Sample records for basic leucine zipper

  1. Thermodynamic analysis of the heterodimerization of leucine zippers of Jun and Fos transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seldeen, Kenneth L.; McDonald, Caleb B.; Deegan, Brian J.

    2008-10-31

    Jun and Fos are components of the AP1 family of transcription factors and bind to the promoters of a diverse multitude of genes involved in critical cellular responses such as cell growth and proliferation, cell cycle regulation, embryonic development and cancer. Here, using the powerful technique of isothermal titration calorimetry, we characterize the thermodynamics of heterodimerization of leucine zippers of Jun and Fos. Our data suggest that the heterodimerization of leucine zippers is driven by enthalpic forces with unfavorable entropy change at physiological temperatures. Furthermore, the basic regions appear to modulate the heterodimerization of leucine zippers and may undergo atmore » least partial folding upon heterodimerization. Large negative heat capacity changes accompanying the heterodimerization of leucine zippers are consistent with the view that leucine zippers do not retain {alpha}-helical conformations in isolation and that the formation of the native coiled-coil {alpha}-helical dimer is attained through a coupled folding-dimerization mechanism.« less

  2. The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N terminus of human TATA-binding protein-associated factor-1 (human TAF(II)250).

    PubMed

    Lively, Tricia N; Nguyen, Tuan N; Galasinski, Shelly K; Goodrich, James A

    2004-06-18

    We previously reported that c-Jun binds directly to the N-terminal 163 amino acids of Homo sapiens TATA-binding protein-associated factor-1 (hsTAF1), causing a derepression of transcription factor IID (TFIID)-driven transcription (Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G., and Goodrich, J. A. (2001) J. Biol. Chem. 276, 25582-25588). This region of hsTAF1 binds TATA-binding protein to repress TFIID DNA binding and transcription. Here we show that the basic leucine zipper domain of c-Jun, which allows for DNA binding and homodimerization, is necessary and sufficient for interaction with hsTAF1. Interestingly, the isolated basic leucine zipper domain of c-Jun was able to derepress TFIID-directed basal transcription in vitro. Moreover, when the N-terminal region of hsTAF1 was added to in vitro transcription reactions and overexpressed in cells, it blocked c-Jun activation. c-Fos, another basic leucine zipper protein, did not interact with hsTAF1, but c-Fos/c-Jun heterodimers did bind the N terminus of hsTAF1. Our studies show that, in addition to dimerization and DNA binding, the well characterized basic leucine zipper domain of c-Jun functions in transcriptional activation by binding to the N terminus of hsTAF1 to derepress transcription.

  3. Influence of the valine zipper region on the structure and aggregation of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5).

    PubMed

    Ciaccio, Natalie A; Reynolds, T Steele; Middaugh, C Russell; Laurence, Jennifer S

    2012-11-05

    Protein aggregation is a major problem for biopharmaceuticals. While the control of aggregation is critically important for the future of protein pharmaceuticals, mechanisms of aggregate assembly, particularly the role that structure plays, are still poorly understood. Increasing evidence indicates that partially folded intermediates critically influence the aggregation pathway. We have previously reported the use of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5) as a partially folded model system to investigate protein aggregation. This domain contains three regions with differing structural propensity: a N-terminal polybasic region, a central helical leucine zipper region, and a C-terminal extended valine zipper region. Additionally, a centrally positioned cysteine residue readily forms an intermolecular disulfide bond that reduces aggregation. Computational analysis of ATF5 predicts that the valine zipper region facilitates self-association. Here we test this hypothesis using a truncated mutant lacking the C-terminal valine zipper region. We compare the structure and aggregation of this mutant to the wild-type (WT) form under both reducing and nonreducing conditions. Our data indicate that removal of this region results in a loss of α-helical structure in the leucine zipper and a change in the mechanism of self-association. The mutant form displays increased association at low temperature but improved resistance to thermally induced aggregation.

  4. 3D Printing of Protein Models in an Undergraduate Laboratory: Leucine Zippers

    ERIC Educational Resources Information Center

    Meyer, Scott C.

    2015-01-01

    An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…

  5. Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.

    PubMed

    Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat

    2015-01-01

    The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.

  6. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    PubMed Central

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  7. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family.

    PubMed

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.

  8. The N-terminal leucine-zipper motif in PTRF/cavin-1 is essential and sufficient for its caveolae-association

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhuang; Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Zou, Xinle

    2015-01-16

    Highlight: • The N-terminal leucine-zipper motif in PTRF/cavin-1 determines caveolar association. • Different cellular localization of PTRF/cavin-1 influences its serine 389 and 391 phosphorylation state. • PTRF/cavin-1 regulates cell motility via its caveolar association. - Abstract: PTRF/cavin-1 is a protein of two lives. Its reported functions in ribosomal RNA synthesis and in caveolae formation happen in two different cellular locations: nucleus vs. plasma membrane. Here, we identified that the N-terminal leucine-zipper motif in PTRF/cavin-1 was essential for the protein to be associated with caveolae in plasma membrane. It could counteract the effect of nuclear localization sequence in the molecule (AAmore » 235–251). Deletion of this leucine-zipper motif from PTRF/cavin-1 caused the mutant to be exclusively localized in nuclei. The fusion of this leucine-zipper motif with histone 2A, which is a nuclear protein, could induce the fusion protein to be exported from nucleus. Cell migration was greatly inhibited in PTRF/cavin-1{sup −/−} mouse embryonic fibroblasts (MEFs). The inhibited cell motility could only be rescued by exogenous cavin-1 but not the leucine-zipper motif deleted cavin-1 mutant. Plasma membrane dynamics is an important factor in cell motility control. Our results suggested that the membrane dynamics in cell migration is affected by caveolae associated PTRF/cavin-1.« less

  9. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    PubMed

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  10. Production and Testing of Transgenic Cotton that Expresses Transcription Factors for Enhanced Seed and Fiber Traits and Productivity Under Drought Stress

    USDA-ARS?s Scientific Manuscript database

    Abscisic acid (ABA) is a plant hormone involved in abiotic and biotic stress adaptation and seed development. We have previously shown that Basic3 (B3) domain and basic leucine zipper (b-ZIP) transcription factors from the model plant species maize and Arabidopsis thaliana can transactivate monocot...

  11. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis.

    PubMed

    Roodbarkelari, Farshad; Groot, Edwin P

    2017-01-01

    Homeodomain-leucine zipper proteins (HD-ZIPs) form a plant-specific family of transcription factors functioning as homo- or heterodimers. Certain members of all four classes of this family are involved in embryogenesis, the focus of this review. They support auxin biosynthesis, transport and response, which are in turn essential for the apical-basal patterning of the embryo, radicle formation and outgrowth of the cotyledons. They transcriptionally regulate meristem regulators to maintain the shoot apical meristem once it is initiated. Some members are specific to the protoderm, the outermost layer of the embryo, and play a role in shoot apical meristem function. Within classes, homeodomain-leucine zippers tend to act redundantly during embryo development, and there are many examples of regulation within and between classes of homeodomain-leucine zippers. This indicates a complex network of regulation that awaits future experiments to uncover. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Characterization of leucine zipper complexes by electrospray ionization mass spectrometry.

    PubMed Central

    Wendt, H.; Dürr, E.; Thomas, R. M.; Przybylski, M.; Bosshard, H. R.

    1995-01-01

    The development of "soft" ionization methods has enabled the mass spectrometric analysis of higher-order structural features of proteins. We have applied electrospray ionization mass spectrometry (ESI-MS) to the analysis of the number and composition of polypeptide chains in homomeric and heteromeric leucine zippers. In comparison with other methods that have been used to analyze leucine zippers, such as analytical ultracentrifugation, gel chromatography, or electrophoretic band shift assays, ESI-MS is very fast and highly sensitive and provides a straightforward way to distinguish between homomeric and heteromeric coiled-coil structures. ESI-MS analyses were carried out on the parallel dimeric leucine zipper domain GCN4-p1 of the yeast transcription factor GCN4 and on three synthetic peptides with the sequences Ac-EYEALEKKLAAX1EAKX2QALEKKLEALEHG-amide: peptide LZ (X1, X2 = Leu), peptide LZ(12A) (X1 = Ala, X2 = Leu), and peptide LZ(16N) (X1 = Leu, X2 = Asn). Equilibrium ultracentrifugation analysis showed that LZ forms a trimeric coiled coil and this could be confirmed unequivocally by ESI-MS as could the dimeric nature of GCN4-p1. The formation of heteromeric two- and three-stranded leucine zippers composed of chains from LZ and LZ(12A), or from GCN4-p1 and LZ, was demonstrated by ESI-MS and confirmed by fluorescence quenching experiments on fluorescein-labeled peptides. The results illustrate the adaptability and flexibility of the leucine zipper motif, properties that could be useful to the design of specific protein assemblies by way of coiled-coil domains. PMID:8520482

  13. Attenuation of Marek's disease virus lacking the Meq oncogene in cell culture

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) encodes a basic leucine zipper oncoprotein, meq, which structurally resembles the jun/fos family of transcriptional activators. It has been clearly demonstrated that deletion of meq results in loss of transformation and oncogenic capacity of MDV. Chickens vaccinated with ...

  14. TAF1, From a General Transcription Factor to Modulator of Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2009-02-01

    TN, Ferguson HA, Galasinski SK, Seto AG, Goodrich JA 2001 c-Jun binds the N terminus of human TAF(II)250 to derepress RNA polymerase II... Galasinski SK, Goodrich JA 2004 The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N

  15. Role of glucocorticoid-induced leucine zipper (GILZ) in bone acquisition

    USDA-ARS?s Scientific Manuscript database

    Glucocorticoids (GCs) have both anabolic and catabolic effects on bone. However, no GC anabolic effect mediator has been identified to date. In this report, we provide the first evidence that glucocorticoid-induced leucine zipper (GILZ), a GC anti-inflammatory effect mediator, can enhance bone forma...

  16. 'Zipbody' leucine zipper-fused Fab in E. coli in vitro and in vivo expression systems.

    PubMed

    Ojima-Kato, Teruyo; Fukui, Kansuke; Yamamoto, Hiroaki; Hashimura, Dai; Miyake, Shiro; Hirakawa, Yuki; Yamasaki, Tomomi; Kojima, Takaaki; Nakano, Hideo

    2016-04-01

    A small antibody fragment, fragment of antigen binding (Fab), is favorable for various immunological assays. However, production efficiency of active Fab in microorganisms depends considerably on the clones. In this study, leucine zipper-peptide pairs that dimerize in parallel (ACID-p1 (LZA)/BASE-p1 (LZB) or c-Jun/c-Fos) were fused to the C-terminus of heavy chain (Hc, VH-CH1) and light chain (Lc, VL-CL), respectively, to accelerate the association of Hc and Lc to form Fab in Escherichia coli in vivo and in vitro expression systems. The leucine zipper-fused Fab named 'Zipbody' was constructed using anti-E. coli O157 monoclonal antibody obtained from mouse hybridoma and produced in both in vitro and in vivo expression systems in an active form, whereas Fab without the leucine zipper fusion was not. Similarly, Zipbody of rabbit monoclonal antibody produced in in vitro expression showed significant activity. The purified, mouse Zipbody produced in the E. coli strain Shuffle T7 Express had specificity toward the antigen; in bio-layer interferometry analysis, the KD value was measured to be 1.5-2.0 × 10(-8) M. These results indicate that leucine zipper fusion to Fab C-termini markedly enhances active Fab formation in E. coli. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Crystal structure of a super leucine zipper, an extended two-stranded super long coiled coil

    PubMed Central

    Diao, Jiasheng

    2010-01-01

    Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 Å resolution. The peptide monomer shows a helix trunk with short curved N- and C-termini. In the crystal, two monomers cross in 35° and form an X-shaped dimer, and each X-shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two-stranded, parallel, super long coiled coil rather than a discrete, two-helix coiled coil of the wild-type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild-type leucine zipper, the N-terminus of the mutant has a dramatic conformational change and the C-terminus has one more residue Glu 32 determined. The mutant X-shaped dimer has a large crossing angle of 35° instead of 18° in the wild-type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self-assembling protein fibers. PMID:20027625

  18. Genomic identification of bZIP family genes involved in drought and heat stresses in strawberry (Fragaria vesca)

    USDA-ARS?s Scientific Manuscript database

    Basic leucine zipper (bZIP) genes are known to play dominant roles in plant response to development signals, as well as abiotic or biotic stress stimuli. Fifty bZIP genes across the woodland strawberry (Fragaria vesca) genome were identified and analyzed. They can be divided into 10 clades according...

  19. Crystal Structure of a Super Leucine Zipper an Extended Two-Stranded Super Long Coiled Coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Diao

    2011-12-31

    Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 {angstrom} resolution. The peptide monomer shows a helix trunk with short curved N- and C-termini. In the crystal, two monomers cross in 35{sup o} and form an X-shaped dimer, and each X-shaped dimer is welded into the next one through stickymore » hydrophobic ends, thus forming an extended two-stranded, parallel, super long coiled coil rather than a discrete, two-helix coiled coil of the wild-type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild-type leucine zipper, the N-terminus of the mutant has a dramatic conformational change and the C-terminus has one more residue Glu 32 determined. The mutant X-shaped dimer has a large crossing angle of 35{sup o} instead of 18{sup o} in the wild-type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self-assembling protein fibers.« less

  20. An engineered allosteric switch in leucine-zipper oligomerization.

    PubMed

    Gonzalez, L; Plecs, J J; Alber, T

    1996-06-01

    Controversy remains about the role of core side-chain packing in specifying protein structure. To investigate the influence of core packing on the oligomeric structure of a coiled coil, we engineered a GCN4 leucine zipper mutant that switches from two to three strands upon binding the hydrophobic ligands cyclohexane and benzene. In solution these ligands increased the apparent thermal stability and the oligomerization order of the mutant leucine zipper. The crystal structure of the peptide-benzene complex shows a single benzene molecule bound at the engineered site in the core of the trimer. These results indicate that coiled coils are well-suited to function as molecular switches and emphasize that core packing is an important determinant of oligomerization specificity.

  1. TAF1, From a General Transcription Factor to Modulator of Androgen Receptor in Prostate Cancer

    DTIC Science & Technology

    2010-02-01

    kinase CK2. Mol Cell Biochem 316:99-106 21. Lively TN, Ferguson HA, Galasinski SK, Seto AG, Goodrich JA 2001 c-Jun binds the N terminus of human TAF(II...Nguyen TN, Galasinski SK, Goodrich JA 2004 The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with

  2. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less

  3. Cell culture attenuation eliminates rMd5deltaMeq-induced bursal and thymic atrophy and renders the mutant virus as an effective and safe vaccine against Marek's disease

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) encodes a basic leucine zipper oncoprotein, meq, which structurally resembles jun/fos family of transcriptional activators. It has been clearly demonstrated that deletion of meq results in loss of transformation and oncogenic capacity of MDV. The rMd5'meq virus provided s...

  4. HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB.

    PubMed

    Ma, Yunyun; Zhang, Bo; Wang, Dong; Qian, Lili; Song, Xianmei; Wang, Xueyin; Yang, Chaokuan; Zhao, Guoqiang

    2017-03-01

    Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.

  5. An in vivo library-versus-library selection of optimized protein-protein interactions.

    PubMed

    Pelletier, J N; Arndt, K M; Plückthun, A; Michnick, S W

    1999-07-01

    We describe a rapid and efficient in vivo library-versus-library screening strategy for identifying optimally interacting pairs of heterodimerizing polypeptides. Two leucine zipper libraries, semi-randomized at the positions adjacent to the hydrophobic core, were genetically fused to either one of two designed fragments of the enzyme murine dihydrofolate reductase (mDHFR), and cotransformed into Escherichia coli. Interaction between the library polypeptides reconstituted enzymatic activity of mDHFR, allowing bacterial growth. Analysis of the resulting colonies revealed important biases in the zipper sequences relative to the original libraries, which are consistent with selection for stable, heterodimerizing pairs. Using more weakly associating mDHFR fragments, we increased the stringency of selection. We enriched the best-performing leucine zipper pairs by multiple passaging of the pooled, selected colonies in liquid culture, as the best pairs allowed for better bacterial propagation. This competitive growth allowed small differences among the pairs to be amplified, and different sequence positions were enriched at different rates. We applied these selection processes to a library-versus-library sample of 2.0 x 10(6) combinations and selected a novel leucine zipper pair that may be appropriate for use in further in vivo heterodimerization strategies.

  6. “Addition” and “Subtraction”: Selectivity Design for Type II Maternal Embryonic Leucine Zipper Kinase Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Giraldes, John; Sprague, Elizabeth R.

    2017-02-17

    While adding the structural features that are more favored by on-target activity is the more common strategy in selectivity optimization, the opposite strategy of subtracting the structural features that contribute more to off-target activity can also be very effective. Reported here is our successful effort of improving the kinase selectivity of type II maternal embryonic leucine zipper kinase inhibitors by applying these two complementary approaches together, which clearly demonstrates the powerful synergy between them.

  7. Development of a Diagnostic Tool to Detect DNA Methylation Biomarkers for Early-Stage Lung Cancer

    DTIC Science & Technology

    2015-02-01

    include: 1) a DNA recognition domain that recognizes the specific DNA sequence of interest and 2) one half of the leucine zipper pair. The second...piece will include 1) the second half of the leucine zipper pair, 2) a flexible linker flanked by a FRET pair that determines the local (within 30 bp...each other to determine the resolution of our probes. All DNA fragments are methylated using bacterial methyltransferase. Since only a single CG

  8. Structure and function of homodomain-leucine zipper (HD-Zip) proteins.

    PubMed

    Elhiti, Mohamed; Stasolla, Claudio

    2009-02-01

    Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.

  9. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  10. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato.

    PubMed

    Zhu, Mingku; Meng, Xiaoqing; Cai, Jing; Li, Ge; Dong, Tingting; Li, Zongyun

    2018-05-08

    Basic region/leucine zipper (bZIP) transcription factors perform as crucial regulators in ABA-mediated stress response in plants. Nevertheless, the functions for most bZIP family members in tomato remain to be deciphered. Here we examined the functional characterization of SlbZIP1 under salt and drought stresses in tomato. Silencing of SlbZIP1 in tomato resulted in reduced expression of multiple ABA biosynthesis- and signal transduction-related genes in transgenic plants. In stress assays, SlbZIP1-RNAi transgenic plants exhibited reduced tolerance to salt and drought stresses compared with WT plants, as are evaluated by multiple physiological parameters associated with stress responses, such as decreased ABA, chlorophyll contents and CAT activity, and increased MDA content. In addition, RNA-seq analysis of transgenic plants revealed that the transcription levels of multiple genes encoding defense proteins related to responses to abiotic stress (e.g. endochitinase, peroxidases, and lipid transfer proteins) and biotic stress (e.g. pathogenesis-related proteins) were downregulated in SlbZIP1-RNAi plants, suggesting that SlbZIP1 plays a role in regulating the genes related to biotic and abiotic stress response. Collectively, the data suggest that SlbZIP1 exerts an essential role in salt and drought stress tolerance through modulating an ABA-mediated pathway, and SlbZIP1 may hold potential applications in the engineering of salt- and drought-tolerant tomato cultivars.

  11. Two Cassava Basic Leucine Zipper (bZIP) Transcription Factors (MebZIP3 and MebZIP5) Confer Disease Resistance against Cassava Bacterial Blight.

    PubMed

    Li, Xiaolin; Fan, Shuhong; Hu, Wei; Liu, Guoyin; Wei, Yunxie; He, Chaozu; Shi, Haitao

    2017-01-01

    Basic domain-leucine zipper (bZIP) transcription factor, one type of conserved gene family, plays an important role in plant development and stress responses. Although 77 MebZIPs have been genome-wide identified in cassava, their in vivo roles remain unknown. In this study, we analyzed the expression pattern and the function of two MebZIPs ( MebZIP3 and MebZIP5 ) in response to pathogen infection. Gene expression analysis indicated that MebZIP3 and MebZIP5 were commonly regulated by flg22, Xanthomonas axonopodis pv. manihotis ( Xam ), salicylic acid (SA), and hydrogen peroxide (H 2 O 2 ). Subcellular localization analysis showed that MebZIP3 and MebZIP5 are specifically located in cell nucleus. Through overexpression in tobacco, we found that MebZIP3 and MebZIP5 conferred improved disease resistance against cassava bacterial blight, with more callose depositions. On the contrary, MebZIP3- and MebZIP5 -silenced plants by virus-induced gene silencing (VIGS) showed disease sensitive phenotype, lower transcript levels of defense-related genes and less callose depositions. Taken together, this study highlights the positive role of MebZIP3 and MebZIP5 in disease resistance against cassava bacterial blight for further utilization in genetic improvement of cassava disease resistance.

  12. Isolation and expression analysis of EcbZIP17 from different finger millet genotypes shows conserved nature of the gene.

    PubMed

    Chopperla, Ramakrishna; Singh, Sonam; Mohanty, Sasmita; Reddy, Nanja; Padaria, Jasdeep C; Solanke, Amolkumar U

    2017-10-01

    Basic leucine zipper (bZIP) transcription factors comprise one of the largest gene families in plants. They play a key role in almost every aspect of plant growth and development and also in biotic and abiotic stress tolerance. In this study, we report isolation and characterization of EcbZIP17 , a group B bZIP transcription factor from a climate smart cereal, finger millet ( Eleusine coracana L.). The genomic sequence of EcbZIP17 is 2662 bp long encompassing two exons and one intron with ORF of 1722 bp and peptide length of 573 aa. This gene is homologous to AtbZIP17 ( Arabidopsis ), ZmbZIP17 (maize) and OsbZIP60 (rice) which play a key role in endoplasmic reticulum (ER) stress pathway. In silico analysis confirmed the presence of basic leucine zipper (bZIP) and transmembrane (TM) domains in the EcbZIP17 protein. Allele mining of this gene in 16 different genotypes by Sanger sequencing revealed no variation in nucleotide sequence, including the 618 bp long intron. Expression analysis of EcbZIP17 under heat stress exhibited similar pattern of expression in all the genotypes across time intervals with highest upregulation after 4 h. The present study established the conserved nature of EcbZIP17 at nucleotide and expression level.

  13. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes.

    PubMed

    Wang, Zhihui; Cheng, Ke; Wan, Liyun; Yan, Liying; Jiang, Huifang; Liu, Shengyi; Lei, Yong; Liao, Boshou

    2015-12-10

    Plant bZIP proteins characteristically harbor a highly conserved bZIP domain with two structural features: a DNA-binding basic region and a leucine (Leu) zipper dimerization region. They have been shown to be diverse transcriptional regulators, playing crucial roles in plant development, physiological processes, and biotic/abiotic stress responses. Despite the availability of six completely sequenced legume genomes, a comprehensive investigation of bZIP family members in legumes has yet to be presented. In this study, we identified 428 bZIP genes encoding 585 distinct proteins in six legumes, Glycine max, Medicago truncatula, Phaseolus vulgaris, Cicer arietinum, Cajanus cajan, and Lotus japonicus. The legume bZIP genes were categorized into 11 groups according to their phylogenetic relationships with genes from Arabidopsis. Four kinds of intron patterns (a-d) within the basic and hinge regions were defined and additional conserved motifs were identified, both presenting high group specificity and supporting the group classification. We predicted the DNA-binding patterns and the dimerization properties, based on the characteristic features in the basic and hinge regions and the Leu zipper, respectively, which indicated that some highly conserved amino acid residues existed across each major group. The chromosome distribution and analysis for WGD-derived duplicated blocks revealed that the legume bZIP genes have expanded mainly by segmental duplication rather than tandem duplication. Expression data further revealed that the legume bZIP genes were expressed constitutively or in an organ-specific, development-dependent manner playing roles in multiple seed developmental stages and tissues. We also detected several key legume bZIP genes involved in drought- and salt-responses by comparing fold changes of expression values in drought-stressed or salt-stressed roots and leaves. In summary, this genome-wide identification, characterization and expression analysis of legume bZIP genes provides valuable information for understanding the molecular functions and evolution of the legume bZIP transcription factor family, and highlights potential legume bZIP genes involved in regulating tissue development and abiotic stress responses.

  14. Dual Leucine Zipper Kinase Inhibitors for the Treatment of Neurodegeneration.

    PubMed

    Siu, Michael; Sengupta Ghosh, Arundhati; Lewcock, Joseph W

    2018-06-04

    Dual leucine zipper kinase (DLK, MAP3K12) is an essential driver of the neuronal stress response that regulates neurodegeneration in models of acute neuronal injury and chronic neurodegenerative diseases such as Alzheimer's, Parkinson's, and ALS. In this review, we provide an overview of DLK signaling mechanisms and describe selected small molecules that have been utilized to inhibit DLK kinase activity in vivo. These compounds represent valuable tools for understanding the role of DLK signaling and evaluating the potential for DLK inhibition as a therapeutic strategy to prevent neuronal degeneration.

  15. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons.

    PubMed

    Welsbie, Derek S; Mitchell, Katherine L; Jaskula-Ranga, Vinod; Sluch, Valentin M; Yang, Zhiyong; Kim, Jessica; Buehler, Eugen; Patel, Amit; Martin, Scott E; Zhang, Ping-Wu; Ge, Yan; Duan, Yukan; Fuller, John; Kim, Byung-Jin; Hamed, Eman; Chamling, Xitiz; Lei, Lei; Fraser, Iain D C; Ronai, Ze'ev A; Berlinicke, Cynthia A; Zack, Donald J

    2017-06-21

    Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Modulation of phase transition of thermosensitive liposomes with leucine zipper-structured lipopeptides.

    PubMed

    Xu, Xiejun; Xiao, Xingqing; Wang, Yiming; Xu, Shouhong; Liu, Honglai

    2018-06-13

    Targeted therapy for cancer requires thermosensitive components in drug carriers for controlled drug release against viral cells. The conformational transition characteristic of leucine zipper-structured lipopeptides is utilized in our lab to modulate the phase transition temperature of liposomes, thus achieving temperature-responsive control. In this study, we computationally examined the conformational transition behaviors of leucine zipper-structured lipopeptides that were modified at the N-terminus by distinct functional groups. The conformational transition temperatures of these lipopeptides were determined by structural analysis of the implicit-solvent replica exchange molecular dynamics simulation trajectories using the dihedral angle principal component analysis and the dictionary of protein secondary structure method. Our calculations revealed that the computed transition temperatures of the lipopeptides are in good agreement with the experimental measurements. The effect of hydrogen bonds on the conformational stability of the lipopeptide dimers was examined in conventional explicit-solvent molecular dynamics simulations. A quantitative correlation of the degree of structural dissociation of the dimers and their binding strength is well described by an exponential fit of the binding free energies to the conformation transition temperatures of the lipopeptides.

  17. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on the surface and can also carry protein, small-molecule, or nanoparticle cargo in the vesicle lumen. To create a material with a more complex hierarchical structure, we combined calcium phosphate with zipper fusion proteins containing random coil polypeptides to produce hybrid protein-inorganic supraparticles with high surface area and porous structure. The use of a functional enzyme created supraparticles with the ability to degrade inflammatory cytokines. Our characterization of these protein materials revealed that the molecular interactions are complex because of the large size of the protein building blocks, their folded structures, and the number of potential interactions including hydrophobic interactions, electrostatic interactions, van der Waals forces, and specific affinity-based interactions. It is difficult or even impossible to predict the structures a priori. However, once the basic assembly principles are understood, there is opportunity to tune the material properties, such as size, through control of the self-assembly conditions. Our future efforts on the fundamental side will focus on identifying the phase space of self-assembly of these fusion proteins and additional experimental levers with which to control and tune the resulting materials. On the application side, we are investigating an array of different functional proteins to expand the use of these structures in both therapeutic protein delivery and biocatalysis.

  18. Curcumin differentially regulates endoplasmic reticulum stress through transcriptional corepressor SMILE (small heterodimer partner-interacting leucine zipper protein)-mediated inhibition of CREBH (cAMP responsive element-binding protein H).

    PubMed

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-kyu; Li, Tiangang; Koo, Seung-Hoi; Back, Sung-Hoon; Chiang, John Y L; Choi, Hueng-Sik

    2011-12-09

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), is a natural polyphenolic compound. Herein the effect of curcumin on endoplasmic reticulum (ER) stress responsive gene expression was investigated. We report that curcumin induces transcriptional corepressor small heterodimer partner-interacting leucine zipper protein (SMILE) gene expression through liver kinase B1 (LKB1)/adenosine monophosphate-activated kinase (AMPK) signaling pathway and represses ER stress-responsive gene transcription in an ER-bound transcription factor specific manner. cAMP responsive element-binding protein H (CREBH) and activating transcription factor 6 (ATF6) are both ER-bound bZIP family transcription factors that are activated upon ER stress. Of interest, we observed that both curcumin treatment and SMILE overexpression only represses CREBH-mediated transactivation of the target gene but not ATF6-mediated transactivation. Knockdown of endogenous SMILE significantly releases the inhibitory effect of curcumin on CREBH transactivation. Intrinsic repressive activity of SMILE is observed in the Gal4 fusion system, and the intrinsic repressive domain is mapped to the C terminus of SMILE spanning amino acid residues 203-269, corresponding to the basic region leucine zipper (bZIP) domain. In vivo interaction assay revealed that through its bZIP domain, SMILE interacts with CREBH and inhibits its transcriptional activity. Interestingly, we observed that SMILE does not interact with ATF6. Furthermore, competition between SMILE and the coactivator peroxisome proliferator-activated receptor α (PGC-1α) on CREBH transactivation has been demonstrated in vitro and in vivo. Finally, chromatin immunoprecipitation assays revealed that curcumin decreases the binding of PGC-1α and CREBH on target gene promoter in a SMILE-dependent manner. Overall, for the first time we suggest a novel phenomenon that the curcumin/LKB1/AMPK/SMILE/PGC1α pathway differentially regulates ER stress-mediated gene transcription.

  19. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus.

    PubMed

    Derjuga, Anna; Gourley, Tania S; Holm, Teresa M; Heng, Henry H Q; Shivdasani, Ramesh A; Ahmed, Rafi; Andrews, Nancy C; Blank, Volker

    2004-04-01

    Cap'n'collar (CNC) family basic leucine zipper transcription factors play crucial roles in the regulation of mammalian gene expression and development. To determine the in vivo function of the CNC protein Nrf3 (NF-E2-related factor 3), we generated mice deficient in this transcription factor. We performed targeted disruption of two Nrf3 exons coding for CNC homology, basic DNA-binding, and leucine zipper dimerization domains. Nrf3 null mice developed normally and revealed no obvious phenotypic differences compared to wild-type animals. Nrf3(-/-) mice were fertile, and gross anatomy as well as behavior appeared normal. The mice showed normal age progression and did not show any apparent additional phenotype during their life span. We observed no differences in various blood parameters and chemistry values. We infected wild-type and Nrf3(-/-) mice with acute lymphocytic choriomeningitis virus and found no differences in these animals with respect to their number of virus-specific CD8 and CD4 T cells as well as their B-lymphocyte response. To determine whether the mild phenotype of Nrf3 null animals is due to functional redundancy, we generated mice deficient in multiple CNC factors. Contrary to our expectations, an absence of Nrf3 does not seem to cause additional lethality in compound Nrf3(-/-)/Nrf2(-/-) and Nrf3(-/-)/p45(-/-) mice. We hypothesize that the role of Nrf3 in vivo may become apparent only after appropriate challenge to the mice.

  20. The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes1[W][OPEN

    PubMed Central

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  1. Genome-Wide Analysis of bZIP-Encoding Genes in Maize

    PubMed Central

    Wei, Kaifa; Chen, Juan; Wang, Yanmei; Chen, Yanhui; Chen, Shaoxiang; Lin, Yina; Pan, Si; Zhong, Xiaojun; Xie, Daoxin

    2012-01-01

    In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis. PMID:23103471

  2. SdAb heterodimer formation using leucine zippers

    NASA Astrophysics Data System (ADS)

    Goldman, Ellen R.; Anderson, George P.; Brozozog-Lee, P. Audrey; Zabetakis, Dan

    2013-05-01

    Single domain antibodies (sdAb) are variable domains cloned from camel, llama, or shark heavy chain only antibodies, and are among the smallest known naturally derived antigen binding fragments. SdAb derived from immunized llamas are able to bind antigens with high affinity, and most are capable of refolding after heat or chemical denaturation to bind antigen again. We hypothesized that the ability to produce heterodimeric sdAb would enable reagents with the robust characteristics of component sdAb, but with dramatically improved overall affinity through increased avidity. Previously we had constructed multimeric sdAb by genetically linking sdAb that bind non-overlapping epitopes on the toxin, ricin. In this work we explored a more flexible approach; the construction of multivalent binding reagents using multimerization domains. We expressed anti-ricin sdAb that recognize different epitopes on the toxin as fusions with differently charged leucine zippers. When the initially produced homodimers are mixed the leucine zipper domains will pair to produce heterodimers. We used fluorescence resonance energy transfer to confirm heterodimer formation. Surface plasmon resonance, circular dichroism, enzyme linked immunosorbent assays, and fluid array assays were used to characterize the multimer constructs, and evaluate their utility in toxin detection.

  3. Homez, a homeobox leucine zipper gene specific to the vertebrate lineage.

    PubMed

    Bayarsaihan, Dashzeveg; Enkhmandakh, Badam; Makeyev, Aleksandr; Greally, John M; Leckman, James F; Ruddle, Frank H

    2003-09-02

    This work describes a vertebrate homeobox gene, designated Homez (homeodomain leucine zipper-encoding gene), that encodes a protein with an unusual structural organization. There are several regions within Homez, including three atypical homeodomains, two leucine zipper-like motifs, and an acidic domain. The gene is ubiquitously expressed in human and murine tissues, although the expression pattern is more restricted during mouse development. Genomic analysis revealed that human and mouse genes are located at 14q11.2 and 14C, respectively, and are composed of two exons. The zebrafish and pufferfish homologs share high similarity to mammalian sequences, particularly within the homeodomain sequences. Based on homology of homeodomains and on the similarity in overall protein structure, we delineate Homez and members of ZHX family of zinc finger homeodomain factors as a subset within the superfamily of homeobox-containing proteins. The type and composition of homeodomains in the Homez subfamily are vertebrate-specific. Phylogenetic analysis indicates that Homez lineage was separated from related genes >400 million years ago before separation of ray- and lobe-finned fishes. We apply a duplication-degeneration-complementation model to explain how this family of genes has evolved.

  4. Establishing a Framework for the Ad/Abaxial Regulatory Network of Arabidopsis: Ascertaining Targets of Class III HOMEODOMAIN LEUCINE ZIPPER and KANADI Regulation[W

    PubMed Central

    Reinhart, Brenda J.; Liu, Tie; Newell, Nicole R.; Magnani, Enrico; Huang, Tengbo; Kerstetter, Randall; Michaels, Scott; Barton, M. Kathryn

    2013-01-01

    The broadly conserved Class III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) and KANADI transcription factors have opposing and transformational effects on polarity and growth in all tissues and stages of the plant's life. To obtain a comprehensive understanding of how these factors work, we have identified transcripts that change in response to induced HD-ZIPIII or KANADI function. Additional criteria used to identify high-confidence targets among this set were presence of an adjacent HD-ZIPIII binding site, expression enriched within a subdomain of the shoot apical meristem, mutant phenotype showing defect in polar leaf and/or meristem development, physical interaction between target gene product and HD-ZIPIII protein, opposite regulation by HD-ZIPIII and KANADI, and evolutionary conservation of the regulator–target relationship. We find that HD-ZIPIII and KANADI regulate tissue-specific transcription factors involved in subsidiary developmental decisions, nearly all major hormone pathways, and new actors (such as INDETERMINATE DOMAIN4) in the ad/abaxial regulatory network. Multiple feedback loops regulating HD-ZIPIII and KANADI are identified, as are mechanisms through which HD-ZIPIII and KANADI oppose each other. This work lays the foundation needed to understand the components, structure, and workings of the ad/abaxial regulatory network directing basic plant growth and development. PMID:24076978

  5. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    PubMed

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Seasonal Abscisic Acid Signal and a Basic Leucine Zipper Transcription Factor, DkbZIP5, Regulate Proanthocyanidin Biosynthesis in Persimmon Fruit1[C][W][OA

    PubMed Central

    Akagi, Takashi; Katayama-Ikegami, Ayako; Kobayashi, Shozo; Sato, Akihiko; Kono, Atsushi; Yonemori, Keizo

    2012-01-01

    Proanthocyanidins (PAs) are secondary metabolites that contribute to plant protection and crop quality. Persimmon (Diospyros kaki) has a unique characteristic of accumulating large amounts of PAs, particularly in its fruit. Normal astringent-type and mutant nonastringent-type fruits show different PA accumulation patterns depending on the seasonal expression patterns of DkMyb4, which is a Myb transcription factor (TF) regulating many PA pathway genes in persimmon. In this study, attempts were made to identify the factors involved in DkMyb4 expression and the resultant PA accumulation in persimmon fruit. Treatment with abscisic acid (ABA) and an ABA biosynthesis inhibitor resulted in differential changes in the expression patterns of DkMyb4 and PA biosynthesis in astringent-type and nonastringent-type fruits depending on the development stage. To obtain an ABA-signaling TF, we isolated a full-length basic leucine zipper (bZIP) TF, DkbZIP5, which is highly expressed in persimmon fruit. We also showed that ectopic DkbZIP5 overexpression in persimmon calluses induced the up-regulation of DkMyb4 and the resultant PA biosynthesis. In addition, a detailed molecular characterization using the electrophoretic mobility shift assay and transient reporter assay indicated that DkbZIP5 recognized ABA-responsive elements in the promoter region of DkMyb4 and acted as a direct regulator of DkMyb4 in an ABA-dependent manner. These results suggest that ABA signals may be involved in PA biosynthesis in persimmon fruit via DkMyb4 activation by DkbZIP5. PMID:22190340

  7. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    PubMed

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  8. The first invertebrate NFIL3 transcription factor with role in immune defense identified from the Hong Kong oyster, Crassostrea hongkongensis.

    PubMed

    Li, Jun; Zhang, Yang; Zhang, Yuehuan; Mao, Fan; Xiang, Zhiming; Xiao, Shu; Ma, Haitao; Yu, Ziniu

    2017-11-01

    NFIL3 (nuclear factor interleukin 3-regulated) is a basic leucine zipper type transcription factor that mediates a variety of immune responses in vertebrates. However, the sequence information and function of NFIL3 homologs in invertebrates, especially mollusks, remains unknown. In the present study, the first NFIL3 homolog was identified in a marine mollusk, Crassostrea hongkongensis (designated as ChNFIL3), followed by its functional characterization. The full-length cDNA of ChNFIL3 is 2221 bp and consists of an open reading frame (ORF) of 1536 bp that encodes a polypeptide of 551 amino acids. Simple Modular Architecture Research Tool (SMART) analysis indicated that ChNFIL3 has two basic leucin zipper domains, similar to the other known NFIL3 family proteins. Tissue distribution analysis of NFIL3 in this mollusk revealed high expression in digestive glands and hemocytes. A significant induction in the mRNA level of ChNFIL3 was observed following bacterial stimulation. ChNFIL3 was found to be localized in the nucleus and over expression of ChNIFL3 led to upregulation of transcriptional activity of an NF-κB reporter gene in HEK 293T cells, indicating its role in innate immunity. Furthermore, addition of exogenous recombinant ChNFIL3 proteins resulted in enhanced mRNA level of hemocyte interleukin 17 in vitro. In conclusion, our findings revealed that NFIL3 in molluscs, plays a conserved role in host defense, similar to its mammalian homolog. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Basic leucine zipper domain transcription factors: the vanguards in plant immunity.

    PubMed

    Noman, Ali; Liu, Zhiqin; Aqeel, Muhammad; Zainab, Madiha; Khan, Muhammad Ifnan; Hussain, Ansar; Ashraf, Muhammad Furqan; Li, Xia; Weng, Yahong; He, Shuilin

    2017-12-01

    Regulation of spatio-temporal expression patterns of stress tolerance associated plant genes is an essential component of the stress responses. Eukaryotes assign a large amount of their genome to transcription with multiple transcription factors (TFs). Often, these transcription factors fit into outsized gene groups which, in several cases, exclusively belong to plants. Basic leucine zipper domain (bZIP) transcription factors regulate vital processes in plants and animals. In plants, bZIPs are implicated in numerous fundamental processes like seed development, energy balance, and responses to abiotic or biotic stresses. Systematic analysis of the information obtained over the last two decades disclosed a constitutive role of bZIPs against biotic stress. bZIP TFs are vital players in plant innate immunity due to their ability to regulate genes associated with PAMP-triggered immunity, effector-triggered immunity, and hormonal signaling networks. Expression analysis of studied bZIP genes suggests that exploration and functional characterization of novel bZIP TFs in planta is helpful in improving crop resistance against pathogens and environmental stresses. Our review focuses on major advancements in bZIP TFs and plant responses against different pathogens. The integration of genomics information with the functional studies provides new insights into the regulation of plant defense mechanisms and engineering crops with improved resistance to invading pathogens. Conclusively, succinct functions of bZIPs as positive or negative regulator mediate resistance to the plant pathogens and lay a foundation for understanding associated genes and TFs regulating different pathways. Moreover, bZIP TFs may offer a comprehensive transgenic gizmo for engineering disease resistance in plant breeding programs.

  10. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions

    PubMed Central

    Uno, Yuichi; Furihata, Takashi; Abe, Hiroshi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2000-01-01

    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins. PMID:11005831

  11. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.

    PubMed

    Uno, Y; Furihata, T; Abe, H; Yoshida, R; Shinozaki, K; Yamaguchi-Shinozaki, K

    2000-10-10

    The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.

  12. The HTLV-1 basic leucine zipper factor (HBZ) attenuates repair of double-stranded DNA breaks via non-homologous end joining (NHEJ).

    PubMed

    Rushing, A W; Hoang, K; Polakowski, N; Lemasson, I

    2018-05-16

    Adult T-cell leukemia (ATL) is a fatal malignancy of CD4 + T-cells infected with human T-cell leukemia virus type I (HTLV-1). ATL cells often exhibit random gross chromosomal rearrangements that are associated with the induction and improper repair of double-stranded DNA breaks (DSBs). The viral oncoprotein Tax has been reported to impair DSB repair, but is not shown to be consistently expressed throughout all phases of infection. The viral oncoprotein HTLV-1 basic leucine zipper factor (HBZ) is consistently expressed prior to and throughout disease progression, but it is unclear whether it also influences DSB repair. We report that HBZ attenuates DSB repair by non-homologous end joining (NHEJ), in a manner dependent upon the basic leucine zipper (bZIP) domain. HBZ was found to interact with two vital members of the NHEJ core machinery, Ku70 and Ku80, and to be recruited to DSBs in a bZIP-dependent manner in vitro We observed that HBZ expression also resulted in a bZIP-dependent delay in DNA-PK activation following treatment with etoposide. Though Tax is reported to interact with Ku70, we did not find Tax expression to interfere with HBZ:Ku complex formation. However, as Tax was reported to saturate NHEJ, we found this effect masked the attenuation of NHEJ by HBZ. Overall, these data suggest that DSB repair mechanisms are impaired not only by Tax, but also by HBZ, and show that HBZ expression may significantly contribute to the accumulation of chromosomal abnormalities during HTLV-1 mediated oncogenesis. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) infects 15-20 million people worldwide. Approximately 90% of infected individuals are asymptomatic and may remain undiagnosed, increasing the risk that they will unknowingly transmit the virus. About 5% of the HTLV-1 positive population to develop Adult T-cell Leukemia (ATL), a fatal disease that is not highly responsive to treatment. Though ATL development remains poorly understood, two viral proteins, Tax and HBZ, have been implicated in driving disease progression by manipulating host cell signaling and transcriptional pathways. Unlike Tax, HBZ expression is consistently observed in all infected individuals, making it important to elucidate the specific role of HBZ in disease progression. Here, we present evidence that HBZ could promote the accumulation of double-stranded DNA breaks (DSBs) through the attenuation of the non-homologous end joining (NHEJ) repair pathway. This effect may lead to genome instability, ultimately contributing to the development of ATL. Copyright © 2018 American Society for Microbiology.

  13. A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species.

    PubMed

    Dinsmore, P K; O'Sullivan, D J; Klaenhammer, T R

    1998-05-28

    The abiA gene encodes an abortive bacteriophage infection mechanism that can protect Lactococcus species from infection by a variety of bacteriophages including three unrelated phage species. Five heptad leucine repeats suggestive of a leucine zipper motif were identified between residues 232 and 266 in the predicted amino acid sequence of the AbiA protein. The biological role of residues in the repeats was investigated by incorporating amino acid substitutions via site-directed mutagenesis. Each mutant was tested for phage resistance against three phages, phi 31, sk1, and c2, belonging to species P335, 936, and c2, respectively. The five residues that comprise the heptad repeats were designated L234, L242, A249, L256, and L263. Three single conservative mutations of leucine to valine in positions L235, L242, and L263 and a double mutation of two leucines (L235 and L242) to valines did not affect AbiA activity on any phages tested. Non-conservative single substitutions of charged amino acids for three of the leucines (L235, L242, and L256) virtually eliminated AbiA activity on all phages tested. Substitution of the alanine residue in the third repeat (A249) with a charged residue did not affect AbiA activity. Replacement of L242 with an alanine elimination phage resistance against phi 31, but partial resistance to sk1 and c2 remained. Two single proline substitutions for leucines L242 and L263 virtually eliminated AbiA activity against all phages, indicating that the predicted alpha-helical structure of this region is important. Mutations in an adjacent region of basic amino acids had various effects on phage resistance, suggesting that these basic residues are also important for AbiA activity. This directed mutagenesis analysis of AbiA indicated that the leucine repeat structure is essential for conferring phage resistance against three species of lactococcal bacteriophages.

  14. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2017-01-01

    One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.

  15. Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens.

    PubMed

    Sakakibara, Keiko; Nishiyama, Tomoaki; Sumikawa, Naomi; Kofuji, Rumiko; Murata, Takashi; Hasebe, Mitsuyasu

    2003-10-01

    Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.

  16. The ArcB Leucine Zipper Domain Is Required for Proper ArcB Signaling

    PubMed Central

    Nuñez Oreza, Luis Alberto; Alvarez, Adrián F.; Arias-Olguín, Imilla I.; Torres Larios, Alfredo; Georgellis, Dimitris

    2012-01-01

    The Arc two-component system modulates the expression of numerous genes in response to respiratory growth conditions. This system comprises ArcA as the response regulator and ArcB as the sensor kinase. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we report that the ArcB protein segment covering residues 70–121, fulfills the molecular characteristics of a leucine zipper containing coiled coil structure. Also, mutational analyses of this segment reveal three different phenotypical effects to be distributed along the coiled coil structure of ArcB, demonstrating that this motif is essential for proper ArcB signaling. PMID:22666479

  17. Dimerization of the SP1 Region of HIV-1 Gag Induces a Helical Conformation and Association into Helical Bundles: Implications for Particle Assembly.

    PubMed

    Datta, Siddhartha A K; Clark, Patrick K; Fan, Lixin; Ma, Buyong; Harvin, Demetria P; Sowder, Raymond C; Nussinov, Ruth; Wang, Yun-Xing; Rein, Alan

    2016-02-15

    HIV-1 immature particle (virus-like particle [VLP]) assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We previously investigated the role of SP1, a "spacer" between CA and NC, in VLP assembly. We found that small changes in SP1 drastically disrupt assembly and that a peptide representing the sequence around the CA-SP1 junction is helical at high but not low concentrations. We suggested that by virtue of such a concentration-dependent change, this region could act as a molecular switch to activate HIV-1 Gag for VLP assembly. A leucine zipper domain can replace NC in Gag and still lead to the efficient assembly of VLPs. We find that SP1 mutants also disrupt assembly by these Gag-Zip proteins and have now studied a small fragment of this Gag-Zip protein, i.e., the CA-SP1 junction region fused to a leucine zipper. Dimerization of the zipper places SP1 at a high local concentration, even at low total concentrations. In this context, the CA-SP1 junction region spontaneously adopts a helical conformation, and the proteins associate into tetramers. Tetramerization requires residues from both CA and SP1. The data suggest that once this region becomes helical, its propensity to self-associate could contribute to Gag-Gag interactions and thus to particle assembly. There is complete congruence between CA/SP1 sequences that promote tetramerization when fused to zippers and those that permit the proper assembly of full-length Gag; thus, equivalent interactions apparently participate in VLP assembly and in SP1-Zip tetramerization. Assembly of HIV-1 Gag into virus-like particles (VLPs) appears to require an interaction with nucleic acid, but replacement of its principal nucleic acid-binding domain with a dimerizing leucine zipper domain leads to the assembly of RNA-free VLPs. It has not been clear how dimerization triggers assembly. Results here show that the SP1 region spontaneously switches to a helical state when fused to a leucine zipper and that these helical molecules further associate into tetramers, mediated by interactions between hydrophobic faces of the helices. Thus, the correct juxtaposition of the SP1 region makes it "association competent." Residues from both capsid and SP1 contribute to tetramerization, while mutations disrupting proper assembly in Gag also prevent tetramerization. Thus, this region is part of an associating interface within Gag, and its intermolecular interactions evidently help stabilize the immature Gag lattice. These interactions are disrupted by proteolysis of the CA-SP1 junction during virus maturation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Dimerization of the SP1 Region of HIV-1 Gag Induces a Helical Conformation and Association into Helical Bundles: Implications for Particle Assembly

    PubMed Central

    Clark, Patrick K.; Fan, Lixin; Ma, Buyong; Harvin, Demetria P.; Sowder, Raymond C.; Nussinov, Ruth; Wang, Yun-Xing

    2015-01-01

    ABSTRACT HIV-1 immature particle (virus-like particle [VLP]) assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We previously investigated the role of SP1, a “spacer” between CA and NC, in VLP assembly. We found that small changes in SP1 drastically disrupt assembly and that a peptide representing the sequence around the CA-SP1 junction is helical at high but not low concentrations. We suggested that by virtue of such a concentration-dependent change, this region could act as a molecular switch to activate HIV-1 Gag for VLP assembly. A leucine zipper domain can replace NC in Gag and still lead to the efficient assembly of VLPs. We find that SP1 mutants also disrupt assembly by these Gag-Zip proteins and have now studied a small fragment of this Gag-Zip protein, i.e., the CA-SP1 junction region fused to a leucine zipper. Dimerization of the zipper places SP1 at a high local concentration, even at low total concentrations. In this context, the CA-SP1 junction region spontaneously adopts a helical conformation, and the proteins associate into tetramers. Tetramerization requires residues from both CA and SP1. The data suggest that once this region becomes helical, its propensity to self-associate could contribute to Gag-Gag interactions and thus to particle assembly. There is complete congruence between CA/SP1 sequences that promote tetramerization when fused to zippers and those that permit the proper assembly of full-length Gag; thus, equivalent interactions apparently participate in VLP assembly and in SP1-Zip tetramerization. IMPORTANCE Assembly of HIV-1 Gag into virus-like particles (VLPs) appears to require an interaction with nucleic acid, but replacement of its principal nucleic acid-binding domain with a dimerizing leucine zipper domain leads to the assembly of RNA-free VLPs. It has not been clear how dimerization triggers assembly. Results here show that the SP1 region spontaneously switches to a helical state when fused to a leucine zipper and that these helical molecules further associate into tetramers, mediated by interactions between hydrophobic faces of the helices. Thus, the correct juxtaposition of the SP1 region makes it “association competent.” Residues from both capsid and SP1 contribute to tetramerization, while mutations disrupting proper assembly in Gag also prevent tetramerization. Thus, this region is part of an associating interface within Gag, and its intermolecular interactions evidently help stabilize the immature Gag lattice. These interactions are disrupted by proteolysis of the CA-SP1 junction during virus maturation. PMID:26637452

  19. A Hamiltonian replica exchange method for building protein-protein interfaces applied to a leucine zipper

    NASA Astrophysics Data System (ADS)

    Cukier, Robert I.

    2011-01-01

    Leucine zippers consist of alpha helical monomers dimerized (or oligomerized) into alpha superhelical structures known as coiled coils. Forming the correct interface of a dimer from its monomers requires an exploration of configuration space focused on the side chains of one monomer that must interdigitate with sites on the other monomer. The aim of this work is to generate good interfaces in short simulations starting from separated monomers. Methods are developed to accomplish this goal based on an extension of a previously introduced [Su and Cukier, J. Phys. Chem. B 113, 9595, (2009)] Hamiltonian temperature replica exchange method (HTREM), which scales the Hamiltonian in both potential and kinetic energies that was used for the simulation of dimer melting curves. The new method, HTREM_MS (MS designates mean square), focused on interface formation, adds restraints to the Hamiltonians for all but the physical system, which is characterized by the normal molecular dynamics force field at the desired temperature. The restraints in the nonphysical systems serve to prevent the monomers from separating too far, and have the dual aims of enhancing the sampling of close in configurations and breaking unwanted correlations in the restrained systems. The method is applied to a 31-residue truncation of the 33-residue leucine zipper (GCN4-p1) of the yeast transcriptional activator GCN4. The monomers are initially separated by a distance that is beyond their capture length. HTREM simulations show that the monomers oscillate between dimerlike and monomerlike configurations, but do not form a stable interface. HTREM_MS simulations result in the dimer interface being faithfully reconstructed on a 2 ns time scale. A small number of systems (one physical and two restrained with modified potentials and higher effective temperatures) are sufficient. An in silico mutant that should not dimerize because it lacks charged residues that provide electrostatic stabilization of the dimer does not with HTREM_MS, giving confidence in the method. The interface formation time scale is sufficiently short that using HTREM_MS as a screening tool to validate leucine zipper design methods may be feasible.

  20. Lattice model simulation of interchain protein interactions and the folding dynamics and dimerization of the GCN4 Leucine zipper

    NASA Astrophysics Data System (ADS)

    Liu, Yanxin; Chapagain, Prem P.; Parra, Jose L.; Gerstman, Bernard S.

    2008-01-01

    The highest level in the hierarchy of protein structure and folding is the formation of protein complexes through protein-protein interactions. We have made modifications to a well established computer lattice model to expand its applicability to two-protein dimerization and aggregation. Based on Brownian dynamics, we implement translation and rotation moves of two peptide chains relative to each other, in addition to the intrachain motions already present in the model. We use this two-chain model to study the folding dynamics of the yeast transcription factor GCN4 leucine zipper. The calculated heat capacity curves agree well with experimental measurements. Free energy landscapes and median first passage times for the folding process are calculated and elucidate experimentally measured characteristics such as the multistate nature of the dimerization process.

  1. Localization of the Kinesin-like Protein Xklp2 to Spindle Poles Requires a Leucine Zipper, a Microtubule-associated Protein, and Dynein

    PubMed Central

    Wittmann, Torsten; Boleti, Haralabia; Antony, Claude; Karsenti, Eric; Vernos, Isabelle

    1998-01-01

    Xklp2 is a plus end–directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49–59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein–dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends. PMID:9813089

  2. The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression.

    PubMed

    Ferrara, Patrizia; Andermarcher, Elisabetta; Bossis, Guillaume; Acquaviva, Claire; Brockly, Frédérique; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2003-03-13

    c-fos gene is expressed constitutively in a number of tissues as well as in certain tumor cells and is inducible, in general rapidly and transiently, in virtually all other cell types by a variety of stimuli. Its protein product, c-Fos, is a short-lived transcription factor that heterodimerizes with various protein partners within the AP-1 transcription complex via leucine zipper/leucine zipper interactions for binding to specific DNA sequences. It is mostly, if not exclusively, degraded by the proteasome. To localize the determinant(s) responsible for its instability, we have conducted a genetic analysis in which the half-lives of c-Fos mutants and chimeras made with the stable EGFP reporter protein were compared under two experimental conditions taken as example of continous and inducible expression. Those were constitutive expression in asynchronously growing Balb/C 3T3 mouse embryo fibroblasts and transient induction in the same cells undergoing the G0/G1 phase transition upon stimulation by serum. Our work shows that c-Fos is degraded faster in synchronous- than in asynchronous cells. This difference in turnover is primarily accounted for by several mechanisms. First, in asynchronous cells, a unique C-terminal destabilizer is active whereas, in serum-stimulated cells two destabilizers located at both extremities of the protein are functional. Second, heterodimerization and/or binding to DNA accelerates protein degradation only during the G0/G1 phase transition. Adding another level of complexity to turnover control, phosphorylation at serines 362 and 374, which are c-Fos phosphorylation sites largely modified during the G0/G1 phase transition, stabilizes c-Fos much more efficiently in asynchronous than in serum-stimulated cells. In both cases, the reduced degradation rate is due to inhibition of the activity of the C-terminal destabilizer. However, in serum-stimulated cells, this effect is partially masked by the activation of the N-terminal destabilizer and basic domain/leucine zipper-dependent mechanisms. Taken together, our data show that multiple degradation mechanisms, differing according to the conditions of expression, may operate on c-Fos to ensure a proper level and/or timing of expression. Moreover, they also indicate that the half-life of c-Fos during the G0/G1 phase transition is determined by a delicate balance between opposing stabilizing and destabilizing mechanisms operating at the same time.

  3. Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy

    PubMed Central

    Imani, Saber; Cheng, Jingliang; Shasaltaneh, Marzieh Dehghan; Wei, Chunli; Yang, Lisha; Fu, Shangyi; Zou, Hui; Khan, Md. Asaduzzaman; Zhang, Xianqin; Chen, Hanchun; Zhang, Dianzheng; Duan, Chengxia; Lv, Hongbin; Li, Yumei; Chen, Rui; Fu, Junjiang

    2018-01-01

    Stargardt disease-4 (STGD4) is an autosomal dominant complex, genetically heterogeneous macular degeneration/dystrophy (MD) disorder. In this paper, we used targeted next generation sequencing and multiple molecular dynamics analyses to identify and characterize a disease-causing genetic variant in four generations of a Chinese family with STGD4-like MD. We found a novel heterozygous missense mutation, c.734T>C (p.L245P) in the PROM1 gene. Structurally, this mutation most likely impairs PROM1 protein stability, flexibility, and amino acid interaction network after changing the amino acid residue Leucine into Proline in the basic helix-loop-helix leucine zipper domain. Molecular dynamic simulation and principal component analysis provide compelling evidence that this PROM1 mutation contributes to disease causativeness or susceptibility variants in patients with STGD4-like MD. Thus, this finding defines new approaches in genetic characterization, accurate diagnosis, and prevention of STGD4-like MD. PMID:29416601

  4. A Petunia Homeodomain-Leucine Zipper Protein, PhHD-Zip, Plays an Important Role in Flower Senescence

    PubMed Central

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S.; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence. PMID:24551088

  5. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence.

    PubMed

    Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S; Jiang, Cai-Zhong

    2014-01-01

    Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.

  6. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua.

    PubMed

    Zhang, Fangyuan; Fu, Xueqing; Lv, Zongyou; Lu, Xu; Shen, Qian; Zhang, Ling; Zhu, Mengmeng; Wang, Guofeng; Sun, Xiaofen; Liao, Zhihua; Tang, Kexuan

    2015-01-01

    Artemisinin is a sesquiterpenoid especially synthesized in the Chinese herbal plant, Artemisia annua, which is widely used in the treatment of malaria. Artemisinin accumulation can be enhanced by exogenous abscisic acid (ABA) treatment. However, it is not known how ABA signaling regulates artemisinin biosynthesis. A global expression profile and phylogenetic analysis as well as the dual-LUC screening revealed that a basic leucine zipper family transcription factor from A. annua (namely AabZIP1) was involved in ABA signaling to regulate artemisinin biosynthesis. AabZIP1 had a higher expression level in the inflorescences than in other tissues; ABA treatment, drought, and salt stress strongly induced the expression of AabZIP1. Yeast one-hybrid assay and electrophoretic mobility shift assay (EMSA) showed that AabZIP1 bound to the ABA-responsive elements (ABRE) in the promoter regions of the amorpha-4,11-diene synthase (ADS) gene and CYP71AV1, which are two key structural genes of the artemisinin biosynthetic pathway. A mutagenesis assay showed that the C1 domain in the N-terminus of AabZIP1 was important for its transactivation activity. Furthermore, the activation of ADS and CYP71AV1 promoters by AabZIP1 was enhanced by ABA treatment in transient dual-LUC analysis. The AabZIP1 variant with C1 domain deletion lost the ability to activate ADS and CYP71AV1 promoters regardless of ABA treatment. Notably, overexpression of AabZIP1 in A. annua resulted in significantly increased accumulation of artemisinin. Our results indicate that ABA promotes artemisinin biosynthesis, likely through 1 activation of ADS and CYP71AV1 expression by AabZIP in A. annua. Meanwhile, our findings reveal the potential value of AabZIP1 in genetic engineering of artemisinin production. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  7. Fos metamorphoses: Lessons from mutants in model organisms (Drosophila).

    PubMed

    Alfonso-Gonzalez, Carlos; Riesgo-Escovar, Juan Rafael

    2018-05-10

    The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes. Copyright © 2018. Published by Elsevier B.V.

  8. Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1

    PubMed Central

    Narusaka, Mari; Toyoda, Kazuhiro; Shiraishi, Tomonori; Iuchi, Satoshi; Takano, Yoshitaka; Shirasu, Ken; Narusaka, Yoshihiro

    2016-01-01

    Arabidopsis thaliana leucine-rich repeat-containing (NLR) proteins RPS4 and RRS1, known as dual resistance proteins, confer resistance to multiple pathogen isolates, such as the bacterial pathogens Pseudomonas syringae and Ralstonia solanacearum and the fungal pathogen Colletotrichum higginsianum. RPS4 is a typical Toll/interleukin 1 Receptor (TIR)-type NLR, whereas RRS1 is an atypical TIR-NLR that contains a leucine zipper (LZ) motif and a C-terminal WRKY domain. RPS4 and RRS1 are localised near each other in a head-to-head orientation. In this study, direct mutagenesis of the C-terminal LZ motif in RRS1 caused an autoimmune response and stunting in the mutant. Co-immunoprecipitation analysis indicated that full-length RPS4 and RRS1 are physically associated with one another. Furthermore, virus-induced gene silencing experiments showed that hypersensitive-like cell death triggered by RPS4/LZ motif-mutated RRS1 depends on EDS1. In conclusion, we suggest that the RRS1-LZ motif is crucial for the regulation of the RPS4/RRS1 complex. PMID:26750751

  9. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments.

    PubMed

    Fagète, Séverine; Botas-Perez, Ledicia; Rossito-Borlat, Irène; Adea, Kenneth; Gueneau, Franck; Ravn, Ulla; Rousseau, François; Kosco-Vilbois, Marie; Fischer, Nicolas; Hartley, Oliver

    2017-09-01

    Antibody phage display technology has supported the emergence of numerous therapeutic antibodies. The development of bispecific antibodies, a promising new frontier in antibody therapy, could be facilitated by new phage display approaches that enable pairs of antibodies to be co-selected based on co-engagement of their respective targets. We describe such an approach, making use of two complementary leucine zipper domains that heterodimerize with high affinity. Phagemids encoding a first antibody fragment (scFv) fused to phage coat protein via the first leucine zipper are rescued in bacteria expressing a second scFv fused to the second leucine zipper as a soluble periplasmic protein, so that it is acquired by phage during assembly. Using a soluble scFv specific for a human CD3-derived peptide, we show that its acquisition by phage displaying an irrelevant antibody is sufficiently robust to drive selection of rare phage (1 in 105) over three rounds of panning. We then set up a model selection experiment using a cell line expressing the chemokine receptor CCR5 fused to the CD3 peptide together with a panel of phage clones capable displaying either an anti-CCR5 scFv or an irrelevant antibody, with or without the capacity to acquire the soluble anti-CD3 scFv. In this experiment we showed that rare phage (1 in 105) capable of displaying the two different scFvs can be specifically enriched over four rounds of panning. This approach has the potential to be applied to the identification of pairs of ligands capable of co-engaging two different user-defined targets, which would facilitate the discovery of novel bispecific antibodies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The VBP and a1/EBP leucine zipper factors bind overlapping subsets of avian retroviral long terminal repeat CCAAT/enhancer elements.

