011-3138

    NASA Image and Video Library

    2011-04-27

    CAPE CANAVERAL, Fla. -- In the Press Site bull pen at NASA's Kennedy Space Center in Florida, NASA's Associate Administrator for Education Leland Melvin talks about the LEGO sets going up to the International Space Station (ISS) aboard space shuttle Endeavour's STS-134 mission. NASA and The LEGO Group will send 23 LEGO sets to the station and some of those sets include a space shuttle, an ISS model, a Global Positioning Satellite and NASA's Hubble Space Telescope. The sets will be used for NASA's Teaching From Space Project, which is part of a three-year Space Act Agreement with the toy maker to spark the interest of children in science, technology, engineering and mathematics (STEM). Liftoff is scheduled for April 29 at 3:47 p.m. EDT. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin

  13. Five Lectures on Nuclear Reactors Presented at Cal Tech

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.

    1956-02-10

    The basic issues involved in the physics and engineering of nuclear reactors are summarized. Topics discussed include theory of reactor design, technical problems in power reactors, physical problems in nuclear power production, and future developments in nuclear power. (C.H.)

  14. Use of LEGO as a therapeutic medium for improving social competence.

    PubMed

    LeGoff, Daniel B

    2004-10-01

    A repeated-measures, waiting list control design was used to assess efficacy of a social skills intervention for autistic spectrum children focused on individual and group LEGO play. The intervention combined aspects of behavior therapy, peer modeling and naturalistic communication strategies. Close interaction and joint attention to task play an important role in both group and individual therapy activities. The goal of treatment was to improve social competence (SC) which was construed as reflecting three components: (1) motivation to initiate social contact with peers; (2) ability to sustain interaction with peers for a period of time: and (3) overcoming autistic symptoms of aloofness and rigidity. Measures for the first two variables were based on observation of subjects in unstructured situations with peers; and the third variable was assessed using a structured rating scale, the SI subscale of the GARS. Results revealed significant improvement on all three measures at both 12 and 24 weeks with no evidence of gains during the waiting list period. No gender differences were found on outcome, and age of clients was not correlated with outcome. LEGO play appears to be a particularly effective medium for social skills intervention, and other researchers and clinicians are encouraged to attempt replication of this work, as well as to explore use of LEGO in other methodologies, or with different clinical populations.

  15. Touch the comet! Testing of the "Rosetta's Comet Touchdown" educational kit in the Széchenyi István High School, Sopron, Hungary.

    NASA Astrophysics Data System (ADS)

    Lang, A.; Wesely, N.; Soós, B.; Sléber, B.; Majnovics, Z.; Ettingshausen, M.; Bodnár, L.; Németh, A.; Roos, M.

    2011-10-01

    In our school works a course in robotics where students build and program robots from a LEGO MINDSTORMS kit. We took part in the Hunveyor- Husar project with a Mars rover based on a rover model kit, of which the operating arms are built out of LEGO and controlled by an MINDSTORMS NXT computer. We presented our rover on the EPSC in Rome last September 2010 We presented our rover on the EPSC in Rome in September 2010. At that same conference the "Rosetta's Comet Touchdown" educational kit was officially presented. We were very interested and in conversation with the people from the project, we agreed that our school in Sopron would also participate in testing the kit. . The kit comes with a set of Interdisciplinary Activity Sheets (IAS, downloadable from Vimeo channel1) and a great feature is that the proposed activities in the IAS cover three areas: science, art/history and engineering. The 31 students from our class divided up in groups and each group chose a different topic: History of comets in Hungarian culture; Designing a T-shirt; Research on comets; Hungary in the Rosetta mission; Animation of Rosetta's orbit in space; building a LEGO MINDSTORM model; a film was made of the activities . In this presentation we report in particular the activities of the LEGO building team.

  16. Designing and implementing nervous system simulations on LEGO robots.

    PubMed

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-05-25

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.(1) The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum.

  17. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  18. Neutron fluxes in test reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youinou, Gilles Jean-Michel

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  19. Modification of earth-satellite orbits using medium-energy pulsed lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, C.R.

    1992-01-01

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coeffici-ents for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science-ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP) (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will bemore » best for all scenarios. In this paper, we will focus on the last two applications.« less

  20. Modification of earth-satellite orbits using medium-energy pulsed lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, C.R.

    1992-10-01

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coeffici-ents for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science-ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP) (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will bemore » best for all scenarios. In this paper, we will focus on the last two applications.« less

  1. Recursive computer architecture for VLSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treleaven, P.C.; Hopkins, R.P.

    1982-01-01

    A general-purpose computer architecture based on the concept of recursion and suitable for VLSI computer systems built from replicated (lego-like) computing elements is presented. The recursive computer architecture is defined by presenting a program organisation, a machine organisation and an experimental machine implementation oriented to VLSI. The experimental implementation is being restricted to simple, identical microcomputers each containing a memory, a processor and a communications capability. This future generation of lego-like computer systems are termed fifth generation computers by the Japanese. 30 references.

  2. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...

  3. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically includes the items within or attached directly to the reactor vessel, the equipment which controls the...

  4. Animal Guts as Ideal Reactors: An Open-Ended Project for a Course in Kinetics and Reactor Design.

    ERIC Educational Resources Information Center

    Carlson, Eric D.; Gast, Alice P.

    1998-01-01

    Presents an open-ended project tailored for a senior kinetics and reactor design course in which basic reactor design equations are used to model the digestive systems of several animals. Describes the assignment as well as the results. (DDR)

  5. Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana.

    PubMed

    Deguchi, Tomonori; Itoh, Mariko; Urawa, Hiroko; Matsumoto, Tomohiro; Nakayama, Sohei; Kawasaki, Takashi; Kitano, Takeshi; Oda, Shoji; Mitani, Hiroshi; Takahashi, Taku; Todo, Takeshi; Sato, Junichi; Okada, Kiyotaka; Hatta, Kohei; Yuba, Shunsuke; Kamei, Yasuhiro

    2009-12-01

    Heat shock promoters are powerful tools for the precise control of exogenous gene induction in living organisms. In addition to the temporal control of gene expression, the analysis of gene function can also require spatial restriction. Recently, we reported a new method for in vivo, single-cell gene induction using an infrared laser-evoked gene operator (IR-LEGO) system in living nematodes (Caenorhabditis elegans). It was demonstrated that infrared (IR) irradiation could induce gene expression in single cells without incurring cellular damage. Here, we report the application of IR-LEGO to the small fish, medaka (Japanese killifish; Oryzias latipes) and zebrafish (Danio rerio), and a higher plant (Arabidopsis thaliana). Using easily observable reporter genes, we successfully induced gene expression in various tissues in these living organisms. IR-LEGO has the potential to be a useful tool in extensive research fields for cell/tissue marking or targeted gene expression in local tissues of small fish and plants.

  6. A LEGO Watt balance: An apparatus to determine a mass based on the new SI

    NASA Astrophysics Data System (ADS)

    Chao, L. S.; Schlamminger, S.; Newell, D. B.; Pratt, J. R.; Seifert, F.; Zhang, X.; Sineriz, G.; Liu, M.; Haddad, D.

    2015-11-01

    A global effort to redefine our International System of Units (SI) is underway, and the change to the new system is expected to occur in 2018. Within the newly redefined SI, the present base units will still exist but be derived from fixed numerical values of seven reference constants. In particular, the unit of mass (the kilogram) will be realized through a fixed value of the Planck constant h. A so-called watt balance, for example, can then be used to realize the kilogram unit of mass within a few parts in 108. Such a balance has been designed and constructed at the National Institute of Standards and Technology. For educational outreach and to demonstrate the principle, we have constructed a LEGO tabletop watt balance capable of measuring a gram-level masses to 1% relative uncertainty. This article presents the design, construction, and performance of the LEGO watt balance and its ability to determine h.

  7. Towards Lego Snapping; Integration of Carbon Nanotubes and Few-Layer Graphene

    NASA Astrophysics Data System (ADS)

    Nasseri, Mohsen; Boland, Mathias; Farrokhi, M. Javad; Strachan, Douglas

    Integration of semiconducting, conducting, and insulating nanomaterials into precisely aligned complicated systems is one of the main challenges to the ultimate size scaling of electronic devices, which is a key goal in nanoscience and nanotechnology. This integration could be made more effective through controlled alignment of the crystallographic lattices of the nanoscale components. Of the vast number of materials of atomically-thin materials, two of the sp2 bonded carbon structures, graphene and carbon nanotubes, are ideal candidates for this type of application since they are built from the same backbone carbon lattice. Here we report carbon nanotube and graphene hybrid nanostructures fabricated through their catalytic synthesis and etching. The growth formations we have investigated through various high-resolution microscopy techniques provide evidence of lego-snapped interfaces between nanotubes and graphene into device-relevant orientations. We will finish with a discussion of the various size and energy regimes relevant to these lego-snapped interfaces and their implications on developing these integrated formations.

  8. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  9. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  10. Designing and Implementing Nervous System Simulations on LEGO Robots

    PubMed Central

    Blustein, Daniel; Rosenthal, Nikolai; Ayers, Joseph

    2013-01-01

    We present a method to use the commercially available LEGO Mindstorms NXT robotics platform to test systems level neuroscience hypotheses. The first step of the method is to develop a nervous system simulation of specific reflexive behaviors of an appropriate model organism; here we use the American Lobster. Exteroceptive reflexes mediated by decussating (crossing) neural connections can explain an animal's taxis towards or away from a stimulus as described by Braitenberg and are particularly well suited for investigation using the NXT platform.1 The nervous system simulation is programmed using LabVIEW software on the LEGO Mindstorms platform. Once the nervous system is tuned properly, behavioral experiments are run on the robot and on the animal under identical environmental conditions. By controlling the sensory milieu experienced by the specimens, differences in behavioral outputs can be observed. These differences may point to specific deficiencies in the nervous system model and serve to inform the iteration of the model for the particular behavior under study. This method allows for the experimental manipulation of electronic nervous systems and serves as a way to explore neuroscience hypotheses specifically regarding the neurophysiological basis of simple innate reflexive behaviors. The LEGO Mindstorms NXT kit provides an affordable and efficient platform on which to test preliminary biomimetic robot control schemes. The approach is also well suited for the high school classroom to serve as the foundation for a hands-on inquiry-based biorobotics curriculum. PMID:23728477

  11. ENEL overall PWR plant models and neutronic integrated computing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedroni, G.; Pollachini, L.; Vimercati, G.

    1987-01-01

    To support the design activity of the Italian nuclear energy program for the construction of pressurized water reactors, the Italian Electricity Board (ENEL) needs to verify the design as a whole (that is, the nuclear steam supply system and balance of plant) both in steady-state operation and in transient. The ENEL has therefore developed two computer models to analyze both operational and incidental transients. The models, named STRIP and SFINCS, perform the analysis of the nuclear as well as the conventional part of the plant (the control system being properly taken into account). The STRIP model has been developed bymore » means of the French (Electricite de France) modular code SICLE, while SFINCS is based on the Italian (ENEL) modular code LEGO. STRIP validation was performed with respect to Fessenheim French power plant experimental data. Two significant transients were chosen: load step and total load rejection. SFINCS validation was performed with respect to Saint-Laurent French power plant experimental data and also by comparing the SFINCS-STRIP responses.« less

  12. Visitors Center activities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Astronaut Katherine Hire and LEGO-Master Model Builders assisted children from Mississippi, Louisiana and Mississippi in the building of a 12-foot tall Space Shuttle made entirely from tiny LEGO bricks at the John C. Stennis Space Center Visitors Center in South Mississippi. The shuttle was part of an exhibit titled ' Travel in Space' World Show which depicts the history of flight and space travel from the Wright brothers to future generations of space vehicles. For more information concerning hours of operation or Visitors Center educational programs, call 1-800-237-1821 in Mississippi and Louisiana or (601) 688-2370.

  13. DIME Students Show Off their Lego(TM) Challenge Creation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two students show the Lego (TM) Challenge device they designed and built to operate in the portable drop tower demonstrator as part of the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  14. Robotics Workshop for High School and College Instructors

    NASA Astrophysics Data System (ADS)

    Holberg, Kathy; Reimers, Peggy

    2010-03-01

    Twenty-first century learners need critical thinking and effective communications skills. Practicing higher level cognitive skills are fun and engaging for students and teachers using LEGO Robotics. Come delve into the latest robotics technology from LEGO Education. Participants will construct and program robots with the new Technic Building System and NXT-G programming software. Attendees will take back instructional strategies and ideas on how to implement robotics into their classroom, school or district. Come, connect, explore, learn, enhance and have fun. Limited to 18 participants - 3 hours - Cost: 2.00

  15. Washington State water quality temperature standards as related to reactor operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballowe, J.W.

    1968-08-14

    The purpose of this report is to provide a basic working tool for determining the relationship between the allowable temperature increase within the Columbia River reach at the Hanford Site and the actual temperature increase as associated with various reactor operating modes. This basic tool can be utilized for day-to-day operating purposes or for the achievement of historical information.

  16. Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors

    PubMed Central

    Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng

    2012-01-01

    This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating conditions; (2) corresponding signal data processing techniques; (3) joint application with other measuring techniques.

  17. Microgravity

    NASA Image and Video Library

    2002-08-07

    Members from all four teams were mixed into pairs to work on a Lego (TM) Challenge device to operate in the portable drop tower demonstrator (background). These two team members are about to try out their LEGO (TM) creation. This was part of the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  18. Introduction to autonomous mobile robotics using Lego Mindstorms NXT

    NASA Astrophysics Data System (ADS)

    Akın, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-12-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the Lego Mindstorms NXT kits are used as the robot platform. The aims, scope and contents of the course are presented, and the design of the laboratory sessions as well as the term projects, which address several core problems of robotics and artificial intelligence simultaneously, are explained in detail.

  19. Personal notes [of D.S. Lewis, 7 September 1956 to 31 December 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.S.

    1956-09-07

    This report is a copy of the personal log of D.S. Lewis of the Irradiation Processing Dept. of Reactor Operations at Hanford and covers the period from 7 September 1956 through 31 December 1959. Data are presented on the following: (1) basic reactor operating data, including daily operating data, outage resumes, injuries and incidents, charging and tube replacement rates, panellit gage (flowmeter) trip failures, and thermocouple failures, and (2) basic reactor information on the water plant, electrical distribution, VSR`s, HCR`s, Ball 3X, Safety circuits, gas system, effluent system, process tube cross-section, and production scheduling.

  20. FIRST LEGO League Kickoff

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Randall Hicks (right), Jacobs Technology's Education Services manager at NASA John C. Stennis Space Center, answers questions about the playing field for FIRST (For Inspiration and Recognition of Science and Technology) LEGO League's 2007 Challenge, `Power Puzzle.' More than 140 teachers, mentors, parents and students from 15 schools attended the Sept. 15 FLL season kickoff at StenniSphere, the visitor center at SSC. The teams from southern and central Mississippi and Mobile, Ala., who came to SSC heard rules for and asked questions about `Power Puzzle,' and saw robot demonstrations by Gulfport and Picayune high schools' past FIRST Robotics competitions. Using LEGO Mindstorms NXT kits, FLL teams of children ages 9-14 will spend the next three months building and programming robots to perform 'Power Puzzle's' challenge tasks, then pit them in competitions. They also will submit a research project about how energy choices impact the environment and the economy. The season will culminate at the Mississippi Championship Tournament on Dec. 8 at the Mississippi Gulf Coast Community College. FLL, considered the `little league' of the FIRST Robotics Competition, partners FIRST and the LEGO Group. Competitions aim to inspire and celebrate science and technology using real-world context and hands-on experimentation. NASA recognizes FIRST activities as an excellent hands-on method to increase student knowledge of science, engineering, technology and mathematics. Schools represented in this year's kickoff were: Madison Avenue Upper Elementary, the Mississippi Band of Choctaw Indians' Conehatta Elementary, Hattiesburg's Lillie Burney Elementary, Pearl Upper Elementary, Long Beach Middle, Oktibehha Elementary, d'Iberville Middle, Saucier's West Wortham Middle, Picayune's Nicholson Elementary and Roseland Park Baptist Church Academy, Bay St. Louis' St. Stanislaus College and Mobile's Davidson High, as well as two home-school groups from the Jackson area.

  1. FIRST LEGO League Kickoff

    NASA Image and Video Library

    2007-09-15

    Randall Hicks (right), Jacobs Technology's Education Services manager at NASA John C. Stennis Space Center, answers questions about the playing field for FIRST (For Inspiration and Recognition of Science and Technology) LEGO League's 2007 Challenge, `Power Puzzle.' More than 140 teachers, mentors, parents and students from 15 schools attended the Sept. 15 FLL season kickoff at StenniSphere, the visitor center at SSC. The teams from southern and central Mississippi and Mobile, Ala., who came to SSC heard rules for and asked questions about `Power Puzzle,' and saw robot demonstrations by Gulfport and Picayune high schools' past FIRST Robotics competitions. Using LEGO Mindstorms NXT kits, FLL teams of children ages 9-14 will spend the next three months building and programming robots to perform 'Power Puzzle's' challenge tasks, then pit them in competitions. They also will submit a research project about how energy choices impact the environment and the economy. The season will culminate at the Mississippi Championship Tournament on Dec. 8 at the Mississippi Gulf Coast Community College. FLL, considered the `little league' of the FIRST Robotics Competition, partners FIRST and the LEGO Group. Competitions aim to inspire and celebrate science and technology using real-world context and hands-on experimentation. NASA recognizes FIRST activities as an excellent hands-on method to increase student knowledge of science, engineering, technology and mathematics. Schools represented in this year's kickoff were: Madison Avenue Upper Elementary, the Mississippi Band of Choctaw Indians' Conehatta Elementary, Hattiesburg's Lillie Burney Elementary, Pearl Upper Elementary, Long Beach Middle, Oktibehha Elementary, d'Iberville Middle, Saucier's West Wortham Middle, Picayune's Nicholson Elementary and Roseland Park Baptist Church Academy, Bay St. Louis' St. Stanislaus College and Mobile's Davidson High, as well as two home-school groups from the Jackson area.

  2. The malleability of spatial ability under treatment of a FIRST LEGO League-based robotics unit

    NASA Astrophysics Data System (ADS)

    Coxon, Steven Vincent

    Spatial ability is important to science, technology, engineering, and math (STEM) success, but spatial talents are rarely developed in schools. Likewise, the gifted may become STEM innovators, but they are rarely provided with pedagogy appropriate to develop their abilities in schools. A stratified random sample of volunteer participants (n=75) ages 9-14 was drawn from 16 public school districts' gifted programs, including as many females (n=28) and children from groups traditionally underrepresented in gifted programs (n=18) as available. Participants were randomly divided into an experimental (n=38) and a control group (n=37) for an intervention study. All participants took the CogAT (form 6) Verbal Battery and the Project TALENT Spatial Ability Assessments. The experimental group participated in a simulation of the FIRST LEGO League (FLL) competition for 20 hours total over five consecutive days. All participants took the spatial measure another time. Experimental males evidenced significant and meaningful gains in measured spatial ability (Cohen's d = 0.87). Females did not evidence significant gains in measured spatial ability. This may be due to sampling error, gender differences in prior experience with LEGO, or differences in facets of spatial ability in the treatment or measurements. Further research studies with larger samples of females, other treatments and measurement tools, and longer treatment periods are recommended. The literature review revealed that FLL is beneficial for STEM engagement in both genders and its use in schools is recommended. The present study provides additional evidence for FLL's usefulness in increasing the number of individuals in the STEM pipeline. Keywords: spatial, gilled, talent, robotics, FIRST LEGO League, science

  3. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  4. Application of a Self-Actuating Shutdown System (SASS) to a Gas-Cooled Fast Reactor (GCFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germer, J.H.; Peterson, L.F.; Kluck, A.L.

    1980-09-01

    The application of a SASS (Self-Actuated Shutdown System) to a GCFR (Gas-Cooled Fast Reactor) is compared with similar systems designed for an LMFBR (Liquid Metal Fast Breeder Reactor). A comparison of three basic SASS concepts is given: hydrostatic holdup, fluidic control, and magnetic holdup.

  5. First Report on Non-Thermal Plasma Reactor Scaling Criteria and Optimization Models

    DTIC Science & Technology

    1998-01-13

    decomposition chemistry of nitric oxide and two representative VOCs, trichloroethylene and carbon tetrachloride, and the connection between the basic plasma ... chemistry , the target species properties, and the reactor operating parameters. System architecture, that is how NTP reactors can be combined or ganged to achieve higher capacity, will also be briefly discussed.

  6. Effect of Reactor Design on the Plasma Treatment of NOx

    DTIC Science & Technology

    1998-10-01

    control parameter is the input energy density. Consequently, different reactor designs should yield basically the same plasma chemistry if the experiments are performed under identical gas composition and temperature conditions.

  7. Solving a meiotic LEGO puzzle: transverse filaments and the assembly of the synaptonemal complex in Caenorhabditis elegans.

    PubMed

    Hawley, R Scott

    2011-10-01

    The structure of the meiosis-specific synaptonemal complex, which is perhaps the central visible characteristic of meiotic prophase, has been a matter of intense interest for decades. Although a general picture of the interactions between the transverse filament proteins that create this structure has emerged from studies in a variety of organisms, a recent analysis of synaptonemal complex structure in Caenorhabditis elegans by Schild-Prüfert et al. (2011) has provided the clearest picture of the structure of the architecture of a synaptonemal complex to date. Although the transverse filaments of the worm synaptonemal complex are assembled differently then those observed in yeast, mammalian, and Drosophila synaptonemal complexes, a comparison of the four assemblies shows that achieving the overall basic structure of the synaptonemal complex is far more crucial than conserving the structures of the individual transverse filaments.

