Sample records for basic mechanistic studies

  1. New Simulation Methods to Facilitate Achieving a Mechanistic Understanding of Basic Pharmacology Principles in the Classroom

    ERIC Educational Resources Information Center

    Grover, Anita; Lam, Tai Ning; Hunt, C. Anthony

    2008-01-01

    We present a simulation tool to aid the study of basic pharmacology principles. By taking advantage of the properties of agent-based modeling, the tool facilitates taking a mechanistic approach to learning basic concepts, in contrast to the traditional empirical methods. Pharmacodynamics is a particular aspect of pharmacology that can benefit from…

  2. Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions.

    PubMed

    Sobkowski, Michal; Kraszewski, Adam; Stawinski, Jacek

    2015-01-01

    This review covers recent progress in the preparation of H-phosphonate mono- and diesters, basic studies on mechanistic and stereochemical aspects of this class of phosphorus compounds, and their fundamental chemistry in terms of transformation of P-H bonds into P-heteroatom bonds. Selected recent applications of H-phosphonate derivatives in basic organic phosphorus chemistry and in the synthesis of biologically important phosphorus compounds are also discussed.

  3. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate

    USDA-ARS?s Scientific Manuscript database

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponen...

  4. Putting the psychology back into psychological models: mechanistic versus rational approaches.

    PubMed

    Sakamoto, Yasuaki; Jones, Mattr; Love, Bradley C

    2008-09-01

    Two basic approaches to explaining the nature of the mind are the rational and the mechanistic approaches. Rational analyses attempt to characterize the environment and the behavioral outcomes that humans seek to optimize, whereas mechanistic models attempt to simulate human behavior using processes and representations analogous to those used by humans. We compared these approaches with regard to their accounts of how humans learn the variability of categories. The mechanistic model departs in subtle ways from rational principles. In particular, the mechanistic model incrementally updates its estimates of category means and variances through error-driven learning, based on discrepancies between new category members and the current representation of each category. The model yields a prediction, which we verify, regarding the effects of order manipulations that the rational approach does not anticipate. Although both rational and mechanistic models can successfully postdict known findings, we suggest that psychological advances are driven primarily by consideration of process and representation and that rational accounts trail these breakthroughs.

  5. Understanding synergy.

    PubMed

    Geary, Nori

    2013-02-01

    Analysis of the interactive effects of combinations of hormones or other manipulations with qualitatively similar individual effects is an important topic in basic and clinical endocrinology as well as other branches of basic and clinical research related to integrative physiology. Functional, as opposed to mechanistic, analyses of interactions rely on the concept of synergy, which can be defined qualitatively as a cooperative action or quantitatively as a supra-additive effect according to some metric for the addition of different dose-effect curves. Unfortunately, dose-effect curve addition is far from straightforward; rather, it requires the development of an axiomatic mathematical theory. I review the mathematical soundness, face validity, and utility of the most frequently used approaches to supra-additive synergy. These criteria highlight serious problems in the two most common synergy approaches, response additivity and Loewe additivity, which is the basis of the isobole and related response surface approaches. I conclude that there is no adequate, generally applicable, supra-additive synergy metric appropriate for endocrinology or any other field of basic and clinical integrative physiology. I recommend that these metrics be abandoned in favor of the simpler definition of synergy as a cooperative, i.e., nonantagonistic, effect. This simple definition avoids mathematical difficulties, is easily applicable, meets regulatory requirements for combination therapy development, and suffices to advance phenomenological basic research to mechanistic studies of interactions and clinical combination therapy research.

  6. Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology.

    PubMed

    Sponsler, Douglas B; Johnson, Reed M

    2017-04-01

    The role of pesticides in recent honey bee losses is controversial, partly because field studies often fail to detect effects predicted by laboratory studies. This dissonance highlights a critical gap in the field of honey bee toxicology: there exists little mechanistic understanding of the patterns and processes of exposure that link honey bees to pesticides in their environment. The authors submit that 2 key processes underlie honey bee pesticide exposure: 1) the acquisition of pesticide by foraging bees, and 2) the in-hive distribution of pesticide returned by foragers. The acquisition of pesticide by foraging bees must be understood as the spatiotemporal intersection between environmental contamination and honey bee foraging activity. This implies that exposure is distributional, not discrete, and that a subset of foragers may acquire harmful doses of pesticide while the mean colony exposure would appear safe. The in-hive distribution of pesticide is a complex process driven principally by food transfer interactions between colony members, and this process differs importantly between pollen and nectar. High priority should be placed on applying the extensive literature on honey bee biology to the development of more rigorously mechanistic models of honey bee pesticide exposure. In combination with mechanistic effects modeling, mechanistic exposure modeling has the potential to integrate the field of honey bee toxicology, advancing both risk assessment and basic research. Environ Toxicol Chem 2017;36:871-881. © 2016 SETAC. © 2016 SETAC.

  7. Critical Insights into Cardiovascular Disease from Basic Research on the Oxidation of Phospholipids: the γ-Hydroxyalkenal Phospholipid Hypothesis

    PubMed Central

    Salomon, Robert G.; Gu, Xiaodong

    2011-01-01

    Basic research, exploring the hypothesis that γ-hydroxyalkenal phospholipids are generated in vivo through oxidative cleavage of polyunsaturated phospholipids, is delivering a bonanza of molecular mechanistic insights into cardiovascular disease. Rather than targeting a specific pathology, these studies were predicated on the presumption that a fundamental understanding of lipid oxidation is likely to provide critical insights into disease processes. This investigational approach – from the chemistry of biomolecules to disease phenotype – that complements the more common opposite paradigm, is proving remarkably productive. PMID:21870852

  8. Iridium-catalysed ortho-H/D and -H/T exchange under basic conditions: C-H activation of unprotected tetrazoles.

    PubMed

    Kerr, William J; Lindsay, David M; Reid, Marc; Atzrodt, Jens; Derdau, Volker; Rojahn, Patrick; Weck, Remo

    2016-05-10

    The first examples of selective ortho-directed C-H activation with unprotected 2-aryltetrazoles are described. A new base-assisted protocol for iridium(i) hydrogen isotope exchange catalysis allows access to ortho-deuterated and tritiated tetrazoles, including the tetrazole-containing pharmaceutical, Valsartan. Preliminary mechanistic studies are also presented.

  9. Mechanistic systems modeling to guide drug discovery and development

    PubMed Central

    Schmidt, Brian J.; Papin, Jason A.; Musante, Cynthia J.

    2013-01-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. PMID:22999913

  10. Mechanistic systems modeling to guide drug discovery and development.

    PubMed

    Schmidt, Brian J; Papin, Jason A; Musante, Cynthia J

    2013-02-01

    A crucial question that must be addressed in the drug development process is whether the proposed therapeutic target will yield the desired effect in the clinical population. Pharmaceutical and biotechnology companies place a large investment on research and development, long before confirmatory data are available from human trials. Basic science has greatly expanded the computable knowledge of disease processes, both through the generation of large omics data sets and a compendium of studies assessing cellular and systemic responses to physiologic and pathophysiologic stimuli. Given inherent uncertainties in drug development, mechanistic systems models can better inform target selection and the decision process for advancing compounds through preclinical and clinical research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A white-box model of S-shaped and double S-shaped single-species population growth

    PubMed Central

    Kalmykov, Lev V.

    2015-01-01

    Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717

  12. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs.

    PubMed

    Assmus, Frauke; Houston, J Brian; Galetin, Aleksandra

    2017-11-15

    The prediction of tissue-to-plasma water partition coefficients (Kpu) from in vitro and in silico data using the tissue-composition based model (Rodgers & Rowland, J Pharm Sci. 2005, 94(6):1237-48.) is well established. However, distribution of basic drugs, in particular into lysosome-rich lung tissue, tends to be under-predicted by this approach. The aim of this study was to develop an extended mechanistic model for the prediction of Kpu which accounts for lysosomal sequestration and the contribution of different cell types in the tissue of interest. The extended model is based on compound-specific physicochemical properties and tissue composition data to describe drug ionization, distribution into tissue water and drug binding to neutral lipids, neutral phospholipids and acidic phospholipids in tissues, including lysosomes. Physiological data on the types of cells contributing to lung, kidney and liver, their lysosomal content and lysosomal pH were collated from the literature. The predictive power of the extended mechanistic model was evaluated using a dataset of 28 basic drugs (pK a ≥7.8, 17 β-blockers, 11 structurally diverse drugs) for which experimentally determined Kpu data in rat tissue have been reported. Accounting for the lysosomal sequestration in the extended mechanistic model improved the accuracy of Kpu predictions in lung compared to the original Rodgers model (56% drugs within 2-fold or 88% within 3-fold of observed values). Reduction in the extent of Kpu under-prediction was also evident in liver and kidney. However, consideration of lysosomal sequestration increased the occurrence of over-predictions, yielding overall comparable model performances for kidney and liver, with 68% and 54% of Kpu values within 2-fold error, respectively. High lysosomal concentration ratios relative to cytosol (>1000-fold) were predicted for the drugs investigated; the extent differed depending on the lysosomal pH and concentration of acidic phospholipids among cell types. Despite this extensive lysosomal sequestration in the individual cells types, the maximal change in the overall predicted tissue Kpu was <3-fold for lysosome-rich tissues investigated here. Accounting for the variability in cellular physiological model input parameters, in particular lysosomal pH and fraction of the cellular volume occupied by the lysosomes, only partially explained discrepancies between observed and predicted Kpu data in the lung. Improved understanding of the system properties, e.g., cell/organelle composition is required to support further development of mechanistic equations for the prediction of drug tissue distribution. Application of this revised mechanistic model is recommended for prediction of Kpu in lysosome-rich tissue to facilitate the advancement of physiologically-based prediction of volume of distribution and drug exposure in the tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Young children can be taught basic natural selection using a picture-storybook intervention.

    PubMed

    Kelemen, Deborah; Emmons, Natalie A; Seston Schillaci, Rebecca; Ganea, Patricia A

    2014-04-01

    Adaptation by natural selection is a core mechanism of evolution. It is also one of the most widely misunderstood scientific processes. Misconceptions are rooted in cognitive biases found in preschoolers, yet concerns about complexity mean that adaptation by natural selection is generally not comprehensively taught until adolescence. This is long after untutored theoretical misunderstandings are likely to have become entrenched. In a novel approach, we explored 5- to 8-year-olds' capacities to learn a basic but theoretically coherent mechanistic explanation of adaptation through a custom storybook intervention. Experiment 1 showed that children understood the population-based logic of natural selection and also generalized it. Furthermore, learning endured 3 months later. Experiment 2 replicated these results and showed that children understood and applied an even more nuanced mechanistic causal explanation. The findings demonstrate that, contrary to conventional educational wisdom, basic natural selection is teachable in early childhood. Theory-driven interventions using picture storybooks with rich explanatory structure are beneficial.

  14. Combination of Lewis Basic Selenium Catalysis and Redox Selenium Chemistry: Synthesis of Trifluoromethylthiolated Tertiary Alcohols with Alkenes.

    PubMed

    Zhu, Zechen; Luo, Jie; Zhao, Xiaodan

    2017-09-15

    A new and efficient method for diaryl selenide catalyzed vicinal CF 3 S hydroxylation of 1,1-multisubstitued alkenes has been developed. Various trifluoromethylthiolated tertiary alcohols could be readily synthesized under mild conditions. This method is also effective for the intramolecular cyclization of alkenes tethered by carboxylic acid, hydroxy, sulfamide, or ester groups and is associated with the introduction of a CF 3 S group. Mechanistic studies have revealed that the pathway involves a redox cycle between Se(II) and Se(IV) and Lewis basic selenium catalysis.

  15. Substituent Effects in the Pyridinium Catalyzed Reduction of CO 2 to Methanol: Further Mechanistic Insights

    DOE PAGES

    Barton Cole, Emily E.; Baruch, Maor F.; L’Esperance, Robert P.; ...

    2014-11-15

    A series of substituted pyridiniums were examined for their catalytic ability to electrochemically reduce carbon dioxide to methanol. It is found that in general increased basicity of the nitrogen of the amine and higher LUMO energy of the pyridinium correlate with enhanced carbon dioxide reduction. The highest faradaic yield for methanol production at a platinum electrode was 39 ± 4 % for 4-aminopyridine compared to 22 ± 2 % for pyridine. However, 4-tertbutyl and 4-dimethylamino pyridine showed decreased catalytic behavior, contrary to the enhanced activity associated with the increased basicity and LUMO energy, and suggesting that steric effects also playmore » a significant role in the behavior of pyridinium electrocatalysts. As a result, mechanistic models for the the reaction of the pyridinium with carbon dioxide are considered.« less

  16. BIOMARKERS OF EXPOSURE, EFFECT AND SUSCEPTIBILITY IN FISHES

    EPA Science Inventory

    Understanding basic mechanisms of toxicological processes is integral to assessment of risk, In aquatic toxicology, however, the mechanistic evaluation of environmental chemicals is a much younger area of investigation than in mammalian systems and only recently has received sig...

  17. Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction

    PubMed Central

    Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.

    2016-01-01

    Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025

  18. Emerging Drugs for the Treatment of Anxiety

    PubMed Central

    Murrough, James W.; Yaqubi, Sahab; Sayed, Sehrish; Charney, Dennis S.

    2016-01-01

    Introduction Anxiety disorders are among the most prevalent and disabling psychiatric disorders in the United States and worldwide. Basic research has provided critical insights into the mechanism regulating fear behavior in animals and a host of animal models have been developed in order to screen compounds for anxiolytic properties. Despite this progress, no mechanistically novel agents for the treatment of anxiety have come to market in more than two decades. Areas covered The current review will provide a critical summary of current pharmacological approaches to the treatment of anxiety and will examine the pharmacotherapeutic pipeline for treatments in development. Anxiety and related disorders considered herein include panic disorder, social anxiety disorder, generalized anxiety disorder and posttraumatic stress disorder. The glutamate, neuropeptide and endocannabinoid systems show particular promise as future targets for novel drug development. Expert opinion In the face of an ever-growing understanding of fear related behavior, the field awaits the translation of this research into mechanistically novel treatments. Obstacles will be overcome through close collaboration between basic and clinical researchers with the goal of aligning valid endophenotypes of human anxiety disorders with improved animal models. Novel approaches are needed to move basic discoveries into new, more effective treatments for our patients. PMID:26012843

  19. Metal-ligand cooperation in catalytic intramolecular hydroamination: a computational study of iridium-pyrazolato cooperative activation of aminoalkenes.

    PubMed

    Tobisch, Sven

    2012-06-04

    The present study comprehensively explores diverse mechanistic pathways for intramolecular hydroamination of prototype 2,2-dimethyl-4-penten-1-amine by Cp*Ir chloropyrazole (1; Cp*=pentamethylcyclopentadienyl) in the presence of KOtBu base with the aid of density functional theory (DFT) calculations. The most accessible mechanistic pathway for catalytic turnover commences from Cp*Ir pyrazolato (Pz) substrate adduct 2⋅S, representing the catalytically competent compound and proceeds via initial electrophilic activation of the olefin C=C bond by the metal centre. It entails 1) facile and reversible anti nucleophilic amine attack on the iridium-olefin linkage; 2) Ir-C bond protonolysis via stepwise transfer of the ammonium N-H proton at the zwitterionic [Cp*IrPz-alkyl] intermediate onto the metal that is linked to turnover-limiting, reductive, cycloamine elimination commencing from a high-energy, metastable [Cp*IrPz-hydrido-alkyl] species; and 3) subsequent facile cycloamine liberation to regenerate the active catalyst species. The amine-iridium bound 2 a⋅S likely corresponds to the catalyst resting state and the catalytic reaction is expected to proceed with a significant primary kinetic isotope. This study unveils the vital role of a supportive hydrogen-bonded network involving suitably aligned β-basic pyrazolato and cycloamido moieties together with an external amine molecule in facilitating metal protonation and reductive elimination. Cooperative hydrogen bonding thus appears pivotal for effective catalysis. The mechanistic scenario is consonant with catalyst performance data and furthermore accounts for the variation in performance for [Cp*IrPz] compounds featuring a β- or γ-basic pyrazolato unit. As far as the route that involves amine N-H bond activation is concerned, a thus far undocumented pathway for concerted amidoalkene → cycloamine conversion through olefin protonation by the pyrazole N-H concurrent with N-C ring closure is disclosed as a favourable scenario. Although not practicable in the present system, this pathway describes a novel mechanistic variant in late transition metal-ligand bifunctional hydroamination catalysis that can perhaps be viable for tailored catalyst designs. The insights revealed herein concerning the operative mechanism and the structure-reactivity relationships will likely govern the rational design of late transition metal-ligand bifunctional catalysts and facilitate further conceptual advances in the area. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Translational progress on tumor biomarkers

    PubMed Central

    Guo, Hongwei; Zhou, Xiaolin; Lu, Yi; Xie, Liye; Chen, Qian; Keller, Evan T; Liu, Qian; Zhou, Qinghua; Zhang, Jian

    2015-01-01

    There is an urgent need to apply basic research achievements to the clinic. In particular, mechanistic studies should be developed by bench researchers, depending upon clinical demands, in order to improve the survival and quality of life of cancer patients. To date, translational medicine has been addressed in cancer biology, particularly in the identification and characterization of novel tumor biomarkers. This review focuses on the recent achievements and clinical application prospects in tumor biomarkers based on translational medicine. PMID:26557902

  1. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs.

    PubMed

    Fitzpatrick, Megan J; Mathewson, Paul D; Porter, Warren P

    2015-01-01

    Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model.

  2. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs

    PubMed Central

    Fitzpatrick, Megan J.; Mathewson, Paul D.; Porter, Warren P.

    2015-01-01

    Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model. PMID:26308207

  3. Incorporation of basic side chains into cryptolepine scaffold: structure-antimalarial activity relationships and mechanistic studies.

    PubMed

    Lavrado, João; Cabal, Ghislain G; Prudêncio, Miguel; Mota, Maria M; Gut, Jiri; Rosenthal, Philip J; Díaz, Cecília; Guedes, Rita C; dos Santos, Daniel J V A; Bichenkova, Elena; Douglas, Kenneth T; Moreira, Rui; Paulo, Alexandra

    2011-02-10

    The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity when compared with the parent compound. Localization studies inside parasite blood stages by fluorescence microscopy showed that these derivatives accumulate inside the nucleus, indicating that the incorporation of a basic side chain is not sufficient enough to promote selective accumulation in the acidic digestive vacuole of the parasite. Most of the compounds within this series showed the ability to bind to a double-stranded DNA duplex as well to monomeric hematin, suggesting that these are possible targets associated with the observed antimalarial activity. Overall, these novel cryptolepine analogues with substantially improved antiplasmodial activity and selectivity index provide a promising starting point for development of potent and highly selective agents against drug-resistant malaria parasites.

  4. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  5. The great diversity of HMX conformers: probing the potential energy surface using CCSD(T).

    PubMed

    Molt, Robert W; Watson, Thomas; Bazanté, Alexandre P; Bartlett, Rodney J

    2013-04-25

    The octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX) molecule is a very commonly studied system, in all 3 phases, because of its importance as an explosive; however, no one has ever attempted a systematic study of what all the major gas-phase conformers are. This is critical to a mechanistic study of the kinetics involved, as well as the viability of various crystalline polymorphs based on the gas-phase conformers. We have used existing knowledge of basic cyclooctane chemistry to survey all possible HMX conformers based on its fundamental ring structure. After studying what geometries are possible after second-order many-body perturbation theory (MBPT(2)) geometry optimization, we calculated the energetics using coupled cluster singles, doubles, and perturbative triples (CCSD(T))/cc-pVTZ. These highly accurate energies allow us to better calculate starting points for future mechanistic studies. Additionally, the plethora of structures are compared to existing experimental data of crystals. It is found that the crystal field effect is sometimes large and sometimes small for HMX.

  6. In Silico Augmentation of the Drug Development Pipeline: Examples from the study of Acute Inflammation.

    PubMed

    An, Gary; Bartels, John; Vodovotz, Yoram

    2011-03-01

    The clinical translation of promising basic biomedical findings, whether derived from reductionist studies in academic laboratories or as the product of extensive high-throughput and -content screens in the biotechnology and pharmaceutical industries, has reached a period of stagnation in which ever higher research and development costs are yielding ever fewer new drugs. Systems biology and computational modeling have been touted as potential avenues by which to break through this logjam. However, few mechanistic computational approaches are utilized in a manner that is fully cognizant of the inherent clinical realities in which the drugs developed through this ostensibly rational process will be ultimately used. In this article, we present a Translational Systems Biology approach to inflammation. This approach is based on the use of mechanistic computational modeling centered on inherent clinical applicability, namely that a unified suite of models can be applied to generate in silico clinical trials, individualized computational models as tools for personalized medicine, and rational drug and device design based on disease mechanism.

  7. A Delineation of Epistemic Possibilities in Explanations of Cognitive Development.

    ERIC Educational Resources Information Center

    Price, Reese E.

    Several epistemic formulations have been advanced to explain cognitive development. Many writers have divided the field of psychology into three basic underlying models: the mechanistic, organismic, and dialectic models. An examination of epistemic positions reveals five broadly defined positions on how behavior develops within a given organism.…

  8. Basic, specific, mechanistic? Conceptualizing musical emotions in the brain.

    PubMed

    Omigie, Diana

    2016-06-01

    The number of studies investigating music processing in the human brain continues to increase, with a large proportion of them focussing on the correlates of so-called musical emotions. The current Review highlights the recent development whereby such studies are no longer concerned only with basic emotions such as happiness and sadness but also with so-called music-specific or "aesthetic" ones such as nostalgia and wonder. It also highlights how mechanisms such as expectancy and empathy, which are seen as inducing musical emotions, are enjoying ever-increasing investigation and substantiation with physiological and neuroimaging methods. It is proposed that a combination of these approaches, namely, investigation of the precise mechanisms through which so-called music-specific or aesthetic emotions may arise, will provide the most important advances for our understanding of the unique nature of musical experience. © 2015 Wiley Periodicals, Inc.

  9. Mechanistic Biomarkers in Acetaminophen-induced Hepatotoxicity and Acute Liver Failure: From Preclinical Models to Patients

    PubMed Central

    McGill, Mitchell R.; Jaeschke, Hartmut

    2015-01-01

    SUMMARY Introduction Drug hepatotoxicity is a major clinical issue. Acetaminophen (APAP) overdose is especially common. Serum biomarkers used to follow patient progress reflect either liver injury or function, but focus on biomarkers that can provide insight into the basic mechanisms of hepatotoxicity is increasing and enabling us to translate mechanisms of toxicity from animal models to humans. Areas covered We review recent advances in mechanistic serum biomarker research in drug hepatotoxicity. Specifically, biomarkers for reactive drug intermdiates, mitochondrial dysfunction, nuclear DNA damage, mode of cell death and inflammation are discussed, as well as microRNAs. Emphasis is placed on APAP-induced liver injury. Expert Opinion Several serum biomarkers of reactive drug intermediates, mitochondrial damage, nuclear DNA damage, apoptosis and necrosis, and inflammation have been described. These studies have provided evidence that mitochondrial damage is critical in APAP hepatotoxicity in humans, while apoptosis has only a minor role, and inflammation is important for recovery and regeneration after APAP overdose. Additionally, mechanistic serum biomarkers have been shown to predict outcome as well as, or better than, some clinical scores. In the future, such biomarkers will help determine the need for liver transplantation and, with improved understanding of the human pathophysiology, identify novel therapeutic targets. PMID:24836926

  10. In Silico Augmentation of the Drug Development Pipeline: Examples from the study of Acute Inflammation

    PubMed Central

    An, Gary; Bartels, John; Vodovotz, Yoram

    2011-01-01

    The clinical translation of promising basic biomedical findings, whether derived from reductionist studies in academic laboratories or as the product of extensive high-throughput and –content screens in the biotechnology and pharmaceutical industries, has reached a period of stagnation in which ever higher research and development costs are yielding ever fewer new drugs. Systems biology and computational modeling have been touted as potential avenues by which to break through this logjam. However, few mechanistic computational approaches are utilized in a manner that is fully cognizant of the inherent clinical realities in which the drugs developed through this ostensibly rational process will be ultimately used. In this article, we present a Translational Systems Biology approach to inflammation. This approach is based on the use of mechanistic computational modeling centered on inherent clinical applicability, namely that a unified suite of models can be applied to generate in silico clinical trials, individualized computational models as tools for personalized medicine, and rational drug and device design based on disease mechanism. PMID:21552346

  11. Finding the missing link between ictal bradyarrhythmia, ictal asystole, and sudden unexpected death in epilepsy.

    PubMed

    Leung, H; Kwan, P; Elger, C E

    2006-08-01

    Basic science studies of the human brain have supported the cortical representation of cardiovascular responses, including heart rate variability. Clinical observations of ictal bradyarrhythmia may be mechanistically explained by the influence of the central autonomic network, although the localization and lateralization issues need to be considered in the light of patterns of seizure spread, hand dominance, and presence of lesions. Ictal bradyarrhythmia also offers a mechanistic explanation of sudden unexpected death in epilepsy (SUDEP), though it may explain only some but not all cases of SUDEP. The missing links are (1) clinical evidence of common factors shared by patients with ictal bradyarrhythmia and patients who die from SUDEP, (2) evidence of arrhythmia as a risk factor for SUDEP from epidemiological studies, and, (3) determination of the importance of ictal bradyarrhythmia in SUDEP with respect to other proposed mechanisms including apnea and intrinsic cardiac abnormalities. There remains a need to review the seizure mechanisms in cases of SUDEP and to step up the amount of concurrent ECG/intracranial EEG analysis in both ictal bradyarrhythmia and SUDEP cases.

  12. Climate Change Conceptual Change: Scientific Information Can Transform Attitudes.

    PubMed

    Ranney, Michael Andrew; Clark, Dav

    2016-01-01

    Of this article's seven experiments, the first five demonstrate that virtually no Americans know the basic global warming mechanism. Fortunately, Experiments 2-5 found that 2-45 min of physical-chemical climate instruction durably increased such understandings. This mechanistic learning, or merely receiving seven highly germane statistical facts (Experiment 6), also increased climate-change acceptance-across the liberal-conservative spectrum. However, Experiment 7's misleading statistics decreased such acceptance (and dramatically, knowledge-confidence). These readily available attitudinal and conceptual changes through scientific information disconfirm what we term "stasis theory"--which some researchers and many laypeople varyingly maintain. Stasis theory subsumes the claim that informing people (particularly Americans) about climate science may be largely futile or even counterproductive--a view that appears historically naïve, suffers from range restrictions (e.g., near-zero mechanistic knowledge), and/or misinterprets some polarization and (noncausal) correlational data. Our studies evidenced no polarizations. Finally, we introduce HowGlobalWarmingWorks.org--a website designed to directly enhance public "climate-change cognition." Copyright © 2016 Cognitive Science Society, Inc.

  13. Bridging the boundaries between scientists and clinicians-mechanistic hypotheses and patient stories in risk assessment of drugs.

    PubMed

    Rocca, Elena

    2017-02-01

    The cultural divide between scientists and clinicians has been described as undermining the advance of medical science, by hindering the production of practice-relevant research and of research-informed clinical decisions. Here, I consider the field of post-marketing risk assessment of drugs as an example of strict interdependence between basic biomedical research, clinical research, and clinical evaluation and show how it would benefit from a closer collaboration between scientists and clinicians. The risk assessment of drugs after their marketing relies on spontaneous adverse effect reports to drug agencies and on peer-reviewed case reports. I emphasize the importance of qualitative analysis of such reports for the improvement of mechanistic understanding of harmful effects of drugs. I argue that mechanistic explanations of drug effects are at least as important as determination of their frequency, in order to establish causation. An ideal risk assessment, then, verifies not only the frequency of undesired effects but also why and how the harm happens. For this purpose, the frequency or novelty of the unintended outcome, although contextually indicative, should not determine the epistemic value of a report. Details about the context that generated an unexpected outcome, instead, can offer the chance of improving causal understanding about how the intervention works. This is illustrated through examples from medical research. Mechanistic understanding is a domain of joint collaboration among (1) clinicians, in charge of detailed, qualitative reporting of patient stories about side effects, (2) qualitative clinical researchers, in charge of analyzing clinical contexts or harmful effects and formulating explanatory hypotheses, and (3) basic biomedical researchers, in charge of verifying such hypotheses. In addition, direct information flow can on one side focus clinicians' attention on knowledge gaps about drugs/effects where more research is needed, while on the other side create a more contextualized concept of mechanism among scientists. © 2016 John Wiley & Sons, Ltd.

  14. Phosphodiester models for cleavage of nucleic acids

    PubMed Central

    2018-01-01

    Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters. PMID:29719577

  15. An Architecture for Controlling Multiple Robots

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand; Pirjanian, Paolo; Schenker, Paul; Huntsberger, Terrance

    2004-01-01

    The Control Architecture for Multirobot Outpost (CAMPOUT) is a distributed-control architecture for coordinating the activities of multiple robots. In the CAMPOUT, multiple-agent activities and sensor-based controls are derived as group compositions and involve coordination of more basic controllers denoted, for present purposes, as behaviors. The CAMPOUT provides basic mechanistic concepts for representation and execution of distributed group activities. One considers a network of nodes that comprise behaviors (self-contained controllers) augmented with hyper-links, which are used to exchange information between the nodes to achieve coordinated activities. Group behavior is guided by a scripted plan, which encodes a conditional sequence of single-agent activities. Thus, higher-level functionality is composed by coordination of more basic behaviors under the downward task decomposition of a multi-agent planner

  16. Of Metaphors and Paradigms: Rejecting the "Commonsense" View of Reading.

    ERIC Educational Resources Information Center

    Weaver, Constance

    For many years, methods of teaching reading have been based upon a mechanistic paradigm that something can be understood by reducing it to its most basic parts. This scientific paradigm has led to several misconceptions about reading: (1) that comprehension can be reduced to separately identifiable parts, (2) that meaning is contained within the…

  17. Experimental and modelling studies for the validation of the mechanistic basis of the Local Effect Model

    NASA Astrophysics Data System (ADS)

    Tommasino, F.

