Sample records for basic mechanisms involved

  1. Deformation-related recrystallization processes

    NASA Astrophysics Data System (ADS)

    Drury, Martyn R.; Urai, Janos L.

    1990-02-01

    Recrystallization is a common microstructural transformation that occurs during deformation, metamorphism and diagenesis of rocks. Studies on minerals and rock analogues have demonstrated that a wide range of recrystallization mechanisms can occur. The range of mechanisms is related to the various ways in which two basic processes, grain boundary migration and new grain boundary formation combine to transform the microstructure. Two recent papers (Drury et al., 1985; Urai et al., 1986) have proposed different schemes for the description of recrystallization mechanisms. The purpose of this paper is to provide a unified framework for the description of mechanisms. Recrystallization mechanisms are divided into three main types; rotation mechanisms which principally involve the formation of new grain boundaries; migration mechanisms which principally involve grain boundary migration; and general mechanisms which involve both basic processes. A further distinction is made on the basis of the continuity of the microstructural transformation with respect to time. Each of the three main types of mechanism can be divided into a number of sub-types depending on whether the processes of grain boundary migration, new grain boundary formation and new grain formation occur in a discontinuous or continuous manner with respect to time. As the terms continuous and discontinuous have been used in the metallurgical literature to signify the spatial continuity of the microstructural transformation, the terms discontinuai and continual are used to refer to the temporal continuity of the transformation. It is recommended that the following aspects should be specified, if possible, in a general description of recrystallization mechanisms: (1) How do the basic processes combine to transform the microstructure. (2) If new grain development occurs, what is the development mechanism, and does new grain formation occur in a continual or discontinuai manner. (3) If grain boundary migration is involved in the transformation, what is the migration mechanism (i.e. fast solute escape migration, slow solute loaded migration, fluid assisted migration, etc.), and is migration a continual or discontinuai process. The application of the unified scheme is illustrated by reviewing studies that have provided detailed information on the recrystallization mechanisms involved. The complicating effects of solid solution impurities, dispersed second phase particles and grain boundary fluid films are also considered and it is demonstrated that variations in content of these types of impurity can significantly effect the types of recrystallization that occur in a given material.

  2. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    PubMed

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  3. Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.

    PubMed

    Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo

    2008-08-01

    We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.

  4. Myelin basic protein stimulates plasminogen activation via tissue plasminogen activator following binding to independent l-lysine-containing domains.

    PubMed

    Gonzalez-Gronow, Mario; Fiedler, Jenny L; Farias Gomez, Cristian; Wang, Fang; Ray, Rupa; Ferrell, Paul D; Pizzo, Salvatore V

    2017-08-26

    Myelin basic protein (MBP) is a key component of myelin, the specialized lipid membrane that encases the axons of all neurons. Both plasminogen (Pg) and tissue-type plasminogen activator (t-PA) bind to MBP with high affinity. We investigated the kinetics and mechanisms involved in this process using immobilized MBP and found that Pg activation by t-PA is significantly stimulated by MBP. This mechanism involves the binding of t-PA via a lysine-dependent mechanism to the Lys 91 residue of the MBP NH 2 -terminal region Asp 82 -Pro 99 , and the binding of Pg via a lysine-dependent mechanism to the Lys 122 residue of the MBP COOH-terminal region Leu 109 -Gly 126 . In this context, MBP mimics fibrin and because MBP is a plasmin substrate, our results suggest direct participation of the Pg activation system on MBP physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Some important considerations in the development of stress corrosion cracking test methods.

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Novak, S. R.; Williams, D. P.

    1972-01-01

    Discussion of some of the precaution needs the development of fracture-mechanics based test methods for studying stress corrosion cracking involves. Following a review of pertinent analytical fracture mechanics considerations and of basic test methods, the implications for test corrosion cracking studies of the time-to-failure determining kinetics of crack growth and life are examined. It is shown that the basic assumption of the linear-elastic fracture mechanics analyses must be clearly recognized and satisfied in experimentation and that the effects of incubation and nonsteady-state crack growth must also be properly taken into account in determining the crack growth kinetics, if valid data are to be obtained from fracture-mechanics based test methods.

  6. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis.

    PubMed

    Heijman, Jordi; Algalarrondo, Vincent; Voigt, Niels; Melka, Jonathan; Wehrens, Xander H T; Dobrev, Dobromir; Nattel, Stanley

    2016-04-01

    Atrial fibrillation (AF) is an extremely common clinical problem associated with increased morbidity and mortality. Current antiarrhythmic options include pharmacological, ablation, and surgical therapies, and have significantly improved clinical outcomes. However, their efficacy remains suboptimal, and their use is limited by a variety of potentially serious adverse effects. There is a clear need for improved therapeutic options. Several decades of research have substantially expanded our understanding of the basic mechanisms of AF. Ectopic firing and re-entrant activity have been identified as the predominant mechanisms for arrhythmia initiation and maintenance. However, it has become clear that the clinical factors predisposing to AF and the cellular and molecular mechanisms involved are extremely complex. Moreover, all AF-promoting and maintaining mechanisms are dynamically regulated and subject to remodelling caused by both AF and cardiovascular disease. Accordingly, the initial presentation and clinical progression of AF patients are enormously heterogeneous. An understanding of arrhythmia mechanisms is widely assumed to be the basis of therapeutic innovation, but while this assumption seems self-evident, we are not aware of any papers that have critically examined the practical contributions of basic research into AF mechanisms to arrhythmia management. Here, we review recent insights into the basic mechanisms of AF, critically analyse the role of basic research insights in the development of presently used anti-AF therapeutic options and assess the potential value of contemporary experimental discoveries for future therapeutic innovation. Finally, we highlight some of the important challenges to the translation of basic science findings to clinical application. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  7. An Analysis of the Auto Mechanic Occupation.

    ERIC Educational Resources Information Center

    Conner, Michael; Thoman, LeRoy

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the auto mechanic occupation. It identifies the broad area of skills and knowledge necessary to perform various tasks involved in diagnosis, maintenance, and repair of automotive systems. Selected…

  8. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    PubMed

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  9. Introducing a New Guided Design into the Classroom.

    ERIC Educational Resources Information Center

    Allen, Charles W.

    Based on a workshop presented by Charles Wales, a guided design project was developed for a junior mechanical design class at California State University-Chico. This course involves lectures on the design process and an extension of the basic mechanics of materials concepts, particularly as related to design and prevention of failure. The…

  10. Sensorimotor integration: basic concepts, abnormalities related to movement disorders and sensorimotor training-induced cortical reorganization.

    PubMed

    Machado, Sergio; Cunha, Marlo; Velasques, Bruna; Minc, Daniel; Teixeira, Silmar; Domingues, Clayton A; Silva, Julio G; Bastos, Victor H; Budde, Henning; Cagy, Mauricio; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro

    2010-10-01

    Sensorimotor integration is defined as the capability of the central nervous system to integrate different sources of stimuli, and parallelly, to transform such inputs in motor actions. To review the basic principles of sensorimotor integration, such as, its neural bases and its elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects, and the abnormalities reported in the most common movement disorders, such as, Parkinson' disease, dystonia and stroke, like the cortical reorganization-related mechanisms. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but most of the data support a central mechanism. We found that the sensorimotor integration process plays a potential role in elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects and in occurrence of abnormalities in most common movement disorders and, moreover, play a potential role on the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of motor outputs consciously goal-directed.

  11. Ventilatory Management and Extubation Criteria of the Neurological/Neurosurgical Patient

    PubMed Central

    Souter, M. J.; Manno, Edward M.

    2013-01-01

    Approximately 200 000 patients per year will require mechanical ventilation secondary to neurological injury or disease. The associated mortality, morbidity, and costs are significant. The neurological patient presents a unique set of challenges to airway management, mechanical ventilation, and defining extubation readiness. Neurological injury and disease can directly or indirectly involve the process involved with respiration or airway control. This article will review the basics of airway management and mechanical ventilation in the neurological patient. The current state of the literature evaluating extubation criteria in the neurological patient will also be reviewed. PMID:23983886

  12. Live Cell Imaging Confocal Microscopy Analysis of HBV Myr-PreS1 Peptide Binding and Uptake in NTCP-GFP Expressing HepG2 Cells.

    PubMed

    König, Alexander; Glebe, Dieter

    2017-01-01

    To obtain basic knowledge about specific molecular mechanisms involved in the entry of pathogens into cells is the basis for establishing pharmacologic substances blocking initial viral binding, infection, and subsequent viral spread. Lack of information about key cellular factors involved in the initial steps of HBV infection has hampered the characterization of HBV binding and entry for decades. However, recently, the liver-specific sodium-dependent taurocholate cotransporting polypeptide (NTCP) has been discovered as a functional receptor for HBV and HDV, thus opening the field for new concepts of basic binding and entry of HBV and HDV. Here, we describe practical issues of a basic in vitro assay system to examine kinetics and mechanisms of receptor-dependent HBV binding, uptake, and intracellular trafficking by live-cell imaging confocal microscopy. The assay system is comprised of HepG2 cells expressing a NTCP-GFP fusion-protein and chemically synthesized, fluorophore-labeled part of HBV surface protein, spanning the first N-terminal 48 amino acids of preS1 of the large hepatitis B virus surface protein.

  13. 7 CFR 226.22 - Procurement standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., all contracts awarded by institutions in excess of $2,500 which involve the employment of mechanics or...). Under section 103 of the Act, each contractor shall be required to compute the wages of every mechanic... a rate of not less than 11/2 times the basic rate of pay for all hours worked in excess of 8 hours...

  14. Deck the Halls. Animated Displays III: Mechanical Puzzles.

    ERIC Educational Resources Information Center

    Pizzo, Joe, Ed.

    1993-01-01

    Describes an exhibit containing four basic demonstrations relating to center of gravity and rotational equilibrium. The demonstrations involve (1) the stack of bricks, (2) the double cone, (3) the spool roller, and (4) the platform balance. (MDH)

  15. ON THE DYNAMICAL DERIVATION OF EQUILIBRIUM STATISTICAL MECHANICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigogine, I.; Balescu, R.; Henin, F.

    1960-12-01

    Work on nonequilibrium statistical mechanics, which allows an extension of the kinetic proof to all results of equilibrium statistical mechanics involving a finite number of degrees of freedom, is summarized. As an introduction to the general N-body problem, the scattering theory in classical mechanics is considered. The general N-body problem is considered for the case of classical mechanics, quantum mechanics with Boltzmann statistics, and quantum mechanics including quantum statistics. Six basic diagrams, which describe the elementary processes of the dynamics of correlations, were obtained. (M.C.G.)

  16. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind

    PubMed Central

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T.; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J.; Sadato, Norihiro

    2012-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience. PMID:23372547

  17. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind.

    PubMed

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J; Sadato, Norihiro

    2013-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience.

  18. 32 CFR Appendix A to Part 34 - Contract Provisions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... mechanic and laborer on the basis of a standard work week of 40 hours. Work in excess of the standard work... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  19. 10 CFR Appendix B to Subpart D of... - Contract Provisions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... 5). Under Section 102 of the Act, each contractor is required to compute the wages of every mechanic... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  20. 10 CFR Appendix B to Subpart D of... - Contract Provisions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... 5). Under Section 102 of the Act, each contractor is required to compute the wages of every mechanic... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  1. 10 CFR Appendix B to Subpart D of... - Contract Provisions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... 5). Under Section 102 of the Act, each contractor is required to compute the wages of every mechanic... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  2. 32 CFR Appendix A to Part 34 - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... mechanic and laborer on the basis of a standard work week of 40 hours. Work in excess of the standard work... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  3. 10 CFR Appendix B to Subpart D of... - Contract Provisions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... 5). Under Section 102 of the Act, each contractor is required to compute the wages of every mechanic... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  4. 32 CFR Appendix A to Part 34 - Contract Provisions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... mechanic and laborer on the basis of a standard work week of 40 hours. Work in excess of the standard work... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  5. 32 CFR Appendix A to Part 34 - Contract Provisions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in excess of $100,000 for construction and other purposes that involve the employment of mechanics or... mechanic and laborer on the basis of a standard work week of 40 hours. Work in excess of the standard work... basic rate of pay for all hours worked in excess of 40 hours in the work week. Section 107 of the Act is...

  6. A New Therapeutic Paradigm for Breast Cancer Exploiting Low Dose Estrogen-Induced Apoptosis

    DTIC Science & Technology

    2012-06-01

    phosphorylation of RNA polymerase II in these cells. Overall, this section reports a novel mechanism by which cMYC transcripts are regulated -deprivation...extrinsic apoptosis pathway. Given the above results, it is proposed that the delayed mechanism of apoptosis induced by E2 involves an initial induction...produced in humans, because basic endocrine mechanisms have been highly conserved across all classes of vertebrates (Kavlock et al. 1996; National

  7. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology.

    PubMed

    Schultz, Wolfram

    2004-04-01

    Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making.

  8. Protein Multifunctionality: Principles and Mechanisms

    PubMed Central

    Zaretsky, Joseph Z.; Wreschner, Daniel H.

    2008-01-01

    In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins. PMID:21566747

  9. Report on the Symposium “Molecular Mechanisms Involved in Neurodegeneration”

    PubMed Central

    Pentón-Rol, Giselle; Cervantes-Llanos, Majel

    2018-01-01

    The prevalence of neurodegenerative diseases is currently a major concern in public health because of the lack of neuroprotective and neuroregenerative drugs. The symposium on Molecular Mechanisms Involved in Neurodegeneration held in Varadero, Cuba, updated the participants on the basic mechanisms of neurodegeneration, on the different approaches for drug discovery, and on early research results on therapeutic approaches for the treatment of neurodegenerative diseases. Alzheimer’s disease and in silico research were covered by many of the presentations in the symposium, under the umbrella of the “State of the Art of Non-clinical Models for Neurodegenerative Diseases” International Congress, held from 20 to 24 June 2017. This paper summarizes the highlights of the symposium. PMID:29346273

  10. Osteoarthritis year in review 2014: mechanics--basic and clinical studies in osteoarthritis.

    PubMed

    Moyer, R F; Ratneswaran, A; Beier, F; Birmingham, T B

    2014-12-01

    The purpose of this review was to highlight recent research in mechanics and osteoarthritis (OA) by summarizing results from selected studies spanning basic and clinical research methods. Databases were searched from January 2013 through to March 2014. Working in pairs, reviewers selected 67 studies categorized into four themes--mechanobiology, ambulatory mechanics, biomechanical interventions and mechanical risk factors. Novel developments in mechanobiology included the identification of cell signaling pathways that mediated cellular responses to loading of articular cartilage. Studies in ambulatory mechanics included an increased focus on instrumented knee implants and progress in computational models, both emphasizing the importance of muscular contributions to load. Several proposed biomechanical interventions (e.g., shoe insoles and knee braces) produced variable changes in external knee joint moments during walking, while meta-analysis of randomized clinical trials did not support the use of lateral wedge insoles for decreasing pain. Results from high quality randomized trials suggested diet with or without exercise decreased indicators of knee joint load during walking, whereas similar effects from exercise alone were not detected with the measures used. Data from longitudinal cohorts suggested mechanical alignment was a risk factor for incidence and progression of OA, with the mechanism involving damage to the meniscus. In combination, the basic and clinical studies highlight the importance of considering multiple contributors to joint loading that can evoke both protective and damaging responses. Although challenges clearly exist, future studies should strive to integrate basic and clinical research methods to gain a greater understanding of the interactions among mechanical factors in OA and to develop improved preventive and therapeutic strategies. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Some aspects of modeling hydrocarbon oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gal, D.; Botar, L.; Danoczy, E.

    1981-01-01

    A modeling procedure for the study of hydrocarbon oxidation is suggested, and its effectiveness for the oxidation of ethylbenzene is demonstrated. As a first step in modeling, systematization involves compilation of possible mechanisms. Then, by introduction of the concept of kinetic communication, the chaotic set of possible mechanisms is systematized into a network. Experimentation serves both as feedback to the systematic arrangement of information and source of new information. Kinetic treatment of the possible mechanism has been accomplished by two different approaches: by classical inductive calculations starting with a small mechanism and using kinetic approximations, and by computer simulation. Themore » authors have compiled a so-called Main Contributory Mechanism, involving processes - within the possible mechanism - which contribute basically to the formation and consumption of the intermediates, to the consumption of the starting compounds and to the formation of the end products. 24 refs.« less

  12. The prospect of gene therapy for prostate cancer: update on theory and status.

    PubMed

    Koeneman, K S; Hsieh, J T

    2001-09-01

    Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.

  13. Cellular and molecular mechanisms regulating vascular tone. Part 1: basic mechanisms controlling cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone.

    PubMed

    Akata, Takashi

    2007-01-01

    General anesthetics cause hemodynamic instability and alter blood flow to various organs. There is mounting evidence that most general anesthetics, at clinical concentrations, influence a wide variety of cellular and molecular mechanisms regulating the contractile state of vascular smooth muscle cells (i.e., vascular tone). In addition, in current anesthetic practice, various types of vasoactive agents are often used to control vascular reactivity and to sustain tissue blood flow in high-risk surgical patients with impaired vital organ function and/or hemodynamic instability. Understanding the physiological mechanisms involved in the regulation of vascular tone thus would be beneficial for anesthesiologists. This review, in two parts, provides an overview of current knowledge about the cellular and molecular mechanisms regulating vascular tone-i.e., targets for general anesthetics, as well as for vasoactive drugs that are used in intraoperative circulatory management. This first part of the two-part review focuses on basic mechanisms regulating cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone.

  14. Biofluid mechanics--an interdisciplinary research area of the future.

    PubMed

    Liepsch, Dieter

    2006-01-01

    Biofluid mechanics is a complex field that focuses on blood flow and the circulation. Clinical applications include bypass and anastomosis surgery, and the development of artificial heart valves and vessels, stents, vein and dialysis shunts. Biofluid mechanics is also involved in diagnostic and therapeutic measures, including CT and MRI, and ultrasound. The study of biofluid mechanics involves measuring blood flow, pressure, pulse wave, velocity distribution, the elasticity of the vessel wall, the flow behavior of blood to minimize complications in vessel,- neuro-, and heart surgery. Biofluid mechanics influence the lungs and circulatory system, the blood flow and micro-circulation; lymph flow, and artificial organs. Flow studies in arterial models can be done without invasive techniques on patients or animals. The results of fluid mechanic studies have shown that in the addition to basic biology, an understanding of the forces and movement on the cells is essential. Because biofluid mechanics allows for the detection of the smallest flow changes, it has an enormous potential for future cell research. Some of these will be discussed.

  15. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    PubMed

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Signal transduction mechanisms in plants: an overview

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Thompson, G. Jr; Roux, S. J.

    2001-01-01

    This article provides an overview on recent advances in some of the basic signalling mechanisms that participate in a wide variety of stimulus-response pathways. The mechanisms include calcium-based signalling, G-protein-mediated-signalling and signalling involving inositol phospholipids, with discussion on the role of protein kinases and phosphatases interspersed. As a further defining feature, the article highlights recent exciting findings on three extracellular components that have not been given coverage in previous reviews of signal transduction in plants, extracellular calmodulin, extracellular ATP, and integrin-like receptors, all of which affect plant growth and development.

  17. Physics of Swinging a Striking Implement

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    The act of swinging an object such as a hammer or a tennis racket involves the application of forces and torques in a manner that is intuitively obvious to the person performing the task, but is probably much less obvious to the average physics student. This article describes the basic mechanics of the problem.

  18. A Cartoon in One Dimension of the Hydrogen Molecular Ion

    ERIC Educational Resources Information Center

    Dutta, Sourav; Ganguly, Shreemoyee; Dutta-Roy, Binayak

    2008-01-01

    To illustrate the basic methodology involved in the quantum mechanics of molecules, a one-dimensional caricature of the hydrogen molecular ion (H[superscript +][subscript 2]) is presented, which is exactly solvable, in the Born-Oppenheimer approximation, in terms of elementary functions. The purpose of the exercise is to elucidate in a simple…

  19. Anatomy and Selected Biomechanical Aspects of the Shoulder.

    ERIC Educational Resources Information Center

    Keene, James S.

    This paper focuses on the anatomy and functions of the shoulder that are relevant to the evaluation and treatment of athletic injuries. A discussion is presented on the four basic components of the shoulder mechanism: (1) super structure--bony components; (2) moving parts--joints involved; (3) motor power--musculature; and (4) communications…

  20. Brain Chemistry and Behaviour: An Update on Neuroscience Research and Its Implications for Understanding Drug Addiction

    ERIC Educational Resources Information Center

    Robinson, Emma S. J.

    2011-01-01

    Psychiatric disorders such as drug addiction represent one of the biggest challenges to society. This article reviews clinical and basic science research to illustrate how developments in research methodology have enabled neuroscientists to understand more about the brain mechanisms involved in addiction biology. Treating addiction represents a…

  1. Neurobiological Mechanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of Historical Evidence and Inclusion of Contemporary Cellular and Molecular Evidence

    PubMed Central

    Datta, Subimal; MacLean, Robert Ross

    2007-01-01

    At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the Cellular-Molecular-Network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research. PMID:17445891

  2. Genes and signaling pathways involved in memory enhancement in mutant mice

    PubMed Central

    2014-01-01

    Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity. PMID:24894914

  3. Supporting Data FY 1991 Amended Budget Estimate Submitted to Congress - January 1990: Descriptive Summaries of the Research Development Test and Evaluation Army Appropriation

    DTIC Science & Technology

    1990-01-01

    PERFORMED BY: In-house efforts accomplished by Program Executive Officer for Air De - fense Systems, Program Manager-Line of Sight-Forward- Heavy and U.S...evaluation of mechanisms involved in the recovery of heavy metals from waste sludges * (U) Complete determination of basic mechanisms responsible for...tities for characterization " (U) Refined computer model for design of effective heavy metal spin-insensitive EFP war- head liner * (U) Identified

  4. Decolorization of acid and basic dyes: understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli.

    PubMed

    Cerboneschi, Matteo; Corsi, Massimo; Bianchini, Roberto; Bonanni, Marco; Tegli, Stefania

    2015-10-01

    Escherichia coli strain DH5α was successfully employed in the decolorization of commercial anthraquinone and azo dyes, belonging to the general classes of acid or basic dyes. The bacteria showed an aptitude to survive at different pH values on any dye solution tested, and a rapid decolorization was obtained under aerobic conditions for the whole collection of dyes. A deep investigation about the mode of action of E. coli was carried out to demonstrate that dye decolorization mainly occurred via three different pathways, specifically bacterial induced precipitation, cell wall adsorption, and metabolism, whose weight was correlated with the chemical nature of the dye. In the case of basic azo dyes, an unexpected fast decolorization was observed after just 2-h postinoculation under aerobic conditions, suggesting that metabolism was the main mechanism involved in basic azo dye degradation, as unequivocally demonstrated by mass spectrometric analysis. The reductive cleavage of the azo group by E. coli on basic azo dyes was also further demonstrated by the inhibition of decolorization occurring when glucose was added to the dye solution. Moreover, no residual toxicity was found in the E. coli-treated basic azo dye solutions by performing Daphnia magna acute toxicity assays. The results of the present study demonstrated that E. coli can be simply exploited for its natural metabolic pathways, without applying any recombinant technology. The high versatility and adaptability of this bacterium could encourage its involvement in industrial bioremediation of textile and leather dyeing wastewaters.

  5. Basic Fibroblast Growth Factor Activates Serum Response Factor Gene Expression by Multiple Distinct Signaling Mechanisms

    PubMed Central

    Spencer, Jeffrey A.; Major, Michael L.; Misra, Ravi P.

    1999-01-01

    Serum response factor (SRF) plays a central role in the transcriptional response of mammalian cells to a variety of extracellular signals. It is a key regulator of many cellular early response genes which are believed to be involved in cell growth and differentiation. The mechanism by which SRF activates transcription in response to mitogenic agents has been extensively studied; however, significantly less is known about regulation of the SRF gene itself. Previously, we identified distinct regulatory elements in the SRF promoter that play a role in activation, including a consensus ETS domain binding site, a consensus overlapping Sp/Egr-1 binding site, and two SRF binding sites. We further showed that serum induces SRF by a mechanism that requires an intact SRF binding site, also termed a CArG box. In the present study we demonstrate that in response to stimulation of cells by a purified growth factor, basic fibroblast growth factor (bFGF), the SRF promoter is upregulated by a complex pathway that involves at least two independent mechanisms: a CArG box-independent mechanism that is mediated by an ETS binding site, and a novel CArG box-dependent mechanism that requires both an Sp factor binding site and the CArG motifs for maximal stimulation. Our analysis indicates that the CArG/Sp element activation mechanism is mediated by distinct signaling pathways. The CArG box-dependent component is targeted by a Rho-mediated pathway, and the Sp binding site-dependent component is targeted by a Ras-mediated pathway. Both SRF and bFGF have been implicated in playing an important role in mediating cardiogenesis during development. The implications of our findings for SRF expression during development are discussed. PMID:10330138

  6. Development of an Electronic Nose Sensing Platform for Undergraduate Education in Nanotechnology

    ERIC Educational Resources Information Center

    Russo, Daniel V.; Burek, Michael J.; Iutzi, Ryan M.; Mracek, James A.; Hesjedal, Thorsten

    2011-01-01

    The teaching of the different aspects of a sensor system, with a focus on the involved nanotechnology, is a challenging, yet important task. We present the development of an electronic nose system that utilizes a nanoscale amperometric sensing mechanism for gas mixtures. The fabrication of the system makes use of a basic microfabrication facility,…

  7. Translating Principles of Neural Plasticity into Research on Speech Motor Control Recovery and Rehabilitation

    ERIC Educational Resources Information Center

    Ludlow, Christy L.; Hoit, Jeannette; Kent, Raymond; Ramig, Lorraine O.; Shrivastav, Rahul; Strand, Edythe; Yorkston, Kathryn; Sapienza, Christine M.

    2008-01-01

    Purpose: To review the principles of neural plasticity and make recommendations for research on the neural bases for rehabilitation of neurogenic speech disorders. Method: A working group in speech motor control and disorders developed this report, which examines the potential relevance of basic research on the brain mechanisms involved in neural…

  8. Benefits of detailed models of muscle activation and mechanics

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    Recent biophysical and physiological studies identified some of the detailed mechanisms involved in excitation-contraction coupling, muscle contraction, and deactivation. Mathematical models incorporating these mechanisms allow independent estimates of key parameters, direct interplay between basic muscle research and the study of motor control, and realistic model behaviors, some of which are not accessible to previous, simpler, models. The existence of previously unmodeled behaviors has important implications for strategies of motor control and identification of neural signals. New developments in the analysis of differential equations make the more detailed models feasible for simulation in realistic experimental situations.

  9. Evaluation of the Effects of Platelet-Rich Plasma (PRP) Therapy Involved in the Healing of Sports-Related Soft Tissue Injuries

    PubMed Central

    Middleton, Kellie K.; Barro, Victor; Muller, Bart; Terada, Satosha; Fu, Freddie H.

    2012-01-01

    Abstract Musculoskeletal injuries are the most common cause of severe long-term pain and physical disability, and affect hundreds of millions of people around the world. One of the most popular methods used to biologically enhance healing in the fields of orthopaedic surgery and sports medicine includes the use of autologous blood products, namely, platelet rich plasma (PRP). PRP is an autologous concentration of human platelets to supra-physiologic levels. At baseline levels, platelets function as a natural reservoir for growth factors including platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and insulin-like growth factor (IGF-I). PRP is commonly used in orthopaedic practice to augment healing in sports-related injuries of skeletal muscle, tendons, and ligaments. Despite its pervasive use, the clinical efficacy of PrP therapy and varying mechanisms of action have yet to be established. Basic science research has revealed that PRP exerts is effects through many downstream events secondary to release of growth factors and other bioactive factors from its alpha granules. These effects may vary depending on the location of injury and the concentration of important growth factors involved in various soft tissue healing responses. This review focuses on the effects of PrP and its associated bioactive factors as elucidated in basic science research. Current findings in PRP basic science research, which have shed light on its proposed mechanisms of action, have opened doors for future areas of PrP research. PMID:23576936

  10. Learning basic programming using CLIS through gamification

    NASA Astrophysics Data System (ADS)

    Prabawa, H. W.; Sutarno, H.; Kusnendar, J.; Rahmah, F.

    2018-05-01

    The difficulty of understanding programming concept is a major problem in basic programming lessons. Based on the results of preliminary studies, 60% of students reveal the monotonous of learning process caused by the limited number of media. Children Learning in Science (CLIS) method was chosen as solution because CLIS has facilitated students’ initial knowledge to be optimized into conceptual knowledge. Technological involvement in CLIS (gamification) helped students to understand basic programming concept. This research developed a media using CLIS method with gamification elements to increase the excitement of learning process. This research declared that multimedia is considered good by students, especially regarding the mechanical aspects of multimedia, multimedia elements and aspects of multimedia information structure. Multimedia gamification learning with the CLIS model showed increased number of students’ concept understanding.

  11. Remote sensing in the mixing zone. [water pollution in Wisconsin

    NASA Technical Reports Server (NTRS)

    Villemonte, J. R.; Hoopes, J. A.; Wu, D. S.; Lillesand, T. M.

    1973-01-01

    Characteristics of dispersion and diffusion as the mechanisms by which pollutants are transported in natural river courses were studied with the view of providing additional data for the establishment of water quality guidelines and effluent outfall design protocols. Work has been divided into four basic categories which are directed at the basic goal of developing relationships which will permit the estimation of the nature and extent of the mixing zone as a function of those variables which characterize the outfall structure, the effluent, and the river, as well as climatological conditions. The four basic categories of effort are: (1) the development of mathematical models; (2) laboratory studies of physical models; (3) field surveys involving ground and aerial sensing; and (4) correlation between aerial photographic imagery and mixing zone characteristics.

  12. Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins.

    PubMed

    Borysov, Sergiy; Bryant, Victoria L; Alexandrow, Mark G

    2015-01-01

    Of critical importance to many of the events underlying transcriptional control of gene expression are modifications to core and linker histones that regulate the accessibility of trans-acting factors to the DNA substrate within the context of chromatin. Likewise, control over the initiation of DNA replication, as well as the ability of the replication machinery to proceed during elongation through the multiple levels of chromatin condensation that are likely to be encountered, is known to involve the creation of chromatin accessibility. In the latter case, chromatin access will likely need to be a transient event so as to prevent total genomic unraveling of the chromatin that would be deleterious to cells. While there are many molecular and biochemical approaches in use to study histone changes and their relationship to transcription and chromatin accessibility, few techniques exist that allow a molecular dissection of the events underlying DNA replication control as it pertains to chromatin changes and accessibility. Here, we outline a novel experimental strategy for addressing the ability of specific proteins to induce large-scale chromatin unfolding (decondensation) in vivo upon site-specific targeting to an engineered locus. Our laboratory has used this powerful system in novel ways to directly address the ability of DNA replication proteins to create chromatin accessibility, and have incorporated modifications to the basic approach that allow for a molecular genetic analysis of the mechanisms and associated factors involved in causing chromatin decondensation by a protein of interest. Alternative approaches involving co-expression of other proteins (competitors or stimulators), concurrent drug treatments, and analysis of co-localizing histone modifications are also addressed, all of which are illustrative of the utility of this experimental system for extending basic findings to physiologically relevant mechanisms. Although used by our group to analyze mechanisms underlying DNA replication associated chromatin accessibility, this unique and powerful experimental system has the propensity to be a valuable tool for understanding chromatin remodeling mechanisms orchestrated by other cellular processes such as DNA repair, recombination, mitotic chromosome condensation, or other chromosome dynamics involving chromatin alterations and accessibility.

  13. Autoimmunity-Basics and link with periodontal disease.

    PubMed

    Kaur, Gagandeep; Mohindra, Kanika; Singla, Shifali

    2017-01-01

    Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Periodontal diseases are characterized by inflammatory conditions that directly affect teeth-supporting structures, which are the major cause of tooth loss. Several studies have demonstrated the involvement of autoimmune responses in periodontal disease. Evidence of involvement of immunopathology has been reported in periodontal disease. Bacteria in the dental plaque induce antibody formation. Autoreactive T-cells, natural killer cells, ANCA, heat shock proteins, autoantibodies, and genetic factors are reported to have an important role in the autoimmune component of periodontal disease. The present review describes the involvement of autoimmune responses in periodontal diseases and also the mechanisms underlying these responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Learning and memory: Steroids and epigenetics.

    PubMed

    Colciago, Alessandra; Casati, Lavinia; Negri-Cesi, Paola; Celotti, Fabio

    2015-06-01

    Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 48 CFR 22.403-3 - Contract Work Hours and Safety Standards Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... workweek unless paid for all additional hours at not less than 11/2 times the basic rate of pay (see 22.301... Standards for Contracts Involving Construction 22.403-3 Contract Work Hours and Safety Standards Act. The... 22.305) contain a clause (see 52.222-4) specifying that no laborer or mechanic doing any part of the...

  16. Diagnosis of sarcoidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, O.P.

    1983-07-01

    During the last decade, many biochemical and immunologic advances have been made in the treatment and understanding of sarcoidosis. These studies have helped us to understand the basic mechanisms involved in granuloma formation, and many clinicians have used the information to diagnose and assess the activity of sarcoidosis. Further studies are needed to clearly establish the role of these advances in the everyday management of patients with sarcoidosis.

  17. Effect of the Basic Residue on the Energetics, Dynamics and Mechanisms of Gas- Phase Fragmentation of Protonated Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Yang, Zhibo; Song, Tao

    2010-11-17

    The effect of the basic residue on the energetics, dynamics and mechanisms of backbone fragmentation of protonated peptides was investigated. Time- and collision energy-resolved surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogs, in which arginine is replaced with less basic lysine and histidine residues was examined using in a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). SID experiments demonstrated very different kinetics of formation of several primary product ions of peptides with and without arginine residue. The energetics and dynamics of these pathways were determined from the RRKM modelingmore » of the experimental data. Comparison between the kinetics and energetics of fragmentation of arginine-containing peptides and the corresponding methyl ester derivatives provides important information on the effect of dissociation pathways involving salt bridge (SB) intermediates on the observed fragmentation behavior. It is found that because pathways involving SB intermediates are characterized by low threshold energies, they efficiently compete with classical oxazolone pathways of arginine-containing peptides on a long timescale of the FT-ICR instrument. In contrast, fragmentation of histidine- and lysine-containing peptides is largely determined by classical oxazolone pathways. Because SB pathways are characterized by negative activation entropies, fragmentation of arginine-containing peptides is kinetically hindered and observed at higher collision energies as compared to their lysine- and histidine-containing analogs.« less

  18. Sperm nuclear basic proteins of tunicates and the origin of protamines.

    PubMed

    Saperas, Núria; Ausió, Juan

    2013-08-01

    Sperm nuclear basic proteins (SNBPs) are the chromosomal proteins that are found associated with DNA in sperm nuclei at the end of spermiogenesis. These highly specialized proteins can be classified into three major types: histone type (H-type), protamine-like type (PL-type), and protamine type (P-type). A hypothesis from early studies on the characterization of SNBPs proposed a mechanism for the vertical evolution of these proteins that involved an H1 → PL → P transition. However, the processes and mechanisms involved in such a transition were not understood. In particular, it was not clear how a molecular transition from a lysine-rich protein precursor (H1 histone) to the arginine-rich protamines might have taken place. In deuterostomes, the presence of SNBPs of the H-type in echinoderms and of protamines in the higher phylogenetic groups of vertebrates had long been known. The initial work on the characterization of tunicate SNBPs attempted to define the types and range of SNBPs that characterize this phylogenetically intermediate group. It was found that tunicate SNBPs belong to the PL-type. In this work we discuss how the study of SNBPs in the tunicates has been key to providing support to the H1 → PL → P transition. Most significantly, it was in tunicates that a potential molecular mechanism to explain the lysine-to-arginine transition was first reported.

  19. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  20. Summary of papers presented at the 2012 seventh international cough symposium

    PubMed Central

    2013-01-01

    Twenty six papers were presented as posters in the Seventh International Symposium on Cough; 12 papers were presented in the Basic Science of Cough session, and 14 papers presented in the Clinical Science of Cough session. These papers explored a wide spectrum of cough-related areas including pathophysiological mechanisms, treatment and detection of cough, and symptom assessment and perception, and were grouped into several general themes for facilitate the discussion. Studies presented in these posters have provided new information that should improve our knowledge on the basic physiology and pharmacology of cough, and the peripheral and central neural mechanisms involved in the generation of the cough motor pattern. In addition, in the clinical science section, studies reporting potential new anti-tussive agents and further characterisation of cough symptoms and perception have provided a base for the fruitful strategies for the development of novel anti-tussive therapies and cough management. PMID:23639195

  1. Basic mechanism for biorientation of mitotic chromosomes is provided by the kinetochore geometry and indiscriminate turnover of kinetochore microtubules

    PubMed Central

    Zaytsev, Anatoly V.; Grishchuk, Ekaterina L.

    2015-01-01

    Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore–MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore–MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10−1–10−2 per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms. PMID:26424798

  2. Basic mechanisms of migraine and its acute treatment.

    PubMed

    Edvinsson, Lars; Villalón, Carlos M; MaassenVanDenBrink, Antoinette

    2012-12-01

    Migraine is a neurovascular disorder characterized by recurrent unilateral headaches accompanied by nausea, vomiting, photophobia and phonophobia. Current theories suggest that the initiation of a migraine attack involves a primary event in the central nervous system (CNS), probably involving a combination of genetic changes in ion channels and environmental changes, which renders the individual more sensitive to environmental factors; this may, in turn, result in a wave of cortical spreading depression (CSD) when the attack is initiated. Genetically, migraine is a complex familial disorder in which the severity and the susceptibility of individuals are most likely governed by several genes that vary between families. Early PET studies have suggested the involvement of a migraine active region in the brainstem. Migraine headache is associated with trigeminal nerve activation and calcitonin gene-related peptide (CGRP) release from the trigeminovascular system. Administration of triptans (5-HT(1B/1D) receptor agonists) causes the headache to subside and the levels of CGRP to normalize. Moreover, administration of CGRP receptor antagonists aborts the headache. Recent immunohistochemical and pharmacological results suggest that the trigeminal system has receptors for CGRP; further, 5-HT(1B/1D) receptors, which inhibit the action of CGRP in pain transmission when activated, have been demonstrated. This offers an explanation for the treatment response. The present review provides an updated analysis of the basic mechanisms involved in the pathophysiology of migraine and the various pharmacological approaches (including 5-HT(1B/1D) receptor agonists, CGRP receptor antagonists and glutamate receptor antagonists) that have shown efficacy for the acute treatment of this disorder. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The grape berry-specific basic helix-loop-helix transcription factor VvCEB1 affects cell size.

    PubMed

    Nicolas, Philippe; Lecourieux, David; Gomès, Eric; Delrot, Serge; Lecourieux, Fatma

    2013-02-01

    The development of fleshy fruits involves complex physiological and biochemical changes. After fertilization, fruit growth usually begins with cell division, continues with both cell division and expansion, allowing fruit set to occur, and ends with cell expansion only. In spite of the economical importance of grapevine, the molecular mechanisms controlling berry growth are not fully understood. The present work identified and characterized Vitis vinifera cell elongation bHLH protein (VvCEB1), a basic helix-loop-helix (bHLH) transcription factor controlling cell expansion in grape. VvCEB1 was expressed specifically in berry-expanding tissues with a maximum around veraison. The study of VvCEB1 promoter activity in tomato confirmed its specific fruit expression during the expansion phase. Overexpression of VvCEB1 in grape embryos showed that this protein stimulates cell expansion and affects the expression of genes involved in cell expansion, including genes of auxin metabolism and signalling. Taken together, these data show that VvCEB1 is a fruit-specific bHLH transcription factor involved in grape berry development.

  4. The grape berry-specific basic helix–loop–helix transcription factor VvCEB1 affects cell size

    PubMed Central

    Lecourieux, Fatma

    2013-01-01

    The development of fleshy fruits involves complex physiological and biochemical changes. After fertilization, fruit growth usually begins with cell division, continues with both cell division and expansion, allowing fruit set to occur, and ends with cell expansion only. In spite of the economical importance of grapevine, the molecular mechanisms controlling berry growth are not fully understood. The present work identified and characterized Vitis vinifera cell elongation bHLH protein (VvCEB1), a basic helix–loop–helix (bHLH) transcription factor controlling cell expansion in grape. VvCEB1 was expressed specifically in berry-expanding tissues with a maximum around veraison. The study of VvCEB1 promoter activity in tomato confirmed its specific fruit expression during the expansion phase. Overexpression of VvCEB1 in grape embryos showed that this protein stimulates cell expansion and affects the expression of genes involved in cell expansion, including genes of auxin metabolism and signalling. Taken together, these data show that VvCEB1 is a fruit-specific bHLH transcription factor involved in grape berry development. PMID:23314819

  5. Knowledge Development Generic Framework Concept

    DTIC Science & Technology

    2008-12-18

    requirements. The conceptual model serves as a communication interface among analysts, military staff, and other actors involved [22015] Systems Analysis will...It designates all long- lived basic mechanisms of material and institutional kind, which guarantee the functioning of a complex community . 2.2.3.2...cooperation with users) • Analyze and decide whether it is better to communicate an information object automatically (“document-to-people”) or via human

  6. A Proposed Methodology to Classify Frontier Capital Markets

    DTIC Science & Technology

    2011-07-31

    but because it is the surest route to our common good.” -Inaugural Speech by President Barack Obama, Jan 2009 This project involves basic...machine learning. The algorithm consists of a unique binary classifier mechanism that combines three methods: k-Nearest Neighbors ( kNN ), ensemble...Through kNN Ensemble Classification Techniques E. Capital Market Classification Based on Capital Flows and Trading Architecture F. Horizontal

  7. Heterolytic Activation of Hydrogen Promoted by Ruthenium Nanoparticles immobilized on Basic Supports and Hydrogenation of Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Fang, Minfeng

    Despite the aggressive development and deployment of new renewable and nuclear technologies, petroleum-derived transportation fuels---gasoline, diesel and jet fuels---will continue to dominate the markets for decades. Environmental legislation imposes severe limits on the tolerable proportion of aromatics, sulfur and nitrogen contents in transportation fuels, which is difficult to achieve with current refining technologies. Catalytic hydrogenation plays an important role in the production of cleaner fuels, both as a direct means to reduce the aromatics and as a key step in the hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) processes. However, conventional catalysts require drastic conditions and/or are easily poisoned by S or N aromatics. Therefore, there is still a need for new efficient catalysts for hydrogenation reactions relevant to the production of cleaner fossil fuels. Our catalyst design involves metallic nanoparticles intimately associated with a basic support, with the aim of creating a nanostructure capable of promoting the heterolytic activation of hydrogen and ionic hydrogenation mechanisms, as a strategy to avoid catalyst poisoning and enhance catalytic activity. We have designed and prepared a new nanostructured catalytic material composed of RuNPs immobilized on the basic polymer P4VPy. We have demonstrated that the Ru/P4VPy catalyst can promote heterolytic hydrogen activation and a unique surface ionic hydrogenation mechanism for the efficient hydrogenation of N-aromatics. This is the first time these ionic hydrogenation pathways have been demonstrated on solid surfaces. For the RuNPs surfaces without basic sites in close proximity, the conventional homolytic H2 splitting is otherwise involved. Using the mechanistic concepts from Ru/P4VPy, we have designed and prepared the Ru/MgO catalyst, with the aim to improve the catalytic efficiency for the hydrogenation of heteroatom aromatics operating by the ionic hydrogenation mechanism. The Ru/MgO catalyst significantly improves the catalytic efficiency for hydrogenation of a variety of N-/S-heteroaromatics and mono-/polycyclic aromatic hydrocarbons representative of components of petroleum-derived fuels. The catalyst is superior to the few other known supported noble metal catalysts for these reactions. Mechanistic studies also point to the ionic hydrogenation mechanism on the Ru/MgO surfaces. In addition, the Ru/MgO catalyst is highly recyclable and long-lived.