  8. A case of cooperation in the European OR education

    NASA Astrophysics Data System (ADS)

    Miranda, João; Nagy, Mariana

    2011-12-01

    European cooperation is a relevant subject that contributes to building a competitive network of high education institutions. A case of teacher mobility on behalf of the Erasmus programme is presented: it considers some Operations Research topics and the development of the Lego on My Decision module. The module considers eight lecture hours in four sessions: (i) the introductory session, to focus on the basics of computational linear algebra, linear programming, integer programming, with computational support (Excel®); (ii) the interim session, to address modelling subjects in a drop by-session; (iii) the advanced session, on the sequence of (i), to consider uncertainty and also how to use multi-criteria decision-making methods; (iv) the final session, to perform the evaluation of learning outcomes. This cooperation at European level is further exploited, including curricula normalisation and adjustments, cultural exchanges and research lines sharing in the idea of promoting the mobility of students and faculty.

  9. Small Reactor for Deep Space Exploration

    ScienceCinema

    none,

    2018-06-06

    This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

  10. Mechatronics Education: From Paper Design to Product Prototype Using LEGO NXT Parts

    NASA Astrophysics Data System (ADS)

    Lofaro, Daniel M.; Le, Tony Truong Giang; Oh, Paul

    The industrial design cycle starts with design then simulation, prototyping, and testing. When the tests do not match the design requirements the design process is started over again. It is important for students to experience this process before they leave their academic institution. The high cost of the prototype phase, due to CNC/Rapid Prototype machine costs, makes hands on study of this process expensive for students and the academic institutions. This document shows that the commercially available LEGO NXT Robot kit is a viable low cost surrogate to the expensive industrial CNC/Rapid Prototype portion of the industrial design cycle.

  11. KSC-04PD-0497

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. While at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Center Director Jim Kennedy talks to participants in the FIRST LEGO League (FLL). Considered the 'little league' of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.

  12. Automated batch characterization of inkjet-printed elastomer lenses using a LEGO platform.

    PubMed

    Sung, Yu-Lung; Garan, Jacob; Nguyen, Hoang; Hu, Zhenyu; Shih, Wei-Chuan

    2017-09-10

    Small, self-adhesive, inkjet-printed elastomer lenses have enabled smartphone cameras to image and resolve microscopic objects. However, the performance of different lenses within a batch is affected by hard-to-control environmental variables. We present a cost-effective platform to perform automated batch characterization of 300 lens units simultaneously for quality inspection. The system was designed and configured with LEGO bricks, 3D printed parts, and a digital camera. The scheme presented here may become the basis of a high-throughput, in-line inspection tool for quality control purposes and can also be employed for optimization of the manufacturing process.

  13. Students, Public Connect with Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This DVD carries nearly 4 million names collected by NASA in the 'Send Your Name to Mars' project as well as various student activities. At the center of the DVD is a Lego 'astrobot' minifigure that allows children to follow the mission via the astrobot diaries of Biff Starling and Sandy Moondust. Magnets on the outer edge of the DVD will collect dust for student analysis, and children can also decode the hidden message in the black dashes around the edges of the DVD. The DVD was provided and supported by the Planetary Society, the LEGO Company, Visionary Products, Inc., Plasmon OMS and the Danish magnet team.

  14. Improving Collaborative Play Between Children with Autism Spectrum Disorders and Their Siblings: The Effectiveness of a Robot-Mediated Intervention Based on Lego® Therapy.

    PubMed

    Huskens, Bibi; Palmen, Annemiek; Van der Werff, Marije; Lourens, Tino; Barakova, Emilia

    2015-11-01

    The aim of the study was to investigate the effectiveness of a brief robot-mediated intervention based on Lego(®) therapy on improving collaborative behaviors (i.e., interaction initiations, responses, and play together) between children with ASD and their siblings during play sessions, in a therapeutic setting. A concurrent multiple baseline design across three child-sibling pairs was in effect. The robot-intervention resulted in no statistically significant changes in collaborative behaviors of the children with ASD. Despite limited effectiveness of the intervention, this study provides several practical implications and directions for future research.

  15. KSC-04PD-0498

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. While at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Center Director Jim Kennedy talks to participants in the FIRST LEGO League (FLL). Considered the 'little league' of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.

  16. KSC-04PD-0505

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a break at the 2004 Florida Regional FIRST competition, held at the University of Central Florida, Florida Gov. Jeb Bush joins participants in the FIRST LEGO League (FLL). Considered the 'little league' of the FIRST (For Inspiration and Recognition of Science and Technology) Robotics Competition, FLL is the result of a partnership between FIRST and the LEGO Company. FLL extends the FIRST concept of inspiring and celebrating science and technology to children aged 9 through 14, using real-world context and hands-on experimentation. Young participants can build a robot and compete in a friendly, FIRST-style robotics event specially designed for their age group.

  17. A LEGO Mindstorms Brewster angle microscope

    NASA Astrophysics Data System (ADS)

    Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan

    2017-09-01

    A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.

  18. Culture’s building blocks: investigating cultural evolution in a LEGO construction task

    PubMed Central

    McGraw, John J.; Wallot, Sebastian; Mitkidis, Panagiotis; Roepstorff, Andreas

    2014-01-01

    One of the most essential but theoretically vexing issues regarding the notion of culture is that of cultural evolution and transmission: how a group’s accumulated solutions to invariant challenges develop and persevere over time. But at the moment, the notion of applying evolutionary theory to culture remains little more than a suggestive trope. Whereas the modern synthesis of evolutionary theory has provided an encompassing scientific framework for the selection and transmission of biological adaptations, a convincing theory of cultural evolution has yet to emerge. One of the greatest challenges for theorists is identifying the appropriate time scales and units of analysis in order to reduce the intractably large and complex phenomenon of “culture” into its component “building blocks.” In this paper, we present a model for scientifically investigating cultural processes by analyzing the ways people develop conventions in a series of LEGO construction tasks. The data revealed a surprising pattern in the selection of building bricks as well as features of car design across consecutive building sessions. Our findings support a novel methodology for studying the development and transmission of culture through the microcosm of interactive LEGO design and assembly. PMID:25309482

  19. Culture's building blocks: investigating cultural evolution in a LEGO construction task.

    PubMed

    McGraw, John J; Wallot, Sebastian; Mitkidis, Panagiotis; Roepstorff, Andreas

    2014-01-01

    ONE OF THE MOST ESSENTIAL BUT THEORETICALLY VEXING ISSUES REGARDING THE NOTION OF CULTURE IS THAT OF CULTURAL EVOLUTION AND TRANSMISSION: how a group's accumulated solutions to invariant challenges develop and persevere over time. But at the moment, the notion of applying evolutionary theory to culture remains little more than a suggestive trope. Whereas the modern synthesis of evolutionary theory has provided an encompassing scientific framework for the selection and transmission of biological adaptations, a convincing theory of cultural evolution has yet to emerge. One of the greatest challenges for theorists is identifying the appropriate time scales and units of analysis in order to reduce the intractably large and complex phenomenon of "culture" into its component "building blocks." In this paper, we present a model for scientifically investigating cultural processes by analyzing the ways people develop conventions in a series of LEGO construction tasks. The data revealed a surprising pattern in the selection of building bricks as well as features of car design across consecutive building sessions. Our findings support a novel methodology for studying the development and transmission of culture through the microcosm of interactive LEGO design and assembly.

  20. Challenges in Developing XML-Based Learning Repositories

    NASA Astrophysics Data System (ADS)

    Auksztol, Jerzy; Przechlewski, Tomasz

    There is no doubt that modular design has many advantages, including the most important ones: reusability and cost-effectiveness. In an e-leaming community parlance the modules are determined as Learning Objects (LOs) [11]. An increasing amount of learning objects have been created and published online, several standards has been established and multiple repositories developed for them. For example Cisco Systems, Inc., "recognizes a need to move from creating and delivering large inflexible training courses, to database-driven objects that can be reused, searched, and modified independent of their delivery media" [6]. The learning object paradigm of education resources authoring is promoted mainly to reduce the cost of the content development and to increase its quality. A frequently used metaphor of Learning Objects paradigm compares them to Lego Logs or objects in Object-Oriented program design [25]. However a metaphor is only an abstract idea, which should be turned to something more concrete to be usable. The problem is that many papers on LOs end up solely in metaphors. In our opinion Lego or OO metaphors are gross oversimplificatation of the problem as there is much easier to develop Lego set or design objects in OO program than develop truly interoperable, context-free learning content1.

  1. Thermionic reactor power conditioner design for nuclear electric propulsion.

    NASA Technical Reports Server (NTRS)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  2. Production of edible carbohydrates from formaldehyde in a spacecraft. pH variations in the calcium hydroxide catalyzed formose reaction. Final Report, 1 Jul. 1973 - 30 Jun. 1974. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.; Kohler, J. T.; John, T.

    1974-01-01

    The study of the calcium hydroxide catalyzed condensation of formaldehyde was extended to a batch reactor system. Decreases in pH were observed, often in the acid regime, when using this basic catalyst. This observation was shown to be similar to results obtained by others using less basic catalysts in the batch mode. The relative rates of these reactions are different in a batch reactor than in a continuous stirred tank reactor. This difference in relative rates is due to the fact that at any degree of advancement in the batch system, the products have a history of previous products, pH, and dissolved catalyst. The relative rate differences can be expected to yield a different nature of product sugars for the two types of reactors.

  3. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    NASA Astrophysics Data System (ADS)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  4. Determining suitable lego-structures to estimate stability of larger peptide nanostructures using computational methods.

    PubMed

    Beke, Tamás; Czajlik, András; Csizmadia, Imre G; Perczel, András

    2006-02-02

    Nanofibers, nanofilms and nanotubes constructed of one to four strands of oligo-alpha- and oligo-beta-peptides were obtained by using carefully selected building units. Lego-type approaches based on thermoneutral isodesmic reactions can be used to reconstruct the total energies of both linear and tubular periodic nanostructures with acceptable accuracy. Total energies of several different nanostructures were accurately determined with errors typically falling in the subchemical range. Thus, attention will be focused on the description of suitable isodesmic reactions that have enabled the determination of the total energy of polypeptides and therefore offer a very fast, efficient and accurate method to obtain energetic information on large and even very large nanosystems.

  5. LEGO Mindstorms NXT for elderly and visually impaired people in need: A platform.

    PubMed

    Al-Halhouli, Ala'aldeen; Qitouqa, Hala; Malkosh, Nancy; Shubbak, Alaa; Al-Gharabli, Samer; Hamad, Eyad

    2016-07-27

    This paper presents the employment of LEGO Mindstorms NXT robotics as core component of low cost multidisciplinary platform for assisting elderly and visually impaired people. LEGO Mindstorms system offers a plug-and-play programmable robotics toolkit, incorporating construction guides, microcontrollers and sensors, all connected via a comprehensive programming language. It facilitates, without special training and at low cost, the use of such device for interpersonal communication and for handling multiple tasks required for elderly and visually impaired people in-need. The research project provides a model for larger-scale implementation, tackling the issues of creating additional functions in order to assist people in-need. The new functions were built and programmed using MATLAB through a user friendly Graphical User Interface (GUI). Power consumption problem, besides the integration of WiFi connection has been resolved, incorporating GPS application on smart phones enhanced the guiding and tracking functions. We believe that developing and expanding the system to encompass a range of applications beyond the initial design schematics to ease conducting a limited number of pre-described protocols. However, the beneficiaries for the proposed research would be limited to elderly people who require assistance within their household as assistive-robot to facilitate a low-cost solution for a highly demanding health circumstance.

  6. Using Lego robots to estimate cognitive ability in children who have severe physical disabilities.

    PubMed

    Cook, Albert M; Adams, Kim; Volden, Joanne; Harbottle, Norma; Harbottle, Cheryl

    2011-01-01

    To determine whether low-cost robots provide a means by which children with severe disabilities can demonstrate understanding of cognitive concepts. Ten children, ages 4 to 10, diagnosed with cerebral palsy and related motor conditions, participated. Participants had widely variable motor, cognitive and receptive language skills, but all were non-speaking. A Lego Invention 'roverbot' was used to carry out a range of functional tasks from single-switch replay of pre-stored movements to total control of the movement in two dimensions. The level of sophistication achieved on hierarchically arranged play tasks was used to estimate cognitive skills. The 10 children performed at one of the six hierarchically arranged levels from 'no interaction' through 'simple cause and effect' to 'development and execution of a plan'. Teacher interviews revealed that children were interested in the robot, enjoyed interacting with it and demonstrated changes in behaviour and social and language skills following interaction. Children with severe physical disabilities can control a Lego robot to perform un-structured play tasks. In some cases, they were able to display more sophisticated cognitive skills through manipulating the robot than in traditional standardised tests. Success with the robot could be a proxy measure for children who have cognitive abilities but cannot demonstrate them in standard testing.

  7. Protein Assembly and Building Blocks: Beyond the Limits of the LEGO Brick Metaphor.

    PubMed

    Levy, Yaakov

    2017-09-26

    Proteins, like other biomolecules, have a modular and hierarchical structure. Various building blocks are used to construct proteins of high structural complexity and diverse functionality. In multidomain proteins, for example, domains are fused to each other in different combinations to achieve different functions. Although the LEGO brick metaphor is justified as a means of simplifying the complexity of three-dimensional protein structures, several fundamental properties (such as allostery or the induced-fit mechanism) make deviation from it necessary to respect the plasticity, softness, and cross-talk that are essential to protein function. In this work, we illustrate recently reported protein behavior in multidomain proteins that deviates from the LEGO brick analogy. While earlier studies showed that a protein domain is often unaffected by being fused to another domain or becomes more stable following the formation of a new interface between the tethered domains, destabilization due to tethering has been reported for several systems. We illustrate that tethering may sometimes result in a multidomain protein behaving as "less than the sum of its parts". We survey these cases for which structure additivity does not guarantee thermodynamic additivity. Protein destabilization due to fusion to other domains may be linked in some cases to biological function and should be taken into account when designing large assemblies.

  8. Optical Analogies for Teaching Physics of X-rays and CAT Scans*

    NASA Astrophysics Data System (ADS)

    Kalita, Spartak; Zollman, D. A.

    2006-12-01

    Our Modern Miracle Medical Machines project is devoted to improving motivation and performance of pre-med students in their undergraduate Physics classes. Under its framework we designed some non-traditional hands-on lab activities involving optical analogies to teach the application of contemporary physics to medical imaging. On the basis of our previous research (primarily clinical interviews with the target student population) we created activities using semi-transparent Lego blocks as analogs for understanding the image reconstruction process in computerized axial tomography (CAT or CT). Teaching interviews have been conducted with pre-med and other health-related majors using these materials. Students had to determine the shape of an object constructed of Lego blocks and hidden within a closed box. This arrangement imitated an unknown entity within a part of the human body. Using LEDs (light-emitting diodes) and a photo detector the students attempted to learn the contents of the box. They also had access to another similar Lego arrangement which they were free to open. Interviewees successfully transferred knowledge from their science and math classes (as well as from other sources) while completing activities and expressed great interest in this endeavor. Improvements to the activities have been based on the students’ feedback. *Supported by the National Science Foundation under grant 04-2675

  9. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    NASA Astrophysics Data System (ADS)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three notions of the integrated learning are important for understanding what the students learned from their project work. By considering these notions together, and by deliberating about their interrelations, we take a step towards understanding the integrated learning.

  10. Performing mathematics activities with non-standard units of measurement using robots controlled via speech-generating devices: three case studies.

    PubMed

    Adams, Kim D; Cook, Albert M

    2017-07-01

    Purpose To examine how using a Lego robot controlled via a speech-generating device (SGD) can contribute to how students with physical and communication impairments perform hands-on and communicative mathematics measurement activities. This study was a follow-up to a previous study. Method Three students with cerebral palsy used the robot to measure objects using non-standard units, such as straws, and then compared and ordered the objects using the resulting measurement. Their performance was assessed, and the manipulation and communication events were observed. Teachers and education assistants were interviewed regarding robot use. Results Similar benefits to the previous study were found in this study. Gaps in student procedural knowledge were identified such as knowing to place measurement units tip-to-tip, and students' reporting revealed gaps in conceptual understanding. However, performance improved with repeated practice. Stakeholders identified that some robot tasks took too long or were too difficult to perform. Conclusions Having access to both their SGD and a robot gave the students multiple ways to show their understanding of the measurement concepts. Though they could participate actively in the new mathematics activities, robot use is most appropriate in short tasks requiring reasonable operational skill. Implications for Rehabilitation Lego robots controlled via speech-generating devices (SGDs) can help students to engage in the mathematics pedagogy of performing hands-on activities while communicating about concepts. Students can "show what they know" using the Lego robots, and report and reflect on concepts using the SGD. Level 1 and Level 2 mathematics measurement activities have been adapted to be accomplished by the Lego robot. Other activities can likely be accomplished with similar robot adaptations (e.g., gripper, pen). It is not recommended to use the robot to measure items that are long, or perform measurements that require high operational competence in order to be successful.

  11. Liquid phase methanol reactor staging process for the production of methanol

    DOEpatents

    Bonnell, Leo W.; Perka, Alan T.; Roberts, George W.

    1988-01-01

    The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

  12. Sensitivity Analysis of Algan/GAN High Electron Mobility Transistors to Process Variation

    DTIC Science & Technology

    2008-02-01

    delivery system gas panel including both hydride and alkyl delivery modules and the vent/valve configurations [14...Reactor Gas Delivery Systems A basic schematic diagram of an MOCVD reactor delivery gas panel is shown in Figure 13. The reactor gas delivery...system, or gas panel , consists of a network of stainless steel tubing, automatic valves and electronic mass flow controllers (MFC). There are separate

  13. COST FUNCTION STUDIES FOR POWER REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heestand, J.; Wos, L.T.

    1961-11-01

    A function to evaluate the cost of electricity produced by a nuclear power reactor was developed. The basic equation, revenue = capital charges + profit + operating expenses, was expanded in terms of various cost parameters to enable analysis of multiregion nuclear reactors with uranium and/or plutonium for fuel. A corresponding IBM 704 computer program, which will compute either the price of electricity or the value of plutonium, is presented in detail. (auth)

  14. Public Library YA Program Roundup. VOYA's Most Valuable Program 2002: Munching on Books; Really Getting Graphic: A Teen Read Week Art Show Preview; Masquerades and Millionaires: An After-hours Teen Extravaganza; Teen Time Travelers Make Listening a "Hobbit"; Teens Take a Humongous Bite Out of Newly Seasoned Reading Program; Putting a Stake through Valentine's Day; Celebrating the Day of the Dead; Legos in the Library Window; "So that You May Know": Teen Rading Group Meets Holocaust Survivors.

    ERIC Educational Resources Information Center

    Falck, Kara; Kan, Kat; Fletcher-Spear, Kristin; Solomon, Beth B.; Dunford, Karen; Rinella, Kay Walsh; Shenoy, Ravi; McIntosh, Jennifer R.; Socha, Debbie; Dudeck, Sharon; Duwel, Lucretia; Stackpole, Diane; Blosveren, Barbara

    2002-01-01

    These nine articles describe public library programs for young adults. Highlights include a read-a-thon with snacks; graphic novels and art; costume party and trivia contest; activities based on "The Hobbit"; a summer reading program that included teen volunteers; writing epitaphs for Day of the Dead celebration; Legos displays; and…

  15. Cavity temperature and flow characteristics in a gas-core test reactor

    NASA Technical Reports Server (NTRS)

    Putre, H. A.

    1973-01-01

    A test reactor concept for conducting basic studies on a fissioning uranium plasma and for testing various gas-core reactor concepts is analyzed. The test reactor consists of a conventional fuel-element region surrounding a 61-cm-(2-ft-) diameter cavity region which contains the plasma experiment. The fuel elements provide the neutron flux for the cavity region. The design operating conditions include 60-MW reactor power, 2.7-MW cavity power, 200-atm cavity pressure, and an average uranium plasma temperature of 15,000 K. The analytical results are given for cavity radiant heat transfer, hydrogen transpiration cooling, and uranium wire or powder injection.

  16. EXPERIMENTAL MOLTEN-SALT-FUELED 30-Mw POWER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, L.G.; Kinyon, B.W.; Lackey, M.E.

    1960-03-24

    A preliminary design study was made of an experimental molten-salt- fueled power reactor. The reactor considered is a single-region homogeneous burner coupled with a Loeffler steam-generating cycle. Conceptual plant layouts, basic information on the major fuel circuit components, a process flowsheet, and the nuclear characteristics of the core are presented. The design plant electrical output is 10 Mw, and the total construction cost is estimated to be approximately ,000,000. (auth)

  17. PhoneSat: Ground Testing of a Phone-Based Prototype Bus

    NASA Technical Reports Server (NTRS)

    Felix, Carmen; Howard, Benjamin; Reyes, Matthew; Snarskiy, Fedor; Hickman, Ryan; Boshuizen, Christopher; Marshall, William

    2010-01-01

    Most of the key capabilities that are requisite of a satellite bus are housed in today's smart phones. PhoneSat refers to an initiative to build a ground-based prototype vehicle that could all the basic functionality of a satellite, including attitude control, using a smart Phone as its central hardware. All components used were also low cost Commercial off the Shelf (COTS). In summer 2009, an initial prototype was created using the LEGO Mindstorm toolkit demonstrating simple attitude control. Here we report on a follow up initiative to design, build and test a vehicle based on the Google s smart phone Nexus One. The report includes results from initial thermal-vacuum chamber tests and low altitude sub-orbital rocket flights which show that, at least for short durations, the Nexus One phone is able to withstand key aspects of the space environment without failure. We compare the sensor data from the Phone's accelerometers and magnetometers with that of an external microelectronic inertial measurement unit.