    2016-03-01

    This review will summarize results obtained in the recent years applying the Local Effect Model (LEM) approach to the study of basic radiobiological aspects, as for instance DNA damage induction and repair, and charged particle track structure. The promising results obtained using different experimental techniques and looking at different biological end points, support the relevance of the LEM approach for the description of radiation effects induced by both low- and high-LET radiation. Furthermore, they suggest that nowadays the appropriate combination of experimental and modelling tools can lead to advances in the understanding of several open issues in the field of radiation biology.

  18. Observational and Modeling Studies of Radiative, Chemical, and Dynamical Interactions in the Earth''s Atmosphere

    NASA Technical Reports Server (NTRS)

    Salby, Murry

    1998-01-01

    A 3-dimensional model was developed to support mechanistic studies. The model solves the global primitive equations in isentropic coordinates, which directly characterize diabatic processes forcing the Brewer-Dobson circulation of the middle atmosphere. It's numerical formulation is based on Hough harmonics, which partition horizontal motion into its rotational and divergent components. These computational features, along with others, enable 3D integrations to be performed practically on RISC computer architecture, on which they can be iterated to support mechanistic studies. The model conserves potential vorticity quite accurately under adiabatic conditions. Forced by observed tropospheric structure, in which integrations are anchored, the model generates a diabatic circulation that is consistent with satellite observations of tracer behavior and diabatic cooling rates. The model includes a basic but fairly complete treatment of gas-phase photochemistry that represents some 20 chemical species and 50 governing reactions with diurnally-varying shortwave absorption. The model thus provides a reliable framework to study transport and underlying diabatic processes, which can then be compared against chemical and dynamical structure observed and in GCM integrations. Integrations with the Langley GCM were performed to diagnose feedback between simulated convection and the tropical circulation. These were studied in relation to tropospheric properties controlling moisture convergence and environmental conditions supporting deep convection, for comparison against mechanistic integrations of wave CISK that successfully reproduce the Madden-Julian Oscillation (MJO) of the tropical circulation. These comparisons were aimed at identifying and ultimately improving aspects of the convective simulation, with the objective of recovering a successful simulation of the MJO in the Langley GCM, behavior that should be important to budgets of upper-tropospheric water vapor and chemical species.

  19. The Basic Metabolic Profile in Heart Failure-Marker and Modifier.

    PubMed

    Elfar, Ahmed; Sambandam, Kamalanathan K

    2017-08-01

    The physiologic determinants of each of the components of the basic metabolic profile in patients with heart failure will be explored. Additionally, the review will discuss the prognostic value of alterations in the basic metabolic profile as well as their effects on management. Abnormalities in the basic metabolic profile have significant correlation with clinical outcomes and can modify treatment in heart failure. Hypochloremia has recently received increased attention for these reasons. Elevated creatinine, increased blood urea nitrogen, hyponatremia, and hypochloremia correlate with worse mortality and diuretic resistance in heart failure. Hypokalemia, even when mild, has proven to be a worse clinical indicator than modest elevations in serum potassium. Hypochloremia is mechanistically linked to hyponatremia and metabolic alkalosis, but recent compelling data suggests that it can provide more discriminating prognostic information. Knowledge of the physiologic basis for each of these alterations informs their management.

  20. The structural basis for enhanced silver reflectance in Koi fish scale and skin.

    PubMed

    Gur, Dvir; Leshem, Ben; Oron, Dan; Weiner, Steve; Addadi, Lia

    2014-12-10

    Fish have evolved biogenic multilayer reflectors composed of stacks of intracellular anhydrous guanine crystals separated by cytoplasm, to produce the silvery luster of their skin and scales. Here we compare two different variants of the Japanese Koi fish; one of them with enhanced reflectivity. Our aim is to determine how biology modulates reflectivity, and from this to obtain a mechanistic understanding of the structure and properties governing the intensity of silver reflectance. We measured the reflectance of individual scales with a custom-made microscope, and then for each individual scale we characterized the structure of the guanine crystal/cytoplasm layers using high-resolution cryo-SEM. The measured reflectance and the structural-geometrical parameters were used to calculate the reflectance of each scale, and the results were compared to the experimental measurements. We show that enhanced reflectivity is obtained with the same basic guanine crystal/cytoplasm stacks, but the structural arrangement between the stack, inside the stacks, and relative to the scale surface is varied when reflectivity is enhanced. Finally, we propose a model that incorporates the basic building block parameters, the crystal orientation inside the tissue, and the resulting reflectance and explains the mechanistic basis for reflectance enhancement.

  1. Early report: The use of Cytosorb™ haemabsorption column as an adjunct in managing severe sepsis: initial experiences, review and recommendations.

    PubMed

    Morris, Craig; Gray, Lewis; Giovannelli, Marco

    2015-08-01

    A novel synthetic haemabsorption column (Cytosorb™) has recently become commercially available. We describe its use in patients with overwhelming sepsis and consider the experience and evidence supporting its use. While Cytosorb haemabsorption is mechanistically distinct from other extracorporeal therapies in sepsis and appears effective in reducing inflammatory cytokines during sepsis, much of the basic science and clinical benefits remain unclear. Significant interactions including removal of antibiotics may be harmful and require further study. Suggestions for future research and how Cytosorb™ could be incorporated into practice are provided.

  2. Early report: The use of Cytosorb™ haemabsorption column as an adjunct in managing severe sepsis: initial experiences, review and recommendations

    PubMed Central

    Gray, Lewis; Giovannelli, Marco

    2015-01-01

    A novel synthetic haemabsorption column (Cytosorb™) has recently become commercially available. We describe its use in patients with overwhelming sepsis and consider the experience and evidence supporting its use. While Cytosorb haemabsorption is mechanistically distinct from other extracorporeal therapies in sepsis and appears effective in reducing inflammatory cytokines during sepsis, much of the basic science and clinical benefits remain unclear. Significant interactions including removal of antibiotics may be harmful and require further study. Suggestions for future research and how Cytosorb™ could be incorporated into practice are provided. PMID:28979423

  3. Chemical Foundations of Hydrogen Sulfide Biology

    PubMed Central

    Li, Qian; Lancaster, Jack R.

    2013-01-01

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  4. On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions.

    PubMed

    Chieregato, Alessandro; Velasquez Ochoa, Juliana; Bandinelli, Claudia; Fornasari, Giuseppe; Cavani, Fabrizio; Mella, Massimo

    2015-01-01

    A common way to convert ethanol into chemicals is by upgrading it over oxide catalysts with basic features; this method makes it possible to obtain important chemicals such as 1-butanol (Guerbet reaction) and 1,3-butadiene (Lebedev reaction). Despite their long history in chemistry, the details of the close inter-relationship of these reactions have yet to be discussed properly. Our present study focuses on reactivity tests, in situ diffuse reflectance infrared Fourier transform spectroscopy, MS analysis, and theoretical modeling. We used MgO as a reference catalyst with pure basic features to explore ethanol conversion from its very early stages. Based on the obtained results, we formulate a new mechanistic theory able to explain not only our results but also most of the scientific literature on Lebedev and Guerbet chemistry. This provides a rational description of the intermediates shared by the two reaction pathways as well as an innovative perspective on the catalyst requirements to direct the reaction pathway toward 1-butanol or butadiene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Disentangling the Role of Domain-Specific Knowledge in Student Modeling

    NASA Astrophysics Data System (ADS)

    Ruppert, John; Duncan, Ravit Golan; Chinn, Clark A.

    2017-08-01

    This study explores the role of domain-specific knowledge in students' modeling practice and how this knowledge interacts with two domain-general modeling strategies: use of evidence and developing a causal mechanism. We analyzed models made by middle school students who had a year of intensive model-based instruction. These models were made to explain a familiar but unstudied biological phenomenon: late onset muscle pain. Students were provided with three pieces of evidence related to this phenomenon and asked to construct a model to account for this evidence. Findings indicate that domain-specific resources play a significant role in the extent to which the models accounted for provided evidence. On the other hand, familiarity with the situation appeared to contribute to the mechanistic character of models. Our results indicate that modeling strategies alone are insufficient for the development of a mechanistic model that accounts for provided evidence and that, while learners can develop a tentative model with a basic familiarity of the situation, scaffolding certain domain-specific knowledge is necessary to assist students with incorporating evidence in modeling tasks.

  6. Overview of recent DNA vaccine development for fish

    USGS Publications Warehouse

    Kurath, G.; ,

    2005-01-01

    Since the first description of DNA vaccines for fish in 1996, numerous studies of genetic immunisation against the rhabdovirus pathogens infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) have established their potential as both highly efficacious biologicals and useful basic research tools. Single small doses of rhabdovirus DNA constructs provide extremely strong protection against severe viral challenge under a variety of conditions. DNA vaccines for several other important fish viruses, bacteria, and parasites are under investigation, but they have not yet shown high efficacy. Therefore, current research is focussed on mechanistic studies to understand the basis of protection, and on improvement of the nucleic acid vaccine applications against a wider range of fish pathogens.

  7. Predicting ectotherm disease vector spread—benefits from multidisciplinary approaches and directions forward

    NASA Astrophysics Data System (ADS)

    Thomas, Stephanie Margarete; Beierkuhnlein, Carl

    2013-05-01

    The occurrence of ectotherm disease vectors outside of their previous distribution area and the emergence of vector-borne diseases can be increasingly observed at a global scale and are accompanied by a growing number of studies which investigate the vast range of determining factors and their causal links. Consequently, a broad span of scientific disciplines is involved in tackling these complex phenomena. First, we evaluate the citation behaviour of relevant scientific literature in order to clarify the question "do scientists consider results of other disciplines to extend their expertise?" We then highlight emerging tools and concepts useful for risk assessment. Correlative models (regression-based, machine-learning and profile techniques), mechanistic models (basic reproduction number R 0) and methods of spatial regression, interaction and interpolation are described. We discuss further steps towards multidisciplinary approaches regarding new tools and emerging concepts to combine existing approaches such as Bayesian geostatistical modelling, mechanistic models which avoid the need for parameter fitting, joined correlative and mechanistic models, multi-criteria decision analysis and geographic profiling. We take the quality of both occurrence data for vector, host and disease cases, and data of the predictor variables into consideration as both determine the accuracy of risk area identification. Finally, we underline the importance of multidisciplinary research approaches. Even if the establishment of communication networks between scientific disciplines and the share of specific methods is time consuming, it promises new insights for the surveillance and control of vector-borne diseases worldwide.

  8. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality

    USGS Publications Warehouse

    Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Misra, Vikram; Cryan, Paul M.; Blehert, David S.; Wibbelt, Gudrun; Willis, Craig K.R.

    2013-01-01

    White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid–base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid–base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality.

  9. The status and future of acupuncture mechanism research.

    PubMed

    Napadow, Vitaly; Ahn, Andrew; Longhurst, John; Lao, Lixing; Stener-Victorin, Elisabet; Harris, Richard; Langevin, Helene M

    2008-09-01

    On November 8-9, 2007, the Society for Acupuncture Research (SAR) hosted an international conference to mark the tenth anniversary of the landmark NIH [National Institutes of Health] Consensus Development Conference on Acupuncture. More than 300 acupuncture researchers, practitioners, students, funding agency personnel, and health policy analysts from 20 countries attended the SAR meeting held at the University of Maryland School of Medicine, Baltimore, MD. This paper summarizes important invited lectures in the area of basic and translational acupuncture research. Specific areas include the scientific assessment of acupuncture points and meridians, the neural mechanisms of cardiovascular regulation by acupuncture, mechanisms for electroacupuncture applied to persistent inflammation and pain, basic and translational research on acupuncture in gynecologic applications, the application of functional neuroimaging to acupuncture research with specific application to carpal-tunnel syndrome and fibromyalgia, and the association of the connective tissue system to acupuncture research. In summary, mechanistic models for acupuncture effects that have been investigated experimentally have focused on the effects of acupuncture needle stimulation on the nervous system, muscles, and connective tissue. These mechanistic models are not mutually exclusive. Iterative testing, expanding, and perhaps merging of such models will potentially lead to an incremental understanding of the effects of manual and electrical stimulation of acupuncture needles that is solidly rooted in physiology.

  10. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection.

    PubMed

    Klefoth, Thomas; Skov, Christian; Kuparinen, Anna; Arlinghaus, Robert

    2017-12-01

    In passively operated fishing gear, boldness-related behaviors should fundamentally affect the vulnerability of individual fish and thus be under fisheries selection. To test this hypothesis, we used juvenile common-garden reared carp ( Cyprinus carpio ) within a narrow size range to investigate the mechanistic basis of behavioral selection caused by angling. We focused on one key personality trait (i.e., boldness), measured in groups within ponds, two morphological traits (body shape and head shape), and one life-history trait (juvenile growth capacity) and studied mean standardized selection gradients caused by angling. Carp behavior was highly repeatable within ponds. In the short term, over seven days of fishing, total length, not boldness, was the main predictor of angling vulnerability. However, after 20 days of fishing, boldness turned out to be the main trait under selection, followed by juvenile growth rate, while morphological traits were only weakly related to angling vulnerability. In addition, we found juvenile growth rate to be moderately correlated with boldness. Hence, direct selection on boldness will also induce indirect selection on juvenile growth and vice versa, but given that the two traits are not perfectly correlated, independent evolution of both traits is also possible. Our study is among the first to mechanistically reveal that energy-acquisition-related behaviors, and not growth rate per se, are key factors determining the probability of capture, and hence, behavioral traits appear to be the prime targets of angling selection. We predict an evolutionary response toward increased shyness in intensively angling-exploited fish stocks, possibly causing the emergence of a timidity syndrome.

  11. Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery

    PubMed Central

    Holmfeldt, Linda

    2015-01-01

    The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic models that recapitulate human ALL, and for amplification of limiting amounts of primary tumor material. A frequently used model is the primary xenograft model that utilizes immunocompromised mice and involves injection of primary patient tumor specimens into mice, and subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated can then be used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. This unit describes detailed procedures for the establishment and maintenance of primary ALL xenograft panels for potential use in basic research or translational studies. PMID:25737157

  12. Naturally occurring alkaline amino acids function as efficient catalysts on Knoevenagel condensation at physiological pH: a mechanistic elucidation.

    PubMed

    Li, Weina; Fedosov, Sergey; Tan, Tianwei; Xu, Xuebing; Guo, Zheng

    2014-05-01

    To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic α-amino acid of L-lysine, L-arginine, and L-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation.

  13. The Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics

    PubMed Central

    Fors, Brett P.; Buchwald, Stephen L.

    2009-01-01

    An efficient Pd-catalyst for the transformation of aryl chlorides, triflates and nonaflates to nitroaromatics has been developed. This reaction proceeds under weekly basic conditions and displays a broad scope and excellent functional group compatibility. Moreover, this method allows for the synthesis of aromatic nitro compounds that cannot be accessed efficiently via other nitration protocols. Mechanistic insight into the trasmetallation step of the catalytic process is also reported. PMID:19737014

  14. A climate-driven mechanistic population model of Aedes albopictus with diapause.

    PubMed

    Jia, Pengfei; Lu, Liang; Chen, Xiang; Chen, Jin; Guo, Li; Yu, Xiao; Liu, Qiyong

    2016-03-24

    The mosquito Aedes albopitus is a competent vector for the transmission of many blood-borne pathogens. An important factor that affects the mosquitoes' development and spreading is climate, such as temperature, precipitation and photoperiod. Existing climate-driven mechanistic models overlook the seasonal pattern of diapause, referred to as the survival strategy of mosquito eggs being dormant and unable to hatch under extreme weather. With respect to diapause, several issues remain unaddressed, including identifying the time when diapause eggs are laid and hatched under different climatic conditions, demarcating the thresholds of diapause and non-diapause periods, and considering the mortality rate of diapause eggs. Here we propose a generic climate-driven mechanistic population model of Ae. albopitus applicable to most Ae. albopictus-colonized areas. The new model is an improvement over the previous work by incorporating the diapause behaviors with many modifications to the stage-specific mechanism of the mosquitoes' life-cycle. monthly Container Index (CI) of Ae. albopitus collected in two Chinese cities, Guangzhou and Shanghai is used for model validation. The simulation results by the proposed model is validated with entomological field data by the Pearson correlation coefficient r (2) in Guangzhou (r (2) = 0.84) and in Shanghai (r (2) = 0.90). In addition, by consolidating the effect of diapause-related adjustments and temperature-related parameters in the model, the improvement is significant over the basic model. The model highlights the importance of considering diapause in simulating Ae. albopitus population. It also corroborates that temperature and photoperiod are significant in affecting the population dynamics of the mosquito. By refining the relationship between Ae. albopitus population and climatic factors, the model serves to establish a mechanistic relation to the growth and decline of the species. Understanding this relationship in a better way will benefit studying the transmission and the spatiotemporal distribution of mosquito-borne epidemics and eventually facilitating the early warning and control of the diseases.

  15. Identifying gnostic predictors of the vaccine response.

    PubMed

    Haining, W Nicholas; Pulendran, Bali

    2012-06-01

    Molecular predictors of the response to vaccination could transform vaccine development. They would allow larger numbers of vaccine candidates to be rapidly screened, shortening the development time for new vaccines. Gene-expression based predictors of vaccine response have shown early promise. However, a limitation of gene-expression based predictors is that they often fail to reveal the mechanistic basis of their ability to classify response. Linking predictive signatures to the function of their component genes would advance basic understanding of vaccine immunity and also improve the robustness of vaccine prediction. New analytic tools now allow more biological meaning to be extracted from predictive signatures. Functional genomic approaches to perturb gene expression in mammalian cells permit the function of predictive genes to be surveyed in highly parallel experiments. The challenge for vaccinologists is therefore to use these tools to embed mechanistic insights into predictors of vaccine response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Identifying gnostic predictors of the vaccine response

    PubMed Central

    Haining, W. Nicholas; Pulendran, Bali

    2012-01-01

    Molecular predictors of the response to vaccination could transform vaccine development. They would allow larger numbers of vaccine candidates to be rapidly screened, shortening the development time for new vaccines. Gene-expression based predictors of vaccine response have shown early promise. However, a limitation of gene-expression based predictors is that they often fail to reveal the mechanistic basis for their ability to classify response. Linking predictive signatures to the function of their component genes would advance basic understanding of vaccine immunity and also improve the robustness of outcome classification. New analytic tools now allow more biological meaning to be extracted from predictive signatures. Functional genomic approaches to perturb gene expression in mammalian cells permit the function of predictive genes to be surveyed in highly parallel experiments. The challenge for vaccinologists is therefore to use these tools to embed mechanistic insights into predictors of vaccine response. PMID:22633886

  17. Heterolytic Activation of Hydrogen Promoted by Ruthenium Nanoparticles immobilized on Basic Supports and Hydrogenation of Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Fang, Minfeng

    Despite the aggressive development and deployment of new renewable and nuclear technologies, petroleum-derived transportation fuels---gasoline, diesel and jet fuels---will continue to dominate the markets for decades. Environmental legislation imposes severe limits on the tolerable proportion of aromatics, sulfur and nitrogen contents in transportation fuels, which is difficult to achieve with current refining technologies. Catalytic hydrogenation plays an important role in the production of cleaner fuels, both as a direct means to reduce the aromatics and as a key step in the hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) processes. However, conventional catalysts require drastic conditions and/or are easily poisoned by S or N aromatics. Therefore, there is still a need for new efficient catalysts for hydrogenation reactions relevant to the production of cleaner fossil fuels. Our catalyst design involves metallic nanoparticles intimately associated with a basic support, with the aim of creating a nanostructure capable of promoting the heterolytic activation of hydrogen and ionic hydrogenation mechanisms, as a strategy to avoid catalyst poisoning and enhance catalytic activity. We have designed and prepared a new nanostructured catalytic material composed of RuNPs immobilized on the basic polymer P4VPy. We have demonstrated that the Ru/P4VPy catalyst can promote heterolytic hydrogen activation and a unique surface ionic hydrogenation mechanism for the efficient hydrogenation of N-aromatics. This is the first time these ionic hydrogenation pathways have been demonstrated on solid surfaces. For the RuNPs surfaces without basic sites in close proximity, the conventional homolytic H2 splitting is otherwise involved. Using the mechanistic concepts from Ru/P4VPy, we have designed and prepared the Ru/MgO catalyst, with the aim to improve the catalytic efficiency for the hydrogenation of heteroatom aromatics operating by the ionic hydrogenation mechanism. The Ru/MgO catalyst significantly improves the catalytic efficiency for hydrogenation of a variety of N-/S-heteroaromatics and mono-/polycyclic aromatic hydrocarbons representative of components of petroleum-derived fuels. The catalyst is superior to the few other known supported noble metal catalysts for these reactions. Mechanistic studies also point to the ionic hydrogenation mechanism on the Ru/MgO surfaces. In addition, the Ru/MgO catalyst is highly recyclable and long-lived.

  18. Supporting Mechanistic Reasoning in Domain-Specific Contexts

    ERIC Educational Resources Information Center

    Weinberg, Paul J.

    2017-01-01

    Mechanistic reasoning is an epistemic practice central within science, technology, engineering, and mathematics disciplines. Although there has been some work on mechanistic reasoning in the research literature and standards documents, much of this work targets domain-general characterizations of mechanistic reasoning; this study provides…

  19. Cannabinoids and Epilepsy.

    PubMed

    Rosenberg, Evan C; Tsien, Richard W; Whalley, Benjamin J; Devinsky, Orrin

    2015-10-01

    Cannabis has been used for centuries to treat seizures. Recent anecdotal reports, accumulating animal model data, and mechanistic insights have raised interest in cannabis-based antiepileptic therapies. In this study, we review current understanding of the endocannabinoid system, characterize the pro- and anticonvulsive effects of cannabinoids [e.g., Δ9-tetrahydrocannabinol and cannabidiol (CBD)], and highlight scientific evidence from pre-clinical and clinical trials of cannabinoids in epilepsy. These studies suggest that CBD avoids the psychoactive effects of the endocannabinoid system to provide a well-tolerated, promising therapeutic for the treatment of seizures, while whole-plant cannabis can both contribute to and reduce seizures. Finally, we discuss results from a new multicenter, open-label study using CBD in a population with treatment-resistant epilepsy. In all, we seek to evaluate our current understanding of cannabinoids in epilepsy and guide future basic science and clinical studies.

  20. Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research.

    PubMed

    An, Gary C

    2010-01-01

    The greatest challenge facing the biomedical research community is the effective translation of basic mechanistic knowledge into clinically effective therapeutics. This challenge is most evident in attempts to understand and modulate "systems" processes/disorders, such as sepsis, cancer, and wound healing. Formulating an investigatory strategy for these issues requires the recognition that these are dynamic processes. Representation of the dynamic behavior of biological systems can aid in the investigation of complex pathophysiological processes by augmenting existing discovery procedures by integrating disparate information sources and knowledge. This approach is termed Translational Systems Biology. Focusing on the development of computational models capturing the behavior of mechanistic hypotheses provides a tool that bridges gaps in the understanding of a disease process by visualizing "thought experiments" to fill those gaps. Agent-based modeling is a computational method particularly well suited to the translation of mechanistic knowledge into a computational framework. Utilizing agent-based models as a means of dynamic hypothesis representation will be a vital means of describing, communicating, and integrating community-wide knowledge. The transparent representation of hypotheses in this dynamic fashion can form the basis of "knowledge ecologies," where selection between competing hypotheses will apply an evolutionary paradigm to the development of community knowledge.

  1. An agent-based modeling framework linking inflammation and cancer using evolutionary principles: description of a generative hierarchy for the hallmarks of cancer and developing a bridge between mechanism and epidemiological data.

    PubMed

    An, Gary; Kulkarni, Swati

    2015-02-01

    Inflammation plays a critical role in the development and progression of cancer, evident in multiple patient populations manifesting increased, non-resolving inflammation, such as inflammatory bowel disease, viral hepatitis and obesity. Given the complexity of both the inflammatory response and the process of oncogenesis, we utilize principles from the field of Translational Systems Biology to bridge the gap between basic mechanistic knowledge and clinical/epidemiologic data by integrating inflammation and oncogenesis within an agent-based model, the Inflammation and Cancer Agent-based Model (ICABM). The ICABM utilizes two previously published and clinically/epidemiologically validated mechanistic models to demonstrate the role of an increased inflammatory milieu on oncogenesis. Development of the ICABM required the creation of a generative hierarchy of the basic hallmarks of cancer to provide a foundation to ground the plethora of molecular and pathway components currently being studied. The ordering schema emphasizes the essential role of a fitness/selection frame shift to sub-organismal evolution as a basic property of cancer, where the generation of genetic instability as a negative effect for multicellular eukaryotic organisms represents the restoration of genetic plasticity used as an adaptive strategy by colonies of prokaryotic unicellular organisms. Simulations with the ICABM demonstrate that inflammation provides a functional environmental context that drives the shift to sub-organismal evolution, where increasingly inflammatory environments led to increasingly damaged genomes in microtumors (tumors below clinical detection size) and cancers. The flexibility of this platform readily facilitates tailoring the ICABM to specific cancers, their associated mechanisms and available epidemiological data. One clinical example of an epidemiological finding that could be investigated with this platform is the increased incidence of triple negative breast cancers in the premenopausal African-American population, which has been identified as having up-regulated of markers of inflammation. The fundamental nature of the ICABM suggests its usefulness as a base platform upon which additional molecular detail could be added as needed. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The use of mechanistic evidence in drug approval.

    PubMed

    Aronson, Jeffrey K; La Caze, Adam; Kelly, Michael P; Parkkinen, Veli-Pekka; Williamson, Jon

    2018-06-11

    The role of mechanistic evidence tends to be under-appreciated in current evidence-based medicine (EBM), which focusses on clinical studies, tending to restrict attention to randomized controlled studies (RCTs) when they are available. The EBM+ programme seeks to redress this imbalance, by suggesting methods for evaluating mechanistic studies alongside clinical studies. Drug approval is a problematic case for the view that mechanistic evidence should be taken into account, because RCTs are almost always available. Nevertheless, we argue that mechanistic evidence is central to all the key tasks in the drug approval process: in drug discovery and development; assessing pharmaceutical quality; devising dosage regimens; assessing efficacy, harms, external validity, and cost-effectiveness; evaluating adherence; and extending product licences. We recommend that, when preparing for meetings in which any aspect of drug approval is to be discussed, mechanistic evidence should be systematically analysed and presented to the committee members alongside analyses of clinical studies. © 2018 The Authors Journal of Evaluation in Clinical Practice Published by John Wiley & Sons Ltd.

  3. More insights into the pharmacological effects of artemisinin.

    PubMed

    Zyad, Abdelmajid; Tilaoui, Mounir; Jaafari, Abdeslam; Oukerrou, Moulay Ali; Mouse, Hassan Ait

    2018-02-01

    Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities. Copyright © 2017 John Wiley & Sons, Ltd.

  4. The Discovery of Carboxyethylpyrroles (CEPs): Critical Insights into AMD, Autism, Cancer, and Wound Healing from Basic Research on the Chemistry of Oxidized Phospholipids

    PubMed Central

    Salomon, Robert G.; Hong, Li; Hollyfield, Joe G.

    2011-01-01

    Basic research, exploring the hypothesis that 2-(ω-carboxyethyl)pyrrole (CEP) modifications of proteins are generated nonenzymatically in vivo is delivering a bonanza of molecular mechanistic insights into age-related macular degeneration, autism, cancer, and wound healing. CEPs are produced through covalent modification of protein lysyl ε-amino groups by γ-hydroxyalkenal phospholipids that are formed by oxidative cleavage of docosahexaenate-containing phospholipids. Chemical synthesis of CEP-modified proteins and the production of highly specific antibodies that recognize them preceded and facilitated their detection in vivo and enabled exploration of their biological occurrence and activities. This investigational approach –from the chemistry of biomolecules to disease phenotype – is proving to be remarkably productive. PMID:21875030

  5. The structural basis of secondary active transport mechanisms.

    PubMed

    Forrest, Lucy R; Krämer, Reinhard; Ziegler, Christine

    2011-02-01

    Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    USGS Publications Warehouse

    Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.

    2017-01-01

    In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid signaling. 

  7. Current directions in non-invasive low intensity electric brain stimulation for depressive disorder.

    PubMed

    Schutter, Dennis J L G; Sack, Alexander T

    2014-01-01

    Non-invasive stimulation of the human brain to improve depressive symptoms is increasingly finding its way in clinical settings as a viable form of somatic treatment. Following successful modulation of neural excitability with subsequent antidepressant effects, neural polarization by administrating weak direct currents to the scalp has gained renewed interest. A new wave of basic and clinical studies seems to underscore the potential therapeutic value of direct current stimulation in the treatment of depression. Issues concerning the lack of mechanistic insights into the workings of modifying brain function through neural polarization and how this process translates to its antidepressant properties calls for additional research. The range of its clinical applicability has yet to be established.

  8. Regulation of autophagy by amino acid availability in S. cerevisiae and mammalian cells.

    PubMed

    Abeliovich, Hagai

    2015-10-01

    Autophagy is a catabolic membrane-trafficking process that occurs in all eukaryotic organisms analyzed to date. The study of autophagy has exploded over the last decade or so, branching into numerous aspects of cellular and organismal physiology. From basic functions in starvation and quality control, autophagy has expanded into innate immunity, aging, neurological diseases, redox regulation, and ciliogenesis, to name a few roles. In the present review, I would like to narrow the discussion to the more classical roles of autophagy in supporting viability under nutrient limitation. My aim is to provide a semblance of a historical overview, together with a concise, and perhaps subjective, mechanistic and functional analysis of the central questions in the autophagy field.