  8. Effects of basic calponin on the flexural mechanics and stability of F-actin.

    PubMed

    Jensen, Mikkel Herholdt; Watt, James; Hodgkinson, Julie L; Gallant, Cynthia; Appel, Sarah; El-Mezgueldi, Mohammed; Angelini, Thomas E; Morgan, Kathleen G; Lehman, William; Moore, Jeffrey R

    2012-01-01

    The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggested alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations. Copyright © 2011 Wiley Periodicals, Inc.

  9. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    PubMed

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. Copyright © 2013. Published by Elsevier Ltd.

  10. The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury.

    PubMed

    Zorov, D B; Plotnikov, E Y; Jankauskas, S S; Isaev, N K; Silachev, D N; Zorova, L D; Pevzner, I B; Pulkova, N V; Zorov, S D; Morosanova, M A

    2012-07-01

    Programmed execution of various cells and intracellular structures is hypothesized to be not the only example of elimination of biological systems - the general mechanism can also involve programmed execution of organs and organisms. Modern rating of programmed cell death mechanisms includes 13 mechanistic types. As for some types, the mechanism of actuation and manifestation of cell execution has been basically elucidated, while the causes and intermediate steps of the process of fatal failure of organs and organisms remain unknown. The analysis of deaths resulting from a sudden heart arrest or multiple organ failure and other acute and chronic pathologies leads to the conclusion of a special role of mitochondria and oxidative stress activating the immune system. Possible mechanisms of mitochondria-mediated induction of the signaling cascades involved in organ failure and death of the organism are discussed. These mechanisms include generation of reactive oxygen species and damage-associated molecular patterns in mitochondria. Some examples of renal failure-induced deaths are presented with mechanisms and settings determined by some hypothetical super system rather than by the kidneys themselves. This system plays the key role in the process of physiological senescence and termination of an organism. The facts presented suggest that it is the immune system involved in mitochondrial signaling that can act as the system responsible for the organism's death.

  11. The allure of mass spectrometry: From an earlyday chemist's perspective

    PubMed Central

    2016-01-01

    1 This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state‐of‐the‐art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide‐ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol‐A leaching from sterilized polycarbonate containers, high sensitivity TCDD analyses and other projects. Reflecting on my services for the mass spectrometry society, involvements with the co‐founding and 12 year chairing of the Asilomar Conference on Mass Spectrometry and founding of the Bay Area Mass Spectrometry regional MS discussion group, as part of my services for the mass spectrometry community, are presented in some detail. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:520–542, 2017 PMID:26999732

  12. The allure of mass spectrometry: From an earlyday chemist's perspective.

    PubMed

    Tőkés, László

    2017-07-01

    This reminiscing review article is an account of the author's fascination and involvements with mass spectrometry from the perspective of an organic chemist with an interest in natural product chemistry. It covers a period from 1961 through the mid 1990s as mass spectrometry evolved form a novelty technique to become a most widely used analytical technique. Following a brief synopsis of my pathway to mass spectrometry, my research efforts in this field are presented with a focus mainly on evolving principles and technologies which I had personal involvements with. To provide historical perspectives, discussions of these developments are accompanied by brief outlines of the relevant state-of-the-art, shedding light on the technical and conceptual challenges encountered during those early days in mass spectrometry. Examples are presented of my involvements with basic and applied research in mass spectrometry during graduate studies at Stanford University and close to three decade tenure in pharmaceutical research at Syntex Research. My basic research interests focused mainly on principles of electron ionization induced fragmentation mechanisms, with an emphasis on steroids and other model compounds. Extensive deuterium labeling evidence was used to determine the fragmentation mechanisms of the diagnostically significant ions in the spectra of numerous model compounds, uncovering examples of wide-ranging hydrogen transfers, skeletal rearrangements, methyl and phenyl migrations, stereoselective fragmentations and low and high energy fragmentation processes. Depiction of the industrial research phase of my career includes comments on the pivotal role mass spectrometry played on advancing modern pharmaceutical research. Examples are presented of involvements with instrumental developments and a few select cases of applied research, including studies of bile mechanisms in vertebrates, identification of bisphenol-A leaching from sterilized polycarbonate containers, high sensitivity TCDD analyses and other projects. Reflecting on my services for the mass spectrometry society, involvements with the co-founding and 12 year chairing of the Asilomar Conference on Mass Spectrometry and founding of the Bay Area Mass Spectrometry regional MS discussion group, as part of my services for the mass spectrometry community, are presented in some detail. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:520-542, 2017. © 2016 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotomayor, Marcos

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictionsmore » must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.« less

  14. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome

    PubMed Central

    Hagerman, Randi; Hagerman, Paul

    2014-01-01

    Summary Fragile X syndrome, the leading heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene consequent to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, “premutation” expansions (55–200 repeats) can give rise to a family of neurodevelopmental (ADHD, autism spectrum disorder, seizure disorder) and neurodegenerative (FXTAS) clinical phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the spectrum of clinical involvement. Whereas advances on both mechanistic and clinical fronts are driving new approaches to targeted treatment, two important issues/needs are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in light of its differing presentations and associated features. PMID:23867198

  15. Associative Learning in Invertebrates

    PubMed Central

    Hawkins, Robert D.; Byrne, John H.

    2015-01-01

    This work reviews research on neural mechanisms of two types of associative learning in the marine mollusk Aplysia, classical conditioning of the gill- and siphon-withdrawal reflex and operant conditioning of feeding behavior. Basic classical conditioning is caused in part by activity-dependent facilitation at sensory neuron–motor neuron (SN–MN) synapses and involves a hybrid combination of activity-dependent presynaptic facilitation and Hebbian potentiation, which are coordinated by trans-synaptic signaling. Classical conditioning also shows several higher-order features, which might be explained by the known circuit connections in Aplysia. Operant conditioning is caused in part by a different type of mechanism, an intrinsic increase in excitability of an identified neuron in the central pattern generator (CPG) for feeding. However, for both classical and operant conditioning, adenylyl cyclase is a molecular site of convergence of the two signals that are associated. Learning in other invertebrate preparations also involves many of the same mechanisms, which may contribute to learning in vertebrates as well. PMID:25877219

  16. The sonophysics and sonochemistry of liquid waste quantification and remeidation. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matula, T.J.

    1997-01-01

    'The first year has been extremely successful. The author was able to begin his studies immediately, without having to wait for equipment, etc. This report gives details on three projects that were initiated during the first year. The first project to be described involves an experiment to determine the basic mechanism for cavitation-chemistry, or sonochemistry, in particular the light-emission process: What is the fundamental mechanism for light emission from cavitating bubbles? There are many theories, but most fall into one of two camps. The first is that during the bubble collapse, the interior heats up quazi-adiabatically, and light emission ismore » a result of an incandescence. The second camp claims that the light-emission process is electrical. During the bubble collapse, there is an electrical discharge that results in light emission. Chemical degradation optimization depends greatly on which mechanism is dominant. The authors proposed to look for an electrical signal that would be generated if discharges were involved.'« less

  17. A Concise Introduction to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2018-02-01

    Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.

  18. Affective science perspectives on cancer control: Strategically crafting a mutually beneficial research agenda

    PubMed Central

    Ferrer, Rebecca A.; McDonald, Paige Green; Barrett, Lisa Feldman

    2015-01-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality, and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally-laden. As such, affective science research to elucidate questions related to basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this paper is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive, but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. PMID:25987511

  19. Electro-optical characterization of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Daling, Dave

    1987-01-01

    The electro-optical characterization of gallium arsenide p/n solar cells is discussed. The objective is to identify and understand basic mechanisms which limit the performance of high efficiency gallium arsenide solar cells. The approach involves conducting photoresponse and temperature dependent current-voltage measurements, and interpretation of the data in terms of theory to determine key device parameters. Depth concentration profiles are also utilized in formulating a model to explain device performance.

  20. Basic equipment requirements for hemodynamic monitoring.

    PubMed Central

    Morton, B C

    1979-01-01

    Hemodynamic monitoring in the critically ill patient requires the use of sophisticated electronic devices. To use this equipment one should have a general understanding of the principles involved and the requirements of a reliable system. This communication serves to explain the requirements of the various components of a hemodynamic monitoring system and to demonstrate how they interact to produce accurate and safe electronic signals from mechanical wave forms obtained from the patient. Images FIG. 5 PMID:497978

  1. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  2. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence ofmore » product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.« less

  3. What are the priorities in basic asthma research? A United Kingdom perspective.

    PubMed

    Hallsworth, Matthew P; Major, Philippa J; Barnes, Jack; Lee, Tak H

    2003-02-01

    The National Asthma Campaign (in the United Kingdom) has recently completed a strategic review of priorities for basic asthma research over the next 5 to 10 years. Leading asthma experts and representatives of the main funding agencies were involved in a nationwide consultation. Discussions were carried out in 7 thematic areas: Genetics of asthma, early-life events, environmental influences, immunology and immunotherapy, inflammation and anti-inflammation, airway remodeling, and the interface between academia and industry. Discussions were not restricted by considerations of financial affordability but were driven by vision and science. The consultation highlighted a number of generic issues pertaining to the organization of basic asthma research. Phenotypes of asthma require more robust characterization, particularly for genetic studies. Emphasis on longitudinal studies should be encouraged, and more information can still be gained from existing well-characterized asthma cohorts, though this requires some coordination. Human research is particularly strong and should continue, and the use of human tissue is vital to our understanding of the disease at the cellular and molecular levels. Animal models of asthma remain an important tool with which to dissect disease mechanisms, but they must be improved and refined. The consultation covered a wide range of issues and highlighted the need for collaboration at all levels between research groups and with industry and also between funding agencies. The recommendations made have relevance to everyone involved in basic asthma research. This article describes the recommendations and reviews the specific research issues relating to each of the 7 thematic areas.

  4. [The extraneuronal cholinergic system of the skin. Basic facts and clinical relevance].

    PubMed

    Kurzen, H

    2004-05-01

    Acetylcholine (ACh) is a prototypical neurotransmitter that has recently been recognized to occur extraneuronally in a large variety of cells. ACh and its nicotinic and muscarinic receptors are produced in the epidermis and in the adnexal structures of the skin in a highly complicated pattern. They are also produced in melanocytes, fibroblasts, endothelial cells and immune cells. Through autocrine, paracrine and endocrine mechanisms, the cholinergic system is involved in the basic functions of the skin, such as keratinocyte differentiation, epidermal barrier formation, sweating, sebum production, blood circulation, angiogenesis and a variety of immune reactions. Hence diseases like acne vulgaris, vitiligo, psoriasis, pemphigus vulgaris and atopic dermatitis may be influenced. The exploration of the extraneuronal cholinergic system of the skin has only just begun.

  5. Tools for evaluating Veterinary Services: an external auditing model for the quality assurance process.

    PubMed

    Melo, E Correa

    2003-08-01

    The author describes the reasons why evaluation processes should be applied to the Veterinary Services of Member Countries, either for trade in animals and animal products and by-products between two countries, or for establishing essential measures to improve the Veterinary Service concerned. The author also describes the basic elements involved in conducting an evaluation process, including the instruments for doing so. These basic elements centre on the following:--designing a model, or desirable image, against which a comparison can be made--establishing a list of processes to be analysed and defining the qualitative and quantitative mechanisms for this analysis--establishing a multidisciplinary evaluation team and developing a process for standardising the evaluation criteria.

  6. Functional neuroimaging of emotional learning and autonomic reactions.

    PubMed

    Peper, Martin; Herpers, Martin; Spreer, Joachim; Hennig, Jürgen; Zentner, Josef

    2006-06-01

    This article provides a selective overview of the functional neuroimaging literature with an emphasis on emotional activation processes. Emotions are fast and flexible response systems that provide basic tendencies for adaptive action. From the range of involved component functions, we first discuss selected automatic mechanisms that control basic adaptational changes. Second, we illustrate how neuroimaging work has contributed to the mapping of the network components associated with basic emotion families (fear, anger, disgust, happiness), and secondary dimensional concepts that organise the meaning space for subjective experience and verbal labels (emotional valence, activity/intensity, approach/withdrawal, etc.). Third, results and methodological difficulties are discussed in view of own neuroimaging experiments that investigated the component functions involved in emotional learning. The amygdala, prefrontal cortex, and striatum form a network of reciprocal connections that show topographically distinct patterns of activity as a correlate of up and down regulation processes during an emotional episode. Emotional modulations of other brain systems have attracted recent research interests. Emotional neuroimaging calls for more representative designs that highlight the modulatory influences of regulation strategies and socio-cultural factors responsible for inhibitory control and extinction. We conclude by emphasising the relevance of the temporal process dynamics of emotional activations that may provide improved prediction of individual differences in emotionality.

  7. Teaching the basics of autophagy and mitophagy to redox biologists--mechanisms and experimental approaches.

    PubMed

    Zhang, Jianhua

    2015-01-01

    Autophagy is a lysosomal mediated degradation activity providing an essential mechanism for recycling cellular constituents, and clearance of excess or damaged lipids, proteins and organelles. Autophagy involves more than 30 proteins and is regulated by nutrient availability, and various stress sensing signaling pathways. This article provides an overview of the mechanisms and regulation of autophagy, its role in health and diseases, and methods for its measurement. Hopefully this teaching review together with the graphic illustrations will be helpful for instructors teaching graduate students who are interested in grasping the concepts and major research areas and introducing recent developments in the field. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Histaminergic Mechanisms for Modulation of Memory Systems

    PubMed Central

    Köhler, Cristiano André; da Silva, Weber Cláudio; Benetti, Fernando; Bonini, Juliana Sartori

    2011-01-01

    Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation. PMID:21876818

  9. [Chronic stress and epigenetics. Relation between academic sciences and theology].

    PubMed

    Simon, Kornél

    2012-04-08

    The author gives a short account on the principles of Selye's stress theory, and discusses similarities and dissimilarities of acute and chronic stress. Both the external, and the internal environment, as well as the psycho-mental status are involved in the notion of the environment. Basic principles of epigenetics are reviewed: interaction between environment and genes, neuroendocrine and enzymatic mechanisms involved in silencing and activation of genes, notions of phenotypic plasticity, and epigenetic reprogramming are discussed. Epigenetic mechanisms of interrelation between pathological clinical states (diseases) and the characteristic phenotypes, causative role of psycho-mental status in evoking pathological somatic alterations, and the potential therapeutic consequences are briefly discussed. The etiological role of chronic, civilization stress in producing the worldwide increment of cardiovascular morbidity is cited, argumentation and criticism of the current therapeutical practice is discussed. The author concludes that recent advances in epigenetic knowledge seem to solve the controversy between the academic and theological sciences.

  10. Molecular mechanisms underlying airway smooth muscle contraction and proliferation: implications for asthma.

    PubMed

    Pelaia, Girolamo; Renda, Teresa; Gallelli, Luca; Vatrella, Alessandro; Busceti, Maria Teresa; Agati, Sergio; Caputi, Mario; Cazzola, Mario; Maselli, Rosario; Marsico, Serafino A

    2008-08-01

    Airway smooth muscle (ASM) plays a key role in bronchomotor tone, as well as in structural remodeling of the bronchial wall. Therefore, ASM contraction and proliferation significantly participate in the development and progression of asthma. Many contractile agonists also behave as mitogenic stimuli, thus contributing to frame a hyperresponsive and hyperplastic ASM phenotype. In this review, the molecular mechanisms and signaling pathways involved in excitation-contraction coupling and ASM cell growth will be outlined. Indeed, the recent advances in understanding the basic aspects of ASM biology are disclosing important cellular targets, currently explored for the implementation of new, more effective anti-asthma therapies.

  11. Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms

    NASA Astrophysics Data System (ADS)

    Henley, Christopher L.

    2009-05-01

    How might systematic left-right (L/R) asymmetry of the body plan originate in multicellular animals (and plants)? Somehow, the microscopic handedness of biological molecules must be brought up to macroscopic scales. Basic symmetry principles suggest that the usual "biological" mechanisms—diffusion and gene regulation—are insufficient to implement the "right-hand rule" defining a third body axis from the other two. Instead, on the cellular level, "physical" mechanisms (forces and collective dynamic states) are needed involving the long stiff fibers of the cytoskeleton. I discuss some possible scenarios; only in the case of vertebrate internal organs is the answer currently known (and even that is in dispute).

  12. Underlying Mechanisms of Tinnitus: Review and Clinical Implications

    PubMed Central

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.

    2016-01-01

    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  13. Malassezia species and seborrheic dermatitis.

    PubMed

    Zisova, Lilia G

    2009-01-01

    Malassezia spp. are medically important dimorphic, lipophilic yeasts that form part of the normal cutaneous microflora of human. Seborrheic dermatitis is a multifactor disease that needs endogenous and exogenous predisposing factors for its development. Presence of these factors leads to reproduction of the saprophytic opportunistic pathogen Malassezia spp. and development of a disease. The inflammatory reaction against the yeast Malassezia is considered basic in the etiology of the seborrheic dermatitis. The pathogenesis and exact mechanisms via which these yeasts cause inflammation are still not fully elucidated. They are rather complex and subject of controversy in literature. Most probably Malassezia spp. cause seborrheic dermatitis by involving and combining both nonummune and immune mechanisms (nonspecific and specific). Which of these mechanisms will dominate in any single case depends on the number and virulence of the yeasts as well as on the microorganism reactivity. In the recent years a great interest have been aroused by the epidemiological investigations. Depending on the geographical place of the countries different Malassezia species in seborrheic dermatitis dominate in the different countries. In view of the etiology and pathogenesis of the seborrheic dermatitis comprehensive antifungal preparations have been recently introduced and are nowadays the basic therapeutic resource in the treatment of this disease.

  14. Effects and Mechanisms of Tastants on the Gustatory-Salivary Reflex in Human Minor Salivary Glands.

    PubMed

    Satoh-Kuriwada, Shizuko; Shoji, Noriaki; Miyake, Hiroyuki; Watanabe, Chiyo; Sasano, Takashi

    2018-01-01

    The effects and mechanisms of tastes on labial minor salivary gland (LMSG) secretion were investigated in 59 healthy individuals. Stimulation with each of the five basic tastes (i.e., sweet, salty, sour, bitter, and umami) onto the tongue induced LMSG secretion in a dose-dependent manner. Umami and sour tastes evoked greater secretion than did the other tastes. A synergistic effect of umami on LMSG secretion was recognized: a much greater increase in secretion was observed by a mixed solution of monosodium glutamate and inosine 5'-monophosphate than by each separate stimulation. Blood flow (BF) in the nearby labial mucosa also increased following stimulation by each taste except bitter. The BF change and LMSG secretion in each participant showed a significant positive correlation with all tastes, including bitter. Administration of cevimeline hydrochloride hydrate to the labial mucosa evoked a significant increase in both LMSG secretion and BF, while adrenaline, atropine, and pirenzepine decreased LMSG secretion and BF. The change in LMSG secretion and BF induced by each autonomic agent was significantly correlated in each participant. These results indicate that basic tastes can induce the gustatory-salivary reflex in human LMSGs and that parasympathetic regulation is involved in this mechanism.

  15. Nucleolar Trafficking of Nucleostemin Family Proteins: Common versus Protein-Specific Mechanisms▿ §

    PubMed Central

    Meng, Lingjun; Zhu, Qubo; Tsai, Robert Y. L.

    2007-01-01

    The nucleolus has begun to emerge as a subnuclear organelle capable of modulating the activities of nuclear proteins in a dynamic and cell type-dependent manner. It remains unclear whether one can extrapolate a rule that predicts the nucleolar localization of multiple proteins based on protein sequence. Here, we address this issue by determining the shared and unique mechanisms that regulate the static and dynamic distributions of a family of nucleolar GTP-binding proteins, consisting of nucleostemin (NS), guanine nucleotide binding protein-like 3 (GNL3L), and Ngp1. The nucleolar residence of GNL3L is short and primarily controlled by its basic-coiled-coil domain, whereas the nucleolar residence of NS and Ngp1 is long and requires the basic and the GTP-binding domains, the latter of which functions as a retention signal. All three proteins contain a nucleoplasmic localization signal (NpLS) that prevents their nucleolar accumulation. Unlike that of the basic domain, the activity of NpLS is dynamically controlled by the GTP-binding domain. The nucleolar retention and the NpLS-regulating functions of the G domain involve specific residues that cannot be predicted by overall protein homology. This work reveals common and protein-specific mechanisms underlying the nucleolar movement of NS family proteins. PMID:17923687

  16. United States Metric Board. A Study of Metric Measurement and Legislation. Volume 1.

    DTIC Science & Technology

    1979-09-10

    LEGAL ADVISORY PANEL A. Panel Membership VIII.I B. Role of the Panel VIII.2 IX. DATA COLLECTION METHODOLOGY A. Basic Research IX.I B. Computer...First, the Panel was involved in a review of the overall study design . Second, the Panel reviewed the various change mechanisms which were identified...collection methodology . • X summarizes the relevant experiences of Canada and Australia. MIOOLEBNX *NEARC CRNTE 1.3 II. THE UNITED STATES METRIC

  17. Corrosion engineering in the utilization of the Raft River geothermal resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.L.

    1976-08-01

    The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

  18. Microgravity

    NASA Image and Video Library

    2004-04-15

    The M512 Materials Processing Facility (MPF) with the M518 Multipurpose Electric Facility (MEF) tested and demonstrated a facility approach for materials process experimentation in space. It also provided a basic apparatus and a common interface for a group of metallic and nonmetallic materials experiments. The MPF consisted of a vacuum work chamber and associated mechanical and electrical controls. The M518 Multipurpose Electric Furnace (MEF) was an electric furnace system in which solidification, crystal growth, and other experiments involving phase changes were performed.

  19. Cheap electricity from French tides

    NASA Astrophysics Data System (ADS)

    Andre, H.

    1980-02-01

    A tidal power plant built in Saint-Malo, France is examined, and some of the problems that have resulted in recent years are analyzed. These include mechanical problems due to turbine runner-blade seal failure and electrical problems involving electroerosion and structural station difficulties. the effects of tidal power plants on the environment are discussed, and it is noted that all possible side effects of the operations are very limited. Attention is given to the basic requirements for constructing power sites.

  20. Process Mechanics Analysis in Single Point Incremental Forming

    NASA Astrophysics Data System (ADS)

    Ambrogio, G.; Filice, L.; Fratini, L.; Micari, F.

    2004-06-01

    The request of highly differentiated products and the need of process flexibility have brought the researchers to focus the attention on innovative sheet forming processes. Industrial application of conventional processes is, in fact, economically convenient just for large scale productions; furthermore conventional processes do not allow to fully satisfy the mentioned demand of flexibility. In this contest, single point incremental forming (SPIF) is an innovative and flexible answer to market requests. The process is characterized by a peculiar process mechanics, being the sheet plastically deformed only through a localised stretching mechanism. Some recent experimental studies have shown that SPIF permits a relevant increase of formability limits, just as a consequence of the peculiar deformation mechanics. The research here addressed is focused on the theoretical investigation of process mechanics; the aim was to achieve a deeper understanding of basic phenomena involved in SPIF which justify the above mentioned formability enhancing.

  1. Advances in mechanisms of asthma, allergy, and immunology in 2011.

    PubMed

    Boyce, Joshua A; Bochner, Bruce; Finkelman, Fred D; Rothenberg, Marc E

    2012-02-01

    2011 was marked by rapid progress in the identification of basic mechanisms of allergic disease and the translation of these mechanisms into human cell systems. Studies published in the Journal of Allergy and Clinical Immunology this year provided new insights into the molecular determinants of allergenicity, as well as the environmental, cellular, and genetic factors involved in sensitization to allergens. Several articles focused on mechanisms of allergen immunotherapy and the development of novel strategies to achieve tolerance to allergens. Additional studies identified substantial contributions from T(H)17-type cells and cytokines to human disease pathogenesis. Finally, new therapeutic applications of anti-IgE were identified. The highlights of these studies and their potential clinical implications are summarized in this review. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. From molecules to behavior and the clinic: Integration in chronobiology.

    PubMed

    Bechtel, William

    2013-12-01

    Chronobiology, especially the study of circadian rhythms, provides a model scientific field in which philosophers can study how investigators from a variety of disciplines working at different levels of organization are each contributing to a multi-level account of the responsible mechanism. I focus on how the framework of mechanistic explanation integrates research designed to decompose the mechanism with efforts directed at recomposition that relies especially on computation models. I also examine how recently the integration has extended beyond basic research to the processes through which the disruption of circadian rhythms contributes to disease, including various forms of cancer. Understanding these linkages has been facilitated by discoveries about how circadian mechanisms interact with mechanisms involved in other physiological processes, including the cell cycle and the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  4. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    PubMed

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  5. The New Neurobiology of Autism

    PubMed Central

    Minshew, Nancy J.; Williams, Diane L.

    2008-01-01

    This review covers a fraction of the new research developments in autism but establishes the basic elements of the new neurobiologic understanding of autism. Autism is a polygenetic developmental neurobiologic disorder with multiorgan system involvement, though it predominantly involves central nervous system dysfunction. The evidence supports autism as a disorder of the association cortex, both its neurons and their projections. In particular, it is a disorder of connectivity, which appears, from current evidence, to primarily involve intrahemispheric connectivity. The focus of connectivity studies thus far has been on white matter, but alterations in functional magnetic resonance imaging activation suggest that intracortical connectivity is also likely to be disturbed. Furthermore, the disorder has a broad impact on cognitive and neurologic functioning. Deficits in high-functioning individuals occur in processing that places high demands on integration of information and coordination of multiple neural systems. Intact or enhanced abilities share a dependence on low information-processing demands and local neural connections. This multidomain model with shared characteristics predicts an underlying pathophysiologic mechanism that impacts the brain broadly, according to a common neurobiologic principle. The multiorgan system involvement and diversity of central nervous system findings suggest an epigenetic mechanism. PMID:17620483

  6. Potential role of fibroblast growth factor in enhancement of fracture healing.

    PubMed

    Radomsky, M L; Thompson, A Y; Spiro, R C; Poser, J W

    1998-10-01

    Fibroblast growth factors are present in significant amounts in bone and several studies have suggested that they may be involved in normal fracture healing. It is well established that fibroblast growth factors have mitogenic and angiogenic activity on mesoderm and neuroectoderm derived cells. Of particular interest as a member of the fibroblast growth factor family, basic fibroblast growth factor stimulates mitogenesis, chemotaxis, differentiation, and angiogenesis. It also plays an important role in the development of vascular, nervous, and skeletal systems, promotes the maintenance and survival of certain tissues, and stimulates wound healing and tissue repair. Animal studies have shown that the direct injection of fibroblast growth factor into fresh fractures stimulates callus formation, which provides mechanical stability to the fracture, accelerates healing, and restores competence. The matrix used to present the fibroblast growth factor at the fracture site plays a critical role in the effectiveness of the treatment. The evaluation of injectable basic fibroblast growth factor in a sodium hyaluronate gel for its effectiveness in stimulating fracture healing is described. When applied directly into a freshly created fracture in the rabbit fibula, a single injection of the basic fibroblast growth factor and hyaluronan results in the stimulation of callus formation, increased bone formation, and earlier restoration of mechanical strength at the fracture site. The hyaluronan gel serves as a reservoir that sequesters the basic fibroblast growth factor at the injection site for the length of time necessary to create an environment conducive to fracture healing. It is concluded that basic fibroblast growth factor and sodium hyaluronate act synergistically to accelerate fracture healing and that the combination is suitable for clinical evaluation as a therapy in fracture treatment.

  7. Hot Corrosion at Air-Ports in Kraft Recovery Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2003-01-01

    Hot corrosion can occur on the cold-side of airports in Kraft recovery boilers. The primary corrosion mechanism involves the migration of sodium hydroxide and potassium hydroxide vapors through leaks in the furnace wall at the airports and their subsequent condensation. It has been reported that stainless steel is attacked much faster than carbon steel in composite tubes, and that carbon steel tubing, when used with a low-chromium refractory, does not exhibit this type of corrosion. For hot corrosion fluxing of metal oxides, either acidic or basic fluxing takes place, with a solubility minimum at the basicity of transition between themore » two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.« less

  8. Head trauma in sport and neurodegenerative disease: an issue whose time has come?

    PubMed

    Pearce, Neil; Gallo, Valentina; McElvenny, Damien

    2015-03-01

    A number of small studies and anecdotal reports have been suggested that sports involving repeated head trauma may have long-term risks of neurodegenerative disease. There are now plausible mechanisms for these effects, and a recognition that these problems do not just occur in former boxers, but in a variety of sports involving repeated concussions, and possibly also in sports in which low-level head trauma is common. These neurodegenerative effects potentially include increased risks of impaired cognitive function and dementia, Parkinson's disease, and amyotrophic lateral sclerosis. Many would argue for taking a precautionary approach and immediately banning or restricting sports such as boxing. However, there are important public health issues in terms of how wide the net should be cast in terms of other sports, and what remedial measures could be taken? This in turn requires a major research effort involving both clinical and basic research to understand the underlying mechanisms, leading from head trauma to neurodegenerative disease and epidemiologic studies to assess the long-term consequences. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Animal models of neoplastic development.

    PubMed

    Pitot, H C

    2001-01-01

    The basic animal model for neoplastic development used by regulatory agencies is the two-year chronic bioassay developed more than 30 years ago and based on the presumed mechanism of action of a few potential chemical carcinogens. Since that time, a variety of other model carcinogenic systems have been developed, usually involving shorter duration, single organ endpoints, multistage models, and those in genetically-engineered mice. The chronic bioassay is still the "gold standard" of regulatory agencies despite a number of deficiencies, while in this country the use of shorter term assays based on single organ endpoints has not been popular. The multistage model of carcinogenesis in mouse epidermis actually preceded the development of the chronic two-year bioassay, but it was not until multistage models in other organ systems were developed that the usefulness of such systems became apparent. Recently, several genetically-engineered mouse lines involving mutations in proto-oncogenes and tumour suppressor genes have been proposed as additional model systems for use in regulatory decisions. It is likely that a combination of several of these model systems may be most useful in both practical and basic applications of cancer prevention and therapy.

  10. [Learning and implicit memory: mechanisms and neuroplasticity].

    PubMed

    Machado, S; Portella, C E; Silva, J G; Velasques, B; Bastos, V H; Cunha, M; Basile, L; Cagy, M; Piedade, R A; Ribeiro, P

    Learning and memory are complex processes that researchers have been attempting to unravel for over a century in order to gain a clear view of the underlying mechanisms. To review the basic cellular and molecular mechanisms involved in the process of procedural retention, to offer an overall view of the fundamental mechanisms involved in storing information by means of theories and models of memory, and to discuss the different types of memory and the role played by the cerebellum as a modulator of procedural memory. Experimental results from recent decades have opened up new areas of study regarding the participation of the biochemical and cellular processes related to the consolidation of information in the nervous system. The neuronal circuits involved in acquiring and consolidating memory are still not fully understood and the exact location of memory in the nervous system remains unknown. A number of intrinsic and extrinsic factors interfere in these processes, such as molecular (long-term potentiation and depression) and cellular mechanisms, which respond to communication and transmission between nerve cells. There are also factors that have their origin in the outside environment, which use the association of events to bring about the formation of new memories or may divert the subject from his or her main focus. Memory is not a singular occurrence; it is sub-divided into declarative and non-declarative or, when talking about the time it lasts, into short and long-term memory. Moreover, given its relation with neuronal mechanisms of learning, memory cannot be said to constitute an isolated process.

  11. Affective science perspectives on cancer control: strategically crafting a mutually beneficial research agenda.

    PubMed

    Ferrer, Rebecca A; Green, Paige A; Barrett, Lisa Feldman

    2015-05-01

    Cancer control research involves the conduct of basic and applied behavioral and social sciences to reduce cancer incidence, morbidity, and mortality and improve quality of life. Given the importance of behavior in cancer control, fundamental research is necessary to identify psychological mechanisms underlying cancer risk, prevention, and management behaviors. Cancer prevention, diagnosis, and treatment are often emotionally laden. As such, affective science research to elucidate questions related to the basic phenomenological nature of emotion, stress, and mood is necessary to understand how cancer control can be hindered or facilitated by emotional experiences. To date, the intersection of basic affective science research and cancer control remains largely unexplored. The goal of this article is to outline key questions in the cancer control research domain that provide an ecologically valid context for new affective science discoveries. We also provide examples of ways in which basic affective discoveries could inform future cancer prevention and control research. These examples are not meant to be exhaustive or prescriptive but instead are offered to generate creative thought about the promise of a cancer research context for answering basic affective science questions. Together, these examples provide a compelling argument for fostering collaborations between affective and cancer control scientists. © The Author(s) 2015.

  12. Neural invasion in pancreatic carcinoma.

    PubMed

    Liu, Bin; Lu, Kui-Yang

    2002-08-01

    Neural invasion is a special metastatic route in pancreatic cancer and responsible for the high recurrence in curatively resected cases. To summarize the characteristics and mechanisms of neural invasion in pancreatic carcinoma for the better treatment of this disease. The international literatures were reviewed about the definition, incidence and mechanisms of neural invasion and its clinicopathology, diagnosis and treatment. Neural invasion is defined when the medial perineurium is involved by cancer cells, accounting for 45%-100% of all cases. It can be divided into different kinds or stages according to its locations and the number of nerve fascicles involved. Invasion along vascularity, lymphatic vessels, perineural space and neurotropism is considered as its primary mechanisms. No clinicopathologic factors are correlated with neural invasion. Intravascular ultrasound, CT scan and immunostaining K-ras gene analysis can be used to diagnose neural invasion pre-, intra- or postoperatively. Neural invasion is an important prognostic factor for the recurrence of pancreatic carcinoma after pancreatectomy. Because of its high incidence, pancreatectomy with extended radical retroperitoneal dissection should be considered as a basic procedure in the treatment of pancreatic carcinoma.

  13. Propulsion Test Handbook: MSFC and SSC. Draft 01

    NASA Technical Reports Server (NTRS)

    Hammond, John M.

    2010-01-01

    This Handbook was prepared to provide Propulsion Test Personnel a central source of fundamental reference material. The Testing Process, which is a three-part process of pre-test activities, testing, and post-test activities, involves a collaborative effort from the mechanical, electrical, safety, and environmental disciplines in the test environment. Pre-test activities, testing, and post-test activities processes will vary, per test requirements; however, the content of this Handbook should cover basic procedures and standards that are shared across Centers.

  14. Elementary metallography

    NASA Technical Reports Server (NTRS)

    Kazem, Sayyed M.

    1992-01-01

    Materials and Processes 1 (MET 141) is offered to freshmen by the Mechanical Engineering Department at Purdue University. The goal of MET 141 is to broaden the technical background of students who have not had any college science courses. Hence, applied physics, chemistry, and mathematics are included and quantitative problem solving is involved. In the elementary metallography experiment of this course, the objectives are: (1) introduce the vocabulary and establish outlook; (2) make qualitative observations and quantitative measurements; (3) demonstrate the proper use of equipment; and (4) review basic mathematics and science.

  15. Genetic factors and molecular mechanisms in dry eye disease.

    PubMed

    Lee, Ling; Garrett, Qian; Flanagan, Judith; Chakrabarti, Subhabrata; Papas, Eric

    2018-04-01

    Dry eye disease (DED) is a complex condition with a multifactorial etiology that can be difficult to manage successfully. While external factors are modifiable, treatment success is limited if genetic factors contribute to the disease. The purpose of this review is to compile research describing normal and abnormal ocular surface function on a molecular level, appraise genetic studies involving DED or DED-associated diseases, and introduce the basic methods used for conducting genetic epidemiology studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Ahmad, Nafees

    2018-05-01

    Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.

  17. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  18. Biodegradation of zearalenone by Saccharomyces cerevisiae: Possible involvement of ZEN responsive proteins of the yeast.

    PubMed

    Zhang, Hongyin; Dong, Manjia; Yang, Qiya; Apaliya, Maurice Tibiru; Li, Jun; Zhang, Xiaoyun

    2016-06-30

    The mycotoxin zearalenone, also known as F-2 mycotoxin or RAL is a potent estrogenic metabolite produced by some Gibberella and Fusarium species. It is a common contaminant of cereal crops, livestock and poultry products. However, detoxification of zearalenone (ZEN) remains a challenge. Recently, biological approach for ZEN detoxification is being explored. In this study, we investigated the biodegradation of ZEN by using Saccharomyces cerevisiae and the possible mechanisms involved. The findings revealed that, after 48h of incubation of S. cerevisiae in combination with ZEN, the ZEN was completely degraded by S. cerevisiae. On the contrary, heat-killed cells and cell-free culture filtrates of S. cerevisiae could not degrade ZEN. Furthermore, addition of cycloheximide to S. cerevisiae combined with ZEN at time 0h prevented ZEN degradation, while addition of cycloheximide at 12h significantly slowed down degradation. The results also indicated cellular proteomics of S. cerevisiae. Several differential proteins were identified, most of which were related to basic metabolism. The findings revealed that, after 48h of incubating ZEN together with S. cerevisiae, ZEN was completely degraded by S. cerevisiae. The mechanisms involved in the degradation of ZEN by S. cerevisiae may be the production of associated intracellular and extracellular enzymes, which have the ability to degrade ZEN. In addition, there were some functional proteins produced by S. cerevisiae, indicating that the basic metabolism of S. cerevisiae was improved when ZEN was added. This novel discovery by the authors, will greatly contribute to the field of biodegradation of mycotoxin by antagonists. The authors also believed this innovation will open the grounds for further research and improvement of S. cerevisiae in the field of biodegradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The Comparative Toxicogenomics Database (CTD): A Resource for Comparative Toxicological Studies

    PubMed Central

    CJ, Mattingly; MC, Rosenstein; GT, Colby; JN, Forrest; JL, Boyer

    2006-01-01

    The etiology of most chronic diseases involves interactions between environmental factors and genes that modulate important biological processes (Olden and Wilson, 2000). We are developing the publicly available Comparative Toxicogenomics Database (CTD) to promote understanding about the effects of environmental chemicals on human health. CTD identifies interactions between chemicals and genes and facilitates cross-species comparative studies of these genes. The use of diverse animal models and cross-species comparative sequence studies has been critical for understanding basic physiological mechanisms and gene and protein functions. Similarly, these approaches will be valuable for exploring the molecular mechanisms of action of environmental chemicals and the genetic basis of differential susceptibility. PMID:16902965

  20. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less

  1. Effects of biological sex on the pathophysiology of the heart

    PubMed Central

    Fazal, Loubina; Azibani, Feriel; Vodovar, Nicolas; Cohen Solal, Alain; Delcayre, Claude; Samuel, Jane-Lise

    2014-01-01

    Cardiovascular diseases are the leading causes of death in men and women in industrialized countries. While the effects of biological sex on cardiovascular pathophysiology have long been known, the sex-specific mechanisms mediating these processes have been further elucidated over recent years. This review aims at analysing the sex-based differences in cardiac structure and function in adult mammals, and the sex-based differences in the main molecular mechanisms involved in the response of the heart to pathological situations. It emerged from this review that the sex-based difference is a variable that should be dealt with, not only in basic science or clinical research, but also with regards to therapeutic approaches. PMID:23763376

  2. Noradrenaline effects on social behaviour, intergroup relations, and moral decisions.

    PubMed

    Terbeck, S; Savulescu, J; Chesterman, L P; Cowen, P J

    2016-07-01

    Recent research has begun to elucidate the neural basis of higher order social concepts, such as the mechanisms involved in intergroup relations, and moral judgments. Most theories have concentrated on higher order emotions, such as guilt, shame, or empathy, as core mechanisms. Accordingly, psychopharmacological and neurobiological studies have investigated the effects of manipulating serotonin or oxytocin activity on moral and social decisions and attitudes. However, recently it has been determined that changes in more basic emotions, such as fear and anger, might also have a significant role in social and moral cognition. This article summarizes psychopharmacological and fMRI research on the role of noradrenaline in higher order social cognition suggesting that indeed noradrenergic mediated affective changes might play key - and probably causal - role in certain social attitudes and moral judgments. Social judgments may also be directly influenced by numerous neurotransmitter manipulations but these effects could be mediated by modulation of basic emotions which appear to play an essential role in the formation of social concepts and moral behaviour. Copyright © 2016. Published by Elsevier Ltd.

  3. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  4. Computational Elucidation of a Role That Brønsted Acidification of the Lewis Acid-Bound Water Might Play in the Hydrogenation of Carbonyl Compounds with H2 in Lewis Basic Solvents.

    PubMed

    Heshmat, Mojgan; Privalov, Timofei

    2017-08-25

    Brønsted acidification of water by Lewis acid (LA) complexation is one of the fundamental principles in chemistry. Using transition-state calculations (TS), herein we investigate the role that Brønsted acidification of the LA-bound water might play in the mechanism of the hydrogenation of carbonyl compounds in Lewis basic solvents under non-anhydrous conditions. The potential energy scans and TS calculations were carried out with a series of eight borane LAs as well as the commonly known strong LA AlCl 3 in 1,4-dioxane or THF as Lewis basic solvents. Our molecular model consists of the dative LA-water adduct with hydrogen bonds to acetone and a solvent molecule plus one additional solvent molecule that participates is the TS structure describing the cleavage of H 2 at acetone's carbonyl carbon atom. In all the molecular models applied here, acetone (O=CMe 2 ) is the archetypical carbonyl substrate. We demonstrate that Brønsted acidification of the LA-bound water can indeed lower the barrier height of the solvent-involving H 2 -cleavage at the acetone's carbonyl carbon atom. This is significant because at present it is believed that the mechanism of the herein considered reaction is described by the same mechanism regardless of whether the reaction conditions are strictly anhydrous or non-anhydrous. Our results offer an alternative to this belief that warrants consideration and further study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The character of sleep disturbances produced by multiple administrations of atropine the antagonist of brain muscarinic cholinergic system.

    PubMed

    Maglakelidze, N T; Chkhartishvili, E V; Mchedlidze, O M; Dzadzamiia, Sh Sh; Nachkebiia, N G

    2012-03-01

    Modification of brain muscarinic cholinergic system normal functioning can be considered as an appropriate strategy for the study of its role in sleep-wakefulness cycle basic mechanisms in general and in the course/maintenance of PS in particular. For this aim systemic application of muscarinic cholinoreceptors antagonists is significant because it gives possibility to modify functioning all of known five sub-types of muscarinic cholinoreceptors and to study the character of sleep disturbances in these conditions. Problem is very topical because the question about the intimate aspects of BMChS involvement in PS maintaining mechanisms still remains unsolved. In cats Atropine systemic administration was made once daily at 10:00 a.m. and continuous EEG registration of sleep-wakefulness cycle ultradian structure, lasting for 10 hour daily, was started immediately. In sum each animal received anti-muscarinic drugs for 12 times. Thereafter drug administrations were ceased and EEG registration of sleep-wakefulness cycle ultradian structure was continued during 10 consecutive days. On the basis of results obtained in these conditions we can conclude that brain muscarinic cholinergic system normal functioning is significant for basic mechanisms of sleep-wakefulness cycle. During wakefulness, at the level of neocortex and hippocampus, MChS supports only EEG activation, while it is one of the main factors in PS triggering and maintaining mechanisms.