  18. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  19. On supporting students' understanding of solving linear equation by using flowchart

    NASA Astrophysics Data System (ADS)

    Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi

    2017-05-01

    The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.

  20. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    PubMed

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  1. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    PubMed

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons the Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  2. Equipment for neutron measurements at VR-1 Sparrow training reactor.

    PubMed

    Kolros, Antonin; Huml, Ondrej; Kríz, Martin; Kos, Josef

    2010-01-01

    The VR-1 sparrow reactor is an experimental nuclear facility for training, student education and teaching purposes. The sparrow reactor is an educational platform for the basic experiments at the reactor physic and dosimetry. The aim of this article is to describe the new experimental equipment EMK310 features and possibilities for neutron detection by different gas filled detectors at VR-1 reactor. Among the EMK310 equipment typical attributes belong precise set-up, simple control, resistance to electromagnetic interference, high throughput (counting rate), versatility and remote controllability. The methods for non-linearity correction of pulse neutron detection system and reactimeter application are presented. Copyright 2009. Published by Elsevier Ltd.

  3. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE PAGES

    Tonks, Michael; Andersson, David; Devanathan, Ram; ...

    2018-03-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  4. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, Michael; Andersson, David; Devanathan, Ram

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. Here, this basic understanding of the fission gas behavior mechanisms has the potentialmore » to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  5. Soil bed reactor work of the Environmental Research Lab. of the University of Arizona in support of the research and development of Biosphere 2

    NASA Technical Reports Server (NTRS)

    Frye, Robert

    1990-01-01

    Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water.

  6. Unit mechanisms of fission gas release: Current understanding and future needs

    NASA Astrophysics Data System (ADS)

    Tonks, Michael; Andersson, David; Devanathan, Ram; Dubourg, Roland; El-Azab, Anter; Freyss, Michel; Iglesias, Fernando; Kulacsy, Katalin; Pastore, Giovanni; Phillpot, Simon R.; Welland, Michael

    2018-06-01

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel and gap properties. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are beginning to reveal new understanding of the unit mechanisms that define fission product behavior. Here, existing research on the basic mechanisms of fission gas release during normal reactor operation are summarized and critical areas where work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior and to design fuels with improved performance. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.

  7. Neutron flux and power in RTP core-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabir, Mohamad Hairie, E-mail: m-hairie@nuclearmalaysia.gov.my; Zin, Muhammad Rawi Md; Usang, Mark Dennis

    PUSPATI TRIGA Reactor achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution of TRIGA core. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core withmore » literally no physical approximation. The consistency and accuracy of the developed RTP MCNP model was established by comparing calculations to the available experimental results and TRIGLAV code calculation.« less

  8. A Pile of Legos.

    ERIC Educational Resources Information Center

    DePino, Andrew, Jr.

    1994-01-01

    Describes the relationships a high school built with neighborhood industry, a national laboratory, a national museum, and a large university while trying to build a scale model of the original atomic pile. Provides suggestions for teachers. (MVL)

  9. Manipulating waves with LEGO{sup ®} bricks: A versatile experimental platform for metamaterial architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celli, Paolo, E-mail: pcelli@umn.edu; Gonella, Stefano, E-mail: sgonella@umn.edu

    2015-08-24

    In this letter, we discuss a versatile, fully reconfigurable experimental platform for the investigation of phononic phenomena in metamaterial architectures. The approach revolves around the use of 3D laser vibrometry to reconstruct global and local wavefield features in specimens obtained through simple arrangements of LEGO{sup ®} bricks on a thin baseplate. The agility by which it is possible to reconfigure the brick patterns into a nearly endless spectrum of topologies makes this an effective approach for rapid experimental proof of concept, as well as a powerful didactic tool, in the arena of phononic crystals and metamaterials engineering. We use ourmore » platform to provide a compelling visual illustration of important spatial wave manipulation effects (waveguiding and seismic isolation), and to elucidate fundamental dichotomies between Bragg-based and locally resonant bandgap mechanisms.« less

  10. Energy from the Atom. A Basic Teaching Unit on Energy. Revised.

    ERIC Educational Resources Information Center

    McDermott, Hugh, Ed.; Scharmann, Larry, Ed.

    Recommended for grades 9-12 social studies and/or physical science classes, this 4-8 day unit focuses on four topics: (1) the background and history of atomic development; (2) two common types of nuclear reactors (boiling water and pressurized water reactors); (3) disposal of radioactive waste; and (4) the future of nuclear energy. Each topic…

  11. Small low mass advanced PBR's for propulsion

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Todosow, M.; Ludewig, H.

    1993-10-01

    The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.

  12. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component.

  13. Astro Camp Counselors

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Barbara Marino (left), Stennis Space Center education technology specialist, shows Astro Camp Counselor Beverly Fitzsimmons a LEGO model during a teambuilding exercise May 29 at SSC's North Gate computer lab as a part of the counselors' `new hire' orientation.

  14. Astro Camp Counselors

    NASA Image and Video Library

    2007-06-08

    Barbara Marino (left), Stennis Space Center education technology specialist, shows Astro Camp Counselor Beverly Fitzsimmons a LEGO model during a teambuilding exercise May 29 at SSC's North Gate computer lab as a part of the counselors' `new hire' orientation.

  15. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  16. Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications.

    PubMed

    Gomes, Inês B; Meireles, Ana; Gonçalves, Ana L; Goeres, Darla M; Sjollema, Jelmer; Simões, Lúcia C; Simões, Manuel

    2018-08-01

    Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.

  17. Basic elements of light water reactor fuel rod design. [FUELROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisman, J.; Eckart, R.

    1981-06-01

    Basic design techniques and equations are presented to allow students to understand and perform preliminary fuel design for normal reactor conditions. Each of the important design considerations is presented and discussed in detail. These include the interaction between fuel pellets and cladding and the changes in fuel and cladding that occur during the operating lifetime of the fuel. A simple, student-oriented, fuel rod design computer program, called FUELROD, is described. The FUELROD program models the in-pile pellet cladding interaction and allows a realistic exploration of the effect of various design parameters. By use of FUELROD, the student can gain anmore » appreciation of the fuel rod design process. 34 refs.« less

  18. A summary of sodium-cooled fast reactor development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoto, Kazumi; Dufour, Philippe; Hongyi, Yang

    Much of the basic technology for the Sodium-cooled fast Reactor (SFR) has been established through long term development experience with former fast reactor programs, and is being confirmed by the Phénix end-of-life tests in France, the restart of Monju in Japan, the lifetime extension of BN-600 in Russia, and the startup of the China Experimental Fast Reactor in China. Planned startup in 2014 for new SFRs: BN-800 in Russia and PFBR in India, will further enhance the confirmation of the SFR basic technology. Nowadays, the SFR development has advanced to aiming at establishment of the Generation-IV system which is dedicatedmore » to sustainable energy generation and actinide management, and several advanced SFR concepts are under development such as PRISM, JSFR, ASTRID, PGSFR, BN-1200, and CFR-600. Generation-IV International Forum is an international collaboration framework where various R&D activities are progressing on design of system and component, safety and operation, advanced fuel, and actinide cycle for the Generation-IV SFR development, and will play a beneficial role of promoting them thorough providing an opportunity to share the past experience and the latest data of design and R&D among countries developing SFR.« less

  19. Unit mechanisms of fission gas release: Current understanding and future needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, Michael; Andersson, David; Devanathan, Ram

    Gaseous fission product transport and release has a large impact on fuel performance, degrading fuel properties and, once the gas is released into the gap between the fuel and cladding, lowering gap thermal conductivity and increasing gap pressure. While gaseous fission product behavior has been investigated with bulk reactor experiments and simplified analytical models, recent improvements in experimental and modeling approaches at the atomistic and mesoscales are being applied to provide unprecedented understanding of the unit mechanisms that define the fission product behavior. In this article, existing research on the basic mechanisms behind the various stages of fission gas releasemore » during normal reactor operation are summarized and critical areas where experimental and simulation work is needed are identified. This basic understanding of the fission gas behavior mechanisms has the potential to revolutionize our ability to predict fission product behavior during reactor operation and to design fuels that have improved fission product retention. In addition, this work can serve as a model on how a coupled experimental and modeling approach can be applied to understand the unit mechanisms behind other critical behaviors in reactor materials.« less

  20. Developments in Sensitivity Methodologies and the Validation of Reactor Physics Calculations

    DOE PAGES

    Palmiotti, Giuseppe; Salvatores, Massimo

    2012-01-01

    The sensitivity methodologies have been a remarkable story when adopted in the reactor physics field. Sensitivity coefficients can be used for different objectives like uncertainty estimates, design optimization, determination of target accuracy requirements, adjustment of input parameters, and evaluations of the representativity of an experiment with respect to a reference design configuration. A review of the methods used is provided, and several examples illustrate the success of the methodology in reactor physics. A new application as the improvement of nuclear basic parameters using integral experiments is also described.

  1. ATLAS event display: Virtual Point-1 visualization software

    NASA Astrophysics Data System (ADS)

    Seeley, Kaelyn; Dimond, David; Bianchi, R. M.; Boudreau, Joseph; Hong, Tae Min; Atlas Collaboration

    2017-01-01

    Virtual Point-1 (VP1) is an event display visualization software for the ATLAS Experiment. VP1 is a software framework that makes use of ATHENA, the ATLAS software infrastructure, to access the complete detector geometry. This information is used to draw graphics representing the components of the detector at any scale. Two new features are added to VP1. The first is a traditional ``lego'' plot, displaying the calorimeter energy deposits in eta-phi space. The second is another lego plot focusing on the forward endcap region, displaying the energy deposits in r-phi space. Currently, these new additions display the energy deposits based on the granularity of the middle layer of the liquid-Argon electromagnetic calorimeter. Since VP1 accesses the complete detector geometry and all experimental data, future developments are outlined for a more detailed display involving multiple layers of the calorimeter along with their distinct granularities.

  2. Memory and accurate processing brain rehabilitation for the elderly: LEGO robot and iPad case study.

    PubMed

    Lopez-Samaniego, Leire; Garcia-Zapirain, Begonya; Mendez-Zorrilla, Amaia

    2014-01-01

    This paper presents the results of research that applies cognitive therapies associated with memory and mathematical problem-solving in elderly people. The exercises are programmed in an iPad and can be performed both from the Tablet and in an interactive format with a LEGO robot. The system has been tested with 2 men and 7 women over the age of 65 who have slight physical and cognitive impairment. Evaluation with the SUS resulted in a mean of 48.45 with a standard deviation of 5.82. The score of overall satisfaction was 84.37 with a standard deviation of 18.6. Interaction with the touch screen caused some usability problems due to the elderly people's visual difficulties and clicking accuracy. Future versions will include visualization with more color contrast and less use of the keyboard.

  3. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-09-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area.

  4. Geotechnical engineering in US elementary schools

    NASA Astrophysics Data System (ADS)

    Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan

    2013-06-01

    This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data acquisition, the soil profile and foundations activity employed natural and transparent soils as well as LEGO-based foundation models, and the erosion activity utilised a 3D printer to assist with construction of building models. The activities seek to enhance students' academic achievement, excite them about geotechnical engineering, and motivate them to study science and math. Pre- and post-activity evaluations were conducted to assess both the suitability of the activities and the students' learning. Initial results show that students gain a reasonable understanding of engineering principles. Moreover, the geotechnical engineering activities provided students an opportunity to apply their math skills and science knowledge.

  5. KSC-2011-6228

    NASA Image and Video Library

    2011-08-04

    CAPE CANAVERAL, Fla. -- From left, Dr. Steve Lee, with the Denver Museum of Nature and Science; Ulrik Solberg Lund, a LEGO minifigure designer; and Karsten Juel Bunch, a LEGO City senior designer, participate in an educational webcast in the Mission Status Center at the Kennedy Space Center Visitor Complex in Florida. On hand to ask questions of the guests were students, teachers, and mentors of the Goldstone Apple Valley Radio Telescope (GAVRT) project who were invited to Kennedy to watch the launch of NASA's Juno spacecraft atop a United Launch Alliance Atlas V rocket. GAVRT is a partnership between NASA, the Jet Propulsion Laboratory (JPL), and The Lewis Center for Educational Research (LCER) in Apple Valley, Calif. It allows students to control a 34-meter radio telescope that, until recently, was part of NASA’s Deep Space Network, and to interact with scientists outside the classroom setting. Photo credit: NASA/Glenn Benson

  6. KSC-2011-6229

    NASA Image and Video Library

    2011-08-04

    CAPE CANAVERAL, Fla. -- From left, Dr. Steve Lee, with the Denver Museum of Nature and Science; Ulrik Solberg Lund, a LEGO minifigure designer; and Karsten Juel Bunch, a LEGO City senior designer, participate in an educational webcast in the Mission Status Center at the Kennedy Space Center Visitor Complex in Florida. On hand to ask questions of the guests were students, teachers, and mentors of the Goldstone Apple Valley Radio Telescope (GAVRT) project who were invited to Kennedy to watch the launch of NASA's Juno spacecraft atop a United Launch Alliance Atlas V rocket. GAVRT is a partnership between NASA, the Jet Propulsion Laboratory (JPL), and The Lewis Center for Educational Research (LCER) in Apple Valley, Calif. It allows students to control a 34-meter radio telescope that, until recently, was part of NASA’s Deep Space Network, and to interact with scientists outside the classroom setting. Photo credit: NASA/Glenn Benson

  7. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  8. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less

  9. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  10. Generation III reactors safety requirements and the design solutions

    NASA Astrophysics Data System (ADS)

    Felten, P.

    2009-03-01

    Nuclear energy's public acceptance, and hence its development, depends on its safety. As a reactor designer, we will first briefly remind the basic safety principles of nuclear reactors' design. We will then show how the industry, and in particular Areva with its EPR, made design evolution in the wake of the Three Miles Island accident in 1979. In particular, for this new generation of reactors, severe accidents are taken into account beyond the standard design basis accidents. Today, Areva's EPR meets all so-called "generation III" safety requirements and was licensed by several nuclear safety authorities in the world. Many innovative solutions are integrated in the EPR, some of which will be introduced here.

  11. Adapting a robotics program to enhance participation and interest in STEM among children with disabilities: a pilot study.

    PubMed

    Lindsay, Sally; Hounsell, Kara Grace

    2017-10-01

    Youth with disabilities are under-represented in science, technology, engineering, and math (STEM) in school and in the workforce. One encouraging approach to engage youth's interest in STEM is through robotics; however, such programs are mostly for typically developing youth. The purpose of this study was to understand the development and implementation of an adapted robotics program for children and youth with disabilities and their experiences within it. Our mixed methods pilot study (pre- and post-workshop surveys, observations, and interviews) involved 41 participants including: 18 youth (aged 6-13), 12 parents and 11 key informants. The robotics program involved 6, two-hour workshops held at a paediatric hospital. Our findings showed that several adaptations made to the robotics program helped to enhance the participation of children with disabilities. Adaptations addressed the educational/curriculum, cognitive and learning, physical and social needs of the children. In regards to experiences within the adapted hospital program, our findings highlight that children enjoyed the program and learned about computer programming and building robots. Clinicians and educators should consider engaging youth with disabilities in robotics to enhance learning and interest in STEM. Implications for Rehabilitation Clinicians and educators should consider adapting curriculum content and mode of delivery of LEGO ® robotics programs to include youth with disabilities. Appropriate staffing including clinicians and educators who are knowledgeable about youth with disabilities and LEGO ® robotics are needed. Clinicians should consider engaging youth with disabilities in LEGO ® to enhance learning and interest in STEM.

  12. The Use of Lego Technologies in Elementary Teacher Preparation

    NASA Astrophysics Data System (ADS)

    Hadjiachilleos, Stella; Avraamidou, Lucy; Papastavrou, Stavros

    2013-10-01

    The need to reform science teacher preparation programs has been pointed out in research (Bryan and Abell in J Res Sci Teach 36:121-140, 1999; Bryan and Atwater in Sci Educ 8(6):821-839, 2002; Harrington and Hathaway in J Teach Educ 46(4):275-284, 1995). Science teachers are charged with the responsibility of incorporating both cognitive and non-cognitive parameters in their everyday teaching practices. This often results in their reluctance to teach science because they often lack disciplinary and/or pedagogical expertise required to promote science learning. The purpose of this study is to propose an alternative instructional approach in which Lego vehicles were used as a tool to promote pre-service elementary teachers' development and to examine whether there are non-cognitive parameters that promote or obstruct them from using Lego Technologies as a teaching tool. The context of the study was defined by a teacher preparation program of a private university in a small Mediterranean country. A sample of 28 pre-service elementary teachers, working in five 5-6-member groups were involved in scientific inquiries, during which they had to use vehicles in order to solve scientific problems related to concepts such as gear functioning, force, and motion. The nature of their cognitive engagement in the scientific inquiry process, non-cognitive parameters contributing to their cognitive engagement, and the impact of their involvement in the process on their development were examined through qualitative analysis of pre- and post-inquiry interviews, presentations of their solutions to the scientific problems and of their personal reflective journals.

  13. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    NASA Astrophysics Data System (ADS)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  14. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  15. A Comparison of Photocatalytic Oxidation Reactor Performance for Spacecraft Cabin Trace Contaminant Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.

    2011-01-01

    Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.

  16. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  17. Energy from nuclear fission()

    NASA Astrophysics Data System (ADS)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  18. LEGO robot vehicle lesson plans for secondary education : a recruitment tool.

    DOT National Transportation Integrated Search

    2012-08-01

    Robotics is a great way to get kids excited about science, technology, engineering, and math (STEM) topics. It is also highly effective in stimulation development of teamwork and self-confidence. This project provides transportation-related lesson pl...

  19. The Power of String: Building a Conceptual Foundation for Measuring Rate

    ERIC Educational Resources Information Center

    Lucey, Linda Polhemus; Jennings, Sybillyn; Olson, Peter; Rubenfeld, Lester; Holmes, Aliya E.

    2007-01-01

    This article describes how Lego robotics, interactive multimedia, and a simple manipulative--string--can be offered to students through coordinated activities to help them build a conceptual foundation for measuring rate. (Contains 5 figures and 3 tables.)

  20. Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourisation.

    PubMed

    López, C; Mielgo, I; Moreira, M T; Feijoo, G; Lema, J M

    2002-11-13

    Membrane bioreactors are being increasingly used in enzymatic catalysed transformations. However, the application of enzymatic-based treatment systems in the environmental field is rather unusual. The aim of this paper is to overview the application of enzymatic membrane reactors to wastewater treatment, more specifically to dye decolourisation. Firstly, the basic aspects such as different configurations of enzymatic reactors, advantages and disadvantages associated to their utilisation are revised as well as the application of this technology to wastewater treatment. Secondly, dye decolourisation by white-rot fungi and their oxidative enzymes are discussed, presenting an overall view from for in vivo and in vitro systems. Finally, dye decolourisation by manganese peroxidase in an enzymatic membrane reactor in continuous operation is presented.

  1. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  2. Overview of Fuel Rod Simulator Usage at ORNL

    NASA Astrophysics Data System (ADS)

    Ott, Larry J.; McCulloch, Reg

    2004-02-01

    During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.

  3. Geotechnical Engineering in US Elementary Schools

    ERIC Educational Resources Information Center

    Suescun-Florez, Eduardo; Iskander, Magued; Kapila, Vikram; Cain, Ryan

    2013-01-01

    This paper reports on the results of several geotechnical engineering-related science activities conducted with elementary-school students. Activities presented include soil permeability, contact stress, soil stratigraphy, shallow and deep foundations, and erosion in rivers. The permeability activity employed the LEGO NXT platform for data…

  4. Visitors Center Exhibits

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A child enjoys building his own LEGO model at a play table which was included in the exhibit 'Travel in Space' World Show. The exhibit consisted of 21 displays designed to teach children about flight and space travel from the Wright brothers to future generations of space vehicles.

  5. Using FIRST LEGO League Robotics Competitions to Engage Middle School Students in Physics

    NASA Astrophysics Data System (ADS)

    Rosen, Jeffrey

    2009-11-01

    As the nation and world grapple with looming crises in sectors such as energy, health care and the environment, it is critical that we keep today's youth interested in careers in science, technology, engineering and math (STEM). Studies indicate that many students lose interest in the sciences by ages 10-13, when they are in grades 4-8 in the U.S. educational system. Many of the interventions to counteract this trend focus on boosting interest in STEM in secondary schools and universities. However the case can be made that the greater need is actually earlier in the education of the child. How can we work with this age group in an exciting way that will promote the study of science? Student robotics competitions might be one effective answer. Programs are currently being run around the country and the world that engage young people in the study of science through robotic competition. Many of these programs rely on mentors to guide the students through the process, which in the most effective programs includes the study of physic concepts through engineering design. During this presentation we will discuss the options for participating in programs that help the students and teachers better understand the science, specifically the physics, which underlies robotics. In particular, we will focus on the international program called FIRST LEGO League (FLL), in which students ages 9-14 are challenged every year to construct a LEGO robot that can navigate and complete a course of theme-related missions. The FLL program is currently operating in almost every state in the U.S. and relies on recruiting qualified mentors and judges who want to impact young people's interest in STEM. Physics professionals can make a tremendous difference in the lives of these eager middle school students.