  9. The Intersection of HPV Epidemiology, Genomics and Mechanistic Studies of HPV-Mediated Carcinogenesis.

    PubMed

    Mirabello, Lisa; Clarke, Megan A; Nelson, Chase W; Dean, Michael; Wentzensen, Nicolas; Yeager, Meredith; Cullen, Michael; Boland, Joseph F; Schiffman, Mark; Burk, Robert D

    2018-02-13

    Of the ~60 human papillomavirus (HPV) genotypes that infect the cervicovaginal epithelium, only 12-13 "high-risk" types are well-established as causing cervical cancer, with HPV16 accounting for over half of all cases worldwide. While HPV16 is the most important carcinogenic type, variants of HPV16 can differ in their carcinogenicity by 10-fold or more in epidemiologic studies. Strong genotype-phenotype associations embedded in the small 8-kb HPV16 genome motivate molecular studies to understand the underlying molecular mechanisms. Understanding the mechanisms of HPV genomic findings is complicated by the linkage of HPV genome variants. A panel of experts in various disciplines gathered on 21 November 2016 to discuss the interdisciplinary science of HPV oncogenesis. Here, we summarize the discussion of the complexity of the viral-host interaction and highlight important next steps for selected applied basic laboratory studies guided by epidemiological genomic findings.

  10. The Intersection of HPV Epidemiology, Genomics and Mechanistic Studies of HPV-Mediated Carcinogenesis

    PubMed Central

    Mirabello, Lisa; Clarke, Megan A.; Nelson, Chase W.; Dean, Michael; Wentzensen, Nicolas; Yeager, Meredith; Cullen, Michael; Boland, Joseph F.; Schiffman, Mark

    2018-01-01

    Of the ~60 human papillomavirus (HPV) genotypes that infect the cervicovaginal epithelium, only 12–13 “high-risk” types are well-established as causing cervical cancer, with HPV16 accounting for over half of all cases worldwide. While HPV16 is the most important carcinogenic type, variants of HPV16 can differ in their carcinogenicity by 10-fold or more in epidemiologic studies. Strong genotype-phenotype associations embedded in the small 8-kb HPV16 genome motivate molecular studies to understand the underlying molecular mechanisms. Understanding the mechanisms of HPV genomic findings is complicated by the linkage of HPV genome variants. A panel of experts in various disciplines gathered on 21 November 2016 to discuss the interdisciplinary science of HPV oncogenesis. Here, we summarize the discussion of the complexity of the viral–host interaction and highlight important next steps for selected applied basic laboratory studies guided by epidemiological genomic findings. PMID:29438321

  11. Teleomechanism redux? Functional physiology and hybrid models of life in early modern natural philosophy.

    PubMed

    Wolfe, Charles T

    2014-01-01

    The distinction between 'mechanical' and 'teleological' has been familiar since Kant; between a fully mechanistic, quantitative science of Nature and a teleological, qualitative approach to living beings, namely 'organisms' understood as purposive or at least functional entities. The beauty of this distinction is that it apparently makes intuitive sense and maps onto historico-conceptual constellations in the life sciences, regarding the status of the body versus that of the machine. I argue that the mechanism-teleology distinction is imprecise and flawed using examples including the 'functional' features present even in Cartesian physiology, the Oxford Physiologists' work on circulation and respiration, the fact that the model of the 'body-machine' is not a mechanistic reduction of organismic properties to basic physical properties but is focused on the uniqueness of organic life; and the concept of 'animal economy' in vitalist medicine, which I present as a 'teleomechanistic' concept of organism (borrowing a term of Lenoir's which he applied to nineteenth-century embryology)--neither mechanical nor teleological.

  12. Ion-Pairing Contribution to the Liposomal Transport of Topotecan as Revealed by Mechanistic Modeling.

    PubMed

    Fugit, Kyle D; Anderson, Bradley D

    2017-04-01

    Actively loaded liposomal formulations of anticancer agents have been widely explored due to their high drug encapsulation efficiencies and prolonged drug retention. Mathematical models to predict and optimize drug loading and release kinetics from these nanoparticle formulations would be useful in their development and may allow researchers to tune release profiles. Such models must account for the driving forces as influenced by the physicochemical properties of the drug and the microenvironment, and the liposomal barrier properties. This study employed mechanistic modeling to describe the active liposomal loading and release kinetics of the anticancer agent topotecan (TPT). The model incorporates ammonia transport resulting in generation of a pH gradient, TPT dimerization, TPT lactone ring-opening and -closing interconversion kinetics, chloride transport, and transport of TPT-chloride ion-pairs to describe the active loading and release kinetics of TPT in the presence of varying chloride concentrations. Model-based predictions of the kinetics of active loading at varying loading concentrations of TPT and release under dynamic dialysis conditions were in reasonable agreement with experiments. These findings identify key attributes to consider in optimizing and predicting loading and release of liposomal TPT that may also be applicable to liposomal formulations of other weakly basic pharmaceuticals. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Reevaluating the conceptual framework for applied research on host-plant resistance.

    PubMed

    Stout, Michael J

    2013-06-01

    Applied research on host-plant resistance to arthropod pests has been guided over the past 60 years by a framework originally developed by Reginald Painter in his 1951 book, Insect Resistance in Crop Plants. Painter divided the "phenomena" of resistance into three "mechanisms," nonpreference (later renamed antixenosis), antibiosis, and tolerance. The weaknesses of this framework are discussed. In particular, this trichotomous framework does not encompass all known mechanisms of resistance, and the antixenosis and antibiosis categories are ambiguous and inseparable in practice. These features have perhaps led to a simplistic approach to understanding arthropod resistance in crop plants. A dichotomous scheme is proposed as a replacement, with a major division between resistance (plant traits that limit injury to the plant) and tolerance (plant traits that reduce amount of yield loss per unit injury), and the resistance category subdivided into constitutive/inducible and direct/indirect subcategories. The most important benefits of adopting this dichotomous scheme are to more closely align the basic and applied literatures on plant resistance and to encourage a more mechanistic approach to studying plant resistance in crop plants. A more mechanistic approach will be needed to develop novel approaches for integrating plant resistance into pest management programs. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  14. Contexts, concepts and cognition: principles for the transfer of basic science knowledge.

    PubMed

    Kulasegaram, Kulamakan M; Chaudhary, Zarah; Woods, Nicole; Dore, Kelly; Neville, Alan; Norman, Geoffrey

    2017-02-01

    Transfer of basic science aids novices in the development of clinical reasoning. The literature suggests that although transfer is often difficult for novices, it can be optimised by two complementary strategies: (i) focusing learners on conceptual knowledge of basic science or (ii) exposing learners to multiple contexts in which the basic science concepts may apply. The relative efficacy of each strategy as well as the mechanisms that facilitate transfer are unknown. In two sequential experiments, we compared both strategies and explored mechanistic changes in how learners address new transfer problems. Experiment 1 was a 2 × 3 design in which participants were randomised to learn three physiology concepts with or without emphasis on the conceptual structure of basic science via illustrative analogies and by means of one, two or three contexts during practice (operationalised as organ systems). Transfer of these concepts to explain pathologies in familiar organ systems (near transfer) and unfamiliar organ systems (far transfer) was evaluated during immediate and delayed testing. Experiment 2 examined whether exposure to conceptual analogies and multiple contexts changed how learners classified new problems. Experiment 1 showed that increasing context variation significantly improved far transfer performance but there was no difference between two and three contexts during practice. Similarly, the increased conceptual analogies led to higher performance for far transfer. Both interventions had independent but additive effects on overall performance. Experiment 2 showed that such analogies and context variation caused learners to shift to using structural characteristics to classify new problems even when there was superficial similarity to previous examples. Understanding problems based on conceptual structural characteristics is necessary for successful transfer. Transfer of basic science can be optimised by using multiple strategies that collectively emphasise conceptual structure. This means teaching must focus on conserved basic science knowledge and de-emphasise superficial features. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  15. From molecules to behavior and the clinic: Integration in chronobiology.

    PubMed

    Bechtel, William

    2013-12-01

    Chronobiology, especially the study of circadian rhythms, provides a model scientific field in which philosophers can study how investigators from a variety of disciplines working at different levels of organization are each contributing to a multi-level account of the responsible mechanism. I focus on how the framework of mechanistic explanation integrates research designed to decompose the mechanism with efforts directed at recomposition that relies especially on computation models. I also examine how recently the integration has extended beyond basic research to the processes through which the disruption of circadian rhythms contributes to disease, including various forms of cancer. Understanding these linkages has been facilitated by discoveries about how circadian mechanisms interact with mechanisms involved in other physiological processes, including the cell cycle and the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Can we use mice to study schizophrenia?

    PubMed

    Canetta, Sarah; Kellendonk, Christoph

    2018-03-19

    The validity of rodent models for the study of psychiatric disorders is controversial. Despite great efforts from academic institutions and pharmaceutical companies, as of today, no major therapeutic intervention has been developed for the treatment of psychiatric disorders based on mechanistic insights from rodent models. Here, we argue that despite these historical shortcomings, rodent studies are nevertheless instrumental for identifying neuronal circuit mechanisms underlying behaviours that are affected in psychiatric disorders. Focusing on schizophrenia, we will give four examples of rodent models that were generated based on genetic and environmental risk factors or pathophysiological evidence as entry points. We will then discuss how circuit analysis in these specific examples can be used for testing hypotheses about neuronal mechanisms underlying symptoms of schizophrenia, which will then guide the development of new therapies.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'. © 2018 The Author(s).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Julie, E-mail: jgoodman@gradientcorp.com

    Background: The International Agency for Research on Cancer (IARC) recently developed a framework for evaluating mechanistic evidence that includes a list of 10 key characteristics of carcinogens. This framework is useful for identifying and organizing large bodies of literature on carcinogenic mechanisms, but it lacks sufficient guidance for conducting evaluations that fully integrate mechanistic evidence into hazard assessments. Objectives: We summarize the framework, and suggest approaches to strengthen the evaluation of mechanistic evidence using this framework. Discussion: While the framework is useful for organizing mechanistic evidence, its lack of guidance for implementation limits its utility for understanding human carcinogenic potential.more » Specifically, it does not include explicit guidance for evaluating the biological significance of mechanistic endpoints, inter- and intra-individual variability, or study quality and relevance. It also does not explicitly address how mechanistic evidence should be integrated with other realms of evidence. Because mechanistic evidence is critical to understanding human cancer hazards, we recommend that IARC develop transparent and systematic guidelines for the use of this framework so that mechanistic evidence will be evaluated and integrated in a robust manner, and concurrently with other realms of evidence, to reach a final human cancer hazard conclusion. Conclusions: IARC does not currently provide a standardized approach to evaluating mechanistic evidence. Incorporating the recommendations discussed here will make IARC analyses of mechanistic evidence more transparent, and lead to assessments of cancer hazards that reflect the weight of the scientific evidence and allow for scientifically defensible decision-making. - Highlights: • IARC has a revised framework for evaluating literature on carcinogenic mechanisms. • The framework is based on 10 key characteristics of carcinogens. • IARC should develop transparent and systematic guidelines for using the framework. • It should better address biological significance, study quality, and relevance. • It should better address integrating mechanistic evidence with other evidence.« less

  18. Modular magnetic tweezers for single-molecule characterizations of helicases.

    PubMed

    Kemmerich, Felix E; Kasaciunaite, Kristina; Seidel, Ralf

    2016-10-01

    Magnetic tweezers provide a versatile toolkit supporting the mechanistic investigation of helicases. In the present article, we show that custom magnetic tweezers setups are straightforward to construct and can easily be extended to provide adaptable platforms, capable of addressing a multitude of enquiries regarding the functions of these fascinating molecular machines. We first address the fundamental components of a basic magnetic tweezers scheme and review some previous results to demonstrate the versatility of this instrument. We then elaborate on several extensions to the basic magnetic tweezers scheme, and demonstrate their applications with data from ongoing research. As our methodological overview illustrates, magnetic tweezers are an extremely useful tool for the characterization of helicases and a custom built instrument can be specifically tailored to suit the experimenter's needs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A preliminary study of mechanistic approach in pavement design to accommodate climate change effects

    NASA Astrophysics Data System (ADS)

    Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.

    2018-03-01

    Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.

  20. Neurocircuitry of drug reward

    PubMed Central

    Ikemoto, Satoshi; Bonci, Antonello

    2013-01-01

    In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. PMID:23664810

  1. Mechanism-based approaches to treating fragile X.

    PubMed

    Dölen, Gül; Carpenter, Randall L; Ocain, Timothy D; Bear, Mark F

    2010-07-01

    Fragile X is the leading inherited cause of mental retardation and autism. Recent advances in our mechanistic understanding of the disease have led to the identification of the metabotropic glutamate receptor (mGluR) as a therapeutic target for the disease. These studies have revealed that core defects in multiple animal models can be corrected by down regulation of mGluR5 signaling. Although it remains to be seen if mGluR5 antagonists or related approaches will succeed in humans with fragile X, the progress in fragile X stands as a strong testament to the power of applying knowledge of basic neurobiology to understand pathophysiology in a genetically validated model of human psychiatric disease. These breakthroughs and several of the resulting drug development efforts are reviewed. (c) 2010 Elsevier Inc. All rights reserved.

  2. Computation as the mechanistic bridge between precision medicine and systems therapeutics.

    PubMed

    Hansen, J; Iyengar, R

    2013-01-01

    Over the past 50 years, like molecular cell biology, medicine and pharmacology have been driven by a reductionist approach. The focus on individual genes and cellular components as disease loci and drug targets has been a necessary step in understanding the basic mechanisms underlying tissue/organ physiology and drug action. Recent progress in genomics and proteomics, as well as advances in other technologies that enable large-scale data gathering and computational approaches, is providing new knowledge of both normal and disease states. Systems-biology approaches enable integration of knowledge from different types of data for precision medicine and systems therapeutics. In this review, we describe recent studies that contribute to these emerging fields and discuss how together these fields can lead to a mechanism-based therapy for individual patients.

  3. Computation as the Mechanistic Bridge Between Precision Medicine and Systems Therapeutics

    PubMed Central

    Hansen, J; Iyengar, R

    2014-01-01

    Over the past 50 years, like molecular cell biology, medicine and pharmacology have been driven by a reductionist approach. The focus on individual genes and cellular components as disease loci and drug targets has been a necessary step in understanding the basic mechanisms underlying tissue/organ physiology and drug action. Recent progress in genomics and proteomics, as well as advances in other technologies that enable large-scale data gathering and computational approaches, is providing new knowledge of both normal and disease states. Systems-biology approaches enable integration of knowledge from different types of data for precision medicine and systems therapeutics. In this review, we describe recent studies that contribute to these emerging fields and discuss how together these fields can lead to a mechanism-based therapy for individual patients. PMID:23212109

  4. Photo- and radiation chemical induced degradation of lignin model compounds.

    PubMed

    Lanzalunga; Bietti, M

    2000-07-01

    The basic mechanistic aspects of the photo- and radiation chemistry of lignin model compounds (LMCs) are discussed with respect to important processes related to lignin degradation. Several reactions occur after direct irradiation, photosensitized or radiation chemically induced oxidation of LMCs. Direct irradiation studies on LMCs have provided supportive evidence for the involvement of hydrogen abstraction reactions from phenols, beta-cleavage of substituted alpha-aryloxyacetophenones and cleavage of ketyl radicals (formed by photoreduction of aromatic ketones or hydrogen abstraction from arylglycerol beta-aryl ethers) in the photoyellowing of lignin rich pulps. Photosensitized and radiation chemically induced generation of reactive oxygen species and their reaction with LMCs are reviewed. The side-chain reactivity of LMC radical cations, generated by radiation chemical means, is also discussed in relation with the enzymatic degradation of lignin.

  5. Identification of key characteristics of male reproductive toxicants as an approach for screening and sorting mechanistic evidence.

    EPA Science Inventory

    The application of systematic review practices in human health assessment includes integration of multi-disciplinary evidence from epidemiological, experimental, and mechanistic studies. Although mode of action analysis relies on the evaluation of mechanistic and toxicological ou...

  6. Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches

    DTIC Science & Technology

    2010-07-01

    1-0431 TITLE: Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches PRINCIPAL INVESTIGATOR...June 2010 4. TITLE AND SUBTITLE Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic 5a. CONTRACT NUMBER...1-0430; W81XWH-08-1-0431; Grant sponsor: NIH/NCRR COBRE Grant; Grant number: 1P20RR020171; Grant sponsor: NIH/NIDDK Grant; Grant number: R01DK053525

  7. Spinal Cord Stimulation for Treating Chronic Pain: Reviewing Preclinical and Clinical Data on Paresthesia-Free High-Frequency Therapy.

    PubMed

    Chakravarthy, Krishnan; Richter, Hira; Christo, Paul J; Williams, Kayode; Guan, Yun

    2018-01-01

    Traditional spinal cord stimulation (SCS) requires that paresthesia overlaps chronic painful areas. However, the new paradigm high-frequency SCS (HF-SCS) does not rely on paresthesia. A review of preclinical and clinical studies regarding the use of paresthesia-free HF-SCS for various chronic pain states. We reviewed available literatures on HF-SCS, including Nevro's paresthesia-free ultra high-frequency 10 kHz therapy (HF10-SCS). Data sources included relevant literature identified through searches of PubMed, MEDLINE/OVID, and SCOPUS, and manual searches of the bibliographies of known primary and review articles. The primary goal is to describe the present developing conceptions of preclinical mechanisms of HF-SCS and to review clinical efficacy on paresthesia-free HF10-SCS for various chronic pain states. HF10-SCS offers a novel pain reduction tool without paresthesia for failed back surgery syndrome and chronic axial back pain. Preclinical findings indicate that potential mechanisms of action for paresthesia-free HF-SCS differ from those of traditional SCS. To fully understand and utilize paresthesia-free HF-SCS, mechanistic study and translational research will be very important, with increasing collaboration between basic science and clinical communities to design better trials and optimize the therapy based on mechanistic findings from effective preclinical models and approaches. Future research in these vital areas may include preclinical and clinical components conducted in parallel to optimize the potential of this technology. © 2017 International Neuromodulation Society.

  8. Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila.

    PubMed

    Chakravarti, L; Moscato, E H; Kayser, M S

    2017-01-01

    Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans. © 2017 Elsevier Inc. All rights reserved.

  9. Proposed key characteristics of male reproductive toxicants as a method for organizing and screening mechanistic evidence for non-cancer outcomes.

    EPA Science Inventory

    The adoption of systematic review practices for risk assessment includes integration of evidence obtained from experimental, epidemiological, and mechanistic studies. Although mechanistic evidence plays an important role in mode of action analysis, the process of sorting and anal...

  10. Oleogustus: The Unique Taste of Fat.

    PubMed

    Running, Cordelia A; Craig, Bruce A; Mattes, Richard D

    2015-09-01

    Considerable mechanistic data indicate there may be a sixth basic taste: fat. However, evidence demonstrating that the sensation of nonesterified fatty acids (NEFA, the proposed stimuli for "fat taste") differs qualitatively from other tastes is lacking. Using perceptual mapping, we demonstrate that medium and long-chain NEFA have a taste sensation that is distinct from other basic tastes (sweet, sour, salty, and bitter). Although some overlap was observed between these NEFA and umami taste, this overlap is likely due to unfamiliarity with umami sensations rather than true similarity. Shorter chain fatty acids stimulate a sensation similar to sour, but as chain length increases this sensation changes. Fat taste oral signaling, and the different signals caused by different alkyl chain lengths, may hold implications for food product development, clinical practice, and public health policy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Translating birdsong: songbirds as a model for basic and applied medical research.

    PubMed

    Brainard, Michael S; Doupe, Allison J

    2013-07-08

    Songbirds, long of interest to basic neuroscience, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning and, more specifically, resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production but that has strong similarities to mammalian brain pathways. The combination of highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both in normal states and in disease. Here we highlight (a) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and (b) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair.

  12. Translating Birdsong: Songbirds as a model for basic and applied medical research

    PubMed Central

    2014-01-01

    Songbirds, long of interest to basic neuroscientists, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning, and more specifically resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production, but that has strong similarities to mammalian brain pathways. The combination of a highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both normally and in disease. Here we highlight 1) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and 2) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair. PMID:23750515

  13. Update on zinc biology.

    PubMed

    Solomons, Noel W

    2013-01-01

    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  14. Review of Antibiotic and Non-Antibiotic Properties of Beta-lactam Molecules.

    PubMed

    Ochoa-Aguilar, Abraham; Ventura-Martinez, Rosa; Sotomayor-Sobrino, Marco Antonio; Gómez, Claudia; Morales-Espinoza, María del Rosario

    2016-01-01

    Beta-lactam molecules are a family of drugs commonly used for their antibiotic properties; however, recent research has shown that several members of this group present a large number of other effects such as neuroprotective, antioxidant, analgesic or immunomodulatory capabilities. These properties have been used in both preclinical and clinical studies in different diseases such as hypoxic neuronal damage or acute and chronic pain. The present work briefly reviews the antibiotic effect of these molecules, and will then focus specially on the non-antibiotic effects of three beta-lactam subfamilies: penicillins, cephalosporins and beta lactamase inhibitors, each of which have different molecular structure and pharmacokinetics and therefore have several potential clinical applications. A thorough search of bibliographic databases for peer-reviewed research was performed including only classic experiments or high quality reviews for the antibiotic mechanisms of beta-lactam molecules and only experimental research papers where included when the non-antibiotic properties of these molecules were searched. Only published articles from indexed journals were included. Quality of retrieved papers was assessed using standard tools. The characteristics of screened papers were described and findings of included studies were contextualized to either a mechanistic or a clinical framework. Seventy-eight papers were included in the review; the majority (56) were relative to the non-antibiotic properties of beta-lactam molecules. The non-antibiotic effects reviewed were divided accordingly to the amount of information available for each one. Twelve papers outlined the epileptogenic effects induced by beta-lactam molecules administration; these included both clinical and basic research as well as probable mechanistic explanations. Eighteen papers described a potential neuroprotective effect, mostly in basic in vitro and in vivo experiments. Analgesic properties where identified in twelve papers and basic research was described alongside with both experimental and serendipic clinical findings. Seven papers described a down-regulation effect exerted by beta-lactam molecules administration in different addiction animal models. Finally other effects such as penile erection, dopamine release facilitation and anti-neoplasic effects where described from seven papers. The findings of this review show that beta-lactam molecules may induce several effects, which may be clinically relevant in a lot of different diseases. This paper is, to our knowledge, the first comprehensive review of the non-antibiotic effects shown by beta-lactam molecules and may help increase the interest in this field, which may result in a direct translation of this effects to a clinical context.

  15. Kinetic and mechanistic studies of base-catalyzed phenylselenoetherification of (Z)- and (E)-hex-4-en-1-ols.

    PubMed

    Divac, Vera M; Puchta, Ralph; Bugarčić, Zorica M

    2012-08-02

    The mechanism of phenylselenoetherification of (Z)- and (E)-hex-4-en-1-ols using some bases (triethylamine, pyridine, quinoline, 2,2'-bipyridine) as catalysts and some solvents [tetrahydrofuran (THF) and CCl4] as reaction media was examined through studies of kinetics of the cyclization by UV-vis spectrophotometry. It was demonstrated that the intramolecular cyclization is facilitated in the presence of bases as a result of the hydrogen bond between the base and the alkenol's OH group. The rate constants in the base-catalyzed reactions are remarkably influenced by the bulkiness and basicity of the base used and the nature of the considered nitrogen donors. The obtained values for rate constants show that the reaction with triethylamine is the fastest one. THF with higher polarity and higher basic character is better as a solvent than CCl4. Quantum-chemical calculations [MP2(fc)/6-311+G**//B3LYP/6-311+G** + ZPE(B3LYP/6-311+G**] show that the cyclization of (Z)-hex-4-en-1-ol to a tetrahydrofuranoid five-membered ring is kinetically controlled, while the cyclization of (E)-hex-4-en-1-ol to the tetrahydropyranoid six-membered ring is thermodynamically controlled. This is in accordance with previous experimental findings.

  16. Dynamic Kinetic Resolution Enabled by Intramolecular Benzoin Reaction: Synthetic Applications and Mechanistic Insights.

    PubMed

    Zhang, Guoxiang; Yang, Shuang; Zhang, Xiaoyan; Lin, Qiqiao; Das, Deb K; Liu, Jian; Fang, Xinqiang

    2016-06-29

    The highly enantio-, diastereo-, and regioselective dynamic kinetic resolution of β-ketoesters and 1,3-diketones was achieved via a chiral N-heterocyclic carbene catalyzed intramolecular cross-benzoin reaction. A variety of tetralone derivatives bearing two contiguous stereocenters and multiple functionalities were liberated in moderate to excellent yields and with high levels of stereoselectivity (>95% ee and >20:1 dr in most cases). In addition, the excellent regioselectivity control for aryl/alkyl 1,3-diketones, and the superior electronic differentiation of 1,3-diarylketones were highlighted. Moreover, a set of new mechanistic rationale that differs with the currently widely accepted understanding of intramolecular benzoin reactions was established to demonstrate the superior preference of benzoin over aldol transformation: (1) A coexistence of competitive aldol and benzoin reactions was detected, but a retro-aldol-irreversible benzoin process performs a vital role in the generation of predominant benzoin products. (2) The most essential role of an N-electron-withdrawing substituent in triazolium catalysts was revealed to be accelerating the rate of the benzoin transformation, rather than suppressing the aldol process through reducing the inherent basicity of the catalyst.

  17. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  18. The rebirth of neuroscience in psychosomatic medicine, Part I: historical context, methods, and relevant basic science.

    PubMed

    Lane, Richard D; Waldstein, Shari R; Chesney, Margaret A; Jennings, J Richard; Lovallo, William R; Kozel, Peter J; Rose, Robert M; Drossman, Douglas A; Schneiderman, Neil; Thayer, Julian F; Cameron, Oliver G

    2009-02-01

    Neuroscience was an integral part of psychosomatic medicine at its inception in the early 20th century. Since the mid-20th century, however, psychosomatic research has largely ignored the brain. The field of neuroscience has burgeoned in recent years largely because a variety of powerful new methods have become available. Many of these methods allow for the noninvasive study of the living human brain and thus are potentially available for integration into psychosomatic medicine research at this time. In this first paper we examine various methods available for human neuroscientific investigation and discuss their relative strengths and weaknesses. We next review some basic functional neuroanatomy involving structures that are increasingly being identified as relevant for psychosomatic processes. We then discuss, and provide examples of, how the brain influences end organs through "information transfer systems," including the autonomic, neuroendocrine, and immune systems. The evidence currently available suggests that neuroscience holds great promise for advancing the goal of understanding the mechanisms by which psychosocial variables influence physical disease outcomes. An increased focus on such mechanistic research in psychosomatic medicine is needed to further its acceptance into the field of medicine.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidationmore » with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  20. Mechanistic investigation of the formation of H2 from HCOOH with a dinuclear Ru model complex for formate hydrogen lyase.

    PubMed

    Tokunaga, Taisuke; Yatabe, Takeshi; Matsumoto, Takahiro; Ando, Tatsuya; Yoon, Ki-Seok; Ogo, Seiji

    2017-01-01

    We report the mechanistic investigation of catalytic H 2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.

  1. AASHTO mechanistic-empirical pavement design guide parametric study.

    DOT National Transportation Integrated Search

    2012-03-01

    This study focuses on assessing the robustness of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG v 1.1) for rigid pavement : design projects in Wisconsin. The primary tasks conducted in this study included performing sensitivity analys...

  2. Final Technical Report of Research

    DOE R&D Accomplishments Database

    Taube, H.

    1972-04-03

    The studies conducted embrace the following subject areas: ion solvation, mechanistic studies on substitution reactions in metal complexes, oxidation of coordinated ligands, mechanistic studies on electron transfer reactions, preparation and characterization of new species in the aquo and ammino systems.

  3. Using explanatory crop models to develop simple tools for Advanced Life Support system studies

    NASA Technical Reports Server (NTRS)

    Cavazzoni, J.

    2004-01-01

    System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  4. The short-lived African turquoise killifish: an emerging experimental model for ageing

    PubMed Central

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-01-01

    ABSTRACT Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model. PMID:26839399

  5. Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses

    PubMed Central

    Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.

    2014-01-01

    Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270; http://dx.doi.org/10.1289/ehp.1408244 PMID:25117432

  6. Fundamentals of neurogastroenterology: basic science.

    PubMed

    Grundy, David; Al-Chaer, Elie D; Aziz, Qasim; Collins, Stephen M; Ke, Meiyun; Taché, Yvette; Wood, Jackie D

    2006-04-01

    The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.

  7. The future of research in female pelvic medicine.

    PubMed

    Chao, Jamie; Chai, Toby C

    2015-02-01

    Female pelvic medicine and reconstructive surgery (FPMRS) was recently recognized as a subspecialty by the American Board of Medical Specialties (ABMS). FPMRS treats female pelvic disorders (FPD) including pelvic organ prolapse (POP), urinary incontinence (UI), fecal incontinence (FI), lower urinary tract symptoms (LUTS), lower urinary tract infections (UTI), pelvic pain, and female sexual dysfunction (FSD). These conditions affect large numbers of individuals, resulting in significant patient, societal, medical, and financial burdens. Given that treatments utilize both medical and surgical approaches, areas of research in FPD necessarily cover a gamut of topics, ranging from mechanistically driven basic science research to randomized controlled trials. While basic science research is slow to impact clinical care, transformational changes in a field occur through basic investigations. On the other hand, clinical research yields incremental changes to clinical care. Basic research intends to change understanding whereas clinical research intends to change practice. However, the best approach is to incorporate both basic and clinical research into a translational program which makes new discoveries and effects positive changes to clinical practice. This review examines current research in FPD, with focus on translational potential, and ponders the future of FPD research. With a goal of improving the care and outcomes in patients with FPD, a strategic collaboration of stakeholders (patients, advocacy groups, physicians, researchers, professional medical associations, legislators, governmental biomedical research agencies, pharmaceutical companies, and medical device companies) is an absolute requirement in order to generate funding needed for FPD translational research.