    PubMed

    Smith, C D; Baglia, L A; Curristin, S M; Ruddell, A

    1994-10-01

    Two long terminal repeat (LTR) enhancer-binding proteins which may regulate high rates of avian leukosis virus (ALV) LTR-enhanced c-myc transcription during bursal lymphomagenesis have been identified (A. Ruddell, M. Linial, and M. Groudine, Mol. Cell. Biol. 9:5660-5668, 1989). The genes encoding the a1/EBP and a3/EBP binding factors were cloned by expression screening of a lambda gt11 cDNA library from chicken bursal lymphoma cells. The a1/EBP cDNA encodes a novel leucine zipper transcription factor (W. Bowers and A. Ruddell, J. Virol. 66:6578-6586, 1992). The partial a3/EBP cDNA clone encodes amino acids 84 to 313 of vitellogenin gene-binding protein (VBP), a leucine zipper factor that binds the avian vitellogenin II gene promoter (S. Iyer, D. Davis, and J. Burch, Mol. Cell. Biol. 11:4863-4875, 1991). Multiple VBP mRNAs are expressed in B cells in a pattern identical to that previously observed for VBP in other cell types. The LTR-binding activities of VBP, a1/EBP, and B-cell nuclear extract protein were compared and mapped by gel shift, DNase I footprinting, and methylation interference assays. The purified VBP and a1/EBP bacterial fusion proteins bind overlapping but distinct subsets of CCAAT/enhancer elements in the closely related ALV and Rous sarcoma virus (RSV) LTR enhancers. Protein binding to these CCAAT/enhancer elements accounts for most of the labile LTR enhancer-binding activity observed in B-cell nuclear extracts. VBP and a1/EBP could mediate the high rates of ALV and RSV LTR-enhanced transcription in bursal lymphoma cells and many other cell types.

  11. Glucocorticoid-induced Leucine Zipper (GILZ) and Long GILZ Inhibit Myogenic Differentiation and Mediate Anti-myogenic Effects of Glucocorticoids*

    PubMed Central

    Bruscoli, Stefano; Donato, Valerio; Velardi, Enrico; Di Sante, Moises; Migliorati, Graziella; Donato, Rosario; Riccardi, Carlo

    2010-01-01

    Myogenesis is a process whereby myoblasts differentiate and fuse into multinucleated myotubes, the precursors of myofibers. Various signals and factors modulate this process, and glucocorticoids (GCs) are important regulators of skeletal muscle metabolism. We show that glucocorticoid-induced leucine zipper (GILZ), a GC-induced gene, and the newly identified isoform long GILZ (L-GILZ) are expressed in skeletal muscle tissue and in C2C12 myoblasts where GILZ/L-GILZ maximum expression occurs during the first few days in differentiation medium. Moreover, we observed that GC treatment of myoblasts, which increased GILZ/L-GILZ expression, resulted in reduced myotube formation, whereas GILZ and L-GILZ silencing dampened GC effects. Inhibition of differentiation caused by GILZ/L-GILZ overexpression correlated with inhibition of MyoD function and reduced expression of myogenin. Notably, results indicate that GILZ and L-GILZ bind and regulate MyoD/HDAC1 transcriptional activity, thus mediating the anti-myogenic effect of GCs. PMID:20124407

  12. Long Glucocorticoid-induced Leucine Zipper (L-GILZ) Protein Interacts with Ras Protein Pathway and Contributes to Spermatogenesis Control*

    PubMed Central

    Bruscoli, Stefano; Velardi, Enrico; Di Sante, Moises; Bereshchenko, Oxana; Venanzi, Alessandra; Coppo, Maddalena; Berno, Valeria; Mameli, Maria Grazia; Colella, Renato; Cavaliere, Antonio; Riccardi, Carlo

    2012-01-01

    Correct function of spermatogonia is critical for the maintenance of spermatogenesis throughout life, but the cellular pathways regulating undifferentiated spermatogonia proliferation, differentiation, and survival are only partially known. We show here that long glucocorticoid-induced leucine zipper (L-GILZ) is highly expressed in spermatogonia and primary spermatocytes and controls spermatogenesis. Gilz deficiency in knock-out (gilz KO) mice leads to a complete loss of germ cell lineage within first cycles of spermatogenesis, resulting in male sterility. Spermatogenesis failure is intrinsic to germ cells and is associated with increased proliferation and aberrant differentiation of undifferentiated spermatogonia and with hyperactivity of Ras signaling pathway as indicated by an increase of ERK and Akt phosphorylation. Spermatogonia differentiation does not proceed beyond the prophase of the first meiotic division due to massive apoptosis associated with accumulation of unrepaired chromosomal damage. These results identify L-GILZ as a novel important factor for undifferentiated spermatogonia function and spermatogenesis. PMID:22110132

  13. Design, selection, and characterization of a split chorismate mutase

    PubMed Central

    Müller, Manuel M; Kries, Hajo; Csuhai, Eva; Kast, Peter; Hilvert, Donald

    2010-01-01

    Split proteins are versatile tools for detecting protein–protein interactions and studying protein folding. Here, we report a new, particularly small split enzyme, engineered from a thermostable chorismate mutase (CM). Upon dissecting the helical-bundle CM from Methanococcus jannaschii into a short N-terminal helix and a 3-helix segment and attaching an antiparallel leucine zipper dimerization domain to the individual fragments, we obtained a weakly active heterodimeric mutase. Using combinatorial mutagenesis and in vivo selection, we optimized the short linker sequences connecting the leucine zipper to the enzyme domain. One of the selected CMs was characterized in detail. It spontaneously assembles from the separately inactive fragments and exhibits wild-type like CM activity. Owing to the availability of a well characterized selection system, the simple 4-helix bundle topology, and the small size of the N-terminal helix, the heterodimeric CM could be a valuable scaffold for enzyme engineering efforts and as a split sensor for specifically oriented protein–protein interactions. PMID:20306491

  14. Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks.

    PubMed

    Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A

    2016-05-01

    Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications. © 2015 Wiley Periodicals, Inc.

  15. Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica).

    PubMed

    Zhang, C H; Ma, R J; Shen, Z J; Sun, X; Korir, N K; Yu, M L

    2014-04-08

    In this study, 33 homeodomain-leucine zipper (HD-ZIP) genes were identified in peach using the HD-ZIP amino acid sequences of Arabidopsis thaliana as a probe. Based on the phylogenetic analysis and the individual gene or protein characteristics, the HD-ZIP gene family in peach can be classified into 4 subfamilies, HD-ZIP I, II, III, and IV, containing 14, 7, 4, and 8 members, respectively. The most closely related peach HD-ZIP members within the same subfamilies shared very similar gene structure in terms of either intron/exon numbers or lengths. Almost all members of the same subfamily shared common motif compositions, thereby implying that the HD-ZIP proteins within the same subfamily may have functional similarity. The 33 peach HD-ZIP genes were distributed across scaffolds 1 to 7. Although the primary structure varied among HD-ZIP family proteins, their tertiary structures were similar. The results from this study will be useful in selecting candidate genes from specific subfamilies for functional analysis.

  16. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes

    PubMed Central

    Léger, Sandy; Balguerie, Xavier; Goldenberg, Alice; Drouin-Garraud, Valérie; Cabot, Annick; Amstutz-Montadert, Isabelle; Young, Paul; Joly, Pascal; Bodereau, Virginie; Holder-Espinasse, Muriel; Jamieson, Robyn V; Krause, Amanda; Chen, Hongsheng; Baumann, Clarisse; Nunes, Luis; Dollfus, Hélène; Goossens, Michel; Pingault, Véronique

    2012-01-01

    The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor, which regulates melanocyte development and the biosynthetic melanin pathway. A notable relationship has been described between non-truncating mutations of its basic domain and Tietz syndrome, which is characterized by albinoid-like hypopigmentation of the skin and hair, rather than the patchy depigmentation seen in Waardenburg syndrome, and severe hearing loss. Twelve patients with new or recurrent non-truncating mutations of the MITF basic domain from six families were enrolled in this study. We observed a wide range of phenotypes and some unexpected features. All the patients had blue irides and pigmentation abnormalities that ranged from diffuse hypopigmentation to Waardenburg-like patches. In addition, they showed congenital complete hearing loss, diffuse hypopigmentation of the skin, freckling and ocular abnormalities, more frequently than patients with MITF mutations outside the basic domain. In conclusion, the non-truncating mutations of the basic domain do not always lead to Tietz syndrome but rather to a large range of phenotypes. Sun-exposed freckles are interestingly observed more frequently in Asian populations. This variability argues for the possible interaction with modifier loci. PMID:22258527

  17. C-Terminal HIV-1 Transframe p6* Tetrapeptide Blocks Enhanced Gag Cleavage Incurred by Leucine Zipper Replacement of a Deleted p6* Domain.

    PubMed

    Yu, Fu-Hsien; Huang, Kuo-Jung; Wang, Chin-Tien

    2017-05-15

    HIV-1 protease (PR) functions as a homodimer mediating virus maturation following virus budding. Gag-Pol dimerization is believed to trigger embedded PR activation by promoting PR dimer formation. Early PR activation can lead to markedly reduced virus yields due to premature Gag cleavage. The p6* peptide, located between Gag and PR, is believed to ensure virus production by preventing early PR maturation. Studies aimed at finding supporting evidence for this proposal are limited due to a reading frame overlap between p6* and the p6gag budding domain. To determine if p6* affects virus production via the modulation of PR activation, we engineered multiple constructs derived from Dp6*PR (an assembly- and processing-competent construct with Pol fused at the inactivated PR C terminus). The data indicated that a p6* deletion adjacent to active PR significantly impaired virus processing. We also observed that the insertion of a leucine zipper (LZ) dimerization motif in the deleted region eliminated virus production in a PR activity-dependent manner, suggesting that the LZ insertion triggered premature PR activation by facilitating PR dimer formation. As few as four C-terminal p6* residues remaining at the p6*/PR junction were sufficient to restore virus yields, with a Gag processing profile similar to that of the wild type. Our study provides supporting evidence in a virus assembly context that the C-terminal p6* tetrapeptide plays a role in preventing premature PR maturation. IMPORTANCE Supporting evidence for the assumption that p6* retards PR maturation in the context of virus assembly is lacking. We found that replacing p6* with a leucine zipper peptide abolished virus assembly due to the significant enhancement of Gag cleavage. However, as few as four C-terminal p6* residues remaining in the deleted region were sufficient for significant PR release, as well as for counteracting leucine zipper-incurred premature Gag cleavage. Our data provide evidence that (i) p6* ensures virus assembly by preventing early PR activation and (ii) four C-terminal p6* residues are critical for modulating PR activation. Current PR inhibitor development efforts are aimed largely at mature PR, but there is a tendency for HIV-1 variants that are resistant to multiple protease inhibitors to emerge. Our data support the idea of modulating PR activation by targeting PR precursors as an alternative approach to controlling HIV-1/AIDS. Copyright © 2017 American Society for Microbiology.

  18. A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence

    USDA-ARS?s Scientific Manuscript database

    Flower senescence is mediated in part by changes of plant hormones, such as ethylene, cytokinin and abscisic acid (ABA). Ethylene is known to control flower senescence in many species, especially ethylene sensitive flowers, like petunia, carnation and rose. During flower senescence in petunia and ot...

  19. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato.

    PubMed

    Zhang, Zhenzhu; Chen, Xiuling; Guan, Xin; Liu, Yang; Chen, Hongyu; Wang, Tingting; Mouekouba, Liana Dalcantara Ongouya; Li, Jingfu; Wang, Aoxue

    2014-01-01

    Homeodomain-leucine zipper (HD-Zip) proteins are a kind of transcriptional factors that play a vital role in plant growth and development. However, no detailed information of HD-Zip family in tomato has been reported till now. In this study, 51 HD-Zip genes (SlHZ01-51) in this family were identified and categorized into 4 classes by exon-intron and protein structure in tomato (Solanum lycopersicum) genome. The synthetical phylogenetic tree of tomato, Arabidopsis and rice HD-Zip genes were established for an insight into their evolutionary relationships and putative functions. The results showed that the contribution of segmental duplication was larger than that of tandem duplication for expansion and evolution of genes in this family of tomato. The expression profile results under abiotic stress suggested that all SlHZ I genes were responsive to cold stress. This study will provide a clue for the further investigation of functional identification and the role of tomato HD-Zip I subfamily in plant cold stress responses and developmental events.

  20. Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult

    PubMed Central

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Jiang, Zhiyu; Solanoy, Hilda; Sengupta Ghosh, Arundhati; Wang, Bei; Kaminker, Joshua S; Huang, Kevin; Eastham-Anderson, Jeffrey; Siu, Michael; Modrusan, Zora; Farley, Madeline M; Tessier-Lavigne, Marc; Lewcock, Joseph W; Watkins, Trent A

    2017-01-01

    The PKR-like endoplasmic reticulum kinase (PERK) arm of the Integrated Stress Response (ISR) is implicated in neurodegenerative disease, although the regulators and consequences of PERK activation following neuronal injury are poorly understood. Here we show that PERK signaling is a component of the mouse MAP kinase neuronal stress response controlled by the Dual Leucine Zipper Kinase (DLK) and contributes to DLK-mediated neurodegeneration. We find that DLK-activating insults ranging from nerve injury to neurotrophin deprivation result in both c-Jun N-terminal Kinase (JNK) signaling and the PERK- and ISR-dependent upregulation of the Activating Transcription Factor 4 (ATF4). Disruption of PERK signaling delays neurodegeneration without reducing JNK signaling. Furthermore, DLK is both sufficient for PERK activation and necessary for engaging the ISR subsequent to JNK-mediated retrograde injury signaling. These findings identify DLK as a central regulator of not only JNK but also PERK stress signaling in neurons, with both pathways contributing to neurodegeneration. DOI: http://dx.doi.org/10.7554/eLife.20725.001 PMID:28440222

  1. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress

    USDA-ARS?s Scientific Manuscript database

    The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are well characterized in Arabidopsis (Arabidopsis thaliana), ...

  2. Both Homo and Heterodimers of Marek's Disease Virus Encoded Meq Protein Contribute to Transformation of Lymphocytes in Chickens

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV) elicits T-cell lymphomas in chickens. The MDV genome encodes an oncoprotein, Meq, with similarity to the Jun/Fos family of proteins. Similar to Jun, the leucine zipper region of Meq allows the formation of homo- and heterodimers. We have previously shown that Meq homodime...

  3. A metal-linked gapped zipper model is proposed for the 90 kDa heat shock protein-estrogen receptor interface.

    PubMed

    Schwartz, J A; Mizukami, H

    1991-06-01

    A novel arrangement is proposed for the association of the 90 kDa heat shock protein (hsp 90) dimer and the human estrogen receptor (hER) monomer. Secondary structure analyses of the hsp 90 molecule reveal the presence of a cysteine-containing, leucine-rich, heptad repeat, which we refer to as region C. Similar analyses on the hER, at its hormone binding domain (HBD), have indicated the presence of a central subdomain bordered by 2 alpha-helical flanking segments which also display the heptad substructure. Due to its predicted potential for conformational change (1) we refer to this central subdomain as the Helix Conversion Unit or HCU. It contains an HX5C peptide and shares significant homology with the metal-binding domain of a gag-encoded HIV-LAV protein (2). We predict that, by virtue of its presence in duplicate, region C may be capable of simultaneous leucine zipper-like pairing with the hER at its flanking helices, as well as the formation of a shared CCHC-box-type metal binding link with the same hER at the putative HCU which lies in between.

  4. Engineering of a novel zipFv using leucine zipper motif against rabies virus glycoprotein G with improved protection potency in vivo.

    PubMed

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Li, Zhuang; Cheng, Yue; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-06-01

    Rabies is an acute zoonotic infectious disease with a high fatality rate but is preventable with vaccination and rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv), a small engineered antigen-binding protein derived from antibody variable heavy (V H ) and light (V L ) chains connected by a peptide linker, can potentially be used to replace RIG. Here, we produced two peptides V H -JUN-HIS and V L -FOS-HA separately in Escherichia coli and assembled them to form zipFv successfully in vitro. The new zipFv utilizes FOS and JUN leucine zippers to form an antibody structure similar to the IgG counterpart with two free N-terminal ends of V H and V L . The zipFv protein showed notable improvement in binding ability and affinity over its corresponding scFv. The zipFv also demonstrated greater stability in serum and the same protective rate as RIG against challenge with a standard rabies virus (CVS-24) in mice. Our results indicated zipFv as a novel and efficient antibody form with enhanced neutralizing potency. Copyright © 2017. Published by Elsevier B.V.

  5. Role of Homeodomain leucine zipper (HD-Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors.

    PubMed

    Chew, William; Hrmova, Maria; Lopato, Sergiy

    2013-04-12

    Homeobox genes comprise an important group of genes that are responsible for regulation of developmental processes. These genes determine cell differentiation and cell fate in all eukaryotic organisms, starting from the early stages of embryo development. Homeodomain leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom. Members of the HD-Zip IV subfamily have a complex domain topology and can bind several cis-elements with overlapping sequences. Many of the reported HD-Zip IV genes were shown to be specifically or preferentially expressed in plant epidermal or sub-epidermal cells. HD-Zip IV TFs were found to be associated with differentiation and maintenance of outer cell layers, and regulation of lipid biosynthesis and transport. Insights about the role of these proteins in plant cuticle formation, and hence their possible involvement in plant protection from pathogens and abiotic stresses has just started to emerge. These roles make HD-Zip IV proteins an attractive tool for genetic engineering of crop plants. To this end, there is a need for in-depth studies to further clarify the function of each HD-Zip IV subfamily member in commercially important plant species.

  6. Role of Homeodomain Leucine Zipper (HD-Zip) IV Transcription Factors in Plant Development and Plant Protection from Deleterious Environmental Factors

    PubMed Central

    Chew, William; Hrmova, Maria; Lopato, Sergiy

    2013-01-01

    Homeobox genes comprise an important group of genes that are responsible for regulation of developmental processes. These genes determine cell differentiation and cell fate in all eukaryotic organisms, starting from the early stages of embryo development. Homeodomain leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom. Members of the HD-Zip IV subfamily have a complex domain topology and can bind several cis-elements with overlapping sequences. Many of the reported HD-Zip IV genes were shown to be specifically or preferentially expressed in plant epidermal or sub-epidermal cells. HD-Zip IV TFs were found to be associated with differentiation and maintenance of outer cell layers, and regulation of lipid biosynthesis and transport. Insights about the role of these proteins in plant cuticle formation, and hence their possible involvement in plant protection from pathogens and abiotic stresses has just started to emerge. These roles make HD-Zip IV proteins an attractive tool for genetic engineering of crop plants. To this end, there is a need for in-depth studies to further clarify the function of each HD-Zip IV subfamily member in commercially important plant species. PMID:23584027

  7. Expression, purification, crystallization and preliminary X-ray analysis of a C-terminal fragment of the Epstein–Barr virus ZEBRA protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morand, Patrice; Laboratoire de Virologie Moléculaire et Structurale, EA 2939, Université Joseph Fourier, Grenoble; Budayova-Spano, Monika

    A C-terminal fragment of the Epstein–Barr virus lytic switch protein ZEBRA has been crystallized in complex with DNA. A C-terminal fragment of the Epstein–Barr virus immediate-early transcription factor ZEBRA has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. The fragment behaves as a dimer in solution, consistent with the presence of a basic region leucine-zipper (bZIP) domain. Crystals of the fragment in complex with a DNA duplex were grown by the hanging-drop vapour-diffusion technique using polyethylene glycol 4000 and magnesium acetate as crystallization agents. Crystals diffract to better than 2.5 Å resolution using synchrotron radiationmore » (λ = 0.976 Å). Crystals belong to space group C2, with unit-cell parameters a = 94.2, b = 26.5, c = 98.1 Å, β = 103.9°.« less

  8. Square cell packing in the Drosophila embryo through spatiotemporally regulated EGF receptor signaling

    PubMed Central

    Tamada, Masako; Zallen, Jennifer A.

    2015-01-01

    Summary Cells display dynamic and diverse morphologies during development, but the strategies by which differentiated tissues achieve precise shapes and patterns are not well understood. Here we identify a developmental program that generates a highly ordered square cell grid in the Drosophila embryo through sequential and spatially regulated cell alignment, oriented cell division, and apicobasal cell elongation. The basic leucine zipper transcriptional regulator Cnc is necessary and sufficient to produce a square cell grid in the presence of a midline signal provided by the EGF receptor ligand, Spitz. Spitz orients cell divisions through a Pins/LGN-dependent spindle positioning mechanism and controls cell shape and alignment through a transcriptional pathway that requires the Pointed ETS domain protein. These results identify a strategy for producing ordered square cell packing configurations in epithelia and reveal a molecular mechanism by which organized tissue structure is generated through spatiotemporally regulated responses to EGF receptor activation. PMID:26506305

  9. The Populus Class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems

    Treesearch

    Marcel Robischon; Juan Du; Eriko Miura; Andrew Groover

    2011-01-01

    The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the...

  10. Maternal Embryonic Leucine-zipper Kinase: Key Kinase for Stem Cell Phenotype in Glioma and Other Cancers

    PubMed Central

    Ganguly, Ranjit; Hong, Christopher; Smith, Luke; Kornblum, Harley I; Nakano, Ichiro

    2014-01-01

    Maternal embryonic leucine zipper kinase (MELK) is a member of the snf1/AMPK family of protein Serine/Threonine kinases that has recently gained significant attention in the stem cell and cancer biology field. Recent studies suggest that activation of this kinase is tightly associated with extended survival and accelerated proliferation of cancer stem cells (CSCs) in various organs. Overexpression of MELK has been noted in various cancers, including colon, breast, ovaries, pancreas, prostate, and brain, making the inhibition of MELK an attractive therapeutic strategy for a variety of cancers. In the experimental cancer models, depletion of MELK by RNA interference or small molecule inhibitors induces apoptotic cell death of cancer stem cells derived from glioblastoma and breast cancer, both in vitro and in vivo. Mechanism of action of MELK includes, yet may not be restricted to, direct binding and activation of the oncogenic transcription factors c-JUN and FOXM1 in cancer cells but not in the normal counterparts. Following these pre-clinical studies, the Phase I clinical trial for advanced cancers with OTS167 started in 2013, as the first-in-class MELK inhibitor. This review summarizes the current molecular understanding of MELK and the recent pre-clinical studies about MELK as a cancer therapeutic target. PMID:24795222

  11. Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia.

    PubMed

    Alachkar, Houda; Mutonga, Martin B G; Metzeler, Klaus H; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2014-12-15

    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients.

  12. Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia

    PubMed Central

    Alachkar, Houda; Mutonga, Martin B.G.; Metzeler, Klaus H.; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K.; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2014-01-01

    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients. PMID:25365263

  13. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    PubMed

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  14. Two-dimensional replica exchange approach for peptide-peptide interactions

    NASA Astrophysics Data System (ADS)

    Gee, Jason; Shell, M. Scott

    2011-02-01

    The replica exchange molecular dynamics (REMD) method has emerged as a standard approach for simulating proteins and peptides with rugged underlying free energy landscapes. We describe an extension to the original methodology—here termed umbrella-sampling REMD (UREMD)—that offers specific advantages in simulating peptide-peptide interactions. This method is based on the use of two dimensions in the replica cascade, one in temperature as in conventional REMD, and one in an umbrella sampling coordinate between the center of mass of the two peptides that aids explicit exploration of the complete association-dissociation reaction coordinate. To mitigate the increased number of replicas required, we pursue an approach in which the temperature and umbrella dimensions are linked at only fully associated and dissociated states. Coupled with the reweighting equations, the UREMD method aids accurate calculations of normalized free energy profiles and structural or energetic measures as a function of interpeptide separation distance. We test the approach on two families of peptides: a series of designed tetrapeptides that serve as minimal models for amyloid fibril formation, and a fragment of a classic leucine zipper peptide and its mutant. The results for these systems are compared to those from conventional REMD simulations, and demonstrate good convergence properties, low statistical errors, and, for the leucine zippers, an ability to sample near-native structures.

  15. Structure of homeodomain-leucine zipper/DNA complexes studied using hydroxyl radical cleavage of DNA and methylation interference.

    PubMed

    Tron, Adriana E; Comelli, Raúl N; Gonzalez, Daniel H

    2005-12-27

    Homeodomain-leucine zipper (HD-Zip) proteins, unlike most homeodomain proteins, bind a pseudopalindromic DNA sequence as dimers. We have investigated the structure of the DNA complexes formed by two HD-Zip proteins with different nucleotide preferences at the central position of the binding site using footprinting and interference methods. The results indicate that the respective complexes are not symmetric, with the strand bearing a central purine (top strand) showing higher protection around the central region and the bottom strand protected toward the 3' end. Binding to a sequence with a nonpreferred central base pair produces a decrease in protection in either the top or the bottom strand, depending upon the protein. Modeling studies derived from the complex formed by the monomeric Antennapedia homeodomain with DNA indicate that in the HD-Zip/DNA complex the recognition helix of one of the monomers is displaced within the major groove respective to the other one. This monomer seems to lose contacts with a part of the recognition sequence upon binding to the nonpreferred site. The results show that the structure of the complex formed by HD-Zip proteins with DNA is dependent upon both protein intrinsic characteristics and the nucleotides present at the central position of the recognition sequence.

  16. HCV T Cell Receptor Chain Modifications to Enhance Expression, Pairing, and Antigen Recognition in T Cells for Adoptive Transfer.

    PubMed

    Foley, Kendra C; Spear, Timothy T; Murray, David C; Nagato, Kaoru; Garrett-Mayer, Elizabeth; Nishimura, Michael I

    2017-06-16

    T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.

  17. Cold-inducible transcription factor, CaCBF, is associated with a homeodomain leucine zipper protein in hot pepper (Capsicum annuum L.).

    PubMed

    Kim, Sihyun; An, Chung Sun; Hong, Young-Nam; Lee, Kwang-Woong

    2004-12-31

    C-Repeat/drought responsive element binding factor (CBF1/DREB1b) is a well known transcriptional activator that is induced at low temperature and in turn induces the CBF regulon (CBF-targeted genes). We have cloned and characterized two CBF1-like cDNAs, CaCBF1A and CaCBF1B, from hot pepper. CaCBF1A and CaCBF1B were not produced in response to mechanical wounding or abscisic acid but were induced by low-temperature stress at 4 degrees . When plants were returned to 25 degrees , their transcript levels of the CBF1-like genes decreased markedly within 40 min. Long-term exposure to chilling resulted in continuous expression of these genes. The critical temperature for induction of CaCBF1A was between 10 and 15 degrees . Low temperature led to its transcription in roots, stems, leaves, fruit without seeds, and apical meristems, and a monoclonal antibody against it revealed a significant increase in CaCBF1A protein by 4 h at 4 degrees . Two-hybrid screening led to the isolation of an homeodomain leucine zipper (HD-Zip) protein that interacts with CaCBF1B. Expression of HD-Zip was elevated by low temperature and drought.

  18. Mutations in the MicroRNA Complementarity Site of the INCURVATA4 Gene Perturb Meristem Function and Adaxialize Lateral Organs in Arabidopsis1[W

    PubMed Central

    Ochando, Isabel; Jover-Gil, Sara; Ripoll, Juan José; Candela, Héctor; Vera, Antonio; Ponce, María Rosa; Martínez-Laborda, Antonio; Micol, José Luis

    2006-01-01

    Here, we describe how the semidominant, gain-of-function icu4-1 and icu4-2 alleles of the INCURVATA4 (ICU4) gene alter leaf phyllotaxis and cell organization in the root apical meristem, reduce root length, and cause xylem overgrowth in the stem. The ICU4 gene was positionally cloned and found to encode the ATHB15 transcription factor, a class III homeodomain/leucine zipper family member, recently named CORONA. The icu4-1 and icu4-2 alleles bear the same point mutation that affects the microRNA complementarity site of ICU4 and is identical to those of several semidominant alleles of the class III homeodomain/leucine zipper family members PHABULOSA and PHAVOLUTA. The icu4-1 and icu4-2 mutations significantly increase leaf transcript levels of the ICU4 gene. The null hst-1 allele of the HASTY gene, which encodes a nucleocytoplasmic transporter, synergistically interacts with icu4-1, the double mutant displaying partial adaxialization of rosette leaves and carpels. Our results suggest that the ICU4 gene has an adaxializing function and that it is down-regulated by microRNAs that require the HASTY protein for their biogenesis. PMID:16617092

  19. Antiapoptotic and Trophic Effects of Dominant-Negative Forms of Dual Leucine Zipper Kinase in Dopamine Neurons of the Substantia Nigra In Vivo

    PubMed Central

    Chen, Xiqun; Rzhetskaya, Margarita; Kareva, Tatyana; Bland, Ross; During, Matthew J.; Tank, A. William; Kholodilov, Nikolai; Burke, Robert E.

    2009-01-01

    There is extensive evidence that the mitogen-activated protein kinase (MAPK) signaling cascade mediates programmed cell death in neurons. However, current evidence that the mixed linage kinases (MLKs), upstream in this cascade, mediate cell death is based, in the in vivo context, entirely on pharmacological approaches. The compounds used in these studies have neither complete specificity nor selectivity among these kinases. Therefore, to better address the molecular specificity of the MLKs in mediating neuron death, we used dominant-negative constructs delivered by AAV (adenoassociated virus) vector transfer. We assessed effects in a neurotoxin model of parkinsonism, in which neuroprotection by pharmacologic MLK inhibition has been reported. We find that two dominant-negative forms of dual leucine zipper kinase (DLK) inhibit apoptosis and enhance long-term survival of dopamine neurons, but a dominant negative of MLK3 does not. Interestingly, the kinase-dead form of DLK not only blocks apoptosis but also has trophic effects on dopamine neurons. Although the MAPK cascade activates a number of downstream cell death mediators, we find that inhibition of DLK correlates closely with blockade of phosphorylation of c-jun and prevention of cell death. We conclude that DLK acts primarily through c-jun phosphorylation to mediate cell death in this model. PMID:18199767

  20. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed Central

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-01-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800

  1. Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.

    PubMed

    Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P

    1998-11-01

    The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery.

  2. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    PubMed

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Ki Shuk; Department of Neonatology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna; Rosner, Margit

    Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could representmore » a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.« less

  4. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth

    PubMed Central

    Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030

  5. Discovery of a Regulatory Motif for Human Satellite DNA Transcription in Response to BATF2 Overexpression.

    PubMed

    Bai, Xuejia; Huang, Wenqiu; Zhang, Chenguang; Niu, Jing; Ding, Wei

    2016-03-01

    One of the basic leucine zipper transcription factors, BATF2, has been found to suppress cancer growth and migration. However, little is known about the genes downstream of BATF2. HeLa cells were stably transfected with BATF2, then chromatin immunoprecipitation-sequencing was employed to identify the DNA motifs responsive to BATF2. Comprehensive bioinformatics analyses indicated that the most significant motif discovered as TTCCATT[CT]GATTCCATTC[AG]AT was primarily distributed among the chromosome centromere regions and mostly within human type II satellite DNA. Such motifs were able to prime the transcription of type II satellite DNA in a directional and asymmetrical manner. Consistently, satellite II transcription was up-regulated in BATF2-overexpressing cells. The present study provides insight into understanding the role of BATF2 in tumours and the importance of satellite DNA in the maintenance of genomic stability. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Molecular aspects of flower senescence and strategies to improve flower longevity

    PubMed Central

    Shibuya, Kenichi

    2018-01-01

    Flower longevity is one of the most important traits for ornamental plants. Ethylene plays a crucial role in flower senescence in some plant species. In several species that show ethylene-dependent flower senescence, genetic modification targeting genes for ethylene biosynthesis or signaling has improved flower longevity. Although little is known about regulatory mechanisms of petal senescence in flowers that show ethylene-independent senescence, a recent study of Japanese morning glory revealed that a NAC transcription factor, EPHEMERAL1 (EPH1), is a key regulator in ethylene-independent petal senescence. EPH1 is induced in an age-dependent manner irrespective of ethylene signal, and suppression of EPH1 expression dramatically delays petal senescence. In ethylene-dependent petal senescence, comprehensive transcriptome analyses revealed the involvement of transcription factors, a basic helix-loop-helix protein and a homeodomain-leucine zipper protein, in the transcriptional regulation of the ethylene biosynthesis enzymes. This review summarizes molecular aspects of flower senescence and discusses strategies to improve flower longevity by molecular breeding. PMID:29681752

  7. T cell fates ‘zipped up’: how the Bach2 basic leucine zipper transcriptional repressor directs T cell differentiation and function1

    PubMed Central

    Richer, Martin J.; Lang, Mark L.; Butler, Noah S.

    2016-01-01

    Recent data illustrate a key role for the transcriptional regulator Bach2 in orchestrating T cell differentiation and function. Although Bach2 has a well-described role in B cell differentiation, emerging data show that Bach2 is a prototypical member of a novel class of transcription factors that regulates transcriptional activity in T cells at super enhancers, or regions of high transcriptional activity. Accumulating data demonstrate specific roles for Bach2 in favoring regulatory T cell generation, restraining effector T cell differentiation and potentiating memory T cell development. Evidence suggests that Bach2 regulates various facets of T cell function by repressing other key transcriptional regulator such as Blimp-1. This review examines our current understanding of the role of Bach2 in T cell function and highlights the growing evidence that this transcriptional repressor functions as a key regulator involved in maintenance of T cell quiescence, T cell subset differentiation and memory T cell generation. PMID:27496973

  8. In vivo binding of hot pepper bZIP transcription factor CabZIP1 to the G-box region of pathogenesis-related protein 1 promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu

    2006-05-26

    We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less

  9. Thermodynamic analysis of cavity creating mutations in an engineered leucine zipper and energetics of glycerol-induced coiled coil stabilization.

    PubMed

    Dürr, E; Jelesarov, I

    2000-04-18

    Protein stability in vitro can be influenced either by introduction of mutations or by changes in the chemical composition of the solvent. Recently, we have characterized the thermodynamic stability and the rate of folding of the engineered dimeric leucine zipper A(2), which has a strengthened hydrophobic core [Dürr, E., Jelesarov, I., and Bosshard, H. R. (1999) Biochemistry 38, 870-880]. Here we report on the energetic consequences of a cavity introduced by Leu/Ala substitution at the tightly packed dimeric interface and how addition of 30% glycerol affects the folding thermodynamics of A(2) and the cavity mutants. Folding could be described by a two-state transition from two unfolded monomers to a coiled coil dimer. Removal of six methylene groups by Leu/Ala substitutions destabilized the dimeric coiled coil by 25 kJ mol(-1) at pH 3.5 and 25 degrees C in aqueous buffer. Destabilization was purely entropic at around room temperature and became increasingly enthalpic at elevated temperatures. Mutations were accompanied by a decrease of the unfolding heat capacity by 0.5 kJ K(-1) mol(-1). Addition of 30% glycerol increased the free energy of folding of A(2) and the cavity mutants by 5-10 kJ mol(-1) and lowered the unfolding heat capacity by 25% for A(2) and by 50% for the Leu/Ala mutants. The origin of the stabilizing effect of glycerol varied with temperature. Stabilization of the parent leucine zipper A(2) was enthalpic with an unfavorable entropic component between 0 and 100 degrees C. In the case of cavity mutants, glycerol induced enthalpic stabilization below 50 degrees C and entropic stabilization above 50 degrees C. The effect of glycerol could not be accounted for solely by the enthalpy and entropy of transfer or protein surface from water to glycerol/water mixture. We propose that in the presence of glycerol the folded coiled coil dimer is better packed and displays less intramolecular fluctuations, leading to enhanced enthalpic interactions and to an increase of the entropy of folding. This work demonstrates that mutational and solvent effects on protein stability can be thermodynamically complex and that it may not be sufficient to only analyze changes of enthalpy and entropy at the unfolding temperature (T(m)) to understand the mechanisms of protein stabilization.

  10. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer.

    PubMed

    Shen, Huaishun; Cao, Kaiming; Wang, Xiping

    2007-10-19

    Two putative Arabidopsis E group bZIP transcript factors, AtbZIP34 and AtbZIP61, are nuclear-localized and their transcriptional activation domain is in their N-terminal region. By searching GenBank, we found other eight plant homologues of AtbZIP34 and AtbZIP61. All of them have a proline residue in the third heptad of zipper region. Yeast two-hybrid assay and EMSA showed that AtbZIP34 and AtbZIP61 could not form homodimer while their mutant forms, AtbZIP34m and AtbZIP61m, which the proline residue was replaced by an alanine residue in the zipper region, could form homodimer and bind G-box element. These results suggest that the conserved proline residue interferes with the homodimer formation. However, both AtbZIP34 and AtbZIP61 could form heterodimers with members of I group and S group transcription factors in which some members involved in vascular development. So we speculate that AtbZIP34 and AtbZIP61 may participate in plant development via interacting with other group bZIP transcription factors.

  11. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer.

    PubMed

    Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun

    2016-03-22

    Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC.

  12. Unigenic Evolution: A Novel Genetic Method Localizes a Putative Leucine Zipper That Mediates Dimerization of the Saccharomyces Cerevisiae Regulator Gcr1p

    PubMed Central

    Deminoff, S. J.; Tornow, J.; Santangelo, G. M.

    1995-01-01

    The GCR1 gene of Saccharomyces cerevisiae encodes a transcriptional activator that complexes with Rap1p and, through UAS(RPG) elements (Rap1p DNA binding sites), stimulates efficient expression of glycolytic and translational component genes. To map the functionally important domains in Gcr1p, we combined multiple rounds of random mutagenesis in vitro with in vivo selection of functional genes to locate conserved, or hypomutable, regions. We name this method unigenic evolution, a statistical analysis of mutations in evolutionary variants of a single gene in an otherwise isogenic background. Examination of the distribution of 315 mutations in 24 variant alleles allowed the localization of four hypomutable regions in GCR1 (A, B, C, and D). Dispensable N-terminal (intronic) and C-terminal portions of the evolved region of GCR1 were included in the analysis as controls and were, as expected, not hypomutable. The analysis of several insertion, deletion, and point mutations, combined with a comparison of the hypomutability and hydrophobicity plots of Gcr1p, suggested that some of the hypomutable regions may individually or in combination correspond to functionally important surface domains. In particular, we determined that region D contains a putative leucine zipper and is necessary and sufficient for Gcr1p homodimerization. PMID:8601472

  13. Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice1[C][W][OA

    PubMed Central

    Itoh, Jun-Ichi; Hibara, Ken-Ichiro; Sato, Yutaka; Nagato, Yasuo

    2008-01-01

    Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner. PMID:18567825

  14. Effective growth-suppressive activity of maternal embryonic leucine-zipper kinase (MELK) inhibitor against small cell lung cancer

    PubMed Central

    Inoue, Hiroyuki; Kato, Taigo; Olugbile, Sope; Tamura, Kenji; Chung, Suyoun; Miyamoto, Takashi; Matsuo, Yo; Salgia, Ravi; Nakamura, Yusuke; Park, Jae-Hyun

    2016-01-01

    Maternal embryonic leucine zipper kinase (MELK), that plays a critical role in maintenance of cancer stem cells (CSCs), is predominantly expressed in various types of human cancer including small cell lung cancer (SCLC). SCLC usually acquires resistance to anti-cancer drugs and portends dismal prognosis. We have delineated roles of MELK in development/progression of SCLC and examined anti-tumor efficacy of OTS167, a highly potent MELK inhibitor, against SCLC. MELK expression was highly upregulated in both SCLC cell lines and primary tumors. siRNA-mediated MELK knockdown induced significant growth inhibition in SCLC cell lines. Concordantly, treatment with OTS167 exhibited strong cytotoxicity against eleven SCLC cell lines with IC50 of < 10 nM. As similar to siRNA knockdown, OTS167 treatment induced cytokinetic defects with intercellular bridges, and in some cell lines we observed formation of neuronal protrusions accompanied with increase of a neuronal differentiation marker (CD56), indicating that the compound induced differentiation of cancer cells to neuron-like cells. Furthermore, the MELK inhibition decreased its downstream FOXM1 activity and Akt expression in SCLC cells, and led to apoptotic cell death. OTS167 appeared to be more effective to CSCs as measured by the sphere formation assay, thus MELK inhibition might become a promising treatment modality for SCLC. PMID:26871945

  15. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism.

    PubMed

    Yang, Nianlan; Baban, Babak; Isales, Carlos M; Shi, Xing-Ming

    2015-09-01

    Bone marrow is a reservoir for regulatory T (T(reg)) cells, but how T(reg) cells are regulated in that environment remains poorly understood. We show that expression of glucocorticoid (GC)-induced leucine zipper (GILZ) in bone marrow mesenchymal lineage cells or bone marrow-derived mesenchymal stem cells (BMSCs) increases the production of T(reg) cells via a mechanism involving the up-regulation of developmental endothelial locus-1 (Del-1), an endogenous leukocyte-endothelial adhesion inhibitor. We found that the expression of Del-1 is increased ∼4-fold in the bone tissues of GILZ transgenic (Tg) mice, and this increase is coupled with a significant increase in the production of IL-10 (2.80 vs. 0.83) and decrease in the production of IL-6 (0.80 vs. 2.33) and IL-12 (0.25 vs. 1.67). We also show that GILZ-expressing BMSCs present antigen in a way that favors T(reg) cells. These results indicate that GILZ plays a critical role mediating the crosstalk between BMSCs and T(reg) in the bone marrow microenvironment. These data, together with our previous findings that overexpression of GILZ in BMSCs antagonizes TNF-α-elicited inflammatory responses, suggest that GILZ plays important roles in bone-immune cell communication and BMSC immune suppressive functions. © FASEB.

  16. Glucocorticoid-induced leucine zipper expression is associated with response to treatment and immunoregulation in systemic lupus erythematosus.

    PubMed

    Mohammadi, Saeed; Ebadpour, Mohammad Reza; Sedighi, Sima; Saeedi, Mohsen; Memarian, Ali

    2017-08-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder in which cytokine balance is disturbed. Glucocorticoids (GCs) are shown to balance immune response by transcriptional regulation of glucocorticoid receptor target genes such as Glucocorticoid-induced leucine zipper (GILZ) which has been introduced as an endogenous anti-inflammatory mediator. In the present study, we assessed the expression of GILZ in association with interferon-γ (IFN-γ), interleukine-10 (IL-10), and B lymphocyte stimulator (BLyS) plasma levels in SLE patients. A total of 40 female patients (18 under treatment and 22 newly diagnosed) were recruited in this study. Real-time RT PCR was conducted to quantify the mRNA expression of GILZ. The plasma levels of IFN-γ, IL-10, and BLyS were evaluated using ELISA method. GILZ was overexpressed among under treatment SLE patients. The mRNA expression of GILZ was significantly correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score. IFN-γ and BLyS were downregulated in response to therapies with negative correlations to GILZ. Moreover, IL-10 was upregulated among treated patients. The levels of IFN-γ and BLyS were correlated with the severity of disease, while IL-10 was negatively correlated with SLEDAI score. GILZ could be introduced as one of the acting molecules in mediating the regulatory effects of GCs on producing pro- and anti-inflammatory cytokines in SLE.

  17. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  18. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE PAGES

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...

    2017-07-27

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  19. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity.

    PubMed

    Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina

    2013-01-01

    In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.

  20. The bZIP dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site

    PubMed Central

    Chan, I-San; Al-Sarraj, Taufik; Shahravan, S. Hesam; Fedorova, Anna V.; Shin, Jumi A.

    2012-01-01

    Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4-bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR), and that 5H-LR comprises two 4-bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explored how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP–DNA interactions at a number of full-sites that contain 5H-LR vs. either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo. PMID:22856882

  1. The bZIP dimer localizes at DNA full-sites where each basic region can alternately translocate and bind to subsites at the half-site.

    PubMed

    Chan, I-San; Al-Sarraj, Taufik; Shahravan, S Hesam; Fedorova, Anna V; Shin, Jumi A

    2012-08-21

    Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4 bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR) and that 5H-LR comprises two 4 bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explore how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP-DNA interactions at a number of full-sites that contain 5H-LR versus either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo.

  2. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  3. Expression and regulation of glucocorticoid-induced leucine zipper in the developing anterior pituitary gland.

    PubMed

    Ellestad, Laura E; Malkiewicz, Stefanie A; Guthrie, H David; Welch, Glenn R; Porter, Tom E

    2009-02-01

    The expression profile of glucocorticoid-induced leucine zipper (GILZ) in the anterior pituitary during the second half of embryonic development in the chick is consistent with in vivo regulation by circulating corticosteroids. However, nothing else has been reported about the presence of GILZ in the neuroendocrine system. We sought to characterize expression and regulation of GILZ in the chicken embryonic pituitary gland and determine the effect of GILZ overexpression on anterior pituitary hormone levels. Pituitary GILZ mRNA levels increased during embryogenesis to a maximum on the day of hatch, and decreased through the first week after hatch. GILZ expression was rapidly upregulated by corticosterone in embryonic pituitary cells. To determine whether GILZ regulates hormone gene expression in the developing anterior pituitary, we overexpressed GILZ in embryonic pituitary cells and measured mRNA for the major pituitary hormones. Exogenous GILZ increased prolactin mRNA above basal levels, but not as high as that in corticosterone-treated cells, indicating that GILZ may play a small role in lactotroph differentiation. The largest effect we observed was a twofold increase in FSH beta subunit in cells transfected with GILZ but not treated with corticosterone, suggesting that GILZ may positively regulate gonadotroph development in a manner not involving glucocorticoids. In conclusion, this is the first report to characterize avian GILZ and examine its regulation in the developing neuroendocrine system. We have shown that GILZ is upregulated by glucocorticoids in the embryonic pituitary gland and may regulate expression of several pituitary hormones.

  4. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene

    PubMed Central

    Komatsuda, Takao; Pourkheirandish, Mohammad; He, Congfen; Azhaguvel, Perumal; Kanamori, Hiroyuki; Perovic, Dragan; Stein, Nils; Graner, Andreas; Wicker, Thomas; Tagiri, Akemi; Lundqvist, Udda; Fujimura, Tatsuhito; Matsuoka, Makoto; Matsumoto, Takashi; Yano, Masahiro

    2007-01-01

    Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1. PMID:17220272

  5. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities.

    PubMed

    Valdés, Ana Elisa; Overnäs, Elin; Johansson, Henrik; Rada-Iglesias, Alvaro; Engström, Peter

    2012-11-01

    Plants perceiving drought activate multiple responses to improve survival, including large-scale alterations in gene expression. This article reports on the roles in the drought response of two Arabidopsis thaliana homeodomain-leucine zipper class I genes; ATHB7 and ATHB12, both strongly induced by water-deficit and abscisic acid (ABA). ABA-mediated transcriptional regulation of both genes is shown to depend on the activity of protein phosphatases type 2C (PP2C). ATHB7 and ATHB12 are, thus, targets of the ABA signalling mechanism defined by the PP2Cs and the PYR/PYL family of ABA receptors, with which the PP2C proteins interact. Our results from chromatin immunoprecipitation and gene expression analyses demonstrate that ATHB7 and ATHB12 act as positive transcriptional regulators of PP2C genes, and thereby as negative regulators of abscisic acid signalling. In support of this notion, our results also show that ATHB7 and ATHB12 act to repress the transcription of genes encoding the ABA receptors PYL5 and PYL8 in response to an ABA stimulus. In summary, we demonstrate that ATHB7 and ATHB12 have essential functions in the primary response to drought, as mediators of a negative feedback effect on ABA signalling in the plant response to water deficit.

  6. Transcriptome-Wide Survey and Expression Profile Analysis of Putative Chrysanthemum HD-Zip I and II Genes

    PubMed Central

    Song, Aiping; Li, Peiling; Xin, Jingjing; Chen, Sumei; Zhao, Kunkun; Wu, Dan; Fan, Qingqing; Gao, Tianwei; Chen, Fadi; Guan, Zhiyong

    2016-01-01

    The homeodomain-leucine zipper (HD-Zip) transcription factor family is a key transcription factor family and unique to the plant kingdom. It consists of a homeodomain and a leucine zipper that serve in combination as a dimerization motif. The family can be classified into four subfamilies, and these subfamilies participate in the development of hormones and mediation of hormone action and are involved in plant responses to environmental conditions. However, limited information on this gene family is available for the important chrysanthemum ornamental species (Chrysanthemum morifolium). Here, we characterized 17 chrysanthemum HD-Zip genes based on transcriptome sequences. Phylogenetic analyses revealed that 17 CmHB genes were distributed in the HD-Zip subfamilies I and II and identified two pairs of putative orthologous proteins in Arabidopsis and chrysanthemum and four pairs of paralogous proteins in chrysanthemum. The software MEME was used to identify 7 putative motifs with E values less than 1e-3 in the chrysanthemum HD-Zip factors, and they can be clearly classified into two groups based on the composition of the motifs. A bioinformatics analysis predicted that 8 CmHB genes could be targeted by 10 miRNA families, and the expression of these 17 genes in response to phytohormone treatments and abiotic stresses was characterized. The results presented here will promote research on the various functions of the HD-Zip gene family members in plant hormones and stress responses. PMID:27196930

  7. Application of HB17, an Arabidopsis class II homeodomain-leucine zipper transcription factor, to regulate chloroplast number and photosynthetic capacity.

    PubMed

    Hymus, Graham J; Cai, Suqin; Kohl, Elizabeth A; Holtan, Hans E; Marion, Colleen M; Tiwari, Shiv; Maszle, Don R; Lundgren, Marjorie R; Hong, Melissa C; Channa, Namitha; Loida, Paul; Thompson, Rebecca; Taylor, J Philip; Rice, Elena; Repetti, Peter P; Ratcliffe, Oliver J; Reuber, T Lynne; Creelman, Robert A

    2013-11-01

    Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines.

  8. Application of HB17, an Arabidopsis class II homeodomain-leucine zipper transcription factor, to regulate chloroplast number and photosynthetic capacity

    PubMed Central

    Kohl, Elizabeth A.; Tiwari, Shiv; Lundgren, Marjorie R.; Channa, Namitha; Creelman, Robert A.

    2013-01-01

    Transcription factors are proposed as suitable targets for the control of traits such as yield or food quality in plants. This study reports the results of a functional genomics research effort that identified ATHB17, a transcription factor from the homeodomain-leucine zipper class II family, as a novel target for the enhancement of photosynthetic capacity. It was shown that ATHB17 is expressed natively in the root quiescent centre (QC) from Arabidopsis embryos and seedlings. Analysis of the functional composition of genes differentially expressed in the QC from a knockout mutant (athb17-1) compared with its wild-type sibling revealed the over-representation of genes involved in auxin stimulus, embryo development, axis polarity specification, and plastid-related processes. While no other phenotypes were observed in athb17-1 plants, overexpression of ATHB17 produced a number of phenotypes in Arabidopsis including enhanced chlorophyll content. Image analysis of isolated mesophyll cells of 35S::ATHB17 lines revealed an increase in the number of chloroplasts per unit cell size, which is probably due to an increase in the number of proplastids per meristematic cell. Leaf physiological measurements provided evidence of improved photosynthetic capacity in 35S::ATHB17 lines on a per unit leaf area basis. Estimates of the capacity for ribulose-1,5-bisphosphate-saturated and -limited photosynthesis were significantly higher in 35S::ATHB17 lines. PMID:24006420

  9. Small Maf proteins (MafF, MafG, MafK): History, structure and function.

    PubMed

    Katsuoka, Fumiki; Yamamoto, Masayuki

    2016-07-25

    The small Maf proteins (sMafs) are basic region leucine zipper (bZIP)-type transcription factors. The basic region of the Maf family is unique among the bZIP factors, and it contributes to the distinct DNA-binding mode of this class of proteins. MafF, MafG and MafK are the three vertebrate sMafs, and no functional differences have been observed among them in terms of their bZIP structures. sMafs form homodimers by themselves, and they form heterodimers with cap 'n' collar (CNC) proteins (p45 NF-E2, Nrf1, Nrf2, and Nrf3) and also with Bach proteins (Bach1 and Bach2). Because CNC and Bach proteins cannot bind to DNA as monomers, sMafs are indispensable partners that are required by CNC and Bach proteins to exert their functions. sMafs lack the transcriptional activation domain; hence, their homodimers act as transcriptional repressors. In contrast, sMafs participate in transcriptional activation or repression depending on their heterodimeric partner molecules and context. Mouse genetic analyses have revealed that various biological pathways are under the regulation of CNC-sMaf heterodimers. In this review, we summarize the history and current progress of sMaf studies in relation to their partners. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis and physicochemical studies of amyloidogenic hexapeptides derived from human cystatin C.

    PubMed

    Iłowska, Emilia; Sawicka, Justyna; Szymańska, Aneta

    2018-06-01

    Human cystatin C (hCC) is a low molecular mass protein that belongs to the cystatin superfamily. It is an inhibitor of extracellular cysteine proteinases, present in all human body fluids. At physiological conditions, hCC is a monomer, but it has a tendency to dimerization. Naturally occurring hCC mutant, with leucine in position 68 substituted by glutamine (L68Q), is directly involved in the formation of amyloid deposits, independently of other proteins. This process is the primary cause of hereditary cerebral amyloid angiopathy, observed mainly in the Icelandic population. Oligomerization and fibrillization processes of hCC are not explained equally well, but it is proposed that domain swapping is involved in both of them. Research carried out on the fibrillization process led to new hypothesis about the existence of a steric zipper motif in amyloidogenic proteins. In the hCC sequence, there are 2 fragments which may play the role of a steric zipper: the loop L1 region and the C-terminal fragment. In this work, we focused on the first of these. Nine hexapeptides covering studied hCC fragment were synthesized, and their fibrillogenic potential was assessed using an array of biophysical methods. The obtained results showed that the studied hCC fragment has strong profibrillogenic propensities because it contains 2 fragments fulfilling the requirements for an effective steric zipper located next to each other, forming 1 super-steric zipper motif. This hCC fragment might therefore be responsible for the enhanced amyloidogenic properties of dimeric or partially unfolded hCC. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.

  11. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance

    PubMed Central

    Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu

    2017-01-01

    The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143

  12. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm.

    PubMed

    Wang, Jie-Chen; Xu, Heng; Zhu, Ying; Liu, Qiao-Quan; Cai, Xiu-Ling

    2013-08-01

    Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.

  13. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    PubMed Central

    Zhou, Hui; Lin-Wang, Kui; Liao, Liao; Gu, Chao; Lu, Ziqi; Allan, Andrew C.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants. PMID:26579158

  14. Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation

    PubMed Central

    Bai, Yang; Wang, Xiaolu; Zhao, Song; Ma, Chunye; Cui, Jiuwei; Zheng, Yang

    2015-01-01

    Cardiovascular disease (CVD) causes an unparalleled proportion of the global burden of disease and will remain the main cause of mortality for the near future. Oxidative stress plays a major role in the pathophysiology of cardiac disorders. Several studies have highlighted the cardinal role played by the overproduction of reactive oxygen or nitrogen species in the pathogenesis of ischemic myocardial damage and consequent cardiac dysfunction. Isothiocyanates (ITC) are sulfur-containing compounds that are broadly distributed among cruciferous vegetables. Sulforaphane (SFN) is an ITC shown to possess anticancer activities by both in vivo and epidemiological studies. Recent data have indicated that the beneficial effects of SFN in CVD are due to its antioxidant and anti-inflammatory properties. SFN activates NF-E2-related factor 2 (Nrf2), a basic leucine zipper transcription factor that serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than a hundred cytoprotective proteins, including antioxidants and phase II detoxifying enzymes. This review will summarize the evidence from clinical studies and animal experiments relating to the potential mechanisms by which SFN modulates Nrf2 activation and protects against CVD. PMID:26583056

  15. Bach2 is involved in neuronal differentiation of N1E-115 neuroblastoma cells.

    PubMed

    Shim, Ki Shuk; Rosner, Margit; Freilinger, Angelika; Lubec, Gert; Hengstschläger, Markus

    2006-07-15

    Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could represent a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.

  16. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  17. Drosophila Myc is oncogenic in mammalian cells and plays a role in the diminutive phenotype

    PubMed Central

    Schreiber-Agus, Nicole; Stein, David; Chen, Ken; Goltz, Jason S.; Stevens, Leslie; DePinho, Ronald A.

    1997-01-01

    Biochemical and biological activities of Myc oncoproteins are highly dependent upon their association with another basic region helix–loop–helix/leucine zipper (bHLH/LZ) protein, Max. Our previous observation that the DNA-binding/dimerization region of Max is absolutely conserved throughout vertebrate evolution provided the basis for a yeast two-hybrid interaction screen that led to the isolation of the Drosophila Myc (dMyc1) protein. Structural conservation in regions of known functional significance is consistent with the ability of dMyc1 to interact with vertebrate Max, to transactivate gene expression in yeast cells, and to cooperate with activated H-RAS to effect the malignant transformation of primary mammalian cells. The ability of P-element-mediated ectopic expression of dmyc1 to reverse a subset of the phenotypic alterations associated with the diminutive mutation suggests that diminutive may correspond to dmyc1. This finding, along with the localization of dmyc1 expression to zones of high proliferative activity in the embryo, implicates dMyc1 as an integral regulator of Drosophila growth and development. PMID:9037036

  18. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins.

    PubMed

    Das, Rahul K; Crick, Scott L; Pappu, Rohit V

    2012-02-17

    Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. In Planta Single-Molecule Pull-Down Reveals Tetrameric Stoichiometry of HD-ZIPIII:LITTLE ZIPPER Complexes.

    PubMed

    Husbands, Aman Y; Aggarwal, Vasudha; Ha, Taekjip; Timmermans, Marja C P

    2016-08-01

    Deciphering complex biological processes markedly benefits from approaches that directly assess the underlying biomolecular interactions. Most commonly used approaches to monitor protein-protein interactions typically provide nonquantitative readouts that lack statistical power and do not yield information on the heterogeneity or stoichiometry of protein complexes. Single-molecule pull-down (SiMPull) uses single-molecule fluorescence detection to mitigate these disadvantages and can quantitatively interrogate interactions between proteins and other compounds, such as nucleic acids, small molecule ligands, and lipids. Here, we establish SiMPull in plants using the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) and LITTLE ZIPPER (ZPR) interaction as proof-of-principle. Colocalization analysis of fluorophore-tagged HD-ZIPIII and ZPR proteins provides strong statistical evidence of complex formation. In addition, we use SiMPull to directly quantify YFP and mCherry maturation probabilities, showing these differ substantially from values obtained in mammalian systems. Leveraging these probabilities, in conjunction with fluorophore photobleaching assays on over 2000 individual complexes, we determined HD-ZIPIII:ZPR stoichiometry. Intriguingly, these complexes appear as heterotetramers, comprising two HD-ZIPIII and two ZPR molecules, rather than heterodimers as described in the current model. This surprising result raises new questions about the regulation of these key developmental factors and is illustrative of the unique contribution SiMPull is poised to make to in planta protein interaction studies. © 2016 American Society of Plant Biologists. All rights reserved.

  20. Mediation of glucolipotoxicity in INS-1 rat insulinoma cells by small heterodimer partner interacting leucine zipper protein (SMILE).

    PubMed

    Lee, Kyeong-Min; Seo, Ye Jin; Kim, Mi-Kyung; Seo, Hyun-Ae; Jeong, Ji-Yun; Choi, Hueng-Sik; Lee, In-Kyu; Park, Keun-Gyu

    2012-03-23

    Sustained elevations of glucose and free fatty acid concentration have deleterious effects on pancreatic beta cell function. One of the hallmarks of such glucolipotoxicity is a reduction in insulin gene expression, resulting from decreased insulin promoter activity. Sterol regulatory element binding protein-1c (SREBP-1c), a lipogenic transcription factor, is related to the development of beta cell dysfunction caused by elevated concentrations of glucose and free fatty acid. Small heterodimer partner (SHP) interacting leucine zipper protein (SMILE), also known as Zhangfei, is a novel protein which interacts with SHP that mediates glucotoxicity in INS-1 rat insulinoma cells. Treatment of INS-1 cells with high concentrations of glucose and palmitate increased SREBP-1c and SMILE expression, and decreased insulin gene expression. Adenovirus-mediated overexpression of SREBP-1c in INS-1 cells induced SMILE expression. Moreover, adenovirus-mediated overexpression of SMILE (Ad-SMILE) in INS-1 cells impaired glucose-stimulated insulin secretion as well as insulin gene expression. Ad-SMILE overexpression also inhibited the expression of beta-cell enriched transcription factors including pancreatic duodenal homeobox factor-1, beta cell E box transactivator 2 and RIPE3b1/MafA, in INS-1 cells. Finally, in COS-1 cells, expression of SMILE inhibited the insulin promoter activity induced by these same beta-cell enriched transcription factors. These results collectively suggest that SMILE plays an important role in the development of beta cell dysfunction induced by glucolipotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. WRNIP1 accumulates at laser light irradiated sites rapidly via its ubiquitin-binding zinc finger domain and independently from its ATPase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Hironoshin; Yoshimura, Akari, E-mail: akari_yo@musashino-u.ac.jp; Edo, Takato

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer WRNIP1 accumulates in laser light irradiated sites very rapidly via UBZ domain. Black-Right-Pointing-Pointer The ATPase domain of WRNIP1 is dispensable for its accumulation. Black-Right-Pointing-Pointer The accumulation of WRNIP1 seems not to be dependent on the interaction with WRN. -- Abstract: WRNIP1 (Werner helicase-interacting protein 1) was originally identified as a protein that interacts with the Werner syndrome responsible gene product. WRNIP1 contains a ubiquitin-binding zinc-finger (UBZ) domain in the N-terminal region and two leucine zipper motifs in the C-terminal region. In addition, it possesses an ATPase domain in the middle of the molecule and the lysine residues servingmore » as ubiquitin acceptors in the entire of the molecule. Here, we report that WRNIP1 accumulates in laser light irradiated sites very rapidly via its ubiquitin-binding zinc finger domain, which is known to bind polyubiquitin and to be involved in ubiquitination of WRNIP1 itself. The accumulation of WRNIP1 in laser light irradiated sites also required the C-terminal region containing two leucine zippers, which is reportedly involved in the oligomerization of WRNIP1. Mutated WRNIP1 with a deleted ATPase domain or with mutations in lysine residues, which serve as ubiquitin acceptors, accumulated in laser light irradiated sites, suggesting that the ATPase domain of WRNIP1 and ubiquitination of WRNIP1 are dispensable for the accumulation.« less

  2. The Hairless Stem Phenotype of Cotton (Gossypium barbadense) Is Linked to a Copia-Like Retrotransposon Insertion in a Homeodomain-Leucine Zipper Gene (HD1)

    PubMed Central

    Ding, Mingquan; Ye, Wuwei; Lin, Lifeng; He, Shae; Du, Xiongming; Chen, Aiqun; Cao, Yuefen; Qin, Yuan; Yang, Fen; Jiang, Yurong; Zhang, Hua; Wang, Xiyin; Paterson, Andrew H.; Rong, Junkang

    2015-01-01

    Cotton (Gossypium) stem trichomes are mostly single cells that arise from stem epidermal cells. In this study, a homeodomain-leucine zipper gene (HD1) was found to cosegregate with the dominant trichome locus previously designated as T1 and mapped to chromosome 6. Characterization of HD1 orthologs revealed that the absence of stem trichomes in modern Gossypium barbadense varieties is linked to a large retrotransposon insertion in the ninth exon, 2565 bp downstream from the initial codon in the At subgenome HD1 gene (At-GbHD1). In both the At and Dt subgenomes, reduced transcription of GbHD1 genes is caused by this insertion. The disruption of At-HD1 further affects the expression of downstream GbMYB25 and GbHOX3 genes. Analyses of primitive cultivated accessions identified another retrotransposon insertion event in the sixth exon of At-GbHD1 that might predate the previously identified retrotransposon in modern varieties. Although both retrotransposon insertions results in similar phenotypic changes, the timing of these two retrotransposon insertion events fits well with our current understanding of the history of cotton speciation and dispersal. Taken together, the results of genetics mapping, gene expression and association analyses suggest that GbHD1 is an important component that controls stem trichome development and is a promising candidate gene for the T1 locus. The interspecific phenotypic difference in stem trichome traits also may be attributable to HD1 inactivation associated with retrotransposon insertion. PMID:26133897

  3. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation.more » Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.« less

  4. Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun.