  6. Not Your Typical Simulation Workshop: Using LEGOs to Train Medical Students on the Practice of Effective Communication.

    PubMed

    Papanagnou, Dimitrios; Lee, Hyunjoo; Rodriguez, Carlos; Zhang, Xiao Chi C; Rudner, Joshua

    2018-01-21

    As students in the health professions transition from the classroom into the clinical environment, they will be expected to effectively communicate with their team members and their patients. Effective communication skills are essential to their ability to effectively contribute to their clinical team and the patient care they deliver. The authors propose an interactive workshop that can support students' deliberate practice of communication skills. The authors designed a simulation workshop that affords students the opportunity to practice their communication and peer-to-peer coaching skills. Using LEGOs, a one-hour workshop was conducted with medical students. Students were divided into groups of two. Each student took on a different role: teacher or builder. Teachers were tasked with instructing builders on how to construct a pre-made LEGO structure, not allowing builders to look at the structure. A group debriefing followed to evaluate the activity and explore the themes that emerged. Twenty first-year medical students and 25 fourth-year medical students participated in this activity. Most groups were successful in reproducing the pre-made structure. Groups that pre-briefed before building were most successful. Unsuccessful groups did not define orientation or direction in mutually understood terms, resulting in the creation of an incorrect mirror image of the structure - a common phenomenon seen during the teaching of procedures in the clinical learning environment. The workshop was well received. Students made requests to have similar sessions throughout their training to better support the development of effective communication skills. The workshop can easily be applied to other specialties to assist with procedural skills instruction or in workshops focusing on effective communication.

  7. Not Your Typical Simulation Workshop: Using LEGOs to Train Medical Students on the Practice of Effective Communication

    PubMed Central

    Lee, Hyunjoo; Rodriguez, Carlos; Zhang, Xiao Chi C; Rudner, Joshua

    2018-01-01

    As students in the health professions transition from the classroom into the clinical environment, they will be expected to effectively communicate with their team members and their patients. Effective communication skills are essential to their ability to effectively contribute to their clinical team and the patient care they deliver. The authors propose an interactive workshop that can support students’ deliberate practice of communication skills. The authors designed a simulation workshop that affords students the opportunity to practice their communication and peer-to-peer coaching skills. Using LEGOs, a one-hour workshop was conducted with medical students. Students were divided into groups of two. Each student took on a different role: teacher or builder. Teachers were tasked with instructing builders on how to construct a pre-made LEGO structure, not allowing builders to look at the structure. A group debriefing followed to evaluate the activity and explore the themes that emerged. Twenty first-year medical students and 25 fourth-year medical students participated in this activity. Most groups were successful in reproducing the pre-made structure. Groups that pre-briefed before building were most successful. Unsuccessful groups did not define orientation or direction in mutually understood terms, resulting in the creation of an incorrect mirror image of the structure – a common phenomenon seen during the teaching of procedures in the clinical learning environment. The workshop was well received. Students made requests to have similar sessions throughout their training to better support the development of effective communication skills. The workshop can easily be applied to other specialties to assist with procedural skills instruction or in workshops focusing on effective communication. PMID:29568715

  8. N Reactor Deactivation Program Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less

  9. Accurate evaluation for the biofilm-activated sludge reactor using graphical techniques

    NASA Astrophysics Data System (ADS)

    Fouad, Moharram; Bhargava, Renu

    2018-05-01

    A complete graphical solution is obtained for the completely mixed biofilm-activated sludge reactor (hybrid reactor). The solution consists of a series of curves deduced from the principal equations of the hybrid system after converting them in dimensionless form. The curves estimate the basic parameters of the hybrid system such as suspended biomass concentration, sludge residence time, wasted mass of sludge, and food to biomass ratio. All of these parameters can be expressed as functions of hydraulic retention time, influent substrate concentration, substrate concentration in the bulk, stagnant liquid layer thickness, and the minimum substrate concentration which can maintain the biofilm growth in addition to the basic kinetics of the activated sludge process in which all these variables are expressed in a dimensionless form. Compared to other solutions of such system these curves are simple, easy to use, and provide an accurate tool for analyzing such system based on fundamental principles. Further, these curves may be used as a quick tool to get the effect of variables change on the other parameters and the whole system.

  10. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  11. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki; Miura, Ryosuke

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design.more » The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.« less

  12. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  13. Got LEGO Bricks? Children with Spatial Strengths

    ERIC Educational Resources Information Center

    Mann, Rebecca

    2013-01-01

    Individuals with spatial strengths have preferences for visual ideation, holistic reasoning, and innovation. With the emphasis on verbal skills, American schools rarely provide opportunities for children to excel in these areas. Standardized assessments used to judge achievement do not value reflective thinking and innovation; therefore, students…

  14. Designing using Lego and Uno-Stacko: A Playful Architecture for an Integrated Kindergarten and Elementary School

    NASA Astrophysics Data System (ADS)

    Muthmainnah, K.; Aryanti, T.; Ardiansyah, A.

    2017-03-01

    The integrated kindergarten and elementary school is a public educational facility used for early age and elementary education. Designated for children at 4-12 years of age, the design should meet the standards and requirements, while considering children’s needs in their development phase. This paper discusses the design of an integrated kindergarten and elementary school using the playful theme. Design was explored using LEGO and UNO-STACKO to create spaces that accommodate material exploration for children. The design takes the play concept as a medium of child’s learning in order to improve their ability and awareness of the surrounding environment. The design translates the playful theme into imaginary dimension, constructive-deconstructive shapes, and glide circulations concept. The spatial pattern is applied by considering children’s behavior in the designated ages to trigger their creativity improvement. The design is expected to serve as a model of an integrated kindergarten and elementary school architecture.

  15. Using analogy role-play activity in an undergraduate biology classroom to show central dogma revision.

    PubMed

    Takemura, Masaharu; Kurabayashi, Mario

    2014-01-01

    For the study of biology in an undergraduate classroom, a classroom exercise was developed: an analogy role-play to learn mechanisms of gene transcription and protein translation (central dogma). To develop the central dogma role-play exercise, we made DNA and mRNA using paper sheets, tRNA using a wire dress hanger, and amino acids using Lego® blocks (Lego System A/S, Denmark). Students were studying in the course of mathematics, physics, or chemistry, so biology was not among their usual studies. In this exercise, students perform the central dogma role-play and respectively act out nuclear matrix proteins, a transcription factor, an RNA polymerase II, an mRNA transport protein, nuclear pore proteins, a large ribosomal subunit, a small ribosomal subunit, and several amino-acyl tRNA synthetases. Questionnaire results obtained after the activity show that this central dogma role-play analogy holds student interest in the practical molecular biological processes of transcription and translation. © 2014 The International Union of Biochemistry and Molecular Biology.

  16. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell

    PubMed Central

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-01-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619

  17. Building a Lego wall: Sequential action selection.

    PubMed

    Arnold, Amy; Wing, Alan M; Rotshtein, Pia

    2017-05-01

    The present study draws together two distinct lines of enquiry into the selection and control of sequential action: motor sequence production and action selection in everyday tasks. Participants were asked to build 2 different Lego walls. The walls were designed to have hierarchical structures with shared and dissociated colors and spatial components. Participants built 1 wall at a time, under low and high load cognitive states. Selection times for correctly completed trials were measured using 3-dimensional motion tracking. The paradigm enabled precise measurement of the timing of actions, while using real objects to create an end product. The experiment demonstrated that action selection was slowed at decision boundary points, relative to boundaries where no between-wall decision was required. Decision points also affected selection time prior to the actual selection window. Dual-task conditions increased selection errors. Errors mostly occurred at boundaries between chunks and especially when these required decisions. The data support hierarchical control of sequenced behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. DNA extraction and barcode identification of development stages of forensically important flies in the Czech Republic.

    PubMed

    Olekšáková, Tereza; Žurovcová, Martina; Klimešová, Vanda; Barták, Miroslav; Šuláková, Hana

    2018-04-01

    Several methods of DNA extraction, coupled with 'DNA barcoding' species identification, were compared using specimens from early developmental stages of forensically important flies from the Calliphoridae and Sarcophagidae families. DNA was extracted at three immature stages - eggs, the first instar larvae, and empty pupal cases (puparia) - using four different extraction methods, namely, one simple 'homemade' extraction buffer protocol and three commercial kits. The extraction conditions, including the amount of proteinase K and incubation times, were optimized. The simple extraction buffer method was successful for half of the eggs and for the first instar larval samples. The DNA Lego Kit and DEP-25 DNA Extraction Kit were useful for DNA extractions from the first instar larvae samples, and the DNA Lego Kit was also successful regarding the extraction from eggs. The QIAamp DNA mini kit was the most effective; the extraction was successful with regard to all sample types - eggs, larvae, and pupari.

  19. Carter Revises the Science Budget

    ERIC Educational Resources Information Center

    Science News, 1977

    1977-01-01

    Reviews budget changes made by President Carter in the following science areas: basic science research; fusion research and breeder reactor projects; oil and gas recovery; coal conversion techniques; and space exploration. (CS)

  20. Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine

    NASA Image and Video Library

    1964-05-21

    Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.

  1. Airlift Operation Modeling Using Discrete Event Simulation (DES)

    DTIC Science & Technology

    2009-12-01

    Java ......................................................................................................20 2. Simkit...JRE Java Runtime Environment JVM Java Virtual Machine lbs Pounds LAM Load Allocation Mode LRM Landing Spot Reassignment Mode LEGO Listener Event...SOFTWARE DEVELOPMENT ENVIRONMENT The following are the software tools and development environment used for constructing the models. 1. Java Java

  2. Naval Sea Systems Command > Home

    Science.gov Websites

    Parties Vehicles for Partnering STEM Programs FIRST LEGO League Robotics Program Carderock Math Contest Educational Partnership Agreements Math Clubs Seaplane Challenge Calculator-Controlled Robot Program Students - 'Fun Twist on Math' May 24, 2018 More SOCIAL MEDIA Facebook Logo Join us live as we commission

  3. Digital English: Me, Online, Writing & Academia

    ERIC Educational Resources Information Center

    Rolinska, Ania

    2015-01-01

    This case study reports on the Digital English project, an experimental course in academic writing piloted with international students on a year-long pre-sessional programme. Inspired by Ulmer's (2003) "Mystory" project and Gauntlett's (2007) "Lego" research, the course concerns itself with the students' exploration of self at…

  4. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, a third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, a third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  5. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  6. KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis unveils the names of the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; NASA Administrator Sean O'Keefe; Sofi Collis, a third grade student from Arizona; and Brad Justus, LEGO Co. senior vice president. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

    NASA Image and Video Library

    2003-06-08

    KENNEDY SPACE CENTER, FLA. - Nine-year-old Sofi Collis unveils the names of the Mars Exploration Rovers -- "Spirit" and "Opportunity" -- during a press conference. Participating in the press conference are, from left, Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; NASA Administrator Sean O'Keefe; Sofi Collis, a third grade student from Arizona; and Brad Justus, LEGO Co. senior vice president. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  7. Nuclear Forensics and Radiochemistry: Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  8. Radionuclide Basics: Plutonium

    EPA Pesticide Factsheets

    Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.

  9. PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-04-01

    Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less

  10. Philosophy in the Music Classroom: Poststructuralist Lessons from "The Lego Movie"

    ERIC Educational Resources Information Center

    Richerme, Lauren Kapalka

    2015-01-01

    This article introduces some of the practices in which various poststructuralist authors engage and suggests applications for music education. First, an explanation of how some poststructuralist authors embrace exclusions and how music educators might draw on such thinking and action is offered. Second, the article articulates various…

  11. Designing, Developing, and Implementing a Course on LEGO Robotics for Technology Teacher Education

    ERIC Educational Resources Information Center

    Chambers, Joan M.; Carbonaro, Mike

    2003-01-01

    Within a constructivist philosophy of learning, teachers, as students, are introduced to different perspectives of teaching with robotic technology while immersed in what Papert called a "constructionist" environment. Robotics allows students to creatively explore computer programming, mechanical design and construction, problem solving,…

  12. iSTEM: Learning Mathematics through Minecraft

    ERIC Educational Resources Information Center

    Bos, Beth; Wilder, Lucy; Cook, Marcelina; O'Donnell, Ryan

    2014-01-01

    The Common Core State Standards can be taught with Minecraft, an interactive creative Lego®-like game. Integrating Science, Technology, Engineering, and Mathematics (iSTEM) authors share ideas and activities that stimulate student interest in the integrated fields of science, technology, engineering, and mathematics (STEM) in K-grade 6 classrooms.

  13. Linking LEGO and Algebra

    ERIC Educational Resources Information Center

    Özgün-Koca, S. Asli; Edwards, Thomas G.; Chelst, Kenneth R.

    2015-01-01

    In mathematics, students should represent, model, and work with such real-world situations as those found in the physical world, the public policy realm, and society (CCSSI 2010). Additionally, students need to make decisions and be flexible enough to improve their decisions after analyzing realistic situations. The LEGO® Pets activity does just…

  14. Build your own

    NASA Astrophysics Data System (ADS)

    Moniz, Ernest; McAndrew, Elizabeth; Chan, Albert; Eggleton, David

    2015-01-01

    In reply to the physicsworld.com blog post "Build your own LEGO particle collider" (2 December 2014, http://ow.ly/Fe3Vy, see also p3) which described a campaign to get the popular plastic-bricks firm to make a building set based on a particle accelerator, such as the Large Hadron Collider at CERN.

  15. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  16. Introduction to Autonomous Mobile Robotics Using "Lego Mindstorms" NXT

    ERIC Educational Resources Information Center

    Akin, H. Levent; Meriçli, Çetin; Meriçli, Tekin

    2013-01-01

    Teaching the fundamentals of robotics to computer science undergraduates requires designing a well-balanced curriculum that is complemented with hands-on applications on a platform that allows rapid construction of complex robots, and implementation of sophisticated algorithms. This paper describes such an elective introductory course where the…

  17. Building Teen Futures with Underwater Robotics

    ERIC Educational Resources Information Center

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    Preparing young Americans with science and technology skills has been on the forefront of educational reform for several years, and Extension has responded. Robotics projects have become a natural fit for 4-H clubs, with members' experiences ranging from using Lego® Mindstorms® and other "purchase and assemble" robotics kits to building…

  18. Hydrodynamic models for slurry bubble column reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore,more » the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.« less

  19. Caregiver and social assistant robot for rehabilitation and coaching for the elderly.

    PubMed

    Pérez, P J; Garcia-Zapirain, B; Mendez-Zorrilla, A

    2015-01-01

    Socially assistive robotics (SAR) has been a major field of investigation during the last decade and, as it develops, the groups the technology can be applied to and all ways in which these can be assisted are rapidly increasing. The main objective is to design and develop a complete robotic agent, so that it performs physical and mental activities for elderly people to maintain their healthy life habits and, as a final result, improve their quality of life. LEGO Mindstorms NXT® robot's unique capacity for adaptability and engaging its users to develop coaching activities and assistive rehabilitation for the elderly. Such activities will aim to enhance healthy habits and provide training in physical and mental rehabilitation. The robot is attached to an iPod Touch that acts as its interface. The robot has been tested by a voluntary group of residents, also from that retirement home. Results in the variables of the questionnaire show scores above 4 points out of 5 for all the categories. Based on the tests, an easy to use Robot is prepared to deliver basic coaching for physical activities as proposed by the client, the staff of La Misericordia, who confirmed their satisfaction regarding this aspect.

  20. Calculation of the neutron diffusion equation by using Homotopy Perturbation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koklu, H., E-mail: koklu@gantep.edu.tr; Ozer, O.; Ersoy, A.

    The distribution of the neutrons in a nuclear fuel element in the nuclear reactor core can be calculated by the neutron diffusion theory. It is the basic and the simplest approximation for the neutron flux function in the reactor core. In this study, the neutron flux function is obtained by the Homotopy Perturbation Method (HPM) that is a new and convenient method in recent years. One-group time-independent neutron diffusion equation is examined for the most solved geometrical reactor core of spherical, cubic and cylindrical shapes, in the frame of the HPM. It is observed that the HPM produces excellent resultsmore » consistent with the existing literature.« less

  1. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klipstein, David H.; Robinson, Sharon

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  3. DESIGN CRITERIA FOR FUEL DISSOLUTION SYSTEMS AND ASSOCIATED SERVICE FACILITIES. PLANT MODIFICATIONS FOR REPROCESSING NON-PRODUCTION REACTOR FUELS. PROJECT CGC-830

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierman, S.R.; Graf, W.A.; Kass, M.

    1960-07-29

    Design panameters are presented for phases of the facility to reprocess low-enrichment fuels from nonproduction reactors. Included are plant flowsheets and equipment layouts for fuel element dissolution, centrifugation, solution adjustment, and waste handling. Also included are the basic design criteria for the supporting facilities which service these phases and all other facilites located in the vicinity of the selected building (Bldg. 221-U). (J.R.D.)

  4. System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Phillips, W. M.; Hsieh, T.

    1976-01-01

    Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.

  5. FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Davidson, J.K.

    1963-11-19

    A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)

  6. DEVELOPMENT OF AGENTS AND PROCEDURES FOR DECONTAMINATION OF THE YANKEE REACTOR PRIMARY COOLANT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, R.M.

    1959-03-01

    Developments relative to decontamination achieved under the Yankee Reasearch and Development program are reported. The decontamination of a large test loop which had been used to conduct corrosion rate studies for the Yankee reactor program is described. The basic permanganate-citrate decontamination procedure suggested for application in Yankee reactor primary system cleanup was used. A study of the chemistry of this decontamination operation is presented, together with conclusions pertaining to the effectiveness of the solutions under the conditions studied. In an attempt to further improve the efficiency of the procedure, an additional series of static and dynamic tests was performcd usingmore » contaminated sections of stainless steel tubing from the original SlW steam generator. Survival variables in the process (reagent composition, contact time, temperature, and flow velocity) were studied. The changes in decontamination efficiency produced by these variations are discussed and compared with results obtained throughthe use of similar procedures. Based on the observations made, conclusions are drawn concerning the optimum conditions for this cleanup process, a new set of suggested basic permanganate-citrate decontamination instructions is presented, and recommendations are made concerning future studies involving this procedure. (auth)« less

  7. Researcher Poses with a Nuclear Rocket Model

    NASA Image and Video Library

    1961-11-21

    A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.

  8. Can high fields save the tokamak? The challenge of steady-state operation for low cost compact reactors

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine

    2016-10-01

    The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?