  8. Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches

    DTIC Science & Technology

    2012-07-01

    1-0431 TITLE: Biomarker Discovery and Mechanistic Studies of Prostate Cancer Using Targeted Proteomic Approaches PRINCIPAL INVESTIGATOR...July 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 July 2008 – 30 June 2012 4. TITLE AND SUBTITLE Biomarker Discovery and Mechanistic...Department of Defense Synergistic Idea Development Award W81XWH-08-1-0430 (to H.Z) and W81XWH-08-1-0431 (to N.K.), an NIH/NCRR COBRE grant 1P20RR020171 (to

  9. A mathematical model for foreign body reactions in 2D.

    PubMed

    Su, Jianzhong; Gonzales, Humberto Perez; Todorov, Michail; Kojouharov, Hristo; Tang, Liping

    2011-02-01

    The foreign body reactions are commonly referred to the network of immune and inflammatory reactions of human or animals to foreign objects placed in tissues. They are basic biological processes, and are also highly relevant to bioengineering applications in implants, as fibrotic tissue formations surrounding medical implants have been found to substantially reduce the effectiveness of devices. Despite of intensive research on determining the mechanisms governing such complex responses, few mechanistic mathematical models have been developed to study such foreign body reactions. This study focuses on a kinetics-based predictive tool in order to analyze outcomes of multiple interactive complex reactions of various cells/proteins and biochemical processes and to understand transient behavior during the entire period (up to several months). A computational model in two spatial dimensions is constructed to investigate the time dynamics as well as spatial variation of foreign body reaction kinetics. The simulation results have been consistent with experimental data and the model can facilitate quantitative insights for study of foreign body reaction process in general.

  10. A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility

    PubMed Central

    2014-01-01

    Background Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site’s rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site’s Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site’s LPD with its rate of evolution. Results We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein’s potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant’s active conformation. We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. Conclusions We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility. PMID:24716445

  11. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer.

    PubMed

    Das, Anindita; Durrant, David; Salloum, Fadi N; Xi, Lei; Kukreja, Rakesh C

    2015-03-01

    The phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra™), vardenafil (Levitra™), and tadalafil (Cialis™) have been developed for treatment of erectile dysfunction. Moreover, sildenafil and tadalafil are used for the management of pulmonary arterial hypertension in patients. Since our first report showing the cardioprotective effect of sildenafil in 2002, there has been tremendous growth of preclinical and clinical studies on the use of PDE5 inhibitors for cardiovascular diseases and cancer. Numerous animal studies have demonstrated that PDE5 inhibitors have powerful protective effect against myocardial ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and diabetic cardiomyopathy, cardiac hypertrophy, Duchenne muscular dystrophy and the improvement of stem cell efficacy for myocardial repair. Mechanistically, PDE5 inhibitors protect the heart against I/R injury through increased expression of nitric oxide synthases, activation of protein kinase G (PKG), PKG-dependent hydrogen sulfide generation, and phosphorylation of glycogen synthase kinase-3β - a master switch immediately proximal to mitochondrial permeability transition pore and the end effector of cardioprotection. In addition, PDE5 inhibitors enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs, including doxorubicin. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular and anti-cancer benefits. Despite mixed results of these clinical trials, there is a continuing strong interest by basic scientists and clinical investigators in exploring their new clinical uses. It is our hope that future new mechanistic investigations and carefully designed clinical trials would help in reaping additional benefits of PDE5 inhibitors for cardiovascular disease and cancer in patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia

    In this work, resonant ejection coupled with surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer is used to examine fragmentation kinetics of two singly protonated hexapeptides, RYGGFL and KYGGFL, containing the basic arginine residue and less basic lysine residue at the N-terminus. The kinetics of individual reaction channels at different collision energies are probed by applying a short ejection pulse (1 ms) in resonance with the cyclotron frequency of a selected fragment ion and varying the delay time between ion-surface collision and resonant ejection while keeping total reaction delay time constant. Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of themore » experimental data provides accurate threshold energies and activation entropies of individual reaction channels. Substitution of arginine with less basic lysine has a pronounced effect on the observed fragmentation kinetics of several pathways, including the b2 ion formation, but has little or no effect on formation of the b5+H2O fragment ion. The combination of resonant ejection SID, time- and collision energy-resolved SID, and RRKM modeling of both types of experimental data provides a detailed mechanistic understanding of the primary dissociation pathways of complex gaseous ions.« less

  13. Dimensional psychiatry: mental disorders as dysfunctions of basic learning mechanisms.

    PubMed

    Heinz, Andreas; Schlagenhauf, Florian; Beck, Anne; Wackerhagen, Carolin

    2016-08-01

    It has been questioned that the more than 300 mental disorders currently listed in international disease classification systems all have a distinct neurobiological correlate. Here, we support the idea that basic dimensions of mental dysfunctions, such as alterations in reinforcement learning, can be identified, which interact with individual vulnerability and psychosocial stress factors and, thus, contribute to syndromes of distress across traditional nosological boundaries. We further suggest that computational modeling of learning behavior can help to identify specific alterations in reinforcement-based decision-making and their associated neurobiological correlates. For example, attribution of salience to drug-related cues associated with dopamine dysfunction in addiction can increase habitual decision-making via promotion of Pavlovian-to-instrumental transfer as indicated by computational modeling of the effect of Pavlovian-conditioned stimuli (here affectively positive or alcohol-related cues) on instrumental approach and avoidance behavior. In schizophrenia, reward prediction errors can be modeled computationally and associated with functional brain activation, thus revealing reduced encoding of such learning signals in the ventral striatum and compensatory activation in the frontal cortex. With respect to negative mood states, it has been shown that both reduced functional activation of the ventral striatum elicited by reward-predicting stimuli and stress-associated activation of the hypothalamic-pituitary-adrenal axis in interaction with reduced serotonin transporter availability and increased amygdala activation by aversive cues contribute to clinical depression; altogether these observations support the notion that basic learning mechanisms, such as Pavlovian and instrumental conditioning and Pavlovian-to-instrumental transfer, represent a basic dimension of mental disorders that can be mechanistically characterized using computational modeling and associated with specific clinical syndromes across established nosological boundaries. Instead of pursuing a narrow focus on single disorders defined by clinical tradition, we suggest that neurobiological research should focus on such basic dimensions, which can be studied in and compared among several mental disorders.

  14. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained from the development of this chemistry allowed for the rational design of a similarly E-styrenyl selective classical Heck reaction using aryldiazonium salts and a broad range of alkene substrates. The key mechanistic findings from the development of these reactions provide new insight into how to predictably impart catalyst control in organometallic processes that would otherwise afford complex product mixtures. Given our new understanding, we are optimistic that reactions that introduce increased complexity relative to simple classical processes may now be developed based on our ability to predict the selectivity-determining nucleopalladation and β-hydride elimination steps through catalyst design. PMID:22111756

  15. Mechanistic Indicators of Childhood Asthma (MICA) Study

    EPA Science Inventory

    The Mechanistic Indicators of Childhood Asthma (MICA) Study has been designed to incorporate state-of-the-art technologies to examine the physiological and environmental factors that interact to increase the risk of asthmatic responses. MICA is primarily a clinically-bases obser...

  16. Mathematical Description and Mechanistic Reasoning: A Pathway toward STEM Integration

    ERIC Educational Resources Information Center

    Weinberg, Paul J.

    2017-01-01

    Because reasoning about mechanism is critical to disciplined inquiry in science, technology, engineering, and mathematics (STEM) domains, this study focuses on ways to support the development of this form of reasoning. This study attends to how mechanistic reasoning is constituted through mathematical description. This study draws upon Smith's…

  17. CD8 T-cell-mediated protection against liver-stage malaria: lessons from a mouse model

    PubMed Central

    Van Braeckel-Budimir, Natalija; Harty, John T.

    2014-01-01

    Malaria is a major global health problem, with severe mortality in children living in sub-Saharan Africa, and there is currently no licensed, effective vaccine. However, vaccine-induced protection from Plasmodium infection, the causative agent of malaria, was established for humans in small clinical trials and for rodents in the 1960s. Soon after, a critical role for memory CD8 T cells in vaccine-induced protection against Plasmodium liver-stage infection was established in rodent models and is assumed to apply to humans. However, these seminal early studies have led to only modest advances over the ensuing years in our understanding the basic features of memory CD8 T cells required for protection against liver-stage Plasmodium infection, an issue which has likely impeded the development of effective vaccines for humans. Given the ethical and practical limitations in gaining mechanistic insight from human vaccine and challenge studies, animal models still have an important role in dissecting the basic parameters underlying memory CD8 T-cell immunity to Plasmodium. Here, we will highlight recent data from our own work in the mouse model of Plasmodium infection that identify quantitative and qualitative features of protective memory CD8 T-cell responses. Finally, these lessons will be discussed in the context of recent findings from clinical trials of vaccine-induced protection in controlled human challenge models. PMID:24936199

  18. Laboratory study of concrete properties to support implementation of the new AASHTO mechanistic-empirical pavement design guide.

    DOT National Transportation Integrated Search

    2012-09-01

    Properties of concrete embodying materials typically used in Wisconsin paving projects were evaluated in support of future : implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG). The primary concrete : properties studied w...

  19. Laboratory study of concrete properties to support implementation of the new AASHTO mechanistic empirical pavement design guide.

    DOT National Transportation Integrated Search

    2012-09-01

    Properties of concrete embodying materials typically used in Wisconsin paving projects were evaluated in support of future : implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG). The primary concrete : properties studied w...

  20. The short-lived African turquoise killifish: an emerging experimental model for ageing.

    PubMed

    Kim, Yumi; Nam, Hong Gil; Valenzano, Dario Riccardo

    2016-02-01

    Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model. © 2016. Published by The Company of Biologists Ltd.

  1. Advancing understanding of affect labeling with dynamic causal modeling

    PubMed Central

    Torrisi, Salvatore J.; Lieberman, Matthew D.; Bookheimer, Susan Y.; Altshuler, Lori L.

    2013-01-01

    Mechanistic understandings of forms of incidental emotion regulation have implications for basic and translational research in the affective sciences. In this study we applied Dynamic Causal Modeling (DCM) for fMRI to a common paradigm of labeling facial affect to elucidate prefrontal to subcortical influences. Four brain regions were used to model affect labeling, including right ventrolateral prefrontal cortex (vlPFC), amygdala and Broca’s area. 64 models were compared, for each of 45 healthy subjects. Family level inference split the model space to a likely driving input and Bayesian Model Selection within the winning family of 32 models revealed a strong pattern of endogenous network connectivity. Modulatory effects of labeling were most prominently observed following Bayesian Model Averaging, with the dampening influence on amygdala originating from Broca’s area but much more strongly from right vlPFC. These results solidify and extend previous correlation and regression-based estimations of negative corticolimbic coupling. PMID:23774393

  2. Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using SmI2/Amine/H2O under Mild Conditions

    PubMed Central

    2014-01-01

    Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C–N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C–O cleavage products are not formed under the reaction conditions. The observed reactivity is opposite to the electrophilicity of polar carbonyl groups resulting from the nX → π*C=O (X = O, N) conjugation. Mechanistic studies suggest that coordination of Sm to the carbonyl and then to Lewis basic nitrogen in the tetrahedral intermediate facilitate electron transfer and control the selectivity of the C–N/C–O cleavage. Notably, the method provides direct access to acyl-type radicals from unactivated amides under mild electron transfer conditions. PMID:24460078

  3. Intersubjectivity in Wittgenstein and Freud: other minds and the foundations of psychiatry.

    PubMed

    Loizzo, J

    1997-12-01

    Intersubjectivity, the cooperation of two or more minds, is basic to human behavior, yet eludes the grasp of psychiatry. This paper traces the dilemma to the "problem of other minds" assumed with the epistemologies of modern science. It presents the solution of Wittgenstein's later philosophy, known for his treatment of other minds in terms of "human agreement in language." Unlike recent studies of "Wittgenstein's psychology," this one reviews the Philosophical Investigations' "private language argument," the crux of his mature views on mind. It reads that argument as recording his shift from the modern egocentric paradigm of mind to an intersubjective one. The paper contrasts the merits of Wittgenstein's reduction of subject and object to grammar with the problems of Freud's metapsychological reduction. It shows how Wittgenstein's intersubjective method avoids the excesses of behaviorism and phenomenology, offering a specifically human way to adapt mechanistic and interpretive means to the communicative ends of psychiatry.

  4. Basic mechanisms of urgency: roles and benefits of pharmacotherapy.

    PubMed

    Michel, Martin Christian; Chapple, Christopher R

    2009-12-01

    Since urgency is key to the overactive bladder syndrome, we have reviewed the mechanisms underlying how bladder filling and urgency are sensed, what causes urgency and how this relates to medical therapy. Review of published literature. As urgency can only be assessed in cognitively intact humans, mechanistic studies of urgency often rely on proxy or surrogate parameters, such as detrusor overactivity, but these may not necessarily be reliable. There is an increasing evidence base to suggest that the sensation of ‘urgency’ differs from the normal physiological urge to void upon bladder filling. While the relative roles of alterations in afferent processes, central nervous processing, efferent mechanisms and in intrinsic bladder smooth muscle function remain unclear, and not necessarily mutually exclusive, several lines of evidence support an important role for the latter. A better understanding of urgency and its causes may help to develop more effective treatments for voiding dysfunction.

  5. Food and drug interactions: a general review.

    PubMed

    Ötles, Semih; Senturk, Ahmet

    2014-01-01

    Although it is well known and identified that drug-drug interactions exist, the recognition of importance of food and drug interactions to practice has been growing much slower. On the other hand, drug-food/nutrient interactions continue to grow with the common use of medications. Beside the awareness of this type of interactions, food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. Drug-food interactions take place mechanistically due to altered intestinal transport and metabolism, or systemic distribution, metabolism and excretion. In addition, some people have greater risk of food and drug interactions who have a poor diet, have serious health problems, childrens and pregnant women. In this article, basic informations about importance, classifications, transporters and enzymes of drug and nutrient interaction are given and some specific examples of both drug and nutrients and influences on each other are included.

  6. Density functional computational studies on the glucose and glycine Maillard reaction: Formation of the Amadori rearrangement products

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.; Roy, Amlan K.; Shipar, Abul Haider; Ahmed, M. Samsuddin

    Theoretical energy changes of various intermediates leading to the formation of the Amadori rearrangement products (ARPs) under different mechanistic assumptions have been calculated, by using open chain glucose (O-Glu)/closed chain glucose (A-Glu and B-Glu) and glycine (Gly) as a model for the Maillard reaction. Density functional theory (DFT) computations have been applied on the proposed mechanisms under different pH conditions. Thus, the possibility of the formation of different compounds and electronic energy changes for different steps in the proposed mechanisms has been evaluated. B-Glu has been found to be more efficient than A-Glu, and A-Glu has been found more efficient than O-Glu in the reaction. The reaction under basic condition is the most favorable for the formation of ARPs. Other reaction pathways have been computed and discussed in this work.0

  7. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria.

    PubMed

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas P M; Westhoff, Peter; Gowik, Udo

    2014-06-16

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.

  8. The Role of Oxygen in Avascular Tumor Growth

    PubMed Central

    Grimes, David Robert; Kannan, Pavitra; McIntyre, Alan; Kavanagh, Anthony; Siddiky, Abul; Wigfield, Simon; Harris, Adrian; Partridge, Mike

    2016-01-01

    The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. PMID:27088720

  9. Mediationism and the obfuscation of memory

    PubMed Central

    Watkins, Michael J.

    1996-01-01

    Memory theorizing is going nowhere. The reason is that it is rooted in mediationism, the doctrine that memory is mediated by some sort of memory trace. Mediationism is the basic tenet of those who seek the substrate of memory; for students of memory per se it is merely a metaphor, and moreover an unfruitful one, for it cannot be penetrated by the methods of psychology. The rejection of mediationism would serve both to replace mechanistic theories with laws or other modes of explanation and to focus research on the actual experience of memory and on the context in which it occurs. The ensuing advantages are discussed and illustrated. PMID:22478247

  10. Ionic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates

    PubMed Central

    Perosa, Alvise; Guidi, Sandro; Cattelan, Lisa

    2016-01-01

    Summary The use of ionic liquids (ILs) as organocatalysts is reviewed for transesterification reactions, specifically for the conversion of nontoxic compounds such as dialkyl carbonates to both linear mono-transesterification products or alkylene carbonates. An introductory survey compares pros and cons of classic catalysts based on both acidic and basic systems, to ionic liquids. Then, innovative green syntheses of task-specific ILs and their representative applications are introduced to detail the efficiency and highly selective outcome of ILs-catalyzed transesterification reactions. A mechanistic hypothesis is discussed by the concept of cooperative catalysis based on the dual (electrophilic/nucleophilic) activation of reactants. PMID:27829898

  11. Structural and mechanistic insights into phospholipid transfer by Ups1-Mdm35 in mitochondria

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasunori; Tamura, Yasushi; Kawano, Shin; Endo, Toshiya

    2015-08-01

    Eukaryotic cells are compartmentalized into membrane-bounded organelles whose functions rely on lipid trafficking to achieve membrane-specific compositions of lipids. Here we focused on the Ups1-Mdm35 system, which mediates phosphatidic acid (PA) transfer between the outer and inner mitochondrial membranes, and determined the X-ray structures of Mdm35 and Ups1-Mdm35 with and without PA. The Ups1-Mdm35 complex constitutes a single domain that has a deep pocket and flexible Ω-loop lid. Structure-based mutational analyses revealed that a basic residue at the pocket bottom and the Ω-loop lid are important for PA extraction from the membrane following Ups1 binding. Ups1 binding to the membrane is enhanced by the dissociation of Mdm35. We also show that basic residues around the pocket entrance are important for Ups1 binding to the membrane and PA extraction. These results provide a structural basis for understanding the mechanism of PA transfer between mitochondrial membranes.

  12. Chemopreventive properties of 3,3′-diindolylmethane in breast cancer: evidence from experimental and human studies

    PubMed Central

    Ho, Emily; Strom, Meghan B.

    2016-01-01

    Diet is a modifiable factor associated with the risk of several cancers, with convincing evidence showing a link between diet and breast cancer. The role of bioactive compounds of food origin, including those found in cruciferous vegetables, is an active area of research in cancer chemoprevention. This review focuses on 3,3′-diindolylmethane (DIM), the major bioactive indole in crucifers. Research of the cancer-preventive activity of DIM has yielded basic mechanistic, animal, and human trial data. Further, this body of evidence is largely supported by observational studies. Bioactive DIM has demonstrated chemopreventive activity in all stages of breast cancer carcinogenesis. This review describes current evidence related to the metabolism and mechanisms of DIM involved in the prevention of breast cancer. Importantly, this review also focuses on current evidence from human observational and intervention trials that have contributed to a greater understanding of exposure estimates that will inform recommendations for DIM intake. PMID:27261275

  13. Mechanistic Studies of Oligonucleotide Aptamers With Potent Antiproliferative and Pro-Apoptotic Activity Against Prostate Cancer Cells

    DTIC Science & Technology

    2007-05-01

    AD_________________ Award Number: W81XWH-04-1-0183 TITLE: Mechanistic Studies of Oligonucleotide...Ph.D. CONTRACTING ORGANIZATION: University of Louisville...Louisville, KY 40292-0001 REPORT DATE: May 2007 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command

  14. Mechanistic species distribution modelling as a link between physiology and conservation.

    PubMed

    Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W

    2015-01-01

    Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and conservation practitioners would work collaboratively to build models, interpret results and consider conservation management options, and articulating this need here may help to stimulate collaboration.

  15. Local calibration of the MEPDG for New Hampshire.

    DOT National Transportation Integrated Search

    2013-10-01

    This report summarizes the UNH results of a study to calibrate the Mechanistic-Empirical Pavement : Design Guide (MEPDG) model for sites and conditions within New Hampshire. : MEPDG adds mechanistic understanding of material properties into methods f...

  16. Existing pavement input information for the mechanistic-empirical pavement design guide.

    DOT National Transportation Integrated Search

    2009-02-01

    The objective of this study is to systematically evaluate the Iowa Department of Transportations (DOTs) existing Pavement Management Information System (PMIS) with respect to the input information required for Mechanistic-Empirical Pavement Des...

  17. MECHANISTIC INDICATORS OF CHILDHOOD ASTHMA (MICA)

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is interested in the interplay of environmental and genetic factors on the development and exacerbation of asthma. The Mechanistic Indicators of Childhood Asthma (MICA) study will use exposure measurements and markers of environmental ...

  18. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang

    2015-04-01

    Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world

  19. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.

    2014-12-01

    Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world.

  20. Towards new approaches in phenological modelling

    NASA Astrophysics Data System (ADS)

    Chmielewski, Frank-M.; Götz, Klaus-P.; Rawel, Harshard M.; Homann, Thomas

    2014-05-01

    Modelling of phenological stages is based on temperature sums for many decades, describing both the chilling and the forcing requirement of woody plants until the beginning of leafing or flowering. Parts of this approach go back to Reaumur (1735), who originally proposed the concept of growing degree-days. Now, there is a growing body of opinion that asks for new methods in phenological modelling and more in-depth studies on dormancy release of woody plants. This requirement is easily understandable if we consider the wide application of phenological models, which can even affect the results of climate models. To this day, in phenological models still a number of parameters need to be optimised on observations, although some basic physiological knowledge of the chilling and forcing requirement of plants is already considered in these approaches (semi-mechanistic models). Limiting, for a fundamental improvement of these models, is the lack of knowledge about the course of dormancy in woody plants, which cannot be directly observed and which is also insufficiently described in the literature. Modern metabolomic methods provide a solution for this problem and allow both, the validation of currently used phenological models as well as the development of mechanistic approaches. In order to develop this kind of models, changes of metabolites (concentration, temporal course) must be set in relation to the variability of environmental (steering) parameters (weather, day length, etc.). This necessarily requires multi-year (3-5 yr.) and high-resolution (weekly probes between autumn and spring) data. The feasibility of this approach has already been tested in a 3-year pilot-study on sweet cherries. Our suggested methodology is not only limited to the flowering of fruit trees, it can be also applied to tree species of the natural vegetation, where even greater deficits in phenological modelling exist.

  1. Challenges in Developing Models Describing Complex Soil Systems

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Jacques, D.

    2014-12-01

    Quantitative mechanistic models that consider basic physical, mechanical, chemical, and biological processes have the potential to be powerful tools to integrate our understanding of complex soil systems, and the soil science community has often called for models that would include a large number of these diverse processes. However, once attempts have been made to develop such models, the response from the community has not always been overwhelming, especially after it discovered that these models are consequently highly complex, requiring not only a large number of parameters, not all of which can be easily (or at all) measured and/or identified, and which are often associated with large uncertainties, but also requiring from their users deep knowledge of all/most of these implemented physical, mechanical, chemical and biological processes. Real, or perceived, complexity of these models then discourages users from using them even for relatively simple applications, for which they would be perfectly adequate. Due to the nonlinear nature and chemical/biological complexity of the soil systems, it is also virtually impossible to verify these types of models analytically, raising doubts about their applicability. Code inter-comparisons, which is then likely the most suitable method to assess code capabilities and model performance, requires existence of multiple models of similar/overlapping capabilities, which may not always exist. It is thus a challenge not only to developed models describing complex soil systems, but also to persuade the soil science community in using them. As a result, complex quantitative mechanistic models are still an underutilized tool in soil science research. We will demonstrate some of the challenges discussed above on our own efforts in developing quantitative mechanistic models (such as HP1/2) for complex soil systems.

  2. Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: a systematic review of mechanistic and clinical evidence.

    PubMed

    Esposito, Susanna; Soto-Martinez, Manuel E; Feleszko, Wojciech; Jones, Marcus H; Shen, Kun-Ling; Schaad, Urs B

    2018-06-01

    To provide an overview of the mechanistic and clinical evidence for the use of nonspecific immunomodulators in paediatric respiratory tract infection (RTI) and wheezing/asthma prophylaxis. Nonspecific immunomodulators have a long history of empirical use for the prevention of RTIs in vulnerable populations, such as children. The past decade has seen an increase in both the number and quality of studies providing mechanistic and clinical evidence for the prophylactic potential of nonspecific immunomodulators against both respiratory infections and wheezing/asthma in the paediatric population. Orally administered immunomodulators result in the mounting of innate and adaptive immune responses to infection in the respiratory mucosa and anti-inflammatory effects in proinflammatory environments. Clinical data reflect these mechanistic effects in reductions in the recurrence of respiratory infections and wheezing events in high-risk paediatric populations. A new generation of clinical studies is currently underway with the power to position the nonspecific bacterial lysate immunomodulator OM-85 as a potential antiasthma prophylactic. An established mechanistic and clinical role for prophylaxis against paediatric respiratory infections by nonspecific immunomodulators exists. Clinical trials underway promise to provide high-quality data to establish whether a similar role exists in wheezing/asthma prevention.

  3. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  4. Mechanistic-empirical evaluation of the Mn/ROAD low volume road test sections.

    DOT National Transportation Integrated Search

    1998-05-01

    The purpose of this study was to use Mn/ROAD mainline flexible pavement data to verify, refine, and modify the Illinois Department of Transportation (IDOT) Mechanistic-Empirical (M-E) based flexible pavement design procedures and concepts.

  5. Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity.

    PubMed

    Chennamadhavuni, Divya; Saavedra-Avila, Noemi Alejandra; Carreño, Leandro J; Guberman-Pfeffer, Matthew J; Arora, Pooja; Yongqing, Tang; Koay, Hui-Fern; Godfrey, Dale I; Keshipeddy, Santosh; Richardson, Stewart K; Sundararaj, Srinivasan; Lo, Jae Ho; Wen, Xiangshu; Gascón, José A; Yuan, Weiming; Rossjohn, Jamie; Le Nours, Jérôme; Porcelli, Steven A; Howell, Amy R

    2018-05-17

    Glycosylceramides that activate CD1d-restricted invariant natural killer T (iNKT) cells have potential therapeutic applications for augmenting immune responses against cancer and infections. Previous studies using mouse models identified sphinganine variants of α-galactosylceramide as promising iNKT cell activators that stimulate cytokine responses with a strongly proinflammatory bias. However, the activities of sphinganine variants in mice have generally not translated well to studies of human iNKT cell responses. Here, we show that strongly proinflammatory and anti-tumor iNKT cell responses were achieved in mice by a variant of α-galactosylceramide that combines a sphinganine base with a hydrocinnamoyl ester on C6″ of the sugar. Importantly, the activities observed with this variant were largely preserved for human iNKT cell responses. Structural and in silico modeling studies provided a mechanistic basis for these findings and suggested basic principles for capturing useful properties of sphinganine analogs of synthetic iNKT cell activators in the design of immunotherapeutic agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Cellular and Synaptic Properties of Local Inhibitory Circuits.

    PubMed

    Hull, Court

    2017-05-01

    Inhibitory interneurons play a key role in sculpting the information processed by neural circuits. Despite the wide range of physiologically and morphologically distinct types of interneurons that have been identified, common principles have emerged that have shed light on how synaptic inhibition operates, both mechanistically and functionally, across cell types and circuits. This introduction summarizes how electrophysiological approaches have been used to illuminate these key principles, including basic interneuron circuit motifs, the functional properties of inhibitory synapses, and the main roles for synaptic inhibition in regulating neural circuit function. It also highlights how some key electrophysiological methods and experiments have advanced our understanding of inhibitory synapse function. © 2017 Cold Spring Harbor Laboratory Press.

  7. Quantitative model of price diffusion and market friction based on trading as a mechanistic random process.

    PubMed

    Daniels, Marcus G; Farmer, J Doyne; Gillemot, László; Iori, Giulia; Smith, Eric

    2003-03-14

    We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.

  8. Quantitative Model of Price Diffusion and Market Friction Based on Trading as a Mechanistic Random Process

    NASA Astrophysics Data System (ADS)

    Daniels, Marcus G.; Farmer, J. Doyne; Gillemot, László; Iori, Giulia; Smith, Eric

    2003-03-01

    We model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of markets, such as the diffusion rate of prices (which is the standard measure of financial risk) and the spread and price impact functions (which are the main determinants of transaction cost). Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of order flow rates. We show that even under completely random order flow the need to store supply and demand to facilitate trading induces anomalous diffusion and temporal structure in prices.

  9. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.

    PubMed

    Stott, Lisa A; Hall, David A; Holliday, Nicholas D

    2016-02-01

    Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Web-Enabled Mechanistic Case Diagramming: A Novel Tool for Assessing Students' Ability to Integrate Foundational and Clinical Sciences.