  6. Overview of Glenn Mechanical Components Branch Research

    NASA Astrophysics Data System (ADS)

    Zakrajsek, James

    2002-09-01

    Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.

  7. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    NASA Astrophysics Data System (ADS)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  8. Molecular insights into the enhanced rate of CO2 absorption to produce bicarbonate in aqueous 2-amino-2-methyl-1-propanol.

    PubMed

    Stowe, Haley M; Hwang, Gyeong S

    2017-12-06

    2-Amino-2-methyl-1-propanol (AMP), a sterically hindered amine, exhibits a much higher CO 2 absorption rate relative to tertiary amine diethylethanolamine (DEEA), while both yield bicarbonate as a major product in aqueous solution, despite their similar basicity. We present molecular mechanisms underlying the significant difference of CO 2 absorption rate based on ab initio molecular dynamics simulations combined with metadynamics. Our calculations predict the free energy barrier for base-catalyzed CO 2 hydration to be lower in aqueous AMP compared to DEEA. Further molecular analysis suggests that the difference in free energy barrier is largely attributed to entropic effects associated with reorganization of H 2 O molecules adjacent to the basic N site. Stronger hydrogen bonding of H 2 O with N of DEEA than AMP, in addition to the presence of bulky ethyl groups, suppresses the thermal rearrangement of adjacent H 2 O molecules, thereby leading to lower stability of the transition state involving OH - creation and CO 2 polarization. Moreover, the hindered reorganization of adjacent H 2 O molecules is found to facilitate migration of OH - (created via proton abstraction by DEEA) away from the N site while suppressing CO 2 approach. This leads us to speculate that catalyzed CO 2 hydration in aqueous DEEA may involve OH - migration through multiple hydrogen-bonded H 2 O molecules prior to reaction with CO 2 , whereas in aqueous AMP it seems to preferentially follow the one H 2 O-mediated mechanism. This study highlights the importance of entropic effects in determining both mechanisms and rates of CO 2 absorption into aqueous sterically hindered amines.

  9. Renocardiac syndromes: physiopathology and treatment stratagems.

    PubMed

    Kingma, J G; Simard, D; Rouleau, J R

    2015-01-01

    Bidirectional inter-organ interactions are essential for normal functioning of the human body; however, they may also promote adverse conditions in remote organs. This review provides a narrative summary of the epidemiology, physiopathological mechanisms and clinical management of patients with combined renal and cardiac disease (recently classified as type 3 and 4 cardiorenal syndrome). Findings are also discussed within the context of basic research in animal models with similar comorbidities. Pertinent published articles were identified by literature search of PubMed, MEDLINE and Google Scholar. Additional data from studies in the author's laboratory were also consulted. The prevalence of renocardiac syndrome throughout the world is increasing in part due to an aging population and to other risk factors including hypertension, diabetes and dyslipidemia. Pathogenesis of this disorder involves multiple bidirectional interactions between the kidneys and heart; however, participation of other organs cannot be excluded. Our own work supports the hypothesis that the uremic milieu, caused by kidney dysfunction, produces major alterations in vasoregulatory control particularly at the level of the microvasculature that results in impaired oxygen delivery and blood perfusion. Recent clinical literature is replete with articles discussing the necessity to clearly define or characterize what constitutes cardiorenal syndrome in order to improve clinical management of affected patients. Patients are treated after onset of symptoms with limited available information regarding etiology. While understanding of mechanisms involved in pathogenesis of inter-organ crosstalk remains a challenging objective, basic research data remains limited partly because of the lack of animal models. Preservation of microvascular integrity may be the most critical factor to limit progression of multi-organ disorders including renocardiac syndrome. More fundamental studies are needed to help elucidate physiopathological mechanisms and for development of treatments to improve clinical outcomes.

  10. The function and failure of sensory predictions.

    PubMed

    Bansal, Sonia; Ford, Judith M; Spering, Miriam

    2018-04-23

    Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms. © 2018 New York Academy of Sciences.

  11. SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-08-01

    This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. Themore » notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.« less

  12. Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  13. Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: advances, gaps, and needs in current research.

    PubMed

    Goschke, Thomas

    2014-01-01

    Disadvantageous decision-making and impaired volitional control over actions, thoughts, and emotions are characteristics of a wide range of mental disorders such as addiction, eating disorders, depression, and anxiety disorders and may reflect transdiagnostic core mechanisms and possibly vulnerability factors. Elucidating the underlying neurocognitive mechanisms is a precondition for moving from symptom-based to mechanism-based disorder classifications and ultimately mechanism-targeted interventions. However, despite substantial advances in basic research on decision-making and cognitive control, there are still profound gaps in our current understanding of dysfunctions of these processes in mental disorders. Central unresolved questions are: (i) to which degree such dysfunctions reflect transdiagnostic mechanisms or disorder-specific patterns of impairment; (ii) how phenotypical features of mental disorders relate to dysfunctional control parameter settings and aberrant interactions between large-scale brain systems involved in habit and reward-based learning, performance monitoring, emotion regulation, and cognitive control; (iii) whether cognitive control impairments are consequences or antecedent vulnerability factors of mental disorders; (iv) whether they reflect generalized competence impairments or context-specific performance failures; (v) whether not only impaired but also chronic over-control contributes to mental disorders. In the light of these gaps, needs for future research are: (i) an increased focus on basic cognitive-affective mechanisms underlying decision and control dysfunctions across disorders; (ii) longitudinal-prospective studies systematically incorporating theory-driven behavioural tasks and neuroimaging protocols to assess decision-making and control dysfunctions and aberrant interactions between underlying large-scale brain systems; (iii) use of latent-variable models of cognitive control rather than single tasks; (iv) increased focus on the interplay of implicit and explicit cognitive-affective processes; (v) stronger focus on computational models specifying neurocognitive mechanisms underlying phenotypical expressions of mental disorders. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Spin-Mechanical Inertia in Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  15. Achievement Test Program.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Trade and Industrial Education Service.

    The Ohio Trade and Industrial Education Achievement Test battery is comprised of seven basic achievement tests: Machine Trades, Automotive Mechanics, Basic Electricity, Basic Electronics, Mechanical Drafting, Printing, and Sheet Metal. The tests were developed by subject matter committees and specialists in testing and research. The Ohio Trade and…

  16. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS)

    PubMed Central

    Luber, Bruce; Lisanby, and Sarah H.

    2014-01-01

    Here we review the usefulness of transcranial magnetic stimulation (TMS) in modulating cortical networks in ways that might produce performance enhancements in healthy human subjects. To date over sixty studies have reported significant improvements in speed and accuracy in a variety of tasks involving perceptual, motor, and executive processing. Two basic categories of enhancement mechanisms are suggested by this literature: direct modulation of a cortical region or network that leads to more efficient processing, and addition-by-subtraction, which is disruption of processing which competes or distracts from task performance. Potential applications of TMS cognitive enhancement, including research into cortical function, rehabilitation therapy in neurological and psychiatric illness, and accelerated skill acquisition in healthy individuals are discussed, as are methods of optimizing the magnitude and duration of TMS-induced performance enhancement, such as improvement of targeting through further integration of brain imaging with TMS. One technique, combining multiple sessions of TMS with concurrent TMS/task performance to induce Hebbian-like learning, appears to be promising for prolonging enhancement effects. While further refinements in the application of TMS to cognitive enhancement can still be made, and questions remain regarding the mechanisms underlying the observed effects, this appears to be a fruitful area of investigation that may shed light on the basic mechanisms of cognitive function and their therapeutic modulation. PMID:23770409

  17. Effects and Mechanisms of Tastants on the Gustatory-Salivary Reflex in Human Minor Salivary Glands

    PubMed Central

    Shoji, Noriaki; Miyake, Hiroyuki; Watanabe, Chiyo; Sasano, Takashi

    2018-01-01

    The effects and mechanisms of tastes on labial minor salivary gland (LMSG) secretion were investigated in 59 healthy individuals. Stimulation with each of the five basic tastes (i.e., sweet, salty, sour, bitter, and umami) onto the tongue induced LMSG secretion in a dose-dependent manner. Umami and sour tastes evoked greater secretion than did the other tastes. A synergistic effect of umami on LMSG secretion was recognized: a much greater increase in secretion was observed by a mixed solution of monosodium glutamate and inosine 5′-monophosphate than by each separate stimulation. Blood flow (BF) in the nearby labial mucosa also increased following stimulation by each taste except bitter. The BF change and LMSG secretion in each participant showed a significant positive correlation with all tastes, including bitter. Administration of cevimeline hydrochloride hydrate to the labial mucosa evoked a significant increase in both LMSG secretion and BF, while adrenaline, atropine, and pirenzepine decreased LMSG secretion and BF. The change in LMSG secretion and BF induced by each autonomic agent was significantly correlated in each participant. These results indicate that basic tastes can induce the gustatory-salivary reflex in human LMSGs and that parasympathetic regulation is involved in this mechanism. PMID:29651428

  18. The Efficacy of Exposure Therapy for Anxiety-Related Disorders and Its Underlying Mechanisms: The Case of OCD and PTSD.

    PubMed

    Foa, Edna B; McLean, Carmen P

    2016-01-01

    In this review we describe the intricate interrelationship among basic research, conceptualization of psychopathology, treatment development, treatment outcome research, and treatment mechanism research and how the interactions among these areas of study further our knowledge about psychopathology and its treatment. In describing the work of Edna Foa and her colleagues in anxiety disorders, we demonstrate how emotional processing theory of anxiety-related disorders and their treatment using exposure therapy have generated hypotheses about the psychopathology of posttraumatic stress disorder and obsessive-compulsive anxiety disorder that have informed the development and refinement of specific treatment protocols for these disorders: prolonged exposure and exposure and response (ritual) prevention. Further, we have shown that the next step after the development of theoretically driven treatment protocols is to evaluate their efficacy. Once evidence for a treatment's efficacy has accumulated, studies of the mechanisms involved in the reduction of the targeted psychopathology are conducted, which in turn inform the theory and further refine the treatments. We conclude our review with a discussion of how the knowledge derived from Foa and colleagues' programmatic research together with knowledge emerging from basic research on extinction learning can inform future research on the psychopathology of anxiety disorders and their treatments.

  19. Basic Aspects of Tumor Cell Fatty Acid-Regulated Signaling and Transcription Factors

    PubMed Central

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martin Ernesto; Pasqualini, Marìa Eugenia

    2012-01-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P-450 (CYP-450), seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator–activated receptors (PPARs) or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C [PKC]) and other transcription factors (nuclear factor kappa B [NFκB] and sterol regulatory element binding protein [SREBP]). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer, and provide insight into the development of new therapeutic strategies for a better management of whole-body lipid metabolism. PMID:22048864

  20. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors.

    PubMed

    Comba, Andrea; Lin, Yi-Hui; Eynard, Aldo Renato; Valentich, Mirta Ana; Fernandez-Zapico, Martín Ernesto; Pasqualini, Marìa Eugenia

    2011-12-01

    This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.

  1. Over production of lignocellulosic enzymes of Coriolus versicolor by genetic engineering methodology. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.L.

    1998-07-01

    The project seeks to understand the biological and chemical processes involved in the secretion of the enzyme polyphenol oxidase (PPO) by the hyphae, the basic unit of the filamentous fungus Coriolus versicolor. These studies are made to determine rational strategies for enhanced secretion of PPO, both with the use of recombinant DNA techniques and without. This effort focuses on recombinant DNA techniques to enhance enzyme production. The major thrust of this project was two-fold: to mass produce C. versicolor tyrosinase (polyphenol oxidase) by genetic engineering as well as cultural manipulations; and to utilize PPO as a biocatalyst in the processingmore » of lignocellulose as a renewable energy resource. In this study, the assessment of genomic and cDNA recombinant clones with regards to the overproduction of PPO continued. Further, immunocytochemical techniques were employed to assess the mechanism(s) involved in the secretion of PPO by the hyphae. Also, factors influencing PPO secretion were examined.« less

  2. How placebos change the patient's brain.

    PubMed

    Benedetti, Fabrizio; Carlino, Elisa; Pollo, Antonella

    2011-01-01

    Although placebos have long been considered a nuisance in clinical research, today they represent an active and productive field of research and, because of the involvement of many mechanisms, the study of the placebo effect can actually be viewed as a melting pot of concepts and ideas for neuroscience. Indeed, there exists not a single but many placebo effects, with different mechanisms and in different systems, medical conditions, and therapeutic interventions. For example, brain mechanisms of expectation, anxiety, and reward are all involved, as well as a variety of learning phenomena, such as Pavlovian conditioning, cognitive, and social learning. There is also some experimental evidence of different genetic variants in placebo responsiveness. The most productive models to better understand the neurobiology of the placebo effect are pain and Parkinson's disease. In these medical conditions, the neural networks that are involved have been identified: that is, the opioidergic-cholecystokinergic-dopaminergic modulatory network in pain and part of the basal ganglia circuitry in Parkinson's disease. Important clinical implications emerge from these recent advances in placebo research. First, as the placebo effect is basically a psychosocial context effect, these data indicate that different social stimuli, such as words and rituals of the therapeutic act, may change the chemistry and circuitry of the patient's brain. Second, the mechanisms that are activated by placebos are the same as those activated by drugs, which suggests a cognitive/affective interference with drug action. Third, if prefrontal functioning is impaired, placebo responses are reduced or totally lacking, as occurs in dementia of the Alzheimer's type.

  3. Mechanisms of Acute Kidney Injury Induced by Experimental Lonomia obliqua Envenomation

    PubMed Central

    Berger, Markus; Santi, Lucélia; Beys-da-Silva, Walter O.; Oliveira, Fabrício Marcus Silva; Caliari, Marcelo Vidigal; Yates, John R.; Ribeiro, Maria Aparecida; Guimarães, Jorge Almeida

    2015-01-01

    Background Lonomia obliqua caterpillar envenomation causes acute kidney injury (AKI), which can be responsible for its deadly actions. This study evaluates the possible mechanisms involved in the pathogenesis of renal dysfunction. Methods To characterize L. obliqua venom effects we subcutaneously injected rats and examined renal functional, morphological and biochemical parameters at several time points. We also performed discovery based proteomic analysis to measure protein expression to identify molecular pathways of renal disease. Results L. obliqua envenomation causes acute tubular necrosis, which is associated with renal inflammation; formation of hematic casts, resulting from intravascular hemolysis; increase in vascular permeability and fibrosis. The dilation of Bowman’s space and glomerular tuft is related to fluid leakage and intra-glomerular fibrin deposition, respectively, since tissue factor procoagulant activity increases in the kidney. Systemic hypotension also contributes to these alterations and to the sudden loss of basic renal functions, including filtration and excretion capacities, urinary concentration and maintenance of fluid homeostasis. In addition, envenomed kidneys increases expression of proteins involved in cell stress, inflammation, tissue injury, heme-induced oxidative stress, coagulation and complement system activation. Finally, the localization of the venom in renal tissue agrees with morphological and functional alterations, suggesting also a direct nephrotoxic activity. Conclusions Mechanisms of L. obliqua-induced AKI are complex involving mainly glomerular and tubular functional impairment and vascular alterations. These results are important to understand the mechanisms of renal injury and may suggest more efficient ways to prevent or attenuate the pathology of Lonomia’s envenomation. PMID:24798088

  4. Mechanisms for cytoplasmic organization: an overview.

    PubMed

    Pagliaro, L

    2000-01-01

    One of the basic characteristics of life is the intrinsic organization of cytoplasm, yet we know surprisingly little about the manner in which cytoplasmic macromolecules are arranged. It is clear that cytoplasm is not the homogeneous "soup" it was once envisioned to be, but a comprehensive model for cytoplasmic organization is not available in modern cell biology. The premise of this volume is that phase separation in cytoplasm may play a role in organization at the subcellular level. Other mechanisms for non-membrane-bounded intracellular organization have previously been proposed. Some of these will be reviewed in this chapter. Multiple mechanisms, involving phase separation, specific intracellular targeting, formation of macromolecular complexes, and channeling, all could well contribute to cytoplasmic organization. Temporal and spatial organization, as well as composition, are likely to be important in defining the characteristics of cytoplasm.

  5. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  6. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  7. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  8. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  9. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  10. 14 CFR 147.23 - Instructor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mechanic certificates and ratings that the Administrator determines necessary to provide adequate... mechanics, to teach mathematics, physics, basic electricity, basic hydraulics, drawing, and similar subjects...

  11. Auto Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Carter, Thomas G., Sr.

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 14 terminal objectives for a basic automotive mechanics course. The materials were developed for a two-semester course (2 hours daily) designed to provide training in the basic fundamentals in diagnosis and repair including cooling system and…

  12. Differential regulation of oligodendrocyte markers by glucocorticoids: Post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Cole, R.; Chiappelli, F.

    During neonatal development glucocorticoids potentiate oligodendrocyte differentiation and myelinogenesis by regulating the expression of myelin basic protein, proteolipid protein, and glycerol phosphate dehydrogenase. The actual locus at which hydrocortisone exerts its developmental influence on glial physiology is, however, not well understood. Gycerol phosphate dehydrogenase is glucocorticoid-inducible in oligodendrocytes at all stages of development both in vivo and in vitro. In newborn rat cerebral cultures, between 9 and 15 days in vitro, a 2- to 3-fold increase in myelin basic protein and proteolipid protein mRNA levels occurs in oligodendrocytes within 12 hr of hydrocortisone treatment. Immunostaining demonstrates that this increase inmore » mRNAs is followed by a 2- to 3-fold increase in the protein levels within 24 hr. In vitro transcription assays performed with oligodendrocyte nuclei show an 11-fold increase in the transcriptional activity of glycerol phosphate dehydrogenase in response to hydrocortisone but no increase in transcription of myelin basic protein or proteolipid protein. These results indicate that during early myelinogeneis, glucocorticoids influence the expression of key oligodendroglial markers by different processes: The expression of glycerol phosphate dehydrogenase is regulated at the transcriptional level, whereas the expression of myelin basic protein and proteolipid protein is modulated via a different, yet uncharacterized, mechanism involving post-transcriptional regulation.« less

  13. Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.).

    PubMed

    Li, Zhenyi; Xu, Hongyu; Li, Yue; Wan, Xiufu; Ma, Zhao; Cao, Jing; Li, Zhensong; He, Feng; Wang, Yufei; Wan, Liqiang; Tong, Zongyong; Li, Xianglin

    2018-03-01

    The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.

  14. Pharmacology of Ischemia-Reperfusion. Translational Research Considerations.

    PubMed

    Prieto-Moure, Beatriz; Lloris-Carsí, José M; Barrios-Pitarque, Carlos; Toledo-Pereyra, Luis-H; Lajara-Romance, José María; Berda-Antolí, M; Lloris-Cejalvo, J M; Cejalvo-Lapeña, Dolores

    2016-08-01

    Ischemia-reperfusion (IRI) is a complex physiopathological mechanism involving a large number of metabolic processes that can eventually lead to cell apoptosis and ultimately tissue necrosis. Treatment approaches intended to reduce or palliate the effects of IRI are varied, and are aimed basically at: inhibiting cell apoptosis and the complement system in the inflammatory process deriving from IRI, modulating calcium levels, maintaining mitochondrial membrane integrity, reducing the oxidative effects of IRI and levels of inflammatory cytokines, or minimizing the action of macrophages, neutrophils, and other cell types. This study involved an extensive, up-to-date review of the bibliography on the currently most widely used active products in the treatment and prevention of IRI, and their mechanisms of action, in an aim to obtain an overview of current and potential future treatments for this pathological process. The importance of IRI is clearly reflected by the large number of studies published year after year, and by the variety of pathophysiological processes involved in this major vascular problem. A quick study of the evolution of IRI-related publications in PubMed shows that in a single month in 2014, 263 articles were published, compared to 806 articles in the entire 1990.

  15. Basics of Radiation Biology When Treating Hyperproliferative Benign Diseases.

    PubMed

    Rödel, Franz; Fournier, Claudia; Wiedemann, Julia; Merz, Felicitas; Gaipl, Udo S; Frey, Benjamin; Keilholz, Ludwig; Seegenschmiedt, M Heinrich; Rödel, Claus; Hehlgans, Stephanie

    2017-01-01

    For decades, low- and moderate-dose radiation therapy (RT) has been shown to exert a beneficial therapeutic effect in a multitude of non-malignant conditions including painful degenerative muscoloskeletal and hyperproliferative disorders. Dupuytren and Ledderhose diseases are benign fibroproliferative diseases of the hand/foot with fibrotic nodules and fascial cords, which determine debilitating contractures and deformities of fingers/toes, while keloids are exuberant scar formations following burn damage, surgery, and trauma. Although RT has become an established and effective option in the management of these diseases, experimental studies to illustrate cellular composites and factors involved remain to be elucidated. More recent findings, however, indicate the involvement of radiation-sensitive targets like mitotic fibroblasts/myofibroblasts as well as inflammatory cells. Radiation-related molecular mechanisms affecting these target cells include the production of free radicals to hamper proliferative activity and interference with growth factors and cytokines. Moreover, an impairment of activated immune cells involved in both myofibroblast proliferative and inflammatory processes may further contribute to the clinical effects. We here aim at briefly describing mechanisms contributing to a modulation of proliferative and inflammatory processes and to summarize current concepts of treating hyperproliferative diseases by low and moderate doses of ionizing radiation.

  16. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  17. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  18. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  19. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  20. 14 CFR 147.36 - Maintenance of instructor requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... holding appropriate mechanic certificates and ratings that the Administrator determines necessary to... certificated mechanics to teach mathematics, physics, drawing, basic electricity, basic hydraulics, and similar...

  1. PROPAGATION OF INFLUENZA VIRUS IN "IMMUNE" ENVIRONMENTS

    PubMed Central

    Magill, Thomas P.

    1955-01-01

    Influenza virus can survive, and can be propagated in immunological environments induced in mice by vaccination with the homologous strain of virus: survival was associated with the emergence of variants which differed from the parent strain in antigenic characteristics. The data concerning hemagglutinating activity of the variants, on the one hand, and of the antigenicity, on the other, are compatible with the concept that the structure of the influenza virus includes a surface arrangement which is distinct from the inner virus bulk. The points (a) that propagation was accomplished with difficulty whenever the immunological environment was altered, and (b) that once established, passage was continued without difficulty, are interpreted to indicate that the mechanism of variation may involve a rearrangement of the basic hereditary mechanism. PMID:13252183

  2. A broad look at solar physics adapted from the solar physics study of August 1975

    NASA Technical Reports Server (NTRS)

    Parker, E.; Timothy, A.; Beckers, J.; Hundhausen, A.; Kundu, M. R.; Leith, C. E.; Lin, R.; Linsky, J.; Macdonald, F. B.; Noyes, R.

    1979-01-01

    The current status of our knowledge of the basic mechanisms involved in fundamental solar phenomena is reviewed. These include mechanisms responsible for heating the corona, the generation of the solar wind, the particle acceleration in flares, and the dissipation of magnetic energy in field reversal regions, known as current sheets. The discussion covers solar flares and high-energy phenomena, solar active regions; solar interior, convection, and activity; the structure and energetics of the quiet solar atmosphere; the structure of the corona; the solar composition; and solar terrestrial interactions. It also covers a program of solar research, including the special observational requirements for spectral and angular resolution, sensitivity, time resolution, and duration of the techniques employed.

  3. Molecular and cellular mechanisms underlying the therapeutic effects of budesonide in asthma.

    PubMed

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Fabiano, Francesco; Terracciano, Rosa; Matera, Maria Gabriella; Maselli, Rosario

    2016-10-01

    Inhaled glucocorticoids are the mainstay of asthma treatment. Indeed, such therapeutic agents effectively interfere with many pathogenic circuits underpinning asthma. Among these drugs, during the last decades budesonide has been probably the most used molecule in both experimental studies and clinical practice. Therefore, a large body of evidence clearly shows that budesonide, either alone or in combination with long-acting bronchodilators, provides a successful control of asthma in many patients ranging throughout the overall spectrum of disease severity. These excellent therapeutic properties of budesonide basically depend on its molecular mechanisms of action, capable of inhibiting within the airways the activity of multiple immune-inflammatory and structural cells involved in asthma pathobiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Time-resolved XAFS spectroscopic studies of B-H and N-H oxidative addition to transition metal catalysts relevant to hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H 3NBH 3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominatemore » the chemistry.« less

  5. Effects of biological sex on the pathophysiology of the heart.

    PubMed

    Fazal, Loubina; Azibani, Feriel; Vodovar, Nicolas; Cohen Solal, Alain; Delcayre, Claude; Samuel, Jane-Lise

    2014-02-01

    Cardiovascular diseases are the leading causes of death in men and women in industrialized countries. While the effects of biological sex on cardiovascular pathophysiology have long been known, the sex-specific mechanisms mediating these processes have been further elucidated over recent years. This review aims at analysing the sex-based differences in cardiac structure and function in adult mammals, and the sex-based differences in the main molecular mechanisms involved in the response of the heart to pathological situations. It emerged from this review that the sex-based difference is a variable that should be dealt with, not only in basic science or clinical research, but also with regards to therapeutic approaches. © 2013 The British Pharmacological Society.

  6. On the Use of Computers for Teaching Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.

  7. Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    2001-03-01

    In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.

  8. [Advances in mass spectrometry-based approaches for neuropeptide analysis].

    PubMed

    Ji, Qianyue; Ma, Min; Peng, Xin; Jia, Chenxi; Ji, Qianyue

    2017-07-25

    Neuropeptides are an important class of endogenous bioactive substances involved in the function of the nervous system, and connect the brain and other neural and peripheral organs. Mass spectrometry-based neuropeptidomics are designed to study neuropeptides in a large-scale manner and obtain important molecular information to further understand the mechanism of nervous system regulation and the pathogenesis of neurological diseases. This review summarizes the basic strategies for the study of neuropeptides using mass spectrometry, including sample preparation and processing, qualitative and quantitative methods, and mass spectrometry imagining.

  9. Investigating and improving student understanding of quantum mechanics in the context of single photon interference

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2017-06-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.

  10. MIDA boronates are hydrolysed fast and slow by two different mechanisms

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jorge A.; Ogba, O. Maduka; Morehouse, Gregory F.; Rosson, Nicholas; Houk, Kendall N.; Leach, Andrew G.; Cheong, Paul H.-Y.; Burke, Martin D.; Lloyd-Jones, Guy C.

    2016-11-01

    MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for small-molecule construction based on building blocks, largely because of the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, which has hindered efforts to address the current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base mediated and the other neutral. The former can proceed more than three orders of magnitude faster than the latter, and involves a rate-limiting attack by a hydroxide at a MIDA carbonyl carbon. The alternative ‘neutral’ hydrolysis does not require an exogenous acid or base and involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms can operate in parallel, and their relative rates are readily quantified by 18O incorporation. Whether hydrolysis is ‘fast’ or ‘slow’ is dictated by the pH, the water activity and the mass-transfer rates between phases. These findings stand to enable, in a rational way, an even more effective and widespread utilization of MIDA boronates in synthesis.

  11. Robust shifts in S100a9 expression with aging: a novel mechanism for chronic inflammation.

    PubMed

    Swindell, William R; Johnston, Andrew; Xing, Xianying; Little, Andrew; Robichaud, Patrick; Voorhees, John J; Fisher, Gary; Gudjonsson, Johann E

    2013-01-01

    The S100a8 and S100a9 genes encode a pro-inflammatory protein (calgranulin) that has been implicated in multiple diseases. However, involvement of S100a8/a9 in the basic mechanisms of intrinsic aging has not been established. In this study, we show that shifts in the abundance of S100a8 and S100a9 mRNA are a robust feature of aging in mammalian tissues, involving a range of cell types including the central nervous system. To identify transcription factors that control S100a9 expression, we performed a large-scale transcriptome analysis of 62 mouse and human cell types. We identified cell type-specific trends, as well as robust associations linking S100a9 coexpression to elevated frequency of ETS family motifs, and in particular, to motifs recognized by the transcription factor SPI/PU.1. Sparse occurrence of SATB1 motifs was also a strong predictor of S100a9 coexpression. These findings offer support for a novel mechanism by which a SPI1/PU.1-S100a9 axis sustains chronic inflammation during aging.

  12. Microbial photoinactivation by 470 nm radiation: an investigation into the underlying photobiological mechanism

    NASA Astrophysics Data System (ADS)

    Hoenes, K.; Wild, K.; Schmid, J.; Spellerberg, B.; Hessling, M.

    2018-02-01

    The photoinactivation properties of 405 (violet) and 470 nm (blue) light have been studied by many research groups within the last few years. Both wavelengths are capable of disinfecting bacteria and fungi, with 405 nm radiation being more efficient. The basic photoinactivation mechanism is understood for 405 nm. Violet light is absorbed by endogenous porphyrins that act as photosensitizers and generate reactive oxygen species, subsequently destroying the microorganisms from within. The underlying photobiological mechanism for 470nm radiation is still unclear though porphyrins and flavins are widely believed to be involved endogenous photosensitizer. We performed own measurements of disinfection efficacy and additionally did a meta-analysis of published photoinactivation data. The disinfection experiments were performed with LEDs at peak wavelengths between 440 and 490 nm in an interval of about 10 nm. Staphylococcus auricularis was irradiated with doses of 70, 140 and 210 J/cm2 and peak efficacy was observed at 470 nm while the impact of irradiation decreases steeply to lower and higher wavelengths. These observations are supported by the meta-analysis results and rather contradictory to the porphyrin and flavin hypothesis so that our conclusion is that there may be another unknown photosensitizer involved.

  13. Postoperative pain—from mechanisms to treatment

    PubMed Central

    Pogatzki-Zahn, Esther M.; Segelcke, Daniel; Schug, Stephan A.

    2017-01-01

    Abstract Introduction: Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. Objectives: This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. Methods: In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the “Acute Pain Management: Scientific Evidence” of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. Results: Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. Conclusion: Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery. PMID:29392204

  14. Systems Biology Methods for Alzheimer's Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials.

    PubMed

    Castrillo, Juan I; Lista, Simone; Hampel, Harald; Ritchie, Craig W

    2018-01-01

    Alzheimer's disease (AD) is a complex multifactorial disease, involving a combination of genomic, interactome, and environmental factors, with essential participation of (a) intrinsic genomic susceptibility and (b) a constant dynamic interplay between impaired pathways and central homeostatic networks of nerve cells. The proper investigation of the complexity of AD requires new holistic systems-level approaches, at both the experimental and computational level. Systems biology methods offer the potential to unveil new fundamental insights, basic mechanisms, and networks and their interplay. These may lead to the characterization of mechanism-based molecular signatures, and AD hallmarks at the earliest molecular and cellular levels (and beyond), for characterization of AD subtypes and stages, toward targeted interventions according to the evolving precision medicine paradigm. In this work, an update on advanced systems biology methods and strategies for holistic studies of multifactorial diseases-particularly AD-is presented. This includes next-generation genomics, neuroimaging and multi-omics methods, experimental and computational approaches, relevant disease models, and latest genome editing and single-cell technologies. Their progressive incorporation into basic research, cohort studies, and trials is beginning to provide novel insights into AD essential mechanisms, molecular signatures, and markers toward mechanism-based classification and staging, and tailored interventions. Selected methods which can be applied in cohort studies and trials, with the European Prevention of Alzheimer's Dementia (EPAD) project as a reference example, are presented and discussed.

  15. Passion and Preparation in the Basic Course: The Influence of Students' Ego-Involvement with Speech Topics and Preparation Time on Public-Speaking Grades

    ERIC Educational Resources Information Center

    Mazer, Joseph P.; Titsworth, Scott

    2012-01-01

    Authors of basic public-speaking course textbooks frequently encourage students to select speech topics in which they have vested interest, care deeply about, and hold strong opinions and beliefs. This study explores students' level of ego-involvement with informative and persuasive speech topics, examines possible ego-involvement predictors of…

  16. Observe, simplify, titrate, model, and synthesize: A paradigm for analyzing behavior

    PubMed Central

    Alberts, Jeffrey R.

    2013-01-01

    Phenomena in behavior and their underlying neural mechanisms are exquisitely complex problems. Infrequently do we reflect on our basic strategies of investigation and analysis, or formally confront the actual challenges of achieving an understanding of the phenomena that inspire research. Philip Teitelbaum is distinct in his elegant approaches to understanding behavioral phenomena and their associated neural processes. He also articulated his views on effective approaches to scientific analyses of brain and behavior, his vision of how behavior and the nervous system are patterned, and what constitutes basic understanding. His rubrics involve careful observation and description of behavior, simplification of the complexity, analysis of elements, and re-integration through different forms of synthesis. Research on the development of huddling behavior by individual and groups of rats is reviewed in a context of Teitelbaum’s rubrics of research, with the goal of appreciating his broad and positive influence on the scientific community. PMID:22481081

  17. Low-cost diffuse optical tomography for the classroom

    NASA Astrophysics Data System (ADS)

    Minagawa, Taisuke; Zirak, Peyman; Weigel, Udo M.; Kristoffersen, Anna K.; Mateos, Nicolas; Valencia, Alejandra; Durduran, Turgut

    2012-10-01

    Diffuse optical tomography (DOT) is an emerging imaging modality with potential applications in oncology, neurology, and other clinical areas. It allows the non-invasive probing of the tissue function using relatively inexpensive and safe instrumentation. An educational laboratory setup of a DOT system could be used to demonstrate how photons propagate through tissues, basics of medical tomography, and the concepts of multiple scattering and absorption. Here, we report a DOT setup that could be introduced to the advanced undergraduate or early graduate curriculum using inexpensive and readily available tools. The basis of the system is the LEGO Mindstorms NXT platform which controls the light sources, the detectors (photo-diodes), a mechanical 2D scanning platform, and the data acquisition. A basic tomographic reconstruction is implemented in standard numerical software, and 3D images are reconstructed. The concept was tested and developed in an educational environment that involved a high-school student and a group of post-doctoral fellows.

  18. Degradation chemistry of gemcitabine hydrochloride, a new antitumor agent.

    PubMed

    Anliker, S L; McClure, M S; Britton, T C; Stephan, E A; Maple, S R; Cooke, G G

    1994-05-01

    The anti-tumor agent gemcitabine hydrochloride, a beta-difluoronucleoside, is remarkably stable in the solid state. In 0.1 N HCI solution at 40 degrees C, deamination of gemcitabine occurs, yielding its uridine analogue. Approximately 86% of the initial gemcitabine remains after 4 weeks under these conditions. Cleavage of the N-glycosidic bond of gemcitabine or conversion to its alpha-anomer in 0.1 N HCI solution is not observed over a 4-week period. However, this work has shown that gemcitabine hydrochloride anomerizes in 0.1 N NaOH at 40 degrees C. Approximately 72% of the initial gemcitabine remains after 4 weeks under the basic conditions used. Uridine hydrolysis products are also formed under these conditions. The anormerization reaction, which is unusual under basic conditions, has been confirmed by characterization of the chromatographically isolated alpha-anomer by NMR and mass spectrometry. A mechanism involving an acyclic intermediate is proposed.

  19. Perceptual and affective mechanisms in facial expression recognition: An integrative review.

    PubMed

    Calvo, Manuel G; Nummenmaa, Lauri

    2016-09-01

    Facial expressions of emotion involve a physical component of morphological changes in a face and an affective component conveying information about the expresser's internal feelings. It remains unresolved how much recognition and discrimination of expressions rely on the perception of morphological patterns or the processing of affective content. This review of research on the role of visual and emotional factors in expression recognition reached three major conclusions. First, behavioral, neurophysiological, and computational measures indicate that basic expressions are reliably recognized and discriminated from one another, albeit the effect may be inflated by the use of prototypical expression stimuli and forced-choice responses. Second, affective content along the dimensions of valence and arousal is extracted early from facial expressions, although this coarse affective representation contributes minimally to categorical recognition of specific expressions. Third, the physical configuration and visual saliency of facial features contribute significantly to expression recognition, with "emotionless" computational models being able to reproduce some of the basic phenomena demonstrated in human observers. We conclude that facial expression recognition, as it has been investigated in conventional laboratory tasks, depends to a greater extent on perceptual than affective information and mechanisms.

  20. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  1. A psychologically-based taxonomy of misdirection

    PubMed Central

    Kuhn, Gustav; Caffaratti, Hugo A.; Teszka, Robert; Rensink, Ronald A.

    2014-01-01

    Magicians use misdirection to prevent you from realizing the methods used to create a magical effect, thereby allowing you to experience an apparently impossible event. Magicians have acquired much knowledge about misdirection, and have suggested several taxonomies of misdirection. These describe many of the fundamental principles in misdirection, focusing on how misdirection is achieved by magicians. In this article we review the strengths and weaknesses of past taxonomies, and argue that a more natural way of making sense of misdirection is to focus on the perceptual and cognitive mechanisms involved. Our psychologically-based taxonomy has three basic categories, corresponding to the types of psychological mechanisms affected: perception, memory, and reasoning. Each of these categories is then divided into subcategories based on the mechanisms that control these effects. This new taxonomy can help organize magicians' knowledge of misdirection in a meaningful way, and facilitate the dialog between magicians and scientists. PMID:25538648

  2. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1990-01-01

    The acousto-ultrasonic method has proven to be a most interesting technique for nondestructive evaluation of the mechanical properties of a variety of materials. Use of the technique or a modification thereof, has led to correlation of the associated stress wave factor with mechanical properties of both metals and composite materials. The method is applied to the nondestructive evaluation of selected fiber reinforced structural composites. For the first time, conventional piezoelectric transducers were replaced with laser beam ultrasonic generators and detectors. This modification permitted true non-contact acousto-ultrasonic measurements to be made, which yielded new information about the basic mechanisms involved as well as proved the feasibility of making such non-contact measurements on terrestrial and space structures and heat engine components. A state-of-the-art laser based acousto-ultrasonic system, incorporating a compact pulsed laser and a fiber-optic heterodyne interferometer, was delivered to the NASA Lewis Research Center.

  3. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.

    PubMed

    Vallejos, María Evangelina; Felissia, Fernando Esteban; Area, María Cristina; Ehman, Nanci Vanesa; Tarrés, Quim; Mutjé, Pere

    2016-03-30

    Nanofibrillated cellulose has been obtained from the cellulosic fraction of eucalyptus sawdust. The fractionation process involved the partial removal of hemicelluloses and lignin. CNF was obtained using TEMPO oxidation with NaOCl in basic medium followed by mechanical homogenization. The obtained CNF was subsequently used as a dry strength agent on unbleached unrefined eucalyptus pulp. The addition of 3, 6 and 9 wt.% of CNF increased lineally the tensile index of handsheets to about 55 N mg(-1) at 35°SR, compatible with papermachine runnability. The other mechanical properties also increased substantially, and porosity decreased moderately. The estimated specific surface and average diameter of these CNF were 60 m(2)g(-1), and of 41.0 nm, respectively. The addition of 9 wt.% of CNF produced an increase in mechanical strength, equivalent to that produced by PFI refining at 1600 revolutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    PubMed

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Biomechanical Studies on Patterns of Cranial Bone Fracture Using the Immature Porcine Model.

    PubMed

    Haut, Roger C; Wei, Feng

    2017-02-01

    This review was prepared for the American Society of Mechanical Engineers Lissner Medal. It specifically discusses research performed in the Orthopaedic Biomechanics Laboratories on pediatric cranial bone mechanics and patterns of fracture in collaboration with the Forensic Anthropology Laboratory at Michigan State University. Cranial fractures are often an important element seen by forensic anthropologists during the investigation of pediatric trauma cases litigated in courts. While forensic anthropologists and forensic biomechanists are often called on to testify in these cases, there is little basic science developed in support of their testimony. The following is a review of studies conducted in the above laboratories and supported by the National Institute of Justice to begin an understanding of the mechanics and patterns of pediatric cranial bone fracture. With the lack of human pediatric specimens, the studies utilize an immature porcine model. Because much case evidence involves cranial bone fracture, the studies described below focus on determining input loading based on the resultant bone fracture pattern. The studies involve impact to the parietal bone, the most often fractured cranial bone, and begin with experiments on entrapped heads, progressing to those involving free-falling heads. The studies involve head drops onto different types and shapes of interfaces with variations of impact energy. The studies show linear fractures initiating from sutural boundaries, away from the impact site, for flat surface impacts, in contrast to depressed fractures for more focal impacts. The results have been incorporated into a "Fracture Printing Interface (FPI)," using machine learning and pattern recognition algorithms. The interface has been used to help interpret mechanisms of injury in pediatric death cases collected from medical examiner offices. The ultimate aim of this program of study is to develop a "Human Fracture Printing Interface" that can be used by forensic investigators in determining mechanisms of pediatric cranial bone fracture.

  6. Neurocircuitry of drug reward

    PubMed Central

    Ikemoto, Satoshi; Bonci, Antonello

    2013-01-01

    In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. PMID:23664810

  7. Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche

    PubMed Central

    Choi, Rhea

    2018-01-01

    Disorders causing a loss of the sense of smell remain a therapeutic challenge. Basic research has, however, greatly expanded our knowledge of the organization and function of the olfactory system. This review describes advances in our understanding of the cellular components of the peripheral olfactory system, specifically the olfactory epithelium in the nose. The article discusses recent findings regarding the mechanisms involved in regeneration and cellular renewal from basal stem cells in the adult olfactory epithelium, considering the strategies involved in embryonic olfactory development and insights from research on other stem cell niches. In the context of clinical conditions causing anosmia, the current view of adult olfactory neurogenesis, tissue homeostasis, and failures in these processes is considered, along with current and future treatment strategies. Level of Evidence NA PMID:29492466

  8. Auto-Mechanics Course. Bilingual Vocational Instructional Materials.

    ERIC Educational Resources Information Center

    Lopez-Cox, Guadalupe

    This auto-mechanics course, one of a series of bilingual English-Spanish vocational education courses, is designed to introduce the basic skills that an automotive mechanics student should know. It is geared to teach the student basic manipulative skills, safety judgments, proper work habits, desirable attitudes, and proper behavior for initial…

  9. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies

    PubMed Central

    Poroca, Diogo R.; Pelis, Ryan M.; Chappe, Valérie M.