    PubMed

    Leonard, D A; Rajaram, N; Kerppola, T K

    1997-05-13

    Interactions among transcription factors that bind to separate sequence elements require bending of the intervening DNA and juxtaposition of interacting molecular surfaces in an appropriate orientation. Here, we examine the effects of single amino acid substitutions adjacent to the basic regions of Fos and Jun as well as changes in sequences flanking the AP-1 site on DNA bending. Substitution of charged amino acid residues at positions adjacent to the basic DNA-binding domains of Fos and Jun altered DNA bending. The change in DNA bending was directly proportional to the change in net charge for all heterodimeric combinations between these proteins. Fos and Jun induced distinct DNA bends at different binding sites. Exchange of a single base pair outside of the region contacted in the x-ray crystal structure altered DNA bending. Substitution of base pairs flanking the AP-1 site had converse effects on the opposite directions of DNA bending induced by homodimers and heterodimers. These results suggest that Fos and Jun induce DNA bending in part through electrostatic interactions between amino acid residues adjacent to the basic region and base pairs flanking the AP-1 site. DNA bending by Fos and Jun at inverted binding sites indicated that heterodimers bind to the AP-1 site in a preferred orientation. Mutation of a conserved arginine within the basic regions of Fos and transversion of the central C:G base pair in the AP-1 site to G:C had complementary effects on the orientation of heterodimer binding and DNA bending. The conformational variability of the Fos-Jun-AP-1 complex may contribute to its functional versatility at different promoters.

  5. Identification of a novel missense mutation of MAF in a Japanese family with congenital cataract by whole exome sequencing: a clinical report and review of literature.

    PubMed

    Narumi, Yoko; Nishina, Sachiko; Tokimitsu, Motoharu; Aoki, Yoko; Kosaki, Rika; Wakui, Keiko; Azuma, Noriyuki; Murata, Toshinori; Takada, Fumio; Fukushima, Yoshimitsu; Kosho, Tomoki

    2014-05-01

    Congenital cataracts are the most important cause of severe visual impairment in infants. Genetic factors contribute to the disease development and 29 genes are known to cause congenital cataracts. Identifying the genetic cause of congenital cataracts can be difficult because of genetic heterogeneity. V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF) encodes a basic region/leucine zipper transcription factor that plays a key role as a regulator of embryonic lens fiber cell development. MAF mutations have been reported to cause juvenile-onset pulverulent cataract, microcornea, iris coloboma, and other anterior segment dysgenesis. We report on six patients in a family who have congenital cataracts were identified MAF mutation by whole exome sequencing (WES). The heterozygous MAF mutation Q303L detected in the present family occurs in a well conserved glutamine residue at the basic region of the DNA-binding domain. All affected members showed congenital cataracts. Three of the six members showed microcornea and one showed iris coloboma. Congenital cataracts with MAF mutation exhibited phenotypically variable cataracts within the family. Review of the patients with MAF mutations supports the notion that congenital cataracts caused by MAF mutations could be accompanied by microcornea and/or iris coloboma. WES is a useful tool for detecting disease-causing mutations in patients with genetically heterogeneous conditions. © 2014 Wiley Periodicals, Inc.

  6. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants.

    PubMed

    Liu, Jinling; Liu, Xionglun; Dai, Liangying; Wang, Guoliang

    2007-09-01

    Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the mammalian interleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.

  7. Transcriptional Network Analysis Identifies BACH1 as a Master Regulator of Breast Cancer Bone Metastasis

    PubMed Central

    Liang, Yajun; Wu, Heng; Lei, Rong; Chong, Robert A.; Wei, Yong; Lu, Xin; Tagkopoulos, Ilias; Kung, Sun-Yuan; Yang, Qifeng; Hu, Guohong; Kang, Yibin

    2012-01-01

    The application of functional genomic analysis of breast cancer metastasis has led to the identification of a growing number of organ-specific metastasis genes, which often function in concert to facilitate different steps of the metastatic cascade. However, the gene regulatory network that controls the expression of these metastasis genes remains largely unknown. Here, we demonstrate a computational approach for the deconvolution of transcriptional networks to discover master regulators of breast cancer bone metastasis. Several known regulators of breast cancer bone metastasis such as Smad4 and HIF1 were identified in our analysis. Experimental validation of the networks revealed BACH1, a basic leucine zipper transcription factor, as the common regulator of several functional metastasis genes, including MMP1 and CXCR4. Ectopic expression of BACH1 enhanced the malignance of breast cancer cells, and conversely, BACH1 knockdown significantly reduced bone metastasis. The expression of BACH1 and its target genes was linked to the higher risk of breast cancer recurrence in patients. This study established BACH1 as the master regulator of breast cancer bone metastasis and provided a paradigm to identify molecular determinants in complex pathological processes. PMID:22875853

  8. Ser298 of MITF, a mutation site in Waardenburg syndrome type 2, is a phosphorylation site with functional significance.

    PubMed

    Takeda, K; Takemoto, C; Kobayashi, I; Watanabe, A; Nobukuni, Y; Fisher, D E; Tachibana, M

    2000-01-01

    MITF (microphthalmia-associated transcription factor) is a basic-helix-loop-helix-leucine zipper (bHLHZip) factor which regulates expression of tyrosinase and other melanocytic genes via a CATGTG promoter sequence, and is involved in melanocyte differentiation. Mutations of MITF in mice or humans with Waardenburg syndrome type 2 (WS2) often severely disrupt the bHLHZip domain, suggesting the importance of this structure. Here, we show that Ser298, which locates downstream of the bHLHZip and was previously found to be mutated in individuals with WS2, plays an important role in MITF function. Glycogen synthase kinase 3 (GSK3) was found to phosphorylate Ser298 in vitro, thereby enhancing the binding of MITF to the tyrosinase promoter. The same serine was found to be phosphorylated in vivo, and expression of dominant-negative GSK3beta selectively suppressed the ability of MITF to transactivate the tyrosinase promoter. Moreover, mutation of Ser298, as found in a WS2 family, disabled phos-phorylation of MITF by GSK3beta and impaired MITF function. These findings suggest that the Ser298 is important for MITF function and is phosphorylated probably by GSK3beta.

  9. Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots

    PubMed Central

    Hartmann, Laura; Pedrotti, Lorenzo; Weiste, Christoph; Fekete, Agnes; Schierstaedt, Jasper; Göttler, Jasmin; Kempa, Stefan; Krischke, Markus; Dietrich, Katrin; Mueller, Martin J.; Vicente-Carbajosa, Jesus; Hanson, Johannes; Dröge-Laser, Wolfgang

    2015-01-01

    Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity. PMID:26276836

  10. MDL-1, a growth- and tumor-suppressor, slows aging and prevents germline hyperplasia and hypertrophy in C. elegans

    PubMed Central

    Riesen, Michèle; Feyst, Inna; Rattanavirotkul, Nattaphong; Ezcurra, Marina; Tullet, Jennifer M.A.; Papatheodorou, Irene; Ziehm, Matthias; Au, Catherine; Gilliat, Ann F.; Hellberg, Josephine; Thornton, Janet M.; Gems, David

    2014-01-01

    In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality. PMID:24531613

  11. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    PubMed

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  12. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus

    PubMed Central

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Xu, Xinfu; Wang, Rui; Li, Jiana

    2017-01-01

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed (Brassica napus). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B. napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B. napus and its parental lines and for molecular breeding studies of bZIP genes in B. napus. PMID:29064393

  13. Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence

    PubMed Central

    Heintz, Udo; Schlichting, Ilme

    2016-01-01

    The design of synthetic optogenetic tools that allow precise spatiotemporal control of biological processes previously inaccessible to optogenetic control has developed rapidly over the last years. Rational design of such tools requires detailed knowledge of allosteric light signaling in natural photoreceptors. To understand allosteric communication between sensor and effector domains, characterization of all relevant signaling states is required. Here, we describe the mechanism of light-dependent DNA binding of the light-oxygen-voltage (LOV) transcription factor Aureochrome 1a from Phaeodactylum tricornutum (PtAu1a) and present crystal structures of a dark state LOV monomer and a fully light-adapted LOV dimer. In combination with hydrogen/deuterium-exchange, solution scattering data and DNA-binding experiments, our studies reveal a light-sensitive interaction between the LOV and basic region leucine zipper DNA-binding domain that together with LOV dimerization results in modulation of the DNA affinity of PtAu1a. We discuss the implications of these results for the design of synthetic LOV-based photosensors with application in optogenetics. DOI: http://dx.doi.org/10.7554/eLife.11860.001 PMID:26754770

  14. Maternal embryonic leucine zipper kinase is a novel target for proliferation-associated high-risk myeloma

    PubMed Central

    Bolomsky, Arnold; Heusschen, Roy; Schlangen, Karin; Stangelberger, Kathrin; Muller, Joséphine; Schreiner, Wolfgang; Zojer, Niklas; Caers, Jo; Ludwig, Heinz

    2018-01-01

    Treatment of high-risk patients is a major challenge in multiple myeloma. This is especially true for patients assigned to the gene expression profiling-defined proliferation subgroup. Although recent efforts have identified some key players of proliferative myeloma, genetic interactions and players that can be targeted with clinically effective drugs have to be identified in order to overcome the poor prognosis of these patients. We therefore examined maternal embryonic leucine zipper kinase (MELK) for its implications in hyper-proliferative myeloma and analyzed the activity of the MELK inhibitor OTSSP167 both in vitro and in vivo. MELK was found to be significantly overexpressed in the proliferative subgroup of myeloma. This finding translated into poor overall survival in patients with high vs. low MELK expression. Enrichment analysis of upregulated genes in myeloma cells of MELKhigh patients confirmed the strong implications in myeloma cell proliferation. Targeting MELK with OTSSP167 impaired the growth and survival of myeloma cells, thereby affecting central survival factors such as MCL-1 and IRF4. This activity was also observed in the 5TGM.1 murine model of myeloma. OTSSP167 reduced bone marrow infiltration and serum paraprotein levels in a dose-dependent manner. In addition, we revealed a strong link between MELK and other proliferation-associated high-risk genes (PLK-1, EZH2, FOXM1, DEPDC1) and MELK inhibition also impaired the expression of those genes. We therefore conclude that MELK is an essential component of a proliferative gene signature and that pharmacological inhibition of MELK represents an attractive novel approach to overcome the poor prognosis of high-risk patients with a proliferative expression pattern. PMID:29122991

  15. NMR insight into myosin-binding subunit coiled-coil structure reveals binding interface with protein kinase G-Iα leucine zipper in vascular function.

    PubMed

    Sharma, Alok K; Birrane, Gabriel; Anklin, Clemens; Rigby, Alan C; Alper, Seth L

    2017-04-28

    Nitrovasodilators relax vascular smooth-muscle cells in part by modulating the interaction of the C-terminal coiled-coil domain (CC) and/or the leucine zipper (LZ) domain of the myosin light-chain phosphatase component, myosin-binding subunit (MBS), with the N-terminal LZ domain of protein kinase G (PKG)-Iα. Despite the importance of vasodilation in cardiovascular homeostasis and therapy, our structural understanding of the MBS CC interaction with LZ PKG-1α has remained limited. Here, we report the 3D NMR solution structure of homodimeric CC MBS in which amino acids 932-967 form a coiled-coil of two monomeric α-helices in parallel orientation. We found that the structure is stabilized by non-covalent interactions, with dominant contributions from hydrophobic residues at a and d heptad positions. Using NMR chemical-shift perturbation (CSP) analysis, we identified a subset of hydrophobic and charged residues of CC MBS (localized within and adjacent to the C-terminal region) contributing to the dimer-dimer interaction interface between homodimeric CC MBS and homodimeric LZ PKG-Iα. 15 N backbone relaxation NMR revealed the dynamic features of the CC MBS interface residues identified by NMR CSP. Paramagnetic relaxation enhancement- and CSP-NMR-guided HADDOCK modeling of the dimer-dimer interface of the heterotetrameric complex exhibits the involvement of non-covalent intermolecular interactions that are localized within and adjacent to the C-terminal regions of each homodimer. These results deepen our understanding of the binding restraints of this CC MBS·LZ PKG-Iα low-affinity heterotetrameric complex and allow reevaluation of the role(s) of myosin light-chain phosphatase partner polypeptides in regulation of vascular smooth-muscle cell contractility. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Glucocorticoids suppress hypoxia-induced COX-2 and hypoxia inducible factor-1α expression through the induction of glucocorticoidinduced leucine zipper

    PubMed Central

    Lim, Wonchung; Park, Choa; Shim, Myeong Kuk; Lee, Yong Hee; Lee, You Mie; Lee, YoungJoo

    2014-01-01

    Background and Purpose The COX-2/PGE2 pathway in hypoxic cancer cells has important implications for stimulation of inflammation and tumourigenesis. However, the mechanism by which glucocorticoid receptors (GRs) inhibit COX-2 during hypoxia has not been elucidated. Hence, we explored the mechanisms underlying glucocorticoid-mediated inhibition of hypoxia-induced COX-2 in human distal lung epithelial A549 cells. Experimental Approach The expressions of COX-2 and glucocorticoid-induced leucine zipper (GILZ) in A549 cells were determined by Western blot and/or quantitative real time-PCR respectively. The anti-invasive effect of GILZ on A549 cells was evaluated using the matrigel invasion assay. Key Results The hypoxia-induced increase in COX-2 protein and mRNA levels and promoter activity were suppressed by dexamethasone, and this effect of dexamethasone was antagonized by the GR antagonist RU486. Overexpression of GILZ in A549 cells also inhibited hypoxia-induced COX-2 expression levels and knockdown of GILZ reduced the glucocorticoid-mediated inhibition of hypoxia-induced COX-2 expression, indicating that the inhibitory effects of dexamethasone on hypoxia-induced COX-2 are mediated by GILZ. GILZ suppressed the expression of hypoxia inducible factor (HIF)-1α at the protein level and affected its signalling pathway. Hypoxia-induced cell invasion was also dramatically reduced by GILZ expression. Conclusion and Implications Dexamethasone-induced upregulation of GILZ not only inhibits the hypoxic-evoked induction of COX-2 expression and cell invasion but further blocks the HIF-1 pathway by destabilizing HIF-1α expression. Taken together, these findings suggest that the suppression of hypoxia-induced COX-2 by glucocorticoids is mediated by GILZ. Hence, GILZ is a potential key therapeutic target for suppression of inflammation under hypoxia. PMID:24172143

  17. [Primary investigation of the relationship between glucocorticoid induced leucine zipper and inflammatory reaction].

    PubMed

    Bai, Xiang-jun; Li, Bo; Wang, Hai-ping; Yang, Zhao-hui; Li, Si-qi

    2007-01-01

    To investigate the mechanism of the action of glucocorticoid induced leucine zipper (GILZ) in inflammatory reaction. Human monocyte cell line THP-1 cells were divided into two groups and cultured in non-serum RPMI1640 medium.In one group the cells were treated with dexamethasone (DEX). Twelve hours later total RNA and total protein were abstracted in both two groups. The mRNA encoding for expression of GILZ was semiquantitatively detected by reserve transcriptase-polymerase chain reaction (RT-PCR). Protein expression of nuclear factor-KappaB (NF-KappaB) p65 and activator protein-1 (AP-1) were assessed by Western blotting. Peripheral blood of 10 trauma patients [injury severity score (ISS) >or=16 scores] were collected and the leukocytes were isolated within 24 hours after trauma. The leukocytes were divided into two groups and cultured in non-serum medium. In one group the cells were treated with DEX. Twelve hours later total RNA and total protein were abstracted in both two groups. The mRNA encoding for expression of GILZ was semiquantitatively detected by RT-PCR. Protein expression of NF-KappaB p65 and AP-1 were assessed by Western blotting. Stimulated by DEX, the expression of GILZ mRNA was increased both in THP-1 cells and the leukocytes of trauma patients compared with those of control groups (both P<0.01). Whereas, protein expressions of NF-KappaB p65 and AP-1 of THP-1 cells and leukocytes in peripheral blood of trauma patients were decreased in the stimulation groups compared with those of control groups (all P<0.01). The expression of GILZ gene is up-regulated by glucocorticoid. Overexpression of GILZ inhibits NF-KappaB and AP-1 activities, suggesting that GILZ possesses anti-inflammatory function.

  18. Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking

    PubMed Central

    Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  19. Expression of a truncated ATHB17 protein in maize increases ear weight at silking.

    PubMed

    Rice, Elena A; Khandelwal, Abha; Creelman, Robert A; Griffith, Cara; Ahrens, Jeffrey E; Taylor, J Philip; Murphy, Lesley R; Manjunath, Siva; Thompson, Rebecca L; Lingard, Matthew J; Back, Stephanie L; Larue, Huachun; Brayton, Bonnie R; Burek, Amanda J; Tiwari, Shiv; Adam, Luc; Morrell, James A; Caldo, Rico A; Huai, Qing; Kouadio, Jean-Louis K; Kuehn, Rosemarie; Sant, Anagha M; Wingbermuehle, William J; Sala, Rodrigo; Foster, Matt; Kinser, Josh D; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E; Huang, Mingya G; Kuriakose, Saritha V; Skottke, Kyle; Repetti, Peter P; Reuber, T Lynne; Ruff, Thomas G; Petracek, Marie E; Loida, Paul J

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.

  20. A dual role for glucocorticoid-induced leucine zipper in glucocorticoid function: tumor growth promotion or suppression?

    PubMed

    Ayroldi, Emira; Cannarile, Lorenza; Delfino, Domenico V; Riccardi, Carlo

    2018-04-26

    Glucocorticoids (GCs), important therapeutic tools to treat inflammatory and immunosuppressive diseases, can also be used as part of cancer therapy. In oncology, GCs are used as anticancer drugs for lymphohematopoietic malignancies, while in solid neoplasms primarily to control the side effects of chemo/radiotherapy treatments. The molecular mechanisms underlying the effects of GCs are numerous and often overlapping, but not all have been elucidated. In normal, cancerous, and inflammatory tissues, the response to GCs differs based on the tissue type. The effects of GCs are dependent on several factors: the tumor type, the GC therapy being used, the expression level of the glucocorticoid receptor (GR), and the presence of any other stimuli such as signals from immune cells and the tumor microenvironment. Therefore, GCs may either promote or suppress tumor growth via different molecular mechanisms. Stress exposure results in dysregulation of the hypothalamic-pituitary-adrenal axis with increased levels of endogenous GCs that promote tumorigenesis, confirming the importance of GCs in tumor growth. Most of the effects of GCs are genomic and mediated by the modulation of GR gene transcription. Moreover, among the GR-induced genes, glucocorticoid-induced leucine zipper (GILZ), which was cloned and characterized primarily in our laboratory, mediates many GC anti-inflammatory effects. In this review, we analyzed the possible role for GILZ in the effects GCs have on tumors cells. We also suggest that GILZ, by affecting the immune system, tumor microenvironment, and directly cancer cell biology, has a tumor-promoting function. However, it may also induce apoptosis or decrease the proliferation of cancer cells, thus inhibiting tumor growth. The potential therapeutic implications of GILZ activity on tumor cells are discussed here.

  1. Enhanced glucocorticoid-induced leucine zipper in dendritic cells induces allergen-specific regulatory CD4(+) T-cells in respiratory allergies.

    PubMed

    Karaki, S; Garcia, G; Tcherakian, C; Capel, F; Tran, T; Pallardy, M; Humbert, M; Emilie, D; Godot, V

    2014-05-01

    Respiratory allergies rely on a defect of IL-10-secreting regulatory CD4(+) T-cells (IL-10-Tregs ) leading to excessive Th2-biased immune responses to allergens. According to clinical data, the restoration of allergen-specific IL-10-Tregs is required to control respiratory allergies and cure patients. The discovery of mechanisms involved in the generation of IL-10-Tregs will thus help to provide effective treatments. We previously demonstrated that dendritic cells (DCs) expressing high levels of the glucocorticoid-induced leucine zipper protein (GILZ) generate antigen-specific IL-10-Tregs . We suspect a defective expression of GILZ in the DCs of respiratory allergic patients and speculate that increasing its expression might restore immune tolerance against allergens through the induction of IL-10-Tregs . We assessed GILZ expression in blood DCs of patients and healthy nonallergic donors by qPCR. We compared the ability of patients' DCs to induce allergen-specific IL-10-Tregs before and after an in vivo up-regulation of GILZ expression by steroid administration, steroids being inducers of GILZ. We report lower levels of GILZ in DCs of respiratory allergic patients that return to normal levels after steroid administration. We show that patients' DCs with increased levels of GILZ generate allergen-specific IL-10-Tregs again. We further confirm unequivocally that GILZ is required in patients' DCs to activate these IL-10-Tregs . This proof of concept study shows that the re-establishment of GILZ expression in patients' DCs to normal levels restores their capacity to activate allergen-specific IL-10-Tregs . We thus highlight the up-regulation of GILZ in DCs as a new interventional approach to restore the immune tolerance to allergens. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Glucocorticoid-Induced Leucine Zipper Protects the Retina From Light-Induced Retinal Degeneration by Inducing Bcl-xL in Rats.

    PubMed

    Gu, Ruiping; Tang, Wenyi; Lei, Boya; Ding, Xinyi; Jiang, Cheng; Xu, Gezhi

    2017-07-01

    The aim of the present study was to investigate the neuroprotective effects of glucocorticoid-induced leucine zipper (GILZ) in a light-induced retinal degeneration model and to explore the underlying mechanisms. Intravitreal injection of recombinant GILZ-overexpressing lentivirus (OE-GILZ-rLV) and short hairpin RNA targeting GILZ recombinant lentivirus (shRNA-GILZ-rLV) was performed to up- and downregulate retinal GILZ, respectively. Three days after stable transduction, rats were exposed to continuous bright light (5000 lux) for 2 days. Retinal function was assessed by full-field electroretinography (ERG), and the retinal structure was examined for photoreceptor survival and death in rats kept under a 12-hour light:2-hour dark cycle following light exposure. The expression levels of retinal Bcl-xL, caspase-9, and caspase-3 were examined by Western blotting or real-time PCR at 1, 3, 5, and 7 days after light exposure. Exposure to bright light downregulated retinal GILZ in parallel with the downregulation of Bcl-xL and the upregulation of active caspase-3. Overexpression of retinal GILZ attenuated the decrease of Bcl-xL and the activation of caspase-9 and caspase-3 at 1, 3, 5, and 7 days after bright light exposure, respectively. GILZ silencing aggravated the downregulation of Bcl-xL induced by bright light exposure. Bright light exposure reduced the amplitude of ERG, increased the number of apoptotic photoreceptor cells, and decreased retinal thickness; and GILZ overexpression could attenuate all these effects. Overexpression of GILZ by OE-GILZ-rLV transduction protected the retina from light-induced cellular damage by activating antiapoptotic pathways.

  3. Downregulation of the glucocorticoid-induced leucine zipper (GILZ) promotes vascular inflammation.

    PubMed

    Hahn, Rebecca T; Hoppstädter, Jessica; Hirschfelder, Kerstin; Hachenthal, Nina; Diesel, Britta; Kessler, Sonja M; Huwer, Hanno; Kiemer, Alexandra K

    2014-06-01

    Glucocorticoid-induced leucine zipper (GILZ) represents an anti-inflammatory mediator, whose downregulation has been described in various inflammatory processes. Aim of our study was to decipher the regulation of GILZ in vascular inflammation. Degenerated aortocoronary saphenous vein bypass grafts (n = 15), which exhibited inflammatory cell activation as determined by enhanced monocyte chemoattractrant protein 1 (MCP-1, CCL2) and Toll-like receptor 2 (TLR2) expression, showed significantly diminished GILZ protein and mRNA levels compared to healthy veins (n = 23). GILZ was also downregulated in human umbilical vein endothelial cells (HUVEC) and macrophages upon treatment with the inflammatory cytokine TNF-α in a tristetraprolin (ZFP36, TTP)- and p38 MAPK-dependent manner. To assess the functional implications of decreased GILZ expression, we determined NF-κB activation after GILZ knockdown by siRNA and found that NF-κB activity and inflammatory gene expression were significantly enhanced. Importantly, ZFP36 is induced in TNF-α-activated HUVEC as well as in degenerated vein bypasses. When atheroprotective laminar shear stress was employed, GILZ levels in HUVEC increased on mRNA and protein level. Laminar flow also counteracted TNF-α-induced ZFP36 expression and GILZ downregulation. MAP kinase phosphatase 1 (MKP-1, DUSP1), a negative regulator of ZFP36 expression, was distinctly upregulated under laminar shear stress conditions and downregulated in degenerated vein bypasses. Our data show a diminished expression of the anti-inflammatory mediator GILZ in the inflamed vasculature and indicate that GILZ downregulation requires the mRNA binding protein ZFP36. We suggest that reduced GILZ levels play a role in cardiovascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. GMP production and characterization of leucine zipper-tagged tumor necrosis factor-related apoptosis-inducing ligand (LZ-TRAIL) for phase I clinical trial.

    PubMed

    Jiang, Jing; Liu, Xiaobin; Deng, Leixiu; Zhang, Peipei; Wang, Guangjun; Wang, Shifu; Liu, Honghao; Su, Yunpeng

    2014-10-05

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumor activity in a wide range of cancers without deleterious side effects on normal tissues. Several TRAIL derivatives have been developed to improve its pharmacokinetics and therapeutic effects through strategies such as adding a leucine zipper to increase the circulation half-life. To obtain clinical grade LZ-TRAIL for phase I clinical trial, a single batch of 30 L bioreactor culture was performed using the Escherichia coli BL21 (DE3) strain expressing the recombinant LZ-TRAIL. A robust LZ-TRAIL production fermentation process was developed, which could be scaled up from 5L to 50 L, and had a titer of approximately 1.4 g/l. A four-step purification strategy was carried out to obtain a final product with over 95% purity and 45% yield. The final material was filter sterilized, aseptically vialed, and stored at 4°C, and comprehensively characterized using multiple assays (vialed product was sterile, purity was 95%, aggregates were <5%, potency revealed IC50 of 9 nM on MDA-MB-231 cells, and the endotoxin level was <0.25 U/mg). The purity, composition, and functional activities of the molecule were confirmed. in vivo investigations indicated that LZ-TRAIL has better antitumor potency in three Xenograft tumor models compared to TRAIL (95-281). LZ-TRAIL also showed improved pharmacokinetic and safety profiles in cynomolgus monkeys without abnormalities associated with drug exposure. In conclusion, the scalable synthesis of LZ-TRAIL is useful for production of phase I clinical trial material. These preclinical investigations warrant further clinical development of this product for cancer therapy. Copyright © 2014. Published by Elsevier B.V.

  5. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Shear zone junctions: Of zippers and freeways

    NASA Astrophysics Data System (ADS)

    Passchier, Cees W.; Platt, John P.

    2017-02-01

    Ductile shear zones are commonly treated as straight high-strain domains with uniform shear sense and characteristic curved foliation trails, bounded by non-deforming wall rock. Many shear zones, however, are branched, and if movement on such branches is contemporaneous, the resulting shape can be complicated and lead to unusual shear sense arrangement and foliation geometries in the wall rock. For Y-shaped shear zone triple junctions with three joining branches and transport direction at a high angle to the branchline, only eight basic types of junction are thought to be stable and to produce significant displacement. The simplest type, called freeway junctions, have similar shear sense in all three branches. The other types show joining or separating behaviour of shear zone branches similar to the action of a zipper. Such junctions may have shear zone branches that join to form a single branch (closing zipper junction), or a single shear zone that splits to form two branches, (opening zipper junction). All categories of shear zone junctions show characteristic foliation patterns and deflection of markers in the wall rock. Closing zipper junctions are unusual, since they form a non-active zone with opposite deflection of foliations in the wall rock known as an extraction fault or wake. Shear zipper junctions can form domains of overprinting shear sense along their flanks. A small and large field example are given from NE Spain and Eastern Anatolia. The geometry of more complex, 3D shear zone junctions with slip parallel and oblique to the branchline is briefly discussed.

  7. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine.

    PubMed

    Tang, Y; Ghirlanda, G; Vaidehi, N; Kua, J; Mainz, D T; Goddard III, W A; DeGrado, W F; Tirrell, D A

    2001-03-06

    Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.

  8. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M., E-mail: spotheim@cnrs-orleans.fr

    2009-08-21

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucinemore » residues of the tetramerization domain.« less

  9. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    PubMed

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  10. CCAAT/enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4.

    PubMed

    Tominaga, Hiroyuki; Maeda, Shingo; Hayashi, Makoto; Takeda, Shu; Akira, Shizuo; Komiya, Setsuro; Nakamura, Takashi; Akiyama, Haruhiko; Imamura, Takeshi

    2008-12-01

    Although CCAAT/enhancer-binding protein beta (C/EBPbeta) is involved in osteocalcin gene expression in osteoblast in vitro, the physiological importance of and molecular mechanisms governing C/EBPbeta in bone formation remain to be elucidated. In particular, it remains unclear whether C/EBPbeta acts as a homodimer or a heterodimer with other proteins during osteoblast differentiation. Here, deletion of the C/EBPbeta gene from mice resulted in delayed bone formation with concurrent suppression of chondrocyte maturation and osteoblast differentiation. The expression of type X collagen as well as chondrocyte hypertrophy were suppressed in mutant bone, providing new insight into the possible roles of C/EBPbeta in chondrocyte maturation. In osteoblasts, luciferase reporter, gel shift, DNAP, and ChIP assays demonstrated that C/EBPbeta heterodimerized with activating transcription factor 4 (ATF4), another basic leucine zipper transcription factor crucial for osteoblast maturation. This complex interacted and transactivated osteocalcin-specific element 1 (OSE1) of the osteocalcin promoter. C/EBPbeta also enhanced the synergistic effect of ATF4 and Runx2 on osteocalcin promoter transactivation by enhancing their interaction. Thus, our results provide evidence that C/EBPbeta is a crucial cofactor in the promotion of osteoblast maturation by Runx2 and ATF4.

  11. The Nuclear and Adherent Junction Complex Component Protein Ubinuclein Negatively Regulates the Productive Cycle of Epstein-Barr Virus in Epithelial Cells▿

    PubMed Central

    Gruffat, Henri; Lupo, Julien; Morand, Patrice; Boyer, Véronique; Manet, Evelyne

    2011-01-01

    The Epstein-Barr Virus (EBV) productive cycle is initiated by the expression of the viral trans-activator EB1 (also called Zebra, Zta, or BZLF1), which belongs to the basic leucine zipper transcription factor family. We have previously identified the cellular NACos (nuclear and adherent junction complex components) protein ubinuclein (Ubn-1) as a partner for EB1, but the function of this complex has never been studied. Here, we have evaluated the consequences of this interaction on the EBV productive cycle and find that Ubn-1 overexpression represses the EBV productive cycle whereas Ubn-1 downregulation by short hairpin RNA (shRNA) increases virus production. By a chromatin immunoprecipitation (ChIP) assay, we show that Ubn-1 blocks EB1-DNA interaction. We also show that in epithelial cells, relocalization and sequestration of Ubn-1 to the tight junctions of nondividing cells allow increased activation of the productive cycle. We propose a model in which Ubn-1 is a modulator of the EBV productive cycle: in proliferating epithelial cells, Ubn-1 is nuclear and inhibits activation of the productive cycle, whereas in differentiated cells, Ubn-1 is sequestrated to tight junctions, thereby allowing EB1 to fully function in the nucleus. PMID:21084479

  12. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    PubMed

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  13. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-03-07

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.

  14. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    PubMed Central

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y.

    2013-01-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF-Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrfl attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. PMID:23623971

  15. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  16. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3.

    PubMed

    Finkelstein, Ruth; Gampala, Srinivas S L; Lynch, Tim J; Thomas, Terry L; Rock, Christopher D

    2005-09-01

    Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other's expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.

  17. Inferring Diffusion Dynamics from FCS in Heterogeneous Nuclear Environments

    PubMed Central

    Tsekouras, Konstantinos; Siegel, Amanda P.; Day, Richard N.; Pressé, Steve

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show—first using synthetic data—that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell’s nucleus as well as 2) in the cell’s cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. PMID:26153697

  18. Endoplasmic reticulum stress-responsive transcription factor ATF6α directs recruitment of the Mediator of RNA polymerase II transcription and multiple histone acetyltransferase complexes.

    PubMed

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C

    2012-06-29

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription.

  19. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple.

    PubMed

    An, Jian-Ping; Qu, Feng-Jia; Yao, Ji-Fang; Wang, Xiao-Na; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-01-01

    The basic leucine zipper (bZIP) transcription factor HY5 plays a multifaceted role in plant growth and development. Here the apple MdHY5 gene was cloned based on its homology with Arabidopsis HY5 . Expression analysis demonstrated that MdHY5 transcription was induced by light and abscisic acid treatments. Electrophoretic mobility shift assays and transient expression assays subsequently showed that MdHY5 positively regulated both its own transcription and that of MdMYB10 by binding to E-box and G-box motifs, respectively. Furthermore, we obtained transgenic apple calli that overexpressed the MdHY5 gene, and apple calli coloration assays showed that MdHY5 promoted anthocyanin accumulation by regulating expression of the MdMYB10 gene and downstream anthocyanin biosynthesis genes. In addition, the transcript levels of a series of nitrate reductase genes and nitrate uptake genes in both wild-type and transgenic apple calli were detected. In association with increased nitrate reductase activities and nitrate contents, the results indicated that MdHY5 might be an important regulator in nutrient assimilation. Taken together, these results indicate that MdHY5 plays a vital role in anthocyanin accumulation and nitrate assimilation in apple.

  20. Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein

    PubMed Central

    Jagadish, Nirmala; Rana, Ritu; Selvi, Ramasamy; Mishra, Deepshikha; Garg, Manoj; Yadav, Shikha; Herr, John C.; Okumura, Katsuzumi; Hasegawa, Akiko; Koyama, Koji; Suri, Anil

    2005-01-01

    We report a novel SPAG9 (sperm-associated antigen 9) protein having structural homology with JNK (c-Jun N-terminal kinase)-interacting protein 3. SPAG9, a single copy gene mapped to the human chromosome 17q21.33 syntenic with location of mouse chromosome 11, was earlier shown to be expressed exclusively in testis [Shankar, Mohapatra and Suri (1998) Biochem. Biophys. Res. Commun. 243, 561–565]. The SPAG9 amino acid sequence analysis revealed identity with the JNK-binding domain and predicted coiled-coil, leucine zipper and transmembrane domains. The secondary structure analysis predicted an α-helical structure for SPAG9 that was confirmed by CD spectra. Microsequencing of higher-order aggregates of recombinant SPAG9 by tandem MS confirmed the amino acid sequence and mono atomic mass of 83.9 kDa. Transient expression of SPAG9 and its deletion mutants revealed that both leucine zipper with extended coiled-coil domains and transmembrane domain of SPAG9 were essential for dimerization and proper localization. Studies of MAPK (mitogenactivated protein kinase) interactions demonstrated that SPAG9 interacted with higher binding affinity to JNK3 and JNK2 compared with JNK1. No interaction was observed with p38α or extracellular-signal-regulated kinase pathways. Polyclonal antibodies raised against recombinant SPAG9 recognized native protein in human sperm extracts and localized specifically on the acrosomal compartment of intact human spermatozoa. Acrosome-reacted spermatozoa demonstrated SPAG9 immunofluorescence, indicating its retention on the equatorial segment after the acrosome reaction. Further, anti-SPAG9 antibodies inhibited the binding of human spermatozoa to intact human oocytes as well as to matched hemizona. This is the first report of sperm-associated JNK-binding protein that may have a role in spermatozoa–egg interaction. PMID:15693750

  1. Induction of Glucocorticoid-induced Leucine Zipper (GILZ) Contributes to Anti-inflammatory Effects of the Natural Product Curcumin in Macrophages*

    PubMed Central

    Hoppstädter, Jessica; Hachenthal, Nina; Valbuena-Perez, Jenny Vanessa; Lampe, Sebastian; Astanina, Ksenia; Kunze, Michael M.; Bruscoli, Stefano; Riccardi, Carlo; Schmid, Tobias; Diesel, Britta; Kiemer, Alexandra K.

    2016-01-01

    GILZ (glucocorticoid-induced leucine zipper) is inducible by glucocorticoids and plays a key role in their mode of action. GILZ attenuates inflammation mainly by inhibition of NF-κB and mitogen-activated protein kinase activation but does not seem to be involved in the severe side effects observed after glucocorticoid treatment. Therefore, GILZ might be a promising target for new therapeutic approaches. The present work focuses on the natural product curcumin, which has previously been reported to inhibit NF-κB. GILZ was inducible by curcumin in macrophage cell lines, primary human monocyte-derived macrophages, and murine bone marrow-derived macrophages. The up-regulation of GILZ was neither associated with glucocorticoid receptor activation nor with transcriptional induction or mRNA or protein stabilization but was a result of enhanced translation. Because the GILZ 3′-UTR contains AU-rich elements (AREs), we analyzed the role of the mRNA-binding protein HuR, which has been shown to promote the translation of ARE-containing mRNAs. Our results suggest that curcumin treatment induces HuR expression. An RNA immunoprecipitation assay confirmed that HuR can bind GILZ mRNA. In accordance, HuR overexpression led to increased GILZ protein levels but had no effect on GILZ mRNA expression. Our data employing siRNA in LPS-activated RAW264.7 macrophages show that curcumin facilitates its anti-inflammatory action by induction of GILZ in macrophages. Experiments with LPS-activated bone marrow-derived macrophages from wild-type and GILZ knock-out mice demonstrated that curcumin inhibits the activity of inflammatory regulators, such as NF-κB or ERK, and subsequent TNF-α production via GILZ. In summary, our data indicate that HuR-dependent GILZ induction contributes to the anti-inflammatory properties of curcumin. PMID:27629417

  2. Inhibition of maternal embryonic leucine zipper kinase with OTSSP167 displays potent anti-leukemic effects in chronic lymphocytic leukemia.

    PubMed

    Zhang, Ya; Zhou, Xiangxiang; Li, Ying; Xu, Yangyang; Lu, Kang; Li, Peipei; Wang, Xin

    2018-06-12

    TP53 pathway defects contributed to therapy resistance and adverse clinical outcome in chronic lymphocytic leukemia (CLL), which represents an unmet clinical need with few therapeutic options. Maternal embryonic leucine zipper kinase (MELK) is a novel oncogene, which plays crucial roles in mitotic progression and stem cell maintenance. OTSSP167, an orally administrated inhibitor targeting MELK, is currently in a phase I/II clinical trial in patients with advanced breast cancer and acute myeloid leukemia. Yet, no investigation has been elucidated to date regarding the oncogenic role of MELK and effects of OTSSP167 in chronic lymphocytic leukemia (CLL). Previous studies confirmed MELK inhibition abrogated cancer cell survival via p53 signaling pathway. Thus, we aimed to determine the biological function of MELK and therapeutic potential of OTSSP167 in CLL. Herein, MELK over-expression was observed in CLL cells, and correlated with higher WBC count, advanced stage, elevated LDH, increased β2-MG level, unmutated IGHV, positive ZAP-70, deletion of 17p13 and inferior prognosis of CLL patients. In accordance with functional enrichment analyses in gene expression profiling, CLL cells with depletion or inhibition of MELK exhibited impaired cell proliferation, enhanced fast-onset apoptosis, induced G2/M arrest, attenuated cell chemotaxis and promoted sensitivity to fludarabine and ibrutinib. However, gain-of-function assay showed increased cell proliferation and cell chemotaxis. In addition, OTSSP167 treatment reduced phosphorylation of AKT and ERK1/2. It decreased FoxM1 phosphorylation, expression of FoxM1, cyclin B1 and CDK1, while up-regulating p53 and p21 expression. Taken together, MELK served as a candidate of therapeutic target in CLL. OTSSP167 exhibits potent anti-tumor activities in CLL cells, highlighting a novel molecule-based strategy for leukemic interventions.

  3. Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein.

    PubMed

    Jagadish, Nirmala; Rana, Ritu; Selvi, Ramasamy; Mishra, Deepshikha; Garg, Manoj; Yadav, Shikha; Herr, John C; Okumura, Katsuzumi; Hasegawa, Akiko; Koyama, Koji; Suri, Anil

    2005-07-01

    We report a novel SPAG9 (sperm-associated antigen 9) protein having structural homology with JNK (c-Jun N-terminal kinase)-interacting protein 3. SPAG9, a single copy gene mapped to the human chromosome 17q21.33 syntenic with location of mouse chromosome 11, was earlier shown to be expressed exclusively in testis [Shankar, Mohapatra and Suri (1998) Biochem. Biophys. Res. Commun. 243, 561-565]. The SPAG9 amino acid sequence analysis revealed identity with the JNK-binding domain and predicted coiled-coil, leucine zipper and transmembrane domains. The secondary structure analysis predicted an alpha-helical structure for SPAG9 that was confirmed by CD spectra. Microsequencing of higher-order aggregates of recombinant SPAG9 by tandem MS confirmed the amino acid sequence and mono atomic mass of 83.9 kDa. Transient expression of SPAG9 and its deletion mutants revealed that both leucine zipper with extended coiled-coil domains and transmembrane domain of SPAG9 were essential for dimerization and proper localization. Studies of MAPK (mitogenactivated protein kinase) interactions demonstrated that SPAG9 interacted with higher binding affinity to JNK3 and JNK2 compared with JNK1. No interaction was observed with p38alpha or extracellular-signal-regulated kinase pathways. Polyclonal antibodies raised against recombinant SPAG9 recognized native protein in human sperm extracts and localized specifically on the acrosomal compartment of intact human spermatozoa. Acrosome-reacted spermatozoa demonstrated SPAG9 immunofluorescence, indicating its retention on the equatorial segment after the acrosome reaction. Further, anti-SPAG9 antibodies inhibited the binding of human spermatozoa to intact human oocytes as well as to matched hemizona. This is the first report of sperm-associated JNK-binding protein that may have a role in spermatozoa-egg interaction.

  4. Informative priors based on transcription factor structural class improve de novo motif discovery.

    PubMed

    Narlikar, Leelavati; Gordân, Raluca; Ohler, Uwe; Hartemink, Alexander J

    2006-07-15

    An important problem in molecular biology is to identify the locations at which a transcription factor (TF) binds to DNA, given a set of DNA sequences believed to be bound by that TF. In previous work, we showed that information in the DNA sequence of a binding site is sufficient to predict the structural class of the TF that binds it. In particular, this suggests that we can predict which locations in any DNA sequence are more likely to be bound by certain classes of TFs than others. Here, we argue that traditional methods for de novo motif finding can be significantly improved by adopting an informative prior probability that a TF binding site occurs at each sequence location. To demonstrate the utility of such an approach, we present priority, a powerful new de novo motif finding algorithm. Using data from TRANSFAC, we train three classifiers to recognize binding sites of basic leucine zipper, forkhead, and basic helix loop helix TFs. These classifiers are used to equip priority with three class-specific priors, in addition to a default prior to handle TFs of other classes. We apply priority and a number of popular motif finding programs to sets of yeast intergenic regions that are reported by ChIP-chip to be bound by particular TFs. priority identifies motifs the other methods fail to identify, and correctly predicts the structural class of the TF recognizing the identified binding sites. Supplementary material and code can be found at http://www.cs.duke.edu/~amink/.

  5. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights

    PubMed Central

    2011-01-01

    Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles. PMID:22189060

  6. The bZIP repressor proteins, c-Jun dimerization protein 2 and activating transcription factor 3, recruit multiple HDAC members to the ATF3 promoter.

    PubMed

    Darlyuk-Saadon, Ilona; Weidenfeld-Baranboim, Keren; Yokoyama, Kazunari K; Hai, Tsonwin; Aronheim, Ami

    2012-01-01

    JDP2, is a basic leucine zipper (bZIP) protein displaying a high degree of homology with the stress inducible transcription factor, ATF3. Both proteins bind to cAMP and TPA response elements and repress transcription by multiple mechanisms. Histone deacetylases (HDACs) play a key role in gene inactivation by deacetylating lysine residues on histones. Here we describe the association of JDP2 and ATF3 with HDACs 1, 2-6 and 10. Association of HDAC3 and HDAC6 with JDP2 and ATF3 occurs via direct protein-protein interactions. Only part of the N-terminal bZIP motif of JDP2 and ATF3 basic domain is necessary and sufficient for the interaction with HDACs in a manner that is independent of coiled-coil dimerization. Class I HDACs associate with the bZIP repressors via the DAC conserved domain whereas the Class IIb HDAC6 associates through its C-terminal unique binder of ubiquitin Zn finger domain. Both JDP2 and ATF3 are known to bind and repress the ATF3 promoter. MEF cells treated with histone deacetylase inhibitor, trichostatin A (TSA) display enhanced ATF3 transcription. ATF3 enhanced transcription is significantly reduced in MEF cells lacking both ATF3 and JDP2. Collectively, we propose that the recruitment of multiple HDAC members to JDP2 and ATF3 is part of their transcription repression mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Inhibition of Bevacizumab-induced Epithelial-Mesenchymal Transition by BATF2 Overexpression Involves the Suppression of Wnt/β-Catenin Signaling in Glioblastoma Cells.

    PubMed

    Huang, Wenqiu; Zhang, Chenguang; Cui, Mengtian; Niu, Jing; Ding, Wei

    2017-08-01

    Bevacizumab (BV) has been used for the treatment of recurrent glioblastoma. However, it also induces epithelial-mesenchymal transition (EMT) in glioblastoma cells, which compromises its efficacy. BATF2 (basic leucine zipper ATF-like transcription factor 2), a multi-target transcriptional repressor, has been found to suppress cancer development partly through inhibition of Wnt/β-catenin singling. The roles of BATF2 and Wnt/β-catenin signaling in BV-induced EMT in glioblastoma cells were investigated in this study. BV was used to treat U87MG cells, and TOP/FOP FLASH luciferase reporters were employed to determine the activity of Wnt/β-catenin signaling. EMT markers were detected with quantitative reverse transcription-PCR and western blotting. Immunofluorescence (IF) was used to determine the compartmentation of β-catenin. Wound-healing, TransWell and ECIS assays were used to analyze cell adhesion, invasion and migration. BV induced EMT phenotype in U87MG cells, and BATF2 overexpression significantly inhibited BV-induced EMT with suppression of Wnt/β-catenin signaling. Our findings expanded the understanding of the role of BATF2 in tumors, and also suggested a potential of using BATF2 as a therapeutic target to hinder bevacizumab induced EMT in glioblastoma. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells

    PubMed Central

    Vrzalikova, K; Ibrahim, M; Vockerodt, M; Perry, T; Margielewska, S; Lupino, L; Nagy, E; Soilleux, E; Liebelt, D; Hollows, R; Last, A; Reynolds, G; Abdullah, M; Curley, H; Care, M; Krappmann, D; Tooze, R; Allegood, J; Spiegel, S; Wei, W; Woodman, C B J; Murray, P G

    2018-01-01

    The Hodgkin/Reed–Sternberg cells of classical Hodgkin lymphoma (HL) are characterised by the aberrant activation of multiple signalling pathways. Here we show that a subset of HL displays altered expression of sphingosine-1-phosphate (S1P) receptors (S1PR)s. S1P activates phosphatidylinositide 3-kinase (PI3-K) in these cells that is mediated by the increased expression of S1PR1 and the decreased expression of S1PR2. We also showed that genes regulated by the PI3-K signalling pathway in HL cell lines significantly overlap with the transcriptional programme of primary HRS cells. Genes upregulated by the PI3-K pathway included the basic leucine zipper transcription factor, ATF-like 3 (BATF3), which is normally associated with the development of dendritic cells. Immunohistochemistry confirmed that BATF3 was expressed in HRS cells of most HL cases. In contrast, in normal lymphoid tissues, BATF3 expression was confined to a small fraction of CD30-positive immunoblasts. Knockdown of BATF3 in HL cell lines revealed that BATF3 contributed to the transcriptional programme of primary HRS cells, including the upregulation of S1PR1. Our data suggest that disruption of this potentially oncogenic feedforward S1P signalling loop could provide novel therapeutic opportunities for patients with HL. PMID:28878352

  9. Variation Analysis of Physiological Traits in Betula platyphylla Overexpressing TaLEA-ThbZIP Gene under Salt Stress

    PubMed Central

    Xiao, Zhenhai; Wang, Fuwei; Li, Shuchun; Zang, Lina; Zheng, Mi; Li, Ying; Qu, Guan-Zheng

    2016-01-01

    The aim of this study was to determine whether transgenic birch (Betula platyphylla) ectopic overexpressing a late embryogenesis abundant (LEA) gene and a basic leucine zipper (bZIP) gene from the salt-tolerant genus Tamarix (salt cedar) show increased tolerance to salt (NaCl) stress. Co-transfer of TaLEA and ThbZIP in birch under the control of two independent CaMV 35S promoters significantly enhanced salt stress. PCR and northern blot analyses indicated that the two genes were ectopically overexpressed in several dual-gene transgenic birch lines. We compared the effects of salt stress among three transgenic birch lines (L-4, L-5, and L-8) and wild type (WT). In all lines, the net photosynthesis values were higher before salt stress treatment than afterwards. After the salt stress treatment, the transgenic lines L-4 and L-8 showed higher values for photosynthetic traits, chlorophyll fluorescence, peroxidase and superoxide dismutase activities, and lower malondialdehyde and Na+ contents, compared with those in WT and L-5. These different responses to salt stress suggested that the transcriptional level of the TaLEA and ThbZIP genes differed among the transgenic lines, resulting in a variety of genetic and phenotypic effects. The results of this research can provide a theoretical basis for the genetic engineering of salt-tolerant trees. PMID:27802286

  10. Mxi1 is a repressor of the c-Myc promoter and reverses activation by USF.

    PubMed

    Lee, T C; Ziff, E B

    1999-01-08

    The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation. We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/+10), where it reversed transactivation by the constitutive transcription factor, USF. We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.

  11. Intercellular communication in plants: evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato.

    PubMed

    Beaubois, Elisabeth; Girard, Sebastien; Lallechere, Sebastien; Davies, Eric; Paladian, Françoise; Bonnet, Pierre; Ledoigt, Gerard; Vian, Alain

    2007-07-01

    Exposing all of a wild-type tomato plant to electromagnetic radiation evoked rapid and substantial accumulation of basic leucine-zipper transcription factor (bZIP) mRNA in the terminal leaf (#4) with kinetics very similar to that seen in response to wounding, while in the abscisic acid (ABA) mutant (Sitiens), the response was more rapid, but transient. Submitting just the oldest leaf (#1) of a wild-type plant to irradiation evoked bZIP mRNA accumulation both locally in the exposed leaf and systemically in the unexposed (distant) leaf #4, although systemic accumulation was delayed somewhat. Accumulation of Pin2 mRNA was less than bZIP in both the exposed and distant leaves in wild type, but there was no delay in the systemic response. In Sitiens, bZIP mRNA accumulation was far less than in wild type in both local and distant leaves, while Pin2 mRNA accumulation was stronger in the exposed leaf, but totally prevented in the systemic leaf. In the jasmonic acid (JA) mutant (JL-5) and in wild-type plants treated with the ABA biosynthesis inhibitor, naproxen, responses were similar to those in the ABA mutant, while treatment of the exposed leaf with calcium antagonists totally abolished both local and systemic increases in bZIP transcript accumulation.

  12. Metabolism and development – integration of micro computed tomography data and metabolite profiling reveals metabolic reprogramming from floral initiation to silique development

    PubMed Central

    Bellaire, Anke; Ischebeck, Till; Staedler, Yannick; Weinhaeuser, Isabell; Mair, Andrea; Parameswaran, Sriram; Ito, Toshiro; Schönenberger, Jürg; Weckwerth, Wolfram

    2014-01-01

    The interrelationship of morphogenesis and metabolism is a poorly studied phenomenon. The main paradigm is that development is controlled by gene expression. The aim of the present study was to correlate metabolism to early and late stages of flower and fruit development in order to provide the basis for the identification of metabolic adjustment and limitations. A highly detailed picture of morphogenesis is achieved using nondestructive micro computed tomography. This technique was used to quantify morphometric parameters of early and late flower development in an Arabidopsis thaliana mutant with synchronized flower initiation. The synchronized flower phenotype made it possible to sample enough early floral tissue otherwise not accessible for metabolomic analysis. The integration of metabolomic and morphometric data enabled the correlation of metabolic signatures with the process of flower morphogenesis. These signatures changed significantly during development, indicating a pronounced metabolic reprogramming in the tissue. Distinct sets of metabolites involved in these processes were identified and were linked to the findings of previous gene expression studies of flower development. High correlations with basic leucine zipper (bZIP) transcription factors and nitrogen metabolism genes involved in the control of metabolic carbon : nitrogen partitioning were revealed. Based on these observations a model for metabolic adjustment during flower development is proposed. PMID:24350948

  13. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  14. Abscisic Acid Regulates Early Seed Development in Arabidopsis by ABI5-Mediated Transcription of SHORT HYPOCOTYL UNDER BLUE1[C][W][OPEN

    PubMed Central

    Cheng, Zhi Juan; Zhao, Xiang Yu; Shao, Xing Xing; Wang, Fei; Zhou, Chao; Liu, Ying Gao; Zhang, Yan; Zhang, Xian Sheng

    2014-01-01

    Seed development includes an early stage of endosperm proliferation and a late stage of embryo growth at the expense of the endosperm in Arabidopsis thaliana. Abscisic acid (ABA) has known functions during late seed development, but its roles in early seed development remain elusive. In this study, we report that ABA-deficient mutants produced seeds with increased size, mass, and embryo cell number but delayed endosperm cellularization. ABSCISIC ACID DEFICIENT2 (ABA2) encodes a unique short-chain dehydrogenase/reductase that functions in ABA biosynthesis, and its expression pattern overlaps that of SHORT HYPOCOTYL UNDER BLUE1 (SHB1) during seed development. SHB1 RNA accumulation was significantly upregulated in the aba2-1 mutant and was downregulated by the application of exogenous ABA. Furthermore, RNA accumulation of the basic/region leucine zipper transcription factor ABSCISIC ACID-INSENSITIVE5 (ABI5), involved in ABA signaling, was decreased in aba2-1. Consistent with this, seed size was also increased in abi5. We further show that ABI5 directly binds to two discrete regions in the SHB1 promoter. Our results suggest that ABA negatively regulates SHB1 expression, at least in part, through the action of its downstream signaling component ABI5. Our findings provide insights into the molecular mechanisms by which ABA regulates early seed development. PMID:24619610

  15. Inferring diffusion dynamics from FCS in heterogeneous nuclear environments.

    PubMed

    Tsekouras, Konstantinos; Siegel, Amanda P; Day, Richard N; Pressé, Steve

    2015-07-07

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show-first using synthetic data-that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell's nucleus as well as 2) in the cell's cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Role of HTLV-1 Tax and HBZ in the Pathogenesis of HAM/TSP

    PubMed Central

    Enose-Akahata, Yoshimi; Vellucci, Ashley; Jacobson, Steven

    2017-01-01

    Human T cell lymphotropic virus type 1 (HTLV-1) infection can lead to development of adult T cell leukemia/lymphoma (ATL) or HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a subset of infected subjects. Understanding the interaction between host and HTLV-1 and the molecular mechanisms associated with disease pathogenesis is critical for development efficient therapies. Two HTLV-1 genes, tax and HTLV-1 basic leucine zipper factor (HBZ), have been demonstrated to play important roles in HTLV-1 infectivity and the growth and survival of leukemic cells. Increased HTLV-1 Tax expression induces the expression of various cellular genes such as IL-2 and IL-15, which directly contributes to lymphocyte activation and immunopathogenesis in HAM/TSP patients. However, little is known about the molecular and cellular mechanism of HBZ in development of HAM/TSP. It has been reported that HBZ mRNA expression was detected in HAM/TSP patients higher than in asymptomatic carriers and correlated with proviral load and disease severity. Unlike HTLV-1 tax, HBZ escapes efficient anti-viral immune responses and therefore these reactivities are difficult to detect. Thus, it is important to focus on understanding the function and the role of HTLV-1 tax and HBZ in disease development of HAM/TSP and discuss the potential use of these HTLV-1 viral gene products as biomarkers and therapeutic targets for HAM/TSP. PMID:29312243

  17. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.

    PubMed

    Yadav, Kamlesh Kumar; Rajasekharan, Ram

    2016-11-01

    PHM8 is a very important enzyme in nonpolar lipid metabolism because of its role in triacylglycerol (TAG) biosynthesis under phosphate stress conditions. It is positively regulated by the PHO4 transcription factor under low phosphate conditions; however, its regulation has not been explored under normal physiological conditions. General control nonderepressible (GCN4), a basic leucine-zipper transcription factor activates the transcription of amino acids, purine biosynthesis genes and many stress response genes under various stress conditions. In this study, we demonstrate that the level of TAG is regulated by the transcription factor GCN4. GCN4 directly binds to its consensus recognition sequence (TGACTC) in the PHM8 promoter and controls its expression. The analysis of cells expressing the P PHM8 -lacZ reporter gene showed that mutations (TGACTC-GGGCCC) in the GCN4-binding sequence caused a significant increase in β-galactosidase activity. Mutation in the GCN4 binding sequence causes an increase in PHM8 expression, lysophosphatidic acid phosphatase activity and TAG level. PHM8, in conjunction with DGA1, a mono- and diacylglycerol transferase, controls the level of TAG. These results revealed that GCN4 negatively regulates PHM8 and that deletion of GCN4 causes de-repression of PHM8, which is responsible for the increased TAG content in gcn4∆ cells.

  18. Kinetic Behavior of Leucine and Other Amino Acids Modulating Cognitive Performance via mTOR Pathway

    DTIC Science & Technology

    2011-12-02

    is a potential target for modulation with leucine (or other therapeutic agents), to maintain/enhance normal functioning under stress conditions. Such... functioning under stress conditions. Such an effect has potential for optimizing warfighter cognitive performance under high demand conditions. The... Isoleucine L1 Essential Neutral Non-polar Branched chain Lysine Basic Y+ Essential Basic Polar Proline L1? Neutral Non-polar Aromatic Asparagine Neutral

  19. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.

    PubMed

    Han, Gui Hwan; Seong, Wonjae; Fu, Yaoyao; Yoon, Paul K; Kim, Seong Keun; Yeom, Soo-Jin; Lee, Dae-Hee; Lee, Seung-Goo

    2017-03-01

    Metabolons in nature have evolved to facilitate more efficient catalysis of multistep reactions through the co-localization of functionally related enzymes to cellular organelles or membrane structures. To mimic the natural metabolon architecture, we present a novel artificial metabolon that was created by targeting multi-enzyme cascade reactions onto inclusion body (IB) in Escherichia coli. The utility of this system was examined by co-localizing four heterologous enzymes of the 1-butanol pathway onto an IB that was formed in E. coli through overexpression of the cellulose binding domain (CBD) of Cellulomonas fimi exoglucanase. To target the 1-butanol pathway enzymes to the CBD IB, we utilized a peptide-peptide interaction between leucine zipper (LZ) peptides. We genetically fused the LZ peptide to the N-termini of four heterologous genes involved in the synthetic 1-butanol pathway, whereas an antiparallel LZ peptide was fused to the CBD gene. The in vivo activity of the CBD IB-based metabolon was examined through the determination of 1-butanol synthesis using E. coli transformed with two plasmids containing the LZ-fused CBD and LZ-fused 1-butanol pathway genes, respectively. In vivo synthesis of 1-butanol using the engineered E. coli yielded 1.98g/L of 1-butanol from glucose, representing a 1.5-fold increase over that obtained from E. coli expressing the LZ-fused 1-butanol pathway genes alone. In an attempt to examine the in vitro 1-butanol productivity, we reconstituted CBD IB-based metabolon using CBD IB and individual enzymes of 1-butanol pathway. The 1-butanol productivity of in vitro reconstituted CBD IB-based metabolon using acetoacetyl-CoA as the starting material was 2.29mg/L/h, 7.9-fold higher than that obtained from metabolon-free enzymes of 1-butanol pathway. Therefore, this novel CBD-based artificial metabolon may prove useful in metabolic engineering both in vivo and in vitro for the efficient production of desired products. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Genome-Wide Identification, Evolutionary Expansion, and Expression Profile of Homeodomain-Leucine Zipper Gene Family in Poplar (Populus trichocarpa)

    PubMed Central

    Hu, Ruibo; Chi, Xiaoyuan; Chai, Guohua; Kong, Yingzhen; He, Guo; Wang, Xiaoyu; Shi, Dachuan; Zhang, Dongyuan; Zhou, Gongke

    2012-01-01

    Background Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I–IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles. PMID:22359569

  1. Self-assembling triblock proteins for biofunctional surface modification

    NASA Astrophysics Data System (ADS)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.

  2. The industrial water footprint of zippers.

    PubMed

    Zhang, Yin; Wu, Xiong Ying; Wang, Lai Li; Ding, Xue Mei

    2014-01-01

    Industrial production of apparel consumes large quantity of freshwater and discharges effluents that intensify the problem of freshwater shortage and water pollution. The industrial water footprint (IWF) of a piece of apparel includes the water footprint (WF) of the fabric, apparel accessories (e.g. zipper, fastener, sewing thread) and industrial production processes. The objective of this paper is to carry out a pilot study on IWF accounting for three kinds of typical zipper (i.e. metal zipper, polyethylene terephthalate (PET) zipper and polyoxymethylene copolymer (Co-POM) zipper) that are commonly used for apparel production. The results reveal that product output exerts a remarkable influence on zipper's average IWF. Metal zipper has the largest IWF and followed by Co-POM zipper and PET zipper. Painting, dyeing and primary processing are the top three water-consuming processes and contribute about 90% of the zipper's IWF. Painting consumes the largest amount of freshwater among all processes and occupies more than 50% of the zipper's IWF. In addition, the grey water footprint (WFgrey) provides the greatest contribution, more than 80%, to the zipper's IWF. Based on these results, this paper also provides several strategies aimed at water economization and pollution reduction during industrial production of zipper.

  3. [3H]Leucine incorporation method as a tool to measure secondary production by periphytic bacteria associated to the roots of floating aquatic macrophyte.

    PubMed

    Miranda, M R; Guimarães, J R D; Coelho-Souza, A S

    2007-10-01

    The present study assessed the application of [(3)H]Leucine incorporation into protein by periphytic bacteria associated with the roots of the floating aquatic macrophyte Eichornia crassipes. Basic assumptions underlying the method, such as linearity of leucine incorporation, saturation level of incorporation rates, incorporation into other macromolecules, specificity of incorporation for bacterial assemblages and [(3)H]Leucine degradation during samples storage were tested, and two procedures for extracting the incorporated leucine were compared. Both methods gave the same results, however, the hot TCA extraction method was less time consuming than the alkaline extraction method. Incorporation of [(3)H]Leucine was linear for up to 40 min. Saturation concentration of [(3)H]Leucine incorporation into protein was 1500 nM. An experiment with prokaryotic and eukaryotic inhibitors showed no significant [(3)H]Leucine incorporation into eukaryotes even in high leucine concentrations. No significant amounts of radiolabel were incorporated into other macromolecules. The maximum time of sample storage after the incubation is 15 days. The leucine incorporation method can be a reliable tool to measure bacterial production in the periphyton root-associated bacteria.