    PubMed

    Ferguson, Kristi J; Kreiter, Clarence D; Haugen, Thomas H; Dee, Fred R

    2018-02-20

    As medical schools move from discipline-based courses to more integrated approaches, identifying assessment tools that parallel this change is an important goal. The authors describe the use of test item statistics to assess the reliability and validity of web-enabled mechanistic case diagrams (MCDs) as a potential tool to assess students' ability to integrate basic science and clinical information. Students review a narrative clinical case and construct an MCD using items provided by the case author. Students identify the relationships among underlying risk factors, etiology, pathogenesis and pathophysiology, and the patients' signs and symptoms. They receive one point for each correctly-identified link. In 2014-15 and 2015-16, case diagrams were implemented in consecutive classes of 150 medical students. The alpha reliability coefficient for the overall score, constructed using each student's mean proportion correct across all cases, was 0.82. Discrimination indices for each of the case scores with the overall score ranged from 0.23 to 0.51. In a G study using those students with complete data (n = 251) on all 16 cases, 10% of the variance was true score variance, and systematic case variance was large. Using 16 cases generated a G coefficient (relative score reliability) equal to .72 and a Phi equal to .65. The next phase of the project will involve deploying MCDs in higher-stakes settings to determine whether similar results can be achieved. Further analyses will determine whether these assessments correlate with other measures of higher-order thinking skills.

  11. Rheumatoid Arthritis-Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis: Shared Mechanistic and Phenotypic Traits Suggest Overlapping Disease Mechanisms.

    PubMed

    Paulin, Francisco; Doyle, Tracy J; Fletcher, Elaine A; Ascherman, Dana P; Rosas, Ivan O

    2015-01-01

    The prevalence of clinically evident interstitial lung disease in patients with rheumatoid arthritis is approximately 10%. An additional 33% of undiagnosed patients have interstitial lung abnormalities that can be detected with high-resolution computed tomography. Rheumatoid arthritis-interstitial lung disease patients have three times the risk of death compared to those with rheumatoid arthritis occurring in the absence of interstitial lung disease, and the mortality related to interstitial lung disease is rising. Rheumatoid arthritis-interstitial lung disease is most commonly classified as the usual interstitial pneumonia pattern, overlapping mechanistically and phenotypically with idiopathic pulmonary fibrosis, but can occur in a non-usual interstitial pneumonia pattern, mainly nonspecific interstitial pneumonia. Based on this, we propose two possible pathways to explain the coexistence of rheumatoid arthritis and interstitial lung disease: (i) Rheumatoid arthritis-interstitial lung disease with a non-usual interstitial pneumonia pattern may come about when an immune response against citrullinated peptides taking place in another site (e.g. the joints) subsequently affects the lungs; (ii) Rheumatoid arthritis-interstitial lung disease with a usual interstitial pneumonia pattern may represent a disease process in which idiopathic pulmonary fibrosis-like pathology triggers an immune response against citrullinated proteins that promotes articular disease indicative of rheumatoid arthritis. More studies focused on elucidating the basic mechanisms leading to different sub-phenotypes of rheumatoid arthritis-interstitial lung disease and the overlap with idiopathic pulmonary fibrosis are necessary to improve our understanding of the disease process and to define new therapeutic targets.

  12. Utilizing Mechanistic Cross-Linking Technology to Study Protein-Protein Interactions: An Experiment Designed for an Undergraduate Biochemistry Lab

    ERIC Educational Resources Information Center

    Finzel, Kara; Beld, Joris; Burkart, Michael D.; Charkoudian, Louise K.

    2017-01-01

    Over the past decade, mechanistic cross-linking probes have been used to study protein-protein interactions in natural product biosynthetic pathways. This approach is highly interdisciplinary, combining elements of protein biochemistry, organic chemistry, and computational docking. Herein, we described the development of an experiment to engage…

  13. Adverse outcome pathway (AOP) development and evaluation ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway provides a construct for assembling mechanistic information at different levels of biological organization in a form designed to support regulatory decision making. In particular, it frames the link between molecular and cellular events that can be measured in high throughput toxicity testing and the organism or population-level events that are commonly relevant in defining risk. Recognizing the importance of this emerging framework, the Organisation for Economic Co-operation and Development (OECD) launched a program to support the development, documentation and consideration of AOPs by the international community in 2012 (http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm). In 2014, a handbook (https://aopkb.org/common/AOP_Handbook.pdf) was developed to guide users in the documentation and evaluation of AOPs and their entry into an official knowledgebase. The handbook draws on longstanding experience in consideration of mechanistic data (e.g., mode of action analysis) to inform risk assessment. To further assist users, a training program was developed by members of the OECD Extended Advisory Group to teach users the basic principles of AOP development and the best practices as outlined in the OECD AOP handbook. Training sessions began in early 2015, and this course will provide training for interested SOT scientists. Following this course, all participants will be familiar w

  14. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria

    PubMed Central

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas PM; Westhoff, Peter; Gowik, Udo

    2014-01-01

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3–C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect. DOI: http://dx.doi.org/10.7554/eLife.02478.001 PMID:24935935

  15. Systems Toxicology: From Basic Research to Risk Assessment

    PubMed Central

    2014-01-01

    Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment. PMID:24446777

  16. Pharmacokinetic Modeling to Simulate the Concentration-Time Profiles After Dermal Application of Rivastigmine Patch.

    PubMed

    Nozaki, Sachiko; Yamaguchi, Masayuki; Lefèvre, Gilbert

    2016-07-01

    Rivastigmine is an inhibitor of acetylcholinesterases and butyrylcholinesterases for symptomatic treatment of Alzheimer disease and is available as oral and transdermal patch formulations. A dermal absorption pharmacokinetic (PK) model was developed to simulate the plasma concentration-time profile of rivastigmine to answer questions relative to the efficacy and safety risks after misuse of the patch (e.g., longer application than 24 h, multiple patches applied at the same time, and so forth). The model comprised 2 compartments which was a combination of mechanistic dermal absorption model and a basic 1-compartment model. The initial values for the model were determined based on the physicochemical characteristics of rivastigmine and PK parameters after intravenous administration. The model was fitted to the clinical PK profiles after single application of rivastigmine patch to obtain model parameters. The final model was validated by confirming that the simulated concentration-time curves and PK parameters (Cmax and area under the drug plasma concentration-time curve) conformed to the observed values and then was used to simulate the PK profiles of rivastigmine. This work demonstrated that the mechanistic dermal PK model fitted the clinical data well and was able to simulate the PK profile after patch misuse. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning.

    PubMed

    Farrell, A P

    2016-01-01

    A major challenge for fish biologists in the 21st century is to predict the biotic effects of global climate change. With marked changes in biogeographic distribution already in evidence for a variety of aquatic animals, mechanistic explanations for these shifts are being sought, ones that then can be used as a foundation for predictive models of future climatic scenarios. One mechanistic explanation for the thermal performance of fishes that has gained some traction is the oxygen and capacity-limited thermal tolerance (OCLTT) hypothesis, which suggests that an aquatic organism's capacity to supply oxygen to tissues becomes limited when body temperature reaches extremes. Central to this hypothesis is an optimum temperature for absolute aerobic scope (AAS, loosely defined as the capacity to deliver oxygen to tissues beyond a basic need). On either side of this peak for AAS are pejus temperatures that define when AAS falls off and thereby reduces an animal's absolute capacity for activity. This article provides a brief perspective on the potential uses and limitations of some of the key physiological indicators related to aerobic scope in fishes. The intent is that practitioners who attempt predictive ecological applications can better recognize limitations and make better use of the OCLTT hypothesis and its underlying physiology. © 2015 The Fisheries Society of the British Isles.

  18. Systems toxicology: from basic research to risk assessment.

    PubMed

    Sturla, Shana J; Boobis, Alan R; FitzGerald, Rex E; Hoeng, Julia; Kavlock, Robert J; Schirmer, Kristin; Whelan, Maurice; Wilks, Martin F; Peitsch, Manuel C

    2014-03-17

    Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment.

  19. Inferring Diffusion Dynamics from FCS in Heterogeneous Nuclear Environments

    PubMed Central

    Tsekouras, Konstantinos; Siegel, Amanda P.; Day, Richard N.; Pressé, Steve

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show—first using synthetic data—that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell’s nucleus as well as 2) in the cell’s cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. PMID:26153697

  20. Current limitations and recommendations to improve testing ...

    EPA Pesticide Factsheets

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across organizations, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormonal pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1)adequately sensitive species and life-stages, 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern, and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive in regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to, and guidance for existing test methods, and to reduce uncertainty. For example, in vitro high throughput

  1. ASSESSING POPULATION EXPOSURES TO MULTIPLE AIR POLLUTANTS USING A MECHANISTIC SOURCE-TO-DOSE MODELING FRAMEWORK

    EPA Science Inventory

    The Modeling Environment for Total Risks studies (MENTOR) system, combined with an extension of the SHEDS (Stochastic Human Exposure and Dose Simulation) methodology, provide a mechanistically consistent framework for conducting source-to-dose exposure assessments of multiple pol...

  2. Characterization of truck traffic in Michigan for the new mechanistic empirical pavement design guide.

    DOT National Transportation Integrated Search

    2009-12-01

    The purpose of this study is to characterize traffic inputs in support of the new Mechanistic- : Empirical Pavement Design Guide (M-E PDG) for the state of Michigan. These traffic : characteristics include monthly distribution factors (MDF), hourly d...

  3. Analysis of Virginia-specific traffic data inputs for use with the mechanistic-empirical pavement design guide.

    DOT National Transportation Integrated Search

    2010-02-01

    This study developed traffic inputs for use with the Guide for the Mechanistic-Empirical Design of New & Rehabilitated Pavement Structures (MEPDG) in Virginia and sought to determine if the predicted distresses showed differences between site-specifi...

  4. The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies.

    PubMed

    Wang, Yi; Lee, Sui Mae; Dykes, Gary

    2015-01-01

    Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.

  5. Structural and mechanistic insights into phospholipid transfer by Ups1–Mdm35 in mitochondria

    PubMed Central

    Watanabe, Yasunori; Tamura, Yasushi; Kawano, Shin; Endo, Toshiya

    2015-01-01

    Eukaryotic cells are compartmentalized into membrane-bounded organelles whose functions rely on lipid trafficking to achieve membrane-specific compositions of lipids. Here we focused on the Ups1–Mdm35 system, which mediates phosphatidic acid (PA) transfer between the outer and inner mitochondrial membranes, and determined the X-ray structures of Mdm35 and Ups1–Mdm35 with and without PA. The Ups1–Mdm35 complex constitutes a single domain that has a deep pocket and flexible Ω-loop lid. Structure-based mutational analyses revealed that a basic residue at the pocket bottom and the Ω-loop lid are important for PA extraction from the membrane following Ups1 binding. Ups1 binding to the membrane is enhanced by the dissociation of Mdm35. We also show that basic residues around the pocket entrance are important for Ups1 binding to the membrane and PA extraction. These results provide a structural basis for understanding the mechanism of PA transfer between mitochondrial membranes. PMID:26235513

  6. Overview of the Muscle Cytoskeleton

    PubMed Central

    Henderson, Christine A.; Gomez, Christopher G.; Novak, Stefanie M.; Mi-Mi, Lei; Gregorio, Carol C.

    2018-01-01

    Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. PMID:28640448

  7. Design control for clinical translation of 3D printed modular scaffolds.

    PubMed

    Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E

    2015-03-01

    The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion.

  8. Design Control for Clinical Translation of 3D Printed Modular Scaffolds

    PubMed Central

    Hollister, Scott J.; Flanagan, Colleen L.; Zopf, David A.; Morrison, Robert J.; Nasser, Hassan; Patel, Janki J.; Ebramzadeh, Edward; Sangiorgio, Sophia N.; Wheeler, Matthew B.; Green, Glenn E.

    2015-01-01

    The primary thrust of tissue engineering is the clinical translation of scaffolds and/or biologics to reconstruct tissue defects. Despite this thrust, clinical translation of tissue engineering therapies from academic research has been minimal in the 27 year history of tissue engineering. Academic research by its nature focuses on, and rewards, initial discovery of new phenomena and technologies in the basic research model, with a view towards generality. Translation, however, by its nature must be directed at specific clinical targets, also denoted as indications, with associated regulatory requirements. These regulatory requirements, especially design control, require that the clinical indication be precisely defined a priori, unlike most academic basic tissue engineering research where the research target is typically open-ended, and furthermore requires that the tissue engineering therapy be constructed according to design inputs that ensure it treats or mitigates the clinical indication. Finally, regulatory approval dictates that the constructed system be verified, i.e., proven that it meets the design inputs, and validated, i.e., that by meeting the design inputs the therapy will address the clinical indication. Satisfying design control requires (1) a system of integrated technologies (scaffolds, materials, biologics), ideally based on a fundamental platform, as compared to focus on a single technology, (2) testing of design hypotheses to validate system performance as opposed to mechanistic hypotheses of natural phenomena, and (3) sequential testing using in vitro, in vivo, large preclinical and eventually clinical tests against competing therapies, as compared to single experiments to test new technologies or test mechanistic hypotheses. Our goal in this paper is to illustrate how design control may be implemented in academic translation of scaffold based tissue engineering therapies. Specifically, we propose to (1) demonstrate a modular platform approach founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115

  9. Cell-Based Genotoxicity Testing

    NASA Astrophysics Data System (ADS)

    Reifferscheid, Georg; Buchinger, Sebastian

    Genotoxicity test systems that are based on bacteria display an important role in the detection and assessment of DNA damaging chemicals. They belong to the basic line of test systems due to their easy realization, rapidness, broad applicability, high sensitivity and good reproducibility. Since the development of the Salmonella microsomal mutagenicity assay by Ames and coworkers in the early 1970s, significant development in bacterial genotoxicity assays was achieved and is still a subject matter of research. The basic principle of the mutagenicity assay is a reversion of a growth inhibited bacterial strain, e.g., due to auxotrophy, back to a fast growing phenotype (regain of prototrophy). Deeper knowledge of the ­mutation events allows a mechanistic understanding of the induced DNA-damage by the utilization of base specific tester strains. Collections of such specific tester strains were extended by genetic engineering. Beside the reversion assays, test systems utilizing the bacterial SOS-response were invented. These methods are based on the fusion of various SOS-responsive promoters with a broad variety of reporter genes facilitating numerous methods of signal detection. A very important aspect of genotoxicity testing is the bioactivation of ­xenobiotics to DNA-damaging compounds. Most widely used is the extracellular metabolic activation by making use of rodent liver homogenates. Again, genetic engineering allows the construction of highly sophisticated bacterial tester strains with significantly enhanced sensitivity due to overexpression of enzymes that are involved in the metabolism of xenobiotics. This provides mechanistic insights into the toxification and detoxification pathways of xenobiotics and helps explaining the chemical nature of hazardous substances in unknown mixtures. In summary, beginning with "natural" tester strains the rational design of bacteria led to highly specific and sensitive tools for a rapid, reliable and cost effective ­genotoxicity testing that is of outstanding importance in the risk assessment of compounds (REACH) and in ecotoxicology.

  10. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    ERIC Educational Resources Information Center

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  11. Characterizing Students' Mechanistic Reasoning about London Dispersion Forces

    ERIC Educational Resources Information Center

    Becker, Nicole; Noyes, Keenan; Cooper, Melanie

    2016-01-01

    Characterizing how students construct causal mechanistic explanations for chemical phenomena can provide us with important insights into the ways that students develop understanding of chemistry concepts. Here, we present two qualitative studies of undergraduate general chemistry students' reasoning about the causes of London dispersion forces in…

  12. Reliability of intracerebral hemorrhage classification systems: A systematic review.

    PubMed

    Rannikmäe, Kristiina; Woodfield, Rebecca; Anderson, Craig S; Charidimou, Andreas; Chiewvit, Pipat; Greenberg, Steven M; Jeng, Jiann-Shing; Meretoja, Atte; Palm, Frederic; Putaala, Jukka; Rinkel, Gabriel Je; Rosand, Jonathan; Rost, Natalia S; Strbian, Daniel; Tatlisumak, Turgut; Tsai, Chung-Fen; Wermer, Marieke Jh; Werring, David; Yeh, Shin-Joe; Al-Shahi Salman, Rustam; Sudlow, Cathie Lm

    2016-08-01

    Accurately distinguishing non-traumatic intracerebral hemorrhage (ICH) subtypes is important since they may have different risk factors, causal pathways, management, and prognosis. We systematically assessed the inter- and intra-rater reliability of ICH classification systems. We sought all available reliability assessments of anatomical and mechanistic ICH classification systems from electronic databases and personal contacts until October 2014. We assessed included studies' characteristics, reporting quality and potential for bias; summarized reliability with kappa value forest plots; and performed meta-analyses of the proportion of cases classified into each subtype. We included 8 of 2152 studies identified. Inter- and intra-rater reliabilities were substantial to perfect for anatomical and mechanistic systems (inter-rater kappa values: anatomical 0.78-0.97 [six studies, 518 cases], mechanistic 0.89-0.93 [three studies, 510 cases]; intra-rater kappas: anatomical 0.80-1 [three studies, 137 cases], mechanistic 0.92-0.93 [two studies, 368 cases]). Reporting quality varied but no study fulfilled all criteria and none was free from potential bias. All reliability studies were performed with experienced raters in specialist centers. Proportions of ICH subtypes were largely consistent with previous reports suggesting that included studies are appropriately representative. Reliability of existing classification systems appears excellent but is unknown outside specialist centers with experienced raters. Future reliability comparisons should be facilitated by studies following recently published reporting guidelines. © 2016 World Stroke Organization.

  13. Clinical Use of Probiotics in Pediatric Allergy (cuppa): A World Allergy Organization Position Paper

    PubMed Central

    2012-01-01

    Background Probiotic administration has been proposed for the prevention and treatment of specific allergic manifestations such as eczema, rhinitis, gastrointestinal allergy, food allergy, and asthma. However, published statements and scientific opinions disagree about the clinical usefulness. Objective A World Allergy Organization Special Committee on Food Allergy and Nutrition review of the evidence regarding the use of probiotics for the prevention and treatment of allergy. Methods A qualitative and narrative review of the literature on probiotic treatment of allergic disease was carried out to address the diversity and variable quality of relevant studies. This variability precluded systematization, and an expert panel group discussion method was used to evaluate the literature. In the absence of systematic reviews of treatment, meta-analyses of prevention studies were used to provide data in support of probiotic applications. Results Despite the plethora of literature, probiotic research is still in its infancy. There is a need for basic microbiology research on the resident human microbiota. Mechanistic studies from biology, immunology, and genetics are needed before we can claim to harness the potential of immune modulatory effects of microbiota. Meanwhile, clinicians must take a step back and try to link disease state with alterations of the microbiota through well-controlled long-term studies to identify clinical indications. Conclusions Probiotics do not have an established role in the prevention or treatment of allergy. No single probiotic supplement or class of supplements has been demonstrated to efficiently influence the course of any allergic manifestation or long-term disease or to be sufficient to do so. Further epidemiologic, immunologic, microbiologic, genetic, and clinical studies are necessary to determine whether probiotic supplements will be useful in preventing allergy. Until then, supplementation with probiotics remains empirical in allergy medicine. In the future, basic research should focus on homoeostatic studies, and clinical research should focus on preventive medicine applications, not only in allergy. Collaborations between allergo-immunologists and microbiologists in basic research and a multidisciplinary approach in clinical research are likely to be the most fruitful. PMID:23282383

  14. Improved theory of time domain reflectometry with variable coaxial cable length for electrical conductivity measurements

    USDA-ARS?s Scientific Manuscript database

    Although empirical models have been developed previously, a mechanistic model is needed for estimating electrical conductivity (EC) using time domain reflectometry (TDR) with variable lengths of coaxial cable. The goals of this study are to: (1) derive a mechanistic model based on multisection tra...

  15. Field verification of KDOT's Superpave mixture properties to be used as inputs in the NCHRP mechanistic-empirical pavement design guide.

    DOT National Transportation Integrated Search

    2009-01-01

    In the MechanisticEmpirical Pavement Design Guide (M-EPDG), prediction of flexible pavement response and performance needs an input of dynamic modulus of hot-mix asphalt (HMA) at all three levels of hierarchical inputs. This study was intended to ...

  16. Quantitative AOP linking aromatase inhibition to impaired reproduction: A case study in predictive ecotoxicology

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework is intended to help support greater use of mechanistic toxicology data as a basis for risk assessment and/or regulatory decision-making. While there have been clear advances in the ability to rapidly generate mechanistically-oriented da...

  17. Assessing Metal Levels in Children from the Mechanistic Indicators of Childhood Asthma(MICA) study

    EPA Science Inventory

    Toxic and essential metals levels can be used as health indicators. Here, we quantitatively compare and contrast toxic and essential metals levels in vacuum dust, urine, and fingernail samples of 109 children in Detroit, Michigan as part of The Mechanistic Indicators of Childhood...

  18. A Cycloaromatization Protocol for Synthesis of Polysubstituted Phenol Derivatives: Method Development and Mechanistic Studies

    PubMed Central

    Spencer, William T.

    2012-01-01

    The scope of the cycloaromatization of propargylic ethers was explored using operationally simple air- and moisture-insensitive conditions. Highly substituted phenol derivatives were obtained in high yields. Mechanistic experiments indicate that the reaction occurs by an electrocyclization followed by 1,3-proton transfer. PMID:22891882

  19. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions

    PubMed Central

    Blais, Edik M.; Rawls, Kristopher D.; Dougherty, Bonnie V.; Li, Zhuo I.; Kolling, Glynis L.; Ye, Ping; Wallqvist, Anders; Papin, Jason A.

    2017-01-01

    The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications. PMID:28176778

  20. Fundamental Challenges in Mechanistic Enzymology: Progress toward Understanding the Rate Enhancements of Enzymes

    PubMed Central

    Herschlag, Daniel; Natarajan, Aditya

    2013-01-01

    Enzymes are remarkable catalysts that lie at the heart of biology, accelerating chemical reactions to an astounding extent with extraordinary specificity. Enormous progress in understanding the chemical basis of enzymatic transformations and the basic mechanisms underlying rate enhancements over the past decades is apparent. Nevertheless, it has been difficult to achieve a quantitative understanding of how the underlying mechanisms account for the energetics of catalysis, because of the complexity of enzyme systems and the absence of underlying energetic additivity. We review case studies from our own work that illustrate the power of precisely defined and clearly articulated questions when dealing with such complex and multi-faceted systems, and we also use this approach to evaluate our current ability to design enzymes. We close by highlighting a series of questions that help frame some of what remains to be understood, and we encourage the reader to define additional questions and directions that will deepen and broaden our understanding of enzymes and their catalysis. PMID:23488725

  1. Antioxidative mechanisms in chlorogenic acid.

    PubMed

    Tošović, Jelena; Marković, Svetlana; Dimitrić Marković, Jasmina M; Mojović, Miloš; Milenković, Dejan

    2017-12-15

    Although chlorogenic acid (5CQA) is an important ingredient of various foods and beverages, mechanisms of its antioxidative action have not been fully clarified. Besides electron spin resonance experiment, this study includes thermodynamic and mechanistic investigations of the hydrogen atom transfer (HAT), radical adduct formation (RAF), sequential proton loss electron transfer (SPLET), and single electron transfer - proton transfer (SET-PT) mechanisms of 5CQA in benzene, ethanol, and water solutions. The calculations were performed using the M06-2X/6-311++G(d,p) level of theory and CPCM solvation model. It was found that SET-PT is not a plausible antioxidative mechanism of 5CQA. RAF pathways are faster, but HAT yields thermodynamically more stable radical products, indicating that in acidic and neutral media 5CQA can take either HAT or RAF pathways. In basic environment (e.g. at physiological pH) SPLET is the likely antioxidative mechanism of 5CQA with extremely high rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Control of B Lymphocyte Development and Functions by the mTOR Signaling Pathways

    PubMed Central

    Iwata, Terri N.; Ramírez-Komo, Julita A.; Park, Heon; Iritani, Brian M.

    2017-01-01

    Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells. PMID:28583723

  3. Homocysteine and disease: Causal associations or epiphenomenons?

    PubMed

    Hannibal, Luciana; Blom, Henk J

    2017-02-01

    Nutritional and genetic deficiencies of folate and vitamin B 12 lead to elevation of cellular homocysteine (Hcy), which translates in increased plasma Hcy. The sources and role of elevated plasma Hcy in pathology continues to be a subject of intense scientific debate. Whether a cause, mediator or marker, little is known about the molecular mechanisms and interactions of Hcy with cellular processes that lead to disease. The use of folic acid reduces the incidence of neural tube defects, but the effect of Hcy-lowering interventions with folic acid in cardiovascular disease and cognitive impairment remains controversial. The fact that levels of Hcy in plasma do not always reflect cellular status of this amino acid may account for the substantial gaps that exist between epidemiological, intervention and basic research studies. Understanding whether plasma Hcy is a mechanistic player or an epiphenomenon in pathogenesis requires further investigation, and this research is essential to improve the assessment and potential treatment of hyperhomocysteinemias. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes.

    PubMed

    Herschlag, Daniel; Natarajan, Aditya

    2013-03-26

    Enzymes are remarkable catalysts that lie at the heart of biology, accelerating chemical reactions to an astounding extent with extraordinary specificity. Enormous progress in understanding the chemical basis of enzymatic transformations and the basic mechanisms underlying rate enhancements over the past decades is apparent. Nevertheless, it has been difficult to achieve a quantitative understanding of how the underlying mechanisms account for the energetics of catalysis, because of the complexity of enzyme systems and the absence of underlying energetic additivity. We review case studies from our own work that illustrate the power of precisely defined and clearly articulated questions when dealing with such complex and multifaceted systems, and we also use this approach to evaluate our current ability to design enzymes. We close by highlighting a series of questions that help frame some of what remains to be understood, and we encourage the reader to define additional questions and directions that will deepen and broaden our understanding of enzymes and their catalysis.

  5. Novel anti-inflammatory therapies for the treatment of atherosclerosis.

    PubMed

    Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L

    2015-06-01

    The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome

    PubMed Central

    Hagerman, Randi; Hagerman, Paul

    2014-01-01

    Summary Fragile X syndrome, the leading heritable form of cognitive impairment, is caused by epigenetic silencing of the fragile X (FMR1) gene consequent to large expansions (>200 repeats) of a non-coding CGG-repeat element. Smaller, “premutation” expansions (55–200 repeats) can give rise to a family of neurodevelopmental (ADHD, autism spectrum disorder, seizure disorder) and neurodegenerative (FXTAS) clinical phenotypes through an entirely distinct molecular mechanism involving increased FMR1 mRNA production and toxicity. Basic cellular, animal, and human studies have helped to elucidate the underlying RNA toxicity mechanism, while clinical research is providing a more nuanced picture of the spectrum of clinical involvement. Whereas advances on both mechanistic and clinical fronts are driving new approaches to targeted treatment, two important issues/needs are emerging: to define the extent to which the mechanisms contributing to FXTAS also contribute to other neurodegenerative and medical disorders, and to redefine FXTAS in light of its differing presentations and associated features. PMID:23867198

  7. T Cell Production of GM-CSF Protects the Host during Experimental Tuberculosis.

    PubMed

    Robinson, Richard T

    2017-12-12

    Although classically associated with myelopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) is increasingly recognized as being important for tuberculosis (TB) resistance. GM-CSF is expressed by nonhematopoietic and hematopoietic lineages following infection with Mycobacterium tuberculosis and is necessary to restrict M. tuberculosis growth in experimental models. Until the recent study by Rothchild et al. (mBio 8:e01514-17, 2017, https://doi.org/10.1128/mBio.01514-17), it was unknown whether GM-CSF-producing T cells contribute to TB resistance. Rothchild et al. identify which conventional and nonconventional T cell subsets produce GM-CSF during experimental TB, establish their protective nature using a variety of approaches, and provide a mechanistic basis for their ability to restrict M. tuberculosis growth. This commentary discusses the significance of these findings to basic and applied TB research. As translated to human disease, these findings suggest vaccine-mediated expansion of GM-CSF-producing T cells could be an effective prophylactic or therapeutic TB strategy. Copyright © 2017 Robinson.

  8. Development of the simulation system {open_quotes}IMPACT{close_quotes} for analysis of nuclear power plant severe accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi

    1997-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed bymore » three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.« less

  9. Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling

    NASA Astrophysics Data System (ADS)

    Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.

    2008-12-01

    Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.

  10. Translational cancer research: balancing prevention and treatment to combat cancer globally.

    PubMed

    Wild, Christopher P; Bucher, John R; de Jong, Bas W D; Dillner, Joakim; von Gertten, Christina; Groopman, John D; Herceg, Zdenko; Holmes, Elaine; Holmila, Reetta; Olsen, Jørgen H; Ringborg, Ulrik; Scalbert, Augustin; Shibata, Tatsuhiro; Smith, Martyn T; Ulrich, Cornelia; Vineis, Paolo; McLaughlin, John

    2015-01-01

    Cancer research is drawing on the human genome project to develop new molecular-targeted treatments. This is an exciting but insufficient response to the growing, global burden of cancer, particularly as the projected increase in new cases in the coming decades is increasingly falling on developing countries. The world is not able to treat its way out of the cancer problem. However, the mechanistic insights from basic science can be harnessed to better understand cancer causes and prevention, thus underpinning a complementary public health approach to cancer control. This manuscript focuses on how new knowledge about the molecular and cellular basis of cancer, and the associated high-throughput laboratory technologies for studying those pathways, can be applied to population-based epidemiological studies, particularly in the context of large prospective cohorts with associated biobanks to provide an evidence base for cancer prevention. This integrated approach should allow a more rapid and informed translation of the research into educational and policy interventions aimed at risk reduction across a population. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Brassinosteroids

    PubMed Central

    Clouse, Steven D.