    2017-01-01

    The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter’s syndrome (types 3 and 4), Dent’s disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models. PMID:28386229

  10. Identification of Sleep-Modulated Pathways Involved in Neuroprotection from Stroke.

    PubMed

    Pace, Marta; Baracchi, Francesca; Gao, Bo; Bassetti, Claudio

    2015-11-01

    Sleep deprivation (SDp) performed before stroke induces an ischemic tolerance state as observed in other forms of preconditioning. As the mechanisms underlying this effect are not well understood, we used DNA oligonucleotide microarray analysis to identify the genes and the gene-pathways underlying SDp preconditioning effects. Gene expression was analyzed 3 days after stroke in 4 experimental groups: (i) SDp performed before focal cerebral ischemia (IS) induction; (ii) SDp performed before sham surgery; (iii) IS without SDp; and (iv) sham surgery without SDp. SDp was performed by gentle handling during the last 6 h of the light period, and ischemia was induced immediately after. Basic sleep research laboratory. Stroke induced a massive alteration in gene expression both in sleep deprived and non-sleep deprived animals. However, compared to animals that underwent ischemia alone, SDp induced a general reduction in transcriptional changes with a reduction in the upregulation of genes involved in cell cycle regulation and immune response. Moreover, an upregulation of a new neuroendocrine pathway which included melanin concentrating hormone, glycoprotein hormones-α-polypeptide and hypocretin was observed exclusively in rats sleep deprived before stroke. Our data indicate that sleep deprivation before stroke reprogrammed the signaling response to injury. The inhibition of cell cycle regulation and inflammation are neuroprotective mechanisms reported also for other forms of preconditioning treatment, whereas the implication of the neuroendocrine function is novel and has never been described before. These results therefore provide new insights into neuroprotective mechanisms involved in ischemic tolerance mechanisms. © 2015 Associated Professional Sleep Societies, LLC.

  11. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration.

    PubMed

    Kaarniranta, Kai; Tokarz, Paulina; Koskela, Ali; Paterno, Jussi; Blasiak, Janusz

    2017-04-01

    Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.

  12. BASIC ELECTRICITY. SCIENCE IN ACTION SERIES, NUMBER 14.

    ERIC Educational Resources Information Center

    CASSEL, RICHARD

    THIS TEACHING GUIDE, INVOLVING ACTIVITIES FOR DEVELOPING AN UNDERSTANDING OF BASIC ELECTRICITY, EMPHASIZES STUDENT INVESTIGATIONS RATHER THAN FACTS, AND IS BASED ON THE PREMISE THAT THE MAJOR GOAL IN SCIENCE TEACHING IS THE DEVELOPMENT OF THE INVESTIGATIVE ATTITUDE IN THE STUDENT. ACTIVITIES SUGGESTED INVOLVE SIMPLE DEMONSTRATIONS AND EXPERIMENTS…

  13. Tackling the challenge of selective analytical clean-up of complex natural extracts: the curious case of chlorophyll removal.

    PubMed

    Bijttebier, Sebastiaan; D'Hondt, Els; Noten, Bart; Hermans, Nina; Apers, Sandra; Voorspoels, Stefan

    2014-11-15

    Alkaline saponification is often used to remove interfering chlorophylls and lipids during carotenoids analysis. However, saponification also hydrolyses esterified carotenoids and is known to induce artifacts. To avoid carotenoid artifact formation during saponification, Larsen and Christensen (2005) developed a gentler and simpler analytical clean-up procedure involving the use of a strong basic resin (Ambersep 900 OH). They hypothesised a saponification mechanism based on their Liquid Chromatography-Photodiode Array (LC-PDA) data. In the present study, we show with LC-PDA-accurate mass-Mass Spectrometry that the main chlorophyll removal mechanism is not based on saponification, apolar adsorption or anion exchange, but most probably an adsorption mechanism caused by H-bonds and dipole-dipole interactions. We showed experimentally that esterified carotenoids and glycerolipids were not removed, indicating a much more selective mechanism than initially hypothesised. This opens new research opportunities towards a much wider scope of applications (e.g. the refinement of oils rich in phytochemical content). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raizer, Yu. P.; Mokrov, M. S.

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gasmore » as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time.« less

  15. Translational bioinformatics: linking the molecular world to the clinical world.

    PubMed

    Altman, R B

    2012-06-01

    Translational bioinformatics represents the union of translational medicine and bioinformatics. Translational medicine moves basic biological discoveries from the research bench into the patient-care setting and uses clinical observations to inform basic biology. It focuses on patient care, including the creation of new diagnostics, prognostics, prevention strategies, and therapies based on biological discoveries. Bioinformatics involves algorithms to represent, store, and analyze basic biological data, including DNA sequence, RNA expression, and protein and small-molecule abundance within cells. Translational bioinformatics spans these two fields; it involves the development of algorithms to analyze basic molecular and cellular data with an explicit goal of affecting clinical care.

  16. Integration of kinetic isotope effect analyses to elucidate ribonuclease mechanism.

    PubMed

    Harris, Michael E; Piccirilli, Joseph A; York, Darrin M

    2015-11-01

    The well-studied mechanism of ribonuclease A is believed to involve concerted general acid-base catalysis by two histidine residues, His12 and His119. The basic features of this mechanism are often cited to explain rate enhancement by both protein and RNA enzymes that catalyze RNA 2'-O-transphosphorylation. Recent kinetic isotope effect analyses and computational studies are providing a more chemically detailed description of the mechanism of RNase A and the rate limiting transition state. Overall, the results support an asynchronous mechanism for both solution and ribonuclease catalyzed reactions in which breakdown of a transient dianoinic phosphorane intermediate by 5'OP bond cleavage is rate limiting. Relative to non-enzymatic reactions catalyzed by specific base, a smaller KIE on the 5'O leaving group and a less negative βLG are observed for RNase A catalysis. Quantum mechanical calculations consistent with these data support a model in which electrostatic and H-bonding interactions with the non-bridging oxygens and proton transfer from His119 render departure of the 5'O less advanced and stabilize charge buildup in the transition state. Both experiment and computation indicate advanced 2'OP bond formation in the rate limiting transition state. However, this feature makes it difficult to resolve the chemical steps involved in 2'O activation. Thus, modeling the transition state for RNase A catalysis underscores those elements of its chemical mechanism that are well resolved, as well as highlighting those where ambiguity remains. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Published by Elsevier B.V.

  17. Molecular determinants of the DprA−RecA interaction for nucleation on ssDNA

    PubMed Central

    Lisboa, Johnny; Andreani, Jessica; Sanchez, Dyana; Boudes, Marion; Collinet, Bruno; Liger, Dominique; van Tilbeurgh, Herman; Guérois, Raphael; Quevillon-Cheruel, Sophie

    2014-01-01

    Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, DprAM238 and RecAF230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA−RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA. PMID:24782530

  18. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xun; Guanga, Gerald P; Wan, Cheng

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less

  19. Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1979-01-01

    Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.

  20. MiRNAs in bone diseases.

    PubMed

    Moore, Benjamin T; Xiao, Peng

    2013-01-01

    MicroRNAs (miRNAs), which mainly inhibit protein expression by targeting the 3'UTR (untranslated region) of mRNAs, are known to play various roles in the pathogenesis of many different types of diseases. Specifically, in bone diseases, recent emphasis has been placed on the involvement of miRNAs in the differentiation and proliferation of bone and cartilage cells, particularly with regards to how these mechanisms contribute to bone homeostasis. In this review, we summarize miRNAs that are important in the differentiation and proliferation of bone cells, and specific miRNAs associated with bone diseases, such as osteoporosis, osteoarthritis and rheumatoid arthritis. This review also provides the perspective that miRNA studies will identify not only new mechanisms in basic bone research, but also potential novel diagnostic biomarkers and drug targets for bone diseases.

  1. Advances in sepsis research derived from animal models.

    PubMed

    Männel, Daniela N

    2007-09-01

    Inflammation is the basic process by which tissues of the body respond to infection. Activation of the immune system normally leads to removal of microbial pathogens, and after resolution of the inflammation immune homeostasis is restored. This controlled process, however, can be disturbed resulting in disease. Therefore, many studies using infection models have investigated the participating immune mechanisms aiming at possible therapeutic interventions. Defined model substances such as bacterial lipopolysaccharide (endotoxin) have been used to mimic bacterial infections and analyze their immune stimulating functions. A complex network of molecular mechanisms involved in the recognition and activation processes of bacterial infections and their regulation has developed from these studies. More complex infection models will now help to interpret earlier observations leading to the design of relevant new infection models.

  2. 75 FR 61219 - Entergy Operations, Inc.; River Bend Station, Unit 1; Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... Emergencies,'' for repair and corrective actions states that two individuals, one Mechanical Maintenance... actions will be taken to ensure basic electrical/l&C tasks can be performed by Mechanical Maintenance personnel. Mechanical Maintenance personnel will receive training in basic electrical and I&C tasks to...

  3. Kuhn's Paradigm and Example-Based Teaching of Newtonian Mechanics.

    ERIC Educational Resources Information Center

    Whitaker, M. A. B.

    1980-01-01

    Makes a recommendation for more direct teaching of the basic principles of mechanics. Contends that students currently learn mechanics in terms of standard examples. This causes difficulty when the student is confronted with a problem that can be solved from basic principles, but which does not fit a standard category. (GS)

  4. Diesel Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Tidwell, Joseph

    Several intermediate performance objectives and corresponding criterion measures are listed for each of 12 terminal objectives for a basic diesel mechanics course. The course is designed as a two-semester (2 hour daily) course for 10th graders interested in being diesel service and repair mechanics; it would serve as the first year of a 3-year…

  5. On Picturing a Candle: The Prehistory of Imagery Science.

    PubMed

    MacKisack, Matthew; Aldworth, Susan; Macpherson, Fiona; Onians, John; Winlove, Crawford; Zeman, Adam

    2016-01-01

    The past 25 years have seen a rapid growth of knowledge about brain mechanisms involved in visual mental imagery. These advances have largely been made independently of the long history of philosophical - and even psychological - reckoning with imagery and its parent concept 'imagination'. We suggest that the view from these empirical findings can be widened by an appreciation of imagination's intellectual history, and we seek to show how that history both created the conditions for - and presents challenges to - the scientific endeavor. We focus on the neuroscientific literature's most commonly used task - imagining a concrete object - and, after sketching what is known of the neurobiological mechanisms involved, we examine the same basic act of imagining from the perspective of several key positions in the history of philosophy and psychology. We present positions that, firstly, contextualize and inform the neuroscientific account, and secondly, pose conceptual and methodological challenges to the scientific analysis of imagery. We conclude by reflecting on the intellectual history of visualization in the light of contemporary science, and the extent to which such science may resolve long-standing theoretical debates.

  6. A dynamically minimalist cognitive explanation of musical preference: is familiarity everything?

    PubMed

    Schubert, Emery; Hargreaves, David J; North, Adrian C

    2014-01-01

    This paper examines the idea that attraction to music is generated at a cognitive level through the formation and activation of networks of interlinked "nodes." Although the networks involved are vast, the basic mechanism for activating the links is relatively simple. Two comprehensive cognitive-behavioral models of musical engagement are examined with the aim of identifying the underlying cognitive mechanisms and processes involved in musical experience. A "dynamical minimalism" approach (after Nowak, 2004) is applied to re-interpret musical engagement (listening, performing, composing, or imagining any of these) and to revise the latest version of the reciprocal-feedback model (RFM) of music processing. Specifically, a single cognitive mechanism of "spreading activation" through previously associated networks is proposed as a pleasurable outcome of musical engagement. This mechanism underlies the dynamic interaction of the various components of the RFM, and can thereby explain the generation of positive affects in the listener's musical experience. This includes determinants of that experience stemming from the characteristics of the individual engaging in the musical activity (whether listener, composer, improviser, or performer), the situation and contexts (e.g., social factors), and the music (e.g., genre, structural features). The theory calls for new directions for future research, two being (1) further investigation of the components of the RFM to better understand musical experience and (2) more rigorous scrutiny of common findings about the salience of familiarity in musical experience and preference.

  7. The cradle of causal reasoning: newborns' preference for physical causality.

    PubMed

    Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio; Simion, Francesca

    2013-05-01

    Perception of mechanical (i.e. physical) causality, in terms of a cause-effect relationship between two motion events, appears to be a powerful mechanism in our daily experience. In spite of a growing interest in the earliest causal representations, the role of experience in the origin of this sensitivity is still a matter of dispute. Here, we asked the question about the innate origin of causal perception, never tested before at birth. Three experiments were carried out to investigate sensitivity at birth to some visual spatiotemporal cues present in a launching event. Newborn babies, only a few hours old, showed that they significantly preferred a physical causality event (i.e. Michotte's Launching effect) when matched to a delay event (i.e. a delayed launching; Experiment 1) or to a non-causal event completely identical to the causal one except for the order of the displacements of the two objects involved which was swapped temporally (Experiment 3). This preference for the launching event, moreover, also depended on the continuity of the trajectory between the objects involved in the event (Experiment 2). These results support the hypothesis that the human system possesses an early available, possibly innate basic mechanism to compute causality, such a mechanism being sensitive to the additive effect of certain well-defined spatiotemporal cues present in the causal event independently of any prior visual experience. © 2013 Blackwell Publishing Ltd.

  8. Survey of Basic Education in Eastern Africa. UNESCO/UNICEF Co-Operation Programme.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Nairobi (Kenya). Regional Office of Science and Technology for Africa.

    A survey of basic education in 13 Eastern African countries (Madagascar, Burundi, Comores, Ethiopia, Mauritius, Botswana, Kenya, Lesotho, Swaziland, Tanzania, Zambia, Malawi, and Somalia) covers basic education programs and UNICEF's supporting role. Basic education is seen as a concept evolved in the region, involving formal school systems and…

  9. Chromatin in embryonic stem cell neuronal differentiation.

    PubMed

    Meshorer, E

    2007-03-01

    Chromatin, the basic regulatory unit of the eukaryotic genetic material, is controlled by epigenetic mechanisms including histone modifications, histone variants, DNA methylation and chromatin remodeling. Cellular differentiation involves large changes in gene expression concomitant with alterations in genome organization and chromatin structure. Such changes are particularly evident in self-renewing pluripotent embryonic stem cells, which begin, in terms of cell fate, as a tabula rasa, and through the process of differentiation, acquire distinct identities. Here I describe the changes in chromatin that accompany neuronal differentiation, particularly of embryonic stem cells, and discuss how chromatin serves as the master regulator of cellular destiny.

  10. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  11. Waste Management in the Circular Economy. The Case of Romania.

    NASA Astrophysics Data System (ADS)

    Iuga, Anca N.

    2016-11-01

    Applying the principles of sustainable development in Romania involves a new approach to ecological waste using basic concepts of circular economy to weigh accurately the proposed projects in this area taking into account existing environmental resources and zero waste objectives. The paper is focused on: quantitative and qualitative measures of waste prevention in Romania, the changing status of the waste by selling it as product, the mechanisms for paying for treatment and / or disposal which discourage waste generation and the use of financial resources obtained from secondary raw materials for the efficiency of waste management.

  12. Exercise, exercise training, and the immune system. A compendium of research (1902-1991)

    NASA Technical Reports Server (NTRS)

    Hardesty, A. J.; Greenleaf, J. E.; Simonson, S.; Hu, A.; Jackson, C. G. R.

    1993-01-01

    This compendium includes abstracts and synopses of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of physical exercise and the human immune system. If the author's abstract or summary was appropriate, it was included. In other cases, a more detailed synopsis of the paper was prepared under the subheadings 'Purpose,' 'Methods,' 'Results,' and 'Conclusions.' Author and subject indices are provided, plus a selected bibliography of related work or those papers received after the volume was being prepared for publication. This volume includes material published from 1902 through 1991.

  13. The problem of gestalt in neurobiology.

    PubMed

    Sokolov, E N

    1997-01-01

    The question of gestalts is discussed within the framework of its neuronal mechanisms. Two basic hypotheses are considered: 1) that of gestalts as a result of the hierarchical organization of neurons (gnostic units), and 2) that of gestalts as a result of the synchronization of neurons of a given level. Analysis of published data led to the conclusion that gestalts result from vector coding in the hierarchical organization of neurons. High-frequency oscillations in the gamma range (40-200 Hz) are of endogenous origin, and their function is to reinforce the synaptic inputs to those neurons which are involved in the synthesis of a gestalt.

  14. Acceleration Tolerance: Effect of Exercise, Acceleration Training; Bed Rest and Weightlessness Deconditioning. A Compendium of Research (1950-1996)

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; McKenzie, M. A.; Stad, N. J.; Barnes, P. R.; Jackson, C. G. R.; Ghiasvand, F.; Greenleaf, J. E.

    1997-01-01

    This compendium includes abstracts and annotations of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of acceleration, training and deconditioning. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed annotation of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and keyword indices are provided, plus an additional selected bibliography of related work and of those papers received after the volume was prepared for publication. This volume includes material published from 1950-1996.

  15. Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light.

    PubMed

    Didier, Nicolas; Kamal, Archana; Oliver, William D; Blais, Alexandre; Clerk, Aashish A

    2015-08-28

    We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics.

  16. Photoassisted electrolysis of water - Conversion of optical to chemical energy

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.; Bolts, J. M.; Kaiser, S. W.; Ellis, A. B.

    1976-01-01

    A description is given of devices, termed photoelectrochemical cells, which can, in principle, be used to directly convert light to fuels and/or electricity. The fundamental principles on which the photoelectrochemical cell is based are related to the observation that irradiation of a semiconductor electrode in an electrochemical cell can result in the flow of an electric current in the external circuit. Attention is given to the basic mechanisms involved, the energy conversion efficiency, the advantages of photoelectrochemical cells, and the results of investigations related to the study of energy conversion via photoelectrochemical cells.

  17. Investigation of high efficiency GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Linden, Kurt

    1989-01-01

    Investigations of basic mechanisms which limit the performance of high efficiency GaAs solar cells are discussed. P/N heteroface structures have been fabricated from MOCVD epiwafers. Typical AM1 efficiencies are in the 21 to 22 percent range, with a SERI measurement for one cell being 21.5 percent. The cells are nominally 1.5 x 1.5 cm in size. Studies have involved photoresponse, T-I-V analyses, and interpretation of data in terms of appropriate models to determine key cell parameters. Results of these studies are utilized to determine future approaches for increasing GaAs solar cell efficiencies.

  18. The solar dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1994-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood in spite of decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. The two basic processes involved in dynamo activity are demonstrated and the Sun's activity effects are presented in this document, along with a historical perspective regarding solar dynamos and the efforts to understand and measure them.

  19. Secondary Electrons as an Energy Source for Life

    NASA Astrophysics Data System (ADS)

    Stelmach, Kamil B.; Neveu, Marc; Vick-Majors, Trista J.; Mickol, Rebecca L.; Chou, Luoth; Webster, Kevin D.; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L.; Labrado, Amanda; Fernández, Enrique J. G.

    2018-01-01

    Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses.

  20. Fundamental Studies of Low Velocity Impact Resistance of Graphite Fiber Reinforced Polymer Matrix Composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1985-01-01

    A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.

  1. A cross-culture, cross-gender comparison of perspective taking mechanisms.

    PubMed

    Kessler, Klaus; Cao, Liyu; O'Shea, Kieran J; Wang, Hongfang

    2014-06-22

    Being able to judge another person's visuo-spatial perspective is an essential social skill, hence we investigated the generalizability of the involved mechanisms across cultures and genders. Developmental, cross-species, and our own previous research suggest that two different forms of perspective taking can be distinguished, which are subserved by two distinct mechanisms. The simpler form relies on inferring another's line-of-sight, whereas the more complex form depends on embodied transformation into the other's orientation in form of a simulated body rotation. Our current results suggest that, in principle, the same basic mechanisms are employed by males and females in both, East-Asian (EA; Chinese) and Western culture. However, we also confirmed the hypothesis that Westerners show an egocentric bias, whereas EAs reveal an other-oriented bias. Furthermore, Westerners were slower overall than EAs and showed stronger gender differences in speed and depth of embodied processing. Our findings substantiate differences and communalities in social cognition mechanisms across genders and two cultures and suggest that cultural evolution or transmission should take gender as a modulating variable into account.

  2. A system-level mathematical model for evaluation of power train performance of load-leveled electric-vehicles

    NASA Technical Reports Server (NTRS)

    Purohit, G. P.; Leising, C. J.

    1984-01-01

    The power train performance of load leveled electric vehicles can be compared with that of nonload leveled systems by use of a simple mathematical model. This method of measurement involves a number of parameters including the degree of load leveling and regeneration, the flywheel mechanical to electrical energy fraction, and efficiencies of the motor, generator, flywheel, and transmission. Basic efficiency terms are defined and representative comparisons of a variety of systems are presented. Results of the study indicate that mechanical transfer of energy into and out of the flywheel is more advantageous than electrical transfer. An optimum degree of load leveling may be achieved in terms of the driving cycle, battery characteristics, mode of mechanization, and the efficiency of the components. For state of the art mechanically coupled flyheel systems, load leveling losses can be held to a reasonable 10%; electrically coupled systems can have losses that are up to six times larger. Propulsion system efficiencies for mechanically coupled flywheel systems are predicted to be approximately the 60% achieved on conventional nonload leveled systems.

  3. Anticipating the future: Automatic prediction failures in schizophrenia

    PubMed Central

    Ford, Judith M.; Mathalon, Daniel H.

    2011-01-01

    People with schizophrenia often misperceive sensations and misinterpret experiences, perhaps contributing to psychotic symptoms. These misperceptions and misinterpretations might result from an inability to make valid predictions about expected sensations and experiences. Healthy normal people take advantage of neural mechanisms that allow them to make predictions unconsciously, facilitating processing of expected sensations and distinguishing the expected from the unexpected. In this paper, we focus on two types of automatic, unconscious mechanisms that allow us to predict our perceptions. The first involves predictions made via innate mechanisms basic to all species in the animal kingdom—the efference copy and corollary discharge mechanisms. They accompany our voluntary movements and allow us to suppress sensations resulting from our actions. We study this during talking, and show that auditory cortical response to the speech sounds during talking is reduced compared to when they are played back. This suppression is reduced in schizophrenia, suggesting a failure to predict the sensations resulting from talking. The second mechanism involves implicitly learning what to expect from the current context of events. We study this by observing the brain's response to an unexpected repetition of an event, when a change would have been predicted. That patients have a reduced response suggests they failed to predict that it was time for a change. Both types of predictions should happen automatically and effortlessly, allowing for economic processing of expected events and orientation to unexpected ones. These prediction failures characterize the diagnosis of schizophrenia rather than reflecting specific symptoms. PMID:21959054

  4. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of protonated guests was translated into chemical catalysis by taking advantage of the potential for accelerating reactions that take place via positively charged transition states, which could be potentially stabilized by encapsulation. Orthoformates, generally stable in neutral or basic solution, were found to be suitable substrates for catalytic hydrolysis by the assembly. Orthoformates small enough to undergo encapsulation were readily hydrolyzed by the assembly in basic solution, with rate acceleration factors up to 3900 compared with those of the corresponding uncatalyzed reactions. Furthering the analogy to enzymes that obey Michaelis-Menten kinetics, we observed competitive inhibition with the inhibitor NPr{sub 4}{sup +}, thereby confirming that the interior cavity of the assembly was the active site for catalysis. Mechanistic studies revealed that the assembly is required for catalysis and that the rate-limiting step of the reaction involves proton transfer from hydronium to the encapsulated substrate. Encapsulation in the assembly changes the orthoformate hydrolysis from an A-1 mechanism (in which decomposition of the protonated substrate is the rate-limiting step) to an A-S{sub E}2 mechanism (in which proton transfer is the rate-limiting step). The study of hydrolysis in the assembly was next extended to acetals, which were also catalytically hydrolyzed by the assembly in basic solution. Acetal hydrolysis changed from the A-1 mechanism in solution to an A-2 mechanism inside the assembly, where attack of water on the protonated substrate is rate limiting. This work provides rare examples of assembly-catalyzed reactions that proceed with substantial rate accelerations despite the absence of functional groups in the cavity and with mechanisms fully elucidated by quantitative kinetic studies.« less

  5. Need depriving effects of financial insecurity: Implications for well-being and financial behaviors.

    PubMed

    Weinstein, Netta; Stone, Dan N

    2018-06-28

    Evidence suggests that experiencing financial insecurity lowers well-being and increases problematic financial behaviors. The present article employs a self-determination theory (SDT; R. M. Ryan & Deci, 2000a) perspective to understand the mechanisms by which experiencing financial insecurity contributes to these detrimental outcomes. Informed by SDT, we expected that the basic psychological needs for autonomy, competence, and relatedness would drive these effects. Studies were concerned with individuals' general experiences of financial insecurity (using community samples; Studies 1 and 2), and employed manipulations involving self-reflection (Study 3) and hypothetical scenarios (Study 4). Findings demonstrated that financially insecure conditions undermined basic psychological needs and lowered well-being (measured in terms of self-esteem, depression, and anxiety). In addition, lower satisfaction of basic psychological needs linked financial insecurity to a greater likelihood of engaging in financial cheating (Studies 2 and 3) and risky financial decisions (Study 4). Importantly, this pattern of effects remained in evidence across socioeconomically diverse samples and income levels. We discuss implications for future interventions to improve the wellness of individuals in financially insecure circumstances. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    PubMed

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  7. Cellular therapies for heart disease: unveiling the ethical and public policy challenges.

    PubMed

    Raval, Amish N; Kamp, Timothy J; Hogle, Linda F

    2008-10-01

    Cellular therapies have emerged as a potential revolutionary treatment for cardiovascular disease. Promising preclinical results have resulted in a flurry of basic research activity and spawned multiple clinical trials worldwide. However, the optimal cell type and delivery mode have not been determined for target patient populations. Nor have the mechanisms of benefit for the range of cellular interventions been clearly defined. Experiences to date have unveiled a myriad of ethical and public policy challenges which will affect the way researchers and clinicians make decisions for both basic and clinical research. Stem cells derived from embryos are at the forefront of the ethical and political debate, raising issues of which derivation methods are morally and socially permissible to pursue, as much as which are technically feasible. Adult stem cells are less controversial; however, important challenges exist in determining study design, cell processing, delivery mode, and target patient population. Pathways to successful commercialization and hence broad accessibility of cellular therapies for heart disease are only beginning to be explored. Comprehensive, multi-disciplinary and collaborative networks involving basic researchers, clinicians, regulatory officials and policymakers are required to share information, develop research, regulatory and policy standards and enable rational and ethical cell-based treatment approaches.

  8. Illustrating the Basic Functioning of Mass Analyzers in Mass Spectrometers with Ball-Rolling Mechanisms

    ERIC Educational Resources Information Center

    Horikoshi, Ryo; Takeiri, Fumitaka; Mikita, Riho; Kobayashi, Yoji; Kageyama, Hiroshi

    2017-01-01

    A unique demonstration with ball-rolling mechanisms has been developed to illustrate the basic principles of mass analyzers as components of mass spectrometers. Three ball-rolling mechanisms mimicking the currently used mass analyzers (i.e., a quadrupole mass filter, a magnetic sector, and a time-of- flight) have been constructed. Each mechanism…

  9. The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration

    PubMed Central

    2013-01-01

    Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration. PMID:23829673

  10. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    DOE PAGES

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; ...

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse directions, as opposed to possible mechanisms involving a dominance of either one direction of transport. Furthermore, it features upstream transport balanced by entrainment into richer conditions, while on the rich side, upstream turbulent transport and entrainment from leaner conditions balance the streamwise convection.« less

  11. Making quantitative morphological variation from basic developmental processes: where are we? The case of the Drosophila wing

    PubMed Central

    Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle

    2015-01-01

    One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644

  12. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway.

    PubMed

    Zila, I; Mokra, D; Kopincova, J; Kolomaznik, M; Javorka, M; Calkovska, A

    2017-09-22

    Inflammation and other immune responses are involved in the variety of diseases and disorders. The acute response to endotoxemia includes activation of innate immune mechanisms as well as changes in autonomic nervous activity. The autonomic nervous system and the inflammatory response are intimately linked and sympathetic and vagal nerves are thought to have anti-inflammation functions. The basic functional circuit between vagus nerve and inflammatory response was identified and the neuroimmunomodulation loop was called cholinergic anti-inflammatory pathway. Unique function of vagus nerve in the anti-inflammatory reflex arc was found in many experimental and pre-clinical studies. They brought evidence on the cholinergic signaling interacting with systemic and local inflammation, particularly suppressing immune cells function. Pharmacological/electrical modulation of vagal activity suppressed TNF-alpha and other proinflammatory cytokines production and had beneficial therapeutic effects. Many questions related to mapping, linking and targeting of vagal-immune interactions have been elucidated and brought understanding of its basic physiology and provided the initial support for development of Tracey´s inflammatory reflex. This review summarizes and critically assesses the current knowledge defining cholinergic anti-inflammatory pathway with main focus on studies employing an experimental approach and emphasizes the potential of modulation of vagally-mediated anti-inflammatory pathway in the treatment strategies.

  13. A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent.

    PubMed

    Zhang, Songping; Sun, Yan

    2004-01-01

    A model describing the salt effect on adsorption equilibrium of a basic protein, lysozyme, to Cibacron Blue 3GA-modified Sepharose CL-6B (CB-Sepharose) has been developed. In this model, it is assumed that the presence of salt causes a fraction of dye-ligand molecules to lodge to the surface of the agarose gel, resulting from the induced strong hydrophobic interaction between dye ligand and agarose matrix. The salt effect on the lodging of dye-ligand is expressed by the equilibrium between salt and dye-ligand. For the interactions between protein and vacant binding sites, stoichiometric equations based either on cation exchanges or on hydrophobic interactions are proposed since the CB dye can be regarded as a cation exchanger contributed by the sulfonate groups on it. Combining with the basic concept of steric mass-action theory for ion exchange, which considers both the multipoint nature and the macromolecular steric shielding of protein adsorption, an explicit isotherm for protein adsorption equilibrium on the dye-ligand adsorbent is formulated, involving salt concentration as a variable. Analysis of the model parameters has yielded better understanding of the mechanism of salt effects on adsorption of the basic protein. Moreover, the model predictions are in good agreement with the experimental data over a wide range of salt and ligand concentrations, indicating the predictive nature of the model.

  14. Human biology of taste.

    PubMed

    Gravina, Stephen A; Yep, Gregory L; Khan, Mehmood

    2013-01-01

    Taste or gustation is one of the 5 traditional senses including hearing, sight, touch, and smell. The sense of taste has classically been limited to the 5 basic taste qualities: sweet, salty, sour, bitter, and umami or savory. Advances from the Human Genome Project and others have allowed the identification and determination of many of the genes and molecular mechanisms involved in taste biology. The ubiquitous G protein-coupled receptors (GPCRs) make up the sweet, umami, and bitter receptors. Although less clear in humans, transient receptor potential ion channels are thought to mediate salty and sour taste; however, other targets have been identified. Furthermore, taste receptors have been located throughout the body and appear to be involved in many regulatory processes. An emerging interplay is revealed between chemical sensing in the periphery, cortical processing, performance, and physiology and likely the pathophysiology of diseases such as diabetes.

  15. Analysis of DNA interactions using single-molecule force spectroscopy.

    PubMed

    Ritzefeld, Markus; Walhorn, Volker; Anselmetti, Dario; Sewald, Norbert

    2013-06-01

    Protein-DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein-DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide- and protein-DNA interactions are given.

  16. Enhancing exposure therapy for anxiety disorders with glucocorticoids: from basic mechanisms of emotional learning to clinical applications.

    PubMed

    Bentz, Dorothée; Michael, Tanja; de Quervain, Dominique J-F; Wilhelm, Frank H

    2010-03-01

    Current neurophysiological and psychological accounts view exposure therapy as the clinical analog of extinction learning that results in persistent modifications of the fear memory involved in the pathogenesis, symptomatology, and maintenance of anxiety disorders. Evidence from studies in animals and humans indicate that glucocorticoids have the potential to facilitate the processes that underlie extinction learning during exposure therapy. Particularly, glucocorticoids can restrict retrieval of previous aversive learning episodes and enhance consolidation of memory traces relating to non-fearful responding in feared situations. Thus, glucocorticoid treatment especially in combination with exposure therapy might be a promising approach to optimize treatment of anxiety disorders. This review examines the processes involved in aversive conditioning, fear learning and fear extinction, and how glucocorticoids might enhance restructuring of fear memories during therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    NASA Astrophysics Data System (ADS)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  18. English: Basic Mechanics Modules 4 and 5.

    ERIC Educational Resources Information Center

    Pipeline, 1983

    1983-01-01

    "English: Basic Mechanics" is a series of computer-based lessons for the Apple II that allow students to practice applying the fundamentals of English grammar and punctuation. The two newest modules covering use of subordinate clauses and use of subordinate phrases are described. (JN)

  19. Basic mechanisms governing solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1976-01-01

    The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.

  20. Possible mechanism of the stimulatory effect of Artemisia leaf extract on the proliferation of cultured endothelial cells: involvement of basic fibroblast growth factor.

    PubMed

    Kaji, T; Kaga, K; Miezi, N; Hayashi, T; Ejiri, N; Sakuragawa, N

    1990-09-01

    To investigate the possible mechanism of the stimulatory effect of a hot water extract from Artemisia leaf (Artemisia princeps PANPANINI) (AFE) on the proliferation of endothelial cells, cells from bovine aorta were cultured for 72 h in RPMI1640 medium supplemented with 10% fetal calf serum in the presence of 5 micrograms/ml AFE. The AFE treatment significantly increased the cell number after culture, while in the presence of 10 micrograms/ml unfractionated heparin, AFE conversely decreased it. This implied that AFE enhanced the cell growth promotion by basic fibroblast growth factor (bFGF). The accumulation of bFGF was significantly increased in the culture medium, in the low-affinity (glycosaminoglycans-binding) fraction, and in the cell extract fraction, but was unchanged in the high-affinity (receptor-binding) fraction. The contents of [35S]sulfate-labeled glycosaminoglycans in both cell layer and the medium were not increased by AFE treatment. The proliferation of A10 cells, an established cell line of smooth muscle cells from murine aorta, was not stimulated by AFE. A10 cells did not produce a significant amount of bFGF in the presence or absence of AFE. Thus, the production of bFGF was considered to be involved in AFE stimulation of cell proliferation. In conclusion, it was suggested that AFE stimulated endothelial cell proliferation by increasing the production of bFGF rather than by an increase in the number of bFGF receptors and the content of glycosaminoglycans in the cell layer. The enhanced reserve of bFGF in the low-affinity fraction of cell layer and in the medium would cause the AFE-stimulated proliferation of endothelial cells.

  1. Pathophysiology of priapism: dysregulatory erection physiology thesis.

    PubMed

    Burnett, Arthur L

    2003-07-01

    While a modest amount of medical literature has been written on the topic of priapism, reports heretofore have focused predominantly on diagnostic and management related aspects of the disorder, providing meager information in regard to its pathophysiology. Accordingly the intent of this review was to explore the etiological and pathogenic factors involved in priapism. The review entailed an overview of traditional and modern concepts that have been applied to the pathophysiology of priapism and an evaluation of assorted observational and experimental data relating to this field of study. The basic exercise consisted of a literature search using the National Library of Medicine PubMed Services, index referencing provided through the Historical Collection of the Institute of Medicine of The Johns Hopkins University and a survey of abstract proceedings from national meetings relevant to priapism. Insight into the pathophysiology of priapism was derived from a synthesis of evolutionary clinical experiences, mythical beliefs, clinical variants and scientific advances associated with the field of priapism. The results can be summarized. 1) Clinicopathological manifestations of priapism support its basic classification into low flow (ischemic) and high flow (nonischemic) hemodynamic categories, commonly attributed to venous outflow occlusion and unregulated arterial overflow of the penis, respectively. 2) Factual information is insufficient to substantiate etiological roles for urethral infection, bladder distention, failed ejaculation, satyriasis and sleep apnea in priapism. 3) Features of the variant forms of priapism invoke changes in nervous system control of erection and penile vascular homeostasis as having pathogenic roles in the disorder. 4) Clinical therapeutic and basic science investigative studies have revealed various effector mechanisms of the erectile tissue response that may act in dysregulated fashion to subserve priapism. This exercise suggested that, while priapism is commonly defined in terms of adverse mechanical contexts affecting penile circulation, it may also be viewed at least in some situations as an unbalanced erectile response involving derangements in possibly diverse systems of regulatory control. An integrative scientific approach that encompasses tissular, cellular and molecular levels of investigation may allow further understanding of the pathophysiology of the disorder. Ongoing elucidation of this pathophysiology can be expected to promote the development of new priapism therapies.

  2. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    NASA Astrophysics Data System (ADS)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  3. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  4. Mechanics and pathomechanics in the overhead athlete.

    PubMed

    Kibler, W Ben; Wilkes, Trevor; Sciascia, Aaron

    2013-10-01

    Optimal performance of the overhead throwing task requires precise mechanics that involve coordinated kinetic and kinematic chains to develop, transfer, and regulate the forces the body needs to withstand the inherent demands of the task and to allow optimal performance. These chains have been evaluated and the basic components, called nodes, have been identified. Impaired performance and/or injury, the DTS, is associated with alterations in the mechanics that are called pathomechanics. They can occur at multiple locations throughout the kinetic chain. They must be evaluated and treated as part of the overall problem. Observational analysis of the mechanics and pathomechanics using the node analysis method can be useful in highlighting areas of alteration that can be evaluated for anatomic injury or altered physiology. The comprehensive kinetic chain examination can evaluate sites of kinetic chain breakage, and a detailed shoulder examination can assess joint internal derangement of altered physiology that may contribute to the pathomechanics. Treatment of the DTS should be comprehensive, directed toward restoring physiology and mechanics and optimizing anatomy. This maximizes the body’s ability to develop normal mechanics to accomplish the overhead throwing task. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Cytogenetics studies in Brazilian species of Pseudophyllinae (Orthoptera: Tettigoniidae): 2n(♂)=35 and fn=35 the probable basic and ancestral karyotype of the family Tettigoniidae.

    PubMed

    Ferreira, Amilton; Mesa, Alejo

    2010-01-01

    The karyotypes of five species of Brazilian Pseudophyllinae belonging to four tribes were here studied. The data available in the literature altogether with those obtained with species in here studied allowed us to infer that 2n(♂)=35 is the highest chromosome number found in the family Tettigoniidae and that it is present in species belonging to Pseudophyllinae, Zaprochilinae and in one species of Tettigoniinae. In spite of that all five species exhibit secondary karyotypes arisen surely by a mechanism of chromosomal rearrangement of centric fusion, tandem fusion and centric inversion types from those with 2n(♂)=35 and FN=35, they share some common traits. The X chromosome is submetacentric (FN=36), heteropicnotic during the first prophase, the largest of the set but its size is rather variable among the species and the sex chromosomal mechanism is of the XO( ♂ ), XX( ♀ ) type. The chromosomal rearrangements involved in the karyotype evolution of the Pseudophyllinae and its relationship with those of the family Tettigoniidae are discussed and we propose that the basic and the ancestral karyotype of the Tettigoniidae is formed by 2n(♂)=35, FN=35 and not by 2n(♂)=31, FN= 31, as usually accepted.

  6. Multiple Controls Regulate Nucleostemin Partitioning Between Nucleolus and Nucleoplasm

    PubMed Central

    Meng, Lingjun; Yasumoto, Hiroaki; Tsai, Robert Y.L.

    2010-01-01

    Summary Nucleostemin plays an essential role in maintaining the continuous proliferation of stem cells and cancer cells. The movement of nucleostemin between the nucleolus and the nucleoplasm provides a dynamic way to partition the nucleostemin protein between these two compartments. Here, we showed that nucleostemin contained two nucleolus-targeting regions, the basic and the GTP-binding domains, which exhibited a short and a long nucleolar retention time, respectively. In a GTP-unbound state, the nucleolus-targeting activity of nucleostemin was blocked by a mechanism that trapped its intermediate domain in the nucleoplasm. A nucleostemin-interacting protein, RSL1D1, was identified that contained a ribosomal L1-domain, co-resided with nucleostemin in the same subnucleolar compartment non-identical to the B23 and fibrillarin distributions, and displayed a longer nucleolar residence time than nucleostemin. RSL1D1 interacted with both the basic and the GTP-binding domains of nucleostemin through a non-nucleolus-targeting region. Overexpression of the nucleolus-targeting domain of RSL1D1 alone dispersed the nucleolar nucleostemin. Loss of RSL1D1 expression reduced the compartmental size and amount of nucleostemin in the nucleolus. This work reveals that the partitioning of nucleostemin employs complex mechanisms involving both nucleolar and nucleoplasmic components, and provides insight into the post-translational regulation of its activity. PMID:17158916

  7. Physiologically based microenvironment for in vitro neural differentiation of adipose-derived stem cells.

    PubMed

    Graziano, Adriana Carol Eleonora; Avola, Rosanna; Perciavalle, Vincenzo; Nicoletti, Ferdinando; Cicala, Gianluca; Coco, Marinella; Cardile, Venera

    2018-03-26

    The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissue-derived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology.

  8. HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB.

    PubMed

    Ma, Yunyun; Zhang, Bo; Wang, Dong; Qian, Lili; Song, Xianmei; Wang, Xueyin; Yang, Chaokuan; Zhao, Guoqiang

    2017-03-01

    Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.

  9. Random bursts determine dynamics of active filaments.

    PubMed

    Weber, Christoph A; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S; Bausch, Andreas R; Frey, Erwin

    2015-08-25

    Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system's dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model.

  10. Glycosyltransferases and non-alcoholic fatty liver disease

    PubMed Central

    Zhan, Yu-Tao; Su, Hai-Ying; An, Wei

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and its incidence is increasing worldwide. However, the underlying mechanisms leading to the development of NAFLD are still not fully understood. Glycosyltransferases (GTs) are a diverse class of enzymes involved in catalyzing the transfer of one or multiple sugar residues to a wide range of acceptor molecules. GTs mediate a wide range of functions from structure and storage to signaling, and play a key role in many fundamental biological processes. Therefore, it is anticipated that GTs have a role in the pathogenesis of NAFLD. In this article, we present an overview of the basic information on NAFLD, particularly GTs and glycosylation modification of certain molecules and their association with NAFLD pathogenesis. In addition, the effects and mechanisms of some GTs in the development of NAFLD are summarized. PMID:26937136

  11. Overcoming adaptive resistance in mucoepidermoid carcinoma through inhibition of the IKK-β/IκBα/NFκB axis

    PubMed Central

    Wagner, Vivian P.; Martins, Marco A.T.; Martins, Manoela D.; Warner, Kristy A.; Webber, Liana P.; Squarize, Cristiane H.; Nör, Jacques E.; Castilho, Rogerio M.

    2016-01-01

    Patients with mucoepidermoid carcinoma (MEC) experience low survival rates and high morbidity following treatment, yet the intrinsic resistance of MEC cells to ionizing radiation (IR) and the mechanisms underlying acquired resistance remain unexplored. Herein, we demonstrated that low doses of IR intrinsically activated NFκB in resistant MEC cell lines. Moreover, resistance was significantly enhanced in IR-sensitive cell lines when NFκB pathway was stimulated. Pharmacological inhibition of the IKK-β/IκBα/NFκB axis, using a single dose of FDA-approved Emetine, led to a striking sensitization of MEC cells to IR and a reduction in cancer stem cells. We achieved a major step towards better understanding the basic mechanisms involved in IR-adaptive resistance in MEC cell lines and how to efficiently overcome this critical problem. PMID:27682876

  12. Random bursts determine dynamics of active filaments

    PubMed Central

    Weber, Christoph A.; Suzuki, Ryo; Schaller, Volker; Aranson, Igor S.; Bausch, Andreas R.; Frey, Erwin

    2015-01-01

    Constituents of living or synthetic active matter have access to a local energy supply that serves to keep the system out of thermal equilibrium. The statistical properties of such fluctuating active systems differ from those of their equilibrium counterparts. Using the actin filament gliding assay as a model, we studied how nonthermal distributions emerge in active matter. We found that the basic mechanism involves the interplay between local and random injection of energy, acting as an analog of a thermal heat bath, and nonequilibrium energy dissipation processes associated with sudden jump-like changes in the system’s dynamic variables. We show here how such a mechanism leads to a nonthermal distribution of filament curvatures with a non-Gaussian shape. The experimental curvature statistics and filament relaxation dynamics are reproduced quantitatively by stochastic computer simulations and a simple kinetic model. PMID:26261319

  13. Circadian Rhythm Control: Neurophysiological Investigations

    NASA Technical Reports Server (NTRS)

    Glotzbach, S. F.