  4. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    PubMed

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program. Copyright © Physiologia Plantarum 2010.

  5. Expression of a grape (Vitis vinifera) bZIP transcription factor, VlbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination and seedling establishment.

    PubMed

    Tu, Mingxing; Wang, Xianhang; Feng, Tongying; Sun, Xiaomeng; Wang, Yaqiong; Huang, Li; Gao, Min; Wang, Yuejin; Wang, Xiping

    2016-11-01

    Drought is one of the most serious factors that limit agricultural productivity and there is considerable interest in understanding the molecular bases of drought responses and their regulation. While numbers of basic leucine zipper (bZIP) transcription factors (TFs) are known to play key roles in response of plants to various abiotic stresses, only a few group K bZIP TFs have been functionally characterized in the context of stress signaling. In this study, we characterized the expression of the grape (Vitis vinifera) group K bZIP gene, VlbZIP36, and found evidence for its involvement in response to drought and the stress-associated phytohormone abscisic acid (ABA). Transgenic Arabidopsis thaliana lines over-expressing VlbZIP36 under the control of a constitutive promoter showed enhanced dehydration tolerance during the seed germination stage, as well as in the seedling and mature plant stages. The results indicated that VlbZIP36 plays a role in drought tolerance by improving the water status, through limiting water loss, and mitigating cellular damage. The latter was evidenced by reduced cell death, lower electrolyte leakage in the transgenic plants, as well as by increased activities of antioxidant enzymes. We concluded that VlbZIP36 enhances drought tolerance through the transcriptional regulation of ABA-/stress-related genes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Cloning of cDNA encoding the nuclear form of chicken sterol response element binding protein-2 (SREBP-2), chromosomal localization, and tissue expression of chicken SREBP-1 and -2 genes.

    PubMed

    Assaf, S; Hazard, D; Pitel, F; Morisson, M; Alizadeh, M; Gondret, F; Diot, C; Vignal, A; Douaire, M; Lagarrigue, S

    2003-01-01

    Sterol regulatory element binding protein-1 and -2 (SREBP-1 and -2) are key transcription factors involved in the biosynthesis of cholesterol and fatty adds. The SREBP have mainly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, however, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. As a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we sequenced the cDNA, encoding the mature nuclear form of chicken SREBP-2 protein, mapped SREBP-1 and -2 genes and studied their tissue expressions. The predicted chicken SREBP-2 amino acid sequence shows a 77 to 79% identity with human, mouse, and hamster homologues, with a nearly perfect conservation in all the important functional motifs, basic, helix-loop-helix, and leucine zipper (bHLH-Zip) region as well as cleavage sites. As in the human genome, SREBP-1 and SREBP-2 chicken genes are located on two separate chromosomes, respectively microchromosome 14 and macrochromosome 1. Tissue expression data show that SREBP-1 and SREBP-2 are expressed in a wide variety of tissues in chicken. However, unlike SREBP-2, SREBP-1 is expressed preferentially in the liver and uropygial gland, suggesting an important role of SREBP-1 in the regulation of lipogenesis in avian species.

  7. DNA Methylation Influences Chlorogenic Acid Biosynthesis in Lonicera japonica by Mediating LjbZIP8 to Regulate Phenylalanine Ammonia-Lyase 2 Expression.

    PubMed

    Zha, Liangping; Liu, Shuang; Liu, Juan; Jiang, Chao; Yu, Shulin; Yuan, Yuan; Yang, Jian; Wang, Yaolong; Huang, Luqi

    2017-01-01

    The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5'-UTR of phenylalanine ammonia-lyase 2 ( PAL2 ). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5'-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica .

  8. DNA Methylation Influences Chlorogenic Acid Biosynthesis in Lonicera japonica by Mediating LjbZIP8 to Regulate Phenylalanine Ammonia-Lyase 2 Expression

    PubMed Central

    Zha, Liangping; Liu, Shuang; Liu, Juan; Jiang, Chao; Yu, Shulin; Yuan, Yuan; Yang, Jian; Wang, Yaolong; Huang, Luqi

    2017-01-01

    The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5′-UTR of phenylalanine ammonia-lyase 2 (PAL2). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5′-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica. PMID:28740500

  9. A credit-card library approach for disrupting protein-protein interactions.

    PubMed

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  10. Genomic structure of the human D-site binding protein (DBP) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutler, G.; Glassco, T.; Kang, Xiaolin

    1996-06-15

    The human gene for the D-Site Binding Protein (DBP) has been sequenced and characterized. This gene is a member of the b/ZIP family of transcription factors and is one of three genes forming the PAR sub-family. DBP has been implicated in the diurnal regulation of a variety of liver-specific genes. Examination of the genomic structure of DBP reveals that the gene is divided into four exons and is contained within a relatively compact region of approximately 6 kb. These exons appear to correspond to functional divisions the DBP protein. Exon 1 contains a long 5{prime} UTR, and conservation between themore » rat and the human genes of the presence of small open reading frames within this region suggests that is may play a role in translational control. Exon 2 contains a limited region of similarity to the other PAR domain genes, which may be part of a potential activation domain. Exon 3 contains the PAR domain and differs by only 1 of 71 amino acids between rat and human. Exon 4, containing both the basic and the leucine zipper domains, is likewise highly conserved. The overall degree of homology between the rat and the human cDNA sequences is 82% for the nucleic acid sequence and 92% for the protein sequence. comparison of the rat and human proximal promoters reveals extensive sequence conservation, with two previously characterized DNA binding sites being conserved at the functional and sequence levels. 31 refs., 4 figs.« less

  11. pMHC affinity controls duration of CD8+ T cell–DC interactions and imprints timing of effector differentiation versus expansion

    PubMed Central

    Sharpe, James; Zehn, Dietmar; Kreutzfeldt, Mario

    2016-01-01

    During adaptive immune responses, CD8+ T cells with low TCR affinities are released early into the circulation before high-affinity clones become dominant at later time points. How functional avidity maturation is orchestrated in lymphoid tissue and how low-affinity cells contribute to host protection remains unclear. In this study, we used intravital imaging of reactive lymph nodes (LNs) to show that T cells rapidly attached to dendritic cells irrespective of TCR affinity, whereas one day later, the duration of these stable interactions ceased progressively with lowering peptide major histocompatibility complex (pMHC) affinity. This correlated inversely BATF (basic leucine zipper transcription factor, ATF-like) and IRF4 (interferon-regulated factor 4) induction and timing of effector differentiation, as low affinity–primed T cells acquired cytotoxic activity earlier than high affinity–primed ones. After activation, low-affinity effector CD8+ T cells accumulated at efferent lymphatic vessels for egress, whereas high affinity–stimulated CD8+ T cells moved to interfollicular regions in a CXCR3-dependent manner for sustained pMHC stimulation and prolonged expansion. The early release of low-affinity effector T cells led to rapid target cell elimination outside reactive LNs. Our data provide a model for affinity-dependent spatiotemporal orchestration of CD8+ T cell activation inside LNs leading to functional avidity maturation and uncover a role for low-affinity effector T cells during early microbial containment. PMID:27799622

  12. Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein

    NASA Technical Reports Server (NTRS)

    Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.

    2000-01-01

    Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.

  13. Exploring the bZIP transcription factor regulatory network in Neurospora crassa

    PubMed Central

    Tian, Chaoguang; Li, Jingyi; Glass, N. Louise

    2011-01-01

    Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution. PMID:21081763

  14. Exploring the bZIP transcription factor regulatory network in Neurospora crassa.

    PubMed

    Tian, Chaoguang; Li, Jingyi; Glass, N Louise

    2011-03-01

    Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution.

  15. Human T-lymphotropic virus proteins and post-translational modification pathways

    PubMed Central

    Bidoia, Carlo

    2012-01-01

    Cell life from the cell cycle to the signaling transduction and response to stimuli is finely tuned by protein post-translational modifications (PTMs). PTMs alter the conformation, the stability, the localization, and hence the pattern of interactions of the targeted protein. Cell pathways involve the activation of enzymes, like kinases, ligases and transferases, that, once activated, act on many proteins simultaneously, altering the state of the cell and triggering the processes they are involved in. Viruses enter a balanced system and hijack the cell, exploiting the potential of PTMs either to activate viral encoded proteins or to alter cellular pathways, with the ultimate consequence to perpetuate through their replication. Human T-lymphotropic virus type 1 (HTLV-1) is known to be highly oncogenic and associates with adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis and other inflammatory pathological conditions. HTLV-1 protein activity is controlled by PTMs and, in turn, viral activity is associated with the modulation of cellular pathways based on PTMs. More knowledge is acquired about the PTMs involved in the activation of its proteins, like Tax, Rex, p12, p13, p30, HTLV-I basic leucine zipper factor and Gag. However, more has to be understood at the biochemical level in order to counteract the associated fatal outcomes. This review will focus on known PTMs that directly modify HTLV-1 components and on enzymes whose activity is modulated by viral proteins. PMID:24175216

  16. Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions

    PubMed Central

    Ortiz-Espín, Ana; Iglesias-Fernández, Raquel; Calderón, Aingeru; Carbonero, Pilar; Sevilla, Francisca

    2017-01-01

    Abstract Mitochondrial thioredoxin-o (AtTrxo1) was characterized and its expression examined in different organs of Arabidopsis thaliana. AtTrxo1 transcript levels were particularly high in dry seeds and cotyledons where they reached a maximum 36 h after imbibition with water, coinciding with 50% germination. Expression was lower in seeds germinating in 100 mM NaCl. To gain insight into the transcriptional regulation of the AtTrxo1 gene, a phylogenomic analysis was coupled with the screening of an arrayed library of Arabidopsis transcription factors in yeast. The basic leucine zipper AtbZIP9 and the zinc finger protein AZF2 were identified as putative transcriptional regulators. Transcript regulation of AtbZIP9 and AtAFZ2 during germination was compatible with the proposed role in transcriptional regulation of AtTrxo1. Transient over-expression of AtbZIP9 and AtAZF2 in Nicotiana benthamiana leaves demonstrated an activation effect of AtbZIP9 and a repressor effect of AtAZF2 on AtTrxo1 promoter-driven reporter expression. Although moderate concentrations of salt delayed germination in Arabidopsis wild-type seeds, those of two different AtTrxo1 knock-out mutants germinated faster and accumulated higher H2O2 levels than the wild-type. All these data indicate that AtTrxo1 has a role in redox homeostasis during seed germination under salt conditions. PMID:28184497

  17. A 5' UTR-Overlapping LncRNA Activates the Male-Determining Gene doublesex1 in the Crustacean Daphnia magna.

    PubMed

    Kato, Yasuhiko; Perez, Christelle Alexa G; Mohamad Ishak, Nur Syafiqah; Nong, Quang D; Sudo, Yuumi; Matsuura, Tomoaki; Wada, Tadashi; Watanabe, Hajime

    2018-06-04

    Long noncoding RNAs (lncRNAs) are pervasively transcribed in the eukaryotic genome [1] and are important for the control of master regulatory genes that are involved in cell differentiation and development [2, 3]. Here, we show that a 5' UTR-overlapping lncRNA regulates the male-specific expression of the DM-domain gene doublesex1 (dsx1) in the crustacean Daphnia magna, which produces males in response to environmental stimuli. This lncRNA, named doublesex1 alpha promoter-associated long RNA (DAPALR), is transcribed upstream the transcription start site (TSS) in a sense orientation and subjected to 5' end capping and 3' end processing at a stem-loop structure before the dsx1 coding exon. Similar to dsx1, its expression is only activated in males by the juvenile hormone (JH) and basic-leucine zipper (bZIP) transcription factor Vrille (Vri) and is maintained during embryogenesis. Knockdown of DAPALR in males silenced dsx1 and led to feminization, including egg production, whereas ectopic expression of DAPALR in dsx1-silenced females resulted in the de-repression of dsx1. We further demonstrate that the DAPALR transcript overlaps the dsx1 5'-UTR, and this overlapping region is required for dsx1 activation. Our results suggest that DAPALR can transactivate and possibly maintain dsx1 expression. This might be important for converting transient environmental signals into stable male development, controlled by the continuous expression of dsx1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma.

    PubMed

    Lollies, A; Hartmann, S; Schneider, M; Bracht, T; Weiß, A L; Arnolds, J; Klein-Hitpass, L; Sitek, B; Hansmann, M-L; Küppers, R; Weniger, M A

    2018-01-01

    Classical Hodgkin lymphoma (cHL) and anaplastic large cell lymphoma (ALCL) feature high expression of activator protein-1 (AP-1) transcription factors, which regulate various physiological processes but also promote lymphomagenesis. The AP-1 factor basic leucine zipper transcription factor, ATF-like 3 (BATF3), is highly transcribed in cHL and ALCL; however, its functional importance in lymphomagenesis is unknown. Here we show that proto-typical CD30 + lymphomas, namely cHL (21/30) and primary mediastinal B-cell lymphoma (8/9), but also CD30 + diffuse large B-cell lymphoma (15/20) frequently express BATF3 protein. Mass spectrometry and co-immunoprecipitation established interactions of BATF3 with JUN and JUNB in cHL and ALCL lines. BATF3 knockdown using short hairpin RNAs was toxic for cHL and ALCL lines, reducing their proliferation and survival. We identified MYC as a critical BATF3 target and confirmed binding of BATF3 to the MYC promoter. JAK/STAT signaling regulated BATF3 expression, as chemical JAK2 inhibition reduced and interleukin 13 stimulation induced BATF3 expression in cHL lines. Chromatin immunoprecipitation substantiated a direct regulation of BATF3 by STAT proteins in cHL and ALCL lines. In conclusion, we identified STAT-mediated BATF3 expression that is essential for lymphoma cell survival and promoted MYC activity in cHL and ALCL, hence we recognized a new oncogenic axis in these lymphomas.

  19. The Basic Leucine Zipper Stress Response Regulator Yap5 Senses High-Iron Conditions by Coordination of [2Fe-2S] Clusters

    PubMed Central

    Rietzschel, Nicole; Pierik, Antonio J.; Bill, Eckhard; Mühlenhoff, Ulrich

    2014-01-01

    Iron is an essential, yet at elevated concentrations toxic trace element. To date, the mechanisms of iron sensing by eukaryotic iron-responsive transcription factors are poorly understood. The Saccharomyces cerevisiae transcription factor Yap5, a member of the Yap family of bZIP stress response regulators, administrates the adaptive response to high-iron conditions. Despite the central role of the iron-sensing process for cell viability, the molecule perceived by Yap5 and the underlying regulatory mechanisms are unknown. Here, we show that Yap5 senses high-iron conditions by two Fe/S clusters bound to its activator domain (Yap5-AD). The more stable iron-regulatory Fe/S cluster at the N-terminal cysteine-rich domain (n-CRD) of Yap5 is detected in vivo and in vitro. The second cluster coordinated by the C-terminal CRD can only be shown after chemical reconstitution, since it is bound in a labile fashion. Both clusters are of the [2Fe-2S] type as characterized by UV/visible (UV/Vis), circular dichroism, electron paramagnetic resonance (EPR), and Mössbauer spectroscopy. Fe/S cluster binding to Yap5-AD induces a conformational change that may activate transcription. The cluster-binding motif of the n-CRD domain is highly conserved in HapX-like transcription factors of pathogenic fungi and thus may represent a general sensor module common to many eukaryotic stress response regulators. PMID:25368382

  20. Two Variants of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) with Additional Protein Domains: Synthesis in an Escherichia coli Heterologous Expression System.

    PubMed

    Karyagina, A S; Boksha, I S; Grunina, T M; Demidenko, A V; Poponova, M S; Sergienko, O V; Lyashchuk, A M; Galushkina, Z M; Soboleva, L A; Osidak, E O; Bartov, M S; Gromov, A V; Lunin, V G

    2017-05-01

    Two variants of recombinant human bone morphogenetic protein-2 (rhBMP-2) with additional N-terminal protein domains were obtained by expression in E. coli. The N-terminal domains were s-tag (15-a.a. oligopeptide from bovine pancreatic ribonuclease A) and lz (leucine zipper dimerization domain from yeast transcription factor GCN4). The s-tag-BMP-2 and lz-BMP-2 were purified by a procedure that excluded a long refolding stage. The resulting dimeric proteins displayed higher solubility compared to rhBMP-2 without additional protein domains. Biological activity of both proteins was demonstrated in vitro by induction of alkaline phosphatase in C2C12 cells, and the activity of s-tag-BMP-2 in vivo was shown in various experimental animal models.

  1. Toward the Validation of Maternal Embryonic Leucine Zipper Kinase: Discovery, Optimization of Highly Potent and Selective Inhibitors, and Preliminary Biology Insight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touré, B. Barry; Giraldes, John; Smith, Troy

    2016-05-26

    MELK kinase has been implicated in playing an important role in tumorigenesis. Our previous studies suggested that MELK is involved in the regulation of cell cycle and its genetic depletion leads to growth inhibition in a subset of high MELK-expressing basal-like breast cancer cell lines. Herein we describe the discovery and optimization of novel MELK inhibitors 8a and 8b that recapitulate the cellular effects observed by short hairpin ribonucleic acid (shRNA)-mediated MELK knockdown in cellular models. We also discovered a novel fluorine-induced hydrophobic collapse that locked the ligand in its bioactive conformation and led to a 20-fold gain in potency.more » These novel pharmacological inhibitors achieved high exposure in vivo and were well tolerated, which may allow further in vivo evaluation.« less

  2. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation

    PubMed Central

    Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A.

    2010-01-01

    Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. PMID:20488258

  3. Mitochondria localize to injured axons to support regeneration

    PubMed Central

    Han, Sung Min; Baig, Huma S.; Hammarlund, Marc

    2016-01-01

    SUMMARY Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons, so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase-1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell biological mechanism that helps determine the regenerative response of injured neurons. PMID:28009276

  4. Inhibition of Curcumin on ZAKα Activity Resultant in Apoptosis and Anchorage-Independent Growth in Cancer Cells.

    PubMed

    Lee, Jin-Sun; Wang, Tsu-Shing; Lin, Ming Cheng; Lin, Wei-Wen; Yang, Jaw-Ji

    2017-10-31

    Curcumin, a popular yellow pigment of the dietary spice turmeric, has been reported to inhibit cell growth and to induce apoptosis in a wide variety of cancer cells. Although numerous studies have investigated anticancer effects of curcumin, the precise molecular mechanism of action remains unidentified. Whereas curcumin mediates cell survival and apoptosis through mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling cascades, its impact on the upstream regulation of MAPK is unclear. The leucine-zipper and sterile-α motif kinase alpha (ZAKα), a mitogen-activated protein kinase kinase kinase (MAP3K), activates the c-Jun N-terminal kinase (JNK) and NF-κB pathway. This paper investigated the prospective involvement of ZAKα in curcumin-induced effects on cancer cells. Our results suggest that the antitumor activity of curcumin is mediated via a mechanism involving inhibition of ZAKα activity.

  5. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode.

    PubMed

    van der Vossen, E A; van der Voort, J N; Kanyuka, K; Bendahmane, A; Sandbrink, H; Baulcombe, D C; Bakker, J; Stiekema, W J; Klein-Lankhorst, R M

    2000-09-01

    The isolation of the nematode-resistance gene Gpa2 in potato is described, and it is demonstrated that highly homologous resistance genes of a single resistance-gene cluster can confer resistance to distinct pathogen species. Molecular analysis of the Gpa2 locus resulted in the identification of an R-gene cluster of four highly homologous genes in a region of approximately 115 kb. At least two of these genes are active: one corresponds to the previously isolated Rx1 gene that confers resistance to potato virus X, while the other corresponds to the Gpa2 gene that confers resistance to the potato cyst nematode Globodera pallida. The proteins encoded by the Gpa2 and the Rx1 genes share an overall homology of over 88% (amino-acid identity) and belong to the leucine-zipper, nucleotide-binding site, leucine-rich repeat (LZ-NBS-LRR)-containing class of plant resistance genes. From the sequence conservation between Gpa2 and Rx1 it is clear that there is a direct evolutionary relationship between the two proteins. Sequence diversity is concentrated in the LRR region and in the C-terminus. The putative effector domains are more conserved suggesting that, at least in this case, nematode and virus resistance cascades could share common components. These findings underline the potential of protein breeding for engineering new resistance specificities against plant pathogens in vitro.

  6. Protein hydrogels with engineered biomolecular recognition

    NASA Astrophysics Data System (ADS)

    Mi, Lixin

    Extracellular matrices (ECMs) are the hydrated macromolecular gels in which cells migrate and proliferate and organize into tissues in vivo . The development of artificial ECM with the required mechanical, physico-chemical, and biological properties has long been a challenge in the biomaterial research field. In this dissertation, a novel set of bioactive protein hydrogels has been synthesized and characterized at both molecular and materials levels. The self-recognized and self-assembled protein copolymers have the ability to provide engineered biofunctionality through the controlled arrangement of bioactive domains on the nanoscale. Genetic engineering methods have been employed to synthesize these protein copolymers. Plasmid DNA carrying genes to express both di- and tri-block proteins have been constructed using molecular cloning techniques. These genes were expressed in bacterial E. coli to ensure homogeneous protein length and anticipated structure. Three diblock protein sequences having a leucine zipper construct on one end and polyelectrolyte (AGAGAGPEG)10 on the other, have been studied by circular dichroism, size-exclusion chromatography, analytical ultracentrifugation, and static light scattering to characterize their secondary structure, structural stability, and oligomeric state. The results show that ABC diblock mixtures form very stable heterotrimer aggregates via self-recognition and self-assembly of the coiled coil end domains. Tri-block proteins with two leucine zipper motif ends flanking the polyelectrolyte random coil in the middle have been investigated by circular dichroism and fluorescence spectroscopy, and the hydrogels formed by self-assembly of these tri-blocks have been studied using transmission electronic microscopy and diffusing wave spectroscopy. The reversible gelation behavior is the result of heterotrimeric aggregation of helices to form the physical crosslinks in the gel, with the polyelectrolyte region center block retaining water soluble and swelling. The RGD cell adhesion tripeptide has been inserted into the polyelectrolyte region by site-directed mutagenesis. Two dimensional human foreskin fibroblast cultures have shown that the RGD-containing protein surface is bioactive in promoting cell attachment, cell signaling, and cytoskeleton organization. The protein and the cell recognize and interact at molecular level. Collectively, these findings indicate that this bioactive protein hydrogel system is a promising biomaterial for mammalian cell culture. This research may provide insights for the rational development of bioactive ECM for specific cell and tissue engineering applications.

  7. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    PubMed

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of these MAP4Ks blocks stress-induced retrograde JNK signaling and protects from neurodegeneration, suggesting that these kinases may represent attractive therapeutic targets. Copyright © 2017 the authors 0270-6474/17/3711074-11$15.00/0.

  8. Involvement of transcription factor encoded by the mouse mi locus (MITF) in apoptosis of cultured mast cells induced by removal of interleukin-3.

    PubMed Central

    Tsujimura, T.; Hashimoto, K.; Morii, E.; Tunio, G. M.; Tsujino, K.; Kondo, T.; Kanakura, Y.; Kitamura, Y.

    1997-01-01

    Mast cells develop when spleen cells of mice are cultured in the medium containing interleukin (IL)-3. Cultured mast cells (CMCs) show apoptosis when they are incubated in the medium without IL-3. We obtained CMCs from tg/tg mice that did not express the transcription factor encoded by the mi gene (MITF) due to the integration of a transgene at its 5' flanking region. MITF is a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors. We investigated the effect of MITF on the apoptosis of CMCs after removal of IL-3. When cDNA encoding normal MITF ((+)-MITF) was introduced into tg/tg CMCs with the retroviral vector, the apoptosis of tg/tg CMCs was significantly accelerated. The mutant mi allele represents a deletion of an arginine at the basic domain of MITF. The apoptosis of tg/tg CMCs was not accelerated by the introduction of cDNA encoding mi-MITF. The overexpression of (+)-MITF was not prerequisite to the acceleration of the apoptosis, as the apoptotic process proceeded faster in +/+ CMCs than in mi/mi CMCs. The Ba/F3 lymphoid cell line is also dependent on IL-3, and Ba/F3 cells show apoptosis after removal of IL-3. The c-myc gene encodes another transcription factor of the bHLH-Zip family, and the overexpression of the c-myc gene accelerated the apoptosis of Ba/F3 cells. However, the overexpression of (+)-MITF did not accelerate the apoptosis of Ba/F3 cells. The (+)-MITF appeared to play some roles for the acceleration of the apoptosis specifically in the mast cell lineage. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9327738

  9. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    PubMed

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  10. Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ IV) Gene Family from Musa accuminata

    PubMed Central

    Pandey, Ashutosh; Misra, Prashant; Alok, Anshu; Kaur, Navneet; Sharma, Shivani; Lakhwani, Deepika; Asif, Mehar H.; Tiwari, Siddharth; Trivedi, Prabodh K.

    2016-01-01

    The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs. PMID:26870050

  11. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 frommore » phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.« less

  12. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    PubMed Central

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  13. A novel bZIP transcription factor ClrC positively regulates multiple stress responses, conidiation and cellulase expression in Penicillium oxalicum.

    PubMed

    Lei, Yunfeng; Liu, Guodong; Yao, Guangshan; Li, Zhonghai; Qin, Yuqi; Qu, Yinbo

    2016-06-01

    Cellulase production in filamentous fungi is largely regulated at the transcriptional level, and several transcription factors have been reported to be involved in this process. In this study, we identified ClrC, a novel transcription factor in cellulase production in Penicillium oxalicum. ClrC and its orthologs have a highly conserved basic leucine zipper (bZIP) DNA binding domain, and their biological functions have not been explored. Deletion of clrC resulted in pleiotropic effects, including altered growth, reduced conidiation and increased sensitivity to oxidative and cell wall stresses. In particular, the clrC deletion mutant ΔclrC showed 46.1% ± 8.1% and 58.0% ± 8.7% decreases in production of filter paper enzyme and xylanase activities in cellulose medium, respectively. In contrast, 57.4% ± 10.0% and 70.9% ± 19.4% increased production of filter paper enzyme, and xylanase was observed in the clrC overexpressing strain, respectively. The transcription levels of major cellulase genes, as well as two cellulase transcriptional activator genes, clrB and xlnR, were significantly downregulated in ΔclrC, but substantially upregulated in clrC overexpressing strains. Furthermore, we observed that the absence of ClrC reduced full induction of cellulase expression even in the clrB overexpressing strain. These results indicated that ClrC is a novel and efficient engineering target for improving cellulolytic enzyme production in filamentous fungi. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents.

    PubMed

    Zhang, Guishui; Dass, Crispin R; Sumithran, Eric; Di Girolamo, Nick; Sun, Lun-Quan; Khachigian, Levon M

    2004-05-05

    The basic region-leucine zipper protein c-Jun has been linked to cell proliferation, transformation, and apoptosis. However, a direct role for c-Jun in angiogenesis has not been shown. We used human microvascular endothelial cells (HMEC-1) transfected with a DNAzyme targeting the c-Jun mRNA (Dz13), related oligonucleotides, or vehicle in in vitro models of microvascular endothelial cell proliferation, migration, chemoinvasion, and tubule formation, a rat model of corneal neovascularization, and a mouse model of solid tumor growth and vascular endothelial growth factor (VEGF)-induced angiogenesis. All statistical tests were two-sided. Compared with mock-transfected cells, HMEC-1 cells transfected with Dz13 expressed less c-Jun protein and possessed lower DNA-binding activity. Dz13 blocked endothelial cell proliferation, migration, chemoinvasion, and tubule formation. Dz13 inhibited the endothelial cell expression and proteolytic activity of MMP-2, a c-Jun-dependent gene. Dz13 inhibited VEGF-induced neovascularization in the rat cornea compared with vehicle control (Dz13 versus vehicle: 4.0 neovessels versus 30.7 neovessels, difference = 26.7 neovessels; P =.004; area occupied by new blood vessels for Dz13 versus vehicle: 0.35 mm2 versus 1.52 mm2, difference = 1.17 mm2; P =.005) as well as solid melanoma growth in mice (Dz13 versus vehicle at 14 days: 108 mm3 versus 283 mm3, difference = 175 mm3; P =.006) with greatly reduced vascular density (Dz13 versus vehicle: 30% versus 100%, difference = 70%; P<.001). DNAzymes targeting c-Jun may have therapeutic potential as inhibitors of tumor angiogenesis and growth.

  15. Nrf2 and Nrf2-Related Proteins in Development and Developmental Toxicity: Insights from studies in Zebrafish (Danio rerio)

    PubMed Central

    Hahn, Mark E.; Timme-Laragy, Alicia R.; Karchner, Sibel I.; Stegeman, John J.

    2015-01-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. PMID:26130508

  16. Transcriptomic and Metabolomic Networks in the Grape Berry Illustrate That it Takes More Than Flavonoids to Fight Against Ultraviolet Radiation

    PubMed Central

    Matus, José Tomás

    2016-01-01

    Plants are constantly challenged by environmental fluctuations. In response, they have developed a wide range of morphological and biochemical adaptations committed to ameliorate the effects of abiotic stress. When exposed to higher solar radiation levels, plants activate the synthesis of a large set of enzymes and secondary metabolites as part of a complex sunscreen and antioxidant defense mechanism. Grapevine (Vitis vinifera L.) has become a widely used system for studying adaptive responses to this type of stress since changes in berry composition, positively influenced by increased ultraviolet (UV) radiation levels, improve the quality of wines subsequently produced. Despite the fact that most of the attention has been directed toward the synthesis of flavonoids, recent transcriptomic and metabolomic studies have shown that stilbenoids and isoprenoids (e.g., terpenes and carotenoids) are also an important part of the grape UV-response machinery. This minireview focuses on the latest findings referring to the metabolic responses of grapes to UV radiation and proposes a model for its transcriptional control. Depending on the berry developmental stage and the type of radiation (i.e., irradiance level, exposure length), increased UV levels activate different metabolic pathways through the activity of master regulators belonging to the basic Leucine Zipper Domain (bZIP) and R2R3-MYB transcription factor families. This transcriptional control is influenced by the interaction of other environmental factors such as light, temperature or soil water availability. In grapevine, phenylpropanoids are part of, but are not the whole story, in the fight against radiation damage. PMID:27625679

  17. A minireview of E4BP4/NFIL3 in heart failure.

    PubMed

    Velmurugan, Bharath Kumar; Chang, Ruey-Lin; Marthandam Asokan, Shibu; Chang, Chih-Fen; Day, Cecilia-Hsuan; Lin, Yueh-Min; Lin, Yuan-Chuan; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-06-01

    Heart failure (HF) remains a major cause of morbidity and mortality worldwide. The primary cause identified for HF is impaired left ventricular myocardial function, and clinical manifestations may lead to severe conditions like pulmonary congestion, splanchnic congestion, and peripheral edema. Development of new therapeutic strategies remains the need of the hour for controlling the problem of HF worldwide. Deeper insights into the molecular mechanisms involved in etiopathology of HF indicate the significant role of calcium signaling, autocrine signaling pathways, and insulin-like growth factor-1 signaling that regulates the physiologic functions of heart growth and development such as contraction, metabolism, hypertrophy, cytokine signaling, and apoptosis. In view of these facts, a transcription factor (TF) regulating the myriad of these signaling pathways may prove as a lead candidate for development of therapeutics. Adenovirus E4 promoter-binding protein (E4BP4), also known as nuclear-factor, interleukin 3 regulated (NFIL3), a type of basic leucine zipper TF, is known to regulate the signaling processes involved in the functioning of heart. The current review discusses about the expression, structure, and functional role of E4BP4 in signaling processes with emphasis on calcium signaling mechanisms, autocrine signaling, and insulin-like growth factor II receptor-mediated processes regulated by E4BP4 that may regulate the pathogenesis of HF. We propose that E4BP4, being the critical component for the regulation of the above signaling processes, may serve as a novel therapeutic target for HF, and scientific investigations are merited in this direction. © 2018 Wiley Periodicals, Inc.

  18. Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.

    PubMed

    Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E

    2014-07-01

    The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein-protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These "anti-bZIP" peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design-target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. © 2014 The Protein Society.

  19. NFIL3 suppresses hypoxia-induced apoptotic cell death by targeting the insulin-like growth factor 2 receptor.

    PubMed

    Lin, Kuan-Ho; Kuo, Chia-Hua; Kuo, Wei-Wen; Ho, Tsung-Jung; Pai, Peiying; Chen, Wei-Kung; Pan, Lung-Fa; Wang, Chien-Cheng; Padma, V Vijaya; Huang, Chih-Yang

    2015-06-01

    The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF2R) over-expression correlates with heart disease progression. The IGF2R is not only an IGF2 clearance receptor, but it also triggers signal transduction, resulting in cardiac hypertrophy, apoptosis and fibrosis. The present study investigated the nuclear factor IL-3 (NFIL3), a transcription factor of the basic leucine zipper superfamily, and its potential pro-survival effects in cardiomyocytes. NFIL3 might play a key role in heart development and act as a survival factor in the heart, but the regulatory mechanisms are still unclear. IGF2 and IGF2R protein expression were highly increased in rat hearts subjected to hemorrhagic shock. IGF2R protein expression was also up-regulated in H9c2 cells exposed to hypoxia. Over-expression of NFIL3 in H9c2 cardiomyoblast cells inhibited the induction of hypoxia-induced apoptosis and down-regulated IGF2R expression levels. Gel shift assay, double-stranded DNA pull-down assay and chromatin immune-precipitation analyses indicated that NFIL3 binds directly to the IGF2R promoter region. Using a luciferase assay, we further observed NFIL3 repress IGF2R gene promoter activity. Our results demonstrate that NFIL3 is an important negative transcription factor, which through binding to the promoter of IGF2R, suppresses the apoptosis induced by IGF2R signaling in H9c2 cardiomyoblast cells under hypoxic conditions. © 2015 Wiley Periodicals, Inc.

  20. Phytoestrogens modulate hepcidin expression by Nrf2: Implications for dietary control of iron absorption.

    PubMed

    Bayele, Henry K; Balesaria, Sara; Srai, Surjit K S

    2015-12-01

    Hepcidin is a liver-derived antimicrobial peptide that regulates iron absorption and is also an integral part of the acute phase response. In a previous report, we found evidence that this peptide could also be induced by toxic heavy metals and xenobiotics, thus broadening its teleological role as a defensin. However it remained unclear how its sensing of disparate biotic and abiotic stressors might be integrated at the transcriptional level. We hypothesized that its function in cytoprotection may be regulated by NFE2-related factor 2 (Nrf2), the master transcriptional controller of cellular stress defenses. In this report, we show that hepcidin regulation is inextricably linked to the acute stress response through Nrf2 signaling. Nrf2 regulates hepcidin expression from a prototypical antioxidant response element in its promoter, and by synergizing with other basic leucine-zipper transcription factors. We also show that polyphenolic small molecules or phytoestrogens commonly found in fruits and vegetables including the red wine constituent resveratrol can induce hepcidin expression in vitro and post-prandially, with concomitant reductions in circulating iron levels and transferrin saturation by one such polyphenol quercetin. Furthermore, these molecules derepress hepcidin promoter activity when its transcription by Nrf2 is repressed by Keap1. Taken together, the data show that hepcidin is a prototypical antioxidant response or cytoprotective gene within the Nrf2 transcriptional circuitry. The ability of phytoestrogens to modulate hepcidin expression in vivo suggests a novel mechanism by which diet may impact iron homeostasis. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of the role of TAX, HBZ, and HTLV-1 proviral load on the survival of ATLL patients.

    PubMed

    Akbarin, Mohammad Mehdi; Shirdel, Abbas; Bari, Alireza; Mohaddes, Seyedeh Tahereh; Rafatpanah, Houshang; Karimani, Ehsan Ghayour; Etminani, Kobra; Golabpour, Amin; Torshizi, Reza

    2017-06-01

    Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy with very poor prognosis and short survival, caused by the human T-lymphotropic virus type-1 (HTLV-1). The HTLV-1 biomarkers trans-activator x (TAX) and HTLV-1 basic leucine zipper factor (HBZ) are main oncogenes and life-threatening elements. This study aimed to assess the role of the TAX and HBZ genes and HTLV-1 proviral load (PVL) in the survival of patients with ATLL. Forty-three HTLV-1-infected individuals, including 18 asymptomatic carriers (AC) and 25 ATLL patients (ATLL), were evaluated between 2011 and 2015. The mRNA expression of TAX and HBZ and the HTLV-1 PVL were measured by quantitative PCR. Significant differences in the mean expression levels of TAX and HBZ were observed between the two study groups (ATLL and AC, P =0.014 and P =0.000, respectively). In addition, the ATLL group showed a significantly higher PVL than AC ( P =0.000). There was a significant negative relationship between PVL and survival among all study groups ( P =0.047). The HTLV-1 PVL and expression of TAX and HBZ were higher in the ATLL group than in the AC group. Moreover, a higher PVL was associated with shorter survival time among all ATLL subjects. Therefore, measurement of PVL, TAX , and HBZ may be beneficial for monitoring and predicting HTLV-1-infection outcomes, and PVL may be useful for prognosis assessment of ATLL patients. This research demonstrates the possible correlation between these virological markers and survival in ATLL patients.

  2. Rice ABI5-Like1 Regulates Abscisic Acid and Auxin Responses by Affecting the Expression of ABRE-Containing Genes1[W][OA

    PubMed Central

    Yang, Xi; Yang, Ya-Nan; Xue, Liang-Jiao; Zou, Mei-Juan; Liu, Jian-Ying; Chen, Fan; Xue, Hong-Wei

    2011-01-01

    Abscisic acid (ABA) regulates plant development and is crucial for plant responses to biotic and abiotic stresses. Studies have identified the key components of ABA signaling in Arabidopsis (Arabidopsis thaliana), some of which regulate ABA responses by the transcriptional regulation of downstream genes. Here, we report the functional identification of rice (Oryza sativa) ABI5-Like1 (ABL1), which is a basic region/leucine zipper motif transcription factor. ABL1 is expressed in various tissues and is induced by the hormones ABA and indole-3-acetic acid and stress conditions including salinity, drought, and osmotic pressure. The ABL1 deficiency mutant, abl1, shows suppressed ABA responses, and ABL1 expression in the Arabidopsis abi5 mutant rescued the ABA sensitivity. The ABL1 protein is localized to the nucleus and can directly bind ABA-responsive elements (ABREs; G-box) in vitro. A gene expression analysis by DNA chip hybridization confirms that a large proportion of down-regulated genes of abl1 are involved in stress responses, consistent with the transcriptional activating effects of ABL1. Further studies indicate that ABL1 regulates the plant stress responses by regulating a series of ABRE-containing WRKY family genes. In addition, the abl1 mutant is hypersensitive to exogenous indole-3-acetic acid, and some ABRE-containing genes related to auxin metabolism or signaling are altered under ABL1 deficiency, suggesting that ABL1 modulates ABA and auxin responses by directly regulating the ABRE-containing genes. PMID:21546455

  3. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress.

    PubMed

    Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim

    2013-07-01

    Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.

  4. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    PubMed Central

    Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji

    2017-01-01

    Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders. PMID:28744205

  5. Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean

    PubMed Central

    Li, Xiaoming; Lu, Sijia; Zhao, Xiaohui; Liu, Baohui; Guo, Changhong; Kong, Fanjiang

    2017-01-01

    The basic leucine zipper (bZIP) family of transcription factors plays an important role in the growth and developmental process as well as responds to various abiotic stresses, such as drought and high salinity. Our previous work identified GmFDL19, a bZIP transcription factor, as a flowering promoter in soybean, and the overexpression of GmFDL19 caused early flowering in transgenic soybean plants. Here, we report that GmFDL19 also enhances tolerance to drought and salt stress in soybean. GmFDL19 was determined to be a group A member, and its transcription expression was highly induced by abscisic acid (ABA), polyethylene glycol (PEG 6000) and high salt stresses. Overexpression of GmFDL19 in soybean enhanced drought and salt tolerance at the seedling stage. The relative plant height (RPH) and relative shoot dry weight (RSDW) of transgenic plants were significantly higher than those of the WT after PEG and salt treatments. In addition, the germination rate and plant height of the transgenic soybean were also significantly higher than that of WT plants after various salt treatments. Furthermore, we also found that GmFDL19 could reduce the accumulation of Na+ ion content and up-regulate the expression of several ABA/stress-responsive genes in transgenic soybean. We also found that GmFDL19 overexpression increased the activities of several antioxidative enzyme and chlorophyll content but reduced malondialdehyde content. These results suggested that GmFDL19 is involved in soybean abiotic stress responses and has potential utilization to improve multiple stress tolerance in transgenic soybean. PMID:28640834

  6. Treatment of a delayed zipper injury.

    PubMed

    Mydlo, J H

    2000-01-01

    Penile zipper injuries have been reported occurring usually in the pediatric population, and occasionally in adults. Usually, the zipper can be dislodged with mineral oil or by breaking the median bar. When these attempts fail, a small elliptical incision may be used to remove the zipper and any devitalized tissue. Copyright 2000 S. Karger AG, Basel

  7. Evolution of the Class IV HD-Zip Gene Family in Streptophytes

    PubMed Central

    Zalewski, Christopher S.; Floyd, Sandra K.; Furumizu, Chihiro; Sakakibara, Keiko; Stevenson, Dennis W.; Bowman, John L.

    2013-01-01

    Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters. PMID:23894141

  8. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds.

    PubMed

    González-Grandío, Eduardo; Pajoro, Alice; Franco-Zorrilla, José M; Tarancón, Carlos; Immink, Richard G H; Cubas, Pilar

    2017-01-10

    Shoot-branching patterns determine key aspects of plant life and are important targets for crop breeding. However, we are still largely ignorant of the genetic networks controlling locally the most important decision during branch development: whether the axillary bud, or branch primordium, grows out to give a lateral shoot or remains dormant. Here we show that, inside the buds, the TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the transcription of three related Homeodomain leucine zipper protein (HD-ZIP)-encoding genes: HOMEOBOX PROTEIN 21 (HB21), HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN 53 (HB53). These three genes, together with BRC1, enhance 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) expression, lead to abscisic acid accumulation, and trigger hormone response, thus causing suppression of bud development. This TCP/HD-ZIP genetic module seems to be conserved in dicot and monocotyledonous species to prevent branching under light-limiting conditions.

  9. A quantitative assay for mitochondrial fusion using Renilla luciferase complementation.

    PubMed

    Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A

    2010-08-01

    Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. (c) 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  10. A 21.7 kb DNA segment on the left arm of yeast chromosome XIV carries WHI3, GCR2, SPX18, SPX19, an homologue to the heat shock gene SSB1 and 8 new open reading frames of unknown function.

    PubMed

    Jonniaux, J L; Coster, F; Purnelle, B; Goffeau, A

    1994-12-01

    We report the amino acid sequence of 13 open reading frames (ORF > 299 bp) located on a 21.7 kb DNA segment from the left arm of chromosome XIV of Saccharomyces cerevisiae. Five open reading frames had been entirely or partially sequenced previously: WHI3, GCR2, SPX19, SPX18 and a heat shock gene similar to SSB1. The products of 8 other ORFs are new putative proteins among which N1394 is probably a membrane protein. N1346 contains a leucine zipper pattern and the corresponding ORF presents an HAP (global regulator of respiratory genes) upstream activating sequence in the promoting region. N1386 shares homologies with the DNA structure-specific recognition protein family SSRPs and the corresponding ORF is preceded by an MCB (MluI cell cycle box) upstream activating factor.

  11. Molecular evolution of the HD-ZIP I gene family in legume genomes.

    PubMed

    Li, Zhen; Jiang, Haiyang; Zhou, Lingyan; Deng, Lin; Lin, Yongxiang; Peng, Xiaojian; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Homeodomain leucine zipper I (HD-ZIP I) genes were used to increase the plasticity of plants by mediating external signals and regulating growth in response to environmental conditions. The way genomic histories drove the evolution of the HD-ZIP I family in legume species was described; HD-ZIP I genes were searched in Lotus japonicus, Medicago truncatula, Cajanus cajan and Phaseolus vulgaris, and then divided into five clades through phylogenetic analysis. Microsynteny analysis was made based on genomic segments containing the HD-ZIP I genes. Some pairs turned out to conform with syntenic genome regions, while others corresponded to those that were inverted, expanded, or contracted after the divergence of legumes. Besides, we dated their duplications by Ks analysis and demonstrated that all the blocks were formed after the monocot-dicot split; we observed Ka/Ks ratios representing strong purifying selections in the four legume species which might have been followed by gene loss and rearrangement. © 2014 Elsevier B.V. All rights reserved.

  12. The PPE2 protein of Mycobacterium tuberculosis translocates to host nucleus and inhibits nitric oxide production

    PubMed Central

    Bhat, Khalid Hussain; Srivastava, Shruti; Kotturu, Sandeep Kumar; Ghosh, Sudip; Mukhopadhyay, Sangita

    2017-01-01

    Mycobacterium tuberculosis, the bacterium that causes tuberculosis, is one of the most successful pathogens of humans. It has evolved several adaptive skills and evasion mechanisms to hijack the immunologically educated host to suit its intracellular lifestyle. Here, we show that one of the unique PPE family member proteins of M. tuberculosis, PPE2, can limit nitric oxide (NO) production by inhibiting inos gene transcription. PPE2 protein has a leucine zipper DNA-binding motif and a functional nuclear localization signal. PPE2 was translocated into the macrophage nucleus via the classical importin α/β pathway where it interacted with a GATA-binding site overlapping with the TATA box of inos promoter and inhibited NO production. PPE2 prolonged intracellular survival of a surrogate bacterium M. smegmatis in vitro as well as in vivo. This information are likely to improve our knowledge of host-pathogen interactions during M. tuberculosis infection which is crucial for designing effective anti-TB therapeutics. PMID:28071726

  13. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth

    PubMed Central

    Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang

    2017-01-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182

  14. Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter.

    PubMed

    Li, Wanying; Yu, Dan; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian

    2018-03-12

    ZmbZIP25 ( Zea mays bZIP (basic leucine zipper) transcription factor 25) is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction). In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5' RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from -2083 to +367) and a 2600 bp sequence of ZmbZIP25 (from -2083 to +517, the transcription start site was denoted +1). Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5'-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5'-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5'-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5'-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from -1117 to -957 that were responsible for the specificity of the ZmbZIP25 5'-flanking sequence.

  15. Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter

    PubMed Central

    Li, Wanying; Yu, Dan; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian

    2018-01-01

    ZmbZIP25 (Zea mays bZIP (basic leucine zipper) transcription factor 25) is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction). In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5′ RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from −2083 to +367) and a 2600 bp sequence of ZmbZIP25 (from −2083 to +517, the transcription start site was denoted +1). Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5′-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5′-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5′-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5′-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from −1117 to −957 that were responsible for the specificity of the ZmbZIP25 5′-flanking sequence. PMID:29534529

  16. Bach2 repression mediates Th17 cell induced inflammation and associates with clinical features of advanced disease in chronic pancreatitis

    PubMed Central

    Sasikala, M; Ravikanth, VV; Murali Manohar, K; Deshpande, Neha; Singh, Sandhya; Pavan Kumar, P; Talukdar, R; Ghosh, Sudip; Aslam, Mohsin; Rao, GV; Pradeep, R; Reddy, D Nageshwar

    2018-01-01

    Objectives Altered immune homeostasis and involvement of T cells has been reported in chronic pancreatitis (CP). We evaluated the role of Bach2 (BTB and CNC homology basic leucine zipper transcription factor 2), a key regulator of immune homeostasis in the chronicity of CP. Methods Expression of Bach2 and T-cell transcription factors, enumeration of BACH2+/CD4+ T-lymphocytes were performed by qRT-PCR and flow cytometry respectively. Bach2silenced human CD4+ T-lymphocytes were exposed to CP tissue extract to assess T-cell lineage commitment. Aryl hydrocarbon receptor (Ahr) and Deubiquitinase enzyme A (DUBA/OTUD5gene) were evaluated as markers of persistent Th17 cell differentiation. Bach2 gene (exons) was sequenced to identify risk variants and functionally validated. Results Decrease in Bach2 (p < 0.0001) and increase (p < 0.001) in TBX21, RORC, Ahr, PRDM1, IL23R mRNA were noted in pancreatic tissues, while BACH2+/CD4+ T-lymphocytes were decreased (p < 0.01) in circulation and tissues. Exposure of Bach2 silenced CD4+ T-lymphocytes to CP tissue extract showed increased Ahr, decreased OTUD5, and enhanced Th17 cell differentiation. Sequencing of Bach2 gene revealed association of novel variant (rs9111 in 5′-UTR) with advanced disease and luciferase assay confirmed its role in Bach2 repression. Conclusion Bach2 repression mediates Th17 cell induced inflammation and rs9111-TT in individuals with primary genetic susceptibility to CP is associated with clinical features of advanced disease. PMID:29511557

  17. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium.

    PubMed

    Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L

    2015-05-08

    Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium*

    PubMed Central

    Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W.; Song, Wenchao; Dunaief, Joshua L.

    2015-01-01

    Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. PMID:25802332

  19. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.

    PubMed

    Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim

    2008-05-01

    Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.

  20. Characterization, cloning and immunolocalization of a coronin homologue in Trichomonas vaginalis.

    PubMed

    Bricheux, G; Coffe, G; Bayle, D; Brugerolle, G

    2000-06-01

    On adhesion to host cells the flagellate Trichomonas vaginalis switches to an amoeboid form rich in actin microfilaments. We have undertaken the identification of actin-associated proteins that regulate actin dynamics. A monoclonal antibody 4C12 raised against a cytoskeletal fraction of T. vaginalis labeled a protein doublet at circa 50 kDa. These two bands were recognized by the antibody against Dictyostelium discoideum coronin. During cell extraction and actin polymerization, T. vaginalis coronin cosedimented with F-actin. By two-dimensional gel electrophoresis, the protein doublet was separated into two sets of isoforms covering two Ip zones around 6 and 7. By screening a T. vaginalis library with 4C12, two clones Cor 1 and Cor 2 were isolated. This gene duplicity is a particularity among unicellular organisms examined. The complete sequence of the gene Cor 1 encodes a 435-residue protein with a calculated molecular mass of 48 kDa and Ip of 5.58. The incomplete sequence Cor 2 was very similar but with a more basic calculated Ip than Cor 1 on the same region. T. vaginalis coronin had 50% similarity with the coronin family, possessing the five WD-repeats and a leucine zipper in its C-terminal part. Double immunofluorescence labeling showed that coronin mainly colocalized with actin at the periphery of the adherent amoeboid cells. However, coronin labeling displayed patches within a reticular array. Immunogold electron microscopy confirmed the coronin labeling in the actin-rich microfilamentous fringe beneath the plasma membrane, with accumulation in phagocytic zones and pseudopodial extensions. In T. vaginalis, one of the first emerging lineage of eukaryotes, coronin seems to play an important role in actin dynamics and may be a downstream target of a signaling mechanism for the cytoskeleton reorganization.

  1. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs.

    PubMed

    Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili

    2018-03-01

    The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.

  2. In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP)

    PubMed Central

    Saito, Mineki; Matsuzaki, Toshio; Satou, Yorifumi; Yasunaga, Jun-ichirou; Saito, Kousuke; Arimura, Kimiyoshi; Matsuoka, Masao; Ohara, Yoshiro

    2009-01-01

    Background Recently, human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ), encoded from a minus strand mRNA was discovered and was suggested to play an important role in adult T cell leukemia (ATL) development. However, there have been no reports on the role of HBZ in patients with HTLV-1 associated inflammatory diseases. Results We quantified the HBZ and tax mRNA expression levels in peripheral blood from 56 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients, 10 ATL patients, 38 healthy asymptomatic carriers (HCs) and 20 normal uninfected controls, as well as human leukemic T-cell lines and HTLV-1-infected T-cell lines, and the data were correlated with clinical parameters. The spliced HBZ gene was transcribed in all HTLV-1-infected individuals examined, whereas tax mRNA was not transcribed in significant numbers of subjects in the same groups. Although the amount of HBZ mRNA expression was highest in ATL, medium in HAM/TSP, and lowest in HCs, with statistical significance, neither tax nor the HBZ mRNA expression per HTLV-1-infected cell differed significantly between each clinical group. The HTLV-1 HBZ, but not tax mRNA load, positively correlated with disease severity and with neopterin concentration in the cerebrospinal fluid of HAM/TSP patients. Furthermore, HBZ mRNA expression per HTLV-1-infected cell was decreased after successful immunomodulatory treatment for HAM/TSP. Conclusion These findings suggest that in vivo expression of HBZ plays a role in HAM/TSP pathogenesis. PMID:19228429

  3. Evaluation of stability and validation of reference genes for RT-qPCR expression studies in rice plants under water deficit.

    PubMed

    Auler, Priscila Ariane; Benitez, Letícia Carvalho; do Amaral, Marcelo Nogueira; Vighi, Isabel Lopes; Dos Santos Rodrigues, Gabriela; da Maia, Luciano Carlos; Braga, Eugenia Jacira Bolacel

    2017-05-01

    Many studies use strategies that allow for the identification of a large number of genes expressed in response to different stress conditions to which the plant is subjected throughout its cycle. In order to obtain accurate and reliable results in gene expression studies, it is necessary to use reference genes, which must have uniform expression in the majority of cells in the organism studied. RNA isolation of leaves and expression analysis in real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. In this study, nine candidate reference genes were tested, actin 11 (ACT11), ubiquitin conjugated to E2 enzyme (UBC-E2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta tubulin (β-tubulin), eukaryotic initiation factor 4α (eIF-4α), ubiquitin 10 (UBQ10), ubiquitin 5 (UBQ5), aquaporin TIP41 (TIP41-Like) and cyclophilin, in two genotypes of rice, AN Cambará and BRS Querência, with different levels of soil moisture (20%, 10% and recovery) in the vegetative (V5) and reproductive stages (period preceding flowering). Currently, there are different softwares that perform stability analyses and define the most suitable reference genes for a particular study. In this study, we used five different methods: geNorm, BestKeeper, ΔCt method, NormFinder and RefFinder. The results indicate that UBC-E2 and UBQ5 can be used as reference genes in all samples and softwares evaluated. The genes β-tubulin and eIF-4α, traditionally used as reference genes, along with GAPDH, presented lower stability values. The gene expression of basic leucine zipper (bZIP23 and bZIP72) was used to validate the selected reference genes, demonstrating that the use of an inappropriate reference can induce erroneous results.

  4. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds.

    PubMed

    Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K; Buitink, Julia

    2013-10-01

    In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states.

  5. Functional and transcriptomic analysis of the key unfolded protein response transcription factor HacA in Aspergillus oryzae.

    PubMed

    Zhou, Bin; Xie, Jingyi; Liu, Xiaokai; Wang, Bin; Pan, Li

    2016-11-15

    HacA is a conserved basic leucine zipper transcription factor that serves as the master transcriptional regulator in the unfolded protein response (UPR). To comprehensively evaluate the role of HacA in Aspergillus oryzae, a homokaryotic hacA disruption mutant (HacA-DE) and a strain that expressed a constitutively active form of HacA (HacA-CA) were successfully generated, and transcriptome analyses of these mutants were performed. Growth and phenotypic profiles demonstrated that hyphal growth and sporulation were impaired in the HacA-DE and HacA-CA strains that were grown on complete and minimal media, and the growth impairment was more pronounced for the HacA-CA strain. Compared with a wild-type (WT) strain, the transcriptome results indicated that differentially expressed genes in these mutants mainly fell into four categories: the protein secretory pathway, amino acid metabolism, lipid metabolism, and carbohydrate metabolism. Furthermore, we identified 80 and 36 genes of the secretory pathway whose expression significantly differed in the HacA-CA strain (compared with the WT and HacA-DE strains) and HacA-DE strain (compared with the WT strain), respectively, which mostly belonged to protein folding/UPR, glycosylation, and vesicle transport processes. Both the HacA-CA and HacA-DE strains exhibited reduced expression of extracellular enzymes, especially amylolytic enzymes, which resulted from the activation of the repression under secretion stress mechanism in response to endoplasmic reticulum stress. Collectively, our results suggest that the function of HacA is important not only for UPR induction, but also for growth and fungal physiology, as it serves to reduce secretion stress in A. oryzae. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio).

    PubMed

    Hahn, Mark E; Timme-Laragy, Alicia R; Karchner, Sibel I; Stegeman, John J

    2015-11-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. Copyright © 2015. Published by Elsevier Inc.

  7. Multiple PAR and E4BP4 bZIP transcription factors in zebrafish: diverse spatial and temporal expression patterns.

    PubMed

    Ben-Moshe, Zohar; Vatine, Gad; Alon, Shahar; Tovin, Adi; Mracek, Philipp; Foulkes, Nicholas S; Gothilf, Yoav

    2010-09-01

    Circadian rhythms of physiology and behavior are generated by an autonomous circadian oscillator that is synchronized daily with the environment, mainly by light input. The PAR subfamily of transcriptional activators and the related E4BP4 repressor belonging to the basic leucine zipper (bZIP) family are clock-controlled genes that are suggested to mediate downstream circadian clock processes and to feedback onto the core oscillator. Here, the authors report the characterization of these genes in the zebrafish, an increasingly important model in the field of chronobiology. Five novel PAR and six novel e4bp4 zebrafish homolog genes were identified using bioinformatic tools and their coding sequences were cloned. Based on their evolutionary relationships, these genes were annotated as ztef2, zhlf1 and zhlf2, zdbp1 and zdbp2, and ze4bp4-1 to -6. The spatial and temporal mRNA expression pattern of each of these factors was characterized in zebrafish embryos in the context of a functional circadian clock and regulation by light. Nine of the factors exhibited augmented and rhythmic expression in the pineal gland, a central clock organ in zebrafish. Moreover, these genes were found to be regulated, to variable extents, by the circadian clock and/or by light. Differential expression patterns of multiple paralogs in zebrafish suggest multiple roles for these factors within the vertebrate circadian clock. This study, in the genetically accessible zebrafish model, lays the foundation for further research regarding the involvement and specific roles of PAR and E4BP4 transcription factors in the vertebrate circadian clock mechanism.

  8. Transcription Factors Responding to Pb Stress in Maize

    PubMed Central

    Zhang, Yanling; Ge, Fei; Hou, Fengxia; Sun, Wenting; Zheng, Qi; Zhang, Xiaoxiang; Ma, Langlang; Fu, Jun; He, Xiujing; Peng, Huanwei; Pan, Guangtang; Shen, Yaou

    2017-01-01

    Pb can damage the physiological function of human organs by entering the human body via food-chain enrichment. Revealing the mechanisms of maize tolerance to Pb is critical for preventing this. In this study, a Pb-tolerant maize inbred line, 178, was used to analyse transcription factors (TFs) expressed under Pb stress based on RNA sequencing data. A total of 464 genes expressed in control check (CK) or Pb treatment samples were annotated as TFs. Among them, 262 differentially expressed transcription factors (DETs) were identified that responded to Pb treatment. Furthermore, the DETs were classified into 4 classes according to their expression patterns, and 17, 12 and 2 DETs were significantly annotated to plant hormone signal transduction, basal transcription factors and base excision repair, respectively. Seventeen DETs were found to participate in the plant hormone signal transduction pathway, where basic leucine zippers (bZIPs) were the most significantly enriched TFs, with 12 members involved. We further obtained 5 Arabidopsis transfer DNA (T-DNA) mutants for 6 of the maize bZIPs, among which the mutants atbzip20 and atbzip47, representing ZmbZIP54 and ZmbZIP107, showed obviously inhibited growth of roots and above-ground parts, compared with wild type. Five highly Pb-tolerant and 5 highly Pb-sensitive in maize lines were subjected to DNA polymorphism and expression level analysis of ZmbZIP54 and ZmbZIP107. The results suggested that differences in bZIPs expression partially accounted for the differences in Pb-tolerance among the maize lines. Our results contribute to the understanding of the molecular regulation mechanisms of TFs in maize under Pb stress. PMID:28927013

  9. The Human T-Lymphotropic Virus Type 1 Tax Protein Inhibits Nonsense-Mediated mRNA Decay by Interacting with INT6/EIF3E and UPF1

    PubMed Central

    Mocquet, Vincent; Neusiedler, Julia; Rende, Francesca; Cluet, David; Robin, Jean-Philippe; Terme, Jean-Michel; Duc Dodon, Madeleine; Wittmann, Jürgen; Morris, Christelle; Le Hir, Hervé; Ciminale, Vincenzo

    2012-01-01

    In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa cells. In line with this activity, Tax binds INT6/EIF3E (here called INT6), which is a subunit of the translation initiation factor eukaryotic initiation factor 3 (eIF3) required for efficient NMD, as well as the NMD core factor upstream frameshift protein 1 (UPF1). It was also observed that Tax expression alters the morphology of processing bodies (P-bodies), the cytoplasmic structures which concentrate RNA degradation factors. The presence of UPF1 in these subcellular compartments was increased by Tax, whereas that of INT6 was decreased. In line with these effects, the level of the phosphorylated form of UPF1 was increased in the presence of Tax. Analysis of several mutants of the viral protein showed that the interaction with INT6 is necessary for NMD inhibition. The alteration of mRNA stability was observed to affect viral transcripts, such as that coding for the HTLV-1 basic leucine zipper factor (HBZ), and also several cellular mRNAs sensitive to the NMD pathway. Our data indicate that the effect of Tax on viral and cellular gene expression is not restricted to transcriptional control but can also involve posttranscriptional regulation. PMID:22553336

  10. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    PubMed

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  11. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk

    PubMed Central

    Skubacz, Anna; Daszkowska-Golec, Agata; Szarejko, Iwona

    2016-01-01

    ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants. PMID:28018412

  12. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong

    2016-01-01

    ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. PMID:27899501

  13. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    PubMed

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  14. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments.

    PubMed

    Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan

    2014-01-01

    Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development.

  15. A Novel Alternative Splicing Isoform of Human T-Cell Leukemia Virus Type 1 bZIP Factor (HBZ-SI) Targets Distinct Subnuclear Localization

    PubMed Central

    Murata, Ken; Hayashibara, Toshihisa; Sugahara, Kazuyuki; Uemura, Akiko; Yamaguchi, Taku; Harasawa, Hitomi; Hasegawa, Hiroo; Tsuruda, Kazuto; Okazaki, Toshiro; Koji, Takehiko; Miyanishi, Takayuki; Yamada, Yasuaki; Kamihira, Shimeru

    2006-01-01

    Adult T-cell leukemia (ATL) is associated with prior infection with human T-cell leukemia virus type 1 (HTLV-1); however, the mechanism by which HTLV-1 causes adult T-cell leukemia has not been fully elucidated. Recently, a functional basic leucine zipper (bZIP) protein coded in the minus strand of HTLV-1 genome (HBZ) was identified. We report here a novel isoform of the HTLV-1 bZIP factor (HBZ), HBZ-SI, identified by means of reverse transcription-PCR (RT-PCR) in conjunction with 5′ and 3′ rapid amplification of cDNA ends (RACE). HBZ-SI is a 206-amino-acid-long protein and is generated by alternative splicing between part of the HBZ gene and a novel exon located in the 3′ long terminal repeat of the HTLV-1 genome. Consequently, these isoforms share >95% amino acid sequence identity, and differ only at their N termini, indicating that HBZ-SI is also a functional protein. Duplex RT-PCR and real-time quantitative RT-PCR analyses showed that the mRNAs of these isoforms were expressed at equivalent levels in all ATL cell samples examined. Nonetheless, we found by Western blotting that the HBZ-SI protein was preferentially expressed in some ATL cell lines examined. A key finding was obtained from the subcellular localization analyses of these isoforms. Despite their high sequence similarity, each isoform was targeted to distinguishable subnuclear structures. These data show the presence of a novel isoform of HBZ in ATL cells, and in addition, shed new light on the possibility that each isoform may play a unique role in distinct regions in the cell nucleus. PMID:16474156

  16. Th9 and other IL-9-producing cells in allergic asthma.

    PubMed

    Koch, Sonja; Sopel, Nina; Finotto, Susetta

    2017-01-01

    Allergic asthma is a worldwide increasing chronic disease of the airways which affects more than 300 million people. It is associated with increased IgE, mast cell activation, airway hyperresponsiveness (AHR), mucus overproduction and remodeling of the airways. Previously, this pathological trait has been associated with T helper type 2 (Th2) cells. Recently, different CD4 + T cell subsets (Th17, Th9) as well as cells of innate immunity, like mast cells and innate lymphoid cells type 2 (ILC2s), which are all capable of producing the rediscovered cytokine IL-9, are known to contribute to this disease. Regarding Th9 cells, it is known that naïve T cells develop into IL-9-producing cells in the presence of interleukin-4 (IL-4) and transforming growth factor beta (TGFβ). Downstream of IL-4, several transcription factors like signal transducer and activator of transcription 6 (STAT6), interferon regulatory factor 4 (IRF4), GATA binding protein 3 (GATA3), basic leucine zipper transcription factor, ATF-like (BATF) and nuclear factor of activated T cells (NFAT) are activated. Additionally, the transcription factor PU.1, which is downstream of TGFβ signaling, also seems to be crucial in the development of Th9 cells. IL-9 is a pleiotropic cytokine that influences various distinct functions of different target cells such as T cells, B cells, mast cells and airway epithelial cells by activating STAT1, STAT3 and STAT5. Because of its pleiotropic functions, IL-9 has been demonstrated to be involved in several diseases, such as cancer, autoimmunity and other pathogen-mediated immune-regulated diseases. In this review, we focus on the role of Th9 and IL-9-producing cells in allergic asthma.