    2011-01-01

    Brassinosteroids (BRs) are endogenous plant hormones essential for the proper regulation of multiple physiological processes required for normal plant growth and development. Since their discovery more than 30 years ago, extensive research on the mechanisms of BR action using biochemistry, mutant studies, proteomics and genome-wide transcriptome analyses, has helped refine the BR biosynthetic pathway, identify the basic molecular components required to relay the BR signal from perception to gene regulation, and expand the known physiological responses influenced by BRs. These mechanistic advances have helped answer the intriguing question of how BRs can have such dramatic pleiotropic effects on a broad range of diverse developmental pathways and have further pointed to BR interactions with other plant hormones and environmental cues. This chapter briefly reviews historical aspects of BR research and then summarizes the current state of knowledge on BR biosynthesis, metabolism and signal transduction. Recent studies uncovering novel phosphorelays and gene regulatory networks through which BR influences both vegetative and reproductive development are examined and placed in the context of known BR physiological responses including cell elongation and division, vascular differentiation, flowering, pollen development and photomorphogenesis. PMID:22303275

  12. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  13. A high arctic experience of uniting research and monitoring

    NASA Astrophysics Data System (ADS)

    Schmidt, Niels Martin; Christensen, Torben R.; Roslin, Tomas

    2017-07-01

    Monitoring is science keeping our thumb on the pulse of the environment to detect any changes of concern for societies. Basic science is the question-driven search for fundamental processes and mechanisms. Given the firm root of monitoring in human interests and needs, basic sciences have often been regarded as scientifically "purer"—particularly within university-based research communities. We argue that the dichotomy between "research" and "monitoring" is an artificial one, and that this artificial split clouds the definition of scientific goals and leads to suboptimal use of resources. We claim that the synergy between the two scientific approaches is well distilled by science conducted under extreme logistic constraints, when scientists are forced to take full advantage of both the data and the infrastructure available. In evidence of this view, we present our experiences from two decades of uniting research and monitoring at the remote research facility Zackenberg in High Arctic Greenland. For this site, we show how the combination of insights from monitoring with the mechanistic understanding obtained from basic research has yielded the most complete understanding of the system—to the benefit of all, and as an example to follow. We therefore urge scientists from across the continuum from monitoring to research to come together, to disregard old division lines, and to work together to expose a comprehensive picture of ecosystem change and its consequences.

  14. 8(th) Symposium on Hemostasis: Translational and Basic Science Discoveries.

    PubMed

    Margaritis, Paris; Key, Nigel S

    2016-05-01

    It has been 14 years since the first symposium on hemostasis at UNC Chapel Hill that focused primarily on the tissue factor (TF) and Factor VIIa (FVIIa) biology, biochemistry and translational work for the treatment of bleeding. Concepts, mechanistic data and therapeutic agents have since emerged that permeate not only aspects of the TF and FVIIa functions, but also broader processes in hemostasis and thrombosis. These processes involve circulating proteins, receptors, cells and cellular components that interact within the coagulation system as well as with additional systems that are dysregulated in disorders seemingly unrelated to bleeding/thrombosis. The reviews in this symposium provide the research background to understand such interactions and integrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. pH-Dependent Singlet O2 Oxidation Kinetics of Guanine and 9-Methylguanine: An Online Mass Spectrometry and Spectroscopy Study Combined with Theoretical Exploration.

    PubMed

    Lu, Wenchao; Sun, Yan; Zhou, Wenjing; Liu, Jianbo

    2018-01-11

    We report a kinetic and mechanistic study on the title reactions, in which 1 O 2 was generated by the reaction of H 2 O 2 with Cl 2 and bubbled into an aqueous solution of guanine and 9-methylguanine (9MG) at different pH values. Oxidation kinetics and product branching ratios were measured using online electrospray ionization mass spectrometry coupled with absorption and emission spectrophotometry, and product structures were determined by collision-induced dissociation (CID) tandem mass spectrometry. Experiments revealed strong pH dependence of the reactions. The oxidation of guanine is noticeable only in basic solution, while the oxidation of 9MG is weak in acidic solution, increases in neutral solution, and becomes intensive in basic solution. 5-Guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) were detected as the major oxidation products of guanine and 9MG, and Sp became dominant in basic solution. A reaction intermediate was captured in mass spectra, and assigned to gem-diol on the basis of CID measurements. This intermediate served as the precursor for the formation of Gh. After taking into account solution compositions at each pH, first-order oxidation rate constants were extracted for individual species: that is, 3.2-3.6 × 10 7 M -1 s -1 for deprotonated guanine, and 1.2 × 10 6 and 4.6-4.9 × 10 7 M -1 s -1 for neutral and deprotonated 9MG, respectively. Guided by approximately spin-projected density-functional-theory-calculated reaction potential energy surfaces, the kinetics for the initial 1 O 2 addition to guanine and 9MG was evaluated using transition state theory (TST). The comparison between TST modeling and experiment confirms that 1 O 2 addition is rate-limiting for oxidation, which forms endoperoxide and peroxide intermediates as determined in previous measurements of the same systems in the gas phase.

  16. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges

    PubMed Central

    Schilling, Mauro; Luber, Sandra

    2018-01-01

    A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions. PMID:29721491

  17. Computational Modeling of Cobalt-based Water Oxidation: Current Status and Future Challenges

    NASA Astrophysics Data System (ADS)

    Schilling, Mauro; Luber, Sandra

    2018-04-01

    A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysis. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability towards real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  18. A Mechanistic Study of Arsenic (III) Rejection by Reverse Osmosis and Nanofiltration Membranes

    ERIC Educational Resources Information Center

    Suzuki, Tasuma

    2009-01-01

    Reverse osmosis/nanofiltration (RO/NF) membranes are capable to provide an effective barrier for a wide range of contaminants (including disinfection by-products precursors) in a single treatment step. However, solute rejection mechanisms by RO/NF membranes are not well understood. The lack of mechanistic information arises from experimental…

  19. Rearrangements of Allylic Sulfinates to Sulfones: A Mechanistic Study

    ERIC Educational Resources Information Center

    Ball, David B.; Mollard, Paul; Voigtritter, Karl R.; Ball, Jenelle L.

    2010-01-01

    Most current organic chemistry textbooks are organized by functional groups and those of us who teach organic chemistry use functional-group organization in our courses but ask students to learn organic chemistry from a mechanistic approach. To enrich and extend the chemical understanding and knowledge of pericyclic-type reactions for chemistry…

  20. Mechanistic-Empirical Pavement Design Guide Flexible Pavement Performance Prediction Models Volume III Field Guide - Calibration and User's Guide for the Mechanistic-Empirical Pavement Design Guide

    DOT National Transportation Integrated Search

    2007-08-01

    The objective of this research study was to develop performance characteristics or variables (e.g., ride quality, rutting, : fatigue cracking, transverse cracking) of flexible pavements in Montana, and to use these characteristics in the : implementa...

  1. Effects of exercise on tumor physiology and metabolism.

    PubMed

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  2. Why did Jacques Monod make the choice of mechanistic determinism?

    PubMed

    Loison, Laurent

    2015-06-01

    The development of molecular biology placed in the foreground a mechanistic and deterministic conception of the functioning of macromolecules. In this article, I show that this conception was neither obvious, nor necessary. Taking Jacques Monod as a case study, I detail the way he gradually came loose from a statistical understanding of determinism to finally support a mechanistic understanding. The reasons of the choice made by Monod at the beginning of the 1950s can be understood only in the light of the general theoretical schema supported by the concept of mechanistic determinism. This schema articulates three fundamental notions for Monod, namely that of the rigidity of the sequence of the genetic program, that of the intrinsic stability of macromolecules (DNA and proteins), and that of the specificity of molecular interactions. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan, E-mail: kannan.krishnan@umontreal.ca

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such amore » way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.« less

  4. Regulation of antiapoptotic MCL-1 function by gossypol: mechanistic insights from in vitro reconstituted systems.

    PubMed

    Etxebarria, Aitor; Landeta, Olatz; Antonsson, Bruno; Basañez, Gorka

    2008-12-01

    Small-molecule drugs that induce apoptosis in tumor cells by activation of the BCL-2-regulated mitochondrial outer membrane permeabilization (MOMP) pathway hold promise for rational anticancer therapies. Accumulating evidence indicates that the natural product gossypol and its derivatives can kill tumor cells by targeting antiapoptotic BCL-2 family members in such a manner as to trigger MOMP. However, due to the inherent complexity of the cellular apoptotic network, the precise mechanisms by which interactions between gossypol and individual BCL-2 family members lead to MOMP remain poorly understood. Here, we used simplified systems bearing physiological relevance to examine the impact of gossypol on the function of MCL-1, a key determinant for survival of various human malignancies that has become a highly attractive target for anticancer drug design. First, using a reconstituted liposomal system that recapitulates basic aspects of the BCL-2-regulated MOMP pathway, we demonstrate that MCL-1 inhibits BAX permeabilizing function via a "dual-interaction" mechanism, while submicromolar concentrations of gossypol reverse MCL-1-mediated inhibition of functional BAX activation. Solution-based studies showed that gossypol competes with BAX/BID BH3 ligands for binding to MCL-1 hydrophobic groove, thereby providing with a mechanistic explanation for how gossypol restores BAX permeabilizing function in the presence of MCL-1. By contrast, no evidence was found indicating that gossypol transforms MCL-1 into a BAX-like pore-forming molecule. Altogether, our findings validate MCL-1 as a direct target of gossypol, and highlight that making this antiapoptotic protein unable to inhibit BAX-driven MOMP may represent one important mechanism by which gossypol exerts its cytotoxic effect in selected cancer cells.

  5. Stress and reproductive failure: past notions, present insights and future directions

    PubMed Central

    Sheps, Sam; Clara Arck, Petra

    2008-01-01

    Problem Maternal stress perception is frequently alleged as a cause of infertility, miscarriages, late pregnancy complications or impaired fetal development. The purpose of the present review is to critically assess the biological and epidemiological evidence that considers the plausibility of a stress link to human reproductive failure. Methods All epidemiological studies published between 1980 and 2007 that tested the link between stress exposure and impaired reproductive success in humans were identified. Study outcomes were evaluated on the basis of how associations were predicted, tested and integrated with theories of etiology arising from recent scientific developments in the basic sciences. Further, published evidence arising from basic science research has been assessed in order to provide a mechanistic concept and biological evidence for the link between stress perception and reproductive success. Results Biological evidence points to an immune–endocrine disequilibrium in response to stress and describes a hierarchy of biological mediators involved in a stress trigger to reproductive failure. Epidemiological evidence presents positive correlations between various pregnancy failure outcomes with pre-conception negative life events and elevated daily urinary cortisol. Strikingly, a relatively new conceptual approach integrating the two strands of evidence suggests the programming of stress susceptibility in mother and fetus via a so-called pregnancy stress syndrome. Conclusions An increasing specificity of knowledge is available about the types and impact of biological and social pathways involved in maternal stress responses. The present evidence is sufficient to warrant a reconsideration of conventional views on the etiology of reproductive failure. Physicians and patients will benefit from the adaptation of this integrated evidence to daily clinical practice. PMID:18274890

  6. Non-directed aromatic C–H amination: catalytic and mechanistic studies enabled by Pd catalyst and reagent design†

    PubMed Central

    Bandara, H. M. D.; Jin, D.; Mantell, M. A.; Field, K. D.; Wang, A.; Narayanan, R. P.; Deskins, N. A.; Emmert, M. H.

    2016-01-01

    This manuscript describes the systematic development of pyridine-type ligands, which promote the Pd catalyzed, non-directed amination of benzene in combination with novel, hydroxylamine-based electrophilic amination reagents. DFT calculations and mechanistic experiments provide insights into the factors influencing the arene C–H amination protocol. PMID:28066540

  7. Productivity of "Collisions Generate Heat" for Reconciling an Energy Model with Mechanistic Reasoning: A Case Study

    ERIC Educational Resources Information Center

    Scherr, Rachel E.; Robertson, Amy D.

    2015-01-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a…

  8. Preparation of the implementation plan of AASHTO Mechanistic-Empirical Pavement Design Guide (M-EPDG) in Connecticut : Phase II : expanded sensitivity analysis and validation with pavement management data.

    DOT National Transportation Integrated Search

    2017-02-08

    The study re-evaluates distress prediction models using the Mechanistic-Empirical Pavement Design Guide (MEPDG) and expands the sensitivity analysis to a wide range of pavement structures and soils. In addition, an extensive validation analysis of th...

  9. Mindfulness & Self-Compassion Meditation for Combat Posttraumatic Stress Disorder: Randomized Controlled Trial and Mechanistic Study

    DTIC Science & Technology

    2013-10-01

    VA Ann Arbor PTSD clinic; and c.) conducting a translational neuroimaging mechanistic study with pre- and post fMRI and neurocognitive testing . 15...might be helpful – both in terms of the psychological characteristics of change, and in terms of neural mechanisms in the brain. Mindfulness...neurocognitive testing . Our novel 16 week Mindfulness and Self-compassion group intervention, “Mindfulness-based Exposure therapy” (MBET), was developed

  10. Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies

    PubMed Central

    Krishna, Katla Sai; Biswas, Sanchita; Navin, Chelliah V.; Yamane, Dawit G.; Miller, Jeffrey T.; Kumar, Challa S.S.R.

    2013-01-01

    Procedures utilizing millifluidic devices for chemical synthesis and time-resolved mechanistic studies are described by taking three examples. In the first, synthesis of ultra-small copper nanoclusters is described. The second example provides their utility for investigating time resolved kinetics of chemical reactions by analyzing gold nanoparticle formation using in situ X-ray absorption spectroscopy. The final example demonstrates continuous flow catalysis of reactions inside millifluidic channel coated with nanostructured catalyst. PMID:24327099

  11. Inferring diffusion dynamics from FCS in heterogeneous nuclear environments.

    PubMed

    Tsekouras, Konstantinos; Siegel, Amanda P; Day, Richard N; Pressé, Steve

    2015-07-07

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show-first using synthetic data-that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell's nucleus as well as 2) in the cell's cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Directional genomic hybridization for chromosomal inversion discovery and detection.

    PubMed

    Ray, F Andrew; Zimmerman, Erin; Robinson, Bruce; Cornforth, Michael N; Bedford, Joel S; Goodwin, Edwin H; Bailey, Susan M

    2013-04-01

    Chromosomal rearrangements are a source of structural variation within the genome that figure prominently in human disease, where the importance of translocations and deletions is well recognized. In principle, inversions-reversals in the orientation of DNA sequences within a chromosome-should have similar detrimental potential. However, the study of inversions has been hampered by traditional approaches used for their detection, which are not particularly robust. Even with significant advances in whole genome approaches, changes in the absolute orientation of DNA remain difficult to detect routinely. Consequently, our understanding of inversions is still surprisingly limited, as is our appreciation for their frequency and involvement in human disease. Here, we introduce the directional genomic hybridization methodology of chromatid painting-a whole new way of looking at structural features of the genome-that can be employed with high resolution on a cell-by-cell basis, and demonstrate its basic capabilities for genome-wide discovery and targeted detection of inversions. Bioinformatics enabled development of sequence- and strand-specific directional probe sets, which when coupled with single-stranded hybridization, greatly improved the resolution and ease of inversion detection. We highlight examples of the far-ranging applicability of this cytogenomics-based approach, which include confirmation of the alignment of the human genome database and evidence that individuals themselves share similar sequence directionality, as well as use in comparative and evolutionary studies for any species whose genome has been sequenced. In addition to applications related to basic mechanistic studies, the information obtainable with strand-specific hybridization strategies may ultimately enable novel gene discovery, thereby benefitting the diagnosis and treatment of a variety of human disease states and disorders including cancer, autism, and idiopathic infertility.

  13. Cardiac implications of hypoglycaemia in patients with diabetes – a systematic review

    PubMed Central

    2013-01-01

    Background Hypoglycaemia has been associated with increased cardiovascular (CV) risk and mortality in a number of recent multicentre trials, but the mechanistic links driving this association remain ill defined. This review aims to summarize the available data on how hypoglycaemia may affect CV risk in patients with diabetes. Methods This was a systematic review of available mechanistic and clinical studies on the relationship between hypoglycaemia and cardiovascular risk. Study outcomes were compiled from relevant articles, and factors contributing to hypoglycaemia-mediated CVD and its complications are discussed. Results Six recent comprehensive clinical trials have reinforced the critical importance of understanding the link between hypoglycaemia and the CV system. In addition, 88 studies have indicated that hypoglycaemia mechanistically contributes to CV risk by increasing thrombotic tendency, causing abnormal cardiac repolarization, inducing inflammation, and contributing to the development of atherosclerosis. These hypoglycaemia-associated risk factors are conducive to events such as unstable angina, non-fatal and fatal myocardial infarction, sudden death, and stroke in patients with diabetes. Conclusions Emerging data suggest that there is an impact of hypoglycaemia on CV function and mechanistic link is multifactorial. Further research will be needed to ascertain the full impact of hypoglycaemia on the CV system and its complications. PMID:24053606

  14. Testing the nature of reaction coordinate describing interaction of H2 with carbonyl carbon, activated by Lewis acid complexation, and the Lewis basic solvent: A Born-Oppenheimer molecular dynamics study with explicit solvent

    NASA Astrophysics Data System (ADS)

    Heshmat, Mojgan; Privalov, Timofei

    2017-09-01

    Using Born-Oppenheimer molecular dynamics (BOMD), we explore the nature of interactions between H2 and the activated carbonyl carbon, C(carbonyl), of the acetone-B(C6F5)3 adduct surrounded by an explicit solvent (1,4-dioxane). BOMD simulations at finite (non-zero) temperature with an explicit solvent produced long-lasting instances of significant vibrational perturbation of the H—H bond and H2-polarization at C(carbonyl). As far as the characteristics of H2 are concerned, the dynamical transient state approximates the transition-state of the heterolytic H2-cleavage. The culprit is the concerted interactions of H2 with C(carbonyl) and a number of Lewis basic solvent molecules—i.e., the concerted C(carbonyl)⋯H2⋯solvent interactions. On one hand, the results presented herein complement the mechanistic insight gained from our recent transition-state calculations, reported separately from this article. But on the other hand, we now indicate that an idea of the sufficiency of just one simple reaction coordinate in solution-phase reactions can be too simplistic and misleading. This article goes in the footsteps of the rapidly strengthening approach of investigating molecular interactions in large molecular systems via "computational experimentation" employing, primarily, ab initio molecular dynamics describing reactants-interaction without constraints of the preordained reaction coordinate and/or foreknowledge of the sampling order parameters.

  15. Proceedings of the 3rd Annual Albert Institute for Bladder Cancer Research Symposium.

    PubMed

    Flaig, Thomas W; Kamat, Ashish M; Hansel, Donna; Ingersoll, Molly A; Barton Grossman, H; Mendelsohn, Cathy; DeGraff, David; Liao, Joseph C; Taylor, John A

    2017-07-27

    The Third Annual Albert Institute Bladder Symposium was held on September 8-10th, 2016, in Denver Colorado. Participants discussed several critical topics in the field of bladder cancer: 1) Best practices for tissue analysis and use to optimize correlative studies, 2) Modeling bladder cancer to facilitate understanding and innovation, 3) Targeted therapies for bladder cancer, 4) Tumor phylogeny in bladder cancer, 5) New Innovations in bladder cancer diagnostics. Our understanding of and approach to treating urothelial carcinoma is undergoing rapid advancement. Preclinical models of bladder cancer have been leveraged to increase our basic and mechanistic understanding of the disease. With the approval of immune checkpoint inhibitors for the treatment of advanced urothelial carcinoma, the treatment approach for these patients has quickly changed. In this light, molecularly-defined subtypes of bladder cancer and appropriate pre-clinical models are now essential to the further advancement and appropriate application of these therapeutic improvements. The optimal collection and processing of clinical urothelial carcinoma tissues samples will also be critical in the development of predictive biomarkers for therapeutic selection. Technological advances in other areas including optimal imaging technologies and micro/nanotechnologies are being applied to bladder cancer, especially in the localized setting, and hold the potential for translational impact in the treatment of bladder cancer patients. Taken together, advances in several basic science and clinical areas are now converging in bladder cancer. These developments hold the promise of shaping and improving the clinical care of those with the disease.

  16. Methodology for the study of the boiling crisis in a nuclear fuel bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crecy, F. de; Juhel, D.

    1995-09-01

    The boiling crisis is one of the phenoumena limiting the available power from a nuclear power plant. It has been widely studied for decades, and numerous data, models, correlations or tables are now available in the literature. If we now try to obtain a general view of previous work in this field, we may note that there are several ways of tackling the subject. The mechanistic models try to model the two-phase flow topology and the interaction between different sublayers, and must be validated by comparison with basic experiments, such as DEBORA, where we try to obtain some detailed informationsmore » on the two-phase flow pattern in a pure and simple geometry. This allows us to obtain better knowledge of the so-called {open_quotes}intrinsic effect{close_quotes}. These models are not yet acceptable for nuclear use. As the geometry of the rod bundles and grids has a tremendous importance for the Critical Heat Flux (CHF), it is mandatory to have more precise results for a given fuel rod bundle in a restricted range of parameters: this leads to the empirical approach, using empirical CHF predictors (tables, correlations, splines, etc...). One of the key points of such a method is the obtaining local thermohydraulic values, that is to say the evaluation of the so-called {open_quotes}mixing effect{close_quotes}. This is done by a subchannel analysis code or equivalent, which can be qualified on two kinds of experiments: overall flow measurements in a subchannel, such as HYDROMEL in single-phase flow or GRAZIELLA in two-phase flow, or detailed measurements inside a subchannel, such as AGATE. Nevertheless, the final qualification of a specific nuclear fuel, i.e. the synthesis of these mechanistic and empirical approaches, intrinsic and mixing effects, etc..., must be achieved on a global test such as OMEGA. This is the strategy used in France by CEA and its partners FRAMATOME and EdF.« less

  17. In situ {sup 13}C MAS NMR study of n-hexane conversion on Pt and Pd supported on basic materials. II. On the mechanism of isomerization and hydrocracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, I.I.; Seirvert, M.; Pasau-Claerbout, A.

    {sup 13}C MAS NMR spectroscopy was performed in situ to investigate the mechanisms of n-hexane isomerization and hydrocracking on Pt and Pd supported on Al-stabilized magnesia (Pt/Mg(Al)O and Pd/Mg(Al)O), and Pt on KL zeolite (Pt/KL). All the catalysts had high metal dispersion, the metal particle sizes being 13, 11, and 18 {Angstrom}, respectively. n-Hexane 1-{sup 13}C was used for in situ label tracer experiments. {sup 13}C MAS NMR spectra were obtained during the time course of the reaction at 573 and 653 K. The NMR results were then quantified, and the reaction kinetics were studied. Identification of the primary andmore » secondary labeled reaction products led to the conclusion that both cyclic and bond-shift isomerization mechanisms operate on the three catalysts. In the case of Pt/Mg(Al)O, the cyclic mechanism accounts for 80% of the isomerization products. In the case of Pt/KL and Pd/Mg(Al)O, the contribution of bond-shift reactions increases due to restricted formation of the methylcyclopentane intermediate on the former and to suppressed hydrogenolysis of methylcyclopentane on the latter. A nonselective cyclic isomerization mechanism operates on magnesia catalysts, while on Pt/KL selective bisecondary bond rupturing occurs. Mechanistic pathways of bond-shift and hydrocracking reactions involve both 1,3- and 2,4-metallocyclobutane intermediates in the case of magnesia-supported catalysts, while in the case of the Pt/KL catalyst a 1,3-metallocyclobutane intermediate is preferentially formed. Only terminal scission occurs on Pt/KL. The Pd catalyst demonstrates enhanced activity in demethylation. The observed differences in the mechanistic pathways are explained on the basis of the specific properties of the metal and support. 64 refs., 14 figs., 6 tabs.« less

  18. Structural and Mechanistic Roles of Novel Chemical Ligands on the SdiA Quorum-Sensing Transcription Regulator

    DOE PAGES

    Nguyen, Y.; Nguyen, Nam X.; Rogers, Jamie L.; ...

    2015-05-19

    Bacteria engage in chemical signaling, termed quorum sensing (QS), to mediate intercellular communication, mimicking multicellular organisms. The LuxR family of QS transcription factors regulates gene expression, coordinating population behavior by sensing endogenous acyl homoserine lactones (AHLs). However, some bacteria (such as Escherichia coli) do not produce AHLs. These LuxR orphans sense exogenous AHLs but also regulate transcription in the absence of AHLs. Importantly, this AHL-independent regulatory mechanism is still largely unknown. Here we present several structures of one such orphan LuxR-type protein, SdiA, from enterohemorrhagic E. coli (EHEC), in the presence and absence of AHL. SdiA is actually not inmore » an apo state without AHL but is regulated by a previously unknown endogenous ligand, 1-octanoyl-rac-glycerol (OCL), which is ubiquitously found throughout the tree of life and serves as an energy source, signaling molecule, and substrate for membrane biogenesis. While exogenous AHL renders to SdiA higher stability and DNA binding affinity, OCL may function as a chemical chaperone placeholder that stabilizes SdiA, allowing for basal activity. Structural comparison between SdiA-AHL and SdiA-OCL complexes provides crucial mechanistic insights into the ligand regulation of AHL-dependent and -independent function of LuxR-type proteins. Importantly, in addition to its contribution to basic science, this work has implications for public health, inasmuch as the SdiA signaling system aids the deadly human pathogen EHEC to adapt to a commensal lifestyle in the gastrointestinal (GI) tract of cattle, its main reservoir. These studies open exciting and novel avenues to control shedding of this human pathogen in the environment. IMPORTANCE Quorum sensing refers to bacterial chemical signaling. The QS acyl homoserine lactone (AHL) signals are recognized by LuxR-type receptors that regulate gene transcription. However, some bacteria have orphan LuxR-type receptors and do not produce AHLs, sensing them from other bacteria. We solved three structures of the E. coli SdiA orphan, in the presence and absence of AHL. SdiA with no AHL is not in an apo state but is regulated by a previously unknown endogenous ligand, 1-octanoyl-rac-glycerol (OCL). OCL is ubiquitously found in prokaryotes and eukaryotes and is a phospholipid precursor for membrane biogenesis and a signaling molecule. While AHL renders to SdiA higher stability and DNA-binding affinity, OCL functions as a chemical chaperone placeholder, stabilizing SdiA and allowing for basal activity. Our studies provide crucial mechanistic insights into the ligand regulation of SdiA activity.« less

  19. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-02-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.

  20. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry.

    PubMed

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-02-11

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide.

  1. Titanium Dioxide Photocatalytic Polymerization of Acrylamide for Gel Electrophoresis (TIPPAGE) of Proteins and Structural Identification by Mass Spectrometry

    PubMed Central

    Zhang, Wenyang; Yuan, Zhiwei; Huang, Lulu; Kang, Jie; Jiang, Ruowei; Zhong, Hongying

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) coupled with mass spectrometry has been well established for separating, identifying and quantifying protein mixtures from cell lines, tissues or other biological samples. The copolymerization process of acrylamide and bis-acrylamide is the key to mastering this powerful technique. In general, this is a vinyl addition reaction initiated by free radical-generating reagents such as ammonium persulfate (APS) and tetramethylethylenediamine (TEMED) under basic pH and degassing experimental condition. We report herein a photocatalytic polymerization approach that is based on photo-generated hydroxyl radicals with nanoparticles of titanium dioxide. It was shown that the polymerization process is greatly accelerated in acidic condition when ultraviolet light shots on the gel solution containing TiO2 nanoparticles without degassing. This feature makes it very useful in preparing Triton X-100 acid urea (TAU) gel that has been developed for separating basic proteins such as histones and variants in acidic experimental condition. Additionally, the presence of titanium dioxide in the gel not only improves mechanistic property of gels but also changes the migration pattern of different proteins that have different affinities to titanium dioxide. PMID:26865351

  2. Nervous system regulation of the cancer genome

    PubMed Central

    Cole, Steven W.

    2012-01-01

    Genomics-based analyses have provided deep insight into the basic biology of cancer and are now clarifying the molecular pathways by which psychological and social factors can regulate tumor cell gene expression and genome evolution. This review summarizes basic and clinical research on neural and endocrine regulation of the cancer genome and its interactions with the surrounding tumor microenvironment, including the specific types of genes subject to neural and endocrine regulation, the signal transduction pathways that mediate such effects, and therapeutic approaches that might be deployed to mitigate their impact. Beta-adrenergic signaling from the sympathetic nervous system has been found to up-regulated a diverse array of genes that contribute to tumor progression and metastasis, whereas glucocorticoid-regulated genes can inhibit DNA repair and promote cancer cell survival and resistance to chemotherapy. Relationships between socio-environmental risk factors, neural and endocrine signaling to the tumor microenvironment, and transcriptional responses by cancer cells and surrounding stromal cells are providing new mechanistic insights into the social epidemiology of cancer, new therapeutic approaches for protecting the health of cancer patients, and new molecular biomarkers for assessing the impact of behavioral and pharmacologic interventions. PMID:23207104

  3. Connecting drug delivery reality to smart materials design.

    PubMed

    Grainger, David W

    2013-09-15

    Inflated claims to both design and mechanistic novelty in drug delivery and imaging systems, including most nanotechnologies, are not supported by the generally poor translation of these systems to clinical efficacy. The "form begets function" design paradigm is seductive but perhaps over-simplistic in translation to pharmaceutical efficacy. Most innovations show few clinically important distinctions in their therapeutic benefits in relevant preclinical disease and delivery models, despite frequent claims to the contrary. Long-standing challenges in drug delivery issues must enlist more realistic, back-to-basics approaches to address fundamental materials properties in complex biological systems, preclinical test beds, and analytical methods to more reliably determine fundamental pharmaceutical figures of merit, including drug carrier purity and batch-batch variability, agent biodistribution, therapeutic index (safety), and efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. On the making of a system theory of life: Paul A Weiss and Ludwig von Bertalanffy's conceptual connection.