    1985-01-01

    The suprachiasmatic nucleus (SCN) was implicated as a primary component in central nervous system mechanisms governing circadian rhythms. Disruption of the normal synchronization of temperature, activity, and other rhythms is detrimental to health. Sleep wake disorders, decreases in vigilance and performance, and certain affective disorders may result from or be exacerbated by such desynchronization. To study the basic neurophysiological mechanisms involved in entrainment of circadian systems by the environment, Parylene-coated, etched microwire electrode bundles were used to record extracellular action potentials from the small somata of the SCN and neighboring hypothalamic nuclei in unanesthetized, behaving animals. Male Wistar rats were anesthetized and chronically prepared with EEG ane EMG electrodes in addition to a moveable microdrive assembly. The majority of cells had firing rates 10 Hz and distinct populations of cells which had either the highest firing rate or lowest firing rate during sleep were seen.

  14. Mixing, Noise and Thrust Benefits Using Corrugated Designs

    NASA Technical Reports Server (NTRS)

    White, Samuel G.; Gilinsky, Mikhail M.

    1998-01-01

    This project was conducted as a support for effective research, training and teaching of Hampton University students in Fluid Mechanics and Acoustics. Basically, this work is organized and implemented by the new Fluid Mechanics and Acoustics Laboratory (FM & AL) which was established at Hampton University in the School of Engineering and Technology (E & T) in 1996. In addition, FM & AL in cooperation with NASA LaRC jointly conducts research with the Central AeroHydrodynamics Institute (TSAGI, Moscow) in Russia under a 2 year Civilian Research and Development Foundation (CRDF). This project is also conducted under control of NASA HQ. For fulfillment of the current project, several researchers were involved as was shown in the proposal to NASA in 1996. This work is the development and support for projects solve problems with the goal of reducing jet noise and increasing nozzle thrust.

  15. Basic deprivation and involvement in risky sexual behaviour among out-of-school young people in a Lagos slum.

    PubMed

    Kunnuji, Michael

    2014-01-01

    Research has shown that in countries such as Nigeria many urban dwellers live in a state of squalour and lack the basic necessities of food, clothing and shelter. The present study set out to examine the association between forms of basic deprivation--such as food deprivation, high occupancy ratio as a form of shelter deprivation, and inadequate clothing--and two sexual outcomes--timing of onset of penetrative sex and involvement in multiple sexual partnerships. The study used survey data from a sample of 480 girls resident in Iwaya community. A survival analysis of the timing of onset of sex and a regression model for involvement in multiple sexual partnerships reveal that among the forms of deprivation explored, food deprivation is the only significant predictor of the timing of onset of sex and involvement in multiple sexual partnerships. The study concludes that the sexual activities of poor out-of-school girls are partly explained by their desire to overcome food deprivation and recommends that government and non-governmental-organisation programmes working with young people should address the problem of basic deprivation among adolescent girls.

  16. Basic Automotive Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary concerns in the organization, operation, and evaluation of a basic automotive mechanics program. It is designed for local school district and community college administrators, instructors, program advisory committees, and regional coordinating councils. The guide begins with the Dictionary of Occupational…

  17. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    DOEpatents

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  18. Molecular determinants of the DprA-RecA interaction for nucleation on ssDNA.

    PubMed

    Lisboa, Johnny; Andreani, Jessica; Sanchez, Dyana; Boudes, Marion; Collinet, Bruno; Liger, Dominique; van Tilbeurgh, Herman; Guérois, Raphael; Quevillon-Cheruel, Sophie

    2014-06-01

    Natural transformation is a major mechanism of horizontal gene transfer in bacteria that depends on DNA recombination. RecA is central to the homologous recombination pathway, catalyzing DNA strand invasion and homology search. DprA was shown to be a key binding partner of RecA acting as a specific mediator for its loading on the incoming exogenous ssDNA. Although the 3D structures of both RecA and DprA have been solved, the mechanisms underlying their cross-talk remained elusive. By combining molecular docking simulations and experimental validation, we identified a region on RecA, buried at its self-assembly interface and involving three basic residues that contact an acidic triad of DprA previously shown to be crucial for the interaction. At the core of these patches, (DprA)M238 and (RecA)F230 are involved in the interaction. The other DprA binding regions of RecA could involve the N-terminal α-helix and a DNA-binding region. Our data favor a model of DprA acting as a cap of the RecA filament, involving a DprA-RecA interplay at two levels: their own oligomeric states and their respective interaction with DNA. Our model forms the basis for a mechanistic explanation of how DprA can act as a mediator for the loading of RecA on ssDNA. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Nuclear localization of coactivator RAC3 is mediated by a bipartite NLS and importin {alpha}3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Percy Luk; Zhang, Aihua; Chen, J. Don

    2006-09-15

    The nuclear receptor coactivator RAC3 (also known as SRC-3/ACTR/AIB1/p/CIP/TRAM-1) belongs to the p160 coactivator family, which are involved in several physiological processes and diseases. Here we have investigated how RAC3 is translocated into the nucleus and show that it is mediated through a bipartite NLS and importin {alpha}3. This bipartite NLS is located within the conserved bHLH domain, and its mutation abolished nuclear localization. The NLS is also sufficient to cause nuclear import of EGFP, and the activity requires basic amino acids within the NLS. RAC3 binds strongly to importin {alpha}3, which also depends on the basic amino acids. Functionally,more » RAC3 cytoplasmic mutant loses its ability to enhance transcription, suggesting that nuclear localization is essential for coactivator function. Together, these results reveal a previous unknown mechanism for nuclear translocation of p160 coactivators and a critical function of the conserved bHLH within the coactivator.« less

  20. Adaptive mechanisms of insect pests against plant protease inhibitors and future prospects related to crop protection: a review.

    PubMed

    Macedo, Maria L R; de Oliveira, Caio F R; Costa, Poliene M; Castelhano, Elaine C; Silva-Filho, Marcio C

    2015-01-01

    The overwhelming demand for food requires the application of technology on field. An important issue that limits the productivity of crops is related to insect attacks. Hence, several studies have evaluated the application of different compounds to reduce the field losses, especially insecticide compounds from plant sources. Among them, plant protease inhibitors (PIs) have been studied in both basic and applied researches, displaying positive results in control of some insects. However, certain species are able to bypass the insecticide effects exerted by PIs. In this review, we disclosed the adaptive mechanisms showed by lepidopteran and coleopteran insects, the most expressive insect orders related to crop predation. The structural aspects involved in adaptation mechanisms are presented as well as the newest alternatives for pest control. The application of biotechnological tools in crop protection will be mandatory in agriculture, and it will be up to researchers to find the best candidates for effective control in long-term.

  1. Guest editorial: Special issue micro-and nanomachines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  2. Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila

    PubMed Central

    Yuan, Quan; Song, Yuanquan; Yang, Chung-Hui; Jan, Lily Yeh; Jan, Yuh Nung

    2014-01-01

    Intraspecific male-male aggression, important for sexual selection, is regulated by environment, experience and internal states through largely undefined molecular and cellular mechanisms. To understand the basic neural pathway underlying the modulation of this innate behavior, we established a behavioral paradigm in Drosophila melanogaster and investigated the relationship between sexual experience and aggression. In the presence of mating partners, adult male flies exhibited elevated levels of aggression, which was largely suppressed by prior exposure to females via a sexually dimorphic neural mechanism. The suppression involved the ability of male flies to detect females by contact chemosensation through the pheromone-sensing ion channel, ppk29, and was mediated by male specific GABAergic neurons acting upon GABA-a receptor RDL in target cells. Silencing or activation of this circuit led to dis-inhibition or elimination of sex-related aggression, respectively. We propose that the GABAergic inhibition represents a critical cellular mechanism that enables prior experience to modulate aggression. PMID:24241395

  3. The physics of lipid droplet nucleation, growth and budding.

    PubMed

    Thiam, Abdou Rachid; Forêt, Lionel

    2016-08-01

    Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Guest editorial: Special issue micro-and nanomachines.

    DOE PAGES

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    2015-04-01

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  5. Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications.

    PubMed

    Gloria, Antonio; Ronca, Dante; Russo, Teresa; D'Amora, Ugo; Chierchia, Marianna; De Santis, Roberto; Nicolais, Luigi; Ambrosio, Luigi

    2011-01-01

    Polymer-based composite materials are ideal for applications where high stiffness-to-weight and strength-to-weight ratios are required. From aerospace and aeronautical field to biomedical applications, fiber-reinforced polymers have replaced metals, thus emerging as an interesting alternative. As widely reported, the mechanical behavior of the composite materials involves investigation on micro- and macro-scale, taking into consideration micromechanics, macromechanics and lamination theory. Clinical situations often require repairing connective tissues and the use of composite materials may be suitable for these applications because of the possibility to design tissue substitutes or implants with the required mechanical properties. Accordingly, this review aims at stressing the importance of fiber-reinforced composite materials to make advanced and biomimetic prostheses with tailored mechanical properties, starting from the basic principle design, technologies, and a brief overview of composites applications in several fields. Fiber-reinforced composite materials for artificial tendons, ligaments, and intervertebral discs, as well as for hip stems and mandible models will be reviewed, highlighting the possibility to mimic the mechanical properties of the soft and hard tissues that they replace.

  6. Ballistic food transport in toucans.

    PubMed

    Baussart, Sabine; Korsoun, Leonid; Libourel, Paul-Antoine; Bels, Vincent

    2009-08-01

    The basic mechanism of food transport in tetrapods is lingual-based. Neognathous birds use this mechanism for exploiting a large diversity of food resources, whereas paleognathous birds use cranioinertial mechanism with or without tongue involvement. Food transport in two neognathous species of toucans (Ramphastos toco and R. vitellinus) is defined as ballistic transport mechanism. Only one transport cycle is used for moving the food from the tip of the beak to the pharynx. The food is projected between jaws with similar initial velocity in both species. At the time of release, the angle between trajectory of food position and horizontal is higher in R. vitellinus with a shorter beak than in R. toco. The tongue never makes contact with the food nor is it used to expand the buccal cavity. Tongue movement is associated with throat expansion, permitting the food to reach the entrance of the esophagus at the end of the ballistic trajectory. Selection of large food items in the diet may explain the evolutionary trend of using ballistic transport in the feeding behavior of toucans, which plays a key role in ecology of tropical forest. 2009 Wiley-Liss, Inc.

  7. [Opportunistic pathogen Candida glabrata and the mechanisms of its resistance to antifungal drugs].

    PubMed

    Berila, N; Subík, J

    2010-04-01

    Treatment of not only bacterial but also fungal infections is currently a growing concern. A major reason is the acquisition of multidrug resistance in both prokaryotic and human cells. The multidrug resistance phenotype is a cellular response to the presence of cytotoxic substances in the environment. The basic mechanism of multidrug resistance is overexpression of the membrane proteins involved in the extrusion of toxic substances outside the cell. The resistance mechanism based on the efflux of inhibitors as a result of the overproduction of transport proteins was also observed in some plant and animal pathogens and human tumour cells. The phenomenon of multidrug resistance associated with an excessive and long-term use of antifungals, in particular of azole derivatives, was also confirmed in the yeast Candida glabrata which is becoming a growing concern for health care professionals. Reduced susceptibility to azole derivatives in particular, a high potential for adapting to stressors, and multiple mechanisms of resistance to structurally and functionally unrelated antifungal drugs make the species C. glabrata a potential threat to hospital patients.

  8. Rhythm and mood: relationships between the circadian clock and mood-related behavior.

    PubMed

    Schnell, Anna; Albrecht, Urs; Sandrelli, Federica

    2014-06-01

    Mood disorders are multifactorial and heterogeneous diseases caused by the interplay of several genetic and environmental factors. In humans, mood disorders are often accompanied by abnormalities in the organization of the circadian system, which normally synchronizes activities and functions of cells and tissues. Studies on animal models suggest that the basic circadian clock mechanism, which runs in essentially all cells, is implicated in the modulation of biological phenomena regulating affective behaviors. In particular, recent findings highlight the importance of the circadian clock mechanisms in neurological pathways involved in mood, such as monoaminergic neurotransmission, hypothalamus-pituitary-adrenal axis regulation, suprachiasmatic nucleus and olfactory bulb activities, and neurogenesis. Defects at the level of both, the circadian clock mechanism and system, may contribute to the etiology of mood disorders. Modification of the circadian system using chronotherapy appears to be an effective treatment for mood disorders. Additionally, understanding the role of circadian clock mechanisms, which affect the regulation of different mood pathways, will open up the possibility for targeted pharmacological treatments. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease

    PubMed Central

    Zhou, Fan; Katirai, Foad

    2011-01-01

    Abstract Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases. Antioxid. Redox Signal. 15, 1043–1083. PMID:21294649

  10. Cueing Strategies and Basic Skills in Early Reading.

    ERIC Educational Resources Information Center

    Beebe, Mona J.; Bulcock, Jeffrey W.

    The extent to which cuing strategies and basic skills explanations of early reading constitute complementary approaches was examined in a study involving 94 fourth grade students. Basic skills--a unidimensional component based on measures of vocabulary development, language skills, and work-study skills--proved to be a powerful variable mediating…

  11. Electronic device aspects of neural network memories

    NASA Technical Reports Server (NTRS)

    Lambe, J.; Moopenn, A.; Thakoor, A. P.

    1985-01-01

    The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.

  12. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  13. A study of low-cost reliable actuators for light aircraft. Part A: Chapters 1-8

    NASA Technical Reports Server (NTRS)

    Eijsink, H.; Rice, M.

    1978-01-01

    An analysis involving electro-mechanical, electro-pneumatic, and electro-hydraulic actuators was performed to study which are compatible for use in the primary and secondary flight controls of a single engine light aircraft. Actuator characteristics under investigation include cost, reliability, weight, force, volumetric requirements, power requirements, response characteristics and heat accumulation characteristics. The basic types of actuators were compared for performance characteristics in positioning a control surface model and then were mathematically evaluated in an aircraft to get the closed loop dynamic response characteristics. Conclusions were made as to the suitability of each actuator type for use in an aircraft.

  14. Water Metabolism and Fluid Compartment Volumes in Humans at Altitude. A Compendium of Research (1914 - 1996)

    NASA Technical Reports Server (NTRS)

    Chou, J. L.; Stad, N. J.; Gay, E.; West, G. I.; Barnes, P. R.; Greenleaf, J. E.

    1997-01-01

    This compendium includes abstracts and synopses of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of water metabolism and fluid compartment volumes in humans during altitude exposure. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed synopsis of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and subject indices are provided, plus an additional selected bibliography of related work of those papers received after the volume was being prepared for publication. This volume includes material published from 1914 through 1995.

  15. From wide to close binaries?

    NASA Astrophysics Data System (ADS)

    Eggleton, Peter P.

    The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.

  16. Oscillation, Conduction Delays, and Learning Cooperate to Establish Neural Competition in Recurrent Networks

    PubMed Central

    Kato, Hideyuki; Ikeguchi, Tohru

    2016-01-01

    Specific memory might be stored in a subnetwork consisting of a small population of neurons. To select neurons involved in memory formation, neural competition might be essential. In this paper, we show that excitable neurons are competitive and organize into two assemblies in a recurrent network with spike timing-dependent synaptic plasticity (STDP) and axonal conduction delays. Neural competition is established by the cooperation of spontaneously induced neural oscillation, axonal conduction delays, and STDP. We also suggest that the competition mechanism in this paper is one of the basic functions required to organize memory-storing subnetworks into fine-scale cortical networks. PMID:26840529

  17. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci

    PubMed Central

    Shelburne, Samuel A.; Davenport, Michael T.; Keith, David B.; Musser, James M.

    2009-01-01

    Historically, the study of bacterial catabolism of complex carbohydrates has contributed to understanding basic bacterial physiology. Recently, however, genome-wide screens of streptococcal pathogenesis have identified genes encoding proteins involved in complex carbohydrate catabolism as participating in pathogen infectivity. Subsequent studies have focused on specific mechanisms by which carbohydrate utilization proteins might contribute to the ability of streptococci to colonize and infect the host. Moreover, transcriptome and biochemical analyses have uncovered novel regulatory pathways by which streptococci link environmental carbohydrate availability to virulence factor production. Herein we review new insights into the role of complex carbohydrates in streptococcal host-pathogen interaction. PMID:18508271

  18. Resonant obliquity of Mars?. [climate driven by spin axis and orbit plane precession caused oscillations

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Rudy, Donald J.

    1991-01-01

    The large-scale oscillations generated by the obliquity of Mars through spin-axis and orbit-plane precessions constitute basic climate system drivers with periodicities of 100,000 yrs in differential spin axis-orbit precession rates and of over 1 million yrs in amplitude modulations due to orbital-inclination changes. Attention is presently given to a third time-scale for climate change, which involves a possible spin-spin resonance and whose mechanism operates on a 10-million-yr time-scale: this effect implies an average obliquity increase for Mars of 15 deg only 5 million yrs ago, with important climatic consequences.

  19. Diesel Mechanics: Fundamentals.

    ERIC Educational Resources Information Center

    Foutes, William; And Others

    This publication is the first in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the basic concepts related to employment in a diesel trade. Six sections contain 29 units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities for…

  20. Basic Gasoline Engine Mechanics. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a basic gasoline engine mechanics program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  1. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    ERIC Educational Resources Information Center

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  2. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  3. Nrf2 and Nrf2-Related Proteins in Development and Developmental Toxicity: Insights from studies in Zebrafish (Danio rerio)

    PubMed Central

    Hahn, Mark E.; Timme-Laragy, Alicia R.; Karchner, Sibel I.; Stegeman, John J.

    2015-01-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. PMID:26130508

  4. Nuclear quantum effects and kinetic isotope effects in enzyme reactions.

    PubMed

    Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas

    2015-09-15

    Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A dynamically minimalist cognitive explanation of musical preference: is familiarity everything?

    PubMed Central

    Schubert, Emery; Hargreaves, David J.; North, Adrian C.

    2014-01-01

    This paper examines the idea that attraction to music is generated at a cognitive level through the formation and activation of networks of interlinked “nodes.” Although the networks involved are vast, the basic mechanism for activating the links is relatively simple. Two comprehensive cognitive-behavioral models of musical engagement are examined with the aim of identifying the underlying cognitive mechanisms and processes involved in musical experience. A “dynamical minimalism” approach (after Nowak, 2004) is applied to re-interpret musical engagement (listening, performing, composing, or imagining any of these) and to revise the latest version of the reciprocal-feedback model (RFM) of music processing. Specifically, a single cognitive mechanism of “spreading activation” through previously associated networks is proposed as a pleasurable outcome of musical engagement. This mechanism underlies the dynamic interaction of the various components of the RFM, and can thereby explain the generation of positive affects in the listener’s musical experience. This includes determinants of that experience stemming from the characteristics of the individual engaging in the musical activity (whether listener, composer, improviser, or performer), the situation and contexts (e.g., social factors), and the music (e.g., genre, structural features). The theory calls for new directions for future research, two being (1) further investigation of the components of the RFM to better understand musical experience and (2) more rigorous scrutiny of common findings about the salience of familiarity in musical experience and preference. PMID:24567723

  6. On the analysis of competitive displacement in dengue disease transmission

    NASA Astrophysics Data System (ADS)

    Wijaya, Karunia P.; Nuraini, Nuning; Soewono, Edy; Handayani, Dewi

    2014-03-01

    We study a host-vector model involving the interplay of competitive displacement mechanism in a specific DENV serotype, both in human blood and mosquito blood. Using phylogenetic analysis, world virologists investigate the severe manifestations of dengue fever caused by the displacements within weakly virulent pathogens (native strains) by more virulent pathogens (invasive strains) in one serotype. We construct SIR model for human and SI model for mosquito to explore the key determinants of those displacements. Analysis of nonnegativity and boundedness of the solution as well as the basic reproduction number (R0) are taken into account for verifying the model into biological meaningfulness. To generate predictions of the outcomes of control strategies, we derive an optimal control model which involves two control apparatus: fluid infusion (for human) and fumigation (for vector). Numerical results show the dynamics of host-vector in an observation period, both under control and without control.

  7. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements

    PubMed Central

    Liu, Pengfei; Erez, Ayelet; Sreenath Nagamani, Sandesh C.; Dhar, Shweta U.; Kołodziejska, Katarzyna E.; Dharmadhikari, Avinash V.; Cooper, M. Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A.; Bacino, Carlos A.; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R.; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A.; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R.; McLean, Scott D.; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L.; Patel, Ankita; Cheung, Sau Wai; Hastings, P. J.; Stankiewicz, Paweł; Lupski, James R.; Bi, Weimin

    2011-01-01

    SUMMARY Complex genomic rearrangements (CGR) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated we observed localization and multiple copy number changes including deletions, duplications and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism’s life cycle. PMID:21925314

  8. Disorganizing experiences in second- and third-generation holocaust survivors.

    PubMed

    Scharf, Miri; Mayseless, Ofra

    2011-11-01

    Second-generation Holocaust survivors might not show direct symptoms of posttraumatic stress disorder or attachment disorganization, but are at risk for developing high levels of psychological distress. We present themes of difficult experiences of second-generation Holocaust survivors, arguing that some of these aversive experiences might have disorganizing qualities even though they do not qualify as traumatic. Based on in-depth interviews with 196 second-generation parents and their adolescent children, three themes of disorganizing experiences carried across generations were identified: focus on survival issues, lack of emotional resources, and coercion to please the parents and satisfy their needs. These themes reflect the frustration of three basic needs: competence, relatedness, and autonomy, and this frustration becomes disorganizing when it involves stability, potency, incomprehensibility, and helplessness. The findings shed light on the effect of trauma over the generations and, as such, equip therapists with a greater understanding of the mechanisms involved.

  9. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  10. Spacecraft self-contamination due to back-scattering of outgas products

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.

    1976-01-01

    The back-scattering of outgas contamination near an orbiting spacecraft due to intermolecular collisions was analyzed. Analytical tools were developed for making reasonably accurate quantitative estimates of the outgas contamination return flux, given a knowledge of the pertinent spacecraft and orbit conditions. Two basic collision mechanisms were considered: (1) collisions involving only outgas molecules (self-scattering) and (2) collisions between outgas molecules and molecules in the ambient atmosphere (ambient-scattering). For simplicity, the geometry was idealized to a uniformly outgassing sphere and to a disk oriented normal to the freestream. The method of solution involved an integration of an approximation of the Boltzmann kinetic equation known as the BGK (or Krook) model equation. Results were obtained in the form of simple equations relating outgas return flux to spacecraft and orbit parameters. Results were compared with previous analyses based on more simplistic models of the collision processes.

  11. [A method of education at a distance for nurses' aides in the community area of Guatemala].

    PubMed

    García Pastor de Domínguez, E; Robles de Sandoval, A; Martínez Chopen, O

    1988-01-01

    The authors describe in detail a self-tutorial system that has been used for some ten years in Guatemala to train auxiliary nursing personnel. This model addressed both training and service objectives, and it proved to be consistent with a health policy of integrating teaching and service which the country was implementing at the time. The system involved a national effort to develop self-tutorial units and materials on basic subjects such as nursing procedures, mother and child health, first aid, management, guided therapy, community development and health education. Materials were divided into three categories: for self-tutorial instruction, for recording, supervision and evaluation, and for coordination and feedback within the system. Lastly, greater detail is given on the functions and tasks performed at the different levels of staff involved in managing the system, and the mechanisms which were implemented in the country's health areas are described.

  12. VQS (vapor-quasiliquid-solid, vapor-quasisolid-solid) mechanism presents a unified foundation for the syntheses of nanotubes, primarily carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    2017-09-01

    Nanotubes are synthesized almost entirely by metal-catalyst-free and metal-catalyst-mediated non-eutectic mechanism(s). An investigation has been carried out to understand the basics of this mechanism. Various possible chemical and physical processes involved in nanotube synthesis have been researched. Various components and attributes of nanotube synthesis have been evaluated. Phase transitions, alloy formation, porosity, carrier transport and the fundamentals underlying them have been examined. Nanoparticle surfaces conducive to nanotube synthesis have been examined. The role of surface treatment, which includes oxidation, oxygenation, acid treatment, plasma treatment, water treatment, sputtering, etc in creating such surfaces, has been investigated. The role of surface treatment and phase transitions as functions of temperature, pressure, ambient, contaminants, surface amorphicity, etc in creating diffusion paths for the diffusion of growth species for supersaturation and nucleation has been explored. Interdiffusion of catalyst and source materials, and hence exchange of materials, on the nanoparticle surface, have been elucidated. This exchange of materials on catalyst surface appears to add a new dimension to the synthesis kinetics. Integrated together, they reveal a general mechanism for probably all metal-catalyst-free and metal-catalyst-mediated non-eutectic nanotube synthesis. Available experiments strongly support the proposed mechanism; they suggest that this mechanism has a broad appeal.

  13. Hypoxia: From Placental Development to Fetal Programming.

    PubMed

    Fajersztajn, Lais; Veras, Mariana Matera

    2017-10-16

    Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O 2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Badminton--Teaching Concepts.

    ERIC Educational Resources Information Center

    Gibbs, Marilyn J.

    1988-01-01

    Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)

  15. The role of complement system in septic shock.

    PubMed

    Charchaflieh, Jean; Wei, Jiandong; Labaze, Georges; Hou, Yunfang Joan; Babarsh, Benjamin; Stutz, Helen; Lee, Haekyung; Worah, Samrat; Zhang, Ming

    2012-01-01

    Septic shock is a critical clinical condition with a high mortality rate. A better understanding of the underlying mechanisms is important to develop effective therapies. Basic and clinical studies suggest that activation of complements in the common cascade, for example, complement component 3 (C3) and C5, is involved in the development of septic shock. The involvement of three upstream complement pathways in septic shock is more complicated. Both the classical and alternative pathways appear to be activated in septic shock, but the alternative pathway may be activated earlier than the classical pathway. Activation of these two pathways is essential to clear endotoxin. Recent investigations have shed light on the role of lectin complement pathway in septic shock. Published reports suggest a protective role of mannose-binding lectin (MBL) against sepsis. Our preliminary study of MBL-associated serine protease-2 (MASP-2) in septic shock patients indicated that acute decrease of MASP-2 in the early phase of septic shock might correlate with in-hospital mortality. It is unknown whether excessive activation of these three upstream complement pathways may contribute to the detrimental effects in septic shock. This paper also discusses additional complement-related pathogenic mechanisms and intervention strategies for septic shock.

  16. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    PubMed Central

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  17. The Development of Clinical Reasoning Skills: A Major Objective of the Anatomy Course

    ERIC Educational Resources Information Center

    Elizondo-Omana, Rodrigo E.; Lopez, Santos Guzman

    2008-01-01

    Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives:…

  18. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.

    PubMed

    Sekito, Takayuki; Chardwiriyapreecha, Soracom; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2014-01-01

    Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.

  19. Distinct pathways of neural coupling for different basic emotions.

    PubMed

    Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela

    2012-01-16

    Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.

  20. Vba2p, a vacuolar membrane protein involved in basic amino acid transport in Schizosaccharomyces pombe.

    PubMed

    Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi

    2010-01-01

    A recent study filling the gap in the genome sequence in the left arm of chromosome 2 of Schizosaccharomyces pombe revealed a homolog of budding yeast Vba2p, a vacuolar transporter of basic amino acids. GFP-tagged Vba2p in fission yeast was localized to the vacuolar membrane. Upon disruption of vba2, the uptake of several amino acids, including lysine, histidine, and arginine, was impaired. A transient increase in lysine uptake under nitrogen starvation was lowered by this mutation. These findings suggest that Vba2p is involved in basic amino acid transport in S. pombe under diverse conditions.

  1. Non-basic amino acids in the ROMK1 channels via an appropriate distance modulate PIP2 regulated pHi-gating.

    PubMed

    Lee, Chien-Hsing; Huang, Po-Tsang; Liou, Horng-Huei; Lin, Mei-Ying; Lou, Kuo-Long; Chen, Chung-Yi

    2016-04-22

    The ROMK1 (Kir1.1) channel activity is predominantly regulated by intracellular pH (pHi) and phosphatidylinositol 4,5-bisphosphate (PIP2). Although several residues were reported to be involved in the regulation of pHi associated with PIP2 interaction, the detailed molecular mechanism remains unclear. We perform experiments in ROMK1 pHi-gating with electrophysiology combined with mutational and structural analysis. In the present study, non basic residues of C-terminal region (S219, N215, I192, L216 and L220) in ROMK1 channels have been found to mediate channel-PIP2 interaction and pHi gating. Further, our structural results show these residues with an appropriate distance to interact with membrane PIP2. Meanwhile, a cluster of basic residues (R188, R217 and K218), which was previously discovered regarding the interaction with PIP2, exists in this appropriate distance to discriminate the regulation of channel-PIP2 interaction and pHi-gating. This appropriate distance can be observed with high conservation in the Kir channel family. Our results provide insight that an appropriate distance cooperates with the electrostatics interaction of channel-PIP2 to regulate pHi-gating. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Development of procedures for calculating stiffness and damping properties of elastomers in engineering applications. Part 1: Verification of basic methods

    NASA Technical Reports Server (NTRS)

    Chiang, T.; Tessarzik, J. M.; Badgley, R. H.

    1972-01-01

    The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.

  3. Basic-level categorization of intermediate complexity fragments reveals top-down effects of expertise in visual perception.

    PubMed

    Harel, Assaf; Ullman, Shimon; Harari, Danny; Bentin, Shlomo

    2011-07-28

    Visual expertise is usually defined as the superior ability to distinguish between exemplars of a homogeneous category. Here, we ask how real-world expertise manifests at basic-level categorization and assess the contribution of stimulus-driven and top-down knowledge-based factors to this manifestation. Car experts and novices categorized computer-selected image fragments of cars, airplanes, and faces. Within each category, the fragments varied in their mutual information (MI), an objective quantifiable measure of feature diagnosticity. Categorization of face and airplane fragments was similar within and between groups, showing better performance with increasing MI levels. Novices categorized car fragments more slowly than face and airplane fragments, while experts categorized car fragments as fast as face and airplane fragments. The experts' advantage with car fragments was similar across MI levels, with similar functions relating RT with MI level for both groups. Accuracy was equal between groups for cars as well as faces and airplanes, but experts' response criteria were biased toward cars. These findings suggest that expertise does not entail only specific perceptual strategies. Rather, at the basic level, expertise manifests as a general processing advantage arguably involving application of top-down mechanisms, such as knowledge and attention, which helps experts to distinguish between object categories. © ARVO

  4. Orientation, Sketching, Mechanical Drawing, Drafting--Basic: 9253.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course introduces the student to the drafting trade, freehand sketching, and basic mechanical drawing. The course has no prerequisites and will guide the student into drafting concepts and serve as a foundation for further study in vocational drafting. Requiring a total of 45 class hours, eight hours are utilized in orientation, 15 hours are…

  5. Gasoline Engine Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of five terminal objectives presented in this curriculum guide for a basic gasoline engine mechanics course at the secondary level. (For the intermediate course guide see CE 010 946.) The materials were developed for a two semester (2 hours daily)…

  6. Self-Organization of Stem Cell Colonies and of Early Mammalian Embryos: Recent Experiments Shed New Light on the Role of Autonomy vs. External Instructions in Basic Body Plan Development

    PubMed Central

    Denker, Hans-Werner

    2016-01-01

    “Organoids”, i.e., complex structures that can develop when pluripotent or multipotent stem cells are maintained in three-dimensional cultures, have become a new area of interest in stem cell research. Hopes have grown that when focussing experimentally on the mechanisms behind this type of in vitro morphogenesis, research aiming at tissue and organ replacements can be boosted. Processes leading to the formation of organoids in vitro are now often addressed as self-organization, a term referring to the formation of complex tissue architecture in groups of cells without depending on specific instruction provided by other cells or tissues. The present article focuses on recent reports using the term self-organization in the context of studies on embryogenesis, specifically addressing pattern formation processes in human blastocysts attaching in vitro, or in colonies of pluripotent stem cells (“gastruloids”). These morphogenetic processes are of particular interest because, during development in vivo, they lead to basic body plan formation and individuation. Since improved methodologies like those employed by the cited authors became available, early embryonic pattern formation/self-organization appears to evolve now as a research topic of its own. This review discusses concepts concerning the involved mechanisms, focussing on autonomy of basic body plan development vs. dependence on external signals, as possibly provided by implantation in the uterus, and it addresses biological differences between an early mammalian embryo, e.g., a morula, and a cluster of pluripotent stem cells. It is concluded that, apart from being of considerable biological interest, the described type of research needs to be contemplated carefully with regard to ethical implications when performed with human cells. PMID:27792143

  7. Self-Organization of Stem Cell Colonies and of Early Mammalian Embryos: Recent Experiments Shed New Light on the Role of Autonomy vs. External Instructions in Basic Body Plan Development.

    PubMed

    Denker, Hans-Werner

    2016-10-25

    " Organoids ", i.e., complex structures that can develop when pluripotent or multipotent stem cells are maintained in three-dimensional cultures, have become a new area of interest in stem cell research. Hopes have grown that when focussing experimentally on the mechanisms behind this type of in vitro morphogenesis, research aiming at tissue and organ replacements can be boosted. Processes leading to the formation of organoids in vitro are now often addressed as self-organization , a term referring to the formation of complex tissue architecture in groups of cells without depending on specific instruction provided by other cells or tissues. The present article focuses on recent reports using the term self-organization in the context of studies on embryogenesis , specifically addressing pattern formation processes in human blastocysts attaching in vitro, or in colonies of pluripotent stem cells (" gastruloids "). These morphogenetic processes are of particular interest because, during development in vivo, they lead to basic body plan formation and individuation. Since improved methodologies like those employed by the cited authors became available, early embryonic pattern formation/self-organization appears to evolve now as a research topic of its own. This review discusses concepts concerning the involved mechanisms, focussing on autonomy of basic body plan development vs. dependence on external signals, as possibly provided by implantation in the uterus, and it addresses biological differences between an early mammalian embryo, e.g., a morula, and a cluster of pluripotent stem cells. It is concluded that, apart from being of considerable biological interest, the described type of research needs to be contemplated carefully with regard to ethical implications when performed with human cells.

  8. Talking Cure Models: A Framework of Analysis

    PubMed Central

    Marx, Christopher; Benecke, Cord; Gumz, Antje

    2017-01-01

    Psychotherapy is commonly described as a “talking cure,” a treatment method that operates through linguistic action and interaction. The operative specifics of therapeutic language use, however, are insufficiently understood, mainly due to a multitude of disparate approaches that advance different notions of what “talking” means and what “cure” implies in the respective context. Accordingly, a clarification of the basic theoretical structure of “talking cure models,” i.e., models that describe therapeutic processes with a focus on language use, is a desideratum of language-oriented psychotherapy research. Against this background the present paper suggests a theoretical framework of analysis which distinguishes four basic components of “talking cure models”: (1) a foundational theory (which suggests how linguistic activity can affect and transform human experience), (2) an experiential problem state (which defines the problem or pathology of the patient), (3) a curative linguistic activity (which defines linguistic activities that are supposed to effectuate a curative transformation of the experiential problem state), and (4) a change mechanism (which defines the processes and effects involved in such transformations). The purpose of the framework is to establish a terminological foundation that allows for systematically reconstructing basic properties and operative mechanisms of “talking cure models.” To demonstrate the applicability and utility of the framework, five distinct “talking cure models” which spell out the details of curative “talking” processes in terms of (1) catharsis, (2) symbolization, (3) narrative, (4) metaphor, and (5) neurocognitive inhibition are introduced and discussed in terms of the framework components. In summary, we hope that our framework will prove useful for the objective of clarifying the theoretical underpinnings of language-oriented psychotherapy research and help to establish a more comprehensive understanding of how curative language use contributes to the process of therapeutic change. PMID:28955286

  9. Determination of the transforming activities of adenovirus oncogenes.

    PubMed

    Nevels, Michael; Dobner, Thomas

    2007-01-01

    The last 50 yr of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells and athymic nude mice.

  10. Cell transformation by human adenoviruses.

    PubMed

    Endter, C; Dobner, T

    2004-01-01

    The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.

  11. Determination of the transforming activities of adenovirus oncogenes.

    PubMed

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  12. Grasping actions and social interaction: neural bases and anatomical circuitry in the monkey

    PubMed Central

    Rozzi, Stefano; Coudé, Gino

    2015-01-01

    The study of the neural mechanisms underlying grasping actions showed that cognitive functions are deeply embedded in motor organization. In the first part of this review, we describe the anatomical structure of the motor cortex in the monkey and the cortical and sub-cortical connections of the different motor areas. In the second part, we review the neurophysiological literature showing that motor neurons are not only involved in movement execution, but also in the transformation of object physical features into motor programs appropriate to grasp them (through visuo-motor transformations). We also discuss evidence indicating that motor neurons can encode the goal of motor acts and the intention behind action execution. Then, we describe one of the mechanisms—the mirror mechanism—considered to be at the basis of action understanding and intention reading, and describe the anatomo-functional pathways through which information about the social context can reach the areas containing mirror neurons. Finally, we briefly show that a clear similarity exists between monkey and human in the organization of the motor and mirror systems. Based on monkey and human literature, we conclude that the mirror mechanism relies on a more extended network than previously thought, and possibly subserves basic social functions. We propose that this mechanism is also involved in preparing appropriate complementary response to observed actions, allowing two individuals to become attuned and cooperate in joint actions. PMID:26236258

  13. Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis.

    PubMed

    Señarís, Rosa; Ordás, Purificación; Reimúndez, Alfonso; Viana, Félix

    2018-05-01

    Body temperature regulation is a fundamental homeostatic function in homeothermic animals. It is governed by the central nervous system that integrates temperature signals from internal body structures and the skin and provides efferent responses to adjust heat-exchange rates with the environment. Thermoregulation has a major influence on energy balance by regulating food intake as well as heat production and energy expenditure. Surprisingly, although almost 50% of our energy expenditure is dedicated to maintaining homeothermy, very little is yet known about the molecular aspects and the neural wiring involved in the intimate interrelationship between these two critical homeostatic systems. Some non-selective cation channels of the transient receptor potential (TRP) family work as molecular thermal sensors in sensory neurons and other cells. In this review, we discuss recent advances in our understanding of the basic mechanisms responsible for thermoregulation in the cold. We have focused our attention on the role of two cold-activated TRP channels (transient receptor potential melastatin 8 and transient receptor potential ankyrin 1) in body temperature regulation as well as their impact on energy balance and metabolism. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis, including the involvement of thermosensitive TRPs, may uncover additional mechanisms underlying the pathogenesis of obesity and its metabolic consequences in humans, opening new strategies for the diagnosis, treatment, and prevention of this disease.

  14. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  15. Enhanced biocontrol activity of Rhodotorula mucilaginosa cultured in media containing chitosan against postharvest diseases in strawberries: possible mechanisms underlying the effect.

    PubMed

    Zhang, Hongyin; Ge, Lingling; Chen, Keping; Zhao, Lina; Zhang, Xiaoyun

    2014-05-07

    The effect of Rhodotorula mucilaginosa cultured in media containing chitosan on its antogonistic activity against postharvest diseases of strawberries and the possible mechanisms involved are discussed. Two-dimensional gel electrophoresis were applied in the analysis of the proteins of R. mucilaginosa in response to chitosan. Compared with the application of R. mucilaginosa alone, the biocontrol efficacy of the yeast combined with 0.5% chitosan was enhanced greatly, with significant increase in chitinase activity of antagonistic yeast, polyphenoloxidase, peroxidase, phenylalanine ammonia lyase, chitinase and β-1,3-glucanase activity, and with an inhibition of lipid peroxidation of strawberries. The population of R. mucilaginosa harvested from NYDB amended with chitosan at 0.5% increased rapidly in strawberry wounds compared with those harvested from NYDB without chitosan. In the cellular proteome, several differentially expressed proteins were identified, most of which were related to basic metabolism.

  16. Vibrational resonances in biological systems at microwave frequencies.

    PubMed

    Adair, Robert K

    2002-03-01

    Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.

  17. Overview of Cell Synchronization.

    PubMed

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  18. An intelligent data acquisition system for fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  19. Acute urinary retention due to benign inflammatory nervous diseases.

    PubMed

    Sakakibara, Ryuji; Yamanishi, Tomonori; Uchiyama, Tomoyuki; Hattori, Takamichi

    2006-08-01

    Both neurologists and urologists might encounter patients with acute urinary retention due to benign inflammatory nervous diseases. Based on the mechanism of urinary retention, these disorders can be divided into two subgroups: disorders of the peripheral nervous system (e.g., sacral herpes) or the central nervous system (e.g., meningitis-retention syndrome [MRS]). Laboratory abnormalities include increased herpes virus titers in sacral herpes, and increased myelin basic protein in the cerebrospinal fluid (CSF) in some cases with MRS. Urodynamic abnormality in both conditions is detrusor areflexia; the putative mechanism of it is direct involvement of the pelvic nerves in sacral herpes; and acute spinal shock in MRS. There are few cases with CSF abnormality alone. Although these cases have a benign course, management of the acute urinary retention is necessary to avoid bladder injury due to overdistension. Clinical features of sacral herpes or MRS differ markedly from those of the original "Elsberg syndrome" cases.

  20. Fundamental Entangling Operators in Quantum Mechanics and Their Properties

    NASA Astrophysics Data System (ADS)

    Dao-Ming, Lu

    2016-07-01

    For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i ( i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation ( q 1, q 2) → ( A q 1 + B q 2, C q 1 + D q 2), where A D- B C = 1, which means even the basic coordinate transformation ( Q 1, Q 2) → ( A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.

  1. Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA. [high temperature tests of superalloys

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium surface-induced hot corrosion of B-1900 and NASA-TRW VIA alloys at 900 C has been studied, with special attention to the chemical reactions during and immediately after the induction period. Thermogravimetric tests were run and data were obtained by chemical analysis of water soluble metal salts and of residual sulfate. Surface analyses of hot corroded samples were obtained by spectroscopic techniques (ESCA). A chemical mechanism for elucidating Na2SO4-induced hot corrosion is proposed indicating that hot corrosion is initiated by basic fluxing of the protective Al2O3 scale. The sequential, catastrophic corrosion results from molybdenum content. The self-sustaining feature is a consequence of the cyclic nature of the acidic fluxing. It is believed that the mechanism is applicable not only to laboratory results, but also to the practical problem of hot corrosion encountered in gas turbine engines.

  2. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior.