  9. Basic requirements for a 1000-MW(electric) class tokamak fusion-fission hybrid reactor and its blanket concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatayama, Ariyoshi; Ogasawara, Masatada; Yamauchi, Michinori

    1994-08-01

    Plasma size and other basic performance parameters for 1000-MW(electric) power production are calculated with the blanket energy multiplication factor, the M value, as a parameter. The calculational model is base don the International Thermonuclear Experimental Reactor (ITER) physics design guidelines and includes overall plant power flow. Plasma size decreases as the M value increases. However, the improvement in the plasma compactness and other basic performance parameters, such as the total plant power efficiency, becomes saturated above the M = 5 to 7 range. THus, a value in the M = 5 to 7 range is a reasonable choice for 1000-MW(electric)more » hybrids. Typical plasma parameters for 1000-MW(electric) hybrids with a value of M = 7 are a major radius of R = 5.2 m, minor radius of a = 1.7 m, plasma current of I{sub p} = 15 MA, and toroidal field on the axis of B{sub o} = 5 T. The concept of a thermal fission blanket that uses light water as a coolant is selected as an attractive candidate for electricity-producing hybrids. An optimization study is carried out for this blanket concept. The result shows that a compact, simple structure with a uniform fuel composition for the fissile region is sufficient to obtain optimal conditions for suppressing the thermal power increase caused by fuel burnup. The maximum increase in the thermal power is +3.2%. The M value estimated from the neutronics calculations is {approximately}7.0, which is confirmed to be compatible with the plasma requirement. These studies show that it is possible to use a tokamak fusion core with design requirements similar to those of ITER for a 1000-MW(electric) power reactor that uses existing thermal reactor technology for the blanket. 30 refs., 22 figs., 4 tabs.« less

  10. Current status of SPINNORs designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su'ud, Zaki

    2010-06-22

    This study discuss about the SPINNOR (Small Power Reactor, Indonesia, No On-site Refuelling) and the VSPINNOR (Very Small Power Reactor, Indonesia, No On-site Refuelling) which are small lead-bismuth cooled nuclear power reactors with fast neutron spectrum that could be operated for more than 10 or 15 years without on-site refuelling. They are based on the concept of a long-life core reactor developed in Indonesia since early 1990 in collaboration with the Research Laboratory for Nuclear Reactors of the Tokyo Institute of Technology (RLNR TITech). The reactor cores are designed to have near zero (less then one effective delayed neutron fraction)more » burn-up reactivity swing during the whole course of their operation to avoid a possibility of prompt criticality accident. The basic concept is that central region of the reactor core is filled with fertile (blanket) material. During the reactor operation fissile material accumulates in this central region, which helps to compensate fissile material loss in the peripheral core region and also contributes to negative coolant loss reactivity effect. A concept of high fuel volume fraction in the core is applied to achieve smaller size of a critical reactor. In this paper we consider to add Np-237 to the fuel to enhance non proliferation characteristics of the systems. The effect of Np-237 amount variation is discussed.« less

  11. ADAPTATION OF CRACK GROWTH DETECTION TECHNIQUES TO US MATERIAL TEST REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Joseph Palmer; Sebastien P. Teysseyre; Kurt L. Davis

    2015-04-01

    A key component in evaluating the ability of Light Water Reactors to operate beyond 60 years is characterizing the degradation of materials exposed to radiation and various water chemistries. Of particular concern is the response of reactor materials to Irradiation Assisted Stress Corrosion Cracking (IASCC). Some test reactors outside the United States, such as the Halden Boiling Water Reactor (HBWR), have developed techniques to measure crack growth propagation during irradiation. The basic approach is to use a custom-designed compact loading mechanism to stress the specimen during irradiation, while the crack in the specimen is monitored in-situ using the Direct Currentmore » Potential Drop (DCPD) method. In 2012 the US Department of Energy commissioned the Idaho National Laboratory and the MIT Nuclear Reactor Laboratory (MIT NRL) to take the basic concepts developed at the HBWR and adapt them to a test rig capable of conducting in-pile IASCC tests in US Material Test Reactors. The first two and half years of the project consisted of designing and testing the loader mechanism, testing individual components of the in-pile rig and electronic support equipment, and autoclave testing of the rig design prior to insertion in the MIT Reactor. The load was applied to the specimen by means of a scissor like mechanism, actuated by a miniature metal bellows driven by pneumatic pressure and sized to fit within the small in-core irradiation volume. In addition to the loader design, technical challenges included developing robust connections to the specimen for the applied current and voltage measurements, appropriate ceramic insulating materials that can endure the LWR environment, dealing with the high electromagnetic noise environment of a reactor core at full power, and accommodating material property changes in the specimen, due primarily to fast neutron damage, which change the specimen resistance without additional crack growth. The project culminated with an in-pile demonstration at the MIT Reactor. The test rig and associated support equipment were used to apply loads to a representative Compact Tensile specimen during one MITR operating cycle, while measuring crack growth using the DCPD method. Although the test period was short (approximately 70 days), and the accumulated neutron dose relatively small, successful operation of the test rig was demonstrated. The specimen was cycled more than 8000 times (more than would be typical for a long term IASCC test), which was sufficient to propagate a crack of over 2 mm.« less

  12. Preliminary consideration of CFETR ITER-like case diagnostic system.

    PubMed

    Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X

    2016-11-01

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  13. MATLAB Meets LEGO Mindstorms--A Freshman Introduction Course into Practical Engineering

    ERIC Educational Resources Information Center

    Behrens, A.; Atorf, L.; Schwann, R.; Neumann, B.; Schnitzler, R.; Balle, J.; Herold, T.; Telle, A.; Noll, T. G.; Hameyer, K.; Aach, T.

    2010-01-01

    In today's teaching and learning approaches for first-semester students, practical courses more and more often complement traditional theoretical lectures. This practical element allows an early insight into the real world of engineering, augments student motivation, and enables students to acquire soft skills early. This paper describes a new…

  14. Mindstorms Robots and the Application of Cognitive Load Theory in Introductory Programming

    ERIC Educational Resources Information Center

    Mason, Raina; Cooper, Graham

    2013-01-01

    This paper reports on a series of introductory programming workshops, initially targeting female high school students, which utilised Lego Mindstorms robots. Cognitive load theory (CLT) was applied to the instructional design of the workshops, and a controlled experiment was also conducted investigating aspects of the interface. Results indicated…

  15. The Lego[R] Analogy Model for Teaching Gene Sequencing and Biotechnology

    ERIC Educational Resources Information Center

    Rothhaar, Rebecca; Pittendrigh, Barry R.; Orvis, Kathryn S.

    2006-01-01

    Research in biotechnology is rapidly advancing; everyday, new and exciting discoveries are made. With this new technology there are also many safety and ethical questions, though, as well as the need for education. Alternative teaching methods may help to increase students' understanding of difficult concepts in all aspects of schooling, including…

  16. Flow Experience in Design Thinking and Practical Synergies with Lego Serious Play

    ERIC Educational Resources Information Center

    Primus, Dirk J.; Sonnenburg, Stephan

    2018-01-01

    The flow experience can be an important precursor to high levels of creativity and innovation. Prior work has identified and conceptualized the key elements of the flow experience in cocreative activities as individual flow corridor, individual flow feeling, and group flow. Surprisingly, the flow experience is underrepresented in theory and…

  17. Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.

    ERIC Educational Resources Information Center

    Buchal, Ralph O.

    2001-01-01

    Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)

  18. Fifth Grade Students' Understanding of Ratio and Proportion in an Engineering Robotics Program

    ERIC Educational Resources Information Center

    Ortiz, Araceli Martinez

    2010-01-01

    The research described in this dissertation explores the impact of utilizing a LEGO-robotics integrated engineering and mathematics program to support fifth grade students' learning of ratios and proportion in an extracurricular program. The research questions guiding this research study were (1) how do students' test results compare for students…

  19. Designing Effective Spaces, Tasks and Metrics for Communication in Second Life within the Context of Programming LEGO NXT Mindstorms™ Robots

    ERIC Educational Resources Information Center

    Vallance, Michael; Martin, Stewart; Wiz, Charles; van Schaik, Paul

    2010-01-01

    Science education is concerned with the meaningful pursuit of comprehension, knowledge and understanding of scientific concepts and processes. In Vygotskian social constructivist learning, personal interpretation, decision-making and community cooperation fosters long-term understanding and transference of learned concepts. The construction of…

  20. Control Robotics Programming Technology. Technology Learning Activity. Teacher Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This Technology Learning Activity (TLA) for control robotics programming technology in grades 6-10 is designed to teach students to construct and program computer-controlled devices using a LEGO DACTA set and computer interface and to help them understand how control technology and robotics affect them and their lifestyle. The suggested time for…

  1. A Case of Cooperation in the European OR Education

    ERIC Educational Resources Information Center

    Miranda, Joao; Nagy, Mariana

    2011-01-01

    European cooperation is a relevant subject that contributes to building a competitive network of high education institutions. A case of teacher mobility on behalf of the Erasmus programme is presented: it considers some Operations Research topics and the development of the Lego on My Decision module. The module considers eight lecture hours in…

  2. KSC-03PD-1846

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis proudly presents the names she selected for the Mars Exploration Rovers - - 'Spirit' and 'Opportunity' -- during a press conference. Also participating in the press conference are NASA Administrator Sean O'Keefe (left) and Brad Justus, LEGO Co. senior vice president (right). The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  3. Problem Solving in a Middle School Robotics Design Classroom

    NASA Astrophysics Data System (ADS)

    Norton, Stephen J.; McRobbie, Campbell J.; Ginns, Ian S.

    2007-07-01

    Little research has been conducted on how students work when they are required to plan, build and evaluate artefacts in technology rich learning environments such as those supported by tools including flow charts, Labview programming and Lego construction. In this study, activity theory was used as an analytic tool to examine the social construction of meaning. There was a focus on the effect of teachers’ goals and the rules they enacted upon student use of the flow chart planning tool, and the tools of the programming language Labview and Lego construction. It was found that the articulation of a teacher’s goals via rules and divisions of labour helped to form distinct communities of learning and influenced the development of different problem solving strategies. The use of the planning tool flow charting was associated with continuity of approach, integration of problem solutions including appreciation of the nexus between construction and programming, and greater educational transformation. Students who flow charted defined problems in a more holistic way and demonstrated more methodical, insightful and integrated approaches to their use of tools. The findings have implications for teaching in design dominated learning environments.

  4. The PP1 binding code: a molecular-lego strategy that governs specificity.

    PubMed

    Heroes, Ewald; Lesage, Bart; Görnemann, Janina; Beullens, Monique; Van Meervelt, Luc; Bollen, Mathieu

    2013-01-01

    Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo. © 2012 The Authors Journal compilation © 2012 FEBS.

  5. Manned space flight nuclear system safety. Volume 3: Reactor system preliminary nuclear safety analysis. Part 1: Reference Design Document (RDD)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.

  6. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Radionuclide Basics: Cesium-137

    EPA Pesticide Factsheets

    The most common radioactive form of cesium (chemical symbol Cs) is Cesium-137. Cesium-137 is produced by nuclear fission for use in medical devices and gauges and is one of the byproducts of nuclear fission in nuclear reactors and nuclear weapons testing.

  8. A solid reactor core thermal model for nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Rider, William J.; Cappiello, Michael W.; Liles, Dennis R.

    1991-01-01

    A Helium/Hydrogen Cooled Reactor Analysis (HERA) computer code has been developed. HERA has the ability to model arbitrary geometries in three dimensions, which allows the user to easily analyze reactor cores constructed of prismatic graphite elements. The code accounts for heat generation in the fuel, control rods, and other structures; conduction and radiation across gaps; convection to the coolant; and a variety of boundary conditions. The numerical solution scheme has been optimized for vector computers, making long transient analyses economical. Time integration is either explicit or implicit, which allows the use of the model to accurately calculate both short- or long-term transients with an efficient use of computer time. Both the basic spatial and temporal integration schemes have been benchmarked against analytical solutions.

  9. Verification of a neutronic code for transient analysis in reactors with Hex-z geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Pintor, S.; Verdu, G.; Ginestar, D.

    Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmarkmore » and with the results provided by PARCS code. (authors)« less

  10. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactormore » concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.« less

  11. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2009-08-10

    Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.

  12. Neutron physics with accelerators

    NASA Astrophysics Data System (ADS)

    Colonna, N.; Gunsing, F.; Käppeler, F.

    2018-07-01

    Neutron-induced nuclear reactions are of key importance for a variety of applications in basic and applied science. Apart from nuclear reactors, accelerator-based neutron sources play a major role in experimental studies, especially for the determination of reaction cross sections over a wide energy span from sub-thermal to GeV energies. After an overview of present and upcoming facilities, this article deals with state-of-the-art detectors and equipment, including the often difficult sample problem. These issues are illustrated at selected examples of measurements for nuclear astrophysics and reactor technology with emphasis on their intertwined relations.

  13. Chemistry experience in the primary heat transport circuits of Kraftwerk Union pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, R.

    Chosen for this description of the selected Kraftwerk Union (KWU) pressurized water reactor units were Obrigheim (KWO, 345 MW(e)), Stade (KKS, 662 (MW(e)), Borselle (KCB, 477 MW(e)), and Biblis (KWB-A, 1204 MW(e)). The experience at these plants shows that with a special startup procedure and a proper chemical control of the primary heat transport system that influences general corrosion, selective types of corrosion, corrosion product activity transport and resulting contamination, and radiation-induced decomposition, KWU units have no basic problems.

  14. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  15. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    ERIC Educational Resources Information Center

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  16. Empty Tissue Boxes: Considering Poverty in Diversity Discourse

    ERIC Educational Resources Information Center

    Cuthrell, Kristen; Ledford, Carolyn; Stapleton, Joy

    2007-01-01

    A preservice teacher doing her internship overhears some of her students asking a classmate why he regularly takes home empty tissue boxes. The boy replies that he builds cities and bridges with his empty boxes. His classmates then ask why he does not just build a city with Legos or building blocks. The preservice teacher listens intently as the…

  17. An Effective Educational Tool: Construction Kits for Fun and Meaningful Learning

    ERIC Educational Resources Information Center

    Somyürek, Sibel

    2015-01-01

    The integration of robotics in education is still relatively new and represents an important advance in education practices. So, this paper aims to share the results from the perspectives of both students and trainers in an experimental case research in which LEGO Mindstorms construction kits were used. Sixty-two students between the ages of 8 and…

  18. Robotics Projects and Learning Concepts in Science, Technology and Problem Solving

    ERIC Educational Resources Information Center

    Barak, Moshe; Zadok, Yair

    2009-01-01

    This paper presents a study about learning and the problem solving process identified among junior high school pupils participating in robotics projects in the Lego Mindstorm environment. The research was guided by the following questions: (1) How do pupils come up with inventive solutions to problems in the context of robotics activities? (2)…

  19. Virtual LEGOs: Incorporating Minecraft into the Art Education Curriculum

    ERIC Educational Resources Information Center

    Overby, Alexandra; Jones, Brian L.

    2015-01-01

    What could video games bring to a K-12 visual arts curriculum? Overby and Jones were skeptical about incorporating gaming and virtual worlds into the classroom, but watching their own children engaging in the video game Minecraft changed their perception. As they started researching the game and how these kids were operating within the space, they…

  20. Archeology, Legos, and Haunted Houses: Novice Teachers' Shifting Understandings of Self and Curricula through Metaphor

    ERIC Educational Resources Information Center

    Fisher-Ari, Teresa R.; Lynch, Heather L.

    2015-01-01

    As teacher educators in an alternative certification and master's programme, we support Teach For America (TFA) teachers who are developing understandings of learning, teaching, and curriculum while they are already working full-time in classrooms. Using critical discourse analysis, we analysed 109 metaphors for curriculum created by 27 novice TFA…

  1. The Use of Robotics to Promote Computing to Pre-College Students with Visual Impairments

    ERIC Educational Resources Information Center

    Ludi, Stephanie; Reichlmayr, Tom

    2011-01-01

    This article describes an outreach program to broaden participation in computing to include more students with visual impairments. The precollege workshops target students in grades 7-12 and engage students with robotics programming. The use of robotics at the precollege level has become popular in part due to the availability of Lego Mindstorm…

  2. Teacher workshop

    NASA Image and Video Library

    2012-10-20

    John C. Stennis Space Center educators and area teachers partnered together during a professional development workshop Oct. 20 to learn about the LEGO Bricks in Space curriculum issued by NASA. The curriculum is designed to encourage students in areas of science, technology, engineering and mathematics. The Stennis Space Center Educator Resource Center hosted the workshop to equip teachers of grades 3-12.

  3. Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2017-01-01

    A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…

  4. Localization of Mobile Robots Using an Extended Kalman Filter in a LEGO NXT

    ERIC Educational Resources Information Center

    Pinto, M.; Moreira, A. P.; Matos, A.

    2012-01-01

    The inspiration for this paper comes from a successful experiment conducted with students in the "Mobile Robots" course in the fifth year of the integrated Master's program in the Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto (FEUP), Porto, Portugal. One of the topics in this Mobile Robots…

  5. Using LEGO Kits to Teach Higher Level Problem Solving Skills in System Dynamics: A Case Study

    ERIC Educational Resources Information Center

    Wu, Yi; de Vries, Charlotte; Dunsworth, Qi

    2018-01-01

    System Dynamics is a required course offered to junior Mechanical Engineering students at Penn State Erie, the Behrend College. It addresses the intercoupling dynamics of a wide range of dynamic systems: including mechanical, electrical, fluid, hydraulic, electromechanical, and biomedical systems. This course is challenging for students due to the…

  6. The Malleability of Spatial Ability under Treatment of a FIRST LEGO League-Based Robotics Unit

    ERIC Educational Resources Information Center

    Coxon, Steven Vincent

    2012-01-01

    Spatial ability is important to science, technology, engineering, and math (STEM) success, but spatial talents are rarely developed in schools. Likewise, the gifted may become STEM innovators, but they are rarely provided with pedagogy appropriate to develop their abilities in schools. A stratified random sample of volunteer participants (n = 75)…

  7. The Use of Lego Technologies in Elementary Teacher Preparation

    ERIC Educational Resources Information Center

    Hadjiachilleos, Stella; Avraamidou, Lucy; Papastavrou, Stavros

    2013-01-01

    The need to reform science teacher preparation programs has been pointed out in research (Bryan and Abell in "J Res Sci Teach" 36:121-140, 1999; Bryan and Atwater in "Sci Educ" 8(6):821-839, 2002; Harrington and Hathaway in "J Teach Educ" 46(4):275-284, 1995). Science teachers are charged with the responsibility of…

  8. Acquisition of Physics Content Knowledge and Scientific Inquiry Skills in a Robotics Summer Camp

    ERIC Educational Resources Information Center

    Williams, Douglas C.; Ma, Yuxin; Prejean, Louise; Ford, Mary Jane; Lai, Guolin

    2008-01-01

    Despite the growing popularity of robotics competitions such as FIRST LEGO League, robotics activities are typically not found in regular K-12 classrooms. We speculate that, among other reasons, limited adoption is due to the lack of empirical evidence demonstrating the effect of robotics activities on curricular goals. This paper presents a mixed…

  9. The Algebra Artist

    ERIC Educational Resources Information Center

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  10. Thinking outside the Blocks: Lego Day in a Pedagogy of Play

    ERIC Educational Resources Information Center

    Krug, Kate

    2011-01-01

    Engaging students while providing them with the necessary linguistic and critical skills as a foundation for further exploration are the principle challenges for those of us who teach disciplinary introductory courses. My own response to this challenge has been to develop and implement what I refer to as the "pedagogy of play." Informed…

  11. Analysis of granular flow in a pebble-bed nuclear reactor.

    PubMed

    Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z

    2006-08-01

    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

  12. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas releasemore » and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.« less

  13. In-vessel composting of household wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyengar, Srinath R.; Bhave, Prashant P.

    The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for amore » period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.« less

  14. An adaptive load-following control system for a space nuclear power system

    NASA Astrophysics Data System (ADS)

    Metzger, John D.; El-Genk, Mohamed S.

    An adaptive load-following control system is proposed for a space nuclear power system. The conceptual design of the SP-100 space nuclear power system proposes operating the nuclear reactor at a base thermal power and accommodating changes in the electrical power demand with a shunt regulator. It is necessary to increase the reactor thermal power if the payload electrical demand exceeds the peak system electrical output for the associated reactor power. When it is necessary to change the nuclear reactor power to meet a change in the power demand, the power ascension or descension must be accomplished in a predetermined manner to avoid thermal stresses in the system and to achieve the desired reactor period. The load-following control system described has the ability to adapt to changes in the system and to changes in the satellite environment. The application is proposed of the model reference adaptive control (MRAC). The adaptive control system has the ability to control the dynamic response of nonlinear systems. Three basic subsets of adaptive control are: (1) gain scheduling, (2) self-tuning regulators, and (3) model reference adaptive control.

  15. Co3O4-based honeycombs as compact redox reactors/heat exchangers for thermochemical storage in the next generation CSP plants

    NASA Astrophysics Data System (ADS)

    Pagkoura, Chrysoula; Karagiannakis, George; Halevas, Eleftherios; Konstandopoulos, Athanasios G.

    2016-05-01

    Over the last years, several research groups have focused on developing efficient thermochemical heat storage (THS) systems, in-principle capable of being coupled with next generation high temperature Concentrated Solar Power plants. Among systems studied, the Co3O4/CoO redox system is a promising candidate. Currently, research efforts extend beyond basic level identification of promising materials to more application-oriented approaches aiming at validation of THS performance at pilot scale reactors. The present work focuses on the investigation of cobalt oxide based honeycomb structures as candidate reactors/heat exchangers to be employed for such purposes. In the evaluation conducted and presented here, cobalt oxide-based structures with different composition and geometrical characteristics were subjected to redox cycles in the temperature window between 800 and 1000°C under air flow. Basic aspects related to redox performance of each system are briefly discussed but the main focus lies on the evaluation of the segments structural stability after multi-cyclic operation. The latter is based on macroscopic visual observation and also supplemented by pre- (i.e. fresh samples) and post-characterization (i.e. after long term exposure) of extruded honeycombs via combined mercury porosimetry and SEM analysis.

  16. The effect of cover use on plastic pyrolysis reactor heating process

    NASA Astrophysics Data System (ADS)

    Armadi, Benny H.; Rangkuti, Chalilullah; Fauzi, M. D.; Permatasari, R.

    2017-03-01

    Plastic pyrolysis process to produce liquid fuel is an endothermic process that uses heat from the combustion of fuel as heat source. The reactor used is usually a vertical cylindrical in shape, with LPG fuel combustion under the flat bottom of the reactor, and the combustion gases is dispersed into the surrounding environment, so that heat transferred to the plastic inside the reactor is not effective, causing high LPG consumption. In this study, the reactor is made of stainless steel plate, with a vertical cylindrical shape, with a basic cylindrical conical truncated by a pit pass hot flue gas in the middle that serves to deliver flue gas into the chimney. The contact area between the hot combusted LPG gases to the processed plastic inside the reactor becomes bigger and gets better heat transfer, and required less LPG consumption. For more effective heat transfer process, an outer cover of this reactor was made and the relatively hot combustion gases are used to heat the outside of the reactor by directing the flow of the flue gas from the chimney down along the outer wall of the reactor and out the bottom lid. This construction makes the heating process to be faster and the LPG fuel is used more efficiently. From the measurements, it was found to raise 1°C of temperature inside the covered reactor, the LPG consumed is 0.59 gram, and if the reactor cover is removed, the gas demand will rise nearly threefold to 1.43 grams. With this method, in addition to reducing the rate of heat loss will also help reduce LPG consumption significantly.

  17. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

    NASA Astrophysics Data System (ADS)

    Mosunova, N. A.