    PubMed

    Drack, Manfred; Apfalter, Wilfried; Pouvreau, David

    2007-12-01

    In this article, we review how two eminent Viennese system thinkers, Paul A Weiss and Ludwig von Bertalanffy, began to develop their own perspectives toward a system theory of life in the 1920s. Their work is especially rooted in experimental biology as performed at the Biologische Versuchsanstalt, as well as in philosophy, and they converge in basic concepts. We underline the conceptual connections of their thinking, among them the organism as an organized system, hierarchical organization, and primary activity. With their system thinking, both biologists shared a strong desire to overcome what they viewed as a "mechanistic" approach in biology. Their interpretations are relevant to the renaissance of system thinking in biology--"systems biology." Unless otherwise noted, all translations are our own.

  5. Transient-state kinetic approach to mechanisms of enzymatic catalysis.

    PubMed

    Fisher, Harvey F

    2005-03-01

    Transient-state kinetics by its inherent nature can potentially provide more directly observed detailed resolution of discrete events in the mechanistic time courses of enzyme-catalyzed reactions than its more widely used steady-state counterpart. The use of the transient-state approach, however, has been severely limited by the lack of any theoretically sound and applicable basis of interpreting the virtual cornucopia of time and signal-dependent phenomena that it provides. This Account describes the basic kinetic behavior of the transient state, critically examines some currently used analytic methods, discusses the application of a new and more soundly based "resolved component transient-state time-course method" to the L-glutamate-dehydrogenase reaction, and establishes new approaches for the analysis of both single- and multiple-step substituted transient-state kinetic isotope effects.

  6. The use of mechanistic descriptions of algal growth and zooplankton grazing in an estuarine eutrophication model

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Walker, S. J.; Wallace, B. B.; Webster, I. T.; Parslow, J. S.

    2003-03-01

    A simple model of estuarine eutrophication is built on biomechanical (or mechanistic) descriptions of a number of the key ecological processes in estuaries. Mechanistically described processes include the nutrient uptake and light capture of planktonic and benthic autotrophs, and the encounter rates of planktonic predators and prey. Other more complex processes, such as sediment biogeochemistry, detrital processes and phosphate dynamics, are modelled using empirical descriptions from the Port Phillip Bay Environmental Study (PPBES) ecological model. A comparison is made between the mechanistically determined rates of ecological processes and the analogous empirically determined rates in the PPBES ecological model. The rates generally agree, with a few significant exceptions. Model simulations were run at a range of estuarine depths and nutrient loads, with outputs presented as the annually averaged biomass of autotrophs. The simulations followed a simple conceptual model of eutrophication, suggesting a simple biomechanical understanding of estuarine processes can provide a predictive tool for ecological processes in a wide range of estuarine ecosystems.

  7. Cancer genetics meets biomolecular mechanism-bridging an age-old gulf.

    PubMed

    González-Sánchez, Juan Carlos; Raimondi, Francesco; Russell, Robert B

    2018-02-01

    Increasingly available genomic sequencing data are exploited to identify genes and variants contributing to diseases, particularly cancer. Traditionally, methods to find such variants have relied heavily on allele frequency and/or familial history, often neglecting to consider any mechanistic understanding of their functional consequences. Thus, while the set of known cancer-related genes has increased, for many, their mechanistic role in the disease is not completely understood. This issue highlights a wide gap between the disciplines of genetics, which largely aims to correlate genetic events with phenotype, and molecular biology, which ultimately aims at a mechanistic understanding of biological processes. Fortunately, new methods and several systematic studies have proved illuminating for many disease genes and variants by integrating sequencing with mechanistic data, including biomolecular structures and interactions. These have provided new interpretations for known mutations and suggested new disease-relevant variants and genes. Here, we review these approaches and discuss particular examples where these have had a profound impact on the understanding of human cancers. © 2018 Federation of European Biochemical Societies.

  8. Adsorption behavior of benzenesulfonic acid by novel weakly basic anion exchange resins.

    PubMed

    Sun, Yue; Zuo, Peng; Luo, Junfen; Singh, Rajendra Prasad

    2017-04-01

    Two novel weakly basic anion exchange resins (SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene (Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid (BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution pH, temperature and coexisting competitive inorganic salts (Na 2 SO 4 and NaCl) on adsorption behavior were investigated and the optimum desorption agent was obtained. Adsorption isotherms of BA were found to be well represented by the Langmuir model. Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by NaCl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1 possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1 for potential industrial application. Copyright © 2016. Published by Elsevier B.V.

  9. History of Primary Immunodeficiency Diseases in Iran

    PubMed Central

    Aghamohammadi, Asghar; Moin, Mostafa; Rezaei, Nima

    2010-01-01

    Pediatric immunology came into sight in the second half of 20th century, when pediatricians and basic immunologists began to give attention to diagnosis and treatment of children with primary immunodeficiency diseases (PIDs). Understanding the genetic and mechanistic basis of PIDs provides unique insight into the functioning of the immune system. By progress in basic and clinical immunology, many infrastructural organizations and academic centers have been established in many countries worldwide to focus on training and research on the immune system and related disorders. Along with progress in basic and clinical immunology in the world, pediatric immunology had a good progress in Iran during the last 33-year period. Now, patients with PIDs can benefit from multidisciplinary comprehensive care, which is provided by clinical immunologists in collaboration with other specialists. Patients with history of recurrent and/or chronic infections suggestive of PIDs are evaluated by standard and research-based testing and receive appropriate treatment. The progress in PIDs can be described in three periods. Development of training program for clinical fellowship in allergy and immunology, multidisciplinary and international collaborative projects, primary immunodeficiency diseases textbooks, meetings on immunodeficiency disorders, improvement in diagnosis and treatment, and construction of Iranian primary immunodeficiency association, Students' research group for immunodeficiencies, Iranian primary immunodeficiency registry, and the immunological societies and centers were the main activities on PIDs during these years. In this article, we review the growth of modern pediatric immunology and PIDs status in Iran. PMID:23056678

  10. Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues

    PubMed Central

    Jinot, Jennifer; Scott, Cheryl Siegel; Makris, Susan L.; Cooper, Glinda S.; Dzubow, Rebecca C.; Bale, Ambuja S.; Evans, Marina V.; Guyton, Kathryn Z.; Keshava, Nagalakshmi; Lipscomb, John C.; Barone, Stanley; Fox, John F.; Gwinn, Maureen R.; Schaum, John; Caldwell, Jane C.

    2012-01-01

    Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) completed a toxicological review of trichloroethylene (TCE) in September 2011, which was the result of an effort spanning > 20 years. Objectives: We summarized the key findings and scientific issues regarding the human health effects of TCE in the U.S. EPA’s toxicological review. Methods: In this assessment we synthesized and characterized thousands of epidemiologic, experimental animal, and mechanistic studies, and addressed several key scientific issues through modeling of TCE toxicokinetics, meta-analyses of epidemiologic studies, and analyses of mechanistic data. Discussion: Toxicokinetic modeling aided in characterizing the toxicological role of the complex metabolism and multiple metabolites of TCE. Meta-analyses of the epidemiologic data strongly supported the conclusions that TCE causes kidney cancer in humans and that TCE may also cause liver cancer and non-Hodgkin lymphoma. Mechanistic analyses support a key role for mutagenicity in TCE-induced kidney carcinogenicity. Recent evidence from studies in both humans and experimental animals point to the involvement of TCE exposure in autoimmune disease and hypersensitivity. Recent avian and in vitro mechanistic studies provided biological plausibility that TCE plays a role in developmental cardiac toxicity, the subject of substantial debate due to mixed results from epidemiologic and rodent studies. Conclusions: TCE is carcinogenic to humans by all routes of exposure and poses a potential human health hazard for noncancer toxicity to the central nervous system, kidney, liver, immune system, male reproductive system, and the developing embryo/fetus. PMID:23249866

  11. Magnetophoresis for enhancing transdermal drug delivery: Mechanistic studies and patch design

    PubMed Central

    Murthy, S. Narasimha; Sammeta, Srinivasa M.; Bower, C.

    2017-01-01

    Magnetophoresis is a method of enhancement of drug permeation across the biological barriers by application of magnetic field. The present study investigated the mechanistic aspects of magnetophoretic transdermal drug delivery and also assessed the feasibility of designing a magnetophoretic transdermal patch system for the delivery of lidocaine. In vitro drug permeation studies were carried out across the porcine epidermis at different magnetic field strengths. The magnetophoretic drug permeation “flux enhancement factor” was found to increase with the applied magnetic field strength. The mechanistic studies revealed that the magnetic field applied in this study did not modulate permeability of the stratum corneum barrier. The predominant mechanism responsible for magnetically mediated drug permeation enhancement was found to be “magnetokinesis”. The octanol/water partition coefficient of drugs was also found to increase when exposed to the magnetic field. A reservoir type transdermal patch system with a magnetic backing was designed for in vivo studies. The dermal bioavailability (AUC0–6 h) from the magnetophoretic patch system in vivo, in rats was significantly higher than the similarly designed nonmagnetic control patch. PMID:20728484

  12. An Emphasis on Perception: Teaching Image Formation Using a Mechanistic Model of Vision.

    ERIC Educational Resources Information Center

    Allen, Sue; And Others

    An effective way to teach the concept of image is to give students a model of human vision which incorporates a simple mechanism of depth perception. In this study two almost identical versions of a curriculum in geometrical optics were created. One used a mechanistic, interpretive eye model, and in the other the eye was modeled as a passive,…

  13. Mechanistic, Mathematical Model to Predict the Dynamics of Tissue Genesis in Bone Defects via Mechanical Feedback and Mediation of Biochemical Factors

    PubMed Central

    Moore, Shannon R.; Saidel, Gerald M.; Knothe, Ulf; Knothe Tate, Melissa L.

    2014-01-01

    The link between mechanics and biology in the generation and the adaptation of bone has been well studied in context of skeletal development and fracture healing. Yet, the prediction of tissue genesis within - and the spatiotemporal healing of - postnatal defects, necessitates a quantitative evaluation of mechano-biological interactions using experimental and clinical parameters. To address this current gap in knowledge, this study aims to develop a mechanistic mathematical model of tissue genesis using bone morphogenetic protein (BMP) to represent of a class of factors that may coordinate bone healing. Specifically, we developed a mechanistic, mathematical model to predict the dynamics of tissue genesis by periosteal progenitor cells within a long bone defect surrounded by periosteum and stabilized via an intramedullary nail. The emergent material properties and mechanical environment associated with nascent tissue genesis influence the strain stimulus sensed by progenitor cells within the periosteum. Using a mechanical finite element model, periosteal surface strains are predicted as a function of emergent, nascent tissue properties. Strains are then input to a mechanistic mathematical model, where mechanical regulation of BMP-2 production mediates rates of cellular proliferation, differentiation and tissue production, to predict healing outcomes. A parametric approach enables the spatial and temporal prediction of endochondral tissue regeneration, assessed as areas of cartilage and mineralized bone, as functions of radial distance from the periosteum and time. Comparing model results to histological outcomes from two previous studies of periosteum-mediated bone regeneration in a common ovine model, it was shown that mechanistic models incorporating mechanical feedback successfully predict patterns (spatial) and trends (temporal) of bone tissue regeneration. The novel model framework presented here integrates a mechanistic feedback system based on the mechanosensitivity of periosteal progenitor cells, which allows for modeling and prediction of tissue regeneration on multiple length and time scales. Through combination of computational, physical and engineering science approaches, the model platform provides a means to test new hypotheses in silico and to elucidate conditions conducive to endogenous tissue genesis. Next generation models will serve to unravel intrinsic differences in bone genesis by endochondral and intramembranous mechanisms. PMID:24967742

  14. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of protonated guests was translated into chemical catalysis by taking advantage of the potential for accelerating reactions that take place via positively charged transition states, which could be potentially stabilized by encapsulation. Orthoformates, generally stable in neutral or basic solution, were found to be suitable substrates for catalytic hydrolysis by the assembly. Orthoformates small enough to undergo encapsulation were readily hydrolyzed by the assembly in basic solution, with rate acceleration factors up to 3900 compared with those of the corresponding uncatalyzed reactions. Furthering the analogy to enzymes that obey Michaelis-Menten kinetics, we observed competitive inhibition with the inhibitor NPr{sub 4}{sup +}, thereby confirming that the interior cavity of the assembly was the active site for catalysis. Mechanistic studies revealed that the assembly is required for catalysis and that the rate-limiting step of the reaction involves proton transfer from hydronium to the encapsulated substrate. Encapsulation in the assembly changes the orthoformate hydrolysis from an A-1 mechanism (in which decomposition of the protonated substrate is the rate-limiting step) to an A-S{sub E}2 mechanism (in which proton transfer is the rate-limiting step). The study of hydrolysis in the assembly was next extended to acetals, which were also catalytically hydrolyzed by the assembly in basic solution. Acetal hydrolysis changed from the A-1 mechanism in solution to an A-2 mechanism inside the assembly, where attack of water on the protonated substrate is rate limiting. This work provides rare examples of assembly-catalyzed reactions that proceed with substantial rate accelerations despite the absence of functional groups in the cavity and with mechanisms fully elucidated by quantitative kinetic studies.« less

  15. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  16. Mechanistic-empirical Pavement Design Guide Implementation

    DOT National Transportation Integrated Search

    2010-06-01

    The recently introduced Mechanistic-Empirical Pavement Design Guide (MEPDG) and associated computer software provides a state-of-practice mechanistic-empirical highway pavement design methodology. The MEPDG methodology is based on pavement responses ...

  17. Flow-mediated Dilation: Can New Approaches Provide Greater Mechanistic Insight into Vascular Dysfunction in Preeclampsia and Other Diseases?

    PubMed Central

    Weissgerber, Tracey L.

    2015-01-01

    Endothelial dysfunction is a key feature of preeclampsia, and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction and the shear stimulus. This review encourages researchers to think beyond “low FMD” by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia, while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for three years post-partum. However, FMD returns to normal by ten years post-partum. Studies using new protocols are needed to gain more mechanistic insight. PMID:25182159

  18. Flow-mediated dilation: can new approaches provide greater mechanistic insight into vascular dysfunction in preeclampsia and other diseases?

    PubMed

    Weissgerber, Tracey L

    2014-11-01

    Endothelial dysfunction is a key feature of preeclampsia and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction, and shear stimulus. This review encourages researchers to think beyond "low FMD" by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for 3 years post-partum. However, FMD returns to normal by 10 years post-partum. Studies using new protocols are needed to gain more mechanistic insight.

  19. Mechanistic studies of 1,3-dipolar cycloadditions of bicyclic thioisomünchnones with alkenes. A computational rationale focused on donor-acceptor interactions.

    PubMed

    García de la Concepción, Juan; Ávalos, Martín; Cintas, Pedro; Jiménez, José L; Light, Mark E

    2018-05-09

    This paper describes a mechanistic study, with the interplay of experiment and theory, on the cycloadditions of a bicyclic mesoionic 1,3-dipole versus a series of representative symmetrical (1-phenyl-1H-pyrrole-2,5-dione and dimethyl maleate) and asymmetrical [(E)-(2-nitrovinyl)benzene, acrylonitrile, and but-3-en-2-one] olefinic dipolarophiles. These results allow a comparative analysis with monocyclic dipoles and open further avenues to structurally diversified heteroatom-rich rings. The unichiral version of the bicyclic dipole leads to adducts containing up to five chiral centers, whose formation proceeds with high levels of facial stereoinduction in reactions involving bulky dipolarophiles. The second and largest part of this study provides a theoretical interrogation on the pericyclic mechanism with DFT-methods [M06-2X/6-311++G(d,p)]. In order to get further mechanistic insights, we have also explored charge transfers between reaction partners using NBO analysis, which satisfactorily justifies the stereochemical outcome.

  20. Final Report for Regulation of Embryonic Development in Higher Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, John J.

    2013-10-22

    The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulatedmore » by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.« less

  1. Causality, mediation and time: a dynamic viewpoint

    PubMed Central

    Aalen, Odd O; Røysland, Kjetil; Gran, Jon Michael; Ledergerber, Bruno

    2012-01-01

    Summary. Time dynamics are often ignored in causal modelling. Clearly, causality must operate in time and we show how this corresponds to a mechanistic, or system, understanding of causality. The established counterfactual definitions of direct and indirect effects depend on an ability to manipulate the mediator which may not hold in practice, and we argue that a mechanistic view may be better. Graphical representations based on local independence graphs and dynamic path analysis are used to facilitate communication as well as providing an overview of the dynamic relations ‘at a glance’. The relationship between causality as understood in a mechanistic and in an interventionist sense is discussed. An example using data from the Swiss HIV Cohort Study is presented. PMID:23193356

  2. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    PubMed Central

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  3. Current Challenges in Neurotoxicity Risk Assessment ...

    EPA Pesticide Factsheets

    Neurotoxicity risk assessment must continue to evolve in parallel with advances in basic research. Along with this evolution is an expansion in the scope of neurotoxicity assessments of environmental health risks. Examples of this expansion include an increasing emphasis on complex animal models that better replicate human behavior and a wider array of molecular and mechanistic data relevant to interpreting the underlying cause(s) of toxicity. However, modern neurotoxicology studies are often more nuanced and complicated than traditional studies, and they often vary considerably in evaluation methods from one study to the next, impeding comparisons. This can pose particular difficulties for risk assessors, especially given the recent demand for chemical risk assessments to be more systematic and transparent. This presentation will introduce and provide some examples of specific challenges in neurotoxicity assessments of environmental chemicals. Some of these challenges are relatively new to the field, such as the incorporation of data on neuron-supportive glial cells into hazard characterization, while other challenges have persisted for several decades, but only recently are studies being designed to evaluate them, including analyses of latent neurotoxicity. The examples provided illustrate some future research areas of interest for scientists and risk assessors examining human neurotoxicity risk. This abstract will be presented to internal U.S. Food and Drug A

  4. Cellular and Animal Studies: Insights into Pathophysiology and Therapy of PCOS.

    PubMed

    Indran, Inthrani Raja; Lee, Bao Hui; Yong, Eu-Leong

    2016-11-01

    Basic science studies have advanced our understanding of the role of key enzymes in the steroidogenesis pathway and those that affect the pathophysiology of PCOS. Studies with ovarian theca cells taken from women with PCOS have demonstrated increased androgen production due to increased CYP17A1 and HSD3B2 enzyme activities. Furthermore, overexpression of DENND1A variant 2 in normal theca cells resulted in a PCOS phenotype with increased androgen production. Notably, cellular steroidogenesis models have facilitated the understanding of the mechanistic effects of pharmacotherapies, including insulin sensitizers (e.g., pioglitazone and metformin) used for the treatment of insulin resistance in PCOS, on androgen production. In addition, animal models of PCOS have provided a critical platform to study the effects of therapeutic agents in a manner closer to the physiological state. Indeed, recent breakthroughs have demonstrated that natural derivatives such as the dietary medium-chain fatty acid decanoic acid (DA) can restore estrous cyclicity and lower androgen levels in an animal model of PCOS, thus laying the platform for novel therapeutic developments in PCOS. This chapter reviews the current understanding on the pathways modulating androgen biosynthesis, and the cellular and animal models that form the basis for preclinical research in PCOS, and sets the stage for clinical research. Copyright © 2016. Published by Elsevier Ltd.

  5. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    PubMed Central

    Vidossich, Pietro; Magistrato, Alessandra

    2014-01-01

    Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM)) simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu) and main group (Mg) metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions. PMID:25006697

  6. TFEB at a glance.

    PubMed

    Napolitano, Gennaro; Ballabio, Andrea

    2016-07-01

    The transcription factor EB (TFEB) plays a pivotal role in the regulation of basic cellular processes, such as lysosomal biogenesis and autophagy. The subcellular localization and activity of TFEB are regulated by mechanistic target of rapamycin (mTOR)-mediated phosphorylation, which occurs at the lysosomal surface. Phosphorylated TFEB is retained in the cytoplasm, whereas dephosphorylated TFEB translocates to the nucleus to induce the transcription of target genes. Thus, a lysosome-to-nucleus signaling pathway regulates cellular energy metabolism through TFEB. Recently, in vivo studies have revealed that TFEB is also involved in physiological processes, such as lipid catabolism. TFEB has attracted a lot of attention owing to its ability to induce the intracellular clearance of pathogenic factors in a variety of murine models of disease, such as Parkinson's and Alzheimer's, suggesting that novel therapeutic strategies could be based on the modulation of TFEB activity. In this Cell Science at a Glance article and accompanying poster, we present an overview of the latest research on TFEB function and its implication in human diseases. © 2016. Published by The Company of Biologists Ltd.

  7. Pioglitazone improves insulin action and normalizes menstrual cycles in a majority of prenatally androgenized female rhesus monkeys

    PubMed Central

    Zhou, Rao; Bruns, Cristin M.; Bird, Ian M.; Kemnitz, Joseph W.; Goodfriend, Theodore L.; Dumesic, Daniel A.; Abbott, David H.

    2009-01-01

    PURPOSE OF THE STUDY To determine whether pioglitazone will improve menstrual cyclicity in a fetal programming model for polycystic ovary syndrome. BASIC PROCEDURES Eight prenatally androgenized (PA) and 5 control female rhesus monkeys of similar age, body weight and body mass index received an oral placebo daily for 6–7 months followed, after at least 90 days, by daily oral dosing with pioglitazone (3mg/kg) for an additional 6–7 months. Blood was sampled thrice weekly to monitor ovulatory function, and a variety of endocrine challenges were performed to quantify changes in ovarian, gonadotropin and glucoregulatory function. MOST IMPORTANT FINDINGS Pioglitazone normalized menstrual cycles in 5 out of 8 (62%) PA females (pioglitazone responsive; PioRESP). Pioglitazone increased serum 17α-hydroxyprogesterone responses to an hCG injection in PioRESP PA females, while diminishing serum progesterone, and increasing DHEA and estradiol responses to hCG in PioRESP PA and all normal females. PRINCIPAL CONCLUSIONS Insulin resistance plays a mechanistic role in maintaining anovulation in a majority of PA female monkeys. PMID:17306503

  8. Application of omics data in regulatory toxicology: report of an international BfR expert workshop.

    PubMed

    Marx-Stoelting, P; Braeuning, A; Buhrke, T; Lampen, A; Niemann, L; Oelgeschlaeger, M; Rieke, S; Schmidt, F; Heise, T; Pfeil, R; Solecki, R

    2015-11-01

    Advances in omics techniques and molecular toxicology are necessary to provide new perspectives for regulatory toxicology. By the application of modern molecular techniques, more mechanistic information should be gained to support standard toxicity studies and to contribute to a reduction and refinement of animal experiments required for certain regulatory purposes. The relevance and applicability of data obtained by omics methods to regulatory purposes such as grouping of chemicals, mode of action analysis or classification and labelling needs further improvement, defined validation and cautious expert judgment. Based on the results of an international expert workshop organized 2014 by the Federal Institute for Risk Assessment in Berlin, this paper is aimed to provide a critical overview of the regulatory relevance and reliability of omics methods, basic requirements on data quality and validation, as well as regulatory criteria to decide which effects observed by omics methods should be considered adverse or non-adverse. As a way forward, it was concluded that the inclusion of omics data can facilitate a more flexible approach for regulatory risk assessment and may help to reduce or refine animal testing.

  9. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants.

    PubMed

    Espallargas, N; Fischer, A; Muñoz, A Igual; Mischler, S; Wimmer, M A

    2017-06-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants.

  10. Pharmacokinetic and pharmacodynamic analysis comparing diverse effects of detomidine, medetomidine, and dexmedetomidine in the horse: a population analysis.

    PubMed

    Grimsrud, K N; Ait-Oudhia, S; Durbin-Johnson, B P; Rocke, D M; Mama, K R; Rezende, M L; Stanley, S D; Jusko, W J

    2015-02-01

    The present study characterizes the pharmacokinetic (PK) and pharmacodynamic (PD) relationships of the α2-adrenergic receptor agonists detomidine (DET), medetomidine (MED) and dexmedetomidine (DEX) in parallel groups of horses from in vivo data after single bolus doses. Head height (HH), heart rate (HR), and blood glucose concentrations were measured over 6 h. Compartmental PK and minimal physiologically based PK (mPBPK) models were applied and incorporated into basic and extended indirect response models (IRM). Population PK/PD analysis was conducted using the Monolix software implementing the stochastic approximation expectation maximization algorithm. Marked reductions in HH and HR were found. The drug concentrations required to obtain inhibition at half-maximal effect (IC50 ) were approximately four times larger for DET than MED and DEX for both HH and HR. These effects were not gender dependent. Medetomidine had a greater influence on the increase in glucose concentration than DEX. The developed models demonstrate the use of mechanistic and mPBPK/PD models for the analysis of clinically obtainable in vivo data. © 2014 John Wiley & Sons Ltd.

  11. Pharmacokinetic and pharmacodynamic analysis comparing diverse effects of detomidine, medetomidine, and dexmedetomidine in the horse: a population analysis

    PubMed Central

    Grimsrud, K. N.; Ait-Oudhia, S.; Durbin-Johnson, B. P.; Rocke, D. M.; Mama, K. R.; Rezende, M. L.; Stanley, S. D.; Jusko, W. J.

    2014-01-01

    The present study characterizes the pharmacokinetic (PK) and pharmacodynamic (PD) relationships of the α2-adrenergic receptor agonists detomidine (DET), medetomidine (MED) and dexmedetomidine (DEX) in parallel groups of horses from in vivo data after single bolus doses. Head height (HH), heart rate (HR), and blood glucose concentrations were measured over 6 h. Compartmental PK and minimal physiologically based PK (mPBPK) models were applied and incorporated into basic and extended indirect response models (IRM). Population PK/PD analysis was conducted using the Monolix software implementing the stochastic approximation expectation maximization algorithm. Marked reductions in HH and HR were found. The drug concentrations required to obtain inhibition at half-maximal effect (IC50) were approximately four times larger for DET than MED and DEX for both HH and HR. These effects were not gender dependent. Medetomidine had a greater influence on the increase in glucose concentration than DEX. The developed models demonstrate the use of mechanistic and mPBPK/PD models for the analysis of clinically obtainable in vivo data. PMID:25073816

  12. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants

    PubMed Central

    Espallargas, N.; Fischer, A.; Muñoz, A. Igual; Mischler, S.; Wimmer, M.A.

    2017-01-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants. PMID:28808674

  13. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  14. Fisher's geometrical model emerges as a property of complex integrated phenotypic networks.

    PubMed

    Martin, Guillaume

    2014-05-01

    Models relating phenotype space to fitness (phenotype-fitness landscapes) have seen important developments recently. They can roughly be divided into mechanistic models (e.g., metabolic networks) and more heuristic models like Fisher's geometrical model. Each has its own drawbacks, but both yield testable predictions on how the context (genomic background or environment) affects the distribution of mutation effects on fitness and thus adaptation. Both have received some empirical validation. This article aims at bridging the gap between these approaches. A derivation of the Fisher model "from first principles" is proposed, where the basic assumptions emerge from a more general model, inspired by mechanistic networks. I start from a general phenotypic network relating unspecified phenotypic traits and fitness. A limited set of qualitative assumptions is then imposed, mostly corresponding to known features of phenotypic networks: a large set of traits is pleiotropically affected by mutations and determines a much smaller set of traits under optimizing selection. Otherwise, the model remains fairly general regarding the phenotypic processes involved or the distribution of mutation effects affecting the network. A statistical treatment and a local approximation close to a fitness optimum yield a landscape that is effectively the isotropic Fisher model or its extension with a single dominant phenotypic direction. The fit of the resulting alternative distributions is illustrated in an empirical data set. These results bear implications on the validity of Fisher's model's assumptions and on which features of mutation fitness effects may vary (or not) across genomic or environmental contexts.

  15. Combining correlative and mechanistic habitat suitability models to improve ecological compensation.

    PubMed

    Meineri, Eric; Deville, Anne-Sophie; Grémillet, David; Gauthier-Clerc, Michel; Béchet, Arnaud

    2015-02-01

    Only a few studies have shown positive impacts of ecological compensation on species dynamics affected by human activities. We argue that this is due to inappropriate methods used to forecast required compensation in environmental impact assessments. These assessments are mostly descriptive and only valid at limited spatial and temporal scales. However, habitat suitability models developed to predict the impacts of environmental changes on potential species' distributions should provide rigorous science-based tools for compensation planning. Here we describe the two main classes of predictive models: correlative models and individual-based mechanistic models. We show how these models can be used alone or synoptically to improve compensation planning. While correlative models are easier to implement, they tend to ignore underlying ecological processes and lack accuracy. On the contrary, individual-based mechanistic models can integrate biological interactions, dispersal ability and adaptation. Moreover, among mechanistic models, those considering animal energy balance are particularly efficient at predicting the impact of foraging habitat loss. However, mechanistic models require more field data compared to correlative models. Hence we present two approaches which combine both methods for compensation planning, especially in relation to the spatial scale considered. We show how the availability of biological databases and software enabling fast and accurate population projections could be advantageously used to assess ecological compensation requirement efficiently in environmental impact assessments. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  16. Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome.

    PubMed

    Fleischman, Nicholas M; Das, Debanu; Kumar, Abhinav; Xu, Qingping; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Elsliger, Marc-André; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Wilson, Ian A; Toney, Michael D

    2014-08-01

    Pyridoxal-5'-phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP-dependent enzymes account for ∼1.5% of most prokaryotic genomes and are estimated to be involved in ∼4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP-dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram-positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP-dependent enzyme fold and structure-guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases. © 2014 The Protein Society.

  17. The U.S. Earthquake Prediction Program

    USGS Publications Warehouse

    Wesson, R.L.; Filson, J.R.