    PubMed

    Feldstein Ewing, Sarah W; Chung, Tammy

    2013-06-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real-time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examine brain-based mechanisms of change, whereas others examine brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors. 2013 APA, all rights reserved

  3. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: Emerging translational approaches that bridge biology and behavior

    PubMed Central

    Feldstein Ewing, Sarah W.; Chung, Tammy

    2013-01-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examined brain-based mechanisms of change, whereas others examined brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors. PMID:23815447

  4. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  5. [Limitation of Vital Support in a Chilean Pediatric Intensive Care Unit: 2004-2014].

    PubMed

    von Dessauer, Bettina; Benavente, Carmen; Monje, Emilia; Bongain, Jazmina; Ordenes, Nadia

    2017-12-01

    Describe the frequency and characteristics of PICU patients who undergo a process of withholding or withdrawing life-sustaining treatment (LTSV), between 2004 y 2014. A retrospective, observational descriptive study, using two documents for quality assessment in the PICU of Hospital Roberto del Río: 1) daily individual patient tracking log and 2) daily record of quality indicators, including LTSV, both updated daily at the morning visit. All PICU patients with an ethical dilemma during their PICU stay in which a LTSV was proposed were included. We men tion patients rejected for admission in the ICU and those who died in basic units of the hospital with LTSV. In 118 patients of 7821 PICU admissions (1,5%) we determined a LTSV: ONR (Non Resuscitation Order) for all of them, ONI (Non Innovation Order) in 78,8%, withdrawal of some therapeutics in 14,4% and withdrawal of active mechanical ventilation in 6,8%. The basic diagnosis was 23,7% for each neurologic and oncologic diseases. The predominant pathophysiologic condition leading to a LTSV was severe chronic neurologic damage (39%). The length of stay was threefold the mean PICU stay, with a large variability due to expectable individual factors when ethic decisions are involved. LTSV is feasible when the team is involved and this perspective is part of daily clinical analysis. The wide individual variability in the LTSV process is expectable in ethical decisions.

  6. Identification and Analysis of Jasmonate Pathway Genes in Coffea canephora (Robusta Coffee) by In Silico Approach.

    PubMed

    Bharathi, Kosaraju; Sreenath, H L

    2017-07-01

    Coffea canephora is the commonly cultivated coffee species in the world along with Coffea arabica . Different pests and pathogens affect the production and quality of the coffee. Jasmonic acid (JA) is a plant hormone which plays an important role in plants growth, development, and defense mechanisms, particularly against insect pests. The key enzymes involved in the production of JA are lipoxygenase, allene oxide synthase, allene oxide cyclase, and 12-oxo-phytodienoic reductase. There is no report on the genes involved in JA pathway in coffee plants. We made an attempt to identify and analyze the genes coding for these enzymes in C. canephora . First, protein sequences of jasmonate pathway genes from model plant Arabidopsis thaliana were identified in the National Center for Biotechnology Information (NCBI) database. These protein sequences were used to search the web-based database Coffee Genome Hub to identify homologous protein sequences in C. canephora genome using Basic Local Alignment Search Tool (BLAST). Homologous protein sequences for key genes were identified in the C. canephora genome database. Protein sequences of the top matches were in turn used to search in NCBI database using BLAST tool to confirm the identity of the selected proteins and to identify closely related genes in species. The protein sequences from C. canephora database and the top matches in NCBI were aligned, and phylogenetic trees were constructed using MEGA6 software and identified the genetic distance of the respective genes. The study identified the four key genes of JA pathway in C. canephora , confirming the conserved nature of the pathway in coffee. The study expected to be useful to further explore the defense mechanisms of coffee plants. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC, and OPR are identified in C. canephora (robusta coffee) by bioinformatic approaches confirming the conserved nature of the pathway in coffee. The findings are useful to understand the defense mechanisms of C. canephora and coffee breeding in the long run. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC and OPR were identified and analyzed in C. canephora (robusta coffee) by in silico approach. The study has confirmed the conserved nature of JA pathway in coffee; the findings are useful to further explore the defense mechanisms of coffee plants. Abbreviations used: C. canephora : Coffea canephora ; C. arabica : Coffea arabica ; JA: Jasmonic acid; CGH: Coffee Genome Hub; NCBI: National Centre for Biotechnology Information; BLAST: Basic Local Alignment Search Tool; A. thaliana : Arabidopsis thaliana ; LOX: Lipoxygenase, AOS: Allene oxide synthase; AOC: Allene oxide cyclase; OPR: 12 oxo phytodienoic reductase.

  7. An Anti-Inflammatory Role of VEGFR2/Src Kinase Inhibitor in Herpes Simplex Virus 1-Induced Immunopathology▿

    PubMed Central

    Sharma, Shalini; Mulik, Sachin; Kumar, Naveen; Suryawanshi, Amol; Rouse, Barry T.

    2011-01-01

    Corneal neovascularization represents a key step in the blinding inflammatory stromal keratitis (SK) lesion caused by ocular infection with herpes simplex virus (HSV). In this report, we describe a novel approach for limiting the angiogenesis caused by HSV infection of the mouse eye. We show that topical or systemic administration of the Src kinase inhibitor (TG100572) that inhibits downstream molecules involved in the vascular endothelial growth factor (VEGF) signaling pathway resulted in markedly diminished levels of HSV-induced angiogenesis and significantly reduced the severity of SK lesions. Multiple mechanisms were involved in the inhibitory effects. These included blockade of IL-8/CXCL1 involved in inflammatory cells recruitment that are a source of VEGF, diminished cellular infiltration in the cornea, and reduced proliferation and migration of CD4+ T cells into the corneas. As multiple angiogenic factors (VEGF and basic fibroblast growth factor [bFGF]) play a role in promoting angiogenesis during SK and since Src kinases are involved in signaling by many of them, the use of Src kinase inhibition represents a promising way of limiting the severity of SK lesions the most common cause of infectious blindness in the Western world. PMID:21471229

  8. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites

    PubMed Central

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a “charged brush” which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms. PMID:25860993

  9. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  10. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  11. Cortical and subcortical mechanisms of brain-machine interfaces.

    PubMed

    Marchesotti, Silvia; Martuzzi, Roberto; Schurger, Aaron; Blefari, Maria Laura; Del Millán, José R; Bleuler, Hannes; Blanke, Olaf

    2017-06-01

    Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controlling a BMI, the sense of agency for BMI-actions. Our data revealed an extended cortical-subcortical network involved in operating a motor-imagery BMI. This includes not only sensorimotor regions but also the posterior parietal cortex, the insula and the lateral occipital cortex. Interestingly, the basal ganglia and the anterior cingulate cortex were involved in the subjective sense of controlling the BMI. These results inform basic neuroscience by showing that the mechanisms of BMI control extend beyond sensorimotor cortices. This knowledge may be useful for the development of BMIs that offer a more natural and embodied feeling of control for the user. Hum Brain Mapp 38:2971-2989, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  13. Physiologically based microenvironment for in vitro neural differentiation of adipose-derived stem cells

    PubMed Central

    Graziano, Adriana Carol Eleonora; Avola, Rosanna; Perciavalle, Vincenzo; Nicoletti, Ferdinando; Cicala, Gianluca; Coco, Marinella; Cardile, Venera

    2018-01-01

    The limited capacity of nervous system to promote a spontaneous regeneration and the high rate of neurodegenerative diseases appearance are keys factors that stimulate researches both for defining the molecular mechanisms of pathophysiology and for evaluating putative strategies to induce neural tissue regeneration. In this latter aspect, the application of stem cells seems to be a promising approach, even if the control of their differentiation and the maintaining of a safe state of proliferation should be troubled. Here, we focus on adipose tissue-derived stem cells and we seek out the recent advances on the promotion of their neural differentiation, performing a critical integration of the basic biology and physiology of adipose tissue-derived stem cells with the functional modifications that the biophysical, biomechanical and biochemical microenvironment induces to cell phenotype. The pre-clinical studies showed that the neural differentiation by cell stimulation with growth factors benefits from the integration with biomaterials and biophysical interaction like microgravity. All these elements have been reported as furnisher of microenvironments with desirable biological, physical and mechanical properties. A critical review of current knowledge is here proposed, underscoring that a real advance toward a stable, safe and controllable adipose stem cells clinical application will derive from a synergic multidisciplinary approach that involves material engineer, basic cell biology, cell and tissue physiology. PMID:29588808

  14. Insights from the Shell Proteome: Biomineralization to Adaptation

    PubMed Central

    Arivalagan, Jaison; Yarra, Tejaswi; Marie, Benjamin; Sleight, Victoria A.; Duvernois-Berthet, Evelyne; Clark, Melody S.; Marie, Arul; Berland, Sophie

    2017-01-01

    Bivalves have evolved a range of complex shell forming mechanisms that are reflected by their incredible diversity in shell mineralogy and microstructures. A suite of proteins exported to the shell matrix space plays a significant role in controlling these features, in addition to underpinning some of the physical properties of the shell itself. Although, there is a general consensus that a minimum basic protein tool kit is required for shell construction, to date, this remains undefined. In this study, the shell matrix proteins (SMPs) of four highly divergent bivalves (The Pacific oyster, Crassostrea gigas; the blue mussel, Mytilus edulis; the clam, Mya truncata, and the king scallop, Pecten maximus) were analyzed in an identical fashion using proteomics pipeline. This enabled us to identify the critical elements of a “basic tool kit” for calcification processes, which were conserved across the taxa irrespective of the shell morphology and arrangement of the crystal surfaces. In addition, protein domains controlling the crystal layers specific to aragonite and calcite were also identified. Intriguingly, a significant number of the identified SMPs contained domains related to immune functions. These were often are unique to each species implying their involvement not only in immunity, but also environmental adaptation. This suggests that the SMPs are selectively exported in a complex mix to endow the shell with both mechanical protection and biochemical defense. PMID:27744410

  15. 5 CFR 772.101 - Basic authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Basic authority. 772.101 Section 772.101 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) INTERIM RELIEF General § 772.101 Basic authority. This part establishes a mechanism for agencies to provide...

  16. 5 CFR 772.101 - Basic authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Basic authority. 772.101 Section 772.101 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) INTERIM RELIEF General § 772.101 Basic authority. This part establishes a mechanism for agencies to provide...

  17. EDITORIAL: Fracture: from the atomic to the geophysical scale Fracture: from the atomic to the geophysical scale

    NASA Astrophysics Data System (ADS)

    Bouchaud, Elisabeth; Soukiassian, Patrick

    2009-11-01

    Although fracture is a very common experience in every day life, it still harbours many unanswered questions. New avenues of investigation arise concerning the basic mechanisms leading to deformation and failure in heterogeneous materials, particularly in non-metals. The processes involved are even more complex when plasticity, thermal fluctuations or chemical interactions between the material and its environment introduce a specific time scale. Sub-critical failure, which may be reached at unexpectedly low loads, is particularly important for silicate glasses. Another source of complications originates from dynamic fracture, when loading rates become so high that the acoustic waves produced by the crack interact with the material heterogeneities, in turn producing new waves that modify the propagation. Recent progress in experimental techniques, allowing one to test and probe materials at sufficiently small length or time scales or in three dimensions, has led to a quantitative understanding of the physical processes involved. In parallel, simulations have also progressed, by extending the time and length scales they are able to reach, and thus attaining experimentally accessible conditions. However, one central question remains the inclusion of these basic mechanisms into a statistical description. This is not an easy task, mostly because of the strong stress gradients present at the tip of a crack, and because the averaging of fracture properties over a heterogeneous material, containing more or less brittle phases, requires rare event statistics. Substantial progress has been made in models and simulations based on accurate experiments. From these models, scaling laws have been derived, linking the behaviour at a micro- or even nano-scale to the macroscopic and even to geophysical scales. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics cover several of these important topics, including the physical processes in fracture mechanisms, the sub-critical failure issue, the dynamical fracture propagation, and the scaling laws from the micro- to the geophysical scales. Achievements and progress are reported, and the many open questions are discussed, which should provide a sound basis for present and future prospects.

  18. Ground-based simulation of LEO environment: Investigations of a select LDEF material: FEP Teflon (trademark)

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) has produced a wealth of data on materials degradation in the low earth orbit (LEO) space environment and has conclusively shown that surface chemistry (as opposed to surface physics-sputtering) is the key to understanding and predicting the degradation of materials in the LEO environment. It is also clear that materials degradation and spacecraft contamination are closely linked and that the fundamental mechanisms responsible for this linking are in general not well understood especially in the area of synergistic effects. The study of the fundamental mechanisms underlying materials degradation in LEO is hampered by the fact that the degradation process itself is not observed during the actual exposure to the environment. Rather the aftermath of the degradation process is studied, i.e., the material that remains after exposure is observed and mechanisms are proposed to explain the observed results. The EOIM-3 flight experiment is an attempt to bring sophisticated diagnostic equipment into the space environment and monitor the degradation process in real time through the use of mass spectrometry. More experiments of this nature which would include surface sensitive diagnostics (Auger and photoelectron spectroscopes) are needed to truly unravel the basic chemical mechanisms involved in the materials degradation process. Since these in-space capabilities will most likely not be available in the near future, ground-based LEO simulation facilities employing sophisticated diagnostics are needed to further advance the basic understanding of the materials degradation mechanisms. The LEO simulation facility developed at Los Alamos National Laboratory has been used to investigate the atomic oxygen/vacuum ultraviolet (AO/VUV) enhanced degradation of FEP Teflon. The results show that photo-ejection of polymer fragments occur at elevated temperature (200 C), that VUV synergistic rare gas sputtering of polymer fragments occur even at 25 C, and that combined OA/VUV interaction produces a wide variety of gas phase reaction products.

  19. Compliant leg behaviour explains basic dynamics of walking and running

    PubMed Central

    Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard

    2006-01-01

    The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312

  20. Neuroendocrine mechanisms in pregnancy and parturition.

    PubMed

    Petraglia, Felice; Imperatore, Alberto; Challis, John R G

    2010-12-01

    The complex mechanisms controlling human parturition involves mother, fetus, and placenta, and stress is a key element activating a series of physiological adaptive responses. Preterm birth is a clinical syndrome that shares several characteristics with term birth. A major role for the neuroendocrine mechanisms has been proposed, and placenta/membranes are sources for neurohormones and peptides. Oxytocin (OT) is the neurohormone whose major target is uterine contractility and placenta represents a novel source that contributes to the mechanisms of parturition. The CRH/urocortin (Ucn) family is another important neuroendocrine pathway involved in term and preterm birth. The CRH/Ucn family consists of four ligands: CRH, Ucn, Ucn2, and Ucn3. These peptides have a pleyotropic function and are expressed by human placenta and fetal membranes. Uterine contractility, blood vessel tone, and immune function are influenced by CRH/Ucns during pregnancy and undergo major changes at parturition. Among the others, neurohormones, relaxin, parathyroid hormone-related protein, opioids, neurosteroids, and monoamines are expressed and secreted from placental tissues at parturition. Preterm birth is the consequence of a premature and sustained activation of endocrine and immune responses. A preterm birth evidence for a premature activation of OT secretion as well as increased maternal plasma CRH levels suggests a pathogenic role of these neurohormones. A decrease of maternal serum CRH-binding protein is a concurrent event. At midgestation, placental hypersecretion of CRH or Ucn has been proposed as a predictive marker of subsequent preterm delivery. While placenta represents the major source for CRH, fetus abundantly secretes Ucn and adrenal dehydroepiandrosterone in women with preterm birth. The relevant role of neuroendocrine mechanisms in preterm birth is sustained by basic and clinic implications.

  1. Preface to the special issue of Solid State Electronics EUROSOI/ULIS 2017

    NASA Astrophysics Data System (ADS)

    Nassiopoulou, Androula G.

    2018-05-01

    This special issue is devoted to selected papers presented at the EuroSOI-ULIS2017 international conference, held in Athens on 3-5 April 2017. EuroSOI-ULIS2017 Conference was mainly devoted to Si devices, which constitute the basic building blocks of any microelectronic circuit. It included papers on advanced Si technologies, novel nanoscale devices, advanced electronic materials and device architectures, mechanisms involved, test structures, substrate materials and technologies, modeling/simulation and characterization. Both CMOS and beyond CMOS devices were presented, covering the More Moore domain, as well as new functionalities in silicon-compatible nanostructures and innovative devices, representing the More than Moore domain (on-chip sensors, biosensors, energy harvesting devices, RF passives, etc.).

  2. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  3. Measurement of the time-temperature dependent dynamic mechanical properties of boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.; Maisel, J. E.

    1978-01-01

    A flexural vibration test and associated equipment were developed to accurately measure the low strain dynamic modulus and damping of composite materials from -200 C to over 500 C. The basic test method involves the forced vibration of composite bars at their resonant free-free flexural modes in a high vacuum cryostat furnace. The accuracy of these expressions and the flexural test was verified by dynamic moduli and damping capacity measurements on 50 fiber volume percent boron/aluminum (B/Al) composites vibrating near 2000 Hz. The phase results were summarized to permit predictions of the B/Al dynamic behavior as a function of frequency, temperature, and fiber volume fraction.

  4. GPU-accelerated computation of electron transfer.

    PubMed

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.

  5. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio).

    PubMed

    Hahn, Mark E; Timme-Laragy, Alicia R; Karchner, Sibel I; Stegeman, John J

    2015-11-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. Copyright © 2015. Published by Elsevier Inc.

  6. Does Fostering Reasoning Strategies for Relatively Difficult Basic Combinations Promote Transfer by K-3 Students?

    ERIC Educational Resources Information Center

    Baroody, Arthur J.; Purpura, David J.; Eiland, Michael D.; Reid, Erin E.; Paliwal, Veena

    2016-01-01

    How best to promote fluency with basic sums and differences is still not entirely clear. Some advocate a direct approach--using drill to foster memorization of basic facts by rote. Others recommend an indirect approach that first involves learning reasoning strategies. The purpose of the present study was to evaluate the efficacy of 2…

  7. Supporting Non-State Providers in Basic Education Service Delivery. Create Pathways to Access. Research Monograph No. 4

    ERIC Educational Resources Information Center

    Rose, Pauline

    2007-01-01

    Basic education is commonly regarded as a state responsibility. However, in reality, non-state providers (NSPs) have always been involved in basic education service delivery, and there is often a blurring of boundaries between state and non-state roles with respect to financing, ownership, management, and regulation. In recent years, the focus on…

  8. Solo and keratin filaments regulate epithelial tubule morphology.

    PubMed

    Nishimura, Ryosuke; Kato, Kagayaki; Fujiwara, Sachiko; Ohashi, Kazumasa; Mizuno, Kensaku

    2018-04-28

    Epithelial tubules, consisting of the epithelial cell sheet with a central lumen, are the basic structure of many organs. Mechanical forces play an important role in epithelial tubulogenesis; however, little is known about the mechanisms controlling the mechanical forces during epithelial tubule morphogenesis. Solo (also known as ARHGEF40) is a RhoA-targeting guanine-nucleotide exchange factor that is involved in mechanical force-induced RhoA activation and stress fiber formation. Solo binds to keratin-8/keratin-18 (K8/K18) filaments, and this interaction plays a crucial role in mechanotransduction. In this study, we examined the roles of Solo and K8/K18 filaments in epithelial tubulogenesis using MDCK cells cultured in 3D collagen gels. Knockdown of either Solo or K18 resulted in rounder tubules with increased lumen size, indicating that Solo and K8/K18 filaments play critical roles in forming the elongated morphology of epithelial tubules. Moreover, knockdown of Solo or K18 decreased the level of diphosphorylated myosin light chain (a marker of contractile force) at the luminal and outer surfaces of tubules, suggesting that Solo and K8/K18 filaments are involved in the generation of the myosin II-mediated contractile force during epithelial tubule morphogenesis. In addition, K18 filaments were normally oriented along the long axis of the tubule, but knockdown of Solo perturbed their orientation. These results suggest that Solo plays crucial roles in forming the elongated morphology of epithelial tubules and in regulating myosin II activity and K18 filament organization during epithelial tubule formation.

  9. On the Acquisition of Some Basic Word Spelling Mechanisms in a Deep (French) and a Shallow (Spanish) System

    ERIC Educational Resources Information Center

    Carrillo, Maria Soledad; Alegria, Jesus; Marin, Javier

    2013-01-01

    An experiment was carried out to compare the time course of the acquisition of two basic spelling mechanisms in Spanish, a shallow system, and French, a deep system. The first was lexical. It relies on the orthographic lexicon, a hypothetical structure containing the orthographic representations of words accessible for word spelling. To evaluate…

  10. 7 CFR 1940.331 - Public involvement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true Public involvement. 1940.331 Section 1940.331...) PROGRAM REGULATIONS (CONTINUED) GENERAL Environmental Program § 1940.331 Public involvement. (a) Objective. The basic objective of FmHA or its successor agency under Public Law 103-354's public involvement...

  11. 7 CFR 1940.331 - Public involvement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Public involvement. 1940.331 Section 1940.331...) PROGRAM REGULATIONS (CONTINUED) GENERAL Environmental Program § 1940.331 Public involvement. (a) Objective. The basic objective of FmHA or its successor agency under Public Law 103-354's public involvement...

  12. 29 CFR 5.24 - The basic hourly rate of pay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false The basic hourly rate of pay. 5.24 Section 5.24 Labor... Provisions of the Davis-Bacon Act § 5.24 The basic hourly rate of pay. “The basic hourly rate of pay” is that part of a laborer's or mechanic's wages which the Secretary of Labor would have found and included in...

  13. 29 CFR 5.24 - The basic hourly rate of pay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true The basic hourly rate of pay. 5.24 Section 5.24 Labor Office... Provisions of the Davis-Bacon Act § 5.24 The basic hourly rate of pay. “The basic hourly rate of pay” is that part of a laborer's or mechanic's wages which the Secretary of Labor would have found and included in...

  14. 29 CFR 5.24 - The basic hourly rate of pay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false The basic hourly rate of pay. 5.24 Section 5.24 Labor... Provisions of the Davis-Bacon Act § 5.24 The basic hourly rate of pay. “The basic hourly rate of pay” is that part of a laborer's or mechanic's wages which the Secretary of Labor would have found and included in...

  15. 29 CFR 5.24 - The basic hourly rate of pay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true The basic hourly rate of pay. 5.24 Section 5.24 Labor Office... Provisions of the Davis-Bacon Act § 5.24 The basic hourly rate of pay. “The basic hourly rate of pay” is that part of a laborer's or mechanic's wages which the Secretary of Labor would have found and included in...

  16. 29 CFR 5.24 - The basic hourly rate of pay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false The basic hourly rate of pay. 5.24 Section 5.24 Labor... Provisions of the Davis-Bacon Act § 5.24 The basic hourly rate of pay. “The basic hourly rate of pay” is that part of a laborer's or mechanic's wages which the Secretary of Labor would have found and included in...

  17. Development of a Mechanism and Standards for the Assessment of Adult Basic Education Students as They Relate to Post-Secondary Vocational Education Programs. Final Report.

    ERIC Educational Resources Information Center

    Grosskoph, Arlys; And Others

    The purpose of this project was to develop a process that would reduce the attrition rate of adult basic education students entering occupational programs. To accomplish this goal, adult basic education students in occupational programs, adult basic education students who had dropped out of occupational programs, and their instructors were…

  18. Multivariate-data-visualization-based investigation of projectiles in sports

    NASA Astrophysics Data System (ADS)

    Shah, Agam; Chauhan, Yagnesh; Patel, Prithvi; Chaudhury, Bhaskar

    2018-07-01

    The kinematics and dynamics of projectiles in sports is a complex topic involving several physical quantities and variables such as time, distance, velocity, acceleration, momentum, force, energy, viscosity, pressure, torque, bounce, sliding, rolling, etc. The analysis of these complex sets of multidimensional information, including the correlation between different variables, is an important requirement for the clear understanding of projectile trajectories in sports. However, those who do not have a strong mechanics or physics background find it difficult to interpret the data and comprehend the results in terms of the interacting forces and mutual interaction, which perpetuate the motion of the ball (or projectile). To address this issue, we propose a novel multivariate-data-visualization-based understanding of projectiles in sports inspired by the basic Gestalt principle that the whole is greater than the sum of its parts. The data representation approach involves the use of a single two-dimensional plane for the representation of multidimensional dynamic variables, and thereby completely removes the requirement of using several 2D plots for analysing and comprehending the meaning behind all of the data and how it correlates. For this study, we have considered the dynamics of two ball sports, namely volleyball and table tennis, as well as the sport of badminton, which involves high-drag projectile motion. We have presented a basic computational model incorporating the important forces to study projectile motion in sports. The data generated by the simulation is investigated using the proposed visualization methodology, and we show how this helps it to be interpreted easily, improving the clarity of our understanding of projectile trajectories in sports using both force and energy language.

  19. AGPase: its role in crop productivity with emphasis on heat tolerance in cereals.

    PubMed

    Saripalli, Gautam; Gupta, Pushpendra Kumar

    2015-10-01

    AGPase, a key enzyme of starch biosynthetic pathway, has a significant role in crop productivity. Thermotolerant variants of AGPase in cereals may be used for developing cultivars, which may enhance productivity under heat stress. Improvement of crop productivity has always been the major goal of plant breeders to meet the global demand for food. However, crop productivity itself is influenced in a large measure by a number of abiotic stresses including heat, which causes major losses in crop productivity. In cereals, crop productivity in terms of grain yield mainly depends upon the seed starch content so that starch biosynthesis and the enzymes involved in this process have been a major area of investigation for plant physiologists and plant breeders alike. Considerable work has been done on AGPase and its role in crop productivity, particularly under heat stress, because this enzyme is one of the major enzymes, which catalyses the rate-limiting first committed key enzymatic step of starch biosynthesis. Keeping the above in view, this review focuses on the basic features of AGPase including its structure, regulatory mechanisms involving allosteric regulators, its sub-cellular localization and its genetics. Major emphasis, however, has been laid on the genetics of AGPases and its manipulation for developing high yielding cultivars that will have comparable productivity under heat stress. Some important thermotolerant variants of AGPase, which mainly involve specific amino acid substitutions, have been highlighted, and the prospects of using these thermotolerant variants of AGPase in developing cultivars for heat prone areas have been discussed. The review also includes a brief account on transgenics for AGPase, which have been developed for basic studies and crop improvement.

  20. Central and Peripheral Regulation of Food Intake and Physical Activity: Pathways and Genes

    PubMed Central

    Lenard, Natalie R.; Berthoud, Hans-Rudolf

    2009-01-01

    A changing environment and lifestyle on the background of evolutionary engraved and perinatally imprinted physiological response patterns is the foremost explanation for the current obesity epidemic. However, it is not clear what the mechanisms are by which the modern environment overrides the physiological controls of appetite and homeostatic body-weight regulation. Food intake and energy expenditure are controlled by complex, redundant, and distributed neural systems involving thousands of genes and reflecting the fundamental biological importance of adequate nutrient supply and energy balance. There has been much progress in identifying the important role of hypothalamus and caudal brainstem in the various hormonal and neural mechanisms by which the brain informs itself about availability of ingested and stored nutrients and, in turn, generates behavioral, autonomic, and endocrine output. Some of the genes involved in this “homeostatic” regulator are crucial for energy balance as manifested in the well-known monogenic obesity models. However, it can be clearly demonstrated that much larger portions of the nervous system of animals and humans, including the cortex, basal ganglia, and the limbic system, are concerned with the procurement of food as a basic and evolutionarily conserved survival mechanism to defend the lower limits of adiposity. By forming representations and reward expectancies through processes of learning and memory, these systems evolved to engage powerful emotions for guaranteed supply with, and ingestion of, beneficial foods from a sparse and often hostile environment. They are now simply overwhelmed with an abundance of food and food cues no longer contested by predators and interrupted by famines. The anatomy, chemistry, and functions of these elaborate neural systems and their interactions with the “homeostatic” regulator in the hypothalamus are poorly understood, and many of the genes involved are either unknown or not well characterized. This is regrettable because these systems are directly and primarily involved in the interactions of the modern environment and lifestyle with the human body. They are no less “physiological” than metabolic-regulatory mechanisms that have attracted most of the research during the past 15 years. PMID:19190620

  1. Cognitive-motivational model of obesity. Motivational mechanisms and cognitive biases underlying the processing of food-related images by people with excess body weight.

    PubMed

    Pawłowska, Monika; Kalka, Dorota

    2015-01-01

    Obesity is a constantly escalating problem in all age groups. In the face of ubiquitous images of food, colourful advertisements of high-calorie meals and beverages, it is necessary to examine the role of the memory and attention mechanism in the processing of these stimuli. Knowledge regarding this subject will surely significantly contribute to the improvement of prevention and management of obesity programs designed to prevent secondary psychological difficulties, including depression. This paper presents cognitive-motivational model of obesity, according to which the description of mechanisms of eating disorders occurrence should include not only motivational factors but also the cognitive ones. The paper shows theoretical perspectives on the problem of obesity irrespective of its origin, as well as the latest empirical reports in this field. The presented survey demonstrates the lack of explicit research findings related to the processing of high and low-calorie food images by persons with excess weight. It seems that the knowledge of the basic mechanisms involved in the processing of these stimuli and the exploration of this phenomenon will allow to improve programs whose objective is to prevent obesity.

  2. Sexual polyploidization in plants – cytological mechanisms and molecular regulation

    PubMed Central

    De Storme, Nico; Geelen, Danny

    2013-01-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. PMID:23421646

  3. Possible neuronal mechanisms of sleep disturbances in patients with autism spectrum disorders and attention-deficit/hyperactivity disorder.

    PubMed

    Kohyama, Jun

    2016-12-01

    The most common form of sleep disturbance among both patients with autism spectrum disorders and patients with attention-deficit/hyperactivity disorder is sleep-onset insomnia, but the neuronal mechanisms underlying it have yet to be elucidated and no specific treatment strategy has been proposed. This means that many caregivers struggle to manage this problem on a daily basis. This paper presents a hypothesis about the neuronal mechanisms underlying insomnia in patients with autism spectrum disorders and attention-deficit/hyperactivity disorder based on recent clinical and basic research. It is proposed that three neuronal mechanisms (increased orexinergic system activity, reduced 5-hydroxytryptamine and melatonergic system activity, rapid eye movement sleep reduction) are involved in insomnia in both autism spectrum disorders and attention-deficit/hyperactivity disorder. This suggests that antagonists against the orexin receptors may have beneficial effects on insomnia in patients with autism spectrum disorders or attention-deficit/hyperactivity disorder. To the best of the author's knowledge there has been no research into the effects of this agent on insomnia in these patient groups. Large, controlled trials should be carried out. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    PubMed

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  5. [Progress of researches on mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage].

    PubMed

    Wang, Fan; Wang, Hai-qiao; Dong, Gui-rong

    2011-04-01

    In the present paper, the authors review the progress of researches on the mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage from experimental studies and research methods. The effects of acupuncture intervention mainly involve (1) lessening inflammatory reactions, (2) reducing impairment of free radicals and excitatory amino acids on cerebral neurons, (3) balancing release of vascular bioactive substances to increase regional cerebral blood flow, and (4) promoting repair and regeneration of the neural tissue, etc. In regard to the research methods, many new biological techniques such as biological molecular approaches, neuro-cellular chemical methods, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real time-PCR, situ hybridization, western blotting, electron microscope, etc., have been extensively applied to researches on the underlying mechanism of acupuncture therapy for cerebral infarction. In addition, the authors also pointed out that in spite of achieving some bigger progresses in experimental studies, most of the results basically reflect static, isolated and regional changes rather than dynamic and whole body changes. For this reason, more vivo research techniques and noninvasive research methods are highly recommended to be used in the future research on the underlying mechanisms of acupuncture therapy for acute cerebral ischemia.

  6. Cysteine Racemization on IgG Heavy and Light Chains

    PubMed Central

    Zhang, Qingchun; Flynn, Gregory C.

    2013-01-01

    Under basic pH conditions, the heavy chain 220-light chain 214 (H220-L214) disulfide bond, found in the flexible hinge region of an IgG1, can convert to a thioether. Similar conditions also result in racemization of the H220 cysteine. Here, we report that racemization occurs on both H220 and L214 on an IgG1 with a λ light chain (IgG1λ) but almost entirely on H220 of an IgGl with a κ light chain (IgG1κ) under similar conditions. Likewise, racemization was detected at significant levels on H220 and L214 on endogenous human IgG1λ but only at the H220 position on IgG1κ. Low but measurable levels of d-cysteines were found on IgG2 cysteines in the hinge region, both with monoclonal antibodies incubated under basic pH conditions and on antibodies isolated from human serum. A simplified reaction mechanism involving reversible β-elimination on the cysteine is presented that accounts for both base-catalyzed racemization and thioether formation at the hinge disulfide. PMID:24142697

  7. Exploring the evolution of protein function in Archaea.

    PubMed

    Goncearenco, Alexander; Berezovsky, Igor N

    2012-05-30

    Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. We analyzed distant evolutionary connections between protein functions in Archaea based on the EFLs comprising them. We show examples of the involvement of EFLs in new functional domains, as well as reutilization of EFLs and functional domains in building multidomain structures and protein complexes. Our analysis of the archaeal superkingdom yields the dominating mechanisms in different periods of protein evolution, which resulted in several levels of the organization of biochemical function. First, functional domains emerged as combinations of prebiotic peptides with the very basic functions, such as nucleotide/phosphate and metal cofactor binding. Second, domain recombination brought to the evolutionary scene the multidomain proteins and complexes. Later, reutilization and de novo design of functional domains and elementary functional loops complemented evolution of protein function.

  8. Core skills assessment to improve mathematical competency

    NASA Astrophysics Data System (ADS)

    Carr, Michael; Bowe, Brian; Fhloinn, Eabhnat Ní

    2013-12-01

    Many engineering undergraduates begin third-level education with significant deficiencies in their core mathematical skills. Every year, in the Dublin Institute of Technology, a diagnostic test is given to incoming first-year students, consistently revealing problems in basic mathematics. It is difficult to motivate students to address these problems; instead, they struggle through their degree, carrying a serious handicap of poor core mathematical skills, as confirmed by exploratory testing of final year students. In order to improve these skills, a pilot project was set up in which a 'module' in core mathematics was developed. The course material was basic, but 90% or higher was required to pass. Students were allowed to repeat this module throughout the year by completing an automated examination on WebCT populated by a question bank. Subsequent to the success of this pilot with third-year mechanical engineering students, the project was extended to five different engineering programmes, across three different year-groups. Full results and analysis of this project are presented, including responses to interviews carried out with a selection of the students involved.

  9. Genetically engineered pigs as models for human disease

    PubMed Central

    Perleberg, Carolin; Kind, Alexander

    2018-01-01

    ABSTRACT Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. PMID:29419487

  10. Patterned control of human locomotion

    PubMed Central

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-01-01

    There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost. PMID:22411012

  11. Patterned control of human locomotion.

    PubMed

    Lacquaniti, Francesco; Ivanenko, Yuri P; Zago, Myrka

    2012-05-15

    There is much experimental evidence for the existence of biomechanical constraints which simplify the problem of control of multi-segment movements. In addition, it has been hypothesized that movements are controlled using a small set of basic temporal components or activation patterns, shared by several different muscles and reflecting global kinematic and kinetic goals. Here we review recent studies on human locomotion showing that muscle activity is accounted for by a combination of few basic patterns, each one timed at a different phase of the gait cycle. Similar patterns are involved in walking and running at different speeds, walking forwards or backwards, and walking under different loading conditions. The corresponding weights of distribution to different muscles may change as a function of the condition, allowing highly flexible control. Biomechanical correlates of each activation pattern have been described, leading to the hypothesis that the co-ordination of limb and body segments arises from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle activations need only intervene during limited time epochs to force intrinsic oscillations of the system when energy is lost.

  12. HEMATOPOIETIC STEM CELL INFUSION/TRANSPLANTATION FOR INDUCTION OF ALLOGRAFT TOLERANCE

    PubMed Central

    Granados, Jose M. Marino; Benichou, Gilles; Kawai, Tatsuo

    2015-01-01

    Purpose of review This review updates the current status of basic, preclinical, and clinical research on donor hematopoietic stem cell infusion for allograft tolerance induction. Recent findings Recent basic studies in mice provide evidence of significant involvement of both central deletional and peripheral regulatory mechanisms in induction and maintenance of allograft tolerance effected through a mixed chimerism approach with donor hematopoietic stem cell infusion. The presence of heterologous memory T cells in primates hampers the induction of persistent chimerism. Durable mixed chimerism, however, now has been recently induced in inbred major histocompatibility complex-mismatched swine, resulting in tolerance of vascularized composite tissue allografts. In clinical transplantation, allograft tolerance has been achieved in human leukocyte antigen-mismatched kidney transplantation after the induction of transient mixed chimerism or persistent full donor chimerism. Summary Tolerance induction in clinical kidney transplantation has been achieved by donor hematopoietic stem cell infusion. Improving the consistency and safety of tolerance induction and extending successful protocols to other organs, as well as to organs from deceased donors, are critical next steps to bringing tolerance to a wider range of clinical applications. PMID:25563992

  13. Contemporary concepts of dissociation.

    PubMed

    Avdibegović, Esmina

    2012-10-01

    The concept of dissociation was developed in the late 19th century by Pierre Janet for conditions of "double consciousness" in hypnosis, hysteria, spirit possession and mediumship. He defined dissociation as a deficit in the capacity of integration of two or more different "systems of ideas and functions that constitute personality", and suggested that it can be related to a genetic component, to severe illness and fatigue, and particularly to experiencing adverse, potentially traumatizing events. By the late 20th century, various and often contradictory concepts of dissociation were suggested, which were either insufficient or exceedingly including when compared to the original idea. Currently, dissociation is used to describe a wide range of normal and abnormal phenomena as a process in which behaviour, thoughts and emotions can become separated one from another. A complete presentation of mechanisms involved in dissociation is still unknown. Scientific research on basic processes of dissociation is derived mainly from studies of hypnosis and post-traumatic stress disorder. Given the controversies in modern concepts of dissociation, some researchers and theorists suggest return to the original understanding of dissociation as a basic premise for the further development of the concept of dissociation.

  14. Molecular salt effects in the gas phase: tuning the kinetic basicity of [HCCLiCl]⁻ and [HCCMgCl₂]⁻ by LiCl and MgCl₂.

    PubMed

    Khairallah, George N; da Silva, Gabriel; O'Hair, Richard A J

    2014-10-06

    A combination of gas-phase ion-molecule reaction experiments and theoretical kinetic modeling is used to examine how a salt can influence the kinetic basicity of organometallates reacting with water. [HC≡CLiCl](-) reacts with water more rapidly than [HC≡CMgCl2](-), consistent with the higher reactivity of organolithium versus organomagnesium reagents. Addition of LiCl to [HC≡CLiCl](-) or [HC≡CMgCl2](-) enhances their reactivity towards water by a factor of about 2, while addition of MgCl2 to [HC≡CMgCl2](-) enhances its reactivity by a factor of about 4. Ab initio calculations coupled with master equation/RRKM theory kinetic modeling show that these reactions proceed via a mechanism involving formation of a water adduct followed by rearrangement, proton transfer, and acetylene elimination as either discrete or concerted steps. Both the energy and entropy requirements for these elementary steps need to be considered in order to explain the observed kinetics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Anticonvulsant Effects of Ketogenic Diet on Epileptic Seizures and Potential Mechanisms.

    PubMed

    Zhang, Yifan; Xu, Jingwei; Zhang, Kun; Yang, Wei; Li, Bingjin

    2018-01-01

    Epilepsy is a syndrome of brain dysfunction induced by the aberrant excitability of certain neurons. Despite advances in surgical technique and anti-epileptic drug in recent years, recurrent epileptic seizures remain intractable and lead to a serious morbidity in the world. The ketogenic diet refers to a high-fat, low-carbohydrate and adequate-protein diet. Currently, its beneficial effects on epileptic seizure reduction have been well established. However, the detailed mechanisms underlying the anti-epileptic effects of ketogenic diet are still poorly understood. In this article, the possible roles of ketogenic diet on epilepsy were discussed. Data was obtained from the websites including Web of Science, Medline, Pubmed, Scopus, based on these keywords: "Ketogenic diet" and "epilepsy". As shown in both clinical and basic studies, the therapeutic effects of ketogenic diet might involve neuronal metabolism, neurotransmitter function, neuronal membrane potential and neuron protection against ROS. In this review, we systematically reviewed the effects and possible mechanisms of ketogenic diet on epilepsy, which may optimize the therapeutic strategies against epilepsy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Another Unprecedented Wieland Mechanism Confirmed: Hydrogen Formation from Hydrogen Peroxide, Formaldehyde, and Sodium Hydroxide.

    PubMed

    Czochara, Robert; Litwinienko, Grzegorz; Korth, Hans-Gert; Ingold, Keith U

    2018-03-26

    In 1923, Wieland and Wingler reported that in the molecular hydrogen producing reaction of hydrogen peroxide with formaldehyde in basic solution, free hydrogen atoms (H . ) are not involved. They postulated that bis(hydroxymethyl)peroxide, HOCH 2 OOCH 2 OH, is the intermediate, which decomposes to yield H 2 and formate, proposing a mechanism that would nowadays be considered as a "concerted process". Since then, several other (conflicting) "mechanisms" have been suggested. Our NMR and Raman spectroscopic and kinetic studies, particularly the determination of the deuterium kinetic isotope effect (DKIE), now confirm that in this base-dependent reaction, both H atoms of H 2 derive from the CH 2 hydrogen atoms of formaldehyde, and not from the OH groups of HOCH 2 OOCH 2 OH or from water. Quantum-chemical CBS-QB3 and W1BD computations show that H 2 release proceeds through a concerted process, which is strongly accelerated by double deprotonation of HOCH 2 OOCH 2 OH, thereby ruling out a free radical pathway. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions.

    PubMed

    Wong, Christopher X; Ganesan, Anand N; Selvanayagam, Joseph B

    2017-05-01

    Obesity is increasingly recognized as a major modifiable determinant of atrial fibrillation (AF). Although body mass index and other clinical measures are useful indications of general adiposity, much recent interest has focused on epicardial fat, a distinct adipose tissue depot that can be readily assessed using non-invasive imaging techniques. A growing body of data from epidemiological and clinical studies has demonstrated that epicardial fat is consistently associated with the presence, severity, and recurrence of AF across a range of clinical settings. Evidence from basic science and translational studies has also suggested that arrhythmogenic mechanisms may involve adipocyte infiltration, pro-fibrotic, and pro-inflammatory paracrine effects, oxidative stress, and other pathways. Despite these advances, however, significant uncertainty exists and many questions remain unanswered. In this article, we review our present understanding of epicardial fat, including its classification and quantification, existing evidence implicating its role in AF, potential mechanisms, implications for clinicians, and future directions for research. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  18. Novel aspects of glucocorticoid actions.