    2018-05-01

    The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium-plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal-hydraulic, neutronics, and thermal-mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal-hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code's thermal-hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

  18. Thermodynamic analysis of the advanced zero emission power plant

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin

    2016-03-01

    The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  19. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia.

    PubMed

    Tian, Hailin; Fotidis, Ioannis A; Mancini, Enrico; Angelidaki, Irini

    2017-05-01

    Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH 3 -NL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Laboratory-scale anaerobic sequencing batch reactor for treatment of stillage from fruit distillation.

    PubMed

    Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo

    2013-01-01

    This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.

  1. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  2. Reactor Neutronics: Impact of Fissile Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Hill, R. N.

    Here, given a wide variety of reactor designs and fuel types, it can be difficult to identify the underlying cause of basic performance differences such as flux level and enrichment requirement. In this paper, using solely the definitions of the core multiplication factor and core power, simple relations have been derived allowing estimates of the flux ratio and fissile material concentration ratio for any reactor concept when 235U is replaced with 239Pu or vice-versa. These relations are functions of the neutron non-leakage probability, and one only needs to know number of neutrons emitted per fission, and the fission cross-section ratiomore » between the 235U system and the 239Pu system. It is found that for a reactor concept having significant leakage, the achievable flux level when using 239Pu as fissile material can be up to 45% larger than when using 235U as fissile material, and the required fissile concentration of 239Pu is up to 48% lower than that of 235U to achieve criticality.« less

  3. Neutronics calculation of RTP core

    NASA Astrophysics Data System (ADS)

    Rabir, Mohamad Hairie B.; Zin, Muhammad Rawi B. Mohamed; Karim, Julia Bt. Abdul; Bayar, Abi Muttaqin B. Jalal; Usang, Mark Dennis Anak; Mustafa, Muhammad Khairul Ariff B.; Hamzah, Na'im Syauqi B.; Said, Norfarizan Bt. Mohd; Jalil, Muhammad Husamuddin B.

    2017-01-01

    Reactor calculation and simulation are significantly important to ensure safety and better utilization of a research reactor. The Malaysian's PUSPATI TRIGA Reactor (RTP) achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. Since early 90s, neutronics modelling were used as part of its routine in-core fuel management activities. The are several computer codes have been used in RTP since then, based on 1D neutron diffusion, 2D neutron diffusion and 3D Monte Carlo neutron transport method. This paper describes current progress and overview on neutronics modelling development in RTP. Several important parameters were analysed such as keff, reactivity, neutron flux, power distribution and fission product build-up for the latest core configuration. The developed core neutronics model was validated by means of comparison with experimental and measurement data. Along with the RTP core model, the calculation procedure also developed to establish better prediction capability of RTP's behaviour.

  4. Reactor Neutronics: Impact of Fissile Material

    DOE PAGES

    Heidet, F.; Hill, R. N.

    2017-06-09

    Here, given a wide variety of reactor designs and fuel types, it can be difficult to identify the underlying cause of basic performance differences such as flux level and enrichment requirement. In this paper, using solely the definitions of the core multiplication factor and core power, simple relations have been derived allowing estimates of the flux ratio and fissile material concentration ratio for any reactor concept when 235U is replaced with 239Pu or vice-versa. These relations are functions of the neutron non-leakage probability, and one only needs to know number of neutrons emitted per fission, and the fission cross-section ratiomore » between the 235U system and the 239Pu system. It is found that for a reactor concept having significant leakage, the achievable flux level when using 239Pu as fissile material can be up to 45% larger than when using 235U as fissile material, and the required fissile concentration of 239Pu is up to 48% lower than that of 235U to achieve criticality.« less

  5. Analysis of JKT01 Neutron Flux Detector Measurements In RSG-GAS Reactor Using LabVIEW

    NASA Astrophysics Data System (ADS)

    Rokhmadi; Nur Rachman, Agus; Sujarwono; Taryo, Taswanda; Sunaryo, Geni Rina

    2018-02-01

    The RSG-GAS Reactor, one of the Indonesia research reactors and located in Serpong, is owned by the National Nuclear Energy Agency (BATAN). The RSG-GAS reactor has operated since 1987 and some instrumentation and control systems are considered to be degraded and ageing. It is therefore, necessary to evaluate the safety of all instrumentation and controls and one of the component systems to be evaluated is the performance of JKT01 neutron flux detector. Neutron Flux Detector JKT01 basically detects neutron fluxes in the reactor core and converts it into electrical signals. The electrical signal is then forwarded to the amplifier (Amplifier) to become the input of the reactor protection system. One output of it is transferred to the Main Control Room (RKU) showing on the analog meter as an indicator used by the reactor operator. To simulate all of this matter, a program to simulate the output of the JKT01 Neutron Flux Detector using LabVIEW was developed. The simulated data is estimated using a lot of equations also formulated in LabVIEW. The calculation results are also displayed on the interface using LabVIEW available in the PC. By using this simulation program, it is successful to perform anomaly detection experiments on the JKT01 detector of RSG-GAS Reactor. The simulation results showed that the anomaly JKT01 neutron flux using electrical-current-base are respectively, 1.5×,1.7× and 2.0×.

  6. Robotic Design Studio: Exploring the Big Ideas of Engineering in a Liberal Arts Environment.

    ERIC Educational Resources Information Center

    Turbak, Franklyn; Berg, Robbie

    2002-01-01

    Suggests that it is important to introduce liberal arts students to the essence of engineering. Describes Robotic Design Studio, a course in which students learn how to design, assemble, and program robots made out of LEGO parts, sensors, motors, and small embedded computers. Represents an alternative vision of how robot design can be used to…

  7. An Exploration of Developing Active Exploring and Problem Solving Skill Lego Robot Course by the Application of Anchored Instruction Theory

    ERIC Educational Resources Information Center

    Chen, Chen-Yuan

    2013-01-01

    In recent years, researches had shown that the development of problem solving skill became important for education, and the educational robots are capable for promoting students not only understand the physical and mathematical concepts, but also have active and constructive learning. Meanwhile, the importance of situation in education is rising,…

  8. Library Programming with LEGO MINDSTORMS, Scratch, and PicoCricket: Analysis of Best Practices for Public Libraries

    ERIC Educational Resources Information Center

    Romero, Juan Suarez

    2010-01-01

    Public libraries are redefining their roles in order to stay relevant to the needs of the communities they serve. Today, libraries are places where reading meets hands-on learning and where quietness coexists with voices and music. The latest advances in technology for children and teens, specifically, robotics sets and media-rich software, are…

  9. Ordered Effects of Technology Education Units on Higher-Order Critical Thinking Skills of Middle School Students

    ERIC Educational Resources Information Center

    Mojica, Kern D.

    2010-01-01

    In this quasi-experimental quantitative study, 105 eighth grade students at a suburban middle school in New York State participated in a seven month-long project involving the ordered effects of the technology education units of Lego[R] Mindstorms(TM) NXT Robotics System, Digital Storytelling with Microsoft Windows Movie Maker, and the Marble Maze…

  10. Factors Influencing the Uptake of a Mechatronics Curriculum Initiative in Five Australian Secondary Schools

    ERIC Educational Resources Information Center

    Nicholas, Howard; Ng, Wan

    2012-01-01

    While the ready-made Lego[TM] Robotics kits are popular in schools and are used by students at both primary and secondary year levels, using the Picaxe microcontroller (chip) to create simple electronic devices, including robotic devices is less popular. The latter imposes an additional challenge as a result of the need to construct the universal…

  11. A Kinesthetic Activity Using LEGO Bricks and Buckets for Illustrating the Regulation of Blood Sugar

    ERIC Educational Resources Information Center

    Urschler, Margaret; Meidl, Katherine; Browning, Samantha; Khan, Basima; Milanick, Mark

    2015-01-01

    This article describes how, when first faced with understanding blood sugar regulation, students often resort to simple memorization.Many students would like to get more involved with the conceptual framework but do not know how to start. The authors have developed an activity based on the Modell approach, a "view from the inside." This…

  12. Building Young Engineers: TASEM for Third Graders in Woodcreek Magnet Elementary School

    ERIC Educational Resources Information Center

    Varney, M. W.; Janoudi, A.; Aslam, D. M.; Graham, D.

    2012-01-01

    Following the success of summer-camp-based programs, a new program has been developed for in-school sessions focused around LEGO robotics to foster interest in STEM topics at a young age. The program has been implemented in a very diverse school, and preliminary results on the efficacy of the program are presented. (Contains 1 table and 6 figures.)

  13. Conceptualising Plagiarism: Using Lego to Construct Students' Understanding of Authorship and Citation

    ERIC Educational Resources Information Center

    Buckley, Carina

    2015-01-01

    The transition from further to higher education is marked by a series of challenges for the new student, not least the requirement to learn the discourse of academic practice, and referencing as a part of that. By perceiving what it means to reference, students should also come to understand what it means to write, including the problematic areas…

  14. The Malleability of Spatial Ability under Treatment of a FIRST LEGO League-Based Robotics Simulation

    ERIC Educational Resources Information Center

    Coxon, Steve V.

    2012-01-01

    A stratified random sample of volunteer participants (N = 75) aged 9 to 14 was drawn from 16 public school districts' gifted programs, including as many females (n = 28) and children from groups traditionally underrepresented in gifted programs (n = 18) as available. Participants were randomly divided into an experimental (n = 38) and a control…

  15. Exciting Young Students in Grades K-8 about STEM through an Afterschool Robotics Challenge

    ERIC Educational Resources Information Center

    Karp, Tanja; Maloney, Patricia

    2013-01-01

    In this paper, we describe the successful implementation of an afterschool LEGO robotics program for elementary and middle school students that is annually offered by the Whitacre College of Engineering at Texas Tech University. Three events are held on campus: the kickoff, a trial run, and the competition, spread over a period of eight weeks. In…

  16. IMp: The customizable LEGO(®) Pinned Insect Manipulator.

    PubMed

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  17. Teaching Habitat and Animal Classification to Fourth Graders Using an Engineering-Design Model

    ERIC Educational Resources Information Center

    Marulcu, Ismail

    2014-01-01

    Background: The motivation for this work is built upon the premise that there is a need for research-based materials for design-based science instruction. In this paper, a small portion of our work investigating the impact of a LEGO[TM] engineering unit on fourth grade students' preconceptions and understanding of animals is presented. Purpose:…

  18. KSC-03PD-1845

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis unveils the names of the Mars Exploration Rovers -- 'Spirit' and 'Opportunity' -- during a press conference. Participating in the press conference are, from left, Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; NASA Administrator Sean O'Keefe; Sofi Collis, a third grade student from Arizona; and Brad Justus, LEGO Co. senior vice president. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  19. LEGO-Inspired Drug Design: Unveiling a Class of Benzo[d]thiazoles Containing a 3,4-Dihydroxyphenyl Moiety as Plasma Membrane H+ -ATPase Inhibitors.

    PubMed

    Tung, Truong-Thanh; Dao, Trong T; Junyent, Marta G; Palmgren, Michael; Günther-Pomorski, Thomas; Fuglsang, Anja T; Christensen, Søren B; Nielsen, John

    2018-01-08

    The fungal plasma membrane H + -ATPase (Pma1p) is a potential target for the discovery of new antifungal agents. Surprisingly, no structure-activity relationship studies for small molecules targeting Pma1p have been reported. Herein, we disclose a LEGO-inspired fragment assembly strategy for the design, synthesis, and discovery of benzo[d]thiazoles containing a 3,4-dihydroxyphenyl moiety as potential Pma1p inhibitors. A series of 2-(benzo[d]thiazol-2-ylthio)-1-(3,4-dihydroxyphenyl)ethanones was found to inhibit Pma1p, with the most potent IC 50 value of 8 μm in an in vitro plasma membrane H + -ATPase assay. These compounds were also found to strongly inhibit the action of proton pumping when Pma1p was reconstituted into liposomes. 1-(3,4-Dihydroxyphenyl)-2-((6-(trifluoromethyl)benzo[d]thiazol-2-yl)thio)ethan-1-one (compound 38) showed inhibitory activities on the growth of Candida albicans and Saccharomyces cerevisiae, which could be correlated and substantiated with the ability to inhibit Pma1p in vitro. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, E.O.; Lebedev, V.A.; Kuznetsov, Yu.N.

    Zheleznogorsk is situated near the territorial center -- Krasnoyarsk on the Yenisei river. Mining and chemical complex is the main industrial enterprise of the town, which has been constructed for generation and used for isolation of weapons-grade plutonium. Heat supply to the chemical complex and town at the moment is largely provided by nuclear co-generation plant (NCGP) on the basis of the ADEh-2 dual-purpose reactor, generating 430 Gcal/h of heat and, partially, by coal backup peak-load boiler houses. NCGP also provides 73% of electric power consumed. In line with agreements between Russia and USA on strategic arms reduction and phasingmore » out of weapons-grade plutonium production, decommissioning of the ADEh-2 reactor by 2000 is planned. Thus, a problem arises relative to compensation for electric and thermal power generation for the needs of the town and industrial enterprises, which is now supplied by the reactor. A nuclear power plant constructed on the same site as a substituting power source should be considered as the most practical option. Basic requirements to the reactor of substituting nuclear power plant are as follows. It is to be a new generation reactor on the basis of verified technologies, having an operating prototype optimal for underground siting and permitting utmost utilization of the available mining workings and those being disengaged. NCGP with the reactor is to be constructed in the time period required and is to become competitive with other possible power sources. Analysis has shown that the VK-300 simplified vessel-type boiling reactor meets the requirements made in the maximum extent. Its design is based on the experience of the VK-50 reactor operation for a period of 30 years in Dimitrovgrad (Russia) and allows for experience in the development of the SBWR type reactors. The design of the reactor is discussed.« less

  2. The spectral properties of uranium hexafluoride and its thermal decomposition products

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.

  3. A PC-based high temperature gas reactor simulator for Indonesian conceptual HTR reactor basic training

    NASA Astrophysics Data System (ADS)

    Syarip; Po, L. C. C.

    2018-05-01

    In planning for nuclear power plant construction in Indonesia, helium cooled high temperature reactor (HTR) is favorable for not relying upon water supply that might be interrupted by earthquake. In order to train its personnel, BATAN has cooperated with Micro-Simulation Technology of USA to develop a 200 MWt PC-based simulation model PCTRAN/HTR. It operates in Win10 environment with graphic user interface (GUI). Normal operation of startup, power maneuvering, shutdown and accidents including pipe breaks and complete loss of AC power have been conducted. A sample case of safety analysis simulation to demonstrate the inherent safety features of HTR was done for helium pipe break malfunction scenario. The analysis was done for the variation of primary coolant pipe break i.e. from 0,1% - 0,5 % and 1% - 10 % helium gas leakages, while the reactor was operated at the maximum constant power of 10 MWt. The result shows that the highest temperature of HTR fuel centerline and coolant were 1150 °C and 1296 °C respectively. With 10 kg/s of helium flow in the reactor core, the thermal power will back to the startup position after 1287 s of helium pipe break malfunction.

  4. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brynda, W.J.; Passell, L.; Rorer, D.C.

    1995-01-01

    After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a nationalmore » scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.« less

  5. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  6. KERENA safety concept in the context of the Fukushima accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharias, T.; Novotny, C.; Bielor, E.

    Within the last three years AREVA NP and E.On KK finalized the basic design of KERENA which is a medium sized innovative boiling water reactor, based on the operational experience of German BWR nuclear power plants (NPPs). It is a generation III reactor design with a net electrical output of about 1250 MW. It combines active safety equipment of service-proven designs with new passive safety components, both safety classified. The passive systems utilize basic laws of physics, such as gravity and natural convection, enabling them to function without electric power. Even actuation of these systems is performed thanks to basicmore » physic laws. The degree of diversity in component and system design, achieved by combining active and passive equipment, results in a very low core damage frequency. The Fukushima accident enhanced the world wide discussion about the safety of operating nuclear power plants. World wide stress tests for operating nuclear power plants are being performed embracing both natural and man made hazards. Beside the assessment of existing power plants, also new designs are analyzed regarding the system response to beyond design base accidents. KERENA's optimal combination of diversified cooling systems (active and passive) allows passing efficiently such tests, with a high level of confidence. This paper describes the passive safety components and the KERENA reactor behavior after a Fukushima like accident. (authors)« less

  7. Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Narayan, Sri R.

    2009-01-01

    Two hydrogen generators based on reactions involving magnesium and steam have been proposed as means for generating the fuel (hydrogen gas) for such fuel-cell power systems as those to be used in the drive systems of advanced motor vehicles. The hydrogen generators would make it unnecessary to rely on any of the hydrogen storage systems developed thus far that are, variously, too expensive, too heavy, too bulky, and/or too unsafe to be practical. The two proposed hydrogen generators are denoted basic and advanced, respectively. In the basic hydrogen generator (see figure), steam at a temperature greater than or equals 330 C would be fed into a reactor charged with magnesium, wherein hydrogen would be released in the exothermic reaction Mg + H2O yields MgO + H2. The steam would be made in a flash boiler. To initiate the reaction, the boiler could be heated electrically by energy borrowed from a storage battery that would be recharged during normal operation of the associated fuel-cell subsystem. Once the reaction was underway, heat from the reaction would be fed to the boiler. If the boiler were made an integral part of the hydrogen-generator reactor vessel, then the problem of transfer of heat from the reactor to the boiler would be greatly simplified. A pump would be used to feed water from a storage tank to the boiler.

  8. Ghost Hunting with Lollies, Chess and Lego: Appreciating the "Messy" Complexity (and Costs) of Doing Difficult Research in Education

    ERIC Educational Resources Information Center

    Graham, Linda J.; Buckley, Linda

    2014-01-01

    This paper contributes to conversations about the funding and quality of education research. The paper proceeds in two parts. Part I sets the context by presenting an historical analysis of funding allocations made to Education research through the ARC's Discovery projects scheme between the years 2002 and 2014, and compares these trends to…

  9. Kindergarteners Can Do It--So Can You: A Case Study of a Constructionist Technology-Rich First Year Seminar for Undergraduate College Students

    ERIC Educational Resources Information Center

    Beisser, Sally; Gillespie, Catherine

    2003-01-01

    "Constructionism" is a theory of learning proposed by Seymour Papert of MIT. Co-instructors for a first year seminar for undergraduate students provided education students with a one-semester constructionist experience to learn by engaging with technology. Students used LEGO[R] construction bricks and pieces to solve problems by building, working…

  10. Lego clocks: building a clock from parts.

    PubMed

    Brunner, Michael; Simons, Mirre J P; Merrow, Martha

    2008-06-01

    A new finding opens up speculation that the molecular mechanism of circadian clocks in Synechococcus elongatus is composed of multiple oscillator systems (Kitayama and colleagues, this issue, pp. 1513-1521), as has been described in many eukaryotic clock model systems. However, an alternative intepretation is that the pacemaker mechanism-as previously suggested-lies primarily in the rate of ATP hydrolysis by the clock protein KaiC.

  11. Becoming through "The Break": A Post-Human Account of a Child's Play

    ERIC Educational Resources Information Center

    Boldt, Gail M.; Leander, Kevin

    2017-01-01

    In this article, we think through six-year-old Mike's play with Lego and with his father, using Deleuze and Guattari's concept of the break. For Deleuze and Guattari, the break is thought about in relation to impersonal flows of desire that are always everywhere at work and to the refrain, which we describe as materials and energies organized into…

  12. The Competence of Modelling in Learning Chemical Change: A Study with Secondary School Students

    ERIC Educational Resources Information Center

    Oliva, José Mª; del Mar Aragón, María; Cuesta, Josefa

    2015-01-01

    The competence of modelling as part of learning about chemical change is analysed in a sample of 35 secondary students, ages 14-15 years, during their study of a curricular unit on this topic. The teaching approach followed is model based, with frequent use of analogies and mechanical models (fruits and bowls, Lego pieces, balls of plasticine,…

  13. Using Analogy Role-Play Activity in an Undergraduate Biology Classroom to Show Central Dogma Revision

    ERIC Educational Resources Information Center

    Takemura, Masaharu; Kurabayashi, Mario

    2014-01-01

    For the study of biology in an undergraduate classroom, a classroom exercise was developed: an analogy role-play to learn mechanisms of gene transcription and protein translation (central dogma). To develop the central dogma role-play exercise, we made DNA and mRNA using paper sheets, tRNA using a wire dress hanger, and amino acids using Lego®…

  14. Symposium on the peaceful uses of atomic energy in Australia, 1958, held in Sydney, in June 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Thirty-nine papers presented at the conference are collected here. The papers are divided into five sections: Materials, Power Engineering, Power Auxiliaries and Research Reactors, Basic Sciences, and Associated Techniques. Separate abstracts of each section have been prepared. (T.R.H.)

  15. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and the role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: the role of nuclear power; the role of electricity; generating electricity with the…

  16. Protective interior wall and attaching means for a fusion reactor vacuum vessel

    DOEpatents

    Phelps, R.D.; Upham, G.A.; Anderson, P.M.

    1985-03-01

    The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.

  17. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: (1) "The Role of Nuclear Power"; (2) "The Role of Electricity"; (3)…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most ofmore » what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.« less

  19. GEH-4-42, 47; Hot pressed, I and E cooled fuel element irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neidner, R.