  17. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.

    PubMed

    Stoyan, T; Gloeckner, G; Diekmann, S; Carbon, J

    2001-08-01

    The CBF1 (centromere binding factor 1) gene of Candida glabrata was cloned by functional complementation of the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 deletion mutant. The C. glabrata-coded protein, CgCbf1, contains a basic-helix-loop-helix leucine zipper domain and has features similar to those of other budding yeast Cbf1 proteins. CgCbf1p binds in vitro to the centromere DNA element I (CDEI) sequence GTCACATG with high affinity (0.9 x 10(9) M(-1)). Bandshift experiments revealed a pattern of protein-DNA complexes on CgCEN DNA different from that known for S. cerevisiae. We examined the effect of altering the CDEI binding site on CEN plasmid segregation, using a newly developed colony-sectoring assay. Internal deletion of the CDEI binding site led only to a fivefold increase in rates of plasmid loss, indicating that direct binding of Cbf1p to the centromere DNA is not required for full function. Additional deletion of sequences to the left of CDEI, however, led to a 70-fold increase in plasmid loss rates. Deletion of the CBF1 gene proved to be lethal in C. glabrata. C. glabrata cells containing the CBF1 gene under the influence of a shutdown promoter (tetO-ScHOP) arrested their growth after 5 h of cultivation in the presence of the reactive drug doxycycline. DAPI (4',6'-diamidino-2-phenylindole) staining of the arrested cells revealed a significant increase in the number of large-budded cells with single nuclei, 2C DNA content, and short spindles, indicating a defect in the G(2)/M transition of the cell cycle. Thus, we conclude that Cbf1p is required for chromosome segregation in C. glabrata.

  18. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa.

    PubMed

    Wu, Jiahe; Zhu, Chuanfeng; Pang, Jinhuan; Zhang, Xiangrong; Yang, Chunlin; Xia, Guixian; Tian, Yingchuan; He, Chaozu

    2014-12-01

    Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  19. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis

    PubMed Central

    Roe, Jennifer K; Thomas, Niclas; Gil, Eliza; Best, Katharine; Tsaliki, Evdokia; Morris‑Jones, Stephen; Stafford, Sian; Simpson, Nandi; Witt, Karolina D; Chain, Benjamin; Miller, Robert F; Martineau, Adrian

    2016-01-01

    BACKGROUND. Novel rapid diagnostics for active tuberculosis (TB) are required to overcome the time delays and inadequate sensitivity of current microbiological tests that are critically dependent on sampling the site of disease. Multiparametric blood transcriptomic signatures of TB have been described as potential diagnostic tests. We sought to identify the best transcript candidates as host biomarkers for active TB, extend the evaluation of their specificity by comparison with other infectious diseases, and to test their performance in both pulmonary and extrapulmonary TB. METHODS. Support vector machine learning, combined with feature selection, was applied to new and previously published blood transcriptional profiles in order to identify the minimal TB‑specific transcriptional signature shared by multiple patient cohorts including pulmonary and extrapulmonary TB, and individuals with and without HIV-1 coinfection. RESULTS. We identified and validated elevated blood basic leucine zipper transcription factor 2 (BATF2) transcript levels as a single sensitive biomarker that discriminated active pulmonary and extrapulmonary TB from healthy individuals, with receiver operating characteristic (ROC) area under the curve (AUC) scores of 0.93 to 0.99 in multiple cohorts of HIV-1–negative individuals, and 0.85 in HIV-1–infected individuals. In addition, we identified and validated a potentially novel 4-gene signature comprising CD177, haptoglobin, immunoglobin J chain, and galectin 10 that discriminated active pulmonary and extrapulmonary TB from other febrile infections, giving ROC AUCs of 0.94 to 1. CONCLUSIONS. Elevated blood BATF2 transcript levels provide a sensitive biomarker that discriminates active TB from healthy individuals, and a potentially novel 4-gene transcriptional signature differentiates between active TB and other infectious diseases in individuals presenting with fever. FUNDING. MRC, Wellcome Trust, Rosetrees Trust, British Lung Foundation, NIHR. PMID:27734027

  1. Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis.

    PubMed

    Roe, Jennifer K; Thomas, Niclas; Gil, Eliza; Best, Katharine; Tsaliki, Evdokia; Morris-Jones, Stephen; Stafford, Sian; Simpson, Nandi; Witt, Karolina D; Chain, Benjamin; Miller, Robert F; Martineau, Adrian; Noursadeghi, Mahdad

    2016-10-06

    BACKGROUND. Novel rapid diagnostics for active tuberculosis (TB) are required to overcome the time delays and inadequate sensitivity of current microbiological tests that are critically dependent on sampling the site of disease. Multiparametric blood transcriptomic signatures of TB have been described as potential diagnostic tests. We sought to identify the best transcript candidates as host biomarkers for active TB, extend the evaluation of their specificity by comparison with other infectious diseases, and to test their performance in both pulmonary and extrapulmonary TB. METHODS. Support vector machine learning, combined with feature selection, was applied to new and previously published blood transcriptional profiles in order to identify the minimal TB‑specific transcriptional signature shared by multiple patient cohorts including pulmonary and extrapulmonary TB, and individuals with and without HIV-1 coinfection. RESULTS. We identified and validated elevated blood basic leucine zipper transcription factor 2 ( BATF2 ) transcript levels as a single sensitive biomarker that discriminated active pulmonary and extrapulmonary TB from healthy individuals, with receiver operating characteristic (ROC) area under the curve (AUC) scores of 0.93 to 0.99 in multiple cohorts of HIV-1-negative individuals, and 0.85 in HIV-1-infected individuals. In addition, we identified and validated a potentially novel 4-gene signature comprising CD177, haptoglobin, immunoglobin J chain, and galectin 10 that discriminated active pulmonary and extrapulmonary TB from other febrile infections, giving ROC AUCs of 0.94 to 1. CONCLUSIONS. Elevated blood BATF2 transcript levels provide a sensitive biomarker that discriminates active TB from healthy individuals, and a potentially novel 4-gene transcriptional signature differentiates between active TB and other infectious diseases in individuals presenting with fever. FUNDING. MRC, Wellcome Trust, Rosetrees Trust, British Lung Foundation, NIHR.

  2. A Regulatory Network-Based Approach Dissects Late Maturation Processes Related to the Acquisition of Desiccation Tolerance and Longevity of Medicago truncatula Seeds1[C][W][OPEN

    PubMed Central

    Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K.; Buitink, Julia

    2013-01-01

    In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states. PMID:23929721

  3. Inhibitory effect on natural killer activity of microphthalmia transcription factor encoded by the mutant mi allele of mice.

    PubMed

    Ito, A; Kataoka, T R; Kim, D K; Koma , Y; Lee, Y M; Kitamura, Y

    2001-04-01

    The mouse mi locus encodes a basic-helix-loop-helix-leucine zipper-type transcription factor, microphthalmia transcription factor (MITF). Mice of mi/mi genotype express a mutant form of MITF (mi-MITF), whereas mice of tg/tg genotype have a transgene in the 5' flanking region of the mi gene and do not express MITF. Although the mi/mi mouse is deficient in natural killer (NK) activity, it was found that the tg/tg mouse was normal in this respect. To know the cause, spleen cells of both genotypes were compared. Although the proportion of spleen cells expressing an NK cell marker, NK1.1, was comparable in both mice, the proportion of large granular lymphocytes decreased only in mi/mi mice. The difference between mi/mi and tg/tg mice was reproducible in the culture supplemented with interleukin-2. Moreover, the perforin gene expression was reduced in mi/mi-cultured spleen cells. Wild-type (+) MITF transactivated, but mi-MITF suppressed, the perforin gene promoter through the NF-P motif, a strong cis-acting element. However, neither +-MITF nor mi-MITF bound the NF-P motif. Instead, 2 nuclear factors that bound the NF-P motif were retained in the cytoplasm of mi/mi-cultured spleen cells. In addition, overexpression of mi-MITF resulted in cytoplasmic retention of the 2 NF-P motif-binding factors in cytotoxic T lymphocytes. The presence of mi-MITF rather than the absence of +-MITF appeared to lead to poor transactivation of the NF-P motif by intercepting NF-P motif-binding factors. This inhibitory effect of mi-MITF may cause the deficient cytotoxicity of NK cells in mi/mi mice. (Blood. 2001;97:2075-2083)

  4. Applicability of Zipper Merge Versus Early Merge in Kentucky Work Zones

    DOT National Transportation Integrated Search

    2017-12-24

    In an effort to improve work zone safety and streamline traffic flows, a number of state transportation agencies (STAs) have experimented with the zipper merge. The zipper merge differs from a conventional, or early, merge in that vehicles do not mer...

  5. Zipper Connectors for Flexible Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Barnes, Kevin N.

    2003-01-01

    Devices that look and function much like conventional zippers on clothing have been proposed as connectors for flexible electronic circuits. Heretofore, flexible electronic circuits have commonly included rigid connectors like those of conventional rigid electronic circuits. The proposed zipper connectors would make it possible to connect and disconnect flexible circuits quickly and easily. Moreover, the flexibility of zipper connectors would make them more (relative to rigid connectors) compatible with flexible circuits, so that the advantages of flexible circuitry could be realized more fully. Like a conventional zipper, a zipper according to the proposal would include teeth anchored on flexible tapes, a slider with a loosely attached clasp, a box at one end of the rows of mating teeth, and stops at the opposite ends. The tapes would be made of a plastic or other dielectric material. On each of the two mating sides of the zipper, metal teeth would alternate with dielectric (plastic) teeth, there being two metal teeth for each plastic one. When the zipper was closed, each metal tooth from one side would be in mechanical and electrical contact with a designated metal tooth from the other side, and these mating metal teeth would be electrically insulated from the next pair of mating metal teeth by an intervening plastic tooth. The metal teeth would be soldered or crimped to copper tabs. Wires or other conductors connected to electronic circuits would be soldered or crimped to the ends of the tabs opposite the teeth.

  6. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

    PubMed Central

    Šmít, Daniel; Fouquet, Coralie; Pincet, Frédéric; Zapotocky, Martin; Trembleau, Alain

    2017-01-01

    While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation. DOI: http://dx.doi.org/10.7554/eLife.19907.001 PMID:28422009

  7. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells

    PubMed Central

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-01-01

    T–lymphokine-activated killer cell–originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects. PMID:26933922

  8. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials.

    PubMed

    Lin, Ann; Giuliano, Christopher J; Sayles, Nicole M; Sheltzer, Jason M

    2017-03-24

    The Maternal Embryonic Leucine Zipper Kinase (MELK) has been reported to be a genetic dependency in several cancer types. MELK RNAi and small-molecule inhibitors of MELK block the proliferation of various cancer cell lines, and MELK knockdown has been described as particularly effective against the highly-aggressive basal/triple-negative subtype of breast cancer. Based on these preclinical results, the MELK inhibitor OTS167 is currently being tested as a novel chemotherapy agent in several clinical trials. Here, we report that mutagenizing MELK with CRISPR/Cas9 has no effect on the fitness of basal breast cancer cell lines or cell lines from six other cancer types. Cells that harbor null mutations in MELK exhibit wild-type doubling times, cytokinesis, and anchorage-independent growth. Furthermore, MELK-knockout lines remain sensitive to OTS167, suggesting that this drug blocks cell division through an off-target mechanism. In total, our results undermine the rationale for a series of current clinical trials and provide an experimental approach for the use of CRISPR/Cas9 in preclinical target validation that can be broadly applied.

  9. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells.

    PubMed

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-04-05

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects.

  10. Mechanistic and structural basis of bioengineered bovine Cathelicidin-5 with optimized therapeutic activity

    NASA Astrophysics Data System (ADS)

    Sahoo, Bikash R.; Maruyama, Kenta; Edula, Jyotheeswara R.; Tougan, Takahiro; Lin, Yuxi; Lee, Young-Ho; Horii, Toshihiro; Fujiwara, Toshimichi

    2017-03-01

    Peptide-drug discovery using host-defense peptides becomes promising against antibiotic-resistant pathogens and cancer cells. Here, we customized the therapeutic activity of bovine cathelicidin-5 targeting to bacteria, protozoa, and tumor cells. The membrane dependent conformational adaptability and plasticity of cathelicidin-5 is revealed by biophysical analysis and atomistic simulations over 200 μs in thymocytes, leukemia, and E. coli cell-membranes. Our understanding of energy-dependent cathelicidin-5 intrusion in heterogeneous membranes aided in designing novel loss/gain-of-function analogues. In vitro findings identified leucine-zipper to phenylalanine substitution in cathelicidin-5 (1-18) significantly enhance the antimicrobial and anticancer activity with trivial hemolytic activity. Targeted mutants of cathelicidin-5 at kink region and N-terminal truncation revealed loss-of-function. We ensured the existence of a bimodal mechanism of peptide action (membranolytic and non-membranolytic) in vitro. The melanoma mouse model in vivo study further supports the in vitro findings. This is the first structural report on cathelicidin-5 and our findings revealed potent therapeutic application of designed cathelicidin-5 analogues.

  11. A new method for the construction of a mutant library with a predictable occurrence rate using Poisson distribution.

    PubMed

    Seong, Ki Moon; Park, Hweon; Kim, Seong Jung; Ha, Hyo Nam; Lee, Jae Yung; Kim, Joon

    2007-06-01

    A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.

  12. Improved growth response of antibody/receptor chimera attained by the engineering of transmembrane domain.

    PubMed

    Kawahara, Masahiro; Ogo, Yuko; Ueda, Hiroshi; Nagamune, Teruyuki

    2004-10-01

    Structure-based design of antibody/cytokine receptor chimeras has permitted a growth signal transduction in response to non-natural ligands such as fluorescein-conjugated BSA as mimicry of cytokine-cytokine receptor systems. However, while tight on/off regulation is observed in the natural cytokine receptor systems, many chimeras constructed to date showed residual growth-promoting activity in the absence of ligands. Here we tried to reduce the basal growth signal intensity from a chimera by engineering the transmembrane domain (TM) that is thought to be involved in the interchain interaction of natural cytokine receptors. When the retroviral vectors encoding the chimeras with either the wild-type erythropoietin receptor (EpoR) TM or the one bearing two mutations in the leucine zipper motif were transduced to non-strictly interleukin-6-dependent 7TD1 cells, a tight antigen-dependent on/off regulation was attained, also demonstrating the first antigen-mediated genetically modified cell amplification of non-strictly factor-dependent cells. The results clearly indicate that the TM mutation is an effective means to improve the growth response of the antibody/receptor chimera.

  13. A PROP1-binding factor, AES cloned by yeast two-hybrid assay represses PROP1-induced Pit-1 gene expression.

    PubMed

    Sugiyama, Yuka; Ikeshita, Nobuko; Shibahara, Hiromi; Yamamoto, Daisuke; Kawagishi, Mayuko; Iguchi, Genzo; Iida, Keiji; Takahashi, Yutaka; Kaji, Hidesuke; Chihara, Kazuo; Okimura, Yasuhiko

    2013-08-25

    PROP1 mutation causes combined pituitary hormone deficiency (CPHD). Several mutations are located in a transactivation domain (TAD) of Prop1, and the loss of TAD binding to cofactors is likely the cause of CPHD. PROP1 cofactors have not yet been identified. In the present study, we aimed to identify the PROP1-interacting proteins from the human brain cDNA library. Using a yeast two-hybrid assay, we cloned nine candidate proteins that may bind to PROP1. Of those nine candidates, amino-terminal enhancer of split (AES) was the most abundant, and we analyzed the AES function. AES dose-dependently decreased the PROP1-induced Pit-1 reporter gene expression. An immunoprecipitation assay revealed the relationship between AES and PROP1. In a mammalian two-hybrid assay, a leucine zipper-like motif of the AES Q domain was identified as a region that interacted with TAD. These results indicated that AES was a corepressor of PROP1. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Phosphorylation-Dependent Regulation of Ryanodine Receptors

    PubMed Central

    Marx, Steven O.; Reiken, Steven; Hisamatsu, Yuji; Gaburjakova, Marta; Gaburjakova, Jana; Yang, Yi-Ming; Rosemblit, Nora; Marks, Andrew R.

    2001-01-01

    Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function. PMID:11352932

  15. Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1.

    PubMed

    Tsai, Ming-Feng; Jiang, Dawei; Zhao, Linlin; Clapham, David; Miller, Christopher

    2014-01-01

    The leucine zipper, EF hand-containing transmembrane protein 1 (Letm1) gene encodes a mitochondrial inner membrane protein, whose depletion severely perturbs mitochondrial Ca(2+) and K(+) homeostasis. Here we expressed, purified, and reconstituted human Letm1 protein in liposomes. Using Ca(2+) fluorophore and (45)Ca(2+)-based assays, we demonstrate directly that Letm1 is a Ca(2+) transporter, with apparent affinities of cations in the sequence of Ca(2+) ≈ Mn(2+) > Gd(3+) ≈ La(3+) > Sr(2+) > Ba(2+), Mg(2+), K(+), Na(+). Kinetic analysis yields a Letm1 turnover rate of 2 Ca(2+)/s and a Km of ∼25 µM. Further experiments show that Letm1 mediates electroneutral 1 Ca(2+)/2 H(+) antiport. Letm1 is insensitive to ruthenium red, an inhibitor of the mitochondrial calcium uniporter, and CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger. Functional properties of Letm1 described here are remarkably similar to those of the H(+)-dependent Ca(2+) transport mechanism identified in intact mitochondria.

  16. Identification and application of self-binding zipper-like sequences in SARS-CoV spike protein.

    PubMed

    Zhang, Si Min; Liao, Ying; Neo, Tuan Ling; Lu, Yanning; Liu, Ding Xiang; Vahlne, Anders; Tam, James P

    2018-05-22

    Self-binding peptides containing zipper-like sequences, such as the Leu/Ile zipper sequence within the coiled coil regions of proteins and the cross-β spine steric zippers within the amyloid-like fibrils, could bind to the protein-of-origin through homophilic sequence-specific zipper motifs. These self-binding sequences represent opportunities for the development of biochemical tools and/or therapeutics. Here, we report on the identification of a putative self-binding β-zipper-forming peptide within the severe acute respiratory syndrome-associated coronavirus spike (S) protein and its application in viral detection. Peptide array scanning of overlapping peptides covering the entire length of S protein identified 34 putative self-binding peptides of six clusters, five of which contained octapeptide core consensus sequences. The Cluster I consensus octapeptide sequence GINITNFR was predicted by the Eisenberg's 3D profile method to have high amyloid-like fibrillation potential through steric β-zipper formation. Peptide C6 containing the Cluster I consensus sequence was shown to oligomerize and form amyloid-like fibrils. Taking advantage of this, C6 was further applied to detect the S protein expression in vitro by fluorescence staining. Meanwhile, the coiled-coil-forming Leu/Ile heptad repeat sequences within the S protein were under-represented during peptide array scanning, in agreement with that long peptide lengths were required to attain high helix-mediated interaction avidity. The data suggest that short β-zipper-like self-binding peptides within the S protein could be identified through combining the peptide scanning and predictive methods, and could be exploited as biochemical detection reagents for viral infection. Copyright © 2018. Published by Elsevier Ltd.

  17. Identification of Novel Single Nucleotide Polymorphisms Associated with Acute Respiratory Distress Syndrome by Exome-Seq

    PubMed Central

    Shortt, Katherine; Chaudhary, Suman; Grigoryev, Dmitry; Heruth, Daniel P.; Venkitachalam, Lakshmi; Zhang, Li Q.; Ye, Shui Q.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a lung condition characterized by impaired gas exchange with systemic release of inflammatory mediators, causing pulmonary inflammation, vascular leak and hypoxemia. Existing biomarkers have limited effectiveness as diagnostic and therapeutic targets. To identify disease-associating variants in ARDS patients, whole-exome sequencing was performed on 96 ARDS patients, detecting 1,382,399 SNPs. By comparing these exome data to those of the 1000 Genomes Project, we identified a number of single nucleotide polymorphisms (SNP) which are potentially associated with ARDS. 50,190SNPs were found in all case subgroups and controls, of which89 SNPs were associated with susceptibility. We validated three SNPs (rs78142040, rs9605146 and rs3848719) in additional ARDS patients to substantiate their associations with susceptibility, severity and outcome of ARDS. rs78142040 (C>T) occurs within a histone mark (intron 6) of the Arylsulfatase D gene. rs9605146 (G>A) causes a deleterious coding change (proline to leucine) in the XK, Kell blood group complex subunit-related family, member 3 gene. rs3848719 (G>A) is a synonymous SNP in the Zinc-Finger/Leucine-Zipper Co-Transducer NIF1 gene. rs78142040, rs9605146, and rs3848719 are associated significantly with susceptibility to ARDS. rs3848719 is associated with APACHE II score quartile. rs78142040 is associated with 60-day mortality in the overall ARDS patient population. Exome-seq is a powerful tool to identify potential new biomarkers for ARDS. We selectively validated three SNPs which have not been previously associated with ARDS and represent potential new genetic biomarkers for ARDS. Additional validation in larger patient populations and further exploration of underlying molecular mechanisms are warranted. PMID:25372662

  18. Herpes simplex virus 1 regulatory protein ICP22 interacts with a new cell cycle-regulated factor and accumulates in a cell cycle-dependent fashion in infected cells.

    PubMed

    Bruni, R; Roizman, B

    1998-11-01

    The herpes simplex virus 1 infected cell protein 22 (ICP22), the product of the alpha22 gene, is a nucleotidylylated and phosphorylated nuclear protein with properties of a transcriptional factor required for the expression of a subset of viral genes. Here, we report the following. (i) ICP22 interacts with a previously unknown cellular factor designated p78 in the yeast two-hybrid system. The p78 cDNA encodes a polypeptide with a distribution of leucines reminiscent of a leucine zipper. (ii) In uninfected and infected cells, antibody to p78 reacts with two major bands with an apparent Mr of 78,000 and two minor bands with apparent Mrs of 62, 000 and 55,000. (ii) p78 also interacts with ICP22 in vitro. (iii) In uninfected cells, p78 was dispersed largely in the nucleoplasm in HeLa cells and in the nucleoplasm and cytoplasm in HEp-2 cells. After infection, p78 formed large dense bodies which did not colocalize with the viral regulatory protein ICP0. (iv) Accumulation of p78 was cell cycle dependent, being highest very early in S phase. (v) The accumulation of ICP22 in synchronized cells was highest in early S phase, in contrast to the accumulation of another protein, ICP27, which was relatively independent of the cell cycle. (vi) In the course of the cell cycle, ICP22 was transiently modified in an aberrant fashion, and this modification coincided with expression of p78. The results suggest that ICP22 interacts with and may be stabilized by cell cycle-dependent proteins.

  19. HapZipper: sharing HapMap populations just got easier.

    PubMed

    Chanda, Pritam; Elhaik, Eran; Bader, Joel S

    2012-11-01

    The rapidly growing amount of genomic sequence data being generated and made publicly available necessitate the development of new data storage and archiving methods. The vast amount of data being shared and manipulated also create new challenges for network resources. Thus, developing advanced data compression techniques is becoming an integral part of data production and analysis. The HapMap project is one of the largest public resources of human single-nucleotide polymorphisms (SNPs), characterizing over 3 million SNPs genotyped in over 1000 individuals. The standard format and biological properties of HapMap data suggest that a dedicated genetic compression method can outperform generic compression tools. We propose a compression methodology for genetic data by introducing HapZipper, a lossless compression tool tailored to compress HapMap data beyond benchmarks defined by generic tools such as gzip, bzip2 and lzma. We demonstrate the usefulness of HapZipper by compressing HapMap 3 populations to <5% of their original sizes. HapZipper is freely downloadable from https://bitbucket.org/pchanda/hapzipper/downloads/HapZipper.tar.bz2.

  20. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf.

    PubMed

    Hornyak, T J; Hayes, D J; Chiu, L Y; Ziff, E B

    2001-03-01

    A transgenic mouse model was used to examine the roles of the murine transcription factors Pax-3 and Mitf in melanocyte development. Transgenic mice expressing beta-galactosidase from the dopachrome tautomerase (Dct) promoter were generated and found to express the transgene in developing melanoblasts as early as embryonic day (E) 9.5. These mice express the transgene in a pattern characteristic of endogenous Dct expression. Transgenic mice were intercrossed with two murine coat color mutants, Splotch (Sp), containing a mutation in the murine Pax3 gene, and Mitf(mi), with a mutation in the basic-helix-loop-helix-leucine zipper gene Mitf. Transgenic heterozygous mutant animals were crossed to generate transgenic embryos for analysis. Examination of beta-galactosidase-expressing melanoblasts in mutant embryos reveals that Mitf is required in vivo for survival of melanoblasts up to the migration staging area in neural crest development. Examination of Mitf(mi)/+ embryos shows that there are diminished numbers of melanoblasts in the heterozygous state early in melanocyte development, consistent with a gene dosage-dependent effect upon cell survival. However, quantification and analysis of melanoblast growth during the migratory phase suggests that melanoblasts then increase in number more rapidly in the heterozygous embryo. In contrast to Mitf(mi)/Mitf(mi) embryos, Sp/Sp embryos exhibit melanoblasts that have migrated to characteristic locations along the melanoblast migratory pathway, but are greatly reduced in number compared to control littermates. Together, these results support a model for melanocyte development whereby Pax3 is required to expand a pool of committed melanoblasts or restricted progenitor cells early in development, whereas Mitf facilitates survival of the melanoblast in a gene dosage-dependent manner within and immediately after emigration from the dorsal neural tube, and may also directly or indirectly affect the rate at which melanoblast number increases during dorsolateral pathway migration.

  1. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes.

    PubMed Central

    Schmidt, R J; Ketudat, M; Aukerman, M J; Hoschek, G

    1992-01-01

    opaque-2 (o2) is a regulatory locus in maize that plays an essential role in controlling the expression of genes encoding the 22-kD zein proteins. Through DNase I footprinting and DNA binding analyses, we have identified the binding site for the O2 protein (O2) in the promoter of 22-kD zein genes. The sequence in the 22-kD zein gene promoter that is recognized by O2 is similar to the target site recognized by other "basic/leucine zipper" (bZIP) proteins in that it contains an ACGT core that is necessary for DNA binding. The site is located in the -300 region relative to the translation start and lies about 20 bp downstream of the highly conserved zein gene sequence motif known as the "prolamin box." Employing gel mobility shift assays, we used O2 antibodies and nuclear extracts from an o2 null mutant to demonstrate that the O2 protein in maize endosperm nuclei recognizes the target site in the zein gene promoter. Mobility shift assays using nuclear proteins from an o2 null mutant indicated that other endosperm proteins in addition to O2 can bind the O2 target site and that O2 may be associated with one of these proteins. We also demonstrated that in yeast cells the O2 protein can activate expression of a lacZ gene containing a multimer of the O2 target sequence as part of its promoter, thus confirming its role as a transcriptional activator. A computer-assisted search indicated that the O2 target site is not present in the promoters of zein genes other than those of the 22-kD class. These data suggest a likely explanation at the molecular level for the differential effect of o2 mutations on expression of certain members of the zein gene family. PMID:1392590

  2. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)

    PubMed Central

    2014-01-01

    Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions. PMID:24725365

  3. Improved short-term drought response of transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase via calcium signal cascade.

    PubMed

    Liu, Xiaolong; Li, Xia; Dai, Chuanchao; Zhou, Jiayu; Yan, Ting; Zhang, Jinfei

    2017-11-01

    To understand the link between long-term drought tolerance and short-term drought responses in plants, transgenic rice (Oryza sativa L.) plants over-expressing the maize C 4- pepc gene encoding phosphoenolpyruvate carboxylase (PC) and wild-type (WT) rice plants were subjected to PEG 6000 treatments to simulate drought stress. Compared with WT, PC had the higher survival rate and net photosynthetic rate after 16days of drought treatment, and had higher relative water content in leaves after 2h of drought treatment as well, conferring drought tolerance. WT accumulated higher amounts of malondialdehyde, superoxide radicals, and H 2 O 2 than PC under the 2-h PEG 6000 treatment, indicating greater damages in WT. Results from pretreatments with a Ca 2+ chelator and/or antagonist showed that the regulation of the early drought response in PC was Ca 2+ -dependent. The NO and H 2 O 2 levels in PC lines were also up-regulated via Ca 2+ signals, indicating that Ca 2+ in PC lines also reacted upstream of NO and H 2 O 2 . 2-h drought treatment increased the transcripts of CPK9 and CPK4 in PC via positive up-regulation of Ca 2+ . The transcripts of NAC6 [NACs (NAM, ATAF1, ATAF2, and CUC2)] and bZIP60 (basic leucine zipper, bZIP) were up-regulated, but those of DREB2B (dehydration-responsive element-binding protein, DREB) were down-regulated, both via Ca 2+ signals in PC. PEPC activity, expressions of C 4 -pepc, and the antioxidant enzyme activities in PC lines were up-regulated via Ca 2+ . These results indicated that Ca 2+ signals in PC lines can up-regulate the NAC6 and bZIP60 and the downstream targets for early drought responses, conferring drought tolerance for the long term. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Growth Arrest by Trehalose-6-Phosphate: An Astonishing Case of Primary Metabolite Control over Growth by Way of the SnRK1 Signaling Pathway1[C][W][OA

    PubMed Central

    Delatte, Thierry L.; Sedijani, Prapti; Kondou, Youichi; Matsui, Minami; de Jong, Gerhardus J.; Somsen, Govert W.; Wiese-Klinkenberg, Anika; Primavesi, Lucia F.; Paul, Matthew J.; Schluepmann, Henriette

    2011-01-01

    The strong regulation of plant carbon allocation and growth by trehalose metabolism is important for our understanding of the mechanisms that determine growth and yield, with obvious applications in crop improvement. To gain further insight on the growth arrest by trehalose feeding, we first established that starch-deficient seedlings of the plastidic phosphoglucomutase1 mutant were similarly affected as the wild type on trehalose. Starch accumulation in the source cotyledons, therefore, did not cause starvation and consequent growth arrest in the growing zones. We then screened the FOX collection of Arabidopsis (Arabidopsis thaliana) expressing full-length cDNAs for seedling resistance to 100 mm trehalose. Three independent transgenic lines were identified with dominant segregation of the trehalose resistance trait that overexpress the bZIP11 (for basic region/leucine zipper motif) transcription factor. The resistance of these lines to trehalose could not be explained simply through enhanced trehalase activity or through inhibition of bZIP11 translation. Instead, trehalose-6-phosphate (T6P) accumulation was much increased in bZIP11-overexpressing lines, suggesting that these lines may be insensitive to the effects of T6P. T6P is known to inhibit the central stress-integrating kinase SnRK1 (KIN10) activity. We confirmed that this holds true in extracts from seedlings grown on trehalose, then showed that two independent transgenic lines overexpressing KIN10 were insensitive to trehalose. Moreover, the expression of marker genes known to be jointly controlled by SnRK1 activity and bZIP11 was consistent with low SnRK1 or bZIP11 activity in seedlings on trehalose. These results reveal an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway involving T6P, SnRK1, and bZIP11. PMID:21753116

  5. Genetic Ablation of CCAAT/Enhancer Binding Protein α in Epidermis Reveals Its Role in Suppression of Epithelial Tumorigenesis

    PubMed Central

    Loomis, Kari D.; Zhu, Songyun; Yoon, Kyungsil; Johnson, Peter F.; Smart, Robert C.

    2013-01-01

    CCAAT/enhancer binding protein y (C/EBPα) is a basic leucine zipper transcription factor that inhibits cell cycle progression and regulates differentiation in various cell types. C/EBPα is inactivated by mutation in acute myeloid leukemia (AML) and is considered a human tumor suppressor in AML. Although C/EBPα mutations have not been observed in malignancies other than AML, greatly diminished expression of C/EBPα occurs in numerous human epithelial cancers including lung, liver, endometrial, skin, and breast, suggesting a possible tumor suppressor function. However, direct evidence for C/EBPα as an epithelial tumor suppressor is lacking due to the absence of C/EBPα mutations in epithelial tumors and the lethal effect of C/EBPα deletion in mouse model systems. To examine the function of C/EBPα in epithelial tumor development, an epidermal-specific C/EBPα knockout mouse was generated. The epidermal-specific C/EBPα knockout mice survived and displayed no detectable abnormalities in epidermal keratinocyte proliferation, differentiation, or apoptosis, showing that C/EBPα is dispensable for normal epidermal homeostasis. In spite of this, the epidermal-specific C/EBPα knockout mice were highly susceptible to skin tumor development involving oncogenic Ras. These mice displayed decreased tumor latency and striking increases in tumor incidence, multiplicity, growth rate, and the rate of malignant progression. Mice hemizygous for C/EBPα displayed an intermediate-enhanced tumor phenotype. Our results suggest that decreased expression of C/EBPα contributes to deregulation of tumor cell proliferation. C/EBPα had been proposed to block cell cycle progression through inhibition of E2F activity. We observed that C/EBPα blocked Ras-induced and epidermal growth factor-induced E2F activity in keratinocytes and also blocked Ras-induced cell transformation and cell cycle progression. Our study shows that C/EBPα is dispensable for epidermal homeostasis and provides genetic evidence that C/EBPα is a suppressor of epithelial tumorigenesis. PMID:17638888

  6. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions.

    PubMed

    Seifert, Marc; Przekopowitz, Martina; Taudien, Sarah; Lollies, Anna; Ronge, Viola; Drees, Britta; Lindemann, Monika; Hillen, Uwe; Engler, Harald; Singer, Bernhard B; Küppers, Ralf

    2015-02-10

    The generation and functions of human peripheral blood (PB) IgM(+)IgD(+)CD27(+) B lymphocytes with somatically mutated IgV genes are controversially discussed. We determined their differential gene expression to naive B cells and to IgM-only and IgG(+) memory B cells. This analysis revealed a high similarity of IgM(+)(IgD(+))CD27(+) and IgG(+) memory B cells but also pointed at distinct functional capacities of both subsets. In vitro analyses revealed a tendency of activated IgM(+)IgD(+)CD27(+) B cells to migrate to B-cell follicles and undergo germinal center (GC) B-cell differentiation, whereas activated IgG(+) memory B cells preferentially showed a plasma cell (PC) fate. This observation was supported by reverse regulation of B-cell lymphoma 6 and PR domain containing 1 and differential BTB and CNC homology 1, basic leucine zipper transcription factor 2 expression. Moreover, IgM(+)IgD(+)CD27(+) B lymphocytes preferentially responded to neutrophil-derived cytokines. Costimulation with catecholamines, carcinoembryonic antigen cell adhesion molecule 8 (CEACAM8), and IFN-γ caused differentiation of IgM(+)IgD(+)CD27(+) B cells into PCs, induced class switching to IgG2, and was reproducible in cocultures with neutrophils. In conclusion, this study substantiates memory B-cell characteristics of human IgM(+)IgD(+)CD27(+) B cells in that they share typical memory B-cell transcription patterns with IgG(+) post-GC B cells and show a faster and more vigorous restimulation potential, a hallmark of immune memory. Moreover, this work reveals a functional plasticity of human IgM memory B cells by showing their propensity to undergo secondary GC reactions upon reactivation, but also by their special role in early inflammation via interaction with immunomodulatory neutrophils.

  7. Interaction between C/EBPbeta and Tax down-regulates human T-cell leukemia virus type I transcription.

    PubMed

    Hivin, P; Gaudray, G; Devaux, C; Mesnard, J-M

    2004-01-20

    The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein beta (C/EBPbeta) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPbeta has also been found to interact with Tax, we analyzed the effects of C/EBPbeta on viral Tax-dependent transcription. We show here that C/EBPbeta represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPbeta. We also analyzed the physical interactions between Tax and C/EBPbeta and found that the central region of C/EBPbeta, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPbeta would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPbeta was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPbeta may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response.

  8. PhOBF1, a petunia ocs element binding factor, plays an important role in antiviral RNA silencing.

    PubMed

    Sun, Daoyang; Li, Shaohua; Niu, Lixin; Reid, Michael S; Zhang, Yanlong; Jiang, Cai-Zhong

    2017-02-01

    Virus-induced gene silencing (VIGS) is a common reverse genetics strategy for characterizing the function of genes in plants. The detailed mechanism governing RNA silencing efficiency triggered by viruses is largely unclear. Here, we reveal that a petunia (Petunia hybrida) ocs element binding factor, PhOBF1, one of the basic leucine zipper (bZIP) transcription factors, was up-regulated by Tobacco rattle virus (TRV) infection. Simultaneous silencing of PhOBF1 and a reporter gene, phytoene desaturase (PDS) or chalcone synthase (CHS), by TRV-based VIGS led to a failure of the development of leaf photobleaching or the white-corollas phenotype. PhOBF1 silencing caused down-regulation of RNA silencing-related genes, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonautes (AGOs). After inoculation with the TRV-PhPDS, PhOBF1-RNAi lines exhibited a substantially impaired PDS silencing efficiency, whereas overexpression of PhOBF1 resulted in a recovery of the silencing phenotype (photobleaching) in systemic leaves. A compromised resistance to TRV and Tobacco mosaic virus was found in PhOBF1-RNAi lines, while PhOBF1-overexpressing lines displayed an enhanced resistance to their infections. Compared with wild-type plants, PhOBF1-silenced plants accumulated lower levels of free salicylic acid (SA), salicylic acid glucoside, and phenylalanine, contrarily to higher levels of those in plants overexpressing PhOBF1. Furthermore, transcripts of a number of genes associated with the shikimate and phenylpropanoid pathways were decreased or increased in PhOBF1-RNAi or PhOBF1-overexpressing lines, respectively. Taken together, the data suggest that PhOBF1 regulates TRV-induced RNA silencing efficiency through modulation of RDRs, DCLs, and AGOs mediated by the SA biosynthesis pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. NFIL3 is a negative regulator of hepatic gluconeogenesis.

    PubMed

    Kang, Geon; Han, Hye-Sook; Koo, Seung-Hoi

    2017-12-01

    Nuclear factor interleukin-3 regulated (NFIL3) has been known as an important transcriptional regulator of the development and the differentiation of immune cells. Although expression of NFIL3 is regulated by nutritional cues in the liver, the role of NFIL3 in the glucose metabolism has not been extensively studied. Thus, we wanted to explore the potential role of NFIL3 in the control of hepatic glucose metabolism. Mouse primary hepatocytes were cultured to perform western blot analysis, Q-PCR and chromatin immunoprecipitation assay. 293T cells were cultured to perform luciferase assay. Male C57BL/6 mice (fed a normal chow diet or high fat diet for 27weeks) as well as ob/ob mice were used for experiments with adenoviral delivery. We observed that NFIL3 reduced glucose production in hepatocytes by reducing expression of gluconeogenic gene transcription. The repression by NFIL3 required its basic leucine zipper DNA binding domain, and it competed with CREB onto the binding of cAMP response element in the gluconeogenic promoters. The protein levels of hepatic NFIL3 were decreased in the mouse models of genetic- and diet-induced obesity and insulin resistance, and ectopic expression of NFIL3 in the livers of insulin resistant mice ameliorated hyperglycemia and glucose intolerance, with concomitant reduction in expression of hepatic gluconeogenic genes. Finally, we witnessed that knockdown of NFIL3 in the livers of normal chow-fed mice promoted elevations in the glucose levels and expression of hepatic gluconeogenic genes. In this study, we showed that NFIL3 functions as an important regulator of glucose homeostasis in the liver by limiting CREB-mediated hepatic gluconeogenesis. Thus, enhancement of hepatic NFIL3 activity in insulin resistant state could be potentially beneficial in relieving glycemic symptoms in the metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. PML-Nuclear Bodies Regulate the Stability of the Fusion Protein Dendra2-Nrf2 in the Nucleus.

    PubMed

    Burroughs, Andrea Flores; Eluhu, Sylvia; Whalen, Diva; Goodwin, J Shawn; Sakwe, Amos M; Arinze, Ifeanyi J

    2018-05-22

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a basic leucine-zipper transcription factor essential for cellular responses to oxidative stress. Degradation of Nrf2 in the cytoplasm, mediated by Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase and the proteasome, is considered the primary pathway controlling the cellular abundance of Nrf2. Although the nucleus has been implicated in the degradation of Nrf2, little information is available on how this compartment participates in degrading Nrf2. Here, we fused the photoconvertible fluorescent protein Dendra2 to Nrf2 and capitalized on the irreversible change in color (green to red) that occurs when Dendra2 undergoes photoconversion to study degradation of Dendra2-Nrf2 in single live cells. Using this approach, we show that the half-life (t1/2) of Dendra2-Nrf2 in the whole cell, under homeostatic conditions, is 35 min. Inhibition of the proteasome with MG-132 or induction of oxidative stress with tert-butylhydroquinone (tBHQ) extended the half-life of Dendra2-Nrf2 by 6- and 28-fold, respectively. By inhibiting nuclear export using Leptomycin B, we provide direct evidence that degradation of Nrf2 also occurs in the nucleus and involves PML-NBs (Promyelocytic Leukemia-nuclear bodies). We further demonstrate that co-expression of Dendra2-Nrf2 and Crimson-PML-I lacking two PML-I sumoylation sites (K65R and K490R) changed the decay rate of Dendra2-Nrf2 in the nucleus and stabilized the nuclear derived Nrf2 levels in whole cells. Altogether, our findings provide direct evidence for degradation of Nrf2 in the nucleus and suggest that modification of Nrf2 in PML nuclear bodies contributes to its degradation in intact cells. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Genome-Wide Analysis of Soybean HD-Zip Gene Family and Expression Profiling under Salinity and Drought Treatments

    PubMed Central

    Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan

    2014-01-01

    Background Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. Methods and Findings An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. Conclusions This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development. PMID:24498296

  12. Caspase-9 holoenzyme is a specific and optimal pro-caspase-3 processing machine

    PubMed Central

    Yin, Qian; Park, Hyun Ho; Chung, Jee Y.; Lin, Su-Chang; Lo, Yu-Chih; da Graca, Li S.; Jiang, Xuejun; Wu, Hao

    2010-01-01

    Summary Caspase-9 activation is critical for intrinsic cell death. The activity of caspase-9 is increased dramatically upon association with the apoptosome and the apoptosome bound caspase-9 is the caspase-9 holoenzyme (C9Holo). In this study, we use quantitative enzymatic assays to fully characterize C9Holo and a leucine-zipper linked dimeric caspase-9 (LZ-C9). We surprisingly show that LZ-C9 is more active than C9Holo for the optimal caspase-9 peptide substrate LEHD-AFC, but is much less active than C9Holo for the physiological substrate pro-caspase-3. The measured Km values of C9Holo and LZ-C9 for LEHD-AFC are similar, demonstrating that dimerization is sufficient for catalytic activation of caspase-9. The lower activity of C9Holo against LEHD-AFC may be attributed to incomplete C9Holo assembly. However, the measured Km of C9Holo for pro-caspase-3 is much lower than that of LZ-C9. Therefore, in addition to dimerization, the apoptosome activates caspase-9 by enhancing its affinity for pro-caspase-3, which is important for pro-caspase-3 activation at the physiological concentration. PMID:16630893

  13. APPL1 Mediates Adiponectin-Induced LKB1 Cytosolic Localization Through the PP2A-PKCζ Signaling Pathway

    PubMed Central

    Deepa, Sathyaseelan S.; Zhou, Lijun; Ryu, Jiyoon; Wang, Changhua; Mao, Xuming; Li, Cai; Zhang, Ning; Musi, Nicolas; DeFronzo, Ralph A.; Liu, Feng

    2011-01-01

    We recently found that the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL)1 is essential for mediating adiponectin signal to induce liver kinase B (LKB)1 cytosloic translocation, an essential step for activation of AMP-activated protein kinase (AMPK) in cells. However, the underlying molecular mechanisms remain unknown. Here, we demonstrate that treating C2C12 myotubes with adiponectin promoted APPL1 interaction with protein phosphatase 2A (PP2A) and protein kinase Cζ (PKCζ), leading to the activation of PP2A and subsequent dephosphorylation and inactivation of PKCζ. The adiponectin-induced inactivation of PKCζ results in dephosphorylation of LKB1 at Ser307 and its subsequent translocation to the cytosol, where it stimulates AMPK activity. Interestingly, we found that metformin also induces LKB1 cytosolic translocation, but the stimulation is independent of APPL1 and the PP2A-PKCζ pathway. Together, our study uncovers a new mechanism underlying adiponectin-stimulated AMPK activation in muscle cells and shed light on potential targets for prevention and treatment of insulin resistance and its associated diseases. PMID:21835890

  14. Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS11 Confers Drought Tolerance in Transgenic Rice without Yield Penalty1[W][OA

    PubMed Central

    Yu, Linhui; Chen, Xi; Wang, Zhen; Wang, Shimei; Wang, Yuping; Zhu, Qisheng; Li, Shigui; Xiang, Chengbin

    2013-01-01

    Enhancing drought tolerance without yield decrease has been a great challenge in crop improvement. Here, we report the Arabidopsis (Arabidopsis thaliana) homodomain-leucine zipper transcription factor Enhanced Drought Tolerance/HOMEODOMAIN GLABROUS11 (EDT1/HDG11) was able to confer drought tolerance and increase grain yield in transgenic rice (Oryza sativa) plants. The improved drought tolerance was associated with a more extensive root system, reduced stomatal density, and higher water use efficiency. The transgenic rice plants also had higher levels of abscisic acid, proline, soluble sugar, and reactive oxygen species-scavenging enzyme activities during stress treatments. The increased grain yield of the transgenic rice was contributed by improved seed setting, larger panicle, and more tillers as well as increased photosynthetic capacity. Digital gene expression analysis indicated that AtEDT1/HDG11 had a significant influence on gene expression profile in rice, which was consistent with the observed phenotypes of transgenic rice plants. Our study shows that AtEDT1/HDG11 can improve both stress tolerance and grain yield in rice, demonstrating the efficacy of AtEDT1/HDG11 in crop improvement. PMID:23735506

  15. Growth Cone MKK7 mRNA Targeting Regulates MAP1b-Dependent Microtubule Bundling to Control Neurite Elongation

    PubMed Central

    Feltrin, Daniel; Fusco, Ludovico; Witte, Harald; Moretti, Francesca; Martin, Katrin; Letzelter, Michel; Fluri, Erika; Scheiffele, Peter; Pertz, Olivier

    2012-01-01

    Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation. PMID:23226105

  16. Nature of frequent deletions in CEBPA.

    PubMed

    Fuchs, Ota; Kostecka, Arnost; Provaznikova, Dana; Krasna, Blazena; Brezinova, Jana; Filkukova, Jitka; Kotlin, Roman; Kouba, Michal; Kobylka, Petr; Neuwirtova, Radana; Jonasova, Anna; Caniga, Miroslav; Schwarz, Jiri; Markova, Jana; Maaloufova, Jacqueline; Sponerova, Dana; Novakova, Ludmila; Cermak, Jaroslav

    2009-01-01

    C/EBPalpha (CCAAT/enhancer binding protein alpha) belongs to the family of leucine zipper transcription factors and is necessary for transcriptional control of granulocyte, adipocyte and hepatocyte differentiation, glucose metabolism and lung development. C/EBPalpha is encoded by an intronless gene. CEBPA mutations cause a myeloid differentiation block and were detected in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), multiple myeloma and non-Hodgkin's lymphoma (NHL) patients. In this study we identified in 41 individuals from 824 screened individuals (290 AML patients, 382 MDS patients, 56 NHL patients and 96 healthy individuals) a single class of 23 deletions in CEBPA gene which involved a direct repeat of at least 2 bp. These mutations are characterised by the loss of one of two same repeats at the ends of deleted sequence. Three most frequent repeats included in these deletions in CEBPA gene are CGCGAG (493-498_865-870), GCCAAGCAGC (508-517_907-916) and GG (486-487_885-886), all according to GenBank accession no. NM_004364.2. A mechanism for deletion formation between two repetitive sequences can be recombination events in the repair process. Double-stranded cut in DNA can initiate these recombination events of adjacent DNA sequences.

  17. Tripartite motif-containing 29 (TRIM29) is a novel marker for lymph node metastasis in gastric cancer.

    PubMed

    Kosaka, Yoshimasa; Inoue, Hiroshi; Ohmachi, Takahiro; Yokoe, Takeshi; Matsumoto, Toshifumi; Mimori, Koshi; Tanaka, Fumiaki; Watanabe, Masahiko; Mori, Masaki

    2007-09-01

    Tripartite motif-containing 29 (TRIM29) belongs to the TRIM protein family, which has unique structural characteristics, including multiple zinc finger motifs and a leucine zipper motif. TRIM29, also known as ataxia telangiectasia group D complementing gene, possesses radiosensitivity suppressor functions. Although TRIM29 has been reported to be underexpressed in prostate and breast cancer, its expression in gastrointestinal cancer has not been studied. By use of real-time reverse transcriptase-polymerase chain reaction, we analyzed TRIM29 mRNA expression status with respect to various clinicopathological parameters in 124 patients with gastric cancer. An immunohistochemical study was also conducted. The expression of TRIM29 was far higher in gastric cancer tumor tissue. Increased TRIM29 mRNA expression was markedly associated with such parameters as histological grade, large tumor size, extent of tumor invasion, and lymph node metastasis. In the TRIM29 high-expression group, it was an independent predictor for lymph node metastasis. Furthermore, patients with high TRIM29 mRNA expression showed a far poorer survival rate than those with low TRIM29 mRNA expression. TRIM29 expression may serve as a good marker of lymph node metastasis in gastric cancer.

  18. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  19. Dissection of Arabidopsis NCED9 promoter regulatory regions reveals a role for ABA synthesized in embryos in the regulation of GA-dependent seed germination.

    PubMed

    Seo, Mitsunori; Kanno, Yuri; Frey, Anne; North, Helen M; Marion-Poll, Annie

    2016-05-01

    Nine-cis-epoxycarotenoid dioxygenase (NCED) catalyzes the key step of abscisic acid (ABA) biosynthesis. There are five genes encoding NCED in Arabidopsis, which differentially regulate ABA biosynthesis in a spatiotemporal manner in response to endogenous and environmental stimuli. Previous studies have shown that NCED9 is expressed in testa and embryos during seed development. In the present study, we have identified promoter regions required for the expression of NCED9 in testa and embryos, respectively. Electrophoretic mobility shift assays (EMSA) and yeast one-hybrid (Y1H) assays showed that several homeodomain-leucine zipper (HD-Zip) proteins, namely ATHBs, bound to the sequence required for expression of NCED9 in testa, suggesting that they redundantly regulate NCED9 expression. By expressing the NCED9 gene under the control of a deleted NCED9 promoter in an nced9 mutant expression was limited to embryos. Transformants were complemented for the paclobutrazol resistant germination phenotype of the mutant, suggesting that the ABA synthesis mediated by NCED9 in embryos plays an important role in the regulation of gibberellin (GA)-dependent seed germination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer.

    PubMed

    Chung, Suyoun; Suzuki, Hanae; Miyamoto, Takashi; Takamatsu, Naofumi; Tatsuguchi, Ayako; Ueda, Koji; Kijima, Kyoko; Nakamura, Yusuke; Matsuo, Yo

    2012-12-01

    We previously reported MELK (maternal embryonic leucine zipper kinase) as a novel therapeutic target for breast cancer. MELK was also reported to be highly upregulated in multiple types of human cancer. It was implied to play indispensable roles in cancer cell survival and indicated its involvement in the maintenance of tumor-initiating cells. We conducted a high-throughput screening of a compound library followed by structure-activity relationship studies, and successfully obtained a highly potent MELK inhibitor OTSSP167 with IC₅₀ of 0.41 nM. OTSSP167 inhibited the phosphorylation of PSMA1 (proteasome subunit alpha type 1) and DBNL (drebrin-like), which we identified as novel MELK substrates and are important for stem-cell characteristics and invasiveness. The compound suppressed mammosphere formation of breast cancer cells and exhibited significant tumor growth suppression in xenograft studies using breast, lung, prostate, and pancreas cancer cell lines in mice by both intravenous and oral administration. This MELK inhibitor should be a promising compound possibly to suppress the growth of tumor-initiating cells and be applied for treatment of a wide range of human cancer.

  1. The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome II, and its polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, M.B.; Itoh, Kazuko; Fujisaku, Atsushi

    1993-01-01

    Autoantibodies to the ribonucleoprotein Ro/SSA occur in nearly half of the patients with systemic lupus erythematosus and are associated with lymphopenia, photosensitive dermatitis, and pulmonary and renal disease, which suggests that they have an immunopathologic role. The majority of Ro/SSA precipitin-positive patients produce serum antibodies that bind to the 60-kD and 52-kD Ro/SSA proteins. The authors previously isolated and determined the nucleotide sequence of a cDNA clone that encodes the 52-kD form of the human Ro/SSA protein. In the present study, they have determined the chromosomal location of the gene by in situ hybridization to the end of the shortmore » arm of chromosome 11. Hybridization of portions of the cDNA probe to restriction enzyme-digested DNA indicated the gene is composed of at least three exons. The exon encoding the putative zinc fingers of this protein was found to be distinct from that which encodes the leucine zipper. An RFLP of this gene was identified and is associated with the presence of lupus, primarily in black Americans. 60 refs., 3 figs., 3 tabs.« less

  2. Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter.

    PubMed

    Manavella, Pablo A; Dezar, Carlos A; Ariel, Federico D; Chan, Raquel L

    2008-10-01

    HAHB4 is a sunflower gene encoding a homeodomain-leucine zipper (HD-Zip) transcription factor. It was previously demonstrated that this gene is regulated at the transcriptional level by several abiotic factors and hormones. A previous analysis in the PLACE database revealed the presence of four putative ABREs. In this work these four elements and also one W-box and two root-specific expression elements were characterized as functional. Site-directed mutagenesis on the promoter, stable transformation of Arabidopis plants as well as transient transformation of sunflower leaves, were performed. The analysis of the transformants was carried out by histochemistry and real time RT-PCR. The results indicate that just one ABRE out of the four is responsible for ABA, NaCl and drought regulation. However, NaCl induction occurs also by an additional ABA-independent way involving another two overlapped ABREs. On the other hand, it was determined that the W-box located 5' upstream is responsive to ethylene and only two root-specific expression elements, among the several detected, are functional but redundant. Conservation of molecular mechanisms between sunflower and Arabidopsis is strongly supported by this experimental work.

  3. OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.).

    PubMed

    Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng

    2014-01-01

    Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.

  4. Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival

    PubMed Central

    Wang, Yubao; Begley, Michael; Li, Qing; Huang, Hai-Tsang; Lako, Ana; Eck, Michael J.; Gray, Nathanael S.; Mitchison, Timothy J.; Cantley, Lewis C.; Zhao, Jean J.

    2016-01-01

    The protein kinase maternal and embryonic leucine zipper kinase (MELK) is critical for mitotic progression of cancer cells; however, its mechanisms of action remain largely unknown. By combined approaches of immunoprecipitation/mass spectrometry and peptide library profiling, we identified the eukaryotic translation initiation factor 4B (eIF4B) as a MELK-interacting protein during mitosis and a bona fide substrate of MELK. MELK phosphorylates eIF4B at Ser406, a modification found to be most robust in the mitotic phase of the cell cycle. We further show that the MELK–eIF4B signaling axis regulates protein synthesis during mitosis. Specifically, synthesis of myeloid cell leukemia 1 (MCL1), an antiapoptotic protein known to play a role in cancer cell survival during cell division, depends on the function of MELK-elF4B. Inactivation of MELK or eIF4B results in reduced protein synthesis of MCL1, which, in turn, induces apoptotic cell death of cancer cells. Our study thus defines a MELK–eIF4B signaling axis that regulates protein synthesis during mitosis, and consequently influences cancer cell survival. PMID:27528663

  5. Ursodeoxycholic acid attenuates experimental autoimmune arthritis by targeting Th17 and inducing pAMPK and transcriptional corepressor SMILE.

    PubMed

    Lee, Eun-Jung; Kwon, Jeong-Eun; Park, Min-Jung; Jung, Kyung-Ah; Kim, Da-Som; Kim, Eun-Kyung; Lee, Seung Hoon; Choi, Jong Young; Park, Sung-Hwan; Cho, Mi-La

    2017-08-01

    Ursodeoxycholic acid (UDCA) has been known that UDCA has prominent effects on liver, however, there is little known about its influence on autoimmune disease. Here, the benefit of UDCA on arthritis rheumatoid (RA) in vivo was tested. RA mouse were induced using collagen II (CIA, collagen induced arthritis) where the disease severity or UDCA-related signaling pathway such as AMP-activated protein kinase (AMPK) or small heterodimer partner interacting leucine zipper protein (SMILE) was evaluated by westerblot and immunohistochemical staining. Gene expression was measured by realtime-polymerase chain reaction (PCR). The administration of UDCA effectively alleviated the arthritic score and incidence with decreased cartilage damage and lipid metabolic parameters. UDCA also suppressed the secretion of pro-inflammatory cytokines. It was confirmed that UDCA upregulated the expression of SMILE and transcriptional activity of PPARγ via controlling AMPK or p38 activity. In the present study, the therapeutic effect of UDCA inducing SMILE through AMPK activation in rheumatoid arthritis mouse as well as other autoimmune disease was proposed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials

    PubMed Central

    Lin, Ann; Giuliano, Christopher J; Sayles, Nicole M; Sheltzer, Jason M

    2017-01-01

    The Maternal Embryonic Leucine Zipper Kinase (MELK) has been reported to be a genetic dependency in several cancer types. MELK RNAi and small-molecule inhibitors of MELK block the proliferation of various cancer cell lines, and MELK knockdown has been described as particularly effective against the highly-aggressive basal/triple-negative subtype of breast cancer. Based on these preclinical results, the MELK inhibitor OTS167 is currently being tested as a novel chemotherapy agent in several clinical trials. Here, we report that mutagenizing MELK with CRISPR/Cas9 has no effect on the fitness of basal breast cancer cell lines or cell lines from six other cancer types. Cells that harbor null mutations in MELK exhibit wild-type doubling times, cytokinesis, and anchorage-independent growth. Furthermore, MELK-knockout lines remain sensitive to OTS167, suggesting that this drug blocks cell division through an off-target mechanism. In total, our results undermine the rationale for a series of current clinical trials and provide an experimental approach for the use of CRISPR/Cas9 in preclinical target validation that can be broadly applied. DOI: http://dx.doi.org/10.7554/eLife.24179.001 PMID:28337968

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yoosoo; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791; Kim, Se-Hyun

    Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca{sup 2+}-independent manner. • Myricetin inhibits Ca{sup 2+}-dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus andmore » proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca{sup 2+}-independent manner, while myricetin inhibits Ca{sup 2+}-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.« less

  8. Temporary abdominal closure with zipper-mesh device for management of intra-abdominal sepsis.

    PubMed

    Utiyama, Edivaldo Massazo; Pflug, Adriano Ribeiro Meyer; Damous, Sérgio Henrique Bastos; Rodrigues, Adilson Costa; Montero, Edna Frasson de Souza; Birolini, Claudio Augusto Vianna

    2015-01-01

    to present our experience with scheduled reoperations in 15 patients with intra-abdominal sepsis. we have applied a more effective technique consisting of temporary abdominal closure with a nylon mesh sheet containing a zipper. We performed reoperations in the operating room under general anesthesia at an average interval of 84 hours. The revision consisted of debridement of necrotic material and vigorous lavage of the involved peritoneal area. The mean age of patients was 38.7 years (range, 15 to 72 years); 11 patients were male, and four were female. forty percent of infections were due to necrotizing pancreatitis. Sixty percent were due to perforation of the intestinal viscus secondary to inflammation, vascular occlusion or trauma. We performed a total of 48 reoperations, an average of 3.2 surgeries per patient. The mesh-zipper device was left in place for an average of 13 days. An intestinal ostomy was present adjacent to the zipper in four patients and did not present a problem for patient management. Mortality was 26.6%. No fistulas resulted from this technique. When intra-abdominal disease was under control, the mesh-zipper device was removed, and the fascia was closed in all patients. In three patients, the wound was closed primarily, and in 12 it was allowed to close by secondary intent. Two patients developed hernia; one was incisional and one was in the drain incision. the planned reoperation for manual lavage and debridement of the abdomen through a nylon mesh-zipper combination was rapid, simple, and well-tolerated. It permitted effective management of severe septic peritonitis, easy wound care and primary closure of the abdominal wall.

  9. α-SNAP Interferes with the Zippering of the SNARE Protein Membrane Fusion Machinery

    PubMed Central

    Park, Yongsoo; Vennekate, Wensi; Yavuz, Halenur; Preobraschenski, Julia; Hernandez, Javier M.; Riedel, Dietmar; Walla, Peter Jomo; Jahn, Reinhard

    2014-01-01

    Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane. PMID:24778182

  10. Resistance of Type 5 chemical protective clothing against nanometric airborne particles: Behavior of seams and zipper.

    PubMed

    Vinches, Ludwig; Hallé, Stéphane

    2017-12-01

    In the field of dermal protection, the use of chemical protective clothing (CPC) (including coveralls) are considered as the last barrier against airborne engineered nanomaterials (ENM). In the majority of cases, Type 5 CPC, used against solid particles (ISO 13982-1), perform well against ENM. But in a recent study, a penetration level (PL) of up to 8.5% of polydisperse sodium chloride airborne nanoparticles has been measured. Moreover, in all the previous studies, tests were performed on a sample of protective clothing material without seams or zippers. Thus, the potential for permeation through a zipper or seams has not yet been determined, even though these areas would be privileged entry points for airborne ENM. This work was designed to evaluate the PL of airborne ENM through coveralls and specifically the PL through the seams on different parts of the CPC and the zipper. Eight current models of CPC (Type 5) were selected. The samples were taken from places with and without seams and with a zipper. In some cases, a cover strip can be added to the zipper to enhance its sealing. Polydisperse nanoparticles were generated by nebulization of a sodium chloride solution. A penetration cell was developed to expose the sample to airborne nanometric particles. The NaCl particle concentration in number was measured with an ultrafine particle counter and the PL was defined as the downstream concentration divided by the upstream concentration. The results obtained show that the PL increased significantly in the presence of seams and could reach up to 90% depending on the seam's design. Moreover, this study classifies the different types of seams by their resistance against airborne ENM. As for the penetration of airborne NaCl particles through the zipper, the PL was greatly attenuated by the presence of a cover strip, but only for certain models of coveralls. Finally, the values of the pressure drop were directly linked to the type of seam. All of these conclusions provide recommendations to both manufacturers and users.