    PubMed

    Uchoa, E T; Aguilera, G; Herman, J P; Fiedler, J L; Deak, T; de Sousa, M B C

    2014-09-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to the rhythmic and episodic release of adrenal glucocorticoids (GCs) is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, GCs regulate behaviour, as well as metabolic, cardiovascular, immune and neuroendocrine activities. By contrast to chronic elevated levels, circadian and acute stress-induced increases in GCs are necessary for hippocampal neuronal survival and memory acquisition and consolidation, as a result of the inhibition of apoptosis, the facilitation of glutamatergic neurotransmission and the formation of excitatory synapses, and the induction of immediate early genes and dendritic spine formation. In addition to metabolic actions leading to increased energy availability, GCs have profound effects on feeding behaviour, mainly via the modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that, in addition to the recognised immune suppressive actions of GCs by counteracting adrenergic pro-inflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative-feedback by GCs involves multiple mechanisms leading to limited HPA axis activation and prevention of the deleterious effects of excessive GC production. Adequate GC secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin-releasing hormone (CRH) and vasopressin secretion, which are the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving nongenomic actions of GCs, mediate the immediate inhibition of hypothalamic CRH and ACTH secretion, whereas intermediate and delayed mechanisms mediated by genomic actions involve the modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily conserved, being present in the earliest vertebrates. An understanding of these basic mechanisms may lead to novel approaches for the development of diagnostic and therapeutic tools for disorders related to stress and alterations of GC secretion. © 2014 British Society for Neuroendocrinology.

  19. Effect of mechanical denaturation on surface free energy of protein powders.

    PubMed

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Collaborative Action Research Involving Fiji and Solomon Islands Teachers.

    ERIC Educational Resources Information Center

    Singh, Gurmit

    2000-01-01

    Reviews the Basic Education and Life Skills program, which involves University of the South Pacific member countries, highlighting teacher involvement in collaborative action research to promote professional development at the school level. The paper describes the nature of teachers' involvement and shares insights from their experiences as…

  1. Neuron-glia metabolic coupling and plasticity.

    PubMed

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  2. Exploring cognitive integration of basic science and its effect on diagnostic reasoning in novices.

    PubMed

    Lisk, Kristina; Agur, Anne M R; Woods, Nicole N

    2016-06-01

    Integration of basic and clinical science knowledge is increasingly being recognized as important for practice in the health professions. The concept of 'cognitive integration' places emphasis on the value of basic science in providing critical connections to clinical signs and symptoms while accounting for the fact that clinicians may not spontaneously articulate their use of basic science knowledge in clinical reasoning. In this study we used a diagnostic justification test to explore the impact of integrated basic science instruction on novices' diagnostic reasoning process. Participants were allocated to an integrated basic science or clinical science training group. The integrated basic science group was taught the clinical features along with the underlying causal mechanisms of four musculoskeletal pathologies while the clinical science group was taught only the clinical features. Participants completed a diagnostic accuracy test immediately after initial learning, and one week later a diagnostic accuracy and justification test. The results showed that novices who learned the integrated causal mechanisms had superior diagnostic accuracy and better understanding of the relative importance of key clinical features. These findings further our understanding of cognitive integration by providing evidence of the specific changes in clinical reasoning when basic and clinical sciences are integrated during learning.

  3. Model-based analysis of the effect of different operating conditions on fouling mechanisms in a membrane bioreactor.

    PubMed

    Sabia, Gianpaolo; Ferraris, Marco; Spagni, Alessandro

    2016-01-01

    This study proposes a model-based evaluation of the effect of different operating conditions with and without pre-denitrification treatment and applying three different solids retention times on the fouling mechanisms involved in membrane bioreactors (MBRs). A total of 11 fouling models obtained from literature were used to fit the transmembrane pressure variations measured in a pilot-scale MBR treating real wastewater for more than 1 year. The results showed that all the models represent reasonable descriptions of the fouling processes in the MBR tested. The model-based analysis confirmed that membrane fouling started by pore blocking (complete blocking model) and by a reduction of the pore diameter (standard blocking) while cake filtration became the dominant fouling mechanism over long-term operation. However, the different fouling mechanisms occurred almost simultaneously making it rather difficult to identify each one. The membrane "history" (i.e. age, lifespan, etc.) seems the most important factor affecting the fouling mechanism more than the applied operating conditions. Nonlinear regression of the most complex models (combined models) evaluated in this study sometimes demonstrated unreliable parameter estimates suggesting that the four basic fouling models (complete, standard, intermediate blocking and cake filtration) contain enough details to represent a reasonable description of the main fouling processes occurring in MBRs.

  4. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm.

    PubMed

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-21

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO 2 /water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO 2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO 2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart's law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  5. Causal mechanisms of seismo-EM phenomena during the 1965–1967 Matsushiro earthquake swarm

    PubMed Central

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-01-01

    The 1965–1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities. PMID:28322263

  6. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-01

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  7. An Evo-Devo Approach to Thyroid Hormones in Cerebral and Cerebellar Cortical Development: Etiological Implications for Autism

    PubMed Central

    Berbel, Pere; Navarro, Daniela; Román, Gustavo C.

    2014-01-01

    The morphological alterations of cortical lamination observed in mouse models of developmental hypothyroidism prompted the recognition that these experimental changes resembled the brain lesions of children with autism; this led to recent studies showing that maternal thyroid hormone deficiency increases fourfold the risk of autism spectrum disorders (ASD), offering for the first time the possibility of prevention of some forms of ASD. For ethical reasons, the role of thyroid hormones on brain development is currently studied using animal models, usually mice and rats. Although mammals have in common many basic developmental principles regulating brain development, as well as fundamental basic mechanisms that are controlled by similar metabolic pathway activated genes, there are also important differences. For instance, the rodent cerebral cortex is basically a primary cortex, whereas the primary sensory areas in humans account for a very small surface in the cerebral cortex when compared to the associative and frontal areas that are more extensive. Associative and frontal areas in humans are involved in many neurological disorders, including ASD, attention deficit-hyperactive disorder, and dyslexia, among others. Therefore, an evo-devo approach to neocortical evolution among species is fundamental to understand not only the role of thyroid hormones and environmental thyroid disruptors on evolution, development, and organization of the cerebral cortex in mammals but also their role in neurological diseases associated to thyroid dysfunction. PMID:25250016

  8. Learning Genetics with Paper Pets

    ERIC Educational Resources Information Center

    Finnerty, Valerie Raunig

    2006-01-01

    By the end of the eighth grade, students are expected to have a basic understanding of the mechanism of basic genetic inheritance. However, these concepts can be difficult to teach. In this article, the author introduces a new learning tool that will help facilitate student learning and enthusiasm to the basic concepts of genetic inheritance. This…

  9. Modeling tsunamis induced by retrogressive submarine landslides

    NASA Astrophysics Data System (ADS)

    Løvholt, F.; Kim, J.; Harbitz, C. B.

    2015-12-01

    Enormous submarine landslides having volumes up to thousands of km3 and long run-out may cause tsunamis with widespread effects. Clay-rich landslides, such as Trænadjupet and Storegga offshore Norway commonly involve retrogressive mass and momentum release mechanisms that affect the tsunami generation. Therefore, such landslides may involve a large amount of smaller blocks. As a consequence, the failure mechanisms and release rate of the individual blocks are of importance for the tsunami generation. Previous attempts to model the tsunami generation due to retrogressive landslides are few, and limited to idealized conditions. Here, we review the basic effects of retrogression on tsunamigenesis in simple geometries. To this end, two different methods are employed for the landslide motion, a series block with pre-scribed time lags and kinematics, and a dynamic retrogressive model where the inter-block time lag is determined by the model. The effect of parameters such as time lag on wave-height, wave-length, and dispersion are discussed. Finally, we discuss how the retrogressive effects may have influenced the tsunamis due to large landslides such as the Storegga slide. The research leading to these results has received funding from the Research Council of Norway under grant number 231252 (Project TsunamiLand) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE).

  10. The origin of life: a problem of history, chemistry, and evolution.

    PubMed

    Ma, Wentao

    2014-12-01

    The origin of life is a field full of controversies, not only because of our vague understanding concerning the relevant issues, but also, perhaps more often, owing to our dim conceptual framework throughout the whole field. To improve this situation, an in-depth conceptual dissection is presented here. It is elucidated that, at its core, the origin of life has three aspects. The facts involved in the process are taken as the historical aspect, which is destined to be uncertain and often irrelevant to debate regarding details. The rules involved include two distinct aspects: chemical mechanisms operated in the whole process, while evolutionary mechanisms joined in only after the emergence of the first Darwinian entities - and then accounted for the subsequent buildup of complexity (this cannot be explained solely by natural selection). Basically, we can ask about the possibility of any assumed event in the origin of life: 'Is it evolutionarily plausible, chemically feasible, and historically likely?' Clues from any of the three aspects may be quite valuable in directing our explorations on the other two. This conceptual dissection provides a clearer context for the field, which may even be more useful than any sort of specific research. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  11. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria

    PubMed Central

    Quiles-Puchalt, Nuria; Tormo-Más, María Ángeles; Campoy, Susana; Toledo-Arana, Alejandro; Monedero, Vicente; Lasa, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.

    2013-01-01

    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria. PMID:23771138

  12. Nonparadoxical loss of information in black hole evaporation in a quantum collapse model

    NASA Astrophysics Data System (ADS)

    Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel

    2015-06-01

    We consider a novel approach to address the black hole information paradox. The idea is based on adapting, to the situation at hand, the modified versions of quantum theory involving spontaneous stochastic dynamical collapse of quantum states, which have been considered in attempts to deal with shortcomings of the standard Copenhagen interpretation of quantum mechanics, in particular, the issue known as "the measurement problem." The new basic hypothesis is that the modified quantum behavior is enhanced in the region of high curvature so that the information encoded in the initial quantum state of the matter fields is rapidly erased as the black hole singularity is approached. We show that in this manner the complete evaporation of the black hole via Hawking radiation can be understood as involving no paradox. Calculations are performed using a modified version of quantum theory known as "continuous spontaneous localization" (CSL), which was originally developed in the context of many-particle nonrelativistic quantum mechanics. We use a version of CSL tailored to quantum field theory and applied in the context of the two -dimensional Callan-Giddings-Harvey-Strominger model. Although the role of quantum gravity in this picture is restricted to the resolution of the singularity, related studies suggest that there might be further connections.

  13. Vascular-metabolic and GABAergic Inhibitory Correlates of Neural Variability Modulation. A Combined fMRI and PET Study.

    PubMed

    Qin, Pengmin; Duncan, Niall W; Chen, David Yen-Ting; Chen, Chi-Jen; Huang, Li-Kai; Huang, Zirui; Lin, Chien-Yuan E; Wiebking, Christine; Yang, Che-Ming; Northoff, Georg; Lane, Timothy J

    2018-05-21

    Neural activity varies continually from moment to moment. Such temporal variability (TV) has been highlighted as a functionally specific brain property playing a fundamental role in cognition. We sought to investigate the mechanisms involved in TV changes between two basic behavioral states, namely having the eyes open (EO) or eyes closed (EC) in vivo in humans. To these ends we acquired BOLD fMRI, ASL, and [ 18 F]-fluoro-deoxyglucose PET in a group of healthy participants (n = 15), along with BOLD fMRI and [ 18 F]-flumazenil PET in a separate group (n = 19). Focusing on an EO- vs EC-sensitive region in the occipital cortex (identified in an independent sample), we show that TV is constrained in the EO condition compared to EC. This reduction is correlated with an increase in energy consumption and with regional GABA A receptor density. This suggests that the modulation of TV by behavioral state involves an increase in overall neural activity that is related to an increased effect from GABAergic inhibition in addition to any excitatory changes. These findings contribute to our understanding of the mechanisms underlying activity variability in the human brain and its control. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Length adaptation of airway smooth muscle.

    PubMed

    Bossé, Ynuk; Sobieszek, Apolinary; Paré, Peter D; Seow, Chun Y

    2008-01-01

    Many types of smooth muscle, including airway smooth muscle (ASM), are capable of generating maximal force over a large length range due to length adaptation, which is a relatively rapid process in which smooth muscle regains contractility after experiencing a force decrease induced by length fluctuation. Although the underlying mechanism is unclear, it is believed that structural malleability of smooth muscle cells is essential for the adaptation to occur. The process is triggered by strain on the cell cytoskeleton that results in a series of yet undefined biochemical and biophysical events leading to restructuring of the cytoskeleton and contractile apparatus and consequently optimization of the overlap between the myosin and actin filaments. Although length adaptability is an intrinsic property of smooth muscle, maladaptation of ASM could result in excessive constriction of the airways and the inability of deep inspirations to dilate them. In this article, we describe the phenomenon of length adaptation in ASM and some possible underlying mechanisms that involve the myosin filament assembly and disassembly. We discuss a possible role of maladaptation of ASM in the pathogenesis of asthma. We believe that length adaptation in ASM is mediated by specific proteins and their posttranslational regulations involving covalent modifications, such as phosphorylation. The discovery of these molecules and the processes that regulate their activity will greatly enhance our understanding of the basic mechanisms of ASM contraction and will suggest molecular targets to alleviate asthma exacerbation related to excessive constriction of the airways.

  15. Legal Briefing: Adult Orphans and the Unbefriended: Making Medical Decisions for Unrepresented Patients without Surrogates.

    PubMed

    Pope, Thaddeus Mason

    2015-01-01

    This issue's "Legal Briefing" column covers recent legal developments involving medical decision making for incapacitated patients who have no available legally authorized surrogate decision maker. These individuals are frequently referred to either as "adult orphans" or as "unbefriended," "isolated," or "unrepresented" patients. The challenges involved in obtaining consent for medical treatment on behalf of these individuals have been the subject of major policy reports. Indeed, caring for the unbefriended has even been described as the "single greatest category of problems" encountered in bioethics consultation. In 2012, JCE published a comprehensive review of the available mechanisms by which to make medical decisions for the unbefriended. The purpose of this "Legal Briefing" is to update the 2012 study. Accordingly, this "Legal Briefing" collects and describes significant legal developments from only the past three years. My basic assessment has not changed. "Existing mechanisms to address the issue of decision making for the unbefriended are scant and not uniform." Most facilities are "muddling through on an ad hoc basis." But the situation is not wholly negative. There have been a number of promising new initiatives. I group these developments into the following seven categories: 1. Increased Attention and Discussion 2. Prevention through Better Advance Care Planning 3. Prevention through Expanded Default Surrogate Lists 4. Statutorily Authorized Intramural Mechanisms 5. California Litigation Challenging the Team Approach 6. Public Guardianship 7. Improving Existing Guardianship Processes. Copyright 2015 The Journal of Clinical Ethics. All rights reserved.

  16. Multi-level modeling of total ionizing dose in a-silicon dioxide: First principles to circuits

    NASA Astrophysics Data System (ADS)

    Nicklaw, Christopher J.

    Oxygen vacancies have long been known to be the dominant intrinsic defect in amorphous SiO2. They exist, in concentrations dependent on processing conditions, as neutral defects in thermal oxides without usually causing any significant deleterious effects, with some spatial and energy distribution. During irradiation they can capture holes and become positively charged E '-centers, contributing to device degradation. Over the years, a considerable database has been amassed on the dynamics of E' -centers in bulk SiO2 films, and near the interface under different irradiation and annealing conditions. Theoretical calculations so far have revealed the basic properties of prototype oxygen vacancies, primarily as they behave in either a crystalline quartz environment, or in small clusters that serve as a substitute for a real amorphous structure. To date at least three categories of E'-centers, existing at or above room temperature, have been observed in SiO2. The unifying feature is an unpaired electron on a threefold coordinated silicon atom, having the form O3 ≡ Si·. Feigl et al. identified the E'1 -center in crystalline quartz as a trapped hole on an oxygen vacancy, which causes an asymmetrical relaxation, resulting in a paramagnetic center. The unpaired electron in the E'1 -center is localized on the three-fold coordinated Si atoms, while the hole is localized on the other Si atom. Results from an ab initio statistical simulation examination of the behaviors of oxygen vacancies, within amorphous structures, identify a new form of the E'-center, the E'g5 and help in the understanding of the underlying physical mechanisms involved in switched-bias annealing, and electron paramagnetic resonance (EPR) studies. The results also suggest a common border trap, induced by trapped holes in SiO2, is a hole trapped at an oxygen vacancy defect, which can be compensated by an electron, as originally proposed by Lelis and co-workers at Harry Diamond Laboratories. This dissertation provides new insights into the basic mechanisms of a-SiO2 defects, and provides a link between basic mechanisms and Electronic Design Automation (EDA) tools, providing an enhanced design flow for radiation-resistant electronics.

  17. Understanding and Observing Subglacial Friction Using Seismology

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.

    2017-12-01

    Glaciology began with a focus on understanding basic mechanical processes and producing physical models that could explain the principal observations. Recently, however, more attention has been paid to the wealth of recent observations, with many modeling efforts relying on data assimilation and empirical scalings, rather than being based on first-principles physics. Notably, ice sheet models commonly assume that subglacial friction is characterized by a "slipperiness" coefficient that is determined by inverting surface velocity observations. Predictions are usually then made by assuming these slipperiness coefficients are spatially and temporally fixed. However, this is only valid if slipperiness is an unchanging material property of the bed and, despite decades of work on subglacial friction, it has remained unclear how to best account for such subglacial physics in ice sheet models. Here, we describe how basic seismological concepts and observations can be used to improve our understanding and determination of subglacial friction. First, we discuss how standard models of granular friction can and should be used in basal friction laws for marine ice sheets, where very low effective pressures exist. We show that under realistic West Antarctic Ice Sheet conditions, standard Coulomb friction should apply in a relatively narrow zone near the grounding line and that this should transition abruptly as one moves inland to a different, perhaps Weertman-style, dependence of subglacial stress on velocity. We show that this subglacial friction law predicts significantly different ice sheet behavior even as compared with other friction laws that include effective pressure. Secondly, we explain how seismological observations of water flow noise and basal icequakes constrain subglacial physics in important ways. Seismically observed water flow noise can provide constraints on water pressures and channel sizes and geometry, leading to important data on subglacial friction. Basal icequake mechanisms also provide unique constraints on subglacial stress state as well as variations in water pressures. Together, the use of standard seismological concepts and new observations thus promises to provide new constraints on subglacial mechanics and focus attention back on the basic physical processes involved.

  18. Exploring the social-environmental determinants of well- and ill-being in dancers: a test of basic needs theory.

    PubMed

    Quested, Eleanor; Duda, Joan L

    2010-02-01

    Grounded in the basic needs mini-theory (Deci & Ryan, 2000), this study examined the interplay among perceptions of the social environment manifested in vocational dance schools, basic need satisfaction, and indices of elite dancers' well- and ill-being. The hypothesized mediating role of need satisfaction was also tested. Dancers (N = 392) completed a questionnaire tapping the targeted variables. Structural equation modeling supported a model in which perceptions of task-involving dance environments positively predicted need satisfaction. Perceived ego-involving climates negatively corresponded with competence and relatedness. Perceptions of autonomy support were positively related to autonomy and relatedness. Need satisfaction positively predicted positive affect. Competence and relatedness satisfaction corresponded negatively to reported negative affect. Emotional and physical exhaustion was not related to need satisfaction. Partial support emerged for the assumed mediation of the needs. Results highlight the relevance of task-involving and autonomy-supportive dance climates for elite dancers' need satisfaction and healthful engagement in vocational dance.

  19. 15 CFR 290.5 - Basic proposal qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS REGIONAL CENTERS FOR THE TRANSFER OF MANUFACTURING TECHNOLOGY § 290.5 Basic proposal qualifications. (a) NIST shall... with any invention or copyright which may result from the involvement in the Center's technology...

  20. Modeling gypsy moth seasonality

    Treesearch

    J. A. Logan; D. R. Gray

    1991-01-01

    Maintaining an appropriate seasonality is perhaps the most basic ecological requisite for insects living in temperate environments. The basic ecological importance of seasonality is enough to justify expending considerable effort to accurately model the processes involved. For insects of significant economic consequence, seasonality assumes additional importance...

  1. Current Progress of Virus-mimicking Nanocarriers for Drug Delivery

    PubMed Central

    Somiya, Masaharu; Liu, Qiushi; Kuroda, Shun'ichi

    2017-01-01

    Nanomedicines often involve the use of nanocarriers as a delivery system for drugs or genes for maximizing the therapeutic effect and/or minimizing the adverse effect. From drug administration to therapeutic activity, nanocarriers must evade the host's immune system, specifically and efficiently target and enter the cell, and release their payload into the cell cytoplasm by endosomal escape. These processes constitute the early infection stage of viruses. Viruses are a powerful natural nanomaterial for the efficient delivery of genetic information by sophisticated mechanisms. Over the past two decades, many virus-inspired nanocarriers have been generated to permit successful drug and gene delivery. In this review, we summarize the early infection machineries of viruses, of which the part has so far been utilized for delivery systems. Furthermore, we describe basics and applications of the bio-nanocapsule, which is a hepatitis B virus-mimicking nanoparticle harboring nearly all activities involved in the early infection machineries (i.e., stealth activity, targeting activity, cell entry activity, endosomal escaping activity). PMID:29188175

  2. The immunological synapse: the gateway to the HIV reservoir

    PubMed Central

    Kulpa, Deanna A; Brehm, Jessica H; Fromentin, Rémi; Cooper, Anthony; Cooper, Colleen; Ahlers, Jeffrey; Chomont, Nicolas; Sékaly, Rafick-Pierre

    2013-01-01

    A major challenge in the development of a cure for human immunodeficiency virus (HIV) has been the incomplete understanding of the basic mechanisms underlying HIV persistence during antiretroviral therapy. It is now realized that the establishment of a latently infected reservoir refractory to immune system recognition has thus far hindered eradication efforts. Recent investigation into the innate immune response has shed light on signaling pathways downstream of the immunological synapse critical for T-cell activation and establishment of T-cell memory. This has led to the understanding that the cell-to-cell contacts observed in an immunological synapse that involve the CD4+ T cell and antigen-presenting cell or T-cell–T-cell interactions enhance efficient viral spread and facilitate the induction and maintenance of latency in HIV-infected memory T cells. This review focuses on recent work characterizing the immunological synapse and the signaling pathways involved in T-cell activation and gene regulation in the context of HIV persistence. PMID:23772628

  3. Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.

    PubMed

    Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M

    2013-05-10

    A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions.

  4. [Dream in the land of paradoxical sleep].

    PubMed

    Pire, E; Herman, G; Cambron, L; Maquet, P; Poirrier, R

    2008-01-01

    Paradoxical sleep (PS or REM sleep) is traditionally a matter for neurophysiology, a science of the brain. Dream is associated with neuropsychology and sciences of the mind. The relationships between sleep and dream are better understood in the light of new methodologies in both domains, particularly those of basic neurosciences which elucidate the mechanisms underlying SP and functional imaging techniques. Data from these approaches are placed here in the perspective of rather old clinical observations in human cerebral lesions and in the phylogeny of vertebrates, in order to support a theory of dream. Dreams may be seen as a living marker of a cognitivo-emotional process, called here "eidictic process", involving posterior brain and limbic structures, keeping up during wakefulness, but subjected, at that time, to the leading role of a cognitivo-rational process, called here "thought process". The last one is of instrumental origin in human beings. It involves prefrontal cortices (executive tasks) and frontal/parietal cortices (attention) in the brain. Some clinical implications of the theory are illustrated.

  5. Basic Research in the Mission Agencies: Agency Perspectives on the Conduct and Support of Basic Research. Report of the National Science Board, 1978.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    A survey was conducted by the National Science Board of the basic research supported by executive branch agencies of the federal government. Most of the data came from information solicited by the Board from federal agencies involved in science. Fourteen mission agencies and two agencies not so classified and 20 subunits of these responded.…

  6. Palatal Seam Disintegration: To Die or Not to Die? That Is No Longer the Question

    PubMed Central

    Nawshad, Ali

    2008-01-01

    Formation of the medial epithelial seam (MES) by palatal shelf fusion is a crucial step of palate development. Complete disintegration of the MES is the final essential phase of palatal confluency with surrounding mesenchymal cells. In general, the mechanisms of palatal seam disintegration are not overwhelmingly complex, but given the large number of interacting constituents; their complicated circuitry involving feedforward, feedback, and crosstalk; and the fact that the kinetics of interaction matter, this otherwise simple mechanism can be quite difficult to interpret. As a result of this complexity, apparently simple but highly important questions remain unanswered. One such question pertains to the fate of the palatal seam. Such questions may be answered by detailed and extensive quantitative experimentation of basic biological studies (cellular, structural) and the newest molecular biological determinants (genetic/dye cell lineage, gene activity, kinase/enzyme activity), as well as animal model (knockouts, transgenic) approaches. System biology and cellular kinetics play a crucial role in cellular MES function; omissions of such critical contributors may lead to inaccurate understanding of the fate of MES. Excellent progress has been made relevant to elucidation of the mechanism(s) of palatal seam disintegration. Current understanding of palatal seam disintegration suggests epithelial–mesenchymal transition and/or programmed cell death as two most common mechanisms of MES disintegration. In this review, I discuss those two mechanisms and the differences between them. PMID:18629865

  7. Implementing Basic Education: An African Experience.

    ERIC Educational Resources Information Center

    Banya, Kingsley; Elu, Juliet

    1999-01-01

    Analyses some of the difficulties involved in implementing the recently approved Basic Education Program for primary and secondary education in Sierra Leone. Discusses issues such as funding, training, and retention of teachers, curriculum reform, language development, equipment and supplies, and evaluation. Concludes that political stability is…

  8. Basic Math I.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    This document offers instructional materials for a 60-hour course on basic math operations involving decimals, fractions, and proportions as applied in the workplace. The course, part of a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, contains the following: course outline; 17 lesson…

  9. Thermodynamics--A Practical Subject.

    ERIC Educational Resources Information Center

    Jones, Hugh G.

    1984-01-01

    Provides a simplified, synoptic overview of the area of thermodynamics, enumerating and explaining the four basic laws, and introducing the mathematics involved in a stepwise fashion. Discusses such basic tools of thermodynamics as enthalpy, entropy, Helmholtz free energy, and Gibbs free energy, and their uses in problem solving. (JM)

  10. 29 CFR 5.32 - Overtime payments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....25 an hour to a mechanic as his basic cash wage plus 50 cents an hour as a contribution to a welfare... prevailing wage statutes. It is clear from the legislative history that in no event can the regular or basic... less than the amount determined by the Secretary of Labor as the basic hourly rate (i.e. cash rate...

  11. 29 CFR 5.32 - Overtime payments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....25 an hour to a mechanic as his basic cash wage plus 50 cents an hour as a contribution to a welfare... prevailing wage statutes. It is clear from the legislative history that in no event can the regular or basic... less than the amount determined by the Secretary of Labor as the basic hourly rate (i.e. cash rate...

  12. 29 CFR 5.32 - Overtime payments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....25 an hour to a mechanic as his basic cash wage plus 50 cents an hour as a contribution to a welfare... prevailing wage statutes. It is clear from the legislative history that in no event can the regular or basic... less than the amount determined by the Secretary of Labor as the basic hourly rate (i.e. cash rate...

  13. Object Categorization: Reversals and Explanations of the Basic-Level Advantage

    ERIC Educational Resources Information Center

    Rogers, Timothy T.; Patterson, Karalyn

    2007-01-01

    People are generally faster and more accurate to name or categorize objects at the basic level (e.g., dog) relative to more general (animal) or specific (collie) levels, an effect replicated in Experiment 1 for categorization of object pictures. To some, this pattern suggests a dual-process mechanism, in which objects first activate basic-level…

  14. Particles trajectories in magnetic filaments

    NASA Astrophysics Data System (ADS)

    Bret, A.

    2015-07-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  15. Epigenetics and allergy: from basic mechanisms to clinical applications.

    PubMed

    Potaczek, Daniel P; Harb, Hani; Michel, Sven; Alhamwe, Bilal Alashkar; Renz, Harald; Tost, Jörg

    2017-04-01

    Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.

  16. Microbial processing of tellurium as a tool in biotechnology.

    PubMed

    Turner, Raymond J; Borghese, Roberto; Zannoni, Davide

    2012-01-01

    Here, we overview the most recent advances in understanding the bacterial mechanisms that stay behind the reduction of tellurium oxyanions in both planktonic cells and biofilms. This is a topic of interest for basic and applied research because microorganisms are deeply involved in the transformation of metals and metalloids in the environment. In particular, the recent observation that toxic tellurite can be precipitated either inside or outside the cells being used as electron sink to support bacterial growth, opens new perspectives for both microbial physiologists and biotechnologists. As promising nanomaterials, tellurium based nanoparticles show unique electronic and optical properties due to quantum confinement effects to be used in the area of chemistry, electronics, medicine and environmental biotechnologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Need for power and the choice of technologies: State decisions on electric power facilities

    NASA Astrophysics Data System (ADS)

    1981-06-01

    The decision-making processes at the state level regarding the licensing of electric generating facilities were assessed. The basic issues addressed are the need for power and choice of technology: state decisions which directly influence and affect the nation's energy supply, and the tradeoffs involved in meeting energy demand. The areas of special emphasis included the legal mechanisms and regulatory procedures used to determine and resolve these issues. The effectiveness of state decision-making was assessed, focusing on legal and administrative histories and accommodation of interests of concerned parties. Recent innovations to enhance the decision-making process were also assessed where applicable. No particular substantive results are advocated in the findings. The recommendations presented are broad in scope.

  18. Do Active Learning Approaches in Recitation Sections Improve Student Performance? A Case Study from an Introductory Mechanics Course

    NASA Astrophysics Data System (ADS)

    Tobin, R. G.

    2018-01-01

    Abundant research leaves little question that pedagogical approaches involving active student engagement with the material, and opportunities for student-to-student discussions, lead to much better learning outcomes than traditional instructor-led, expository instructional formats, in physics and in many other fields. In introductory college physics classes, some departments have departed radically from conventional lecture-recitation-laboratory course structures, but many, including my own, retain the basic format of large-group classroom sessions (lectures) supplemented by smaller-group meetings focused on problem solving (recitations) and separate laboratory meetings. Active student engagement in the lectures is encouraged through approaches such as Peer Instruction and Interactive Lecture Demonstrations, and these approaches have been demonstrably successful.

  19. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  20. The neuropharmacology of upper airway motor control in the awake and asleep states: implications for obstructive sleep apnoea

    PubMed Central

    Horner, Richard L

    2001-01-01

    Obstructive sleep apnoea is a common and serious breathing problem that is caused by effects of sleep on pharyngeal muscle tone in individuals with narrow upper airways. There has been increasing focus on delineating the brain mechanisms that modulate pharyngeal muscle activity in the awake and asleep states in order to understand the pathogenesis of obstructive apnoeas and to develop novel neurochemical treatments. Although initial clinical studies have met with only limited success, it is proposed that more rational and realistic approaches may be devised for neurochemical modulation of pharyngeal muscle tone as the relevant neurotransmitters and receptors that are involved in sleep-dependent modulation are identified following basic experiments. PMID:11686898

  1. The future of neuropathology in childhood.

    PubMed

    Rorke, L B

    2000-11-01

    The current state of knowledge of pediatric neuropathology is based upon a rich historical heritage dating back many centuries and representing the genius of many people, although, relatively speaking, little specific attention was paid to the unique issues relating to infants and children. Aside from descriptions of morphological features of disease (including tumors), advances in understanding basic pathogenetic mechanisms have flowered only in the recent past. Most exciting has been the progress in molecular biology and genetics, which has yielded a phenomenal bank of information in a short time, uncovering details of genes involved in development of the nervous system and specifically associated with various types of tumors. The future of pediatric neuropathology requires partnership with molecular geneticists whose studies hold promise of defining morphology.

  2. An expanding universe of circadian networks in higher plants.

    PubMed

    Pruneda-Paz, Jose L; Kay, Steve A

    2010-05-01

    Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.

  3. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production.

    PubMed

    Roointan, Amir; Morowvat, Mohammad Hossein

    The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.

  4. The Use of Chromium(III) to Supercharge Peptides by Protonation at Low Basicity Sites

    NASA Astrophysics Data System (ADS)

    Feng, Changgeng; Commodore, Juliette J.; Cassady, Carolyn J.

    2015-02-01

    The addition of chromium(III) nitrate to solutions of peptides with seven or more residues greatly increases the formation of doubly protonated peptides, [M + 2H]2+, by electrospray ionization. The test compound heptaalanine has only one highly basic site (the N-terminal amino group) and undergoes almost exclusive single protonation using standard solvents. When Cr(III) is added to the solution, abundant [M + 2H]2+ forms, which involves protonation of the peptide backbone or the C-terminus. Salts of Al(III), Mn(II), Fe(III), Fe(II), Cu(II), Zn (II), Rh(III), La(III), Ce(IV), and Eu(III) were also studied. Although several metal ions slightly enhance protonation, Cr(III) has by far the greatest ability to generate [M + 2H]2+. Cr(III) does not supercharge peptide methyl esters, which suggests that the mechanism involves interaction of Cr(III) with a carboxylic acid group. Other factors may include the high acidity of hexa-aquochromium(III) and the resistance of Cr(III) to reduction. Nitrate salts enhance protonation more than chloride salts and a molar ratio of 10:1 Cr(III):peptide produces the most intense [M + 2H]2+. Cr(III) also supercharges numerous other small peptides, including highly acidic species. For basic peptides, Cr(III) increases the charge state (2+ versus 1+) and causes the number of peptide molecules being protonated to double or triple. Chromium(III) does not supercharge the proteins cytochrome c and myoglobin. The ability of Cr(III) to enhance [M + 2H]2+ intensity may prove useful in tandem mass spectrometry because of the resulting overall increase in signal-to-noise ratio, the fact that [M + 2H]2+ generally dissociate more readily than [M + H]+, and the ability to produce [M + 2H]2+ precursors for electron-based dissociation techniques.

  5. An introduction to the basic principles of health economics for those involved in the development and delivery of headache care.

    PubMed

    Kernick, D

    2005-09-01

    Against a background of increasing demands on limited resources, health economics is gaining an increasing impact on decision making and a basic understanding of the subject is important for all those involved in headache research and service delivery at whatever level. This paper is not intended as a review of the literature in the area of headache economics but discusses some general principles of health economics from the perspective of headache, with a focus on cost of illness studies and economic evaluation.

  6. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors

    PubMed Central

    Matias, Pedro M.; Baek, Sung Hee; Bandeiras, Tiago M.; Dutta, Anindya; Houry, Walid A.; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10–12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models. PMID:25988184

  7. The Plasma Membrane Calcium Pump: New Ways to Look at an Old Enzyme

    PubMed Central

    Lopreiato, Raffaele; Giacomello, Marta; Carafoli, Ernesto

    2014-01-01

    The three-dimensional structure of the PMCA pump has not been solved, but its basic mechanistic properties are known to repeat those of the other Ca2+ pumps. However, the pump also has unique properties. They concern essentially its numerous regulatory mechanisms, the most important of which is the autoinhibition by its C-terminal tail. Other regulatory mechanisms involve protein kinases and the phospholipids of the membrane in which the pump is embedded. Permanent activation of the pump, e.g. by calmodulin, is physiologically as harmful to cells as its absence. The concept is now emerging that the global control of cell Ca2+ may not be the main function of the pump; in some cell types, it could even be irrelevant. The main pump role would be the regulation of Ca2+ in cell microdomains in which the pump co-segregates with partners that modulate the Ca2+ message and transduce it to important cell functions. PMID:24570005

  8. A cytokine axis regulates elastin formation and degradation

    PubMed Central

    Sproul, Erin P.; Argraves, W. Scott

    2013-01-01

    Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093

  9. Multisensory integration mechanisms during aging

    PubMed Central

    Freiherr, Jessica; Lundström, Johan N.; Habel, Ute; Reetz, Kathrin

    2013-01-01

    The rapid demographical shift occurring in our society implies that understanding of healthy aging and age-related diseases is one of our major future challenges. Sensory impairments have an enormous impact on our lives and are closely linked to cognitive functioning. Due to the inherent complexity of sensory perceptions, we are commonly presented with a complex multisensory stimulation and the brain integrates the information from the individual sensory channels into a unique and holistic percept. The cerebral processes involved are essential for our perception of sensory stimuli and becomes especially important during the perception of emotional content. Despite ongoing deterioration of the individual sensory systems during aging, there is evidence for an increase in, or maintenance of, multisensory integration processing in aging individuals. Within this comprehensive literature review on multisensory integration we aim to highlight basic mechanisms and potential compensatory strategies the human brain utilizes to help maintain multisensory integration capabilities during healthy aging to facilitate a broader understanding of age-related pathological conditions. Further our goal was to identify where further research is needed. PMID:24379773

  10. Sequence-dependent base pair stepping dynamics in XPD helicase unwinding

    PubMed Central

    Qi, Zhi; Pugh, Robert A; Spies, Maria; Chemla, Yann R

    2013-01-01

    Helicases couple the chemical energy of ATP hydrolysis to directional translocation along nucleic acids and transient duplex separation. Understanding helicase mechanism requires that the basic physicochemical process of base pair separation be understood. This necessitates monitoring helicase activity directly, at high spatio-temporal resolution. Using optical tweezers with single base pair (bp) resolution, we analyzed DNA unwinding by XPD helicase, a Superfamily 2 (SF2) DNA helicase involved in DNA repair and transcription initiation. We show that monomeric XPD unwinds duplex DNA in 1-bp steps, yet exhibits frequent backsteps and undergoes conformational transitions manifested in 5-bp backward and forward steps. Quantifying the sequence dependence of XPD stepping dynamics with near base pair resolution, we provide the strongest and most direct evidence thus far that forward, single-base pair stepping of a helicase utilizes the spontaneous opening of the duplex. The proposed unwinding mechanism may be a universal feature of DNA helicases that move along DNA phosphodiester backbones. DOI: http://dx.doi.org/10.7554/eLife.00334.001 PMID:23741615

  11. Setting-up tension in the style of Marantaceae.

    PubMed

    Pischtschan, E; Classen-Bockhoff, R

    2008-07-01

    The Marantaceae stand out from other plant families through their unique style movement which is combined with a highly derived form of secondary pollen presentation. Although known for a long time, the mechanism underlying the movement is not yet understood. In this paper, we report an investigation into the biomechanical principles of this movement. For the first time we experimentally confirm that, in Maranta noctiflora, longitudinal growth of the maturing style within the 'straitjacket' of the hooded staminode involves both arresting of the style before tripping and building up of potential for the movement. The longer the style grows in relation to the enclosing hooded staminode, the more does its capacity for curling increase. We distinguish between the basic tension that a growing style builds up normally, even when the hooded staminode is removed beforehand, and the induced tension which comes about only under the pressure of a too short hooded staminode and which enables the movement. The results of our investigations are discussed in relation to previous interpretations, ranging from biomechanical to electrophysiological mechanisms.

  12. Cognitive neuroscience of cognitive retraining for addiction medicine: From mediating mechanisms to questions of efficacy.

    PubMed

    Gladwin, Thomas E; Wiers, Corinde E; Wiers, Reinout W

    2016-01-01

    Cognitive retraining or cognitive bias modification (CBM) involves having subjects repeatedly perform a computerized task designed to reduce the impact of automatic processes that lead to harmful behavior. We first discuss the theory underlying CBM and provide a brief overview of important research progress in its application to addiction. We then focus on cognitive- and neural-mediating mechanisms. We consider recent criticism of both CBM and its theoretical foundations. Evaluations of CBM could benefit from considering theory-driven factors that may determine variations in efficacy, such as motivation. Concerning theory, while there is certainly room for fundamental advances in current models, we argue that the basic view of impulsive behavior and its control remains a useful and productive heuristic. Finally, we briefly discuss some interesting new directions for CBM research: enhancement of training via transcranial direct current stimulation, online training, and gamification, i.e., the use of gameplay elements to increase motivation. © 2016 Elsevier B.V. All rights reserved.

  13. Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications.

    PubMed

    Nánási, Péter P; Magyar, János; Varró, András; Ördög, Balázs

    2017-10-01

    Beat-to-beat variability of cardiac action potential duration (short-term variability, SV) is a common feature of various cardiac preparations, including the human heart. Although it is believed to be one of the best arrhythmia predictors, the underlying mechanisms are not fully understood at present. The magnitude of SV is basically determined by the intensity of cell-to-cell coupling in multicellular preparations and by the duration of the action potential (APD). To compensate for the APD-dependent nature of SV, the concept of relative SV (RSV) has been introduced by normalizing the changes of SV to the concomitant changes in APD. RSV is reduced by I Ca , I Kr , and I Ks while increased by I Na , suggesting that ion currents involved in the negative feedback regulation of APD tend to keep RSV at a low level. RSV is also influenced by intracellular calcium concentration and tissue redox potential. The clinical implications of APD variability is discussed in detail.

  14. MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, G.; Novascone, S. R.; Williamson, R. L.

    2015-09-01

    This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rodmore » undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.« less

  15. Herpes Keratitis

    PubMed Central

    Rowe, A.; St Leger, A.; Jeon, S.; Dhaliwal, D.K.; Knickelbein, J.E.; Hendricks, R.L.

    2012-01-01

    Herpes Simplex Virus-1 (HSV-1) infects the majority of the world’s population. These infections are often asymptomatic, but ocular HSV-1 infections cause multiple pathologies with perhaps the most destructive being Herpes Stromal Keratitis (HSK). HSK lesions, which are immunoinflammatory in nature, can recur throughout life and often cause progressive corneal scaring resulting in visual impairment. Current treatment involves broad local immunosuppression with topical steroids along with antiviral coverage. Unfortunately, the immunopathologic mechanisms defined in animal models of HSK have not yet translated into improved therapy. Herein, we review the clinical epidemiology and pathology of the disease and summarize the large amount of basic research regarding the immunopathology of HSK. We examine the role of the innate and adaptive immune system in the clearance of virus and the destruction of the normal corneal architecture that is typical of HSK. Our goal is to define current knowledge of the pathogenic mechanisms and recurrent nature of HSK and identify areas that require further study. PMID:22944008

  16. Mechanisms of epoxyeicosatrienoic acids to improve cardiac remodeling in chronic renal failure disease.

    PubMed

    Zhang, Kun; Wang, Ju; Zhang, Huanji; Chen, Jie; Zuo, Zhiyi; Wang, Jingfeng; Huang, Hui

    2013-02-15

    Both clinical and basic science studies have demonstrated that cardiac remodeling in patients with chronic renal failure (CRF) is very common. It is a key feature during the course of heart failure and an important risk factor for subsequent cardiac mortality. Traditional drugs or therapies rarely have effects on cardiac regression of CRF and cardiovascular events are still the first cause of death. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acids metabolized by cytochrome P450 epoxygenases. It has been found that EETs have important biological effects including anti-hypertension and anti-inflammation. Recent data suggest that EETs are involved in regulating cardiomyocyte injury, renal dysfunction, chronic kidney disease (CKD)-related risk factors and signaling pathways, all of which play key roles in cardiac remodeling induced by CRF. This review analyzes the literature to identify the possible mechanisms for EETs to improve cardiac remodeling induced by CRF and indicates the therapeutic potential of EETs in it. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Hemojuvelin: a supposed role in iron metabolism one year after its discovery.

    PubMed

    Celec, Peter

    2005-07-01

    The discovery of hemojuvelin and its association with juvenile hemochromatosis are important not only for the diagnostics of this rare severe disease but also for the understanding of the complex mechanism of iron metabolism regulation. Currently, the physiological role of hemojuvelin is obscure. Recent experimental and clinical studies indicate that hemojuvelin will probably be a regulator of hepcidin, similar to HFE and transferrin receptor 2. However, in contrast to transferrin receptor 2, which is relevant in the hepcidin response to changes in transferrin saturation, HFE and especially hemojuvelin seem to be involved in the inflammation-induced hepcidin expression. Hepcidin, generally accepted as a hormone targeting enterocytes and macrophages, decreases iron absorption from the intestinal lumen and iron release from phagocytes. This mechanism explains the central role of hepcidin and, indirectly, its regulator, hemojuvelin, in the pathogenesis of hemochromatosis but also in anemia of chronic disease. Further basic and clinical research is needed to uncover the details of hemojuvelin pathophysiology required for potential pharmacological interventions.