    1959-11-02

    In our continual effort to improve the present fuel elements which are irradiated in the numerous Hanford reactors, we have made what we believe to be a significant improvement in the hot pressing process for jacketing uranium fuel slugs. We are proposing a large scale evaluation testing program in the Hanford reactors but need the vital and basic information on the operating characteristics of this type slug under known and controlled operating conditions. We, therefore, have prepared two typical fuel slugs and will want them irradiated to about 1000 MWD/T exposure (this will require about four to five total cycles).

  20. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it ismore » shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.« less

  1. A New Innovative Spherical Cermet Nuclear Fuel Element to Achieve an Ultra-Long Core Life for use in Grid-Appropriate LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senor, David J.; Painter, Chad L.; Geelhood, Ken J.

    2007-12-01

    Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less

  2. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less

  3. Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program

    NASA Astrophysics Data System (ADS)

    Deswandri; Subekti, M.; Sunaryo, Geni Rina

    2018-02-01

    Multipurpose Research Reactor G.A. Siwabessy (RSG-GAS) which has been operating since 1987 is one of the main facilities on supporting research, development and application of nuclear energy programs in BATAN. Until now, the RSG-GAS research reactor has been successfully operated safely and securely. However, because it has been operating for nearly 30 years, the structures, systems and components (SSCs) from the reactor would have started experiencing an aging phase. The process of aging certainly causes a decrease in reliability and safe performances of the reactor, therefore the aging management program is needed to resolve the issues. One of the programs in the aging management is to evaluate the safety and reliability of the system and also screening the critical components to be managed.One method that can be used for such purposes is the Fault Tree Analysis (FTA). In this papers FTA method is used to screening the critical components in the RSG-GAS Primary Cooling System. The evaluation results showed that the primary isolation valves are the basic events which are dominant against the system failure.

  4. Design and testing of the reactor-internal hydraulic control rod drive for the nuclear heating plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batheja, P.; Meier, W.J.; Rau, P.J.

    A hydraulically driven control rod is being developed at Kraftwerk Union for integration in the primary system of a small nuclear district heating reactor. An elaborate test program, under way for --3 yr, was initiated with a plexiglass rig to understand the basic principles. A design specification list was prepared, taking reactor boundary conditions and relevant German rules and regulations into account. Subsequently, an atmospheric loop for testing of components at 20 to 90/sup 0/C was erected. The objectives involved optimization of individual components such as a piston/cylinder drive unit, electromagnetic valves, and an ultrasonic position indication system as wellmore » as verification of computer codes. Based on the results obtained, full-scale components were designed and fabricated for a prototype test rig, which is currently in operation. Thus far, all atmospheric tests in this rig have been completed. Investigations under reactor temperature and pressure, followed by endurance tests, are under way. All tests to date have shown a reliable functioning of the hydraulic drive, including a novel ultrasonic position indication system.« less

  5. Learning Long-Range Vision for an Offroad Robot

    DTIC Science & Technology

    2008-09-01

    robot to perceive and navigate in an unstructured natural world is a difficult task. Without learning, navigation systems are short-range and extremely...unsupervised or weakly supervised learning methods are necessary for training general feature representations for natural scenes. The process was...the world looked dark, and Legos when I was weary. iii ABSTRACT Teaching a robot to perceive and navigate in an unstructured natural world is a

  6. S'Cool Tools: 5 Great Tools to Perk Up Your Classroom and Engage Your Students

    ERIC Educational Resources Information Center

    Yoder, Maureen Brown

    2009-01-01

    For a kindergarten teacher trying to find a new way to help his/her students learn about shapes and patterns or a high school science teacher hoping to bring ecology alive, there is a tool that could be just right for them. This article presents five learning tools that have the potential to transform lessons: (1) Lego Education's WeDo Robotics…

  7. T Cell LEGO: Identifying the Master Builders and What They Do.

    PubMed

    Li, Jasmine; Turner, Stephen J

    2018-02-20

    Understanding how cell fate decisions are made during cellular differentiation and the mechanisms that drive them is a holy grail of cell biology. In this issue of Immunity, Hu et al. (2018) and Johnson et al. (2018) demonstrate that key transcriptional regulators and global changes in nuclear architecture underlie differentiation decisions during T cell development. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. KSC-2011-7825

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- -- NASA Kennedy Space Center Deputy Director Janet Petro addresses pre-calculus, engineering, and physics students at Timber Creek High School in Orlando, Fla., on the future of the center during an education outreach event on Nov. 16 in the school’s Performing Arts Center. Students also had the opportunity to view FIRST Robotics robot in action and learned about Kennedy’s Educate to Innovate (KETI) LEGO Mindstorm activities. Photo credit: NASA/Gianni Woods

  9. Increasing the lego of 2D electronics materials: silicene and germanene, graphene's new synthetic cousins

    NASA Astrophysics Data System (ADS)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry; Eugenia Dávila, Maria

    2015-05-01

    The realization of the first Field Effect Transistors operating at room temperature, based on a single layer silicene channel, open up highly promising perspectives, e.g., typically, for applications in digital electronics. Here, we describe recent results on the growth, characterization and electronic properties of novel synthetic two-dimensional materials beyond graphene, namely silicene and germanene, its silicon and germanium counterparts.

  10. An open-source framework for testing tracking devices using Lego Mindstorms

    NASA Astrophysics Data System (ADS)

    Jomier, Julien; Ibanez, Luis; Enquobahrie, Andinet; Pace, Danielle; Cleary, Kevin

    2009-02-01

    In this paper, we present an open-source framework for testing tracking devices in surgical navigation applications. At the core of image-guided intervention systems is the tracking interface that handles communication with the tracking device and gathers tracking information. Given that the correctness of tracking information is critical for protecting patient safety and for ensuring the successful execution of an intervention, the tracking software component needs to be thoroughly tested on a regular basis. Furthermore, with widespread use of extreme programming methodology that emphasizes continuous and incremental testing of application components, testing design becomes critical. While it is easy to automate most of the testing process, it is often more difficult to test components that require manual intervention such as tracking device. Our framework consists of a robotic arm built from a set of Lego Mindstorms and an open-source toolkit written in C++ to control the robot movements and assess the accuracy of the tracking devices. The application program interface (API) is cross-platform and runs on Windows, Linux and MacOS. We applied this framework for the continuous testing of the Image-Guided Surgery Toolkit (IGSTK), an open-source toolkit for image-guided surgery and shown that regression testing on tracking devices can be performed at low cost and improve significantly the quality of the software.

  11. KSC-03PD-1853

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- 'Spirit' and 'Opportunity' -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  12. KSC-03PD-1848

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Nine-year-old Sofi Collis poses proudly with a banner displaying the names she selected for the Mars Exploration Rovers -- 'Spirit' and 'Opportunity' -- during a press conference. Participating in the press conference are, from left, Brad Justus, LEGO Co. senior vice president; Sofi Collis, a third grade student from Arizona; Dr. John Marburger, science advisor to the President and director of the Office of Science and Technology Policy; and NASA Administrator Sean O'Keefe. The names Sofi suggested were selected from more than 10,000 student entries in an essay contest managed for NASA by the LEGO Company. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans are not yet able to go. MER-A, with the rover Spirit aboard, is scheduled to launch on June 8 at 2:06 p.m. EDT, with two launch opportunities each day during a launch period that closes on June 24.

  13. Trails of meaning construction: Symbolic artifacts engage the social brain.

    PubMed

    Tylén, Kristian; Philipsen, Johanne Stege; Roepstorff, Andreas; Fusaroli, Riccardo

    2016-07-01

    Symbolic artifacts present a challenge to theories of neurocognitive processing due to their hybrid nature: they are at the same time physical objects and vehicles of intangible social meanings. While their physical properties can be read of their perceptual appearance, the meaning of symbolic artifacts depends on the perceiver's interpretative attitude and embeddedness in cultural practices. In this study, participants built models of LEGO bricks to illustrate their understanding of abstract concepts. They were then scanned with fMRI while presented to photographs of their own and others' models. When participants attended to the meaning of the models in contrast to their bare physical properties, we observed activations in mPFC and TPJ, areas often associated with social cognition, and IFG, possibly related to semantics. When contrasting own and others' models, we also found activations in precuneus, an area associated with autobiographical memory and agency, while looking at one's own collective models yielded interaction effects in rostral ACC, right IFG and left Insula. Interestingly, variability in the insula was predicted by individual differences in participants' feeling of relatedness to their fellow group members during LEGO construction activity. Our findings support a view of symbolic artifacts as neuro-cognitive trails of human social interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in Saccharomyces cerevisiae.

    PubMed

    Deaner, Matthew; Holzman, Allison; Alper, Hal S

    2018-04-16

    Metabolic engineering typically utilizes a suboptimal step-wise gene target optimization approach to parse a highly connected and regulated cellular metabolism. While the endonuclease-null CRISPR/Cas system has enabled gene expression perturbations without genetic modification, it has been mostly limited to small sets of gene targets in eukaryotes due to inefficient methods to assemble and express large sgRNA operons. In this work, we develop a TEF1p-tRNA expression system and demonstrate that the use of tRNAs as splicing elements flanking sgRNAs provides higher efficiency than both Pol III and ribozyme-based expression across a variety of single sgRNA and multiplexed contexts. Next, we devise and validate a scheme to allow modular construction of tRNA-sgRNA (TST) operons using an iterative Type IIs digestion/ligation extension approach, termed CRISPR-Ligation Extension of sgRNA Operons (LEGO). This approach enables facile construction of large TST operons. We demonstrate this utility by constructing a metabolic rewiring prototype for 2,3-butanediol production in 2 distinct yeast strain backgrounds. These results demonstrate that our approach can act as a surrogate for traditional genetic modification on a much shorter design-cycle timescale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Morphological, structural, thermal, compositional, vibrational, and pasting characterization of white, yellow, and purple Arracacha Lego-like starches and flours (Arracacia xanthorrhiza).

    PubMed

    Londoño-Restrepo, Sandra M; Rincón-Londoño, Natalia; Contreras-Padilla, Margarita; Millan-Malo, Beatriz M; Rodriguez-Garcia, Mario E

    2018-07-01

    This work is focused on the chemical, structural, morphological, thermal, IR vibrational, and pasting characterization of isolated white, yellow, and purple Arracacha starches from Colombia. Inductive couple plasma showed that these starches are rich in potassium. Scanning Electron Microscopy (SEM) images show that the starch granules are formed by ovoid fully filled Lego-like starch microparticles, the circular cross-section has a diameter between 9 and 15μm and mayor axis between 20 and 30μm. Each one of these ovoids is formed by irregular wedge-shaped 6 to 10 isolated starch granules with an average size between 4 and 12μm. The amylose content ranged between 31 and 36%. Arracacha starches exhibited high viscosity values (between 20.000 and 28.000cP), which could be influenced by the high content of potassium ions, due to the C-H~K Van Der Waals interaction that was identified by using IR spectroscopy. According to the X-ray diffraction analysis, the starch patterns exhibited broad diffracted peaks which could be associated with the existence of nano-crystals and lamellae; the Differential Scanning calorimetry (DSC) result showed starches with a low gelatinization temperature of about 60°C. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. User-friendly freehand ultrasound calibration using Lego bricks and automatic registration.

    PubMed

    Xiao, Yiming; Yan, Charles Xiao Bo; Drouin, Simon; De Nigris, Dante; Kochanowska, Anna; Collins, D Louis

    2016-09-01

    As an inexpensive, noninvasive, and portable clinical imaging modality, ultrasound (US) has been widely employed in many interventional procedures for monitoring potential tissue deformation, surgical tool placement, and locating surgical targets. The application requires the spatial mapping between 2D US images and 3D coordinates of the patient. Although positions of the devices (i.e., ultrasound transducer) and the patient can be easily recorded by a motion tracking system, the spatial relationship between the US image and the tracker attached to the US transducer needs to be estimated through an US calibration procedure. Previously, various calibration techniques have been proposed, where a spatial transformation is computed to match the coordinates of corresponding features in a physical phantom and those seen in the US scans. However, most of these methods are difficult to use for novel users. We proposed an ultrasound calibration method by constructing a phantom from simple Lego bricks and applying an automated multi-slice 2D-3D registration scheme without volumetric reconstruction. The method was validated for its calibration accuracy and reproducibility. Our method yields a calibration accuracy of [Formula: see text] mm and a calibration reproducibility of 1.29 mm. We have proposed a robust, inexpensive, and easy-to-use ultrasound calibration method.

  17. Teaching Reaction Engineering Using the Attainable Region

    ERIC Educational Resources Information Center

    Metzger, Matthew J.; Glasser, Benjamin J.; Glasser, David; Hausberger, Brendon; Hildebrandt, Diane

    2007-01-01

    Ask a graduating chemical engineering student the following question: What makes one reactor different from the next? The answers received will often be unsatisfactory and will vary widely in scope. Some may cite the difference between the basic design equations, others may point out a PFR is "longer," and still others may state that it…

  18. MHD compressor---expander conversion system integrated with GCR inside a deployable reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuninetti, G.; Botta, E.; Criscuolo, C.

    1989-04-20

    This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less

  19. Implications of Zircaloy creep and growth to light water reactor performance

    NASA Astrophysics Data System (ADS)

    Franklin, David G.; Adamson, Ronald B.

    1988-10-01

    Deformation of zirconium alloy components in nuclear reactors has been a concern since the decision of Admiral Rickover to use them in the US Navy submarine reactors. With the exception of the first few light water reactors (LWRs) most of the core structural materials have been fabricated from either Zircaloy-2 or Zircaloy-4. Performance of these alloys has been extremely good, even though the effects of irradiation on deformation magnitudes and mechanisms were not fully appreciated until extensive service and in-reactor tests were accomplished. Since the reactor components are designed to operate at stress levels well below yield for normal conditions, the only significant deformation is time dependent. Although creep was anticipated, the enhancement by neutron irradiation and the stress-free, nearly constant-volume shape change known as irradiation growth were not known prior to materials testing in reactors under controlled conditions. Both of these phenomena have significant impact on performance and must be accounted for properly in design. Although irradiation creep and growth have resulted in only one significant performance problem (creep collapse of fuel cladding, which has been eliminated), deformation magnitudes and, particularly, differentials in strain magnitudes, are a continuing source of interest. Factors that affect dimensional stability due to both creep and growth include temperature, fluence, residual stress, texture, and microstructure. The first two are reactor variables and the others are related to component fabrication history. This paper includes a review of the applications of Zircaloy creep and growth to LWR fuel designs, a review of the impact of in-reactor creep and growth on fuel rod and fuel assembly performance, and comments on potential improvements. Since the reactor design, fuel design and the core environment in BWRs and PWRs are quite different, appropriate separation of the application of effects are made; of course, the basic phenomena are the same in both systems.

  20. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  1. Droplet Core Nuclear Rocket (DCNR)

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim

    1991-01-01

    The most basic design feature of the droplet core nuclear reactor is to spray liquid uranium into the core in the form of droplets on the order of five to ten microns in size, to bring the reactor to critical conditions. The liquid uranium fuel ejector is driven by hydrogen, and more hydrogen is injected from the side of the reactor to about one and a half meters from the top. High temperature hydrogen is expanded through a nozzle to produce thrust. The hydrogen pressure in the system can be somewhere between 50 and 500 atmospheres; the higher pressure is more desirable. In the lower core region, hydrogen is tangentially injected to serve two purposes: (1) to provide a swirling flow to protect the wall from impingement of hot uranium droplets: (2) to generate a vortex flow that can be used for fuel separation. The reactor is designed to maximize the energy generation in the upper region of the core. The system can result in and Isp of 2000 per second, and a thrust-to-weight ratio of 1.6 for the shielded reactor. The nuclear engine system can reduce the Mars mission duration to less than 200 days. It can reduce the hydrogen consumption by a factor of 2 to 3, which reduces the hydrogen load by about 130 to 150 metric tons.

  2. Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    2015-01-01

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less

  3. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  4. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation.

    PubMed

    Jeong, K; Choo, Y S; Hong, H J; Yoon, Y S; Song, M H

    2015-03-01

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 ml and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.

  5. Tetrafluoroethane (R134a) hydrate formation within variable volume reactor accompanied by evaporation and condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, K.; Choo, Y. S.; Hong, H. J.

    Vast size hydrate formation reactors with fast conversion rate are required for the economic implementation of seawater desalination utilizing gas hydrate technology. The commercial target production rate is order of thousand tons of potable water per day per train. Various heat and mass transfer enhancement schemes including agitation, spraying, and bubbling have been examined to maximize the production capacities in scaled up design of hydrate formation reactors. The present experimental study focused on acquiring basic knowledge needed to design variable volume reactors to produce tetrafluoroethane hydrate slurry. Test vessel was composed of main cavity with fixed volume of 140 mlmore » and auxiliary cavity with variable volume of 0 ∼ 64 ml. Temperatures at multiple locations within vessel and pressure were monitored while visual access was made through front window. Alternating evaporation and condensation induced by cyclic volume change provided agitation due to density differences among water and vapor, liquid and hydrate R134a as well as extended interface area, which improved hydrate formation kinetics coupled with latent heat release and absorption. Influences of coolant temperature, piston stroke/speed, and volume change period on hydrate formation kinetics were investigated. Suggestions of reactor design improvement for future experimental study are also made.« less

  6. Developments and Tendencies in Fission Reactor Concepts

    NASA Astrophysics Data System (ADS)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Sterbentz, James W.; Snoj, Luka

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  8. Properties of the ion-ion hybrid resonator in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, George J.

    2015-10-06

    The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts betweenmore » experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.« less

  9. Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst

    DOEpatents

    Matthews, Charles W.

    1977-01-01

    A method is provided for removing ammonia from the sour water stream of a coal gasification process. The basic steps comprise stripping the ammonia from the sour water; heating the stripped ammonia to a temperature from between 400.degree. to 1,000.degree. F; passing the gaseous ammonia through a reactor containing a sulfided catalyst to produce elemental hydrogen and nitrogen; and scrubbing the reaction product to obtain an ammonia-free gas. The residual equilibrium ammonia produced by the reactor is recycled into the stripper. The ammonia-free gas may be advantageously treated in a Claus process to recover elemental sulfur. Iron sulfide or cobalt molybdenum sulfide catalysts are used.

  10. Screening of redox couples and electrode materials

    NASA Technical Reports Server (NTRS)

    Giner, J.; Swette, L.; Cahill, K.

    1976-01-01

    Electrochemical parameters of selected redox couples that might be potentially promising for application in bulk energy storage systems were investigated. This was carried out in two phases: a broad investigation of the basic characteristics and behavior of various redox couples, followed by a more limited investigation of their electrochemical performance in a redox flow reactor configuration. In the first phase of the program, eight redox couples were evaluated under a variety of conditions in terms of their exchange current densities as measured by the rotating disk electrode procedure. The second phase of the program involved the testing of four couples in a redox reactor under flow conditions with a varity of electrode materials and structures.

  11. KSC-2011-7824

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- -- Pre-calculus, engineering, and physics students at Timber Creek High School in Orlando, Fla., had the opportunity to view a FIRST robotics robot demonstration during an education outreach event on Nov. 16 in the school’s Performing Arts Center. Students, heard from NASA Kennedy Space Center Deputy Director Janet Petro about work being done at the center, and also learned about Kennedy’s Educate to Innovate (KETI) LEGO Mindstorm activities. Photo credit: NASA/Gianni Woods

  12. KSC-2011-7822

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- -- NASA Kennedy Space Center Deputy Director Janet Petro addresses pre-calculus, engineering and physics students at Timber Creek High School, in Orlando, Fla., on work being done at the center during an education outreach event on Nov. 16. Students also had the opportunity to view a FIRST Robotics robot in action, and learn about Kennedy’s Educate to Innovate (KETI) LEGO Mindstorm activities in the school’s Performing Arts Center. Photo credit: NASA/Gianni Woods

  13. Block copolymer libraries: modular versatility of the macromolecular Lego system.

    PubMed

    Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S

    2004-12-21

    The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.

  14. KSC-2011-7821

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- -- NASA Kennedy Space Center Deputy Director Janet Petro addresses pre-calculus, engineering and physics students at Timber Creek High School, in Orlando, Fla., on work being done at the center during an education outreach event on Nov. 16. Students also had the opportunity to view a FIRST Robotics robot in action, and learn about Kennedy’s Educate to Innovate (KETI) LEGO Mindstorm activities in the school’s Performing Arts Center. Photo credit: NASA/Gianni Woods

  15. KSC-2011-7823

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- -- Pre-calculus, engineering, and physics students at Timber Creek High School in Orlando, Fla., listen to NASA Kennedy Space Center Deputy Director Janet Petro speak on work being done at the center during an education outreach event on Nov. 16 in the school’s Performing Arts Center. Students also had the opportunity to view a FIRST Robotics robot in action and learn about Kennedy’s Educate to Innovate (KETI) LEGO Mindstorm activities. Photo credit: NASA/Gianni Woods

  16. KSC-2011-7826

    NASA Image and Video Library

    2011-11-16

    CAPE CANAVERAL, Fla. -- Pre-calculus, engineering, and physics students at Timber Creek High School in Orlando, Fla., had the opportunity to view a FIRST robotics robot demonstration during an education outreach event on Nov. 16 in the school’s Performing Arts Center. Students, heard from NASA Kennedy Space Center Deputy Director Janet Petro about work being done at the center, and learned about Kennedy’s Educate to Innovate (KETI) LEGO Mindstorm activities. Photo credit: NASA/Gianni Woods

  17. The Effect of Activities in Robotic Applications on Students' Perception on the Nature of Science and Students' Metaphors Related to the Concept of Robot

    ERIC Educational Resources Information Center

    Korkmaz, Özgen; Altun, Halis; Usta, Ertugrul; Özkaya, Armagan

    2014-01-01

    The purpose of this study is to examine students' perceptions of the nature of science and metaphors related to the concept of robot, to determine the differentiation in these perceptions and metaphors resulting from LEGO NXT robot applications, and to share some good examples of education-oriented activities with robots. In this study, a hybrid…

  18. RADIOACTIVE CONTAMINATION OF FOODS. PROBLEMS IN THE FOOD CONSUMPTION OF THE ITALIAN POPULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro-Luzzi, A.; Mariani, A.