  11. The Single Needle Lockstitch Machine. [Setting Zippers.] Module 8.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on setting zippers, one in a series on the single needle lockstitch sewing machine for student self-study, contains five sections. Each section includes the following parts: an introduction, directions, an objective, learning activities, student information, student self-check, check-out activities, and an instructor's final checklist.…

  12. MELK expression correlates with tumor mitotic activity but is not required for cancer growth

    PubMed Central

    Smith, Joan C; Palladino, Ann C

    2018-01-01

    The Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. Previously, we established that triple-negative breast cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK proliferate at wild-type levels in vitro (Lin et al., 2017). Here, we generate several additional knockout clones of MELK and demonstrate that across cancer types, cells lacking MELK exhibit wild-type growth in vitro, under environmental stress, in the presence of cytotoxic chemotherapies, and in vivo. By combining our MELK-knockout clones with a recently described, highly specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies. PMID:29417930

  13. Why fibrous proteins are romantic.

    PubMed

    Cohen, C

    1998-01-01

    Here I give a personal account of the great history of fibrous protein structure. I describe how Astbury first recognized the essential simplicity of fibrous proteins and their paradigmatic role in protein structure. The poor diffraction patterns yielded by these proteins were then deciphered by Pauling, Crick, Ramachandran and others (in part by model building) to reveal alpha-helical coiled coils, beta-sheets, and the collagen triple helical coiled coil-all characterized by different local sequence periodicities. Longer-range sequence periodicities (or "magic numbers") present in diverse fibrous proteins, such as collagen, tropomyosin, paramyosin, myosin, and were then shown to account for the characteristic axial repeats observed in filaments of these proteins. More recently, analysis of fibrous protein structure has been extended in many cases to atomic resolution, and some systems, such as "leucine zippers," are providing a deeper understanding of protein design than similar studies of globular proteins. In the last sections, I provide some dramatic examples of fibrous protein dynamics. One example is the so-called "spring-loaded" mechanism for viral fusion by the hemagglutinin protein of influenza. Another is the possible conformational changes in prion proteins, implicated in "mad cow disease," which may be related to similar transitions in a variety of globular and fibrous proteins. Copyright 1998 Academic Press.

  14. Cloning and characterization of murine fanconi anemia group A gene: Fanca protein is expressed in lymphoid tissues, testis, and ovary.

    PubMed

    van de Vrugt, H J; Cheng, N C; de Vries, Y; Rooimans, M A; de Groot, J; Scheper, R J; Zhi, Y; Hoatlin, M E; Joenje, H; Arwert, F

    2000-04-01

    Fanconi anemia (FA) is an autosomal recessive disorder in humans characterized by bone marrow failure, cancer predisposition, and cellular hypersensitivity to cross-linking agents such as mitomycin C and diepoxybutane. FA genes display a caretaker function essential for maintenance of genomic integrity. We have cloned the murine homolog of FANCA, the gene mutated in the major FA complementation group (FA-A). The full-length mouse Fanca cDNA consists of 4503 bp and encodes a protein with a predicted molecular weight of 161 kDa. The deduced Fanca mouse protein shares 81% amino acid sequence similarity and 66% identity with the human protein. The nuclear localization signal and partial leucine zipper consensus motifs found in the human FANCA protein were also present in the murine homolog. In spite of the species difference, the murine Fanca cDNA was capable of correcting the cross-linker sensitive phenotype of human FA-A cells, suggesting functional conservation. Based on Northern as well as Western blots, Fanca was mainly expressed in lymphoid tissues, testis, and ovary. This expression pattern correlates with some of the clinical symptoms observed in FA patients. The availability of the murine Fanca cDNA now allows the gene to be studied in experimental mouse models.

  15. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines

    PubMed Central

    Calcagno, Danielle Queiroz; Takeno, Sylvia Santomi; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Chen, Elizabeth Suchi; Araújo, Taíssa Maíra Thomaz; Lima, Eleonidas Moura; Melaragno, Maria Isabel; Demachki, Samia; Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez; Smith, Marília Cardoso

    2016-01-01

    AIM To identify common copy number alterations on gastric cancer cell lines. METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis. RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively. CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer. PMID:27920471

  16. Molecular characterization of SMILE as a novel corepressor of nuclear receptors.

    PubMed

    Xie, Yuan-Bin; Nedumaran, Balachandar; Choi, Hueng-Sik

    2009-07-01

    SMILE (small heterodimer partner interacting leucine zipper protein) has been identified as a coregulator in ER signaling. In this study, we have examined the effects of SMILE on other NRs (nuclear receptors). SMILE inhibits GR, CAR and HNF4 alpha-mediated transactivation. Knockdown of SMILE gene expression increases the transactivation of the NRs. SMILE interacts with GR, CAR and HNF4 alpha in vitro and in vivo. SMILE and these NRs colocalize in the nucleus. SMILE binds to the ligand-binding domain or AF2 domain of the NRs. Competitions between SMILE and the coactivators GRIP1 or PGC-1 alpha have been demonstrated in vitro and in vivo. Furthermore, an intrinsic repressive activity of SMILE is observed in Gal4-fusion system, and the intrinsic repressive domain is mapped to the C-terminus of SMILE, spanning residues 203-354. Moreover, SMILE interacts with specific HDACs (histone deacetylases) and SMILE-mediated repression is released by HDAC inhibitor trichostatin A, in a NR-specific manner. Finally, ChIP (chromatin immunoprecipitation) assays reveal that SMILE associates with the NRs on the target gene promoters. Adenoviral overexpression of SMILE represses GR-, CAR- and HNF4 alpha-mediated target gene expression. Overall, these results suggest that SMILE functions as a novel corepressor of NRs via competition with coactivators and the recruitment of HDACs.

  17. Genome-wide survey of DNA-binding proteins in Arabidopsis thaliana: analysis of distribution and functions.

    PubMed

    Malhotra, Sony; Sowdhamini, Ramanathan

    2013-08-01

    The interaction of proteins with their respective DNA targets is known to control many high-fidelity cellular processes. Performing a comprehensive survey of the sequenced genomes for DNA-binding proteins (DBPs) will help in understanding their distribution and the associated functions in a particular genome. Availability of fully sequenced genome of Arabidopsis thaliana enables the review of distribution of DBPs in this model plant genome. We used profiles of both structure and sequence-based DNA-binding families, derived from PDB and PFam databases, to perform the survey. This resulted in 4471 proteins, identified as DNA-binding in Arabidopsis genome, which are distributed across 300 different PFam families. Apart from several plant-specific DNA-binding families, certain RING fingers and leucine zippers also had high representation. Our search protocol helped to assign DNA-binding property to several proteins that were previously marked as unknown, putative or hypothetical in function. The distribution of Arabidopsis genes having a role in plant DNA repair were particularly studied and noted for their functional mapping. The functions observed to be overrepresented in the plant genome harbour DNA-3-methyladenine glycosylase activity, alkylbase DNA N-glycosylase activity and DNA-(apurinic or apyrimidinic site) lyase activity, suggesting their role in specialized functions such as gene regulation and DNA repair.

  18. Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166).

    PubMed

    Ko, Jae-Heung; Prassinos, Constantinos; Han, Kyung-Hwan

    2006-01-01

    In contrast to our knowledge of the shoot apical meristem, our understanding of cambium meristem differentiation and maintenance is limited. Class III homeodomain leucine-zipper (HD-Zip) proteins have been shown to play a regulatory role in vascular differentiation. The hybrid aspen (Populus tremulaxPopulus alba) class III HD-Zip transcription factor (PtaHB1) and microRNA 166 (Pta-miR166) family were cloned from hybrid aspen using a combination of in silico and polymerase chain reaction methods. Expression analyses of PtaHB1 and Pta-miR166 were performed by Northern blot analysis. The expression of PtaHB1 was closely associated with wood formation and regulated both developmentally and seasonally, with the highest expression during the active growing season. Also, its expression was inversely correlated with the level of Pta-miR166. Pta-miR166-directed cleavage of PtaHB1 in vivo was confirmed using modified 5'-rapid amplification of cDNA ends (RACE). The expression of Pta-miR166 was much higher in the winter than in the growing seasons, suggesting seasonal and developmental regulation of microRNA in this perennial plant species.

  19. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis)

    PubMed Central

    Yang, Shihai; Zhou, Yanli; Dong, Chao; Ren, Jian; Sun, Xudong; Yang, Yongping

    2015-01-01

    Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd) is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs) accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO) and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3), Mitogen-activated protein kinase 6 (MPK6) and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT) may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress. PMID:26349064

  20. Sequence motifs and prokaryotic expression of the reptilian paramyxovirus fusion protein

    USGS Publications Warehouse

    Franke, J.; Batts, W.N.; Ahne, W.; Kurath, G.; Winton, J.R.

    2006-01-01

    Fourteen reptilian paramyxovirus isolates were chosen to represent the known extent of genetic diversity among this novel group of viruses. Selected regions of the fusion (F) gene were sequenced, analyzed and compared. The F gene of all isolates contained conserved motifs homologous to those described for other members of the family Paramyxoviridae including: signal peptide, transmembrane domain, furin cleavage site, fusion peptide, N-linked glycosylation sites, and two heptad repeats, the second of which (HRB-LZ) had the characteristics of a leucine zipper. Selected regions of the fusion gene of isolate Gono-GER85 were inserted into a prokaryotic expression system to generate three recombinant protein fragments of various sizes. The longest recombinant protein was cleaved by furin into two fragments of predicted length. Western blot analysis with virus-neutralizing rabbit-antiserum against this isolate demonstrated that only the longest construct reacted with the antiserum. This construct was unique in containing 30 additional C-terminal amino acids that included most of the HRB-LZ. These results indicate that the F genes of reptilian paramyxoviruses contain highly conserved motifs typical of other members of the family and suggest that the HRB-LZ domain of the reptilian paramyxovirus F protein contains a linear antigenic epitope. ?? Springer-Verlag 2005.

  1. Trichomonas vaginalis Repair of Iron Centres Proteins: The Different Role of Two Paralogs.

    PubMed

    Nobre, Lígia S; Meloni, Dionigia; Teixeira, Miguel; Viscogliosi, Eric; Saraiva, Lígia M

    2016-06-01

    Trichomonas vaginalis, the causative parasite of one of the most prevalent sexually transmitted diseases is, so far, the only protozoan encoding two putative Repair of Iron Centres (RIC) proteins. Homologs of these proteins have been shown to protect bacteria from the chemical stress imposed by mammalian immunity. In this work, the biochemical and functional characterisation of the T. vaginalis RICs revealed that the two proteins have different properties. Expression of ric1 is induced by nitrosative stress but not by hydrogen peroxide, while ric2 transcription remained unaltered under similar conditions. T. vaginalis RIC1 contains a di-iron centre, but RIC2 apparently does not. Only RIC1 resembles bacterial RICs on spectroscopic profiling and repairing ability of oxidatively-damaged iron-sulfur clusters. Unexpectedly, RIC2 was found to bind DNA plasmid and T. vaginalis genomic DNA, a function proposed to be related with its leucine zipper domain. The two proteins also differ in their cellular localization: RIC1 is expressed in the cytoplasm only, and RIC2 occurs both in the nucleus and cytoplasm. Therefore, we concluded that the two RIC paralogs have different roles in T. vaginalis, with RIC2 showing an unprecedented DNA binding ability when compared with all other until now studied RICs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Organization of the human gene for nucleobindin (NUC) and its chromosomal assignment to 19q13.2-q13.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki

    1996-06-01

    Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less

  3. A Ramie bZIP Transcription Factor BnbZIP2 Is Involved in Drought, Salt, and Heavy Metal Stress Response.

    PubMed

    Huang, Chengjian; Zhou, Jinghua; Jie, Yucheng; Xing, Hucheng; Zhong, Yingli; Yu, Weilin; She, Wei; Ma, Yushen; Liu, Zehang; Zhang, Ying

    2016-12-01

    bZIP transcription factors play key roles in plant growth, development, and stress signaling. A bZIP gene BnbZIP2 (GenBank accession number: KP642148) was cloned from ramie. BnbZIP2 has a 1416 base pair open reading frame, encoding a 471 amino acid protein containing a characteristic bZIP domain and a leucine zipper. BnbZIP2 shares high sequence similarity with bZIP factors from other plants. The BnbZIP2 protein is localized to both nuclei and cytoplasm. Transcripts of BnbZIP2 were found in various tissues in ramie, with significantly higher levels in female and male flowers. Its expression was induced by drought, high salinity, and abscisic acid treatments. Analysis of the cis-elements in promoters of BnbZIP2 identified cis-acting elements involved in growth, developmental processes, and a variety of stress responses. Transgenic Arabidopsis plants' overexpression of BnbZIP2 exhibited more sensitivity to drought and heavy metal Cd stress during seed germination, whereas more tolerance to high-salinity stress than the wild type during both seed germination and plant development. Thus, BnbZIP2 may act as a positive regulator in plants' response to high-salinity stress and be an important candidate gene for molecular breeding of salt-tolerant plants.

  4. Building blocks for protein interaction devices

    PubMed Central

    Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them. PMID:20215443

  5. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

    PubMed

    Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew

    2011-03-01

    The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.

  6. The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4.

    PubMed

    Isabet, Tatiana; Montagnac, Guillaume; Regazzoni, Karine; Raynal, Bertrand; El Khadali, Fatima; England, Patrick; Franco, Michel; Chavrier, Philippe; Houdusse, Anne; Ménétrey, Julie

    2009-09-16

    The JNK-interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP-binding protein ARF6. The interaction of ARF6-GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin-1 and dynactin. Here, we report the crystal structure of ARF6-GTP bound to the JIP4-LZII at 1.9 A resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6-(JIP4)(2)-ARF6 configuration. Comparison of the ARF6-JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site-directed mutagenesis and surface plasmon resonance, we further show that non-conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure-derived model of the association of the ARF6-JIP3/JIP4 complex with membranes shows that the JIP4-LZII coiled-coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6-mediated motor switch regulatory function.

  7. Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses.

    PubMed

    Dai, Mingqiu; Hu, Yongfeng; Ma, Qian; Zhao, Yu; Zhou, Dao-Xiu

    2008-02-01

    The homeodomain-leucine zipper (HD-Zip) putative transcription factor genes are divided into 4 families. In this work, we studied the function of a rice HD-Zip I gene, H OME O BO X4 (Oshox4). Oshox4 transcripts were detected in leaf and floral organ primordia but excluded from the shoot apical meristem and the protein was nuclear localized. Over-expression of Oshox4 in rice induced a semi-dwarf phenotype that could not be complemented by applied GA3. The over-expression plants accumulated elevated levels of bioactive GA, while the GA catabolic gene GA2ox3 was upregulated in the transgenic plants. In addition, over-expression of Oshox4 blocked GA-dependent alpha-amylase production. However, down-regulation of Oshox4 in RNAi transgenic plants induced no phenotypic alteration. Interestingly, the expression of YAB1 that is involved in the negative feedback regulation of the GA biosynthesis was upregulated in the Oshox4 over-expressing plants. One-hybrid assays showed that Oshox4 could interact with YAB1 promoter in yeast. In addition, Oshox4 expression was upregulated by GA. These data together suggest that Oshox4 may be involved in the negative regulation of GA signalling and may play a role to fine tune GA responses in rice.

  8. A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy.

    PubMed

    Chen, Robert; Rishi, Harneet S; Potapov, Vladimir; Yamada, Masaki R; Yeh, Vincent J; Chow, Thomas; Cheung, Celia L; Jones, Austin T; Johnson, Terry D; Keating, Amy E; DeLoache, William C; Dueber, John E

    2015-11-20

    Dramatic progress has been made in the design and build phases of the design-build-test cycle for engineering cells. However, the test phase usually limits throughput, as many outputs of interest are not amenable to rapid analytical measurements. For example, phenotypes such as motility, morphology, and subcellular localization can be readily measured by microscopy, but analysis of these phenotypes is notoriously slow. To increase throughput, we developed microscopy-readable barcodes (MiCodes) composed of fluorescent proteins targeted to discernible organelles. In this system, a unique barcode can be genetically linked to each library member, making possible the parallel analysis of phenotypes of interest via microscopy. As a first demonstration, we MiCoded a set of synthetic coiled-coil leucine zipper proteins to allow an 8 × 8 matrix to be tested for specific interactions in micrographs consisting of mixed populations of cells. A novel microscopy-readable two-hybrid fluorescence localization assay for probing candidate interactions in the cytosol was also developed using a bait protein targeted to the peroxisome and a prey protein tagged with a fluorescent protein. This work introduces a generalizable, scalable platform for making microscopy amenable to higher-throughput library screening experiments, thereby coupling the power of imaging with the utility of combinatorial search paradigms.

  9. Calculations of the free energy of interaction of the c-Fos-c-Jun coiled coil: effects of the solvation model and the inclusion of polarization effects.

    PubMed

    Zuo, Zhili; Gandhi, Neha S; Mancera, Ricardo L

    2010-12-27

    The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.

  10. α-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery.

    PubMed

    Park, Yongsoo; Vennekate, Wensi; Yavuz, Halenur; Preobraschenski, Julia; Hernandez, Javier M; Riedel, Dietmar; Walla, Peter Jomo; Jahn, Reinhard

    2014-06-06

    Neuronal exocytosis is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Before fusion, SNARE proteins form complexes bridging the membrane followed by assembly toward the C-terminal membrane anchors, thus initiating membrane fusion. After fusion, the SNARE complex is disassembled by the AAA-ATPase N-ethylmaleimide-sensitive factor that requires the cofactor α-SNAP to first bind to the assembled SNARE complex. Using chromaffin granules and liposomes we now show that α-SNAP on its own interferes with the zippering of membrane-anchored SNARE complexes midway through the zippering reaction, arresting SNAREs in a partially assembled trans-complex and preventing fusion. Intriguingly, the interference does not result in an inhibitory effect on synaptic vesicles, suggesting that membrane properties also influence the final outcome of α-SNAP interference with SNARE zippering. We suggest that binding of α-SNAP to the SNARE complex affects the ability of the SNARE complex to harness energy or transmit force to the membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex

    PubMed Central

    Zhang, Xinming; Rebane, Aleksander A.; Ma, Lu; Li, Feng; Jiao, Junyi; Qu, Hong; Pincet, Frederic; Rothman, James E.

    2016-01-01

    Synaptic soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) couple their stepwise folding to fusion of synaptic vesicles with plasma membranes. In this process, three SNAREs assemble into a stable four-helix bundle. Arguably, the first and rate-limiting step of SNARE assembly is the formation of an activated binary target (t)-SNARE complex on the target plasma membrane, which then zippers with the vesicle (v)-SNARE on the vesicle to drive membrane fusion. However, the t-SNARE complex readily misfolds, and its structure, stability, and dynamics are elusive. Using single-molecule force spectroscopy, we modeled the synaptic t-SNARE complex as a parallel three-helix bundle with a small frayed C terminus. The helical bundle sequentially folded in an N-terminal domain (NTD) and a C-terminal domain (CTD) separated by a central ionic layer, with total unfolding energy of ∼17 kBT, where kB is the Boltzmann constant and T is 300 K. Peptide binding to the CTD activated the t-SNARE complex to initiate NTD zippering with the v-SNARE, a mechanism likely shared by the mammalian uncoordinated-18-1 protein (Munc18-1). The NTD zippering then dramatically stabilized the CTD, facilitating further SNARE zippering. The subtle bidirectional t-SNARE conformational switch was mediated by the ionic layer. Thus, the t-SNARE complex acted as a switch to enable fast and controlled SNARE zippering required for synaptic vesicle fusion and neurotransmission. PMID:27911771

  12. Two Disease-Causing SNAP-25B Mutations Selectively Impair SNARE C-terminal Assembly.

    PubMed

    Rebane, Aleksander A; Wang, Bigeng; Ma, Lu; Qu, Hong; Coleman, Jeff; Krishnakumar, Shyam; Rothman, James E; Zhang, Yongli

    2018-02-16

    Synaptic exocytosis relies on assembly of three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins into a parallel four-helix bundle to drive membrane fusion. SNARE assembly occurs by stepwise zippering of the vesicle-associated SNARE (v-SNARE) onto a binary SNARE complex on the target plasma membrane (t-SNARE). Zippering begins with slow N-terminal association followed by rapid C-terminal zippering, which serves as a power stroke to drive membrane fusion. SNARE mutations have been associated with numerous diseases, especially neurological disorders. It remains unclear how these mutations affect SNARE zippering, partly due to difficulties to quantify the energetics and kinetics of SNARE assembly. Here, we used single-molecule optical tweezers to measure the assembly energy and kinetics of SNARE complexes containing single mutations I67T/N in neuronal SNARE synaptosomal-associated protein of 25kDa (SNAP-25B), which disrupt neurotransmitter release and have been implicated in neurological disorders. We found that both mutations significantly reduced the energy of C-terminal zippering by ~10 k B T, but did not affect N-terminal assembly. In addition, we observed that both mutations lead to unfolding of the C-terminal region in the t-SNARE complex. Our findings suggest that both SNAP-25B mutations impair synaptic exocytosis by destabilizing SNARE assembly, rather than stabilizing SNARE assembly as previously proposed. Therefore, our measurements provide insights into the molecular mechanism of the disease caused by SNARE mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis.

    PubMed

    Heier, Eva-Carina; Meier, Anna; Julich-Haertel, Henrike; Djudjaj, Sonja; Rau, Monica; Tschernig, Thomas; Geier, Andreas; Boor, Peter; Lammert, Frank; Lukacs-Kornek, Veronika

    2017-06-01

    Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can progress to non-alcoholic steatohepatitis (NASH). The identification of molecular and cellular factors that determine the progression of NASH and lead to irreversible hepatocellular damage are crucial. Dendritic cells (DCs) represent a heterogeneous cell population among which CD103 + DCs play a significant role in immunity and tolerance. We aimed to clarify the role of this DC subset in the pathomechanism of NASH. Steatosis progression towards steatohepatitis was analysed using multicolor FACS analyses, cytokine and qPCR array in high sucrose diet (HSD) and methionine and choline deficient diet (MCD) fed wild-type and basic leucine zipper transcription factor, ATF-Like-3 (Batf3) deficient animals, which lack CD103 + DCs (classical type-1 DC, cDC1s). Metabolic challenge of Batf3 -/- animals resulted in the progression of steatosis towards steatohepatitis, manifesting by an increased influx of inflammatory cells into the liver and elevated inflammatory cytokine production of myeloid cells upon innate stimuli. However, the lack of cDC1s did not affect cellular apoptosis and fibrosis progression but altered genes involved in lipid metabolism. The adoptive transfer of CD103 + cDC1s to Batf3 deficient animals reversed these observed changes and more importantly could attenuate cellular damage and inflammation in established murine steatohepatitis. Here, we have identified the murine CD103 + cDC1s as a protective DC subtype that influences the pro-anti-inflammatory balance and protects the liver from metabolic damage. As guardians of liver integrity, they play a key role in the inflammatory process during the development of steatohepatitis in mice. Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can lead to non-alcoholic steatohepatitis (NASH). The current study demonstrated that a specific murine dendritic cell subtype possesses a potent regulatory role to influence the inflammatory milieu of the liver in this process. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Proteomic Response of Hordeum vulgare cv. Tadmor and Hordeum marinum to Salinity Stress: Similarities and Differences between a Glycophyte and a Halophyte

    PubMed Central

    Maršálová, Lucie; Vítámvás, Pavel; Hynek, Radovan; Prášil, Ilja T.; Kosová, Klára

    2016-01-01

    Response to a high salinity treatment of 300 mM NaCl was studied in a cultivated barley Hordeum vulgare Syrian cultivar Tadmor and in a halophytic wild barley H. marinum. Differential salinity tolerance of H. marinum and H. vulgare is underlied by qualitative and quantitative differences in proteins involved in a variety of biological processes. The major aim was to identify proteins underlying differential salinity tolerance between the two barley species. Analyses of plant water content, osmotic potential and accumulation of proline and dehydrin proteins under high salinity revealed a relatively higher water saturation deficit in H. marinum than in H. vulgare while H. vulgare had lower osmotic potential corresponding with high levels of proline and dehydrins. Analysis of proteins soluble upon boiling isolated from control and salt-treated crown tissues revealed similarities as well as differences between H. marinum and H. vulgare. The similar salinity responses of both barley species lie in enhanced levels of stress-protective proteins such as defense-related proteins from late-embryogenesis abundant family, several chaperones from heat shock protein family, and others such as GrpE. However, there have also been found significant differences between H. marinum and H. vulgare salinity response indicating an active stress acclimation in H. marinum while stress damage in H. vulgare. An active acclimation to high salinity in H. marinum is underlined by enhanced levels of several stress-responsive transcription factors from basic leucine zipper and nascent polypeptide-associated complex families. In salt-treated H. marinum, enhanced levels of proteins involved in energy metabolism such as glycolysis, ATP metabolism, and photosynthesis-related proteins indicate an active acclimation to enhanced energy requirements during an establishment of novel plant homeostasis. In contrast, changes at proteome level in salt-treated H. vulgare indicate plant tissue damage as revealed by enhanced levels of proteins involved in proteasome-dependent protein degradation and proteins related to apoptosis. The results of proteomic analysis clearly indicate differential responses to high salinity and provide more profound insight into biological mechanisms underlying salinity response between two barley species with contrasting salinity tolerance. PMID:27536311

  15. Isolation, expression, and characterization of blue light receptor AUREOCHROME gene from Saccharina japonica (Laminariales, Phaeophyceae).

    PubMed

    Deng, Yunyan; Yao, Jianting; Fu, Gang; Guo, Hui; Duan, Delin

    2014-04-01

    Photosynthetic stramenopile have chloroplasts of secondary endosymbiotic origin and are significant as aquatic primary productivity and biomass production. In marine environments, many photosynthetic stramenopiles utilize blue light to regulate growth, development, and organelle movement. Aureochrome (AUREO) is a new type blue light photoreceptor specific in photosynthetic stramenopiles. Previously, several AUREO orthologs were reported in genomes of stramenopile members, but the full-length cDNA sequences were completed only in Vaucheria frigida (Xanthophyceae), Fucus distichus (Phaeophyceae), and Ochromonas danica (Chrysophyceae). In this study, the full-length cDNA of AUREO from Saccharina japonica (designated as SjAUREO) was isolated based on homologous cloning and the rapid amplification of cDNA ends (RACE). It characterized by the full length of 1,013 bp with an open reading frame of 612 bp, which encoded a polypeptide of 203 amino acids with predicted molecular weight of 23.08 kDa and theoretical isoelectric point of 7.63. The deduced amino acid sequence of SjAUREO contained one N-terminal basic region/leucine zipper (bZIP) transcription regulation domain and a single light-, oxygen-, or voltage-sensitive (LOV) domain near the C-terminus. Homologous analysis showed that SjAUREO shared 40-92 % similarities with those of other photosynthetic stramenopiles. Phylogenetic analysis revealed close phylogenetic affinity between SjAUREO and AUREO4 of brown alga Ectocarpus siliculosus. Real-time PCR detection revealed that the SjAUREO transcription was markedly increased under BL exposure and dramatically upregulated in the 1-month juvenile sporophyte than those in the 2 and 3-month materials, which indirectly reflected the SjAUREO associated with the BL-mediated photomorphogenesis during the growth and early development of juvenile sporophytes. In vitro expression showed one distinct band existed at ∼27 kDa, and western blot detection proved that it was positive to the anti-His antibody with high specificity. Our results enriched the knowledge of AUREO properties in S. japonica and provided clues to explore the mechanisms underlying diverse physiological responses mediated by BL photoreceptors AUREO in the photosynthetic stramenopiles.

  16. "Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".

    PubMed

    Doidy, Joan; Li, Ying; Neymotin, Benjamin; Edwards, Molly B; Varala, Kranthi; Gresham, David; Coruzzi, Gloria M

    2016-02-03

    Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking. Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run"). Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the functional read-out of de novo transcripts produced by transient TF-target interactions allowed us to capture new models for genome-wide transcriptional control.

  17. Tax Protein-induced Expression of Antiapoptotic Bfl-1 Protein Contributes to Survival of Human T-cell Leukemia Virus Type 1 (HTLV-1)-infected T-cells*♦

    PubMed Central

    Macaire, Héloïse; Riquet, Aurélien; Moncollin, Vincent; Biémont-Trescol, Marie-Claude; Duc Dodon, Madeleine; Hermine, Olivier; Debaud, Anne-Laure; Mahieux, Renaud; Mesnard, Jean-Michel; Pierre, Marlène; Gazzolo, Louis; Bonnefoy, Nathalie; Valentin, Hélène

    2012-01-01

    Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4+ T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-xL, and Bcl-2. Indeed, both Bfl-1 and Bcl-xL knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-xL in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-xL represent potential therapeutic targets for ATLL treatment. PMID:22553204

  18. Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis.

    PubMed

    Wang, Lanfen; Zhu, Jifeng; Li, Xiaoming; Wang, Shumin; Wu, Jing

    2018-04-20

    Mung bean and adzuki bean are warm-season legumes widely cultivated in China. However, bean production in major producing regions is limited by biotic and abiotic stress, such as drought and salt stress. Basic leucine zipper (bZIP) genes play key roles in responses to various biotic and abiotic stresses. However, only several bZIP genes involved in drought and salt stress in legumes, especially Vigna radiata and Vigna angularis, have been identified. In this study, we identified 54 and 50 bZIP proteins from whole-genome sequences of V. radiata and V. angularis, respectively. First, we comprehensively surveyed the characteristics of all bZIP genes, including their gene structure, chromosome distribution and motif composition. Phylogenetic trees showed that VrbZIP and VabZIP proteins were divided into ten clades comprising nine known and one unknown subgroup. The results of the nucleotide substitution rate of the orthologous gene pairs showed that bZIP proteins have undergone strong purifying selection: V. radiata and V. angularis diverged 1.25 million years ago (mya) to 9.20 mya (average of 4.95 mya). We also found that many cis-acting regulatory elements (CAREs) involved in abiotic stress and plant hormone responses were detected in the putative promoter regions of the bZIP genes. Finally, using the quantitative real-time PCR (qRT-PCR) method, we performed expression profiling of the bZIP genes in response to drought, salt and abscisic acid (ABA). We identified several bZIP genes that may be involved in drought and salt responses. Generally, our results provided useful and rich resources of VrbZIP and VabZIP genes for the functional characterization and understanding of bZIP transcription factors (TFs) in warm-season legumes. In addition, our results revealed important and interesting data - a subset of VrbZIP and VabZIP gene expression profiles in response to drought, salt and ABA stress. These results provide gene expression evidence for the selection of candidate genes under drought and salt stress for future study. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    PubMed

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  20. The Reconstruction of Condition-Specific Transcriptional Modules Provides New Insights in the Evolution of Yeast AP-1 Proteins

    PubMed Central

    Goudot, Christel; Etchebest, Catherine

    2011-01-01

    AP-1 proteins are transcription factors (TFs) that belong to the basic leucine zipper family, one of the largest families of TFs in eukaryotic cells. Despite high homology between their DNA binding domains, these proteins are able to recognize diverse DNA motifs. In yeasts, these motifs are referred as YRE (Yap Response Element) and are either seven (YRE-Overlap) or eight (YRE-Adjacent) base pair long. It has been proposed that the AP-1 DNA binding motif preference relies on a single change in the amino acid sequence of the yeast AP-1 TFs (an arginine in the YRE-O binding factors being replaced by a lysine in the YRE-A binding Yaps). We developed a computational approach to infer condition-specific transcriptional modules associated to the orthologous AP-1 protein Yap1p, Cgap1p and Cap1p, in three yeast species: the model yeast Saccharomyces cerevisiae and two pathogenic species Candida glabrata and Candida albicans. Exploitation of these modules in terms of predictions of the protein/DNA regulatory interactions changed our vision of AP-1 protein evolution. Cis-regulatory motif analyses revealed the presence of a conserved adenine in 5′ position of the canonical YRE sites. While Yap1p, Cgap1p and Cap1p shared a remarkably low number of target genes, an impressive conservation was observed in the YRE sequences identified by Yap1p and Cap1p. In Candida glabrata, we found that Cgap1p, unlike Yap1p and Cap1p, recognizes YRE-O and YRE-A motifs. These findings were supported by structural data available for the transcription factor Pap1p (Schizosaccharomyces pombe). Thus, whereas arginine and lysine substitutions in Cgap1p and Yap1p proteins were reported as responsible for a specific YRE-O or YRE-A preference, our analyses rather suggest that the ancestral yeast AP-1 protein could recognize both YRE-O and YRE-A motifs and that the arginine/lysine exchange is not the only determinant of the specialization of modern Yaps for one motif or another. PMID:21695268

  1. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors.

    PubMed

    Sauvé, Simon; Tremblay, Luc; Lavigne, Pierre

    2004-09-17

    Basic region-helix1-loop-helix2-leucine zipper (b/H(1)LH(2)/LZ) transcription factors bind specific DNA sequence in their target gene promoters as dimers. Max, a b/H(1)LH(2)/LZ transcription factor, is the obligate heterodimeric partner of the related b/H(1)LH(2)/LZ proteins of the Myc and Mad families. These heterodimers specifically bind E-box DNA sequence (CACGTG) to activate (e.g. c-Myc/Max) and repress (e.g. Mad1/Max) transcription. Max can also homodimerize and bind E-box sequences in c-Myc target gene promoters. While the X-ray structure of the Max b/H(1)LH(2)/LZ/DNA complex and that of others have been reported, the precise sequence of events leading to the reversible and specific binding of these important transcription factors is still largely unknown. In order to provide insights into the DNA binding mechanism, we have solved the NMR solution structure of a covalently homodimerized version of a Max b/H(1)LH(2)/LZ protein with two stabilizing mutations in the LZ, and characterized its backbone dynamics from (15)N spin-relaxation measurements in the absence of DNA. Apart from minor differences in the pitch of the LZ, possibly resulting from the mutations in the construct, we observe that the packing of the helices in the H(1)LH(2) domain is almost identical to that of the two crystal structures, indicating that no important conformational change in these helices occurs upon DNA binding. Conversely to the crystal structures of the DNA complexes, the first 14 residues of the basic region are found to be mostly unfolded while the loop is observed to be flexible. This indicates that these domains undergo conformational changes upon DNA binding. On the other hand, we find the last four residues of the basic region form a persistent helical turn contiguous to H(1). In addition, we provide evidence of the existence of internal motions in the backbone of H(1) that are of larger amplitude and longer time-scale (nanoseconds) than the ones in the H(2) and LZ domain. Most interestingly, we note that conformers in the ensemble of calculated structures have highly conserved basic residues (located in the persistent helical turn of the basic region and in the loop) known to be important for specific binding in a conformation that matches that of the DNA-bound state. These partially prefolded conformers can directly fit into the major groove of DNA and as such are proposed to lie on the pathway leading to the reversible and specific DNA binding. In these conformers, the conserved basic side-chains form a cluster that elevates the local electrostatic potential and could provide the necessary driving force for the generation of the internal motions localized in the H(1) and therefore link structural determinants with the DNA binding function. Overall, our results suggests that the Max homodimeric b/H(1)LH(2)/LZ can rapidly and preferentially bind DNA sequence through transient and partially prefolded states and subsequently, adopt the fully helical bound state in a DNA-assisted mechanism or induced-fit.

  2. Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4

    PubMed Central

    Switzer, William M; Salemi, Marco; Qari, Shoukat H; Jia, Hongwei; Gray, Rebecca R; Katzourakis, Aris; Marriott, Susan J; Pryor, Kendle N; Wolfe, Nathan D; Burke, Donald S; Folks, Thomas M; Heneine, Walid

    2009-01-01

    Background Human T-lymphotropic virus type 4 (HTLV-4) is a new deltaretrovirus recently identified in a primate hunter in Cameroon. Limited sequence analysis previously showed that HTLV-4 may be distinct from HTLV-1, HTLV-2, and HTLV-3, and their simian counterparts, STLV-1, STLV-2, and STLV-3, respectively. Analysis of full-length genomes can provide basic information on the evolutionary history and replication and pathogenic potential of new viruses. Results We report here the first complete HTLV-4 sequence obtained by PCR-based genome walking using uncultured peripheral blood lymphocyte DNA from an HTLV-4-infected person. The HTLV-4(1863LE) genome is 8791-bp long and is equidistant from HTLV-1, HTLV-2, and HTLV-3 sharing only 62–71% nucleotide identity. HTLV-4 has a prototypic genomic structure with all enzymatic, regulatory, and structural proteins preserved. Like STLV-2, STLV-3, and HTLV-3, HTLV-4 is missing a third 21-bp transcription element found in the long terminal repeats of HTLV-1 and HTLV-2 but instead contains unique c-Myb and pre B-cell leukemic transcription factor binding sites. Like HTLV-2, the PDZ motif important for cellular signal transduction and transformation in HTLV-1 and HTLV-3 is missing in the C-terminus of the HTLV-4 Tax protein. A basic leucine zipper (b-ZIP) region located in the antisense strand of HTLV-1 and believed to play a role in viral replication and oncogenesis, was also found in the complementary strand of HTLV-4. Detailed phylogenetic analysis shows that HTLV-4 is clearly a monophyletic viral group. Dating using a relaxed molecular clock inferred that the most recent common ancestor of HTLV-4 and HTLV-2/STLV-2 occurred 49,800 to 378,000 years ago making this the oldest known PTLV lineage. Interestingly, this period coincides with the emergence of Homo sapiens sapiens during the Middle Pleistocene suggesting that early humans may have been susceptible hosts for the ancestral HTLV-4. Conclusion The inferred ancient origin of HTLV-4 coinciding with the appearance of Homo sapiens, the propensity of STLVs to cross-species into humans, the fact that HTLV-1 and -2 spread globally following migrations of ancient populations, all suggest that HTLV-4 may be prevalent. Expanded surveillance and clinical studies are needed to better define the epidemiology and public health importance of HTLV-4 infection. PMID:19187529

  3. A force-based protein biochip

    NASA Astrophysics Data System (ADS)

    Blank, K.; Mai, T.; Gilbert, I.; Schiffmann, S.; Rankl, J.; Zivin, R.; Tackney, C.; Nicolaus, T.; Spinnler, K.; Oesterhelt, F.; Benoit, M.; Clausen-Schaumann, H.; Gaub, H. E.

    2003-09-01

    A parallel assay for the quantification of single-molecule binding forces was developed based on differential unbinding force measurements where ligand-receptor interactions are compared with the unzipping forces of DNA hybrids. Using the DNA zippers as molecular force sensors, the efficient discrimination between specific and nonspecific interactions was demonstrated for small molecules binding to specific receptors, as well as for protein-protein interactions on protein arrays. Finally, an antibody sandwich assay with different capture antibodies on one chip surface and with the detection antibodies linked to a congruent surface via the DNA zippers was used to capture and quantify a recombinant hepatitis C antigen from solution. In this case, the DNA zippers enable not only discrimination between specific and nonspecific binding, but also allow for the local application of detection antibodies, thereby eliminating false-positive results caused by cross-reactive antibodies and nonspecific binding.

  4. GILZ overexpression attenuates endoplasmic reticulum stress-mediated cell death via the activation of mitochondrial oxidative phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    André, Fanny; Corazao-Rozas, Paola; Idziorek, Thierry

    The Glucocorticoïd-induced leucine zipper (GILZ) protein has profound anti-inflammatory activities in haematopoietic cells. GILZ regulates numerous signal transduction pathways involved in proliferation and survival of normal and neoplastic cells. Here, we have demonstrated the potential of GILZ in alleviating apoptosis induced by ER stress inducers. Whereas the glucocorticoid, dexamethasone, protects from tunicamycin-induced cell death, silencing endogeneous GILZ in dexamethasone-treated cancer cells alter the capacity of glucocorticoids to protect from tunicamycin-mediated apoptosis. Under ER stress conditions, overexpression of GILZ significantly reduced activation of mitochondrial pathway of apoptosis by maintaining Bcl-xl level. GILZ protein affects the UPR signaling shifting the balance towardsmore » pro-survival signals as judged by down-regulation of CHOP, ATF4, XBP1s mRNA and increase in GRP78 protein level. Interestingly, GILZ sustains high mitochondrial OXPHOS during ER stress and cytoprotection mediated by GILZ is abolished in cells depleted of mitochondrial DNA, which are OXPHOS-deficient. These findings reveal a new role of GILZ, which acts as a cytoprotector against ER stress through a pathway involving mitochondrial OXPHOS. - Highlights: • GILZ attenuates apoptotic cell death induced by ER stress conditions. • GILZ promotes pro-survival signaling of the UPR. • GILZ overexpression sustains high mitochondrial activity under ER stress. • Mitochondrial OXPHOX is required for GILZ protective effects against ER stress-mediated apoptosis.« less

  5. Mutational analysis of a predicted double β-propeller domain of the DspA/E effector of Erwinia amylovora.

    PubMed

    Siamer, Sabrina; Gaubert, Stéphane; Boureau, Tristan; Brisset, Marie-Noëlle; Barny, Marie-Anne

    2013-05-01

    The bacterium Erwinia amylovora causes fire blight, an invasive disease that threatens apple trees, pear trees and other plants of the Rosaceae family. Erwinia amylovora pathogenicity relies on a type III secretion system and on a single effector DspA/E. This effector belongs to the widespread AvrE family of effectors whose biological function is unknown. In this manuscript, we performed a bioinformatic analysis of DspA/E- and AvrE-related effectors. Motif search identified nuclear localization signals, peroxisome targeting signals, endoplasmic reticulum membrane retention signals and leucine zipper motifs, but none of these motifs were present in all the AvrE-related effectors analysed. Protein threading analysis, however, predicted a conserved double β-propeller domain in the N-terminal part of all the analysed effector sequences. We then performed a random pentapeptide mutagenesis of DspA/E, which led to the characterization of 13 new altered proteins with a five amino acids insertion. Eight harboured the insertion inside the predicted β-propeller domain and six of these eight insertions impaired DspA/E stability or function. Conversely, the two remaining insertions generated proteins that were functional and abundantly secreted in the supernatant suggesting that these two insertions stabilized the protein. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition

    PubMed Central

    Naruse, Mie; Ono, Ryuichi; Irie, Masahito; Nakamura, Kenji; Furuse, Tamio; Hino, Toshiaki; Oda, Kanako; Kashimura, Misho; Yamada, Ikuko; Wakana, Shigeharu; Yokoyama, Minesuke; Ishino, Fumitoshi; Kaneko-Ishino, Tomoko

    2014-01-01

    Sirh7/Ldoc1 [sushi-ichi retrotransposon homolog 7/leucine zipper, downregulated in cancer 1, also called mammalian retrotransposon-derived 7 (Mart7)] is one of the newly acquired genes from LTR retrotransposons in eutherian mammals. Interestingly, Sirh7/Ldoc1 knockout (KO) mice exhibited abnormal placental cell differentiation/maturation, leading to an overproduction of placental progesterone (P4) and placental lactogen 1 (PL1) from trophoblast giant cells (TGCs). The placenta is an organ that is essential for mammalian viviparity and plays a major endocrinological role during pregnancy in addition to providing nutrients and oxygen to the fetus. P4 is an essential hormone in the preparation and maintenance of pregnancy and the determination of the timing of parturition in mammals; however, the biological significance of placental P4 in rodents is not properly recognized. Here, we demonstrate that mouse placentas do produce P4 in mid-gestation, coincident with a temporal reduction in ovarian P4, suggesting that it plays a role in the protection of the conceptuses specifically in this period. Pregnant Sirh7/Ldoc1 knockout females also displayed delayed parturition associated with a low pup weaning rate. All these results suggest that Sirh7/Ldoc1 has undergone positive selection during eutherian evolution as a eutherian-specific acquired gene because it impacts reproductive fitness via the regulation of placental endocrine function. PMID:25468940

  7. SMILE upregulated by metformin inhibits the function of androgen receptor in prostate cancer cells.

    PubMed

    Lee, Seung-Yon; Song, Chin-Hee; Xie, Yuan-Bin; Jung, Chaeyong; Choi, Hueng-Sik; Lee, Keesook

    2014-11-28

    Metformin, a diabetes drug, has been reported to inhibit the growth of prostate cancer cells. In this study, we investigated the effect and action mechanism of metformin on the function of androgen receptor (AR), a key molecule in the proliferation of prostate cancer cells. Metformin was found to reduce androgen-dependent cell growth and the expression of AR target genes by inhibiting AR function in prostate cancer cells such as LNCaP and C4-2 cells. Interestingly, metformin upregulated the protein level of small heterodimer partner-interacting leucine zipper (SMILE), a coregulator of nuclear receptors, and knockdown of SMILE expression with shRNA abolished the inhibitory effect of metformin on AR function. Further studies revealed that SMILE protein itself suppressed the transactivation of AR, and its ectopic expression resulted in the repressed expression of endogenous AR target genes, PSA and NKX3.1, in LNCaP cells. In addition, SMILE protein physically interacted with AR and competed with the AR coactivator SRC-1 to modulate AR transactivation. As expected, SMILE repressed androgen-dependent growth of LNCaP and C4-2 cells. Taken together, these results suggest that SMILE, which is induced by metformin, functions as a novel AR corepressor and may mediate the inhibitory effect of metformin on androgen-dependent growth of prostate cancer cells. Copyright © 2014. Published by Elsevier Ireland Ltd.

  8. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Okayasu, R.; Weil, M. M.; Silver, A.; McCarthy, M.; Zabriskie, R.; Long, S.; Cox, R.; Ullrich, R. L.

    2001-01-01

    Female BALB/c mice are unusually radiosensitive and more susceptible than C57BL/6 and other tested inbred mice to ionizing radiation (IR)-induced mammary tumors. This breast cancer susceptibility is correlated with elevated susceptibility for mammary cell transformation and genomic instability following irradiation. In this study, we report the identification of two BALB/c strain-specific polymorphisms in the coding region of Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit, which is known to be involved in DNA double-stranded break repair and post-IR signal transduction. First, we identified an A --> G transition at base 11530 resulting in a Met --> Val conversion at codon 3844 (M3844V) in the phosphatidylinositol 3-kinase domain upstream of the scid mutation (Y4046X). Second, we identified a C --> T transition at base 6418 resulting in an Arg --> Cys conversion at codon 2140 (R2140C) downstream of the putative leucine zipper domain. This unique PrkdcBALB variant gene is shown to be associated with decreased DNA-dependent protein kinase catalytic subunit activity and with increased susceptibility to IR-induced genomic instability in primary mammary epithelial cells. The data provide the first evidence that naturally arising allelic variation in a mouse DNA damage response gene may associate with IR response and breast cancer risk.

  9. Antibody engineering of a cytotoxic monoclonal antibody 84 against human embryonic stem cells: Investigating the effects of multivalency on cytotoxicity.

    PubMed

    Klement, Maximilian; Zheng, Jiyun; Liu, Chengcheng; Tan, Heng-Liang; Wong, Victor Vai Tak; Choo, Andre Boon-Hwa; Lee, Dong-Yup; Ow, Dave Siak-Wei

    2017-02-10

    Antibody fragments have shown targeted specificity to their antigens, but only modest tissue retention times in vivo and in vitro. Multimerization has been used as a protein engineering tool to increase the number of binding units and thereby enhance the efficacy and retention time of antibody fragments. In this work, we explored the effects of valency using a series of self-assembling polypeptides based on the GCN4 leucine zipper multimerization domain fused to a single-chain variable fragment via an antibody upper hinge sequence. Four engineered antibody fragments with a valency from one to four antigen-binding units of a cytotoxic monoclonal antibody 84 against human embryonic stem cells (hESC) were constructed. We hypothesized that higher cytotoxicity would be observed for fragments with increased valency. Flow cytometry analysis revealed that the trimeric and tetrameric engineered antibody fragments resulted in the highest degree of cytotoxicity to the undifferentiated hESC, while the engineered antibody fragments were observed to have improved tissue penetration into cell clusters. Thus, a trade off was made for the trimeric versus tetrameric fragment due to improved tissue penetration. These results have direct implications for antibody-mediated removal of undifferentiated hESC during regenerative medicine and cell therapy. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22.

    PubMed

    Gupta, Rajnish A; Sarraf, Pasha; Brockman, Jeffrey A; Shappell, Scott B; Raftery, Laurel A; Willson, Timothy M; DuBois, Raymond N

    2003-02-28

    Peroxisome proliferator-activated receptor gamma (PPARgamma) and transforming growth factor-beta (TGF-beta) are key regulators of epithelial cell biology. However, the molecular mechanisms by which either pathway induces growth inhibition and differentiation are incompletely understood. We have identified transforming growth factor-simulated clone-22 (TSC-22) as a target gene of both pathways in intestinal epithelial cells. TSC-22 is member of a family of leucine zipper containing transcription factors with repressor activity. Although little is known regarding its function in mammals, the Drosophila homolog of TSC-22, bunched, plays an essential role in fly development. The ability of PPARgamma to induce TSC-22 was not dependent on an intact TGF-beta1 signaling pathway and was specific for the gamma isoform. Localization studies revealed that TSC-22 mRNA is enriched in the postmitotic epithelial compartment of the normal human colon. Cells transfected with wild-type TSC-22 exhibited reduced growth rates and increased levels of p21 compared with vector-transfected cells. Furthermore, transfection with a dominant negative TSC-22 in which both repressor domains were deleted was able to reverse the p21 induction and growth inhibition caused by activation of either the PPARgamma or TGF-beta pathways. These results place TSC-22 as an important downstream component of PPARgamma and TGF-beta signaling during intestinal epithelial cell differentiation.

  11. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor.

    PubMed

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-07-25

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  12. Gilz-Activin A as a Novel Signaling Axis Orchestrating Mesenchymal Stem Cell and Th17 Cell Interplay

    PubMed Central

    Luz-Crawford, Patricia; Espinosa-Carrasco, Gabriel; Ipseiz, Natacha; Contreras, Rafael; Tejedor, Gautier; Medina, Daniel A.; Vega-Letter, Ana-Maria; Ngo, Devi; Morand, Eric F.; Pène, Jérôme; Hernandez, Javier; Jorgensen, Christian; Djouad, Farida

    2018-01-01

    Mesenchymal stem cells (MSC) are highly immunosuppressive cells able to reduce chronic inflammation through the active release of mediators. Recently, we showed that glucocorticoid-induced leucine zipper (Gilz) expression by MSC is involved in their therapeutic effect by promoting the generation of regulatory T cells. However, the mechanisms underlying this pivotal role of Gilz remain elusive. Methods and Results In this study, we have uncovered evidence that Gilz modulates the phenotype and function of Th1 and Th17 cells likely by upregulating the level of Activin A and NO2 secreted by MSC. Adoptive transfer experiments sustained this Gilz-dependent suppressive effect of MSC on Th1 and Th17 cell functions. In immunoregulatory MSC, obtained by priming with IFN-γ and TNF-α, Gilz was translocated to the nucleus and bound to the promoters of inos and Activin βA to induce their expression. The increased expression of Activin A directly impacted on Th17 cells fate by repressing their differentiation program through the activation of Smad3/2 and enhancing IL-10 production. Conclusion Our results reveal how Gilz controls inos and Activin βA gene expression to ultimately assign immunoregulatory status to MSC able to repress the pathogenic Th17 cell differentiation program and uncover Activin A as a novel mediator of MSC in this process. PMID:29344311

  13. Gilz-Activin A as a Novel Signaling Axis Orchestrating Mesenchymal Stem Cell and Th17 Cell Interplay.

    PubMed

    Luz-Crawford, Patricia; Espinosa-Carrasco, Gabriel; Ipseiz, Natacha; Contreras, Rafael; Tejedor, Gautier; Medina, Daniel A; Vega-Letter, Ana-Maria; Ngo, Devi; Morand, Eric F; Pène, Jérôme; Hernandez, Javier; Jorgensen, Christian; Djouad, Farida

    2018-01-01

    Mesenchymal stem cells (MSC) are highly immunosuppressive cells able to reduce chronic inflammation through the active release of mediators. Recently, we showed that glucocorticoid-induced leucine zipper (Gilz) expression by MSC is involved in their therapeutic effect by promoting the generation of regulatory T cells. However, the mechanisms underlying this pivotal role of Gilz remain elusive. Methods and Results In this study, we have uncovered evidence that Gilz modulates the phenotype and function of Th1 and Th17 cells likely by upregulating the level of Activin A and NO 2 secreted by MSC. Adoptive transfer experiments sustained this Gilz-dependent suppressive effect of MSC on Th1 and Th17 cell functions. In immunoregulatory MSC, obtained by priming with IFN-γ and TNF-α, Gilz was translocated to the nucleus and bound to the promoters of inos and Activin βA to induce their expression. The increased expression of Activin A directly impacted on Th17 cells fate by repressing their differentiation program through the activation of Smad3/2 and enhancing IL-10 production. Conclusion Our results reveal how Gilz controls inos and Activin βA gene expression to ultimately assign immunoregulatory status to MSC able to repress the pathogenic Th17 cell differentiation program and uncover Activin A as a novel mediator of MSC in this process.

  14. cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP.

    PubMed

    Hanissian, Silva H; Akbar, Umar; Teng, Bin; Janjetovic, Zorica; Hoffmann, Anne; Hitzler, Johann K; Iscove, Norman; Hamre, Kristin; Du, Xiaoping; Tong, Yiai; Mukatira, Suraj; Robertson, Jon H; Morris, Stephan W

    2004-04-29

    Myelodysplasia/acute myeloid leukemia (MDS/AML) is characterized by a t(3;5)(q25.1;q34) chromosomal translocation that forms a fusion gene between nucleophosmin (NPM) and MDS/myeloid leukemia factor 1 (MLF1). We identified a novel protein, MLF1-interacting protein (MLF1IP), that specifically associates with MLF1 by yeast two-hybrid analysis and in pulldown assays, and colocalizes with it in both the nuclei and cytoplasm of cells. The MLF1IP gene locus is at chromosome 4q35.1 and is composed of 14 exons spanning 75.8 kb of genomic DNA. The MLF1IP cDNA encodes a 46-kDa protein that contains two bipartite and two classical nuclear localization signals, two nuclear receptor-binding motifs (LXXLL), two leucine zippers, two PEST residues and several potential phosphorylation sites. MLF1IP transcripts are expressed in a variety of tissues (e.g. fetal liver, bone marrow, thymus and testis). MLF1IP appears to be a lineage-specific gene whose expression is confined exclusively to the CFU-E erythroid precursor cells, but not in mature erythrocytes. These observations, together with previous data demonstrating a role for MLF1 in suppressing red cell maturation, suggest a possible role for MLF1IP and MLF1 deregulation in the genesis of erythroleukemias.

  15. Ecobody technology: rapid monoclonal antibody screening method from single B cells using cell-free protein synthesis for antigen-binding fragment formation.

    PubMed

    Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo

    2017-10-25

    We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the V H and V L genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D  = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.

  16. APPL1-Mediating Leptin Signaling Contributes to Proliferation and Migration of Cancer Cells.

    PubMed

    Ding, Youming; Cao, Yingkang; Wang, Bin; Wang, Lei; Zhang, Yemin; Zhang, Deling; Chen, Xiaoyan; Li, Mingxin; Wang, Changhua

    2016-01-01

    Leptin has been implicated in tumorigenesis and tumor progression, particularly in obese patients. As a multifunctional adaptor protein, APPL1 (containing pleckstrin homology domain, phosphotyrosine binding domain, and a leucine zipper motif 1) plays a critical role in regulating adiponectin and insulin signaling pathways. Currently, high APPL1 level has been suggested to be related to metastases and progression of some types of cancer. However, the intercourse between leptin signaling pathway and APPL1 remains poorly understood. Here, we show that the protein levels and phosphorylation statues of APPL1were highly expressed in tissues from human hepatocellular carcinoma and triple-positive breast cancer. Leptin stimulated APPL1 phosphorylation in a time-dependent manner in both human hepatocellular carcinoma HepG2 cell and breast cancer MCF-7 cell. Overexpression or suppression of APPL1 promoted or attenuated, respectively, leptin-induced phosphorylation of STAT3, ERK1/2, and Akt in the cancer cells, accompanied with enhanced or mitigated cell proliferation and migration. In addition, we identified that APPL1 directly bound to both leptin receptor and STAT3. This interaction was significantly enhanced by leptin stimulation. Our results suggested that APPL1 positively mediated leptin signaling and promoted leptin-induced proliferation and migration of cancer cells. This finding reveals a novel mechanism by which leptin promotes the motility and growth of cancer cells.

  17. The type III effector HsvG of the gall-forming Pantoea agglomerans mediates expression of the host gene HSVGT.

    PubMed

    Nissan, Gal; Manulis-Sasson, Shulamit; Chalupowicz, Laura; Teper, Doron; Yeheskel, Adva; Pasmanik-Chor, Metsada; Sessa, Guido; Barash, Isaac

    2012-02-01

    The type III effector HsvG of the gall-forming Pantoea agglomerans pv. gypsophilae is a DNA-binding protein that is imported to the host nucleus and involved in host specificity. The DNA-binding region of HsvG was delineated to 266 amino acids located within a secondary structure region near the N-terminus of the protein but did not display any homology to canonical DNA-binding motifs. A binding site selection procedure was used to isolate a target gene of HsvG, named HSVGT, in Gypsophila paniculata. HSVGT is a predicted acidic protein of the DnaJ family with 244 amino acids. It harbors characteristic conserved motifs of a eukaryotic transcription factor, including a bipartite nuclear localization signal, zinc finger, and leucine zipper DNA-binding motifs. Quantitative real-time polymerase chain reaction analysis demonstrated that HSVGT transcription is specifically induced in planta within 2 h after inoculation with the wild-type P. agglomerans pv. gypsophilae compared with the hsvG mutant. Induction of HSVGT reached a peak of sixfold at 4 h after inoculation and progressively declined thereafter. Gel-shift assay demonstrated that HsvG binds to the HSVGT promoter, indicating that HSVGT is a direct target of HsvG. Our results support the hypothesis that HsvG functions as a transcription factor in gypsophila.

  18. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity.

    PubMed

    Franken, P; Lopez-Molina, L; Marcacci, L; Schibler, U; Tafti, M

    2000-01-15

    Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeostatic aspects of sleep regulation by comparing DBP deficient mice (dbp-/-) with their isogenic controls (dbp+/+) under light-dark (LD) and constant-dark (DD) baseline conditions, as well as after sleep loss. Whereas total sleep duration was similar in both genotypes, the amplitude of the circadian modulation of sleep time, as well as the consolidation of sleep episodes, was reduced in dbp-/- under both LD and DD conditions. Quantitative EEG analysis demonstrated a marked reduction in the amplitude of the sleep-wake-dependent changes in slow-wave sleep delta power and an increase in hippocampal theta peak frequency in dbp-/- mice. The sleep deprivation-induced compensatory rebound of EEG delta power was similar in both genotypes. In contrast, the rebound in paradoxical sleep was significant in dbp+/+ mice only. It is concluded that the transcriptional regulatory protein DBP modulates circadian and homeostatic aspects of sleep regulation.

  19. Transcriptional response of soybean suspension-cultured cells induced by Nod factors obtained from Bradyrhizobium japonicum USDA110.

    PubMed

    Hakoyama, Tsuneo; Yokoyama, Tadashi; Kouchi, Hiroshi; Tsuchiya, Ken-ichi; Kaku, Hisatoshi; Arima, Yasuhiro

    2002-11-01

    Genes responding to Nod factors were picked up by the application of a differential display method for soybean suspension-cultured cells. Forty-five cDNA fragments derived from such genes were detected. Seven fragments (ssc1-ssc7) were successfully cloned. The putative product of genes corresponding to ssc1 was estimated to be a disease-resistance protein relating to the induction of the plant defense response against pathogens, and that corresponding to ssc7 was a sucrose transporter. Amino acid sequences deduced from full-length cDNA corresponding to ssc2 and ssc4 were investigated, and it was shown that these polypeptides were equipped with a leucine zipper motif and with phosphorylation sites that were targeted by tyrosin kinase and cAMP-dependent protein kinase, respectively. In a differential display experiment, the transcriptional levels of three genes corresponding to ssc2, ssc3 and ssc5 were estimated to be up-regulated at 6 h after initiation of the treatment and the remaining four were estimated to be down-regulated. However, transcription of the genes corresponding to all ssc was clearly repressed within 2 h after initiation of the treatment. Five of them were restored to their transcriptional level 6 h after initiation of the treatment, although the others were repressed throughout the experimental period.

  20. Antitumorigenic Effects of ZAKβ, an Alternative Splicing Isoform of ZAK.

    PubMed

    Lee, Jin-Sun; Lin, Yuh-Yih; Wang, Tsu-Shing; Liu, Jer-Yuh; Lin, Wei-Wen; Yang, Jaw-Ji

    2018-02-28

    Sterile alpha motif (SAM)- and leucine-zipper-containing kinase (ZAK) plays a role in the regulation of cell cycle progression and oncogenic transformation. The ZAK gene generates two transcript variants, ZAKα and ZAKβ, through alternative splicing. In this study, we identified that ZAKα proteins were upregulated in tumor tissues, whereas ZAKβ proteins were mostly expressed in corresponding normal tissues. The ectopically expressed ZAKβ proteins in cancer cells inhibited cancer cell proliferation as well as anchorage-independent growth. The ZAKβ:ZAKα protein ratio played a role in the regulation of the cyclic adenosine monophosphate (cAMP) signaling pathway, whereas high ZAKβ protein levels led to the activation of cAMP response element binding protein 1 (CREB1) and exerted antitumor properties. Overexpression of ZAKβ or CREB1 cDNAs in cancer cells inhibited anchorage-independent growth and also reduced the levels of cyclooxygenase 2 (Cox2) and β-catenin proteins. Cancer cells treated with doxorubicin (Doxo) resulted in the switching from the expression of ZAKα to ZAKβ and also inhibited cancer cell growth in soft agar, demonstrating that pharmacological drugs could be used to manipulate endogenous reprogramming splicing events and resulting in the activation of endogenous antitumorigenic properties. We showed that the two ZAK transcript variants, ZAKα and ZAKβ, had opposite biological functions in the regulation of tumor cell proliferation in that ZAKβ had powerful antitumor properties and that ZAKα could promote tumor growth.

  1. Insulin-Inducible SMILE Inhibits Hepatic Gluconeogenesis.

    PubMed

    Lee, Ji-Min; Seo, Woo-Young; Han, Hye-Sook; Oh, Kyoung-Jin; Lee, Yong-Soo; Kim, Don-Kyu; Choi, Seri; Choi, Byeong Hun; Harris, Robert A; Lee, Chul-Ho; Koo, Seung-Hoi; Choi, Hueng-Sik

    2016-01-01

    The role of a glucagon/cAMP-dependent protein kinase-inducible coactivator PGC-1α signaling pathway is well characterized in hepatic gluconeogenesis. However, an opposing protein kinase B (PKB)/Akt-inducible corepressor signaling pathway is unknown. A previous report has demonstrated that small heterodimer partner-interacting leucine zipper protein (SMILE) regulates the nuclear receptors and transcriptional factors that control hepatic gluconeogenesis. Here, we show that hepatic SMILE expression was induced by feeding in normal mice but not in db/db and high-fat diet (HFD)-fed mice. Interestingly, SMILE expression was induced by insulin in mouse primary hepatocyte and liver. Hepatic SMILE expression was not altered by refeeding in liver-specific insulin receptor knockout (LIRKO) or PKB β-deficient (PKBβ(-/-)) mice. At the molecular level, SMILE inhibited hepatocyte nuclear factor 4-mediated transcriptional activity via direct competition with PGC-1α. Moreover, ablation of SMILE augmented gluconeogenesis and increased blood glucose levels in mice. Conversely, overexpression of SMILE reduced hepatic gluconeogenic gene expression and ameliorated hyperglycemia and glucose intolerance in db/db and HFD-fed mice. Therefore, SMILE is an insulin-inducible corepressor that suppresses hepatic gluconeogenesis. Small molecules that enhance SMILE expression would have potential for treating hyperglycemia in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. PpHB22, a member of HD-Zip proteins, activates PpDAM1 to regulate bud dormancy transition in 'Suli' pear (Pyrus pyrifolia White Pear Group).