  18. Sexual selection and genital evolution: an overview.

    PubMed

    Shamloul, Rany; el-Sakka, Ahmed; Bella, Anthony J

    2010-05-01

    Genital morphology (especially male) among the animal kingdom is characterized by extensive differences that even members of closely related species with similar general morphology may have remarkably diverse genitalia. To present the sexual medicine specialist with a basic understanding of the current hypotheses on genital evolution with an emphasis on the sexual selection theories. A review of current literature on the theories of genital evolution. Analysis of the supporting evidence for the sexual selection theories of genital evolution. Several theories have been proposed to explain genital evolution. Currently, the sexual selection theories are being considered to present valid and solid evidence explaining genital evolution. However, other theories, including sexual conflict, are still being investigated. All theories of genital evolution have their own weaknesses and strengths. Given that many complex biological mechanisms, mostly unknown yet, are involved in the process of genital evolution, it is thus reasonable to conclude that not one theory can independently explain genital evolution. It is likely that these mechanisms may prove to have synergistic rather than exclusive effects.

  19. The AAA+ proteins Pontin and Reptin enter adult age: from understanding their basic biology to the identification of selective inhibitors.

    PubMed

    Matias, Pedro M; Baek, Sung Hee; Bandeiras, Tiago M; Dutta, Anindya; Houry, Walid A; Llorca, Oscar; Rosenbaum, Jean

    2015-01-01

    Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.

  20. Osmosis and Diffusion Conceptual Assessment

    PubMed Central

    Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts

    2011-01-01

    Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified from the previously published Diffusion and Osmosis Diagnostic Test (DODT) and some newly developed items. The ODCA, a validated instrument containing fewer items than the DODT and emphasizing different content areas within the realm of osmosis and diffusion, better aligns with our curriculum. Creation of the ODCA involved removal of six DODT item pairs, modification of another six DODT item pairs, and development of three new item pairs addressing basic osmosis and diffusion concepts. Responses to ODCA items testing the same concepts as the DODT were remarkably similar to responses to the DODT collected from students 15 yr earlier, suggesting that student mastery regarding the mechanisms of diffusion and osmosis remains elusive. PMID:22135375

  1. Thermal control system corrosion study

    NASA Technical Reports Server (NTRS)

    Yee, Robert; Folsom, Rolfe A.; Mucha, Phillip E.

    1990-01-01

    During the development of an expert system for autonomous control of the Space Station Thermal Control System (TCS), the thermal performance of the Brassboard TCS began to gradually degrade. This degradation was due to filter clogging by metallic residue. A study was initiated to determine the source of the residue and the basic cause of the corrosion. The investigation focused on the TCS design, materials compatibility, Ames operating and maintenance procedures, and chemical analysis of the residue and of the anhydrous ammonia used as the principal refrigerant. It was concluded that the corrosion mechanisms involved two processes: the reaction of water alone with large, untreated aluminum parts in a high pH environment and the presence of chlorides and chloride salts. These salts will attack the aluminum oxide layer and may enable galvanic corrosion between the aluminum and the more noble stainless steel and other metallic elements present. Recommendations are made for modifications to the system design, the materials used, and the operating and maintenance procedures, which should largely prevent the recurrence of these corrosion mechanisms.

  2. Use of LEED, Auger emission spectroscopy and field ion microscopy in microstructural studies

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Buckley, D. H.; Pepper, S. V.; Brainard, W. A.

    1972-01-01

    Surface research tools such as LEED, Auger emission spectroscopy analysis, and field ion microscopy are discussed. Examples of their use in studying adhesion, friction, wear, and lubrication presented. These tools have provided considerable insight into the basic nature of solid surface interactions. The transfer of metals from one surface to another at the atomic level has been observed and studied with each of these devices. The field ion microscope has been used to study polymer-metal interactions and Auger analysis to study the mechanism of polymer adhesion to metals. LEED and Auger analysis have identified surface segregation of alloying elements and indicated the influence of these elements in metallic adhesion. LEED and Auger analysis have assisted in adsorption studies in determining the structural arrangement and quantity of adsorbed species present in making an understanding of the influence of these species on adhesion possible. These devices are assisting in the furtherance of understanding of the fundamental mechanism involved in the adhesion, friction, wear, and lubrication processes.

  3. Buddhist social networks and health in old age: A study in central Thailand.

    PubMed

    Sasiwongsaroj, Kwanchit; Wada, Taizo; Okumiya, Kiyohito; Imai, Hissei; Ishimoto, Yasuko; Sakamoto, Ryota; Fujisawa, Michiko; Kimura, Yumi; Chen, Wen-ling; Fukutomi, Eriko; Matsubayashi, Kozo

    2015-11-01

    Religious social networks are well known for their capacity to improve individual health, yet the effects of friendship networks within the Buddhist context remain largely unknown. The present study aimed to compare health status and social support in community-dwelling older adults according to their level of Buddhist social network (BSN) involvement, and to examine the association between BSN involvement and functional health among older adults. A cross-sectional survey was carried out among 427 Buddhist community-dwelling older adults aged ≥60 years in Nakhon Pathom, Thailand. Data were collected from home-based personal interviews using a structured questionnaire. Health status was defined according to the measures of basic and advanced activities of daily living (ADL), the 15-item Geriatric Depression Scale and subjective quality of life. Perceived social support was assessed across the four dimensions of tangible, belonging, emotional and information support. Multiple logistic regression was used for analysis. Older adults with BSN involvement reported better functional, mental and social health status, and perceived greater social support than those without BSN involvement. In addition, BSN involvement was positively associated with independence in basic and advanced ADL. After adjusting for age, sex, education, income, morbidity and depressive symptoms, BSN showed a strong association with advanced ADL and a weak association with basic ADL. The results show that involvement in BSN could contribute positively to functional health, particularly with regard to advanced ADL. Addressing the need for involvement in these networks by older adults might help delay functional decline and save on healthcare costs. © 2014 Japan Geriatrics Society.

  4. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  5. Construction of the Seven Basic Crystallographic Units.

    ERIC Educational Resources Information Center

    Li, Thomas; Worrell, Jay H.

    1989-01-01

    Presents an exercise to get students more intimately involved in the three dimensional nature of basic units by constructing models. Uses balsa wood, glue, sandpaper, and a square. Studies seven crystals: cubic, hexagonal, monoclinic, orthorhombic, rhombohedral, tetragonal, and triclinic. Plans are available for a Macintosh computer. (MVL)

  6. An Introduction to Research and the Computer: A Self-Instructional Package.

    ERIC Educational Resources Information Center

    Vasu, Ellen Storey; Palmer, Richard I.

    This self-instructional package includes learning objectives, definitions, exercises, and feedback for learning some basic concepts and skills involved in using computers for analyzing data and understanding basic research terminology. Learning activities are divided into four sections: research and research hypotheses; variables, cases, and…

  7. Preloaded joint analysis methodology for space flight systems

    NASA Technical Reports Server (NTRS)

    Chambers, Jeffrey A.

    1995-01-01

    This report contains a compilation of some of the most basic equations governing simple preloaded joint systems and discusses the more common modes of failure associated with such hardware. It is intended to provide the mechanical designer with the tools necessary for designing a basic bolted joint. Although the information presented is intended to aid in the engineering of space flight structures, the fundamentals are equally applicable to other forms of mechanical design.

  8. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  9. Basic Science Research and the Protection of Human Research Participants

    NASA Astrophysics Data System (ADS)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in research are protected and by educating everyone involved in research with human participants, including the public, investigators, IRB members, institutions, and federal agencies, NBAC’s goal is to develop guidelines by which important basic research can proceed while making sure that the rights and welfare of human research participants are not compromised.

  10. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid

    PubMed Central

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan

    2013-01-01

    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163

  11. 45 CFR 46.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... involving human subjects. 46.119 Section 46.119 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROTECTION OF HUMAN SUBJECTS Basic HHS Policy for Protection of Human Research Subjects § 46.119 Research undertaken without the intention of involving human subjects. In the event...

  12. 40 CFR 26.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... intention of involving human subjects. 26.119 Section 26.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN SUBJECTS Basic EPA Policy for Protection of Subjects in Human... human subjects. In the event research is undertaken without the intention of involving human subjects...

  13. 45 CFR 46.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... involving human subjects. 46.119 Section 46.119 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROTECTION OF HUMAN SUBJECTS Basic HHS Policy for Protection of Human Research Subjects § 46.119 Research undertaken without the intention of involving human subjects. In the event...

  14. 40 CFR 26.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... intention of involving human subjects. 26.119 Section 26.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN SUBJECTS Basic EPA Policy for Protection of Subjects in Human... human subjects. In the event research is undertaken without the intention of involving human subjects...

  15. 40 CFR 26.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... intention of involving human subjects. 26.119 Section 26.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN SUBJECTS Basic EPA Policy for Protection of Subjects in Human... human subjects. In the event research is undertaken without the intention of involving human subjects...

  16. 45 CFR 46.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... involving human subjects. 46.119 Section 46.119 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROTECTION OF HUMAN SUBJECTS Basic HHS Policy for Protection of Human Research Subjects § 46.119 Research undertaken without the intention of involving human subjects. In the event...

  17. 45 CFR 46.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... involving human subjects. 46.119 Section 46.119 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION PROTECTION OF HUMAN SUBJECTS Basic HHS Policy for Protection of Human Research Subjects § 46.119 Research undertaken without the intention of involving human subjects. In the event...

  18. 40 CFR 26.119 - Research undertaken without the intention of involving human subjects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... intention of involving human subjects. 26.119 Section 26.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PROTECTION OF HUMAN SUBJECTS Basic EPA Policy for Protection of Subjects in Human... human subjects. In the event research is undertaken without the intention of involving human subjects...

  19. Parent Involvement in Early Childhood Special Education.

    ERIC Educational Resources Information Center

    Robinson, Cordelia C.; And Others

    Part of a volume which explores current issues in service delivery to infants and toddlers with handicapping conditions, this chapter discusses the nature of parent involvement in early childhood special education. Acceptance of the basic axiom of parent involvement needs to be accompanied by an understanding of individual differences in family…

  20. Multi-scale mechanics from molecules to morphogenesis

    PubMed Central

    Davidson, Lance; von Dassow, Michelangelo; Zhou, Jian

    2009-01-01

    Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis. PMID:19394436

  1. Projector Center: Replication, Transcription, and Translation.

    ERIC Educational Resources Information Center

    Ruth, Edward B.

    1984-01-01

    Describes the use of a chart that systematically summarizes three basic steps that involve DNA and its decoding in both eukaryotic and prokaryotic cells: replication; transcription, and translation. Indicates that the chart (mounted on a tranparency) does an adequate job of conveying basic information about nucleic acids to students. (DH)

  2. A Legal Guide for the Software Developer.

    ERIC Educational Resources Information Center

    Minnesota Small Business Assistance Office, St. Paul.

    This booklet has been prepared to familiarize the inventor, creator, or developer of a new computer software product or software invention with the basic legal issues involved in developing, protecting, and distributing the software in the United States. Basic types of software protection and related legal matters are discussed in detail,…

  3. Using Every Pupil Response in Mathematics Instruction.

    ERIC Educational Resources Information Center

    Lauritzen, Carol

    1985-01-01

    Discusses the "Every Pupil Response" (EPR) strategy and its use in teaching basic facts, problem-solving, place value, and fractions. Basically, the technique involves children responding simultaneously to a question by holding up a card, using parts of their bodies, or stick figures. Advantages of EPR are noted. (JN)

  4. HEALTH AND NUTRITION LESSON PLANS AND STUDENT WORKSHEETS, ADULT BASIC EDUCATION.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    THIS MANUAL PROVIDES ADULT BASIC EDUCATION TEACHERS WITH LESSON PLANS IN HEALTH AND NUTRITION. EACH LESSON CONTAINS BACKGROUND MATERIAL OFFERING SPECIFIC INFORMATION ON THE SUBJECT OF EACH LESSON, AIMS, LESSON DEVELOPMENT, AND TWO STUDENT WORKSHEETS. DISCUSSION QUESTIONS ARE SUGGESTED TO ENCOURAGE THE GREATEST POSSIBLE STUDENT INVOLVEMENT. THE TEN…

  5. ECON 12: Teacher's Materials. Units I and II.

    ERIC Educational Resources Information Center

    Wiggins, Suzanne

    The objectives of this experimental 12th grade economics course begin with an understanding that "economic analysis applies a set of basic concepts and their interrelationships to problems (involving) economic scarcity." Fifteen basic concepts are to be learned (e. g., want, markets, money, etc.) as well as the definition and vocabulary…

  6. AN ANALYSIS OF THE BEHAVIORAL PROCESSES INVOLVED IN SELF-INSTRUCTION WITH TEACHING MACHINES.

    ERIC Educational Resources Information Center

    HOLLAND, JAMES G.; SKINNER, B.F.

    THIS COLLECTION OF PAPERS CONSTITUTES THE FINAL REPORT OF A PROJECT DEVOTED TO AN ANALYSIS OF THE BEHAVIORAL PROCESSES UNDERLYING PROGRAMED INSTRUCTION. THE PAPERS ARE GROUPED UNDER THREE HEADINGS--(1) "PROGRAMING RESEARCH," (2) "BASIC SKILLS--RATIONALE AND PROCEDURE," AND (3) "BASIC SKILLS--SPECIFIC SKILLS." THE…

  7. Making a Difference in Ghana's Classrooms: Educators and Communities as Partners.

    ERIC Educational Resources Information Center

    O'Grady, Barbara

    This report describes how partnerships between educators and the community are helping improve education in Ghana. Though the basic education program, Improving Learning through Partnerships (ILP), Ghana is strengthening its educational foundation by using master teachers to help improve basic skills instruction and by involving parents and other…

  8. The Adult Basic Education Program: A Technological Approach to Adult Literacy Education.

    ERIC Educational Resources Information Center

    Johnston, Cynthia Wilson

    A description is provided of the development and outcomes of Central Piedmont Community College's (CPCC's) Adult Basic Literacy Education (ABLE) Project, a campaign designed to use educational technology, volunteer training, and neighborhood centers to provide literacy education. First, background information is presented on CPCC's involvement in…

  9. Play Therapy: Basics and Beyond.

    ERIC Educational Resources Information Center

    Kottman, Terry

    This book provides an atheoretical orientation to basic concepts involved in play therapy and an introduction to different skills used in play therapy. The demand for mental professionals and school counselors who have training and expertise in using play as a therapeutic tool when working with children has increased tremendously. In response to…

  10. A Survey of Basic Instructional Program Graduate Teaching Assistant Development and Support Processes

    ERIC Educational Resources Information Center

    Russell, Jared A.

    2009-01-01

    For over 100 years, basic instructional programs (BIP) have played a pivotal role in providing undergraduates with opportunities to acquire sport-related skills and conceptual knowledge relevant to promoting their involvement in lifelong physical activity and establishing healthy lifestyle habits. Critical to delivering this instructional content…

  11. An Analysis of a Nationwide Study on Curricular Emphasis in Basic Mechanics

    ERIC Educational Resources Information Center

    Raville, M. E.; Lnenicka, W. J.

    1976-01-01

    Discusses a survey of curricular allocations to mechanics in departments and schools of engineering. Tables show trends of coverage of mechanics topics and faculty perceptions of teaching and learning trends. (MLH)

  12. Mechanism of action of glucocorticoids in nasal polyposis.

    PubMed

    Fernandes, Atílio Maximino; Valera, Fabiana Cardoso Pereira; Anselmo-Lima, Wilma T

    2008-01-01

    Glucocorticoids (GC) are the drugs of choice for the clinical treatment of nasal polyposis, according to the medical literature. Its mechanism of action in the regression of clinical symptoms and polyps, however, is not fully understood. The topical and/or systemic use of glucocorticoids lead to variable expression of cytokines, chemokines and lymphokines, as well as changes in cells. It is known that GC suppresses the expression of pro-inflammatory cytokines, chemokines and adhesion molecules such as ICAM-1 and E-selectin; GC also stimulate the transcription of anti-inflammatory cytokines such as TGF-b. GC suppress pro-fibrotic cytokines related to polyp growth, such as IL-11, the basic fibroblast growth factor (b-FGF), and the vascular endotelial growth factor (VEGF). The action of GC depends fundamentally on their interaction with receptors (GR); certain subjects have a degree of resistance to its effect, which appears to be related with the presence of a b isoform of GR. GC also act variably on the genes involved in immunoglobulin production, presentation, and antigen processing. We present a review of the literature on the mechanisms of GC action in nasal polyosis. Understanding the mechanism of action of GC in nasal polyposis will aid in the development of new, more efficient, drugs.

  13. The Valley Networks on Mars

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.

    2002-12-01

    Despite three decades of exploration, the valley networks on Mars still seem to raise more questions than they answer. Valley systems have formed in the southern highlands, along some regions of the dichotomy boundary and the south rim of Valles Marineris, around the rim of some impact craters, and on the flanks of some volcanoes. They are found on some of the oldest and youngest terrains as well as on intermediate aged surfaces. There is surprisingly little consensus as to the formation and the paleoclimatic implications of the valley networks. Did the valleys require a persistent solar-driven atmospheric hydrological cycle involving precipitation, surface runoff, infiltration and groundwater outflow as they typically do on Earth? Or are they the result of magmatic or impact-driven thermal cycling of ground water involving persistent outflow and subsequent runoff? Are they the result of some other process(es)? Ground-water sapping, surface-water runoff, debris flows, wind erosion, and formation mechanisms involving other fluids have been proposed. Until such basic questions as these are definitively answered, their significance for understanding paleoclimatic change on Mars remains cloudy. I will review what is known about valley networks using data from both past and current missions. I will discuss what we have learned about their morphology, environments in which they formed, their spatial and temporal associations, possible formation mechanisms, relation to outflow channel and gully formation, as well as the possible implications for past climate change on Mars. Finally I will discuss how future, meter to submeter scale imaging and other remote sensing observations may shed new light on the debate over the origin of these enigmatic features.

  14. Acidic fibroblast growth factor (FGF) but not basic FGF induces sleep and fever in rabbits.

    PubMed

    Knefati, M; Somogyi, C; Kapás, L; Bourcier, T; Krueger, J M

    1995-07-01

    Acidic fibroblast growth factor (FGF) and basic FGF belong to a growth factor family. Interleukin-1, another member of that family, is involved in sleep regulation. FGFs and interleukin-1 share structural and functional features. We therefore determined whether acidic FGF and basic FGF were somnogenic. Male New Zealand White rabbits were provided with electroencephalographic (EEG) electrodes, a brain thermistor, and a lateral intracerebroventricular (icv) cannula. The animals were injected icv with isotonic NaCl (control) and on separate days with one of three doses of acidic or basic FGF (0.01, 0.1, or 1.0 micrograms) or with heat-treated acidic FGF (1.0 micrograms). The EEG, brain temperature, and motor activity were recorded for 23 h. The biological activity of basic FGF was determined in vitro by its ability to induce DNA synthesis in rat aortic smooth muscle cells. Acidic FGF induced prolonged dose-related increases in non-rapid eye movement sleep beginning in the 1st postinjection h and continuing for 12-23 h after the treatment. Acidic FGF also induced fevers of approximately 1 degree C after the 1.0 micrograms dose. Both activities of acidic FGF were lost after heat treatment. In contrast, basic FGF lacked somnogenic and pyrogenic activity, although it did induce DNA synthesis. Current results suggest that acidic FGF is part of the complex cytokine network in brain involved in sleep regulation.

  15. Locality, reflection, and wave-particle duality

    NASA Astrophysics Data System (ADS)

    Mugur-Schächter, Mioara

    1987-08-01

    Bell's theorem is believed to establish that the quantum mechanical predictions do not generally admit a causal representation compatible with Einsten's principle of separability, thereby proving incompatibility between quantum mechanics and relativity. This interpretation is contested via two convergent approaches which lead to a sharp distinction between quantum nonseparability and violation of Einstein's theory of relativity. In a first approach we explicate from the quantum mechanical formalism a concept of “reflected dependence.” Founded on this concept, we produce a causal representation of the quantum mechanical probability measure involved in Bell's proof, which is clearly separable in Einstein's sense, i.e., it does not involve supraluminal velocities, and nevertheless is “nonlocal” in Bell's sense. So Bell locality and Einstein separability are distinct qualifications, and Bell nonlocality (or Bell nonseparability) and Einstein separability are not incompatible. It is then proved explicitly that with respect to the mentioned representation Bell's derivation does not hold. So Bell's derivation does not establish that any Einstein-separable representation is incompatible with quantum mechanics. This first—negative—conclusion is a syntactic fact. The characteristics of the representation and of the reasoning involved in the mentioned counterexample to the usual interpretation of Bell's theorem suggest that the representation used—notwithstanding its ability to bring forth the specified syntactic fact—is not factually true. Factual truth and syntactic properties also have to be radically distinguished in their turn. So, in a second approach, starting from de Broglie's initial relativistic model of a microsystem, a deeper, factually acceptable representation is constructed. The analyses leading to this second representation show that quantum mechanics does indeed involve basically a certain sort of nonseparability, called here de Broglie-Bohr quantum nonseparability. But the de Broglie-Bohr quantum nonseparability is shown to stem directly from the relativistic character of the considerations which led Louis de Broglie to the fundamental relation p = h/λ, thereby being essentially consistent with relativity. As to Einstein separability, it appears to be a still insufficiently specified concept of which a future, improved specification, will probably be explicitly harmonizable with the de Broglie-Bohr quantum nonseparability. The ensemble of the conclusions obtained here brings forth a new concept of causality, a concept of folded, zigzag, reflexive causality, with respect to which the type of causality conceived of up to now appears as a particular case of outstretched, one-way causality. The reflexive causality is found compatible with the results of Aspect's experiment, and it suggests new experiments. Considered globally, the conclusions obtained in the present work might convert the conceptual situation created by Bell's proof into a process of unification of quantum mechanics and relativity.

  16. Dissipation of contractile forces: the missing piece in cell mechanics.

    PubMed

    Kurzawa, Laetitia; Vianay, Benoit; Senger, Fabrice; Vignaud, Timothée; Blanchoin, Laurent; Théry, Manuel

    2017-07-07

    Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics. © 2017 Kurzawa et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Artificial Intelligence and Information Management

    NASA Astrophysics Data System (ADS)

    Fukumura, Teruo

    After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.

  18. The rebirth of neuroscience in psychosomatic medicine, Part I: historical context, methods, and relevant basic science.

    PubMed

    Lane, Richard D; Waldstein, Shari R; Chesney, Margaret A; Jennings, J Richard; Lovallo, William R; Kozel, Peter J; Rose, Robert M; Drossman, Douglas A; Schneiderman, Neil; Thayer, Julian F; Cameron, Oliver G

    2009-02-01

    Neuroscience was an integral part of psychosomatic medicine at its inception in the early 20th century. Since the mid-20th century, however, psychosomatic research has largely ignored the brain. The field of neuroscience has burgeoned in recent years largely because a variety of powerful new methods have become available. Many of these methods allow for the noninvasive study of the living human brain and thus are potentially available for integration into psychosomatic medicine research at this time. In this first paper we examine various methods available for human neuroscientific investigation and discuss their relative strengths and weaknesses. We next review some basic functional neuroanatomy involving structures that are increasingly being identified as relevant for psychosomatic processes. We then discuss, and provide examples of, how the brain influences end organs through "information transfer systems," including the autonomic, neuroendocrine, and immune systems. The evidence currently available suggests that neuroscience holds great promise for advancing the goal of understanding the mechanisms by which psychosocial variables influence physical disease outcomes. An increased focus on such mechanistic research in psychosomatic medicine is needed to further its acceptance into the field of medicine.

  19. Metal complexes of quinolone antibiotics and their applications: an update.

    PubMed

    Uivarosi, Valentina

    2013-09-11

    Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  20. Molecular mimicry between Mycobacterium leprae proteins (50S ribosomal protein L2 and Lysyl-tRNA synthetase) and myelin basic protein: a possible mechanism of nerve damage in leprosy.

    PubMed

    Singh, Itu; Yadav, Asha Ram; Mohanty, Keshar Kunja; Katoch, Kiran; Sharma, Prashant; Mishra, Bishal; Bisht, Deepa; Gupta, U D; Sengupta, Utpal

    2015-04-01

    Autoantibodies against various components of host are known to occur in leprosy. Nerve damage is the primary cause of disability associated with leprosy. The aim of this study was to detect the level of autoantibodies and lympho-proliferative response against myelin basic protein (MBP) in leprosy patients (LPs) and their correlation with clinical phenotypes of LPs. Further, probable role of molecular mimicry in nerve damage of LPs was investigated. We observed significantly high level of anti-MBP antibodies in LPs across the spectrum and a positive significant correlation between the level of anti-MBP antibodies and the number of nerves involved in LPs. We report here that 4 B cell epitopes of myelin A1 and Mycobacterium leprae proteins, 50S ribosomal L2 and lysyl tRNA synthetase are cross-reactive. Further, M. leprae sonicated antigen hyperimmunization was responsible for induction of autoantibody response in mice which could be adoptively transferred to naive mice. For the first time our findings suggest the role of molecular mimicry in nerve damage in leprosy. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Disruptive chemicals, senescence and immortality

    PubMed Central

    Carnero, Amancio; Blanco-Aparicio, Carmen; Kondoh, Hiroshi; Lleonart, Matilde E.; Martinez-Leal, Juan Fernando; Mondello, Chiara; Ivana Scovassi, A.; Bisson, William H.; Amedei, Amedeo; Roy, Rabindra; Woodrick, Jordan; Colacci, Annamaria; Vaccari, Monica; Raju, Jayadev; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Salem, Hosni K.; Memeo, Lorenzo; Forte, Stefano; Singh, Neetu; Hamid, Roslida A.; Ryan, Elizabeth P.; Brown, Dustin G.; Wise, John Pierce; Wise, Sandra S.; Yasaei, Hemad

    2015-01-01

    Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated ‘selection and succession’ of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of ‘driver mutations’ enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes. PMID:26106138

  2. Vitamin D and remyelination in multiple sclerosis.

    PubMed

    Matías-Guíu, J; Oreja-Guevara, C; Matias-Guiu, J A; Gomez-Pinedo, U

    2018-04-01

    Several studies have found an association between multiple sclerosis and vitamin D (VD) deficiency, which suggests that VD may play a role in the immune response. However, few studies have addressed its role in remyelination. The VD receptor and the enzymes transforming VD into metabolites which activate the VD receptor are expressed in central nervous system (CNS) cells, which suggests a potential effect of VD on the CNS. Both in vitro and animal model studies have shown that VD may play a role in myelination by acting on factors that influence the microenvironment which promotes both proliferation and differentiation of neural stem cells into oligodendrocyte progenitor cells and oligodendrocytes. It remains unknown whether the mechanisms of internalisation of VD in the CNS are synergistic with or antagonistic to the mechanisms that facilitate the entry of VD metabolites into immune cells. VD seems to play a role in the CNS and our hypothesis is that VD is involved in remyelination. Understanding the basic mechanisms of VD in myelination is necessary to manage multiple sclerosis patients with VD deficiency. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Spasmodic Dysphonia: a Laryngeal Control Disorder Specific to Speech

    PubMed Central

    Ludlow, Christy L.

    2016-01-01

    Spasmodic dysphonia (SD) is a rare neurological disorder that emerges in middle age, is usually sporadic, and affects intrinsic laryngeal muscle control only during speech. Spasmodic bursts in particular laryngeal muscles disrupt voluntary control during vowel sounds in adductor SD and interfere with voice onset after voiceless consonants in abductor SD. Little is known about its origins; it is classified as a focal dystonia secondary to an unknown neurobiological mechanism that produces a chronic abnormality of laryngeal motor neuron regulation during speech. It develops primarily in females and does not interfere with breathing, crying, laughter, and shouting. Recent postmortem studies have implicated the accumulation of clusters in the parenchyma and perivascular regions with inflammatory changes in the brainstem in one to two cases. A few cases with single mutations in THAP1, a gene involved in transcription regulation, suggest that a weak genetic predisposition may contribute to mechanisms causing a nonprogressive abnormality in laryngeal motor neuron control for speech but not for vocal emotional expression. Research is needed to address the basic cellular and proteomic mechanisms that produce this disorder to provide intervention that could target the pathogenesis of the disorder rather than only providing temporary symptom relief. PMID:21248101

  4. Spasmodic dysphonia: a laryngeal control disorder specific to speech.

    PubMed

    Ludlow, Christy L

    2011-01-19

    Spasmodic dysphonia (SD) is a rare neurological disorder that emerges in middle age, is usually sporadic, and affects intrinsic laryngeal muscle control only during speech. Spasmodic bursts in particular laryngeal muscles disrupt voluntary control during vowel sounds in adductor SD and interfere with voice onset after voiceless consonants in abductor SD. Little is known about its origins; it is classified as a focal dystonia secondary to an unknown neurobiological mechanism that produces a chronic abnormality of laryngeal motor neuron regulation during speech. It develops primarily in females and does not interfere with breathing, crying, laughter, and shouting. Recent postmortem studies have implicated the accumulation of clusters in the parenchyma and perivascular regions with inflammatory changes in the brainstem in one to two cases. A few cases with single mutations in THAP1, a gene involved in transcription regulation, suggest that a weak genetic predisposition may contribute to mechanisms causing a nonprogressive abnormality in laryngeal motor neuron control for speech but not for vocal emotional expression. Research is needed to address the basic cellular and proteomic mechanisms that produce this disorder to provide intervention that could target the pathogenesis of the disorder rather than only providing temporary symptom relief.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, J.; Ijiri, Y.; Yamamoto, H.

    This paper presents the implementation of the Barcelona Basic Model (BBM) into the TOUGH-FLAC simulator analyzing the geomechanical behavior of unsaturated soils. We implemented the BBM into TOUGH-FLAC by (1) extending an existing FLAC{sup 3D} module for the Modified Cam-Clay (MCC) model in FLAC{sup 3D} and (2) adding computational routines for suction-dependent strain and net stress (i.e., total stress minus gas pressure) for unsaturated soils. We implemented a thermo-elasto-plastic version of the BBM, wherein the soil strength depends on both suction and temperature. The implementation of the BBM into TOUGH-FLAC was verified and tested against several published numerical model simulationsmore » and laboratory experiments involving the coupled thermal-hydrological-mechanical (THM) behavior of unsaturated soils. The simulation tests included modeling the mechanical behavior of bentonite-sand mixtures, which are being considered as back-fill and buffer materials for geological disposal of spent nuclear fuel. We also tested and demonstrated the use of the BBM and TOUGH-FLAC for a problem involving the coupled THM processes within a bentonite-backfilled nuclear waste emplacement tunnel. The simulation results indicated complex geomechanical behavior of the bentonite backfill, including a nonuniform distribution of buffer porosity and density that could not be captured in an alternative, simplified, linear-elastic swelling model. As a result of the work presented in this paper, TOUGH-FLAC with BBM is now fully operational and ready to be applied to problems associated with nuclear waste disposal in bentonite-backfilled tunnels, as well as other scientific and engineering problems related to the mechanical behavior of unsaturated soils.« less

  6. ADM guidance-Ceramics: Fracture toughness testing and method selection.

    PubMed

    Cesar, Paulo Francisco; Della Bona, Alvaro; Scherrer, Susanne S; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, Robert; Lohbauer, Ulrich

    2017-06-01

    The objective is within the scope of the Academy of Dental Materials Guidance Project, which is to provide dental materials researchers with a critical analysis of fracture toughness (FT) tests such that the assessment of the FT of dental ceramics is conducted in a reliable, repeatable and reproducible way. Fracture mechanics theory and FT methodologies were critically reviewed to introduce basic fracture principles and determine the main advantages and disadvantages of existing FT methods from the standpoint of the dental researcher. The recommended methods for FT determination of dental ceramics were the Single Edge "V" Notch Beam (SEVNB), Single Edge Precracked Beam (SEPB), Chevron Notch Beam (CNB), and Surface Crack in Flexure (SCF). SEVNB's main advantage is the ease of producing the notch via a cutting disk, SEPB allows for production of an atomically sharp crack generated by a specific precracking device, CNB is technically difficult, but based on solid fracture mechanics solutions, and SCF involves fracture from a clinically sized precrack. The IF test should be avoided due to heavy criticism that has arisen in the engineering field regarding the empirical nature of the calculations used for FT determination. Dental researchers interested in FT measurement of dental ceramics should start with a broad review of fracture mechanics theory to understand the underlying principles involved in fast fracture of ceramics. The choice of FT methodology should be based on the pros and cons of each test, as described in this literature review. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. The mirror mechanism in the parietal lobe.

    PubMed

    Rizzolatti, Giacomo; Rozzi, Stefano

    2018-01-01

    The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors1[OPEN

    PubMed Central

    Selote, Devarshi; Samira, Rozalynne; Matthiadis, Anna; Gillikin, Jeffrey W.; Long, Terri A.

    2015-01-01

    Iron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation. To further characterize the function of this protein, we examined the expression pattern of recombinant ProBTS::β-GLUCURONIDASE and found that it is expressed in developing embryos and other reproductive tissues, corresponding with its apparent role in reproductive growth and development. Our findings also indicate that the interactions between BTS and PYE-like (PYEL) basic helix-loop-helix transcription factors occur within the nucleus and are dependent on the presence of the RING domain. We provide evidence that BTS facilitates 26S proteasome-mediated degradation of PYEL proteins in the absence of iron. We also determined that, upon binding iron at the HHE domains, BTS is destabilized and that this destabilization relies on specific residues within the HHE domains. This study reveals an important and unique mechanism for plant iron homeostasis whereby an E3 ubiquitin ligase may posttranslationally control components of the transcriptional regulatory network involved in the iron deficiency response. PMID:25452667

  9. Adsorption behavior of benzenesulfonic acid by novel weakly basic anion exchange resins.

    PubMed

    Sun, Yue; Zuo, Peng; Luo, Junfen; Singh, Rajendra Prasad

    2017-04-01

    Two novel weakly basic anion exchange resins (SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene (Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid (BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution pH, temperature and coexisting competitive inorganic salts (Na 2 SO 4 and NaCl) on adsorption behavior were investigated and the optimum desorption agent was obtained. Adsorption isotherms of BA were found to be well represented by the Langmuir model. Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by NaCl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1 possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1 for potential industrial application. Copyright © 2016. Published by Elsevier B.V.

  10. Senior Computational Scientist | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP), Basic Science Program, HLA Immunogenetics Section, under the leadership of Dr. Mary Carrington, studies the influence of human leukocyte antigens (HLA) and specific KIR/HLA genotypes on risk of and outcomes to infection, cancer, autoimmune disease, and maternal-fetal disease. Recent studies have focused on the impact of HLA gene expression in disease, the molecular mechanism regulating expression levels, and the functional basis for the effect of differential expression on disease outcome. The lab’s further focus is on the genetic basis for resistance/susceptibility to disease conferred by immunogenetic variation. KEY ROLES/RESPONSIBILITIES The Senior Computational Scientist will provide research support to the CIP-BSP-HLA Immunogenetics Section performing bio-statistical design, analysis and reporting of research projects conducted in the lab. This individual will be involved in the implementation of statistical models and data preparation. Successful candidate should have 5 or more years of competent, innovative biostatistics/bioinformatics research experience, beyond doctoral training Considerable experience with statistical software, such as SAS, R and S-Plus Sound knowledge, and demonstrated experience of theoretical and applied statistics Write program code to analyze data using statistical analysis software Contribute to the interpretation and publication of research results

  11. Using a Web-Based Program to Increase Parental Involvement: Teachers' and Administrators' Perceptions

    ERIC Educational Resources Information Center

    del Valle, Grace B.

    2011-01-01

    Parental involvement is an important factor for improving academic performance. Communication between the school and parents constitutes one of the basic types of parental involvement. Schools struggle to find effective ways to communicate effectively with parents and are recently using technology to facilitate this communication. This qualitative…

  12. Biomechanical concepts applicable to minimally invasive fracture repair in small animals.

    PubMed

    Chao, Peini; Lewis, Daniel D; Kowaleski, Michael P; Pozzi, Antonio

    2012-09-01

    Understanding the basic biomechanical principles of surgical stabilization of fractures is essential for developing an appropriate preoperative plan as well as making prudent intraoperative decisions. This article aims to provide basic biomechanical knowledge essential to the understanding of the complex interaction between the mechanics and biology of fracture healing. The type of healing and the outcome can be influenced by several mechanical factors, which depend on the interaction between bone and implant. The surgeon should understand the mechanical principles of fracture fixation and be able to choose the best type of fixation for each specific fracture. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Fractional vector calculus and fluid mechanics

    NASA Astrophysics Data System (ADS)

    Lazopoulos, Konstantinos A.; Lazopoulos, Anastasios K.

    2017-04-01

    Basic fluid mechanics equations are studied and revised under the prism of fractional continuum mechanics (FCM), a very promising research field that satisfies both experimental and theoretical demands. The geometry of the fractional differential has been clarified corrected and the geometry of the fractional tangent spaces of a manifold has been studied in Lazopoulos and Lazopoulos (Lazopoulos KA, Lazopoulos AK. Progr. Fract. Differ. Appl. 2016, 2, 85-104), providing the bases of the missing fractional differential geometry. Therefore, a lot can be contributed to fractional hydrodynamics: the basic fractional fluid equations (Navier Stokes, Euler and Bernoulli) are derived and fractional Darcy's flow in porous media is studied.

  14. Proteomic strategy for the identification of critical actors in reorganization of the post-meiotic male genome.

    PubMed

    Govin, Jerome; Gaucher, Jonathan; Ferro, Myriam; Debernardi, Alexandra; Garin, Jerome; Khochbin, Saadi; Rousseaux, Sophie

    2012-01-01

    After meiosis, during the final stages of spermatogenesis, the haploid male genome undergoes major structural changes, resulting in a shift from a nucleosome-based genome organization to the sperm-specific, highly compacted nucleoprotamine structure. Recent data support the idea that region-specific programming of the haploid male genome is of high importance for the post-fertilization events and for successful embryo development. Although these events constitute a unique and essential step in reproduction, the mechanisms by which they occur have remained completely obscure and the factors involved have mostly remained uncharacterized. Here, we sought a strategy to significantly increase our understanding of proteins controlling the haploid male genome reprogramming, based on the identification of proteins in two specific pools: those with the potential to bind nucleic acids (basic proteins) and proteins capable of binding basic proteins (acidic proteins). For the identification of acidic proteins, we developed an approach involving a transition-protein (TP)-based chromatography, which has the advantage of retaining not only acidic proteins due to the charge interactions, but also potential TP-interacting factors. A second strategy, based on an in-depth bioinformatic analysis of the identified proteins, was then applied to pinpoint within the lists obtained, male germ cells expressed factors relevant to the post-meiotic genome organization. This approach reveals a functional network of DNA-packaging proteins and their putative chaperones and sheds a new light on the way the critical transitions in genome organizations could take place. This work also points to a new area of research in male infertility and sperm quality assessments.

  15. Platinum-Induced Ototoxicity in Children: A Consensus Review on Mechanisms, Predisposition, and Protection, Including a New International Society of Pediatric Oncology Boston Ototoxicity Scale

    PubMed Central

    Brock, Penelope R.; Knight, Kristin R.; Freyer, David R.; Campbell, Kathleen C.M.; Steyger, Peter S.; Blakley, Brian W.; Rassekh, Shahrad R.; Chang, Kay W.; Fligor, Brian J.; Rajput, Kaukab; Sullivan, Michael; Neuwelt, Edward A.

    2012-01-01

    Purpose The platinum chemotherapy agents cisplatin and carboplatin are widely used in the treatment of adult and pediatric cancers. Cisplatin causes hearing loss in at least 60% of pediatric patients. Reducing cisplatin and high-dose carboplatin ototoxicity without reducing efficacy is important. Patients and Methods This review summarizes recommendations made at the 42nd Congress of the International Society of Pediatric Oncology (SIOP) in Boston, October 21-24, 2010, reflecting input from international basic scientists, pediatric oncologists, otolaryngologists, oncology nurses, audiologists, and neurosurgeons to develop and advance research and clinical trials for otoprotection. Results Platinum initially impairs hearing in the high frequencies and progresses to lower frequencies with increasing cumulative dose. Genes involved in drug transport, metabolism, and DNA repair regulate platinum toxicities. Otoprotection can be achieved by acting on several these pathways and generally involves antioxidant thiol agents. Otoprotection is a strategy being explored to decrease hearing loss while maintaining dose intensity or allowing dose escalation, but it has the potential to interfere with tumoricidal effects. Route of administration and optimal timing relative to platinum therapy are critical issues. In addition, international standards for grading and comparing ototoxicity are essential to the success of prospective pediatric trials aimed at reducing platinum-induced hearing loss. Conclusion Collaborative prospective basic and clinical trial research is needed to reduce the incidence of irreversible platinum-induced hearing loss, and optimize cancer control. Wide use of the new internationally agreed-on SIOP Boston ototoxicity scale in current and future otoprotection trials should help facilitate this goal. PMID:22547603

  16. Generalized Models for Rock Joint Surface Shapes

    PubMed Central

    Du, Shigui; Hu, Yunjin; Hu, Xiaofei

    2014-01-01

    Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901

  17. On Saying It Right (Write): "Fix-Its" in the Foundations of Learning to Write

    ERIC Educational Resources Information Center

    Dyson, Anne Haas

    2006-01-01

    The basics of child writing, as traditionally conceived, involve "neutral" conventions for organizing and encoding language. This "basic" notion of a solid foundation for child writing is itself situated in a fluid world of cultural and linguistic diversity and rapidly changing literacy practices. In this paper, I aim to…

  18. Similarity Theory and Dimensionless Numbers in Heat Transfer

    ERIC Educational Resources Information Center

    Marin, E.; Calderon, A.; Delgado-Vasallo, O.

    2009-01-01

    We present basic concepts underlying the so-called similarity theory that in our opinion should be explained in basic undergraduate general physics courses when dealing with heat transport problems, in particular with those involving natural or free convection. A simple example is described that can be useful in showing a criterion for neglecting…

  19. Basic Training Program for Emergency Medical Technician Ambulance: Course Guide.

    ERIC Educational Resources Information Center

    Fucigna, Joseph T.; And Others

    In an effort to upgrade or further develop the skills levels of all individuals involved in the emergency medical care service, this training program was developed for the National Highway Safety Bureau. This specific course is an attempt to organize, conduct, and standardize a basic training course for emergency medical technicians (EMTs). The…

  20. Action Research of Computer-Assisted-Remediation of Basic Research Concepts.

    ERIC Educational Resources Information Center

    Packard, Abbot L.; And Others

    This study investigated the possibility of creating a computer-assisted remediation program to assist students having difficulties in basic college research and statistics courses. A team approach involving instructors and students drove the research into and creation of the computer program. The effect of student use was reviewed by looking at…

Top