    The aspects of health physics that are basically applications of physics are reviewed. Units of radiation measurement, RBE, permissible doses, personnel monitoring, applications of radiation spectrometry, and measurement of body activity are considered, as well as the release, dispersion, and deposition of radioactive material in reactor accidents. 140 references. (D.C.W.)

  19. Autonomous Control of Space Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Merk, John

    2013-01-01

    Nuclear reactors to support future robotic and manned missions impose new and innovative technological requirements for their control and protection instrumentation. Long-duration surface missions necessitate reliable autonomous operation, and manned missions impose added requirements for failsafe reactor protection. There is a need for an advanced instrumentation and control system for space-nuclear reactors that addresses both aspects of autonomous operation and safety. The Reactor Instrumentation and Control System (RICS) consists of two functionally independent systems: the Reactor Protection System (RPS) and the Supervision and Control System (SCS). Through these two systems, the RICS both supervises and controls a nuclear reactor during normal operational states, as well as monitors the operation of the reactor and, upon sensing a system anomaly, automatically takes the appropriate actions to prevent an unsafe or potentially unsafe condition from occurring. The RPS encompasses all electrical and mechanical devices and circuitry, from sensors to actuation device output terminals. The SCS contains a comprehensive data acquisition system to measure continuously different groups of variables consisting of primary measurement elements, transmitters, or conditioning modules. These reactor control variables can be categorized into two groups: those directly related to the behavior of the core (known as nuclear variables) and those related to secondary systems (known as process variables). Reliable closed-loop reactor control is achieved by processing the acquired variables and actuating the appropriate device drivers to maintain the reactor in a safe operating state. The SCS must prevent a deviation from the reactor nominal conditions by managing limitation functions in order to avoid RPS actions. The RICS has four identical redundancies that comply with physical separation, electrical isolation, and functional independence. This architecture complies with the safety requirements of a nuclear reactor and provides high availability to the host system. The RICS is intended to interface with a host computer (the computer of the spacecraft where the reactor is mounted). The RICS leverages the safety features inherent in Earth-based reactors and also integrates the wide range neutron detector (WRND). A neutron detector provides the input that allows the RICS to do its job. The RICS is based on proven technology currently in use at a nuclear research facility. In its most basic form, the RICS is a ruggedized, compact data-acquisition and control system that could be adapted to support a wide variety of harsh environments. As such, the RICS could be a useful instrument outside the scope of a nuclear reactor, including military applications where failsafe data acquisition and control is required with stringent size, weight, and power constraints.

  20. The effectiveness of using the combined-cycle technology in a nuclear power plant unit equipped with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Gospodchenkov, I. V.

    2015-05-01

    The design of a modular SVBR-100 reactor with a lead-bismuth alloy liquid-metal coolant is described. The basic thermal circuit of a power unit built around the SVBR-100 reactor is presented together with the results of its calculation. The gross electrical efficiency of the turbine unit driven by saturated steam at a pressure of 6.7 MPa is estimated at η{el/gr} = 35.5%. Ways for improving the efficiency of this power unit and increasing its power output by applying gas-turbine and combined-cycle technologies are considered. With implementing a combined-cycle power-generating system comprising two GE-6101FA gas-turbine units with a total capacity of 140 MW, it becomes possible to obtain the efficiency of the combined-cycle plant equipped with the SVBR-100 reactor η{el/gr} = 45.39% and its electrical power output equal to 328 MW. The heat-recovery boiler used as part of this power installation generates superheated steam with a temperature of 560°C, due to which there is no need to use a moisture separator/steam reheater in the turbine unit thermal circuit.

  1. Discussion-preliminary review of the safety aspects of the crossunder line, Project CG-884. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.S.

    1960-12-19

    In order to reduce both charge-discharge shutdown time and the number of manhours of radiation exposure, Project CGI-884 is being completed at the B, D, DR, F and R Reactors. This consists essentially of installing a large drain line at the bottom of one rear reactor riser. This drain line passes to a control valve and then to the effluent line beyond the downcomer. This system by-passes the crossover downcomer part of the effluent system and eliminates the need for intermittent rear crossheader valving during reactor charge-discharge procedures. Two aspects of this system have been considered, its basic design requirements,more » and operating restrictions to ensure adequate process tube cooling. Because of the complexity of the reactor flow system approximate solutions were used to compare different methods or degrees of operation and establish limits. Despite these approximations, there was sufficient difference in the case results to justify the specific conclusions presented in this report. This report should serve the dual purpose of providing design requirements for the crossunder and also providing the technical criteria necessary for the operating standards for the use of this new system.« less

  2. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    NASA Astrophysics Data System (ADS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  3. Technical assumption for Mo-99 production in the MARIA reactor. Feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaroszewicz, J.; Pytel, K.; Dabkowski, L.

    2008-07-15

    The main objective of U-235 irradiation is to obtain the Tc-99m isotope which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short life time, is a reaction of radioactive decay of Mo-99 into Tc- 99m. One of the possible sources of molybdenum can be achieved in course of the U-235 fission reaction. The paper presents activities and the calculations results obtained upon the feasibility study on irradiation of U-235 targets for production of molybdenum in the MARIA reactor. The activities including technical assumption were focused on performing calculation for modelling ofmore » the target and irradiation device as well as adequate equipment and tools for processing in reactor. It has been assumed that the basic component of fuel charge is an aluminium cladded plate with dimensions of 40x230x1.45 containing 4.7 g U-235. The presumed mode of the heat removal generated in the fuel charge of the reactor primary cooling circuit influences the construction of installation to be used for irradiation and the technological instrumentation. The outer channel construction for irradiation has to be identical as the standard fuel channel construction of the MARIA reactor. It enables to use the existing slab and reactor mounting sockets for the fastening of the molybdenum channel as well as the cooling water delivery system. The measurement of water temperature cooling a fuel charge and control of water flow rate in the channel can also be carried out be means of the standard instrumentation of the reactor. (author)« less

  4. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  5. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  6. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less

  7. Fuel processing for PEM fuel cells: transport and kinetic issues of system design

    NASA Astrophysics Data System (ADS)

    Zalc, J. M.; Löffler, D. G.

    In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.

  8. Two-phase reduced gravity experiments for a space reactor design

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.

    1987-01-01

    Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.

  9. High Throughput Plasma Water Treatment

    NASA Astrophysics Data System (ADS)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  10. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Benson; J. Cole; J. Jackson

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frybort, Jan

    A critical experiment is a standard part of training of students at the Training Reactor VR-1 operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague. In autumn 2005 the HEU fuel IRT-3M with enrichment 36 % {sup 235}U was replaced by the LEU fuel IRT-4M with enrichment 19.7 % {sup 235}U. The fuel replacement at the VR-1 Reactor is a part of an international program RERTR. This Paper presents basic information about preparation for the fuel replacement and approaching of the first critical state with the new zone configuration C1 which replacedmore » B1 core with the old IRT-3M fuel. The whole process was carried out according to the Czech law and the relevant international recommendations. The experience with the VR-1 operation confirms the assumption that the C1 core configuration will be suitable from the point of view of the reactivity balance for the long term safe operation of the Training Reactor VR-1. (author)« less

  12. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less

  13. Proposal for a novel type of small scale aneutronic fusion reactor

    NASA Astrophysics Data System (ADS)

    Gruenwald, J.

    2017-02-01

    The aim of this work is to propose a novel scheme for a small scale aneutronic fusion reactor. This new reactor type makes use of the advantages of combining laser driven plasma acceleration and electrostatic confinement fusion. An intense laser beam is used to create a lithium-proton plasma with high density, which is then collimated and focused into the centre of the fusion reaction chamber. The basic concept presented here is based on the 7Li-proton fusion reaction. However, the physical and technological fundamentals may generally as well be applied to 11B-proton fusion. The former fusion reaction path offers higher energy yields while the latter has larger fusion cross sections. Within this paper a technological realisation of such a fusion device, which allows a steady state operation with highly energetic, well collimated ion beam, is presented. It will be demonstrated that the energetic break even can be reached with this device by using a combination of already existing technologies.

  14. In-vessel melt retention as a severe accident management strategy for the Loviisa Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kymaelaeinen, O.; Tuomisto, H.; Theofanous, T.G.

    1997-02-01

    The concept of lower head coolability and in-vessel retention of corium has been approved as a basic element of the severe accident management strategy for IVO`s Loviisa Plant (VVER-440) in Finland. The selected approach takes advantage of the unique features of the plant such as low power density, reactor pressure vessel without penetrations at the bottom and ice-condenser containment which ensures flooded cavity in all risk significant sequences. The thermal analyses, which are supported by experimental program, demonstrate that in Loviisa the molten corium on the lower head of the reactor vessel is coolable externally with wide margins. This papermore » summarizes the approach and the plant modifications being implemented. During the approval process some technical concerns were raised, particularly with regard to thermal loadings caused by contact of cool cavity water and hot corium with the reactor vessel. Resolution of these concerns is also discussed.« less

  15. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  16. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  17. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    NASA Astrophysics Data System (ADS)

    Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-01

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  18. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no usemore » of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.« less

  19. Continuous Hydrolysis of Pectate by Immobilized Endo-polygalacturonase in a Continuously Stirred Tank Reactor.

    PubMed

    Iwasaki, K; Inoue, M; Matsubara, Y

    1998-01-01

    Enzymatic hydrolysis of pectate was carried out continuously to produce pectate oligosaccharides by immobilized endo-polygalacturonase in a continuous stirred tank reactor (CSTR) with high efficiency. The enzyme was immobilized on to chitosan beads by the absorption method, and the reaction was performed with an initial pectate concentration of 10 gl(-1) at 35°C and pH 4.0 at a dilution rate of 0.87-2.8 h(-1). The hydrolysis products mainly consisted of mono-, di-, tri-, tetra-, penta-, hexa- and heptasaccharides, with the highest conversion being 0.78. A higher volumetric production rate of the total hydrolyzate, which was dependent on the dilution rate, was obtained than that by a batch reaction. The hydrolysis process was mathematically modeled from the basic material balance and rate equations, and showed agreement between the simulated and experimental results. This reactor system was found to be effective for obtaining pectate oligosaccharides with a high production rate.

  20. LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants

    PubMed Central

    Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716

  1. Ultimate Atomic Bling: Nanotechnology of Diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  2. The Rocker (An Easy Anharmonic Oscillator for Classroom Demonstration)

    NASA Astrophysics Data System (ADS)

    Lieberherr, Martin

    2013-04-01

    Every instructor should know some easy examples of anharmonic oscillations. The rocking of an empty wine bottle or a slender beer glass is one of those: The angle is not a sinusoidal function of time and the period is not independent of the amplitude, not even for small amplitudes. But care has to be taken that the glass does not slip or rotate around a vertical axis. LEGO rockers (see Fig. 1) are much more reliable and versatile.

  3. Theory of hard diffraction and rapidity gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  4. Microgravity

    NASA Image and Video Library

    2002-08-07

    A student assembles a Lego (TM) Challenge device designed to operate in the portable drop tower demonstrator as part of the second Dropping in a Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  5. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    PubMed

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  6. Prediction of folding preference of 10 kDa silk-like proteins using a Lego approach and ab initio calculations.

    PubMed

    Pohl, Gábor; Beke, Tamás; Borbély, János; Perczel, András

    2006-11-15

    Because of their great flexibility and strength resistance, both spider silks and silkworm silks are of increasing scientific and commercial interest. Despite numerous spectroscopic and theoretical studies, several structural properties at the atomic level have yet to be identified. The present theoretical investigation focuses on these issues by studying three silk-like model peptides: (AG)(64), [(AG)(4)EG](16), and [(AG)(4)PEG](16), using a Lego-type approach to construct these polypeptides. On the basis of these examples it is shown that thermoneutral isodesmic reactions and ab initio calculations provide a capable method to investigate structural properties of repetitive polypeptides. The most probable overall fold schema of these molecules with respect to the type of embedded hairpin structures were determined at the ab initio level of theory (RHF/6-311++G(d,p)//RHF/3-21G). Further on, analysis is carried out on the possible hairpin and turn regions and on their effect on the global fold. In the case of the (AG)(64) model peptide, the optimal beta-sheet/turn ratio was also determined, which provided good support for experimental observations. In addition, lateral shearing of a hairpin "folding unit" was investigated at the quantum chemical level to explain the mechanical properties of spider silk. The unique mechanical characteristics of silk bio-compounds are now investigated at the atomic level.

  7. Physicochemical, morphological, and rheological characterization of Xanthosoma robustum Lego-like starch.

    PubMed

    Londoño-Restrepo, Sandra M; Rincón-Londoño, Natalia; Contreras-Padilla, Margarita; Acosta-Osorio, Andrés A; Bello-Pérez, Luis A; Lucas-Aguirre, Juan C; Quintero, Víctor D; Pineda-Gómez, Posidia; del Real-López, Alicia; Rodríguez-García, Mario E

    2014-04-01

    This work presents the physicochemical and pasting characterization of isolated mafafa starch and mafafa flour (Xanthosoma robustum). According to SEM images of mafafa starches in the tuber, these starches form Lego-like shaped structures with diameters between 8 and 35 μm conformed by several starch granules of wedge shape that range from 2 to 7 μm. The isolated mafafa starch is characterized by its low contents of protein, fat, and ash. The starch content in isolated starch was found to be 88.58% while the amylose content obtained was 35.43%. X-ray diffraction studies confirm that isolated starch is composed mainly by amylopectin. These results were confirmed by differential scanning calorimetry and thermo gravimetric analysis. This is the first report of the molecular parameters for mafafa starch: molar mass that ranged between 2×10(8) and 4×10(8) g/mol, size (Rg) value between 279 and 295 nm, and molecular density value between 9.2 and 9.7 g/(mol nm(3)). This study indicates that mafafa starch shows long chains of amylopectin this fact contributes to higher viscosity development and higher gel stability. The obtained gel phase is transparent in the UV-vis region. The viscosity, gel stability and optical properties suggest that there is potential for mafafa starch applications in the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The Spin Torque Lego - from spin torque nano-devices to advanced computing architectures

    NASA Astrophysics Data System (ADS)

    Grollier, Julie

    2013-03-01

    Spin transfer torque (STT), predicted in 1996, and first observed around 2000, brought spintronic devices to the realm of active elements. A whole class of new devices, based on the combined effects of STT for writing and Giant Magneto-Resistance or Tunnel Magneto-Resistance for reading has emerged. The second generation of MRAMs, based on spin torque writing : the STT-RAM, is under industrial development and should be out on the market in three years. But spin torque devices are not limited to binary memories. We will rapidly present how the spin torque effect also allows to implement non-linear nano-oscillators, spin-wave emitters, controlled stochastic devices and microwave nano-detectors. What is extremely interesting is that all these functionalities can be obtained using the same materials, the exact same stack, simply by changing the device geometry and its bias conditions. So these different devices can be seen as Lego bricks, each brick with its own functionality. During this talk, I will show how spin torque can be engineered to build new bricks, such as the Spintronic Memristor, an artificial magnetic nano-synapse. I will then give hints on how to assemble these bricks in order to build novel types of computing architectures, with a special focus on neuromorphic circuits. Financial support by the European Research Council Starting Grant NanoBrain (ERC 2010 Stg 259068) is acknowledged.

  9. Dorello's Canal for Laymen: A Lego-Like Presentation.

    PubMed

    Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil

    2012-06-01

    Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students.

  10. RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation

    PubMed Central

    van Nierop, Pim; Vormer, Tinke L.; Foijer, Floris; Verheij, Joanne; Lodder, Johannes C.; Andersen, Jesper B.; Mansvelder, Huibert D.; te Riele, Hein

    2018-01-01

    To identify coding and non-coding suppressor genes of anchorage-independent proliferation by efficient loss-of-function screening, we have developed a method for enzymatic production of low complexity shRNA libraries from subtracted transcriptomes. We produced and screened two LEGO (Low-complexity by Enrichment for Genes shut Off) shRNA libraries that were enriched for shRNA vectors targeting coding and non-coding polyadenylated transcripts that were reduced in transformed Mouse Embryonic Fibroblasts (MEFs). The LEGO shRNA libraries included ~25 shRNA vectors per transcript which limited off-target artifacts. Our method identified 79 coding and non-coding suppressor transcripts. We found that taurine-responsive GABAA receptor subunits, including GABRA5 and GABRB3, were induced during the arrest of non-transformed anchor-deprived MEFs and prevented anchorless proliferation. We show that taurine activates chloride currents through GABAA receptors on MEFs, causing seclusion of cell volume in large membrane protrusions. Volume seclusion from cells by taurine correlated with reduced proliferation and, conversely, suppression of this pathway allowed anchorage-independent proliferation. In human cholangiocarcinomas, we found that several proteins involved in taurine signaling via GABAA receptors were repressed. Low GABRA5 expression typified hyperproliferative tumors, and loss of taurine signaling correlated with reduced patient survival, suggesting this tumor suppressive mechanism operates in vivo. PMID:29787571

  11. Dorello's Canal for Laymen: A Lego-Like Presentation

    PubMed Central

    Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil

    2012-01-01

    Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students. PMID:23730547

  12. Pooling public and private funds in the patient's interest: the case for long-term care insurance.

    PubMed

    Launois, R

    1996-09-01

    Although the extent of medical care in France may be thought adequate, the same does not apply to the social medicine sector. The Assurance-maladie paid 87.7% of hospital health expenditure in 1994, whereas direct funding of home assistance amounted to only 9%. In contrast, a recent Legos study (Bungener M. et al. Le bilan économique et financier du secteur médico social, Université de Paris IX, Legos, Janvier 1994) [1] estimated that home assistance costs represent 41-50% of medical-social expenditure. When people are unable to manage because of the high costs of their invalidity, the social security system comes to their assistance, although only under Draconian conditions involving compulsory "family support commitments" and the state's claim on the inheritance of the beneficiary (total costs for hospital admission and boarding and the dual limits of 1000F liabilities and 250,000F net assets for home assistance). The elderly well appreciate the severity of this problem and are deeply distressed by the thought of dependency. Many, however, live under the illusion that the social security system or, to a lesser extent, the mutual funds will come to their assistance, although the problems involved lie partly outside their remits. We therefore need to design new systems to allow the elderly to finance their costs should they become dependant.

  13. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; McMurry, Peter H.; Hanson, David R.

    2014-06-01

    This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.

  14. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors.more » The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leppik, P.A.

    This paper presents results of a study designed to confirm that the interaction of the neutron flux and the coolant flow plays an important role in the mechanism of high-frequency (HF) resonant instability of the VK-50 boiling water reactor. To do this and to check the working model, signals from probes measuring the flow rate of the coolant and the neutron flux were recorded simultaneously (with the help of a magnetograph) in experiments performed in 1981 on driving the VK-50 reactor into the HF reonant instability regimes. Estimates were then obtained for the statistical characteristics of the pulsations of themore » flow rate and of the neutron flux, including the cross-correlation functions and coherence functions. The basic results of these studies are reported here.« less

  16. Engineering design aspects of the heat-pipe power system

    NASA Technical Reports Server (NTRS)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  17. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  18. Advanced propulsion engine assessment based on a cermet reactor

    NASA Technical Reports Server (NTRS)

    Parsley, Randy C.

    1993-01-01

    A preferred Pratt & Whitney conceptual Nuclear Thermal Rocket Engine (NTRE) has been designed based on the fundamental NASA priorities of safety, reliability, cost, and performance. The basic philosophy underlying the design of the XNR2000 is the utilization of the most reliable form of ultrahigh temperature nuclear fuel and development of a core configuration which is optimized for uniform power distribution, operational flexibility, power maneuverability, weight, and robustness. The P&W NTRE system employs a fast spectrum, cermet fueled reactor configured in an expander cycle to ensure maximum operational safety. The cermet fuel form provides retention of fuel and fission products as well as high strength. A high level of confidence is provided by benchmark analysis and independent evaluations.

  19. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  20. The preliminary design of bearings for the control system of a high-temperature lithium-cooled nuclear reactor

    NASA Technical Reports Server (NTRS)

    Yacobucci, H. G.; Waldron, W. D.; Walowit, J. A.

    1973-01-01

    The design of bearings for the control system of a fast reactor concept is presented. The bearings are required to operate at temperatures up to 2200 F in one of two fluids, lithium or argon. Basic bearing types are the same regardless of the fluid. Crowned cylindrical journals were selected for radially loaded bearings and modified spherical bearings were selected for bearings under combined thrust and radial loads. Graphite and aluminum oxide are the materials selected for the argon atmosphere bearings while cermet compositions (carbides or nitrides bonded with refractory metals) were selected for the lithium lubricated bearings. Mounting of components is by shrink fit or by axial clamping utilizing differential thermal expansion.

Top