    PubMed

    Yang, Qinsong; Niu, Qingfeng; Li, Jianzhao; Zheng, Xiaoyan; Ma, Yunjing; Bai, Songling; Teng, Yuanwen

    2018-06-01

    Homeodomain-leucine zipper (HD-Zip) proteins, which form one of the largest and most diverse families, regulate many biological processes in plants, including differentiation, flowering, vascular development, and stress signaling. Abscisic acid (ABA) has been proved to be one of the key regulators of bud dormancy and to influence several HD-Zip genes expression. However, the role of HD-Zip genes in regulating bud dormancy remains unclear. We identified 47 pear (P. pyrifolia White Pear Group) HD-Zip genes, which were classified into four subfamilies (HD-Zip I-IV). We further revealed that gene expression levels of some HD-Zip members were closely related to ABA concentrations in flower buds during dormancy transition. Exogenous ABA treatment confirmed that PpHB22 and several other HD-Zip genes responded to ABA. Yeast one-hybrid and dual luciferase assay results combining subcellular localization showed that PpHB22 was present in nucleus and directly induced PpDAM1 (dormancy associated MADS-box 1) expression. Thus, PpHB22 is a negative regulator of plant growth associated with the ABA response pathway and functions upstream of PpDAM1. These findings enrich our understanding of the function of HD-Zip genes related to the bud dormancy transition. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Rice HOX12 Regulates Panicle Exsertion by Directly Modulating the Expression of ELONGATED UPPERMOST INTERNODE1[OPEN

    PubMed Central

    Gao, Shaopei; Fang, Jun; Xu, Fan; Wang, Wei

    2016-01-01

    Bioactive gibberellins (GAs) are key endogenous regulators of plant growth. Previous work identified ELONGATED UPPERMOST INTERNODE1 (EUI1) as a GA-deactivating enzyme that plays an important role in panicle exsertion from the flag leaf sheath in rice (Oryza sativa). However, the mechanism that regulates EUI1 activity during development is still largely unexplored. In this study, we identified the dominant panicle enclosure mutant regulator of eui1 (ree1-D), whose phenotype is caused by the activation of the homeodomain-leucine zipper transcription factor HOX12. Diminished HOX12 expression by RNA interference enhanced panicle exsertion, mimicking the eui1 phenotype. HOX12 knockdown plants contain higher levels of the major biologically active GAs (such as GA1 and GA4) than the wild type. The expression of EUI1 is elevated in the ree1-D mutant but reduced in HOX12 knockdown plants. Interestingly, both HOX12 and EUI1 are predominantly expressed in panicles, where GA4 is highly accumulated. Yeast one-hybrid, electrophoretic mobility shift assay, and chromatin immunoprecipitation analyses showed that HOX12 physically interacts with the EUI1 promoter both in vitro and in vivo. Furthermore, plants overexpressing HOX12 in the eui1 mutant background retained the elongated uppermost internode phenotype. These results indicate that HOX12 acts directly through EUI1 to regulate panicle exsertion in rice. PMID:26977084

  4. The Tyrosine Sulfate Domain of Fibromodulin Binds Collagen and Enhances Fibril Formation.

    PubMed

    Tillgren, Viveka; Mörgelin, Matthias; Önnerfjord, Patrik; Kalamajski, Sebastian; Aspberg, Anders

    2016-11-04

    Small leucine-rich proteoglycans interact with other extracellular matrix proteins and are important regulators of matrix assembly. Fibromodulin has a key role in connective tissues, binding collagen through two identified binding sites in its leucine-rich repeat domain and regulating collagen fibril formation in vitro and in vivo Some nine tyrosine residues in the fibromodulin N-terminal domain are O-sulfated, a posttranslational modification often involved in protein interactions. The N-terminal domain mimics heparin, binding proteins with clustered basic amino acid residues. Because heparin affects collagen fibril formation, we investigated whether tyrosine sulfate is involved in fibromodulin interactions with collagen. Using full-length fibromodulin and its N-terminal tyrosine-sulfated domain purified from tissue, as well as recombinant fibromodulin fragments, we found that the N-terminal domain binds collagen. The tyrosine-sulfated domain and the leucine-rich repeat domain both bound to three specific sites along the collagen type I molecule, at the N terminus and at 100 and 220 nm from the N terminus. The N-terminal domain shortened the collagen fibril formation lag phase and tyrosine sulfation was required for this effect. The isolated leucine-rich repeat domain inhibited the fibril formation rate, and full-length fibromodulin showed a combination of these effects. The fibrils formed in the presence of fibromodulin or its fragments showed more organized structure. Fibromodulin and its tyrosine sulfate domain remained bound on the formed fiber. Taken together, this suggests a novel, regulatory function for tyrosine sulfation in collagen interaction and control of fibril formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The Survival Motor Neuron Protein Forms Soluble Glycine Zipper Oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Renee; Gupta, Kushol; Ninan, Nisha S.

    2012-11-01

    The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex that functions in spliceosomal snRNP biogenesis. Loss of function mutations in the SMN gene cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Nearly half of the known SMA patient missense mutations map to the SMN YG-box, a highly conserved oligomerization domain of unknown structure that contains a (YxxG)3 motif. Here, we report that the SMN YG-box forms helical oligomers similar to the glycine zippers found in transmembrane channel proteins. A network of tyrosine-glycine packing between helices drives formation of soluble YG-box oligomers,more » providing a structural basis for understanding SMN oligomerization and for relating defects in oligomerization to the mutations found in SMA patients. These results have important implications for advancing our understanding of SMN function and glycine zipper-mediated helix-helix interactions.« less

  6. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetsumoto, Tomohiro; Tanabe, Takasumi, E-mail: takasumi@elec.keio.ac.jp

    2014-07-15

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 4.0 × 10{sup 4} and an effective mode volume V{sub mode} of 0.67λ{sup 3} when the gap between two cavities is 34 nm. The mechanical Q (Q{sub m}) is determined by thermo-elastic damping and is 2.0 × 10{sup 6} in a vacuum at room temperature. The opto-mechanical coupling rate g{sub OM} is as high as 100 GHz/nm, which allowsmore » us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.« less

  7. Uptake of free amino acids by bacteria-free larvae of the sand dollar Dendraster excentricus.

    PubMed

    Davis, J P; Stephens, G C

    1984-10-01

    Larvae of Dendraster excentricus were produced by collecting gametes and carrying out fertilization under aseptic conditions. Since gametes are free of bacteria in the gonad, bacteria-free (axenic) suspensions of larvae result. Net rates of entry of 14 amino acids and the rate of production of ammonia were simultaneously determined by high-performance liquid chromatography. The net rates of uptake of neutral amino acids were an order of magnitude greater than rates for basic and acidic amino acids. Influx of 14C-labeled leucine, arginine, and glutamate accurately reflects the net entry rate of these substrates. Uptake of amino acids by axenic suspensions of larvae was compared with uptake by suspensions prepared without aseptic precautions. There was no significant difference in net uptake of the 14 amino acids or in the pattern of oxidation and assimilation of [14C]leucine during short-term experiments of 4-h duration or less.

  8. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra.

    PubMed

    Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  9. Pointwise regularity of parameterized affine zipper fractal curves

    NASA Astrophysics Data System (ADS)

    Bárány, Balázs; Kiss, Gergely; Kolossváry, István

    2018-05-01

    We study the pointwise regularity of zipper fractal curves generated by affine mappings. Under the assumption of dominated splitting of index-1, we calculate the Hausdorff dimension of the level sets of the pointwise Hölder exponent for a subinterval of the spectrum. We give an equivalent characterization for the existence of regular pointwise Hölder exponent for Lebesgue almost every point. In this case, we extend the multifractal analysis to the full spectrum. In particular, we apply our results for de Rham’s curve.

  10. Chip Scale, Ultra Sensitive Opto Mechanical Acceleration and Force Sensors

    DTIC Science & Technology

    2017-12-01

    an accelerometer of the same mechanical design as that studied in part A. and shown in Fig. 3. One side of the zipper optical cavity is connected to...Ref. [13]. “Endevco 752A13” is Ref. [30]. “Zipper” is our own work on zipper photonic crystals from Ref. [31]. II Accelerometer Noise and Design ...limit, the shot noise of the light field also imparts a force on , and cause motion of, the mechanical resonator. The acceleration PSD due to back-action

  11. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.

    PubMed

    Chin, Chen-Shan; Chubukov, Victor; Jolly, Emmitt R; DeRisi, Joe; Li, Hao

    2008-06-17

    The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point-the intermediate metabolite alpha-isopropylmalate (alphaIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when alphaIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.

  12. Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation.

    PubMed

    Zenker, Jennifer; White, Melanie D; Gasnier, Maxime; Alvarez, Yanina D; Lim, Hui Yi Grace; Bissiere, Stephanie; Biro, Maté; Plachta, Nicolas

    2018-04-19

    Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostol, Marcin I.; Sawaya, Michael R.; Cascio, Duilio

    2010-09-23

    A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are 'steric zippers,' pairs of interacting {beta}-sheets. Both structures of these 'homozygous steric zippers' reveal direct intermolecular interactions between Met or Valmore » in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.« less

  14. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems.

    PubMed Central

    Kirchman, D; K'nees, E; Hodson, R

    1985-01-01

    Leucine incorporation was examined as a method for estimating rates of protein synthesis by bacterial assemblages in natural aquatic systems. The proportion of the total bacterial population that took up leucine in three marine environments was high (greater than 50%). Most of the leucine (greater than 90%) taken up was incorporated into protein, and little (less than 20%) was degraded to other amino acids, except in two oligotrophic marine environments. In samples from these two environments, ca. 50% of the leucine incorporated had been degraded to other amino acids, which were subsequently incorporated into protein. The degree of leucine degradation appears to depend on the organic carbon supply, as the proportion of 3H-radioactivity incorporated into protein that was recovered as [3H]leucine after acid hydrolysis increased with the addition of pyruvate to oligotrophic water samples. The addition of extracellular leucine inhibited total incorporation of [14C]pyruvate (a precursor for leucine biosynthesis) into protein. Furthermore, the proportion of [14C]pyruvate incorporation into protein that was recovered as [14C]leucine decreased with the addition of extracellular leucine. These results show that the addition of extracellular leucine inhibits leucine biosynthesis by marine bacterial assemblages. The molar fraction of leucine in a wide variety of proteins is constant, indicating that changes in leucine incorporation rates reflect changes in rates of protein synthesis rather than changes in the leucine content of proteins. The results demonstrate that the incorporation rate of [3H]leucine into a hot trichloroacetic acid-insoluble cell fraction can serve as an index of protein synthesis by bacterial assemblages in aquatic systems. PMID:3994368

  15. Zipper plot: visualizing transcriptional activity of genomic regions.

    PubMed

    Avila Cobos, Francisco; Anckaert, Jasper; Volders, Pieter-Jan; Everaert, Celine; Rombaut, Dries; Vandesompele, Jo; De Preter, Katleen; Mestdagh, Pieter

    2017-05-02

    Reconstructing transcript models from RNA-sequencing (RNA-seq) data and establishing these as independent transcriptional units can be a challenging task. Current state-of-the-art tools for long non-coding RNA (lncRNA) annotation are mainly based on evolutionary constraints, which may result in false negatives due to the overall limited conservation of lncRNAs. To tackle this problem we have developed the Zipper plot, a novel visualization and analysis method that enables users to simultaneously interrogate thousands of human putative transcription start sites (TSSs) in relation to various features that are indicative for transcriptional activity. These include publicly available CAGE-sequencing, ChIP-sequencing and DNase-sequencing datasets. Our method only requires three tab-separated fields (chromosome, genomic coordinate of the TSS and strand) as input and generates a report that includes a detailed summary table, a Zipper plot and several statistics derived from this plot. Using the Zipper plot, we found evidence of transcription for a set of well-characterized lncRNAs and observed that fewer mono-exonic lncRNAs have CAGE peaks overlapping with their TSSs compared to multi-exonic lncRNAs. Using publicly available RNA-seq data, we found more than one hundred cases where junction reads connected protein-coding gene exons with a downstream mono-exonic lncRNA, revealing the need for a careful evaluation of lncRNA 5'-boundaries. Our method is implemented using the statistical programming language R and is freely available as a webtool.

  16. Downstream change in leucine aminopeptidase activity and leucine assimilation by epilithic microbiota along the River Swale, northern England.

    PubMed

    Ainsworth, A M; Goulder, R

    2000-05-05

    Parallel determinations of epilithic extracellular leucine aminopeptidase activity and leucine assimilation were made at five sites along 112 km of the River Swale and also in two tributaries, the River Wiske and Cod Beck. Epilithic leucine aminopeptidase activity along the Swale increased with distance downstream; this increase was gradual, rather than stepwise in response to specific sewage-works outfalls. Epilithic leucine assimilation, in contrast, did not consistently increase along the river. Epilithic leucine aminopeptidase activity and leucine assimilation were both potentially controlled by epilithic microbial variables (bacterial abundance and chlorophyll a) while leucine aminopeptidase activity was also strongly related to water-quality variables, especially temperature, pH and conductivity. Epilithic leucine aminopeptidase activity and leucine assimilation were coupled, but the magnitude of aminopeptidase activity was always substantially greater than that of leucine assimilation. Arguments are presented, however, which suggest that this did not necessarily indicate the constant availability of excess leucine, and by inference amino-acid nitrogen, to epilithic bacteria. Values of epilithic leucine aminopeptidase activity and leucine assimilation, expressed relative to rates in overlying water, suggested that most activity and assimilation was epilithic rather than planktonic, although the planktonic contribution was proportionately greater at the deeper, more downstream, sites. In the tributaries, River Wiske and Cod Beck, values of epilithic leucine aminopeptidase activity and epilithic microbial abundance, as well as those of many water-quality variables, resembled values in the middle and lower Swale. Thus, these tributaries were essentially lowland, enriched watercourses being very different from the headstreams of the main river.

  17. The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Gómez, María C; Chan, Raquel L

    2017-09-10

    Homeodomain-leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom; members of subfamily I are known to be involved in abiotic stress responses. HaHB11 belongs to this subfamily and it was previously shown that it is able to confer improved yield and tolerance to flooding via a quiescent strategy. Here we show that HaHB11 expression is induced by ABA, NaCl and water deficit in sunflower seedlings and leaves. Arabidopsis transgenic plants expressing HaHB11, controlled either by its own promoter or by the constitutive 35S CaMV, presented rolled leaves and longer roots than WT when grown under standard conditions. In addition, these plants showed wider stems and more vascular bundles. To deal with drought, HaHB11 transgenic plants closed their stomata faster and lost less water than controls, triggering an enhanced tolerance to such stress condition and also to salinity stress. Concomitantly, ABA-synthesis and sensing related genes were differentially regulated in HaHB11 transgenic plants. Either under long-term salinity stress or mild drought stress, HaHB11 transgenic plants did not exhibit yield penalties. Moreover, alfalfa transgenic plants were generated which also showed enhanced drought tolerance. Altogether, the results indicated that HaHB11 was able to confer drought and salinity tolerance via a complex mechanism which involves morphological, physiological and molecular changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells

    PubMed Central

    Ohlstein, Jason F; Strong, Amy L; McLachlan, John A; Gimble, Jeffrey M; Burow, Matthew E; Bunnell, Bruce A

    2016-01-01

    Exposure of humans to the endocrine disrupter bisphenol A (BPA) has been associated with increased weight and obesity. However, the mechanism(s) by which BPA increases adipose tissue in humans remains to be determined. The goal of this study was to determine the effects of BPA on adipogenesis of cultured human adipose stromal/stem cells (ASCs), precursors to mature adipocytes. ASCs from three donors were cultured for either 14 or 21 days in adipogenic differentiation media containing increasing concentrations of BPA (100 pM–10 μM). The extent of adipogenic differentiation in the ASCs was assessed by staining with Oil Red O to visualize adipogenic differentiation and then quantified by extraction and optical density measurement of the retained dye. BPA significantly enhanced adipogenesis at a concentration of 1 μM after 21 days of culture. Additionally, we found that BPA increased transcription of the estrogen receptor (ER (ESR1)) and that treatment with the ER antagonist ICI 182 780, blocked the effects of BPA, indicating that BPA may act via an ER-mediated pathway. The results of molecular analyses indicated that the expression of the adipogenesis-associated genes dual leucine zipper-bearing kinase (DLK (MAP3K12)), IGF1, CCAAT/enhancer-binding protein alpha (C/EBPα (CEBPA)), peroxisome proliferator-activated receptor gamma (PPARγ (PPARG)), and lipoprotein lipase (LPL) was temporally accelerated and increased by BPA. In summary, these results indicate that BPA significantly enhances adipogenesis in ASCs through an ER-mediated pathway at physiologically relevant concentrations. PMID:25143472

  19. Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor1[OPEN

    PubMed Central

    Lundqvist, Udda; Kakei, Yusuke; Suzuki, Takako; Hori, Kiyosumi; Wu, Jianzhong; Shimada, Yukihisa; Thomas, William T.B.; Komatsuda, Takao

    2017-01-01

    Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens. Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships. PMID:29101279

  20. Functional characterization of a competitive peptide antagonist of p65 in human macrophage-like cells suggests therapeutic potential for chronic inflammation

    PubMed Central

    Srinivasan, Mythily; Blackburn, Corinne; Lahiri, Debomoy K

    2014-01-01

    Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid responsive protein that links the nuclear factor-kappa B (NFκB) and the glucocorticoid signaling pathways. Functional and binding studies suggest that the proline-rich region at the carboxy terminus of GILZ binds the p65 subunit of NFκB and suppresses the immunoinflammatory response. A widely-used strategy in the discovery of peptide drugs involves exploitation of the complementary surfaces of naturally occurring binding partners. Previously, we observed that a synthetic peptide (GILZ-P) derived from the proline-rich region of GILZ bound activated p65 and ameliorated experimental encephalomyelitis. Here we characterize the secondary structure of GILZ-P by circular dichroic analysis. GILZ-P adopts an extended polyproline type II helical conformation consistent with the structural conformation commonly observed in interfaces of transient intermolecular interactions. To determine the potential application of GILZ-P in humans, we evaluated the toxicity and efficacy of the peptide drug in mature human macrophage-like THP-1 cells. Treatment with GILZ-P at a wide range of concentrations commonly used for peptide drugs was nontoxic as determined by cell viability and apoptosis assays. Functionally, GILZ-P suppressed proliferation and glutamate secretion by activated macrophages by inhibiting nuclear translocation of p65. Collectively, our data suggest that the GILZ-P has therapeutic potential in chronic CNS diseases where persistent inflammation leads to neurodegeneration such as multiple sclerosis and Alzheimer’s disease. PMID:25584020

  1. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system.

    PubMed

    Krebber, A; Bornhauser, S; Burmester, J; Honegger, A; Willuda, J; Bosshard, H R; Plückthun, A

    1997-02-14

    A prerequisite for the use of recombinant antibody technologies starting from hybridomas or immune repertoires is the reliable cloning of functional immunoglobulin genes. For this purpose, a standard phage display system was optimized for robustness, vector stability, tight control of scFv-delta geneIII expression, primer usage for PCR amplification of variable region genes, scFv assembly strategy and subsequent directional cloning using a single rare cutting restriction enzyme. This integrated cloning, screening and selection system allowed us to rapidly obtain antigen binding scFvs derived from spleen-cell repertoires of mice immunized with ampicillin as well as from all hybridoma cell lines tested to date. As representative examples, cloning of monoclonal antibodies against a his tag, leucine zippers, the tumor marker EGP-2 and the insecticide DDT is presented. Several hybridomas whose genes could not be cloned in previous experimental setups, but were successfully obtained with the present system, expressed high amounts of aberrant heavy and light chain mRNAs, which were amplified by PCR and greatly exceeded the amount of binding antibody sequences. These contaminating variable region genes were successfully eliminated by employing the optimized phage display system, thus avoiding time consuming sequencing of non-binding scFv genes. To maximize soluble expression of functional scFvs subsequent to cloning, a compatible vector series to simplify modification, detection, multimerization and rapid purification of recombinant antibody fragments was constructed.

  2. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain.

    PubMed

    Morris, Gavin; Fanucchi, Sylvia

    2016-04-05

    Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members.

  3. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene

    NASA Astrophysics Data System (ADS)

    Zhao, Daohui; Li, Libo; He, Daohang; Zhou, Jian

    2016-07-01

    The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV genes through channel formation in which it adopts a leucine-zipper-like alpha-helical conformation. A recent experimental study reported that helical Vpr13-33 would transform to β-sheet or random coil structures and aggregate on the surface of graphene or graphene oxide through hydrophobic interactions. Due to experimental limitations, however, there is still a considerable lack of understanding on the adsorption dynamics at the early stage of the conformational transition at water-graphene interface and the underlying driving force at molecular level. In this study, atomistic molecular dynamics simulations were used to explore the conformation transition phenomena. Vpr13-33 kept α-helical structure in solution, but changed to β-sheet structure when strongly adsorbed onto graphene. Preferential adsorption of Vpr13-33 on graphene is dominated by hydrophobic interactions. The cluster analysis identified the most significant populated conformation and the early stage of structure conversion from α-helical to β-sheet was found, but the full β-sheet propagation was not observed. Free energy landscape analysis further complemented the transformation analysis of peptide conformations. These findings are consistent with experimental results, and give a molecular level interpretation for the reduced cytotoxicity of Vpr13-33 to some extent upon graphene exposure. Meanwhile, this study provides some significant insights into the detailed mechanism of graphene-induced protein conformation transition.

  4. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli.

    PubMed

    Yamanaka, K; Ogura, T; Niki, H; Hiraga, S

    1996-02-25

    We have previously reported that the MukB protein is essential for chromosome partitioning in Escherichia coli and that mukB mutants produce anucleate cells and are temperature-sensitive for colony formation. The mukB gene maps at 21 min on the E. coli chromosome and smtA-mukF-mukE-mukB genes might comprise an operon, which is transcribed in a clockwise direction. Here, we report that mukF and mukE null mutants are both temperature-sensitive for colony formation and produce anucleate cells even at the permissive temperature. These phenotypes are the same as those observed in the mukB null mutant. The primary sequence of MukF includes a leucine zipper structure and an acidic domain. Mutational analysis revealed that both are required for MukF function. When the MukF protein was overproduced in the wild-type strain, anucleate cells were produced. In contrast, overproduction of either MukE or MukB did not cause the defect. In null mutants for the mukF, mukE, and mukB genes, the synchronous initiation of chromosome replication was not affected. The mini-F plasmid was as stably maintained in these mutants as in the wild-type strain. These results indicate that the MukF, MukE, and MukB proteins are involved in the chromosome partitioning steps, but are not required for mini-F plasmid partitioning.

  5. Madm (Mlf1 adapter molecule) cooperates with Bunched A to promote growth in Drosophila.

    PubMed

    Gluderer, Silvia; Brunner, Erich; Germann, Markus; Jovaisaite, Virginija; Li, Changqing; Rentsch, Cyrill A; Hafen, Ernst; Stocker, Hugo

    2010-01-01

    The TSC-22 domain family (TSC22DF) consists of putative transcription factors harboring a DNA-binding TSC-box and an adjacent leucine zipper at their carboxyl termini. Both short and long TSC22DF isoforms are conserved from flies to humans. Whereas the short isoforms include the tumor suppressor TSC-22 (Transforming growth factor-beta1 stimulated clone-22), the long isoforms are largely uncharacterized. In Drosophila, the long isoform Bunched A (BunA) acts as a growth promoter, but how BunA controls growth has remained obscure. In order to test for functional conservation among TSC22DF members, we expressed the human TSC22DF proteins in the fly and found that all long isoforms can replace BunA function. Furthermore, we combined a proteomics-based approach with a genetic screen to identify proteins that interact with BunA. Madm (Mlf1 adapter molecule) physically associates with BunA via a conserved motif that is only contained in long TSC22DF proteins. Moreover, Drosophila Madm acts as a growth-promoting gene that displays growth phenotypes strikingly similar to bunA phenotypes. When overexpressed, Madm and BunA synergize to increase organ growth. The growth-promoting potential of long TSC22DF proteins is evolutionarily conserved. Furthermore, we provide biochemical and genetic evidence for a growth-regulating complex involving the long TSC22DF protein BunA and the adapter molecule Madm.

  6. The WD-Repeat Protein CsTTG1 Regulates Fruit Wart Formation through Interaction with the Homeodomain-Leucine Zipper I Protein Mict1

    PubMed Central

    Yin, Shuai; Liu, Xingwang; Liu, Bin; Yang, Sen; Xue, Shudan; Cai, Yanling; Liu, Huiling; Dong, Mingming; Zhang, Yaqi; Zhao, Binyu

    2016-01-01

    The cucumber (Cucumis sativus) fruit is covered with bloom trichomes and warts (composed of spines and tubercules), which have an important impact on the commercial value of the crop. However, little is known about the regulatory mechanism underlying their formation. Here, we reported that the cucumber WD-repeat homolog CsTTG1, which is localized in the nucleus and cytomembrane, plays an important role in the formation of cucumber fruit bloom trichomes and warts. Functional characterization of CsTTG1 revealed that it is mainly expressed in the epidermis of cucumber ovary and that its overexpression in cucumber alters the density of fruit bloom trichomes and spines, thereby promoting the warty fruit trait. Conversely, silencing CsTTG1 expression inhibits the initiation of fruit spines. Molecular and genetic analyses showed that CsTTG1 acts in parallel to Mict/CsGL1, a key trichome formation factor, to regulate the initiation of fruit trichomes, including fruit bloom trichomes and spines, and that the further differentiation of fruit spines and formation of tubercules regulated by CsTTG1 is dependent on Mict. Using yeast two-hybrid assay and bimolecular fluorescence complementation assay, we determined that CsTTG1 directly interacts with Mict. Collectively, our results indicate that CsTTG1 is an important component of the molecular network that regulates fruit bloom trichome and wart formation in cucumber. PMID:27208299

  7. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    PubMed Central

    Wu, Chunlai; Daniels, Richard W; DiAntonio, Aaron

    2007-01-01

    Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK). To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses. PMID:17697379

  8. Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus

    PubMed Central

    Prudente, Sabrina; Jungtrakoon, Prapaporn; Marucci, Antonella; Ludovico, Ornella; Buranasupkajorn, Patinut; Mazza, Tommaso; Hastings, Timothy; Milano, Teresa; Morini, Eleonora; Mercuri, Luana; Bailetti, Diego; Mendonca, Christine; Alberico, Federica; Basile, Giorgio; Romani, Marta; Miccinilli, Elide; Pizzuti, Antonio; Carella, Massimo; Barbetti, Fabrizio; Pascarella, Stefano; Marchetti, Piero; Trischitta, Vincenzo; Di Paola, Rosa; Doria, Alessandro

    2015-01-01

    Diabetes mellitus is a highly heterogeneous disorder encompassing several distinct forms with different clinical manifestations including a wide spectrum of age at onset. Despite many advances, the causal genetic defect remains unknown for many subtypes of the disease, including some of those forms with an apparent Mendelian mode of inheritance. Here we report two loss-of-function mutations (c.1655T>A [p.Leu552∗] and c.280G>A [p.Asp94Asn]) in the gene for the Adaptor Protein, Phosphotyrosine Interaction, PH domain, and leucine zipper containing 1 (APPL1) that were identified by means of whole-exome sequencing in two large families with a high prevalence of diabetes not due to mutations in known genes involved in maturity onset diabetes of the young (MODY). APPL1 binds to AKT2, a key molecule in the insulin signaling pathway, thereby enhancing insulin-induced AKT2 activation and downstream signaling leading to insulin action and secretion. Both mutations cause APPL1 loss of function. The p.Leu552∗ alteration totally abolishes APPL1 protein expression in HepG2 transfected cells and the p.Asp94Asn alteration causes significant reduction in the enhancement of the insulin-stimulated AKT2 and GSK3β phosphorylation that is observed after wild-type APPL1 transfection. These findings—linking APPL1 mutations to familial forms of diabetes—reaffirm the critical role of APPL1 in glucose homeostasis. PMID:26073777

  9. Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.)

    NASA Astrophysics Data System (ADS)

    Banavath, Jayanna N.; Chakradhar, Thammineni; Pandit, Varakumar; Konduru, Sravani; Guduru, Krishna K.; Akila, Chandra S.; Podha, Sudhakar; Puli, Chandra O. R.

    2018-03-01

    Peanut is an important oilseed and food legume cultivated as a rain-fed crop in semi-arid tropics. Drought and high salinity are the major abiotic stresses limiting the peanut productivity in this region. Development of drought and salt tolerant peanut varieties with improved yield potential using biotechnological approach is highly desirable to improve the peanut productivity in marginal geographies. As abiotic stress tolerance and yield represent complex traits, engineering of regulatory genes to produce abiotic stress-resilient transgenic crops appears to be a viable approach. In the present study, we developed transgenic peanut plants expressing an Arabidopsis homeodomain-leucine zipper transcription factor (AtHDG11) under stress inducible rd29Apromoter. A stress-inducible expression of AtHDG11 in three independent homozygous transgenic peanut lines resulted in improved drought and salt tolerance through up-regulation of known stress responsive genes(LEA, HSP70, Cu/Zn SOD, APX, P5CS, NCED1, RRS5, ERF1, NAC4, MIPS, Aquaporin, TIP, ELIP ) in the stress gene network , antioxidative enzymes, free proline along with improved water use efficiency traits such as longer root system, reduced stomatal density, higher chlorophyll content, increased specific leaf area, improved photosynthetic rates and increased intrinsic instantaneous WUE. Transgenic peanut plants displayed high yield compared to non-transgenic plants under both drought and salt stress conditions. Holistically, our study demonstrates the potentiality of stress-induced expression of AtHDG11 to improve the drought, salt tolerance in peanut.

  10. Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis.

    PubMed

    Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi

    2017-01-01

    Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.

  11. Huntingtin interacting protein 1 Is a clathrin coat binding protein required for differentiation of late spermatogenic progenitors.

    PubMed

    Rao, D S; Chang, J C; Kumar, P D; Mizukami, I; Smithson, G M; Bradley, S V; Parlow, A F; Ross, T S

    2001-11-01

    Huntingtin-interacting protein 1 (HIP1) interacts with huntingtin, the protein whose gene is mutated in Huntington's disease. In addition, a fusion between HIP1 and platelet-derived growth factor beta receptor causes chronic myelomonocytic leukemia. The HIP1 proteins, including HIP1 and HIP1-related (HIP1r), have an N-terminal polyphosphoinositide-interacting epsin N-terminal homology, domain, which is found in proteins involved in clathrin-mediated endocytosis. HIP1 and HIP1r also share a central leucine zipper and an actin binding TALIN homology domain. Here we show that HIP1, like HIP1r, colocalizes with clathrin coat components. We also show that HIP1 physically associates with clathrin and AP-2, the major components of the clathrin coat. To further understand the putative biological role(s) of HIP1, we have generated a targeted deletion of murine HIP1. HIP1(-/-) mice developed into adulthood, did not develop overt neurologic symptoms in the first year of life, and had normal peripheral blood counts. However, HIP1-deficient mice exhibited testicular degeneration with increased apoptosis of postmeiotic spermatids. Postmeiotic spermatids are the only cells of the seminiferous tubules that express HIP1. These findings indicate that HIP1 is required for differentiation, proliferation, and/or survival of spermatogenic progenitors. The association of HIP1 with clathrin coats and the requirement of HIP1 for progenitor survival suggest a role for HIP1 in the regulation of endocytosis.

  12. Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice

    PubMed Central

    Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q.; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui

    2014-01-01

    Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. PMID:24780611

  13. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.

    PubMed

    Renguet, Edith; Ginion, Audrey; Gélinas, Roselle; Bultot, Laurent; Auquier, Julien; Robillard Frayne, Isabelle; Daneault, Caroline; Vanoverschelde, Jean-Louis; Des Rosiers, Christine; Hue, Louis; Horman, Sandrine; Beauloye, Christophe; Bertrand, Luc

    2017-08-01

    High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [ 13 C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart. NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation reverses leucine's action, suggesting acetylation involvement in this phenomenon.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/leucine-metabolism-inhibits-cardiac-glucose-uptake/. Copyright © 2017 the American Physiological Society.

  15. Detection of Tax-specific CTLs in lymph nodes of adult T-cell leukemia/lymphoma patients and its association with Foxp3 positivity of regulatory T-cell function.

    PubMed

    Ichikawa, Ayako; Miyoshi, Hiroaki; Arakawa, Fumiko; Kiyasu, Junichi; Sato, Kensaku; Niino, Daisuke; Kimura, Yoshizo; Yoshida, Maki; Kawano, Riko; Muta, Hiroko; Sugita, Yasuo; Ohshima, Koichi

    2017-06-01

    Human T-cell lymphotropic virus type (HTLV)-1 Tax is a viral protein that has been reported to be important in the proliferation of adult T-cell leukemia/lymphoma (ATLL) cells and to be a target of HTLV-1-specific cytotoxic T lymphocytes (CTLs). However, it is not clear how Tax-specific CTLs behave in lymph nodes of ATLL patients. The present study analyzed the immunostaining of Tax-specific CTLs. Furthermore, ATLL tumor cells are known to be positive for forkhead box P3 (Foxp3)and to have a regulatory T (Treg)-cell-like function. The association between T-reg function and number and activity of Tax-specific CTLs was also investigated. A total of 15 ATLL lymphoma cases with human leukocyte antigen (HLA)-A24, for which Tax has a high affinity, were selected from the files of the Department of Pathology, School of Medicine, Kurume University (Kurume, Japan) using a polymerase chain reaction (PCR) method. Immunostaining was performed for cluster of differentiation (CD) 20, CD3, CD4, CD8, T-cell intracellular antigen-1 and Foxp3 in paraffin sections, and for Tax, interferon γ and HLA-A24 in frozen sections. In addition, the staining of Tax-specific CTLs (HLA-A24-restricted) was analyzed by MHC Dextramer ® assay in frozen sections. In addition, the messenger RNA expression of Tax and HTLV-1 basic leucine zipper factor were also evaluated by reverse transcription-PCR. Immunohistochemical staining of Tax protein in lymphoma tissue revealed the presence of positive lymphoma cells ranging from 5 to 80%, and immunohistochemical staining of HLA-A24 revealed the presence of positive lymphoma cells ranging from 1 to 95%. The expression of Tax and HLA-A24 was downregulated by viral function. Foxp3, a marker for Treg cells, was expressed in 0-90% of cells. Several cases exhibited Tax-specific CTL (HLA-A24-restricted)-positive cells, and there was an inverse correlation between Tax-specific CTLs and Foxp3. However, neither Tax nor HLA-A24 expression was associated with CTL or Foxp3. Our study indicated the possibility that ATLL cells, which expressed Tax, target of CTL, evade the CTL-mediated immune control by expression of Foxp3 as a Treg function.

  16. Detection of Tax-specific CTLs in lymph nodes of adult T-cell leukemia/lymphoma patients and its association with Foxp3 positivity of regulatory T-cell function

    PubMed Central

    Ichikawa, Ayako; Miyoshi, Hiroaki; Arakawa, Fumiko; Kiyasu, Junichi; Sato, Kensaku; Niino, Daisuke; Kimura, Yoshizo; Yoshida, Maki; Kawano, Riko; Muta, Hiroko; Sugita, Yasuo; Ohshima, Koichi

    2017-01-01

    Human T-cell lymphotropic virus type (HTLV)-1 Tax is a viral protein that has been reported to be important in the proliferation of adult T-cell leukemia/lymphoma (ATLL) cells and to be a target of HTLV-1-specific cytotoxic T lymphocytes (CTLs). However, it is not clear how Tax-specific CTLs behave in lymph nodes of ATLL patients. The present study analyzed the immunostaining of Tax-specific CTLs. Furthermore, ATLL tumor cells are known to be positive for forkhead box P3 (Foxp3)and to have a regulatory T (Treg)-cell-like function. The association between T-reg function and number and activity of Tax-specific CTLs was also investigated. A total of 15 ATLL lymphoma cases with human leukocyte antigen (HLA)-A24, for which Tax has a high affinity, were selected from the files of the Department of Pathology, School of Medicine, Kurume University (Kurume, Japan) using a polymerase chain reaction (PCR) method. Immunostaining was performed for cluster of differentiation (CD) 20, CD3, CD4, CD8, T-cell intracellular antigen-1 and Foxp3 in paraffin sections, and for Tax, interferon γ and HLA-A24 in frozen sections. In addition, the staining of Tax-specific CTLs (HLA-A24-restricted) was analyzed by MHC Dextramer® assay in frozen sections. In addition, the messenger RNA expression of Tax and HTLV-1 basic leucine zipper factor were also evaluated by reverse transcription-PCR. Immunohistochemical staining of Tax protein in lymphoma tissue revealed the presence of positive lymphoma cells ranging from 5 to 80%, and immunohistochemical staining of HLA-A24 revealed the presence of positive lymphoma cells ranging from 1 to 95%. The expression of Tax and HLA-A24 was downregulated by viral function. Foxp3, a marker for Treg cells, was expressed in 0–90% of cells. Several cases exhibited Tax-specific CTL (HLA-A24-restricted)-positive cells, and there was an inverse correlation between Tax-specific CTLs and Foxp3. However, neither Tax nor HLA-A24 expression was associated with CTL or Foxp3. Our study indicated the possibility that ATLL cells, which expressed Tax, target of CTL, evade the CTL-mediated immune control by expression of Foxp3 as a Treg function. PMID:28599462

  17. Genome-wide inference of transcription factor-DNA binding specificity in cell regeneration using a combination strategy.

    PubMed

    Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong

    2012-11-01

    The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence positions of oligonucleotides determine Gcn4p-DNA binding affinity and specificity; (iv) Linear regression models in conjunction with variable selection seem to perform fairly well in capturing the internal dependences hidden in the Gcn4p-DNA system, albeit ignoring nonlinear factors may lead the models to systematically underestimate and overestimate high- and low-affinity samples, respectively. © 2012 John Wiley & Sons A/S.

  18. Molecular Pathology of Adult T-Cell Leukemia/Lymphoma.

    PubMed

    Ohshima, Koichi

    2015-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell neoplasm of highly pleomorphic lymphoid cells. ATLL is usually widely disseminated, and it is caused by human T-cell leukemia virus type 1 (HTLV-1). It is a disease with a long latency, and affected individuals are usually exposed to the virus very early in life. The cumulative incidence of ATLL is estimated to be 2.5% among HTLV-1 carriers. ATLL cells express CD2, CD3, CD5, CD4, and CD25, as well as CCR4 and FoxP3 of the regulatory T-cell marker. HTLV-1 is causally linked to ATLL, but infection alone is not sufficient to result in neoplastic transformation. A significant finding in this connection is that the Tax viral protein leads to transcriptional activation of many genes, while the HTLV-1 basic leucine zipper factor is thought to be important for T-cell proliferation and oncogenesis. Half of ATLL cases retain the ability to express HTLV-1 Tax, which is a target of HTLV-1-specific cytotoxic T lymphocytes (CTL). An increase in HTLV-1-specific CTL responses is observed in some asymptomatic HTLV-1 carriers. Although HTLV-1-specific CTL are also present in the peripheral blood of ATLL patients, they do not expand sufficiently. We investigated the clinicopathological features and analyzed the staining of Tax-specific CTL and FoxP3. Tax-specific CTL correlated inversely with FoxP3, an increase in the ratio of CD163+ tumor-associated macrophages was associated with worse clinical prognosis, and ATLL cell lines proliferated significantly following direct co-culture with M2 macrophages. Several clinical variants of ATLL have been identified: acute, lymphomatous, chronic, and smoldering. Oligo-array comparative genomic hybridization revealed that genomic loss of 9p21.3 was a significant characteristic of acute-type, but not of chronic-type ATLL. Furthermore, we found that genomic alteration of CD58, which is implicated in immune escape, is more frequently observed in acute than in chronic ATLL. Interestingly, the chronic cases with cell cycle deregulation and disruption of immunosurveillance mechanism were associated with faster progression to acute ATLL. Immune evasion, microenvironment, and genetic alteration are therefore important in the multi-step progression of ATLL lymphomagenesis. © 2015 S. Karger AG, Basel.

  19. Endurance Exercise Attenuates Postprandial Whole-Body Leucine Balance in Trained Men.

    PubMed

    Mazzulla, Michael; Parel, Justin T; Beals, Joseph W; VAN Vliet, Stephan; Abou Sawan, Sidney; West, Daniel W D; Paluska, Scott A; Ulanov, Alexander V; Moore, Daniel R; Burd, Nicholas A

    2017-12-01

    Endurance exercise increases indices of small intestinal damage and leucine oxidation, which may attenuate dietary amino acid appearance and postprandial leucine balance during postexercise recovery. Therefore, the purpose of this study was to examine the effect of an acute bout of endurance exercise on postprandial leucine kinetics and net leucine balance. In a crossover design, seven trained young men (age = 25.6 ± 2.3 yr; V˙O2peak = 61.4 ± 2.9 mL·kg·min; mean ± SEM) received a primed constant infusion of L-[1-C]leucine before and after ingesting a mixed macronutrient meal containing 18 g whole egg protein intrinsically labeled with L-[5,5,5-H3]leucine, 17 g fat, and 60 g carbohydrate at rest and after 60 min of treadmill running at 70% V˙O2peak. Plasma intestinal fatty acid binding protein concentrations and leucine oxidation both increased (P < 0.01) to peaks that were ~2.5-fold above baseline values during exercise with a concomitant decrease (P < 0.01) in nonoxidative leucine disposal. Meal ingestion attenuated (P < 0.01) endogenous leucine rates of appearance at rest and after exercise. There were no differences (both, P > 0.05) in dietary leucine appearance rates or in the amount of dietary protein-derived leucine that appeared into circulation over the 5-h postprandial period at rest and after exercise (62% ± 2% and 63% ± 2%, respectively). Leucine balance over the 5-h postprandial period was positive (P < 0.01) in both conditions but was negative (P < 0.01) during the exercise trial after accounting for exercise-induced leucine oxidation. We demonstrate that endurance exercise does not modulate dietary leucine availability from a mixed meal but attenuates postprandial whole-body leucine balance in trained young men.

  20. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability.

    PubMed

    Kathuria, Sagar V; Chan, Yvonne H; Nobrega, R Paul; Özen, Ayşegül; Matthews, C Robert

    2016-03-01

    Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high-energy states that populate their folding free-energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high-energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high-energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates. © 2015 The Protein Society.

  1. Determination of the tolerable upper intake level of leucine in acute dietary studies in young men.

    PubMed

    Elango, Rajavel; Chapman, Karen; Rafii, Mahroukh; Ball, Ronald O; Pencharz, Paul B

    2012-10-01

    Leucine has been suggested to improve athletic performance. Therefore, the branched-chain amino acids (BCAAs), especially leucine, are popular as dietary supplements in strength-training athletes; however, the intake of leucine in excess of requirements raises concerns regarding adverse effects. Currently, the tolerable upper intake level (UL) for leucine is unknown. The objective of the current study was to determine the UL for leucine in adult men under acute dietary conditions. Five healthy adults (20-35 y) each received graded stepwise increases in leucine intakes of 50, 150, 250, 500, 750, 1000, and 1250 mg · kg⁻¹ · d⁻¹, which corresponded to the Estimated Average Requirement (EAR) and the EAR ×3, ×5, ×10, ×15, ×20, and ×25 in a total of 29 studies. The UL of leucine was identified by the measurement of plasma and urinary biochemical variables and changes in leucine oxidation by using l-[1-¹³C]-leucine. A significant increase in blood ammonia concentrations above normal values, plasma leucine concentrations, and urinary leucine excretion were observed with leucine intakes >500 mg · kg⁻¹ · d⁻¹. The oxidation of l-[1-¹³C]-leucine expressed as label tracer oxidation in breath (F¹³CO₂), leucine oxidation, and α-ketoisocaproic acid (KIC) oxidation led to different results: a plateau in F¹³CO₂ observed after 500 mg · kg⁻¹ · d⁻¹, no clear plateau observed in leucine oxidation, and KIC oxidation appearing to plateau after 750 mg · kg⁻¹ · d⁻¹. On the basis of plasma and urinary variables, the UL for leucine in healthy adult men can be suggested at 500 mg · kg⁻¹ · d⁻¹ or ~35 g/d as a cautious estimate under acute dietary conditions.

  2. Quantitative role of splanchnic region in leucine metabolism: L-(1-13C,15N)leucine and substrate balance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y.M.; Wagner, D.A.; Tredget, E.E.

    1990-07-01

    The role of the splanchnic region (Sp) in whole body leucine metabolism was assessed in six chronically catheterized fasting mongrel dogs and in eight dogs during constant enteral feeding of a complete amino acid solution (0.24 g.kg-1.h-1). We used primed continuous intravenous infusions of L-(1-13C,15N)leucine and L-(1-14C)leucine and measurements of arteriovenous isotope and leucine balance across the gut, liver, and Sp. In the fasted condition, 3.5% of arterial leucine supply was oxidized in the Sp, accounting for 13% of total body leucine oxidation, with 10% by liver. With amino acid feeding (1) leucine carbon and nitrogen fluxes and oxidation weremore » increased (P less than 0.01) at the whole body level; (2) the percent of whole body leucine oxidation occurring in the Sp and liver increased (P less than 0.01) to 41 and 27%, respectively; (3) fractional metabolic utilization of leucine delivered to the Sp was reduced (P less than 0.01) from 47 to 35%; (4) the deamination rate of leucine in the gut was increased (P less than 0.05), along with an increased reamination rate of alpha-ketoisocaproic acid in the Sp (P less than 0.05). These findings reveal that the Sp accounts for a small fraction of whole body leucine oxidation during the fasting condition, but it plays a quantitatively important role in total body leucine oxidation during amino acid feeding; the gut and liver play cooperative roles in controlling leucine supply to peripheral tissues.« less

  3. Oral Leucine Supplementation Is Sensed by the Brain but neither Reduces Food Intake nor Induces an Anorectic Pattern of Gene Expression in the Hypothalamus

    PubMed Central

    Zampieri, Thais T.; Pedroso, João A. B.; Furigo, Isadora C.; Tirapegui, Julio; Donato, Jose

    2013-01-01

    Leucine activates the intracellular mammalian target of the rapamycin (mTOR) pathway, and hypothalamic mTOR signaling regulates food intake. Although central infusion of leucine reduces food intake, it is still uncertain whether oral leucine supplementation is able to affect the hypothalamic circuits that control energy balance. We observed increased phosphorylation of p70s6k in the mouse hypothalamus after an acute oral gavage of leucine. We then assessed whether acute oral gavage of leucine induces the activation of neurons in several hypothalamic nuclei and in the brainstem. Leucine did not induce the expression of Fos in hypothalamic nuclei, but it increased the number of Fos-immunoreactive neurons in the area postrema. In addition, oral gavage of leucine acutely increased the 24 h food intake of mice. Nonetheless, chronic leucine supplementation in the drinking water did not change the food intake and the weight gain of ob/ob mice and of wild-type mice consuming a low- or a high-fat diet. We assessed the hypothalamic gene expression and observed that leucine supplementation increased the expression of enzymes (BCAT1, BCAT2 and BCKDK) that metabolize branched-chain amino acids. Despite these effects, leucine supplementation did not induce an anorectic pattern of gene expression in the hypothalamus. In conclusion, our data show that the brain is able to sense oral leucine intake. However, the food intake is not modified by chronic oral leucine supplementation. These results question the possible efficacy of leucine supplementation as an appetite suppressant to treat obesity. PMID:24349566

  4. Rapid sensing of l-leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights.

    PubMed

    Heeley, Nicholas; Kirwan, Peter; Darwish, Tamana; Arnaud, Marion; Evans, Mark L; Merkle, Florian T; Reimann, Frank; Gribble, Fiona M; Blouet, Clemence

    2018-04-01

    Dietary proteins are sensed by hypothalamic neurons and strongly influence multiple aspects of metabolic health, including appetite, weight gain, and adiposity. However, little is known about the mechanisms by which hypothalamic neural circuits controlling behavior and metabolism sense protein availability. The aim of this study is to characterize how neurons from the mediobasal hypothalamus respond to a signal of protein availability: the amino acid l-leucine. We used primary cultures of post-weaning murine mediobasal hypothalamic neurons, hypothalamic neurons derived from human induced pluripotent stem cells, and calcium imaging to characterize rapid neuronal responses to physiological changes in extracellular l-Leucine concentration. A neurochemically diverse subset of both mouse and human hypothalamic neurons responded rapidly to l-leucine. Consistent with l-leucine's anorexigenic role, we found that 25% of mouse MBH POMC neurons were activated by l-leucine. 10% of MBH NPY neurons were inhibited by l-leucine, and leucine rapidly reduced AGRP secretion, providing a mechanism for the rapid leucine-induced inhibition of foraging behavior in rodents. Surprisingly, none of the candidate mechanisms previously implicated in hypothalamic leucine sensing (K ATP channels, mTORC1 signaling, amino-acid decarboxylation) were involved in the acute activity changes produced by l-leucine. Instead, our data indicate that leucine-induced neuronal activation involves a plasma membrane Ca 2+ channel, whereas leucine-induced neuronal inhibition is mediated by inhibition of a store-operated Ca 2+ current. A subset of neurons in the mediobasal hypothalamus rapidly respond to physiological changes in extracellular leucine concentration. Leucine can produce both increases and decreases in neuronal Ca 2+ concentrations in a neurochemically-diverse group of neurons, including some POMC and NPY/AGRP neurons. Our data reveal that leucine can signal through novel mechanisms to rapidly affect neuronal activity. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers.

    PubMed

    Zhang, Yongli

    2017-07-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins. © 2017 The Protein Society.

  6. Potent anti-seizure effects of D-leucine

    PubMed Central

    Hartman, Adam L.; Santos, Polan; O’Riordan, Kenneth J.; Stafstrom, Carl E.; Hardwick, J. Marie

    2015-01-01

    There are no effective treatments for millions of patients with intractable epilepsy. High-fat ketogenic diets may provide significant clinical benefit but are challenging to implement. Low carbohydrate levels appear to be essential for the ketogenic diet to work, but the active ingredients in dietary interventions remain elusive, and a role for ketogenesis has been challenged. A potential antiseizure role of dietary protein or of individual amino acids in the ketogenic diet is understudied. We investigated the two exclusively ketogenic amino acids, L-leucine and L-lysine, and found that only L-leucine potently protects mice when administered prior to the onset of seizures induced by kainic acid injection, but not by inducing ketosis. Unexpectedly, the D-enantiomer of leucine, which is found in trace amounts in the brain, worked as well or better than L-leucine against both kainic acid and 6 Hz electroshock-induced seizures. However, unlike L-leucine, D-leucine potently terminated seizures even after the onset of seizure activity. Furthermore, D-leucine, but not L-leucine, reduced long-term potentiation but had no effect on basal synaptic transmission in vitro. In a screen of candidate neuronal receptors, D-leucine failed to compete for binding by cognate ligands, potentially suggesting a novel target. Even at low doses, D-leucine suppressed ongoing seizures at least as effectively as diazepam but without sedative effects. These studies raise the possibility that D-leucine may represent a new class of anti-seizure agents, and that D-leucine may have a previously unknown function in eukaryotes. PMID:26054437

  7. Stimuli-enabled zipper-like graphene interface for auto-switchable bioelectronics.

    PubMed

    Mishra, Sachin; Ashaduzzaman, Md; Mishra, Prashant; Swart, Hendrik C; Turner, Anthony P F; Tiwari, Ashutosh

    2017-03-15

    Graphene interfaces with multi-stimuli responsiveness are of particular interest due to their diverse super-thin interfacial behaviour, which could be well suited to operating complex physiological systems in a single miniaturised domain. In general, smart graphene interfaces switch bioelectrodes from the hydrophobic to hydrophilic state, or vice versa, upon triggering. In the present work, a stimuli encoded zipper-like graphene oxide (GrO)/polymer interface was fabricated with in situ poly(N-isopropylacrylamide-co-diethylaminoethylmethylacrylate), i.e., poly(NIPAAm-co-DEAEMA) directed hierarchical self-assembly of GrO and glucose oxidase (GOx). The designed interface exhibited reversible on/off-switching of bio-electrocatalysis on changing the pH between 5 and 8, via phase transition from super hydrophilic to hydrophobic. The study further indicated that the zipper-like interfacial bioelectrochemical properties could be tuned over a modest change of temperature (i.e., 20-40°C). The resulting auto-switchable interface has implications for the design of novel on/off-switchable biodevices with 'in-built' self-control. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The spectraplakin Short stop is an essential microtubule regulator involved in epithelial closure in Drosophila

    PubMed Central

    Takács, Zsanett; Vilmos, Péter; Lénárt, Péter; Röper, Katja; Erdélyi, Miklós

    2017-01-01

    ABSTRACT Dorsal closure of the Drosophila embryonic epithelium provides an excellent model system for the in vivo analysis of molecular mechanisms regulating cytoskeletal rearrangements. In this study, we investigated the function of the Drosophila spectraplakin Short stop (Shot), a conserved cytoskeletal structural protein, during closure of the dorsal embryonic epithelium. We show that Shot is essential for the efficient final zippering of the opposing epithelial margins. By using isoform-specific mutant alleles and genetic rescue experiments with truncated Shot variants, we demonstrate that Shot functions as an actin–microtubule cross-linker in mediating zippering. At the leading edge of epithelial cells, Shot regulates protrusion dynamics by promoting filopodia formation. Fluorescence recovery after photobleaching (FRAP) analysis and in vivo imaging of microtubule growth revealed that Shot stabilizes dynamic microtubules. The actin- and microtubule-binding activities of Shot are simultaneously required in the same molecule, indicating that Shot is engaged as a physical crosslinker in this process. We propose that Shot-mediated interactions between microtubules and actin filaments facilitate filopodia formation, which promotes zippering by initiating contact between opposing epithelial cells. PMID:28062848

  9. Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis

    PubMed Central

    Vogler, Georg; Liu, Jiandong; Iafe, Timothy W.; Migh, Ede; Mihály, József

    2014-01-01

    During heart formation, a network of transcription factors and signaling pathways guide cardiac cell fate and differentiation, but the genetic mechanisms orchestrating heart assembly and lumen formation remain unclear. Here, we show that the small GTPase Cdc42 is essential for Drosophila melanogaster heart morphogenesis and lumen formation. Cdc42 genetically interacts with the cardiogenic transcription factor tinman; with dDAAM which belongs to the family of actin organizing formins; and with zipper, which encodes nonmuscle myosin II. Zipper is required for heart lumen formation, and its spatiotemporal activity at the prospective luminal surface is controlled by Cdc42. Heart-specific expression of activated Cdc42, or the regulatory formins dDAAM and Diaphanous caused mislocalization of Zipper and induced ectopic heart lumina, as characterized by luminal markers such as the extracellular matrix protein Slit. Placement of Slit at the lumen surface depends on Cdc42 and formin function. Thus, Cdc42 and formins play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network. PMID:25267295

  10. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli.

    PubMed Central

    Gollop, N; Tavori, H; Barak, Z

    1982-01-01

    Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides. PMID:7033214

  11. Amino Acid Availability and Age Affect the Leucine Stimulation of Protein Synthesis and eIF4F Formation in Muscle

    PubMed Central

    Escobar, Jeffery; Frank, Jason W.; Suryawan, Agus; Nguyen, Hanh V.; Davis, Teresa A.

    2009-01-01

    We have previously shown that a physiological increase in plasma leucine for 60- and 120-min increases translation initiation factor activation in muscle of neonatal pigs. Although muscle protein synthesis is increased by leucine at 60 min, it is not maintained at 120 min, perhaps due to the decrease in plasma amino acids (AA). In the current study, 7- and 26-day-old pigs were fasted overnight and infused with leucine (0 or 400 µmol· kg−1· h−1) for 120 min to raise leucine within the postprandial range. The leucine was infused in the presence or absence of a replacement AA mixture (without leucine) to maintain baseline plasma AA levels. AA administration prevented the leucine-induced reduction in plasma AA in both age groups. At 7 days, leucine infusion alone increased eukaryotic initiation factor (eIF) 4E binding protein-1 (4E-BP1) phosphorylation, decreased inactive 4E-BP1·eIF4E complex abundance, and increased active eIF4G·eIF4E complex formation in skeletal muscle; leucine infusion with replacement AA also stimulated these, as well as S6K1, rpS6, and eIF4G phosphorylation. At 26 days, leucine infusion alone increased 4E-BP1 phosphorylation and decreased the inactive 4E-BP1·eIF4E complex only; leucine with AA also stimulated these, as well as S6K1 and rpS6 phosphorylation. Muscle protein synthesis was increased in 7-day-old (+60%) and 26-day-old (+40%) pigs infused with leucine and replacement AA, but not with leucine alone. Thus, the ability of leucine to stimulate eIF4F formation and protein synthesis in skeletal muscle is dependent on AA availability and age. PMID:17878223

  12. Effect of Starvation on the Turnover and Metabolic Response to Leucine

    PubMed Central

    Sherwin, Robert S.

    1978-01-01

    l-Leucine was administered as a primed continuous 3-4-h infusion in nonobese and obese subjects in the postabsorptive state and for 12 h in obese subjects after a 3-day and 4-wk fast. In nonobese and obese subjects studied in the post-absorptive state, the leucine infusion resulted in a 150-200% rise in plasma leucine above preinfusion levels, a small decrease in plasma glucose, and unchanged levels of plasma insulin and glucagon and blood ketones. Plasma isoleucine (60-70%) and valine (35-40%) declined to a greater extent than other amino acids (P < 0.001). After 3 days and 4 wk of fasting, equimolar infusions of leucine resulted in two- to threefold greater increments in plasma leucine as compared to post-absorptive subjects, a 30-40% decline in other plasma amino acids, and a 25-30% decrease in negative nitrogen balance. Urinary excretion of 3-methylhistidine was however, unchanged. Plasma glucose which declined in 3-day fasted subjects after leucine administration, surprisingly rose by 20 mg/100 ml after 4 wk of fasting. The rise in blood glucose occurred in the absence of changes in plasma glucagon and insulin and in the face of a 15% decline in endogenous glucose production (as measured by infusion of [3-3H]glucose). On the other hand, fractional glucose utilization fell by 30% (P < 0.001), thereby accounting for hyperglycemia. The estimated metabolic clearance rate of leucine fell by 48% after 3 days of fasting whereas the plasma delivery rate of leucine was unchanged, thereby accounting for a 40% rise in plasma leucine during early starvation. After a 4-wk fast, the estimated metabolic clearance rate of leucine declined further to 59% below base line. Plasma leucine nevertheless fell to postabsorptive levels as the plasma delivery rate of leucine decreased 65% below postabsorptive values. Conclusions: (a) Infusion of exogenous leucine in prolonged fasting results in a decline in plasma levels of other amino acids, improvement in nitrogen balance and unchanged excretion of 3-methylhistidine, thus suggesting stimulation of muscle protein synthesis, (b) leucine infusion also reduces glucose production and to an even greater extent, glucose consumption, thereby raising blood glucose concentration; and (c) the rise in plasma leucine in early starvation results primarily from a decrease in leucine clearance which drops progressively during starvation. PMID:659610

  13. Dietary leucine requirement for juvenile large yellow croaker Pseudosciaena crocea (Richardson, 1846)

    NASA Astrophysics Data System (ADS)

    Li, Yan; Ai, Qinghui; Mai, Kangsen; Xu, Wei; Cheng, Zhenyan; He, Zhigang

    2010-12-01

    Dietary leucine requirement for juvenile large yellow croaker, Pseudosciaena crocea Richardson 1846 (initial body weight 6.0 g ± 0.1 g) was determined using dose-response method. Six isonitogenous (crude protein 43%) and isoenergetic (19 kJ g-1) practical diets containing six levels of leucine (Diets 1-6) ranging from 1.23% to 4.80% (dry matter) were made at about 0.7% increment of leucine. Equal amino acid nitrogen was maintained by replacing leucine with glutamic acid. Triplicate groups of 60 individuals were fed to apparent satiation by hand twice daily (05:00 and 17:30). The water temperature was 26-32°C, salinity 26-30 and dissolved oxygen approximately 7 mg L-1 during the experimental period. Final weight (FW) of large yellow croaker initially increased with increasing level of dietary leucine but then decreased at further higher level of leucine. The highest FW was obtained in fish fed diet with 3.30% Leucine (Diet 4). FW of fish fed the diet with 4.80% Leucine (Diet 6) was significantly lower than those fed Diet 4. However, no significant differences were observed between the other dietary treatments. Feed efficiency (FE) and whole body composition were independent of dietary leucine contents ( P > 0.05). The results indicated that leucine was essential for growth of juvenile large yellow croaker. On the basis of FW, the optimum dietary leucine requirement for juvenile large yellow croaker was estimated to be 2.92% of dry matter (6.79% of dietary protein).

  14. Reviewing the Effects of l-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis

    PubMed Central

    Pedroso, João A.B.; Zampieri, Thais T.; Donato, Jose

    2015-01-01

    Leucine is a well-known activator of the mammalian target of rapamycin (mTOR). Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss. PMID:26007339

  15. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway

    PubMed Central

    Saxton, Robert A.; Knockenhauer, Kevin E.; Wolfson, Rachel L.; Chantranupong, Lynne; Pacold, Michael E.; Wang, Tim; Schwartz, Thomas U.; Sabatini, David M.

    2015-01-01

    Eukaryotic cells coordinate growth with the availability of nutrients through mTOR complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag GTPases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. We present the 2.7-Å crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway. PMID:26586190

  16. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila.

    PubMed

    Li, Michelle A; Alls, Jeffrey D; Avancini, Rita M; Koo, Karen; Godt, Dorothea

    2003-11-01

    Interactions between somatic and germline cells are critical for the normal development of egg and sperm. Here we show that the gene traffic jam (tj) produces a soma-specific factor that controls gonad morphogenesis and is required for female and male fertility. tj encodes the only large Maf factor in Drosophila melanogaster, an orthologue of the atypical basic Leu zipper transcription factors c-Maf and MafB/Kreisler in vertebrates. Expression of tj occurs in somatic gonadal cells that are in direct contact with germline cells throughout development. In tj mutant gonads, somatic cells fail to inter-mingle and properly envelop germline cells, causing an early block in germ cell differentiation. In addition, tj mutant somatic cells show an increase in the level of expression for several adhesion molecules. We propose that tj is a critical modulator of the adhesive properties of somatic cells, facilitating germline-soma interactions that are essential for germ cell differentiation.

  17. The radiolysis and radioracemization of amino acids on clays

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hall, H.; Chow, G.; Yi, L.; Lemmon, R. M.

    1985-01-01

    The effects of the surfaces of kaolinite and bentonite clays on the radiolysis and radioracemization of L-leucine and its hydrochloride salt have been investigated experimentally. L-leucine and its hydrochloride salt were deposited on the clays and the amino acid/clay preparations were irradiated by a Co-60 gamma-ray source which induced 2-89 percent radiolysis. The efficiency of radiolysis and radioracemization were measured using gas chromatography. Results were obtained for leucine in 0.1 M aqueous solution for comparison with the clay-deposted leucine and leucine hydrochloride. It is found that radiolysis and radioracemization in the samples occurred according to a pseudo-first-order rate law. Comparison of the specific rate constants showed that leucine and its hydrochloride salt were the most resistant to both radiolysis and radioracemization, followed by leucine and its hydrochloride salt on kaolin. Leucine and its HCl salt on bentonite, and leucine in aqueous solution were found to be the least resistant to radiolysis and radioracemization. The experimental results are intepreted with respect to the Vester-Ulbricht mechanism for the origin of optical activity.

  18. The gap gene giant of Rhodnius prolixus is maternally expressed and required for proper head and abdomen formation.

    PubMed

    Lavore, Andrés; Pagola, Lucía; Esponda-Behrens, Natalia; Rivera-Pomar, Rolando

    2012-01-01

    The segmentation process in insects depends on a hierarchical cascade of gene activity. The first effectors downstream of the maternal activation are the gap genes, which divide the embryo in broad fields. We discovered a sequence corresponding to the leucine-zipper domain of the orthologue of the gene giant (Rp-gt) in traces from the genome of Rhodnius prolixus, a hemipteran with intermediate germ-band development. We cloned the Rp-gt gene from a normalized cDNA library and characterized its expression and function. Bioinformatic analysis of 12.5 kbp of genomic sequence containing the Rp-gt transcriptional unit shows a cluster of bona fide regulatory binding sites, which is similar in location and structure to the predicted posterior expression domain of the Drosophila orthologue. Rp-gt is expressed in ovaries and maternally supplied in the early embryo. The maternal contribution forms a gradient of scattered patches of mRNA in the preblastoderm embryo. Zygotic Rp-gt is expressed in two domains that after germ band extension are restricted to the head and the posterior growth zone. Parental RNAi shows that Rp-gt is required for proper head and abdomen formation. The head lacks mandibulary and maxillary appendages and shows reduced clypeus-labrum, while the abdomen lacks anterior segments. We conclude that Rp-gt is a gap gene on the head and abdomen and, in addition, has a function in patterning the anterior head capsule suggesting that the function of gt in hemipterans is more similar to dipterans than expected. Copyright © 2011. Published by Elsevier Inc.

  19. The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex.

    PubMed

    Garcia-Higuera, I; Kuang, Y; Denham, J; D'Andrea, A D

    2000-11-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with 8 complementation groups. Four of the FA genes have been cloned, and at least 3 of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a multisubunit protein complex. The FANCG protein binds directly to the amino terminal nuclear localization sequence (NLS) of FANCA, suggesting that FANCG plays a role in regulating FANCA nuclear accumulation. In the current study the functional consequences of FANCG/FANCA binding were examined. Correction of an FA-G cell line with the FANCG complementary DNA (cDNA) resulted in FANCA/FANCG binding, prolongation of the cellular half-life of FANCA, and an increase in the nuclear accumulation of the FA protein complex. Similar results were obtained upon correction of an FA-A cell line, with a reciprocal increase in the half-life of FANCG. Patient-derived mutant forms of FANCA, containing an intact NLS sequence but point mutations in the carboxy-terminal leucine zipper region, bound FANCG in the cytoplasm. The mutant forms failed to translocate to the nucleus of transduced cells, thereby suggesting a model of coordinated binding and nuclear translocation. These results demonstrate that the FANCA/FANCG interaction is required to maintain the cellular levels of both proteins. Moreover, at least one function of FANCG and FANCA is to regulate the nuclear accumulation of the FA protein complex. Failure to accumulate the nuclear FA protein complex results in the characteristic spectrum of clinical and cellular abnormalities observed in FA.

  20. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  1. Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    PubMed Central

    Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa

    2012-01-01

    Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425

  2. SMILE, a new orphan nuclear receptor SHP-interacting protein, regulates SHP-repressed estrogen receptor transactivation.

    PubMed

    Xie, Yuan-Bin; Lee, Ok-Hee; Nedumaran, Balachandar; Seong, Hyun-A; Lee, Kyeong-Min; Ha, Hyunjung; Lee, In-Kyu; Yun, Yungdae; Choi, Hueng-Sik

    2008-12-15

    SHP (small heterodimer partner) is a well-known NR (nuclear receptor) co-regulator. In the present study, we have identified a new SHP-interacting protein, termed SMILE (SHP-interacting leucine zipper protein), which was previously designated as ZF (Zhangfei) via a yeast two-hybrid system. We have determined that the SMILE gene generates two isoforms [SMILE-L (long isoform of SMILE) and SMILE-S (short isoform of SMILE)]. Mutational analysis has demonstrated that the SMILE isoforms arise from the alternative usage of initiation codons. We have confirmed the in vivo interaction and co-localization of the SMILE isoforms and SHP. Domain-mapping analysis indicates that the entire N-terminus of SHP and the middle region of SMILE-L are involved in this interaction. Interestingly, the SMILE isoforms counteract the SHP repressive effect on the transactivation of ERs (estrogen receptors) in HEK-293T cells (human embryonic kidney cells expressing the large T-antigen of simian virus 40), but enhance the SHP-repressive effect in MCF-7, T47D and MDA-MB-435 cells. Knockdown of SMILE gene expression using siRNA (small interfering RNA) in MCF-7 cells increases ER-mediated transcriptional activity. Moreover, adenovirus-mediated overexpression of SMILE and SHP down-regulates estrogen-induced mRNA expression of the critical cell-cycle regulator E2F1. Collectively, these results indicate that SMILE isoforms regulate the inhibition of ER transactivation by SHP in a cell-type-specific manner and act as a novel transcriptional co-regulator in ER signalling.

  3. Capsicum annuum homeobox 1 (CaHB1) is a nuclear factor that has roles in plant development, salt tolerance, and pathogen defense.

    PubMed

    Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja; Jang, Hyun A; Kwon, Suk-Yoon; Choi, Doil

    2013-12-06

    Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants were challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A Novel Kinesin-Like Protein with a Calmodulin-Binding Domain

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Narasimhulu, S. B.; Reddy, A. S. N.; Poovaiah, B. W.

    1996-01-01

    Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with S-35-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca(2+)-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCKI is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca(2+)/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.

  5. MELK and EZH2 Cooperate to Regulate Medulloblastoma Cancer Stem-like Cell Proliferation and Differentiation.

    PubMed

    Liu, Hailong; Sun, Qianwen; Sun, Youliang; Zhang, Junping; Yuan, Hongyu; Pang, Shuhuan; Qi, Xueling; Wang, Haoran; Zhang, Mingshan; Zhang, Hongwei; Yu, Chunjiang; Gu, Chunyu

    2017-09-01

    Medulloblastoma is the most common malignant brain tumor in children. Although accumulated research has suggested that cancer stem-like cells play a key role in medulloblastoma tumorigenesis, the specific molecular mechanism regarding proliferation remains elusive. Here, we reported more abundant expression of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) in medulloblastoma stem-like cells than in neural stem cells and the interaction between the two proteins could mediate the self-renewal of sonic hedgehog subtype medulloblastoma. In human medulloblastoma, extensive nodularity and large-cell/anaplastic subgroups differed according to the staining levels of MELK and EZH2 from the other two subgroups. The proportion of MELK- or EZH2-positive staining status could be considered as a potential indicator for survival. Mechanistically, MELK bound to and phosphorylated EZH2, and its methylation was induced by EZH2 in medulloblastoma, which could regulate the proliferation of cancer stem-like cells. In xenografts, loss of MELK or EZH2 attenuated medulloblastoma stem-like cell-derived tumor growth and promoted differentiation. These findings indicate that MELK-induced phosphorylation and EZH2-mediated methylation in MELK/EZH2 pathway are essential for medulloblastoma stem-like cell-derived tumor proliferation, thereby identifying a potential therapeutic strategy for these patients. Implications: This study demonstrates that the interaction occurring between MELK and EZH2 promotes self-proliferation and stemness, thus representing an attractive therapeutic target and potential candidate for diagnosis of medulloblastoma. Mol Cancer Res; 15(9); 1275-86. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Nonsecreted cytoplasmic alpha-fetoprotein: a newly discovered role in intracellular signaling and regulation. An update and commentary.

    PubMed

    Mizejewski, G J

    2015-12-01

    The concept of a non-secreted cytoplasmic-bound form of alpha-fetoprotein is not a new notion in AFP biological activities. Cytoplasmic AFP (CyAFP) is a long known but forgotten protein in search of a function other than a histochemical biomarker. In this report, CyAFP is presented as an "old" protein with a newly described intracellular function. In 1976, CyAFP was shown to be a product of hepatoma cells utilizing 14Cleucine incorporation and demonstrated by autoradiographic procedures. The synthesis of CyAFP without secretion was demonstrated to occur in both malignant and non-malignant cells encompassing hepatomas, ascite fluid cells, immature rodent uterus, MCF-7 breast cancers, and cytosols from human breast cancer patients. Using computer protein matching and alignments in AFP versus members of the nuclear receptor superfamily, a consecutive series of leucine zipper (heptad) repeats in AFP was previously reported, suggesting the possibility for protein-to-protein interactions. The potential for heptad heterodimerization between protein-binding partners provided the rationale for proposing that CyAFP might have the capability to form molecular hetero-complexes with cytoplasmic based transcription factors. More recent investigations have now provided experimental evidence that CyAFP is capable of colocalizing and interacting with transcription-associated factors. Such proteins can modulate intracellular signaling leading to regulation of transcription factors and initiation of growth in human cancer cells. Although circulating serum AFP is known as a growth-enhancing factor during development, cytoplasmic AFP has a lethal role in the oncogenesis, growth, and metastasis of adult liver cancer.

  7. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation

    PubMed Central

    Stojanova, Angelina; Tu, William B.; Ponzielli, Romina; Kotlyar, Max; Chan, Pak-Kei; Boutros, Paul C.; Khosravi, Fereshteh; Jurisica, Igor; Raught, Brian; Penn, Linda Z.

    2016-01-01

    ABSTRACT MYC is a key driver of cellular transformation and is deregulated in most human cancers. Studies of MYC and its interactors have provided mechanistic insight into its role as a regulator of gene transcription. MYC has been previously linked to chromatin regulation through its interaction with INI1 (SMARCB1/hSNF5/BAF47), a core member of the SWI/SNF chromatin remodeling complex. INI1 is a potent tumor suppressor that is inactivated in several types of cancers, most prominently as the hallmark alteration in pediatric malignant rhabdoid tumors. However, the molecular and functional interaction of MYC and INI1 remains unclear. Here, we characterize the MYC-INI1 interaction in mammalian cells, mapping their minimal binding domains to functionally significant regions of MYC (leucine zipper) and INI1 (repeat motifs), and demonstrating that the interaction does not interfere with MYC-MAX interaction. Protein-protein interaction network analysis expands the MYC-INI1 interaction to the SWI/SNF complex and a larger network of chromatin regulatory complexes. Genome-wide analysis reveals that the DNA-binding regions and target genes of INI1 significantly overlap with those of MYC. In an INI1-deficient rhabdoid tumor system, we observe that with re-expression of INI1, MYC and INI1 bind to common target genes and have opposing effects on gene expression. Functionally, INI1 re-expression suppresses cell proliferation and MYC-potentiated transformation. Our findings thus establish the antagonistic roles of the INI1 and MYC transcriptional regulators in mediating cellular and oncogenic functions. PMID:27267444

  8. Madm (Mlf1 adapter molecule) cooperates with Bunched A to promote growth in Drosophila

    PubMed Central

    2010-01-01

    Background The TSC-22 domain family (TSC22DF) consists of putative transcription factors harboring a DNA-binding TSC-box and an adjacent leucine zipper at their carboxyl termini. Both short and long TSC22DF isoforms are conserved from flies to humans. Whereas the short isoforms include the tumor suppressor TSC-22 (Transforming growth factor-β1 stimulated clone-22), the long isoforms are largely uncharacterized. In Drosophila, the long isoform Bunched A (BunA) acts as a growth promoter, but how BunA controls growth has remained obscure. Results In order to test for functional conservation among TSC22DF members, we expressed the human TSC22DF proteins in the fly and found that all long isoforms can replace BunA function. Furthermore, we combined a proteomics-based approach with a genetic screen to identify proteins that interact with BunA. Madm (Mlf1 adapter molecule) physically associates with BunA via a conserved motif that is only contained in long TSC22DF proteins. Moreover, Drosophila Madm acts as a growth-promoting gene that displays growth phenotypes strikingly similar to bunA phenotypes. When overexpressed, Madm and BunA synergize to increase organ growth. Conclusions The growth-promoting potential of long TSC22DF proteins is evolutionarily conserved. Furthermore, we provide biochemical and genetic evidence for a growth-regulating complex involving the long TSC22DF protein BunA and the adapter molecule Madm. See minireview at http://jbiol.com/content/9/1/8. PMID:20149264

  9. The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin α5β1 traffic.

    PubMed

    Chen, Pei-Wen; Luo, Ruibai; Jian, Xiaoying; Randazzo, Paul A

    2014-10-31

    Arf6 and the Arf6 GTPase-activating protein (GAP) ACAP1 are established regulators of integrin traffic important to cell adhesion and migration. However, the function of Arf6 with ACAP1 cannot explain the range of Arf6 effects on integrin-based structures. We propose that Arf6 has different functions determined, in part, by the associated Arf GAP. We tested this idea by comparing the Arf6 GAPs ARAP2 and ACAP1. We found that ARAP2 and ACAP1 had opposing effects on apparent integrin β1 internalization. ARAP2 knockdown slowed, whereas ACAP1 knockdown accelerated, integrin β1 internalization. Integrin β1 association with adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif (APPL)-positive endosomes and EEA1-positive endosomes was affected by ARAP2 knockdown and depended on ARAP2 GAP activity. ARAP2 formed a complex with APPL1 and colocalized with Arf6 and APPL in a compartment distinct from the Arf6/ACAP1 tubular recycling endosome. In addition, although ACAP1 and ARAP2 each colocalized with Arf6, they did not colocalize with each other and had opposing effects on focal adhesions (FAs). ARAP2 overexpression promoted large FAs, but ACAP1 overexpression reduced FAs. Taken together, the data support a model in which Arf6 has at least two sites of opposing action defined by distinct Arf6 GAPs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm andmore » is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.« less

  11. miR-214 promotes the proliferation and invasion of osteosarcoma cells through direct suppression of LZTS1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhengyu; Wang, Tao, E-mail: wangtaohappy2010@sohu.com

    2014-06-27

    Highlights: • miR-214 is upregulated in human OS tissues and inversely correlated with LZTS1 expression. • miR-214 directly targets LZTS1 by binding to its 3′-UTR. • miR-214 promotes OS cell proliferation, invasion and tumor growth. • Overexpression of LZTS1 reverses miR-214-induced proliferation and invasion of OS cells. - Abstract: Previous studies have shown that miR-214 functions either as an oncogene or a tumor suppressor in various human cancer types. The role of this microRNA in osteosarcoma (OS) is presently unclear. Here, we demonstrated that miR-214 is frequently upregulated in OS specimens, compared with noncancerous bone tissues. Bioinformatics analysis further revealedmore » leucine zipper, putative tumor suppressor 1 (LZTS1) as a potential target of miR-214. Expression patterns of miR-214 were inversely correlated with those of LZTS1 mRNA and protein in OS tissues. Data from reporter assays showed that miR-214 directly binds to the 3′-untranslated region (3′-UTR) of LZTS1 mRNA and suppresses expression at both transcriptional and translational levels. In functional assays, miR-214 promoted OS cell proliferation, invasion and tumor growth in nude mice, which could be reversed by overexpression of LZTS1. Taken together, our data provide compelling evidence that miR-214 functions as an onco-miRNA in OS, and its oncogenic effects are mediated chiefly through downregulation of LZTS1.« less

  12. Yersinia enterocolitica YopT and Clostridium difficile Toxin B Induce Expression of GILZ in Epithelial Cells

    PubMed Central

    Köberle, Martin; Göppel, David; Grandl, Tanja; Gaentzsch, Peer; Manncke, Birgit; Berchtold, Susanne; Müller, Steffen; Lüscher, Bernhard; Asselin-Labat, Marie-Liesse; Pallardy, Marc; Sorg, Isabel; Langer, Simon; Barth, Holger; Zumbihl, Robert; Autenrieth, Ingo B.; Bohn, Erwin

    2012-01-01

    Glucocorticoid induced-leucine zipper (GILZ) has been shown to be induced in cells by different stimuli such as glucocorticoids, IL-10 or deprivation of IL-2. GILZ has anti-inflammatory properties and may be involved in signalling modulating apoptosis. Herein we demonstrate that wildtype Yersinia enterocolitica which carry the pYV plasmid upregulated GILZ mRNA levels and protein expression in epithelial cells. Infection of HeLa cells with different Yersinia mutant strains revealed that the protease activity of YopT, which cleaves the membrane-bound form of Rho GTPases was sufficient to induce GILZ expression. Similarly, Clostridium difficile toxin B, another bacterial inhibitor of Rho GTPases induced GILZ expression. YopT and toxin B both increased transcriptional activity of the GILZ promoter in HeLa cells. GILZ expression could not be linked to the inactivation of an individual Rho GTPase by these toxins. However, forced expression of RhoA and RhoB decreased basal GILZ promoter activity. Furthermore, MAPK activation proved necessary for profound GILZ induction by toxin B. Promoter studies and gel shift analyses defined binding of upstream stimulatory factor (USF) 1 and 2 to a canonical c-Myc binding site (E-box) in the GILZ promoter as a crucial step of its trans-activation. In addition we could show that USF-1 and USF-2 are essential for basal as well as toxin B induced GILZ expression. These findings define a novel way of GILZ promoter trans-activation mediated by bacterial toxins and differentiate it from those mediated by dexamethasone or deprivation of IL-2. PMID:22792400

  13. Loss of the Spectraplakin Short Stop Activates the DLK Injury Response Pathway in Drosophila

    PubMed Central

    Valakh, Vera; Walker, Lauren J.; Skeath, James B.

    2013-01-01

    The MAPKKK dual leucine zipper-containing kinase (DLK, Wallenda in Drosophila) is an evolutionarily conserved component of the axonal injury response pathway. After nerve injury, DLK promotes degeneration of distal axons and regeneration of proximal axons. This dual role in coordinating degeneration and regeneration suggests that DLK may be a sensor of axon injury, and so understanding how DLK is activated is important. Two mechanisms are known to activate DLK. First, increasing the levels of DLK via overexpression or loss of the PHR ubiquitin ligases that target DLK activate DLK signaling. Second, in Caenorhabditis elegans, a calcium-dependent mechanism, can activate DLK. Here we describe a new mechanism that activates DLK in Drosophila: loss of the spectraplakin short stop (shot). In a genetic screen for mutants with defective neuromuscular junction development, we identify a hypomorphic allele of shot that displays synaptic terminal overgrowth and a precocious regenerative response to nerve injury. We demonstrate that both phenotypes are the result of overactivation of the DLK signaling pathway. We further show that, unlike mutations in the PHR ligase Highwire, loss of function of shot activates DLK without a concomitant increase in the levels of DLK. As a spectraplakin, Shot binds to both actin and microtubules and promotes cytoskeletal stability. The DLK pathway is also activated by downregulation of the TCP1 chaperonin complex, whose normal function is to promote cytoskeletal stability. These findings support the model that DLK is activated by cytoskeletal instability, which is a shared feature of both spectraplakin mutants and injured axons. PMID:24198375

  14. A mechanistic study on the effect of dexamethasone in moderating cell death in Chinese Hamster Ovary cell cultures.

    PubMed

    Jing, Ying; Qian, Yueming; Ghandi, Mahmoud; He, Aiqing; Borys, Michael C; Pan, Shih-Hsie; Li, Zheng Jian

    2012-01-01

    Dexamethasone (DEX) was previously shown (Jing et al., Biotechnol Bioeng. 2010;107:488-496) to play a dual role in increasing sialylation of recombinant glycoproteins produced by Chinese Hamster Ovary (CHO) cells. DEX addition increased sialic acid levels of a recombinant fusion protein through increased expression of α2,3-sialyltransferase and β1,4-galactosyltransferase, but also decreased the sialidase-mediated, extracellular degradation of sialic acid through slowing cell death at the end of the culture period. This study examines the underlying mechanism for this cytoprotective action by studying the transcriptional response of the CHO cell genome upon DEX treatment using DNA microarrays and gene ontology term analysis. Many of those genes showing a significant transcriptional response were associated with the regulation of programmed cell death. The gene with the highest change in expression level, as validated by Quantitative PCR assays with TaqMan® probes and confirmed by Western Blot analysis, was the antiapoptotic gene Tsc22d3, also referred to as GILZ (glucocorticoid-induced leucine zipper). The pathway by which DEX suppressed cell death towards the end of the culture period was also confirmed by showing involvement of glucocorticoid receptors and GILZ through studies using the glucocorticoid antagonist mifepristone (RU-486). These findings advance the understanding of the mechanism by which DEX suppresses cell death in CHO cells and provide a rationale for the application of glucocorticoids in CHO cell culture processes. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  15. Transforming properties of the Huntingtin interacting protein 1/ platelet-derived growth factor beta receptor fusion protein.

    PubMed

    Ross, T S; Gilliland, D G

    1999-08-06

    We have previously reported that the Huntingtin interacting protein 1 (HIP1) gene is fused to the platelet-derived growth factor beta receptor (PDGFbetaR) gene in a patient with chronic myelomonocytic leukemia. We now show that HIP1/PDGFbetaR oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the murine hematopoietic cell line, Ba/F3, to interleukin-3-independent growth. A kinase-inactive mutant is neither tyrosine-phosphorylated nor able to transform Ba/F3 cells. Oligomerization and kinase activation required the 55-amino acid carboxyl-terminal TALIN homology region but not the leucine zipper domain. Tyrosine phosphorylation of a 130-kDa protein and STAT5 correlates with transformation in cells expressing HIP1/PDGFbetaR and related mutants. A deletion mutant fusion protein that contains only the TALIN homology region of HIP1 fused to PDGFbetaR is incapable of transforming Ba/F3 cells and does not tyrosine-phosphorylate p130 or STAT5, although it is itself constitutively tyrosine-phosphorylated. We have also analyzed cells expressing Tyr --> Phe mutants of HIP1/PDGFbetaR in the known PDGFbetaR SH2 docking sites and report that none of these sites are necessary for STAT5 activation, p130 phosphorylation, or Ba/F3 transformation. The correlation of factor-independent growth of hematopoietic cells with p130 and STAT5 phosphorylation/activation in both the HIP1/PDGFbetaR Tyr --> Phe and deletion mutational variants suggests that both STAT5 and p130 are important for transformation mediated by HIP1/PDGFbetaR.

  16. Huntingtin Interacting Protein 1 Is a Clathrin Coat Binding Protein Required for Differentiation of late Spermatogenic Progenitors

    PubMed Central

    Rao, Dinesh S.; Chang, Jenny C.; Kumar, Priti D.; Mizukami, Ikuko; Smithson, Glennda M.; Bradley, Sarah V.; Parlow, A. F.; Ross, Theodora S.

    2001-01-01

    Huntingtin-interacting protein 1 (HIP1) interacts with huntingtin, the protein whose gene is mutated in Huntington's disease. In addition, a fusion between HIP1 and platelet-derived growth factor β receptor causes chronic myelomonocytic leukemia. The HIP1 proteins, including HIP1 and HIP1-related (HIP1r), have an N-terminal polyphosphoinositide-interacting epsin N-terminal homology, domain, which is found in proteins involved in clathrin-mediated endocytosis. HIP1 and HIP1r also share a central leucine zipper and an actin binding TALIN homology domain. Here we show that HIP1, like HIP1r, colocalizes with clathrin coat components. We also show that HIP1 physically associates with clathrin and AP-2, the major components of the clathrin coat. To further understand the putative biological role(s) of HIP1, we have generated a targeted deletion of murine HIP1. HIP1−/− mice developed into adulthood, did not develop overt neurologic symptoms in the first year of life, and had normal peripheral blood counts. However, HIP1-deficient mice exhibited testicular degeneration with increased apoptosis of postmeiotic spermatids. Postmeiotic spermatids are the only cells of the seminiferous tubules that express HIP1. These findings indicate that HIP1 is required for differentiation, proliferation, and/or survival of spermatogenic progenitors. The association of HIP1 with clathrin coats and the requirement of HIP1 for progenitor survival suggest a role for HIP1 in the regulation of endocytosis. PMID:11604514

  17. Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice.

    PubMed

    Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui; Chen, Jake

    2014-06-15

    Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. Copyright © 2014 the American Physiological Society.

  18. Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats

    PubMed Central

    Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379

  19. Zipper model for the melting of thin films

    NASA Astrophysics Data System (ADS)

    Abdullah, Mikrajuddin; Khairunnisa, Shafira; Akbar, Fathan

    2016-01-01

    We propose an alternative model to Lindemann’s criterion for melting that explains the melting of thin films on the basis of a molecular zipper-like mechanism. Using this model, a unique criterion for melting is obtained. We compared the results of the proposed model with experimental data of melting points and heat of fusion for many materials and obtained interesting results. The interesting thing reported here is how complex physics problems can sometimes be modeled with simple objects around us that seemed to have no correlation. This kind of approach is sometimes very important in physics education and should always be taught to undergraduate or graduate students.

  20. DNA hybridization kinetics: zippering, internal displacement and sequence dependence.

    PubMed

    Ouldridge, Thomas E; Sulc, Petr; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2013-10-01

    Although the thermodynamics of DNA hybridization is generally well established, the kinetics of this classic transition is less well understood. Providing such understanding has new urgency because DNA nanotechnology often depends critically on binding rates. Here, we explore DNA oligomer hybridization kinetics using a coarse-grained model. Strand association proceeds through a complex set of intermediate states, with successful binding events initiated by a few metastable base-pairing interactions, followed by zippering of the remaining bonds. But despite reasonably strong interstrand interactions, initial contacts frequently dissociate because typical configurations in which they form differ from typical states of similar enthalpy in the double-stranded equilibrium ensemble. Initial contacts must be stabilized by two or three base pairs before full zippering is likely, resulting in negative effective activation enthalpies. Non-Arrhenius behavior arises because the number of base pairs required for nucleation increases with temperature. In addition, we observe two alternative pathways-pseudoknot and inchworm internal displacement-through which misaligned duplexes can rearrange to form duplexes. These pathways accelerate hybridization. Our results explain why experimentally observed association rates of GC-rich oligomers are higher than rates of AT- rich equivalents, and more generally demonstrate how association rates can be modulated by sequence choice.

  1. Ion componsition of zipper events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, S.M.; Shelley, E.G.; Sharp, R.D.

    1981-05-01

    A class of ion distributions has recently been identified by Fennell et al. (this issue). The distributions are composed of two components, a low-energy component with peak fluxes directed along the field line and a high-energy component with peak fluxes in the perpendicular direction. The transiton between the two components occur over a very narrow range of energies but can occur anywhere between approximately several hundred electron volts and 20 keV. Because of the appearance of this distribution on an energy versus time spectrogram, the ion events have been called zippers. The purpose of this report is to examine themore » mass composition of the zipper events. We find that the low-energy and parallel component is composed primarily of O/sup +/, with, to a lesser degree, H/sup +/ and a trace of He/sup +/. The high-energy and perpendicular component is predominantly H/sup +/, with the relative abundances of O/sup +/ and He/sup +/ down from those of the low-energy component by a factor of approx.10. These results suggest that whereas the low-energy component is probably ionospheric in origin, the source of the high-energy components is most probably the plsamasheet.« less

  2. Use of the [(14)C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton.

    PubMed

    Fischer, H; Pusch, M

    1999-10-01

    Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [(14)C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 microM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 microM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined.

  3. Use of the [14C]Leucine Incorporation Technique To Measure Bacterial Production in River Sediments and the Epiphyton

    PubMed Central

    Fischer, Helmut; Pusch, Martin

    1999-01-01

    Bacterial production is a key parameter for the understanding of carbon cycling in aquatic ecosystems, yet it remains difficult to measure in many aquatic habitats. We therefore tested the applicability of the [14C]leucine incorporation technique for the measurement of bulk bacterial production in various habitats of a lowland river ecosystem. To evaluate the method, we determined (i) extraction efficiencies of bacterial protein from the sediments, (ii) substrate saturation of leucine in sediments, the biofilms on aquatic plants (epiphyton), and the pelagic zone, (iii) bacterial activities at different leucine concentrations, (iv) specificity of leucine uptake by bacteria, and (v) the effect of the incubation technique (perfused-core incubation versus slurry incubation) on leucine incorporation into protein. Bacterial protein was best extracted from sediments and precipitated by hot trichloroacetic acid treatment following ultrasonication. For epiphyton, an alkaline-extraction procedure was most efficient. Leucine incorporation saturation occurred at 1 μM in epiphyton and 100 nM in the pelagic zone. Saturation curves in sediments were difficult to model but showed the first level of leucine saturation at 50 μM. Increased uptake at higher leucine concentrations could be partly attributed to eukaryotes. Addition of micromolar concentrations of leucine did not enhance bacterial electron transport activity or DNA replication activity. Similar rates of leucine incorporation into protein calculated for whole sediment cores were observed after slurry and perfused-core incubations, but the rates exhibited strong vertical gradients after the core incubation. We conclude that the leucine incorporation method can measure bacterial production in a wide range of aquatic habitats, including fluvial sediments, if substrate saturation and isotope dilution are determined. PMID:10508068

  4. 21 CFR 862.1460 - Leucine aminopeptidase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Systems § 862.1460 Leucine aminopeptidase test system. (a) Identification. A leucine aminopeptidase test system is a device intended to measure the activity of the enzyme leucine amino-peptidase in serum... diseases such as viral hepatitis and obstructive jaundice. (b) Classification. Class I (general controls...

  5. 21 CFR 862.1460 - Leucine aminopeptidase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1460 Leucine aminopeptidase test system. (a) Identification. A leucine aminopeptidase test system is a device intended to measure the activity of the enzyme leucine amino-peptidase in serum... diseases such as viral hepatitis and obstructive jaundice. (b) Classification. Class I (general controls...

  6. Leucine Metabolism in T Cell Activation: mTOR Signaling and Beyond123

    PubMed Central

    Powell, Jonathan D; Hutson, Susan M

    2016-01-01

    In connection with the increasing interest in metabolic regulation of the immune response, this review discusses current advances in understanding the role of leucine and leucine metabolism in T lymphocyte (T cell) activation. T cell activation during the development of an immune response depends on metabolic reprogramming to ensure that sufficient nutrients and energy are taken up by the highly proliferating T cells. Leucine has been described as an important essential amino acid and a nutrient signal that activates complex 1 of the mammalian target of rapamycin (mTORC1), which is a critical regulator of T cell proliferation, differentiation, and function. The role of leucine in these processes is further discussed in relation to amino acid transporters, leucine-degrading enzymes, and other metabolites of leucine metabolism. A new model of T cell regulation by leucine is proposed and outlines a chain of events that leads to the activation of mTORC1 in T cells. PMID:27422517

  7. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.

    PubMed

    Saxton, Robert A; Knockenhauer, Kevin E; Wolfson, Rachel L; Chantranupong, Lynne; Pacold, Michael E; Wang, Tim; Schwartz, Thomas U; Sabatini, David M

    2016-01-01

    Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway. Copyright © 2016, American Association for the Advancement of Science.

  8. Hypothalamic Leucine Metabolism Regulates Liver Glucose Production

    PubMed Central

    Su, Ya; Lam, Tony K.T.; He, Wu; Pocai, Alessandro; Bryan, Joseph; Aguilar-Bryan, Lydia; Gutiérrez-Juárez, Roger

    2012-01-01

    Amino acids profoundly affect insulin action and glucose metabolism in mammals. Here, we investigated the role of the mediobasal hypothalamus (MBH), a key center involved in nutrient-dependent metabolic regulation. Specifically, we tested the novel hypothesis that the metabolism of leucine within the MBH couples the central sensing of leucine with the control of glucose production by the liver. We performed either central (MBH) or systemic infusions of leucine in Sprague-Dawley male rats during basal pancreatic insulin clamps in combination with various pharmacological and molecular interventions designed to modulate leucine metabolism in the MBH. We also examined the role of hypothalamic ATP-sensitive K+ channels (KATP channels) in the effects of leucine. Enhancing the metabolism of leucine acutely in the MBH lowered blood glucose through a biochemical network that was insensitive to rapamycin but strictly dependent on the hypothalamic metabolism of leucine to α-ketoisocaproic acid and, further, insensitive to acetyl- and malonyl-CoA. Functional KATP channels were also required. Importantly, molecular attenuation of this central sensing mechanism in rats conferred susceptibility to developing hyperglycemia. We postulate that the metabolic sensing of leucine in the MBH is a previously unrecognized mechanism for the regulation of hepatic glucose production required to maintain glucose homeostasis. PMID:22187376

  9. Prostate Cancer Cells in Different Androgen Receptor Status Employ Different Leucine Transporters.

    PubMed

    Otsuki, Hideo; Kimura, Toru; Yamaga, Takashi; Kosaka, Takeo; Suehiro, Jun-Ichi; Sakurai, Hiroyuki

    2017-02-01

    Leucine stimulates cancer cell proliferation through the mTOR pathway, therefore, inhibiting leucine transporters may be a novel therapeutic target for cancer. L-type amino acid transporter (LAT) 1, a Na + -independent amino acid transporter, is highly expressed in many tumor cells. However, leucine transporter(s) in different stages of prostate cancer, particularly in the stages of castration resistance with androgen receptor (AR) expression, is unclear. LNCaP and DU145 and PC-3 cell lines were used as a model of androgen dependent, and metastatic prostate cancer. A new "LN-cr" cell line was established after culturing LNCaP cells for 6 months under androgen-free conditions, which is considered a model of castration resistant prostate cancer (CRPC) with androgen AR expression. The expression of leucine transporters was investigated with quantitative PCR and immunofluorescence. Uptake of 14 C Leucine was examined in the presence or absence of BCH (a pan-LAT inhibitor), JPH203 (an LAT1-specific inhibitor), or Na + . Cell growth was assessed with MTT assay. siRNA studies were performed to evaluate the indispensability of y + LAT2 on leucine uptake and cell viability in LN-cr. Cell viability showed a 90% decrease in the absence of leucine in all four cell lines. LNCaP cells principally expressed LAT3, and their leucine uptake was more than 90% Na + -independent. BCH, but not JPH203, inhibited leucine uptake, and cell proliferation (IC 50BCH :15 mM). DU145 and PC-3 cells predominantly expressed LAT1. Leucine uptake and cell growth were suppressed by BCH or JPH203 in a dose-dependent manner (IC 50BCH : ∼20 mM, IC 50JPH203 : ∼5 µM). In LN-cr cells, Na + -dependent uptake of leucine was 3.8 pmol/mgprotein/min, while, Na + -independent uptake was only 0.52 (P < 0.05). Leucine uptake of LN-cr was largely (∼85%) Na + -dependent. y + LAT2 expression was confirmed in LN-cr. Knockdown of y + LAT2 lead to significant leucine uptake inhibition (40%) and cell growth inhibition (20%). New CRPC cell line with increased expression of y + LAT2 as a leucine transporter was established in vitro. Anti-leucine transporter therapy could be an important option against prostate cancer. Prostate 77:222-233, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    PubMed Central

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only α-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  11. Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway

    DOE PAGES

    Saxton, Robert A.; Knockenhauer, Kevin E.; Wolfson, Rachel L.; ...

    2015-11-19

    Eukaryotic cells coordinate growth with the availability of nutrients through mTOR complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag GTPases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. We present the 2.7-Å crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucinemore » leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. Lastly, these results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.« less

  12. Sestrin2 is a leucine sensor for the mTORC1 pathway

    PubMed Central

    Wolfson, Rachel L.; Chantranupong, Lynne; Saxton, Robert A.; Shen, Kuang; Scaria, Sonia M.; Cantor, Jason R.; Sabatini, David M.

    2015-01-01

    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, a GTPase activating protein (GAP); GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a Kd of 20 µM, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. PMID:26449471

  13. Leucine reduces reactive oxygen species levels via an energy metabolism switch by activation of the mTOR-HIF-1α pathway in porcine intestinal epithelial cells.

    PubMed

    Hu, Jun; Nie, Yangfan; Chen, Shifeng; Xie, Chunlin; Fan, Qiwen; Wang, Zhichang; Long, Baisheng; Yan, Guokai; Zhong, Qing; Yan, Xianghua

    2017-08-01

    Leucine serves not only as a substrate for protein synthesis, but also as a signal molecule involved in protein metabolism. However, whether the levels of cellular reactive oxygen species (ROS), which have damaging effects on cellular DNA, proteins, and lipids, are regulated by leucine is still unclear. Here, we report that leucine supplementation reduces ROS levels in intestinal epithelial cells of weaned piglets. A proteomics analysis revealed that leucine supplementation induces an energy metabolism switch from oxidative phosphorylation (OXPHOS) towards glycolysis. The leucine-induced ROS reduction and the energy metabolism switch were further validated in cultured cells. Mechanistically, our data revealed that leucine-induced ROS reduction actually depends on the energy metabolism switch from OXPHOS towards glycolysis through the mechanistic target of rapamycin (mTOR)- hypoxia-inducible factor-1alpha (HIF-1α) pathway. These findings reveal a vital regulatory role of leucine as the signal molecule involved in an energy metabolism switch in mammals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Toxicity of leucine-containing peptides in Escherichia coli caused by circumvention of leucine transport regulation.

    PubMed Central

    Tavori, H; Kimmel, Y; Barak, Z

    1981-01-01

    A variety of leucine-containing peptides (LCP), Phe-Leu, Gly-Leu, Pro-Leu, Ala-Leu, Ala-Leu-Lys, Leu-Phe-Ala, Leu-Leu-Leu, and Leu-Gly-Gly, inhibited the growth of a prototrophic strain of Escherichia coli K-12 at concentrations between 0.05 and 0.28 mM. Toxicity requires normal uptake of peptides. When peptide transport was impaired by mutations, strains became resistant to the respective LCP. Inhibition of growth occurred immediately after the addition of LCP, and was relieved when 0.4 mM isoleucine was added. The presence of Gly-Leu in the medium correlated with the inhibition of growth, and the bacteria began to grow at the normal rate 70 min after Gly-Leu became undetectable. Disappearance of the peptide corresponded with the appearance of free leucine and glycine in the medium. The concentration of leucine inside the LCP-treated bacteria was higher than that in the leucine-treated and the control cultures. We suggest that entry of LCP into the cells via peptide transport systems circumvents the regulation of leucine transport, thereby causing abnormality high concentrations of leucine inside the cells. This accumulation of leucine interferes with the biosynthesis of isoleucine and inhibits the growth of the bacteria. Images PMID:7012134

  15. Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system.

    PubMed

    Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying; Guo, Feifan

    2011-09-01

    We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis.

  16. The Leucine Incorporation Method Estimates Bacterial Growth Equally Well in Both Oxic and Anoxic Lake Waters

    PubMed Central

    Bastviken, David; Tranvik, Lars

    2001-01-01

    Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents. The method was modified to avoid O2 contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O2 contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel. Isotope saturation occurred at a leucine concentration of above about 50 nM in both oxic and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O2 contamination of anoxic water during 1-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O2-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace. PMID:11425702

  17. Leucine and HMB differentially modulate proteasome system in skeletal muscle under different sarcopenic conditions.

    PubMed

    Baptista, Igor L; Silva, Willian J; Artioli, Guilherme G; Guilherme, Joao Paulo L F; Leal, Marcelo L; Aoki, Marcelo S; Miyabara, Elen H; Moriscot, Anselmo S

    2013-01-01

    In the present study we have compared the effects of leucine supplementation and its metabolite β-hydroxy-β-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB.

  18. Leucine and HMB Differentially Modulate Proteasome System in Skeletal Muscle under Different Sarcopenic Conditions

    PubMed Central

    Baptista, Igor L.; Silva, Willian J.; Artioli, Guilherme G.; Guilherme, Joao Paulo L. F.; Leal, Marcelo L.; Aoki, Marcelo S.; Miyabara, Elen H.; Moriscot, Anselmo S.

    2013-01-01

    In the present study we have compared the effects of leucine supplementation and its metabolite β-hydroxy-β-methyl butyrate (HMB) on the ubiquitin-proteasome system and the PI3K/Akt pathway during two distinct atrophic conditions, hindlimb immobilization and dexamethasone treatment. Leucine supplementation was able to minimize the reduction in rat soleus mass driven by immobilization. On the other hand, leucine supplementation was unable to provide protection against soleus mass loss in dexamethasone treated rats. Interestingly, HMB supplementation was unable to provide protection against mass loss in all treatments. While solely fiber type I cross sectional area (CSA) was protected in immobilized soleus of leucine-supplemented rats, none of the fiber types were protected by leucine supplementation in rats under dexamethasone treatment. In addition and in line with muscle mass results, HMB treatment did not attenuate CSA decrease in all fiber types against either immobilization or dexamethasone treatment. While leucine supplementation was able to minimize increased expression of both Mafbx/Atrogin and MuRF1 in immobilized rats, leucine was only able to minimize Mafbx/Atrogin in dexamethasone treated rats. In contrast, HMB was unable to restrain the increase in those atrogenes in immobilized rats, but in dexamethasone treated rats, HMB minimized increased expression of Mafbx/Atrogin. The amount of ubiquitinated proteins, as expected, was increased in immobilized and dexamethasone treated rats and only leucine was able to block this increase in immobilized rats but not in dexamethasone treated rats. Leucine supplementation maintained soleus tetanic peak force in immobilized rats at normal level. On the other hand, HMB treatment failed to maintain tetanic peak force regardless of treatment. The present data suggested that the anti-atrophic effects of leucine are not mediated by its metabolite HMB. PMID:24124592

  19. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice

    PubMed Central

    Zhao, Yang; Dai, Xiao-yan; Zhou, Zhou; Zhao, Ge-xin; Wang, Xian; Xu, Ming-jiang

    2016-01-01

    Aim: Recent evidence suggests that the essential amino acid leucine may be involved in systemic cholesterol metabolism. In this study, we investigated the effects of leucine supplementation on the development of atherosclerosis in apoE null mice. Methods: ApoE null mice were fed with chow supplemented with leucine (1.5% w/v) in drinking water for 8 week. Aortic atherosclerotic lesions were examined using Oil Red O staining. Plasma lipoprotein-cholesterol levels were measured with fast protein liquid chromatography. Hepatic gene expression was detected using real-time PCR and Western blot analyses. Results: Leucine supplementation resulted in 57.6% reduction of aortic atherosclerotic lesion area in apoE null mice, accompanied by 41.2% decrease of serum LDL-C levels and 40.2% increase of serum HDL-C levels. The body weight, food intake and blood glucose level were not affected by leucine supplementation. Furthermore, leucine supplementation increased the expression of Abcg5 and Abcg8 (that were involved in hepatic cholesterol efflux) by 1.28- and 0.86-fold, respectively, and significantly increased their protein levels. Leucine supplementation also increased the expression of Srebf1, Scd1 and Pgc1b (that were involved in hepatic triglyceride metabolism) by 3.73-, 1.35- and 1.71-fold, respectively. Consequently, leucine supplementation resulted in 51.77% reduction of liver cholesterol content and 2.2-fold increase of liver triglyceride content. Additionally, leucine supplementation did not affect the serum levels of IL-6, IFN-γ, TNF-α, IL-10 and IL-12, but markedly decreased the serum level of MCP-1. Conclusion: Leucine supplementation effectively attenuates atherosclerosis in apoE null mice by improving the plasma lipid profile and reducing systemic inflammation. PMID:26687933

  1. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    PubMed

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  2. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes

    PubMed Central

    Sun, Xiaocun; Zemel, Michael B

    2009-01-01

    Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT-1 mediates leucine induced mitochondrial biogenesis in muscle cells. Conclusion These data suggest that leucine and calcitriol modulation of muscle and adipocyte energy metabolism is mediated, in part, by mitochondrial biogenesis. PMID:19500359

  3. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers.

    PubMed

    Ullrich, Sina S; Fitzgerald, Penelope Ce; Schober, Gudrun; Steinert, Robert E; Horowitz, Michael; Feinle-Bisset, Christine

    2016-11-01

    The branched-chain amino acids leucine and isoleucine lower blood glucose after oral glucose ingestion, and the intraduodenal infusion of leucine decreases energy intake in healthy, lean men. We investigated the effects of the intragastric administration of leucine and isoleucine on the gastric emptying of, and blood glucose responses to, a physiologic mixed-macronutrient drink and subsequent energy intake. In 2 separate studies, 12 healthy, lean subjects received on 3 separate occasions an intragastric infusion of 5 g leucine (leucine-5g) or an intragastric infusion of 10 g leucine (leucine-10g), an intragastric infusion of 5 g isoleucine (isoleucine-5g) or an intragastric infusion of 10 g isoleucine (isoleucine-10g), or a control. Fifteen minutes later, subjects consumed a mixed-nutrient drink (400 kcal, 56 g carbohydrates, 15 g protein, and 12 g fat), and gastric emptying ( 13 C-acetate breath test) and blood glucose, plasma insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (leucine study only) were measured for 60 min. Immediately afterward, energy intake from a cold, buffet-style meal was assessed. Compared with the control, leucine-10g decreased the blood glucose area under the curve (AUC) (P < 0.05) and tended to reduce peak blood glucose (P = 0.07), whereas effects of leucine-5g were NS. Leucine-10g, but not leucine-5g, increased plasma insulin and C-peptide AUCs (P < 0.01 for both), but neither dose affected glucagon, GLP-1, GIP, cholecystokinin, gastric emptying, or energy intake. Compared with the control, isoleucine-10g reduced the blood glucose AUC and peak blood glucose (P < 0.01), whereas effects of isoleucine-5g were NS. Neither load affected insulin, C-peptide, glucagon, GLP-1, or GIP. Isoleucine-10g, but not isoleucine-5g, slowed gastric emptying (P < 0.05), but gastric emptying was not correlated with the blood glucose AUC. Isoleucine did not affect energy intake. In healthy subjects, both leucine and isoleucine reduced blood glucose in response to a mixed-nutrient drink but did not affect subsequent energy intake. The mechanisms underlying glucose lowering appear to differ; leucine stimulated insulin, whereas isoleucine acted insulin independently. These trials were registered at www.anzctr.org.au as 12613000899741 and 12614000837628. © 2016 American Society for Nutrition.

  4. L-leucine, L-methionine, and L-phenylalanine share a Na(+)/K (+)-dependent amino acid transporter in shrimp hepatopancreas.

    PubMed

    Duka, Ada; Ahearn, Gregory A

    2013-08-01

    Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of (3)H-L-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. (3)H-L-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na(+)- and K(+)-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. (3)H-L-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, L-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM (3)H-L-leucine in both Na(+)- and K(+)-containing incubation media. The residual (3)H-L-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an L-methionine- and cation-independent transport system. (3)H-L-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [L-leucine], following the carrier-mediated Michaelis-Menten equation. In NaCl, (3)H-L-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. L-methionine or L-phenylalanine (7 and 20 mM) were competitive inhibitors of (3)H-L-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in (3)H-L-leucine influx K M, but no significant response in (3)H-L-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with (3)H-L-leucine, significantly (p < 0.01) increasing (3)H-L-leucine influx K M in the presence of sodium, but having negligible effect on (3)H-L-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport (3)H-L-leucine by a single L-methionine- and L-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na(+) or K(+) acting as co-transport drivers binding to shared activator sites.

  5. Stimulation of skeletal muscle protein synthesis in neonatal pigs by long-term infusion of leucine is amino acid dependent

    USDA-ARS?s Scientific Manuscript database

    Infusing leucine for 1 hr increases skeletal muscle protein synthesis in neonatal pigs, but this is not sustained for 2 h unless the leucine-induced fall in amino acids is prevented. We aimed to determine whether continuous leucine infusion can stimulate protein synthesis for a prolonged period whe...

  6. Stimulation of muscle protein synthesis by prolonged parenteral infusion of leucine is dependent on amino acid availability in neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    The postprandial rise in amino acids, particularly leucine, stimulates muscle protein synthesis in neonates. Previously, we showed that a 1-h infusion of leucine increased protein synthesis, but this response was not sustained for 2 h unless the leucine-induced decrease in amino acids was prevented....

  7. Enhanced Incorporation of 3-Hydroxy-4-Methylvalerate Unit into Biosynthetic Polyhydroxyalkanoate Using Leucine as a Precursor

    PubMed Central

    2011-01-01

    Ralstonia eutropha PHB-4 expressing Pseudomonas sp. 61-3 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1Ps) synthesizes PHA copolymer containing 3-hydroxybutyrate (3HB) and a small amount (0.5 mol%) of 3-hydroxy-4-methylvalerate (3H4MV) from fructose as a carbon source. In this study, enhanced incorporation of 3H4MV into PHA was investigated using branched amino acid leucine as a precursor of 3H4MV. Leucine has the same carbon backbone as 3H4MV and is expected to be a natural and self-producible precursor. We found that the incorporation of 3H4MV was enhanced by the supplementation of excess amount (10 g/L) of leucine in the culture medium. This finding indicates that 3H4MV can be derived from leucine. To increase metabolic flux to leucine biosynthesis in the host strain by eliminating the feedback inhibition, the cells were subjected to N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and leucine analog resistant mutants were generated. The mutants showed statistically higher 3H4MV fraction than the parent strain without supplementing leucine. Additionally, by supplying excess amount of leucine, the mutants synthesized 3HB-based PHA copolymer containing 3.1 mol% 3H4MV and 1.2 mol% 3-hydroxyvalerate (3HV) as minor constituents, which significantly affected the thermal properties of the copolymer. This study demonstrates that it is possible to enhance the monomer supply of 3H4MV into PHA by manipulating leucine metabolism. PMID:21906338

  8. Leucine Deprivation Stimulates Fat Loss via Increasing CRH Expression in the Hypothalamus and Activating The Sympathetic Nervous System

    PubMed Central

    Cheng, Ying; Zhang, Qian; Meng, Qingshu; Xia, Tingting; Huang, Zhiying; Wang, Chunxia; Liu, Bin; Chen, Shanghai; Xiao, Fei; Du, Ying

    2011-01-01

    We previously showed that leucine deprivation decreases abdominal fat mass largely by increasing energy expenditure, as demonstrated by increased lipolysis in white adipose tissue (WAT) and uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT). The goal of the present study was to investigate the possible involvement of central nervous system (CNS) in this regulation and elucidate underlying molecular mechanisms. For this purpose, levels of genes and proteins related to lipolysis in WAT and UCP1 expression in BAT were analyzed in wild-type mice after intracerebroventricular administration of leucine or corticotrophin-releasing hormone antibodies, or in mice deleted for three β-adrenergic receptors, after being maintained on a leucine-deficient diet for 7 d. Here, we show that intracerebroventricular administration of leucine significantly attenuates abdominal fat loss and blocks activation of hormone sensitive lipase in WAT and induction of UCP1 in BAT in leucine-deprived mice. Furthermore, we provide evidence that leucine deprivation stimulates fat loss by increasing expression of corticotrophin-releasing hormone in the hypothalamus via activation of stimulatory G protein/cAMP/protein kinase A/cAMP response element-binding protein pathway. Finally, we show that the effect of leucine deprivation on fat loss is mediated by activation of the sympathetic nervous system. These results suggest that CNS plays an important role in regulating fat loss under leucine deprivation and thereby provide novel and important insights concerning the importance of CNS leucine in the regulation of energy homeostasis. PMID:21719534

  9. Targeting Inflammatory T Helper Cells via Retinoic Acid-Related Orphan Receptor Gamma t Is Ineffective to Prevent Allo-Response-Driven Colitis.

    PubMed

    Buchele, Vera; Abendroth, Benjamin; Büttner-Herold, Maike; Vogler, Tina; Rothamer, Johanna; Ghimire, Sakhila; Ullrich, Evelyn; Holler, Ernst; Neurath, Markus F; Hildner, Kai

    2018-01-01

    Intestinal graft-versus-host disease (GvHD) is a life-threatening, inflammatory donor T cell-mediated complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the light of the reported efficacy of interleukin-23 (IL-23)-blockade to mitigate syngeneic intestinal inflammation in inflammatory bowel disease patients, targeting IL-23 and thereby interleukin-17a (IL-17a) producing T helper (Th17) cells as the T cell subset assumed to be mostly regulated by IL-23, has emerged as a putatively general concept to harness immune-mediated mucosal inflammation irrespective of the underlying trigger. However, the role of Th17 cells during allo-response driven colitis remains ambiguous due to a series of studies with inconclusive results. Interestingly, we recently identified granulocyte-macrophage colony-stimulating factor (GM-CSF + ) T cells to be promoted by interleukin-7 (IL-7) signaling and controlled by the activating protein-1 transcription factor family member basic leucine zipper transcription factor ATF-like (BATF) as critical mediators of intestinal GvHD in mice. Given the dual role of BATF, the contribution of IL-23-mediated signaling within donor T cells and bona fide Th17 cells remains to be delineated from the regulation of GM-CSF + T cells in the absence of BATF. Here, we found in a complete MHC class I-mismatched model that genetic inactivation of the IL-23 receptor (IL-23R) or the transcription factor retinoic acid-related orphan receptor gamma t (RORγt) within donor T cells similarly ablated Th17 cell formation in vivo but preserved the T cells' ability to induce intestinal GvHD in a compared to wild-type controls indistinguishable manner. Importantly, RORγt-independent manifestation of intestinal GvHD was completely dependent on BATF-regulated GM-CSF + T cells as BATF/RORγt double-deficient T cells failed to induce colitis and the antibody-mediated blockage of IL-7/IL-7R interaction and GM-CSF significantly diminished signs of intestinal GvHD elicited by RORγt-deficient donor T cells. Finally, in analogy to our murine studies, colonic RORC expression levels inversely correlated with the presence of GvHD in allo-HSCT patients. Together, this study provides a crucial example of a BATF-dependent, however, IL-23R signaling- and RORγt-, i.e., Th17 fate-independent regulation of a colitogenic T cell population critically impacting the current understanding of intestinal GvHD.

  10. ATF4 is involved in the regulation of simulated microgravity induced integrated stress response

    NASA Astrophysics Data System (ADS)

    Li, Yingxian; Li, Qi; Wang, Xiaogang; Sun, Qiao; Wan, Yumin; Li, Yinghui; Bai, Yanqiang

    Objective: Many important metabolic and signaling pathways have been identified as being affected by microgravity, thereby altering cellular functions such as proliferation, differentiation, maturation and cell survival. It has been demonstrated that microgravity could induce all kinds of stress response such as endoplasmic reticulum stress and oxidative stress et al. ATF4 belongs to the ATF/CREB family of basic region leucine zipper transcription factors. ATF4 is induced by stress signals including anoxia/hypoxia, ER stress, amino acid deprivation and oxidative stress. ATF4 regulates the expression of genes involved in oxidative stress, amino acid synthesis, differentiation, metastasis and angiogenesis. The aim of this study was to examine the changes of ATF4 under microgravity, and to investigate the role of ATF4 in microgravity induced stress. MethodsMEF cells were cultured in clinostat to simulate microgravity. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to examine mRNA and protein levels of ATF4 expression under simulated microgravity in MEF cells. ROS levels were measured with the use of the fluorescent signal H2DCF-DA. GFP-XBP1 stably transfected cell lines was used to detect the extent of ER stress under microgravity by the intensity of GFP. Dual luciferase reporter assay was used to detect the activity of ATF4. Co-immunoprecipitation was performed to analyze protein interaction. Results: ATF4 protein levels in MEF cells increased under simulated microgravity. However, ATF4 mRNA levels were consistent. XBP1 splicing can be induced due to ER stress caused by simulated microgravity. At the same time, ROS levels were also increased. Increased ATF4 could promote the expression of CHOP, which is responsible for cell apoptosis. ATF4 also play an important role in cellular anti-oxidant stress. In ATF4 -/-MEF cells, the ROS levels after H2O2 treatment were obviously higher than that of wild type cells. HDAC4 was identified to be ATF4 interaction protein. Under microgravity, HDAC4 levels were also increased. However, the increased HDAC4 could suppress the activity of ATF4. Conclusions: These results indicated that microgravity could induce both ER stress and oxidative stress. ATF4 is involved in the regulation of these processes by activating both pro-apoptosis and pro-survival signaling. The dual role of ATF4 could be coordinated by increased HDAC4 levels under microgravity through their direct interaction.

  11. Leucine Promotes Proliferation and Differentiation of Primary Preterm Rat Satellite Cells in Part through mTORC1 Signaling Pathway

    PubMed Central

    Dai, Jie-Min; Yu, Mu-Xue; Shen, Zhen-Yu; Guo, Chu-Yi; Zhuang, Si-Qi; Qiu, Xiao-Shan

    2015-01-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to leucine modulates many cellular and developmental processes. However, in the context of satellite cell proliferation and differentiation, the role of leucine and mTORC1 is less known. This study investigates the role of leucine in the process of proliferation and differentiation of primary preterm rat satellite cells, and the relationship with mammalian target of rapamycin complex 1 (mTORC1) activation. Dissociation of primary satellite cells occurred with type I collagenase and trypsin, and purification, via different speed adherence methods. Satellite cells with positive expression of Desmin were treated with leucine and rapamycin. We observed that leucine promoted proliferation and differentiation of primary satellite cells and increased the phosphorylation of mTOR. Rapamycin inhibited proliferation and differentiation, as well as decreased the phosphorylation level of mTOR. Furthermore, leucine increased the expression of MyoD and myogenin while the protein level of MyoD decreased due to rapamycin. However, myogenin expressed no affect by rapamycin. In conclusion, leucine may up-regulate the activation of mTORC1 to promote proliferation and differentiation of primary preterm rat satellite cells. We have shown that leucine promoted the differentiation of myotubes in part through the mTORC1-MyoD signal pathway. PMID:26007333

  12. Differential Effects of Leucine Supplementation in Young and Aged Mice at the Onset of Skeletal Muscle Regeneration

    PubMed Central

    Perry, Richard A.; Brown, Lemuel A.; Lee, David E.; Brown, Jacob L.; Baum, Jamie I.; Greene, Nicholas P.; Washington, Tyrone A.

    2016-01-01

    Aging decreases the ability of skeletal muscle to respond to injury. Leucine has been demonstrated to target protein synthetic pathways in skeletal muscle thereby enhancing this response. However, the effect of aging on leucine-induced alterations in protein synthesis at the onset of skeletal muscle regeneration has not been fully elucidated. The purpose of this study was to determine if aging alters skeletal muscle regeneration and leucine-induced alterations in markers of protein synthesis. The tibialis anterior of young (3 months) and aged (24 months) female C57BL/6J mice were injected with either bupivacaine or PBS, and the mice were given ad libitum access to leucine-supplemented or normal drinking water. Protein and gene expression of markers of protein synthesis and degradation, respectively, were analyzed at three days post-injection. Following injury in young mice, leucine supplementation was observed to elevate only p-p70S6K. In aged mice, leucine was shown to elicit higher p-mTOR content with and without injury, and p-4EBP-1 content post-injury. Additionally in aged mice, leucine was shown to elicit higher content of relative p70S6K post-injury. Our study shows that leucine supplementation affects markers of protein synthesis at the onset of skeletal muscle regeneration differentially in young and aged mice. PMID:27327351

  13. Leucine aminopeptidase - urine

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003617.htm Leucine aminopeptidase - urine To use the sharing features on this page, please enable JavaScript. Leucine aminopeptidase is a type of protein called an ...

  14. Leucine aminopeptidase blood test

    MedlinePlus

    Serum leucine aminopeptidase; LAP - serum ... Chernecky CC, Berger BJ. Leucine aminopeptidase (LAP) - blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. St Louis, MO: Elsevier ...

  15. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC

    PubMed Central

    Malkani, Niyati; Biggar, Kyle; Shehab, Majida Abu; Li, Shawn; Jansson, Thomas; Gupta, Madhulika B.

    2016-01-01

    Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth. PMID:26733150

  16. Regulation of amino acid transport in Escherichia coli by transcription termination factor rho.

    PubMed

    Quay, S C; Oxender, D L

    1977-06-01

    Amino acid transport rates and amino acid binding proteins were examined in a strain containing the rho-120 mutation (formerly SuA), which has been shown to lower the rho-dependent, ribonucleic acid-activated adenosine triphosphatase activity to 9% of the rho activity in the isogenic wild-type strain. Tryptophan and proline transport, which occur by membrane-bound systems, were not altered. On the other hand, arginine, histidine, leucine, isoleucine, and valine transport were variably increased by a factor of 1.4 to 5.0. Kinetics of leucine transport showed that the LIV (leucine, isoleucine, and valine)-I (binding protein-associated) transport system is increased 8.5-fold, whereas the LIV-II (membrane-bound) system is increased 1.5-fold in the rho mutant under leucine-limited growth conditions. The leucine binding protein is increased fourfold under the same growth conditions. The difference in leucine transport in these strains was greatest during leucine-limited growth; growth on complex media repressed both strains to the same transport activity. We propose that rho-dependent transcriptional termination is important for leucine-specific repression of branched-chain amino acid transport, although rho-independent regulation, presumably by a corepressor-aporepressor-type mechanism, must also occur.

  17. Branched-chain amino acid transport in Streptococcus mutans Ingbritt.

    PubMed

    Dashper, S G; Reynolds, E C

    1993-06-01

    Leucine transport in glucose-energized cells of Streptococcus mutans exhibited Michaelis-Menten-type kinetics at low extracellular concentrations, with a K1 of 15.3 microM and a Vmax of 6.1 nmol/mg dry weight/min. At high extracellular leucine concentrations, the transmembrane diffusion of leucine was not saturable, indicating that passive diffusion becomes a significant mechanism of leucine transmembrane movement under these conditions. The proton motive force (PMF) was measured in glucose-energized cells of S. mutans and was found to have a maximum value of 126 mV at an extracellular pH (pH0) of 5.0; this decreased to 45 mV at pH0 8.0. The intracellular accumulation of leucine was significantly correlated with the magnitude of the PMF. The addition of excess isoleucine or valine caused a marked decrease in the leucine transport rate. Maximal rates of leucine transport occurred at pH0 6.0, and the rate of leucine transport was independent of the growth medium. The results suggest that there is a PMF-driven, branched-chain amino acid carrier in S. mutans with a proton: substrate stoichiometry of 1.

  18. Efficacy and Safety of Leucine Supplementation in the Elderly.

    PubMed

    Borack, Michael S; Volpi, Elena

    2016-12-01

    Leucine supplementation has grown in popularity due to the discovery of its anabolic effects on cell signaling and protein synthesis in muscle. The current recommendation is a minimum intake of 55 mg ⋅ kg -1 . d -1 Leucine acutely stimulates skeletal muscle anabolism and can overcome the anabolic resistance of aging. The value of chronic leucine ingestion for muscle growth is still unclear. Most of the research into leucine consumption has focused on efficacy. To our knowledge, very few studies have sought to determine the maximum safe level of intake. Limited evidence suggests that intakes of ≤1250 mg ⋅ kg -1 . d -1 do not appear to have any health consequences other than short-term elevated plasma ammonia concentrations. Similarly, no adverse events have been reported for the leucine metabolite β-hydroxy-β-methylbutyrate (HMB), although no studies have tested HMB toxicity in humans. Therefore, future research is needed to evaluate leucine and HMB toxicity in the elderly and in specific health conditions. © 2016 American Society for Nutrition.

  19. Sestrin2 is a leucine sensor for the mTORC1 pathway.

    PubMed

    Wolfson, Rachel L; Chantranupong, Lynne; Saxton, Robert A; Shen, Kuang; Scaria, Sonia M; Cantor, Jason R; Sabatini, David M

    2016-01-01

    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. Copyright © 2016, American Association for the Advancement of Science.

  20. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    PubMed Central

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus. PMID:25803613

Top