    1981-01-01

    There are two distinct motivations for earthquake prediction. The mechanistic approach aims to understand the processes leading to a large earthquake. The empirical approach is governed by the immediate need to protect lives and property. With our current lack of knowledge about the earthquake process, future progress cannot be made without gathering a large body of measurements. These are required not only for the empirical prediction of earthquakes, but also for the testing and development of hypotheses that further our understanding of the processes at work. The earthquake prediction program is basically a program of scientific inquiry, but one which is motivated by social, political, economic, and scientific reasons. It is a pursuit that cannot rely on empirical observations alone nor can it carried out solely on a blackboard or in a laboratory. Experiments must be carried out in the real Earth. 

  18. Understanding the chemistry of the development of latent fingerprints by superglue fuming.

    PubMed

    Wargacki, Stephen P; Lewis, Linda A; Dadmun, Mark D

    2007-09-01

    Cyanoacrylate fuming is a widely used forensic tool for the development of latent fingerprints, however the mechanistic details of the reaction between the fingerprint residue and the cyanoacrylate vapor are not well understood. Here the polymerization of ethyl-cyanoacrylate vapor by sodium lactate or alanine solutions, two of the major components in fingerprint residue, has been examined by monitoring the time dependence of the mass uptake and resultant polymer molecular weight characteristics. This data provides insight into the molecular level actions in the efficient development of latent fingerprints by superglue fuming. The results show that the carboxylate moiety is the primary initiator of the polymerization process and that a basic environment inhibits chain termination while an acidic environment promotes it. The results also indicate that water cannot be the primary initiator in this forensic technique.

  19. A stochastic automata network for earthquake simulation and hazard estimation

    NASA Astrophysics Data System (ADS)

    Belubekian, Maya Ernest

    1998-11-01

    This research develops a model for simulation of earthquakes on seismic faults with available earthquake catalog data. The model allows estimation of the seismic hazard at a site of interest and assessment of the potential damage and loss in a region. There are two approaches for studying the earthquakes: mechanistic and stochastic. In the mechanistic approach, seismic processes, such as changes in stress or slip on faults, are studied in detail. In the stochastic approach, earthquake occurrences are simulated as realizations of a certain stochastic process. In this dissertation, a stochastic earthquake occurrence model is developed that uses the results from dislocation theory for the estimation of slip released in earthquakes. The slip accumulation and release laws and the event scheduling mechanism adopted in the model result in a memoryless Poisson process for the small and moderate events and in a time- and space-dependent process for large events. The minimum and maximum of the hazard are estimated by the model when the initial conditions along the faults correspond to a situation right after a largest event and after a long seismic gap, respectively. These estimates are compared with the ones obtained from a Poisson model. The Poisson model overestimates the hazard after the maximum event and underestimates it in the period of a long seismic quiescence. The earthquake occurrence model is formulated as a stochastic automata network. Each fault is divided into cells, or automata, that interact by means of information exchange. The model uses a statistical method called bootstrap for the evaluation of the confidence bounds on its results. The parameters of the model are adjusted to the target magnitude patterns obtained from the catalog. A case study is presented for the city of Palo Alto, where the hazard is controlled by the San Andreas, Hayward and Calaveras faults. The results of the model are used to evaluate the damage and loss distribution in Palo Alto. The sensitivity analysis of the model results to the variation in basic parameters shows that the maximum magnitude has the most significant impact on the hazard, especially for long forecast periods.

  20. Mechanistic studies of hydrogen evolution in aqueous solution catalyzed by a tertpyridine-amine cobalt complex

    DOE PAGES

    Lewandowska-Andralojc, Anna; Baine, Teera; Zhao, Xuan; ...

    2015-04-22

    The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. In addition, while the basic mechanism of proton reduction promoted by cobalt species is well understood, the reactivity of certain reaction intermediates, such as Co I and Co III–H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH₂)] n+ (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH₂)] n+ wheremore » L is the pentadentate DPA-Bpy ligand or [ Co(OH₂)] n+ as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by DFT calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a Co II species results in weakening the Co–O bond. The further reduction to a Co I species leads to the loss of the aqua ligand and the formation of [ CoI–VS)]⁺ (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [Co I(κ⁴-L)(OH₂)]⁺ species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the Co I species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [ CoIII–H]⁺. We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [Co I(κ⁴-L)(OH₂)]⁺ in addition to the significant structural reorganization of the metal complex and surrounding solvent resulting in a high free energy of activation.« less

  1. What Controls Ooid Grain Size?

    NASA Astrophysics Data System (ADS)

    Trower, L.; Lamb, M. P.; Fischer, W. W.

    2015-12-01

    Ooids are subspherical chemical sand grains composed of concentric layers of CaCO₃ surrounding a central nucleus. These grains represent a common mode of carbonate sedimentation, making them potentially powerful proxies for paleoenvironmental conditions, provided a mechanistic understanding of the physical, chemical, and perhaps biological conditions necessary for their formation. At a basic level, growth of an ooid reflects that precipitation has outpaced abrasion over the ooid's lifetime. We can describe change in ooid size over time (net growth rate) mechanistically as the sum of a growth rate (the rate of carbonate precipitation on the ooid surface) and an abrasion rate (the rate of removal of material through grain-grain and grain-bed collisions). Previous studies have addressed the growth rate, investigating the extent to which microbial activity affects and/or controls carbonate precipitation on ooid surfaces, and the net growth rate, using stepwise acid digestion and radiocarbon dating to determine the ages of cortical layers. We focused on the abrasion rate and designed an experimental study to measure abrasion rates of ooids as a function of grain size and sediment transport stage. Preliminary experiments with medium-sand-sized ooids at a Rouse number of ~1.2 yielded an abrasion rate of 0.04 g/hr (or ~40 ng/ooid/hr), which is four orders of magnitude greater than the fastest net growth rates reported in the recent high resolution ooid cortex radiocarbon dating study by Beaupre et al. (2015). This result requires that either: 1) ooids are essentially not moving and therefore not being abraded or 2) precipitation rates are also much more rapid than the net growth rates estimated by incremental radiocarbon dating. The former constraint is inconsistent with field observations that most marine ooids occur in high energy shoal environments, both in modern examples and in the rock record. Precipitation rates must therefore also be relatively rapid compared with net growth rates in order to offset the effects of abrasion. This disparity in magnitude between abrasion/precipitation rates and net growth rate implies that ooids spend much of their lifetime near a dynamic equilibrium in ooid size, perhaps explaining why ooid populations tend to be unimodal with relatively narrow distributions of grain size.

  2. A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of N-Allyl-Ynamides

    PubMed Central

    DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu

    2010-01-01

    A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418

  3. Development of Alabama traffic factors for use in mechanistic-empirical pavement design.

    DOT National Transportation Integrated Search

    2015-02-01

    The pavement engineering community is moving toward design practices that use mechanistic-empirical (M-E) approaches to the design and analysis of pavement structures. This effort is : embodied in the Mechanistic-Empirical Pavement Design Guide (MEPD...

  4. Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations.

    PubMed

    Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A

    2018-05-29

    In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.

  5. Phylogenetic profiles reveal structural/functional determinants of TRPC3 signal-sensing antennae

    PubMed Central

    Ko, Kyung Dae; Bhardwaj, Gaurav; Hong, Yoojin; Chang, Gue Su; Kiselyov, Kirill

    2009-01-01

    Biochemical assessment of channel structure/function is incredibly challenging. Developing computational tools that provide these data would enable translational research, accelerating mechanistic experimentation for the bench scientist studying ion channels. Starting with the premise that protein sequence encodes information about structure, function and evolution (SF&E), we developed a unified framework for inferring SF&E from sequence information using a knowledge-based approach. The Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST) provides phylogenetic profiles that can model, ab initio, SF&E relationships of biological sequences at the whole protein, single domain and single-amino acid level.1,2 In our recent paper,4 we have applied GDDA-BLAST analysis to study canonical TRP (TRPC) channels1 and empirically validated predicted lipid-binding and trafficking activities contained within the TRPC3 TRP_2 domain of unknown function. Overall, our in silico, in vitro, and in vivo experiments support a model in which TRPC3 has signal-sensing antennae which are adorned with lipid-binding, trafficking and calmodulin regulatory domains. In this Addendum, we correlate our functional domain analysis with the cryo-EM structure of TRPC3.3 In addition, we synthesize recent studies with our new findings to provide a refined model on the mechanism(s) of TRPC3 activation/deactivation. PMID:19704910

  6. Mechanistic Physiologically Based Pharmacokinetic Modeling of the Dissolution and Food Effect of a Biopharmaceutics Classification System IV Compound-The Venetoclax Story.

    PubMed

    Emami Riedmaier, Arian; Lindley, David J; Hall, Jeffrey A; Castleberry, Steven; Slade, Russell T; Stuart, Patricia; Carr, Robert A; Borchardt, Thomas B; Bow, Daniel A J; Nijsen, Marjoleen

    2018-01-01

    Venetoclax, a selective B-cell lymphoma-2 inhibitor, is a biopharmaceutics classification system class IV compound. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to mechanistically describe absorption and disposition of an amorphous solid dispersion formulation of venetoclax in humans. A mechanistic PBPK model was developed incorporating measured amorphous solubility, dissolution, metabolism, and plasma protein binding. A middle-out approach was used to define permeability. Model predictions of oral venetoclax pharmacokinetics were verified against clinical studies of fed and fasted healthy volunteers, and clinical drug interaction studies with strong CYP3A inhibitor (ketoconazole) and inducer (rifampicin). Model verification demonstrated accurate prediction of the observed food effect following a low-fat diet. Ratios of predicted versus observed C max and area under the curve of venetoclax were within 0.8- to 1.25-fold of observed ratios for strong CYP3A inhibitor and inducer interactions, indicating that the venetoclax elimination pathway was correctly specified. The verified venetoclax PBPK model is one of the first examples mechanistically capturing absorption, food effect, and exposure of an amorphous solid dispersion formulated compound. This model allows evaluation of untested drug-drug interactions, especially those primarily occurring in the intestine, and paves the way for future modeling of biopharmaceutics classification system IV compounds. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2009-01-01

    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. PMID:19714203

  8. Factors related to the nursing student-patient relationship: the students' perspective.

    PubMed

    Suikkala, Arja; Leino-Kilpi, Helena; Katajisto, Jouko

    2008-07-01

    The aim of this study was to describe nursing students' perceptions of factors related to three types of student-patient relationship identified in an earlier study: mechanistic, authoritative and facilitative. Another aim was to identify which factors predict the type of relationship. A convenience sample of 310 Bachelor of Health Care students was recruited. The data were collected by using a questionnaire especially designed for this study. Data analysis used the chi-square test, Fisher's exact test, one-way analysis of variance and multinomial logistic regression. Older age was the only significant predictor of a facilitative relationship, whereas fourth-year studies and support received from a person other than supervisor predicted an authoritative relationship. Furthermore, students in authoritative and facilitative relationships had a more positive perception of the patient's attributes as a patient and of patient's improved health and commitment to self-care than students in a mechanistic relationship. A positive perception of the atmosphere during collaboration was more common among students in an authoritative relationship than in a mechanistic relationship. The findings of this study offer useful clues for developing nursing education and empowering patients with a view to improving the quality of nursing care.

  9. Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis.

    PubMed

    Eichmann, Ruth; Biemelt, Sophia; Schäfer, Patrick; Scholz, Uwe; Jansen, Carin; Felk, Angelika; Schäfer, Wilhelm; Langen, Gregor; Sonnewald, Uwe; Kogel, Karl-Heinz; Hückelhoven, Ralph

    2006-04-01

    Different formae speciales of the grass powdery mildew fungus Blumeria graminis undergo basic-compatible or basic-incompatible (nonhost) interactions with barley. Background resistance in compatible interactions and nonhost resistance require common genetic and mechanistic elements of plant defense. To build resources for differential screening for genes that potentially distinguish a compatible from an incompatible interaction on the level of differential gene expression of the plant, we constructed eight dedicated cDNA libraries, established 13.000 expressed sequence tag (EST) sequences and designed DNA macroarrays. Using macroarrays based on cDNAs derived from epidermal peels of plants pretreated with the chemical resistance activating compound acibenzolar-S-methyl, we compared the expression of barley gene transcripts in the early host interaction with B. graminis f.sp. hordei or the nonhost pathogen B. graminis f.sp. tritici, respectively. We identified 102 spots corresponding to 94 genes on the macroarray that gave significant B. graminis-responsive signals at 12 and/or 24 h after inoculation. In independent expression analyses, we confirmed the macroarray results for 11 selected genes. Although the majority of genes showed a similar expression profile in compatible versus incompatible interactions, about 30 of the 94 genes were expressed on slightly different levels in compatible versus incompatible interactions.

  10. Toward a Mechanistic Understanding of Environmentally Forced Zoonotic Disease Emergence: Sin Nombre Hantavirus

    PubMed Central

    Carver, Scott; Mills, James N.; Parmenter, Cheryl A.; Parmenter, Robert R.; Richardson, Kyle S.; Harris, Rachel L.; Douglass, Richard J.; Kuenzi, Amy J.; Luis, Angela D.

    2015-01-01

    Understanding the environmental drivers of zoonotic reservoir and human interactions is crucial to understanding disease risk, but these drivers are poorly predicted. We propose a mechanistic understanding of human–reservoir interactions, using hantavirus pulmonary syndrome as a case study. Crucial processes underpinning the disease's incidence remain poorly studied, including the connectivity among natural and peridomestic deer mouse host activity, virus transmission, and human exposure. We found that disease cases were greatest in arid states and declined exponentially with increasing precipitation. Within arid environments, relatively rare climatic conditions (e.g., El Niño) are associated with increased rainfall and reservoir abundance, producing more frequent virus transmission and host dispersal. We suggest that deer mice increase their occupancy of peridomestic structures during spring–summer, amplifying intraspecific transmission and human infection risk. Disease incidence in arid states may increase with predicted climatic changes. Mechanistic approaches incorporating reservoir behavior, reservoir–human interactions, and pathogen spillover could enhance our understanding of global hantavirus ecology, with applications to other directly transmitted zoonoses. PMID:26955081

  11. Rational and Mechanistic Perspectives on Reinforcement Learning

    ERIC Educational Resources Information Center

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  12. Rational and mechanistic perspectives on reinforcement learning.

    PubMed

    Chater, Nick

    2009-12-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: mechanistic and rational. Reinforcement learning is often viewed in mechanistic terms--as describing the operation of aspects of an agent's cognitive and neural machinery. Yet it can also be viewed as a rational level of description, specifically, as describing a class of methods for learning from experience, using minimal background knowledge. This paper considers how rational and mechanistic perspectives differ, and what types of evidence distinguish between them. Reinforcement learning research in the cognitive and brain sciences is often implicitly committed to the mechanistic interpretation. Here the opposite view is put forward: that accounts of reinforcement learning should apply at the rational level, unless there is strong evidence for a mechanistic interpretation. Implications of this viewpoint for reinforcement-based theories in the cognitive and brain sciences are discussed.

  13. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  14. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts.

    PubMed

    Francke, Robert; Schille, Benjamin; Roemelt, Michael

    2018-05-09

    The utilization of CO 2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO 2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO 2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.

  15. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    PubMed

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation.

  16. Quantitative Comparison of Catalytic Mechanisms and Overall Reactions in Convergently Evolved Enzymes: Implications for Classification of Enzyme Function

    PubMed Central

    Almonacid, Daniel E.; Yera, Emmanuel R.; Mitchell, John B. O.; Babbitt, Patricia C.

    2010-01-01

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation. PMID:20300652

  17. The Newtonian Mechanistic Paradigm, Special Education, and Contours of Alternatives: An Overview.

    ERIC Educational Resources Information Center

    Heshusius, Lous

    1989-01-01

    The article examines theoretical reorientations in special education away from the Newtonian mechanistic paradigm toward an emerging holistic paradigm. Recent literature is critiqued for renaming theories as paradigms, thereby providing an illusion of change while leaving fundamental mechanistic assumptions in place. (Author/DB)

  18. The Development of Multidimensional Analysis Tools for Asymmetric Catalysis and Beyond.

    PubMed

    Sigman, Matthew S; Harper, Kaid C; Bess, Elizabeth N; Milo, Anat

    2016-06-21

    In most modern organic chemistry reports, including many of ours, reaction optimization schemes are typically presented to showcase how reaction conditions have been tailored to augment the reaction's yield and selectivity. In asymmetric catalysis, this often involves evaluation of catalyst, solvent, reagent, and, sometimes, substrate features. Such an article will then detail the process's scope, which mainly focuses on its successes and briefly outlines the "limitations". These limitations or poorer-performing substrates are occasionally the result of obvious, significant changes to structure (e.g., a Lewis basic group binds to a catalyst), but frequently, a satisfying explanation for inferior performance is not clear. This is one of several reasons such results are not often reported. These apparent outliers are also commonplace in the evaluation of catalyst structure, although most of this information is placed in the Supporting Information. These practices are unfortunate because results that appear at first glance to be peculiar or poor are considerably more interesting than ones that follow obvious or intuitive trends. In other words, all of the data from an optimization campaign contain relevant information about the reaction under study, and the "outliers" may be the most revealing. Realizing the power of outliers as an entry point to entirely new reaction development is not unusual. Nevertheless, the concept that no data should be wasted when considering the underlying phenomena controlling the observations of a given reaction is at the heart of the strategy we describe in this Account. The idea that one can concurrently optimize a reaction to expose the structural features that control its outcomes would represent a transformative addition to the arsenal of catalyst development and, ultimately, de novo design. Herein we outline the development of a recently initiated program in our lab that unites optimization with mechanistic interrogation by correlating reaction outputs (e.g., electrochemical potential or enantio-, site, or chemoselectivity) with structural descriptors of the molecules involved. The ever-evolving inspiration for this program is rooted in outliers of classical linear free energy relationships. These outliers encouraged us to ask questions about the parameters themselves, suggest potential interactions at the source of the observed effects, and, of particular applicability, identify more sophisticated physical organic descriptors. Throughout this program, we have integrated techniques from disparate fields, including synthetic methodology development, mechanistic investigations, statistics, computational chemistry, and data science. The implementation of many of these strategies is described, and the resulting tools are illustrated in a wide range of case studies, which include data sets with simultaneous and multifaceted changes to the reagent, substrate, and catalyst structures. This tactic constitutes a modern approach to physical organic chemistry wherein no data are wasted and mechanistic hypotheses regarding sophisticated processes can be developed and probed.

  19. Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

    PubMed Central

    Bernt, Kathrin M.; Hunger, Stephen P.

    2014-01-01

    The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR–ABL1 fusion gene encoding for a chimeric BCR–ABL1 protein. It is present in 3–4% of pediatric acute lymphoblastic leukemia (Ph+ ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph+ ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph+ ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph+ ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph+ ALL expanded exponentially through careful mapping of pathways downstream of BCR–ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph+ ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph+ ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph+ ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias. PMID:24724051

  20. Mechanistic Study of the Oxidative Coupling of Styrene with 2-Phenylpyridine Derivatives Catalyzed by Cationic Rhodium( III) via C–H Activation

    PubMed Central

    Brasse, Mikaël; Cámpora, Juan; Ellman, Jonathan A.; Bergman, Robert G.

    2013-01-01

    The Rh(III) catalyzed oxidative coupling of alkenes with arenes provides a greener alternative to the classical Heck reaction for the synthesis of arene-functionalized alkenes. The present mechanistic study gives insights for the rational development of this key transformation. The catalyst resting states and the rate law of the reaction have been identified. The reaction rate is solely dependent on catalyst and alkene concentrations and the rate determining step is the migratory insertion of alkene into a Rh–C(aryl) bond. PMID:23590843

  1. "Ratio via Machina": Three Standards of Mechanistic Explanation in Sociology

    ERIC Educational Resources Information Center

    Aviles, Natalie B.; Reed, Isaac Ariail

    2017-01-01

    Recently, sociologists have expended much effort in attempts to define social mechanisms. We intervene in these debates by proposing that sociologists in fact have a choice to make between three standards of what constitutes a good mechanistic explanation: substantial, formal, and metaphorical mechanistic explanation. All three standards are…

  2. Intriguing mechanistic labyrinths in gold(i) catalysis

    PubMed Central

    Obradors, Carla

    2014-01-01

    Many mechanistically intriguing reactions have been developed in the last decade using gold(i) as catalyst. Here we review the main mechanistic proposals in gold-catalysed activation of alkynes and allenes, in which this metal plays a central role by stabilising a variety of complex cationic intermediates. PMID:24176910

  3. Transitioning from AOP to IATA - Exploiting mechanistic ...

    EPA Pesticide Factsheets

    Slide presentation at satellite meeting of the QSAR2016 Meeting on How to Transition from AOP to IATA-Exploiting mechanistic insight for practical decision making. . Slide presentation at satellite meeting of the QSAR2016 Meeting on How to Transition from AOP to IATA-Exploiting mechanistic insight for practical decision making. .

  4. A Physics-Inspired Mechanistic Model of Migratory Movement Patterns in Birds.

    PubMed

    Revell, Christopher; Somveille, Marius

    2017-08-29

    In this paper, we introduce a mechanistic model of migratory movement patterns in birds, inspired by ideas and methods from physics. Previous studies have shed light on the factors influencing bird migration but have mainly relied on statistical correlative analysis of tracking data. Our novel method offers a bottom up explanation of population-level migratory movement patterns. It differs from previous mechanistic models of animal migration and enables predictions of pathways and destinations from a given starting location. We define an environmental potential landscape from environmental data and simulate bird movement within this landscape based on simple decision rules drawn from statistical mechanics. We explore the capacity of the model by qualitatively comparing simulation results to the non-breeding migration patterns of a seabird species, the Black-browed Albatross (Thalassarche melanophris). This minimal, two-parameter model was able to capture remarkably well the previously documented migration patterns of the Black-browed Albatross, with the best combination of parameter values conserved across multiple geographically separate populations. Our physics-inspired mechanistic model could be applied to other bird and highly-mobile species, improving our understanding of the relative importance of various factors driving migration and making predictions that could be useful for conservation.

  5. Comparing two-zone models of dust exposure.

    PubMed

    Jones, Rachael M; Simmons, Catherine E; Boelter, Fred W

    2011-09-01

    The selection and application of mathematical models to work tasks is challenging. Previously, we developed and evaluated a semi-empirical two-zone model that predicts time-weighted average (TWA) concentrations (Ctwa) of dust emitted during the sanding of drywall joint compound. Here, we fit the emission rate and random air speed variables of a mechanistic two-zone model to testing event data and apply and evaluate the model using data from two field studies. We found that the fitted random air speed values and emission rate were sensitive to (i) the size of the near-field and (ii) the objective function used for fitting, but this did not substantially impact predicted dust Ctwa. The mechanistic model predictions were lower than the semi-empirical model predictions and measured respirable dust Ctwa at Site A but were within an acceptable range. At Site B, a 10.5 m3 room, the mechanistic model did not capture the observed difference between PBZ and area Ctwa. The model predicted uniform mixing and predicted dust Ctwa up to an order of magnitude greater than was measured. We suggest that applications of the mechanistic model be limited to contexts where the near-field volume is very small relative to the far-field volume.

  6. A Critical Evaluation of Studies Employing Alkenyl Halide ’Mechanistic Probe’ as Indicators of Single Electron Transfer Processes.

    DTIC Science & Technology

    1987-07-07

    College Station, TX 77843 Pittsburgh, PA 15260 Introduction: Chemical reactions come about through the reorganization of valence electrons. The notion...Contmnue on reverie of necessary and odentify 0)’ Wooc ,7umor r) Recently it has been suggested that many reaction traditionally classed in polar terms may...evaluates the utility of these alkenyl halide probes as mechanistic probes for SET. Reactions which interfere with the standard analysis ~ include the

  7. Unexpected formation of 2,1-benzisothiazol-3-ones from oxathiolano ketenimines: a rare tandem process.

    PubMed

    Alajarin, Mateo; Bonillo, Baltasar; Sanchez-Andrada, Pilar; Vidal, Angel; Bautista, Delia

    2009-03-19

    A rare one-pot reaction, a tandem [1,5]-H shift/1,5 electrocyclization/[3 + 2] cycloreversion process, leading from N-[2-(1,3-oxathiolan-2-yl)]phenyl ketenimines to 1-(beta-styryl)-2,1-benzisothiazol-3-ones and ethylene, is disclosed and mechanistically unraveled by means of a computational DFT study. The two latter stages of the tandem process are calculated to occur in a single mechanistic step via a transition structure of pseudopericyclic characteristics.

  8. Drosophila homologues of adenomatous polyposis coli (APC) and the formin diaphanous collaborate by a conserved mechanism to stimulate actin filament assembly.

    PubMed

    Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L; McCartney, Brooke M

    2013-05-10

    Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. The mechanism of actin assembly is highly conserved over evolution. APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla.

  9. RNA helicase proteins as chaperones and remodelers

    PubMed Central

    Jarmoskaite, Inga; Russell, Rick

    2014-01-01

    Superfamily 2 helicase proteins are ubiquitous in RNA biology and have an extraordinarily broad set of functional roles. Central among these roles are to promote rearrangements of structured RNAs and to remodel RNA-protein complexes (RNPs), allowing formation of native RNA structure or progression through a functional cycle of structures. While all superfamily 2 helicases share a conserved helicase core, they are divided evolutionarily into several families, and it is principally proteins from three families, the DEAD-box, DEAH/RHA and Ski2-like families, that function to manipulate structured RNAs and RNPs. Strikingly, there are emerging differences in the mechanisms of these proteins, both between families and within the largest family (DEAD-box), and these differences appear to be tuned to their RNA or RNP substrates and their specific roles. This review outlines basic mechanistic features of the three families and surveys individual proteins and the current understanding of their biological substrates and mechanisms. PMID:24635478

  10. Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges

    PubMed Central

    Parker, Robert S.; Clermont, Gilles

    2010-01-01

    The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made. PMID:20147315

  11. Fasting, circadian rhythms, and time restricted feeding in healthy lifespan

    PubMed Central

    Longo, Valter D.; Panda, Satchidananda

    2016-01-01

    Summary Feeding in most animals is confined to a defined period, leaving short periods of fasting that coincide with sleep. Fasting enables organisms to enter alternative metabolic phases, which rely less on glucose and more on ketone body-like carbon sources. Both intermittent and periodic fasting result in benefits ranging from prevention to the enhanced treatment of diseases. Similarly, time-restricted feeding (TRF), in which feeding time is restricted to certain hours of the day, allows the daily fasting period to last >12 h, thus imparting pleiotropic benefits in multiple organisms. Understanding the mechanistic link between nutrients and the fasting benefits is leading to the identification of fasting mimicking diets (FMDs) that achieve changes similar to those caused by fasting. Given the pleiotropic and sustained benefits of TRF and FMD, both basic science and translational research are warranted to develop fasting-associated interventions into effective and inexpensive treatments with the potential to improve healthspan. PMID:27304506

  12. Growing a market economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view ofmore » society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.« less

  13. Pathophysiological insights in sickle cell disease.

    PubMed

    Odièvre, Marie-Hélène; Verger, Emmanuelle; Silva-Pinto, Ana Cristina; Elion, Jacques

    2011-10-01

    The first coherent pathophysiological scheme for sickle cell disease (SCD) emerged in the sixties-seventies based on an extremely detailed description of the molecular mechanism by which HbS in its deoxy-form polymerises and forms long fibres within the red blood cell that deform it and make it fragile. This scheme explains the haemolytic anaemia, and the mechanistic aspects of the vaso-occlusive crises (VOCs), but, even though it constitutes the basic mechanism of the disease, it does not account for the processes that actually trigger VOCs. This paper reviews recent data which imply: red blood cell dehydration, its abnormal adhesion properties to the endothelium, the participation of inflammatory phenomenon and of a global activation of all the cells present in the vessel, and finally, abnormalities of the vascular tone and of nitric oxide metabolism. These data altogether have shed a new light on the pathophysiology of the first molecular disease i.e. sickle cell disease.

  14. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements

    PubMed Central

    Liu, Pengfei; Erez, Ayelet; Sreenath Nagamani, Sandesh C.; Dhar, Shweta U.; Kołodziejska, Katarzyna E.; Dharmadhikari, Avinash V.; Cooper, M. Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A.; Bacino, Carlos A.; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R.; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A.; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R.; McLean, Scott D.; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L.; Patel, Ankita; Cheung, Sau Wai; Hastings, P. J.; Stankiewicz, Paweł; Lupski, James R.; Bi, Weimin

    2011-01-01

    SUMMARY Complex genomic rearrangements (CGR) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated we observed localization and multiple copy number changes including deletions, duplications and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism’s life cycle. PMID:21925314

  15. Concepts and implications of altruism bias and pathological altruism

    PubMed Central

    Oakley, Barbara A.

    2013-01-01

    The profound benefits of altruism in modern society are self-evident. However, the potential hurtful aspects of altruism have gone largely unrecognized in scientific inquiry. This is despite the fact that virtually all forms of altruism are associated with tradeoffs—some of enormous importance and sensitivity—and notwithstanding that examples of pathologies of altruism abound. Presented here are the mechanistic bases and potential ramifications of pathological altruism, that is, altruism in which attempts to promote the welfare of others instead result in unanticipated harm. A basic conceptual approach toward the quantification of altruism bias is presented. Guardian systems and their over arching importance in the evolution of cooperation are also discussed. Concepts of pathological altruism, altruism bias, and guardian systems may help open many new, potentially useful lines of inquiry and provide a framework to begin moving toward a more mature, scientifically informed understanding of altruism and cooperative behavior. PMID:23754434

  16. Major mechanistic differences between the reactions of hydroxylamine with phosphate di- and tri-esters.

    PubMed

    Medeiros, Michelle; Wanderlind, Eduardo H; Mora, José R; Moreira, Raphaell; Kirby, Anthony J; Nome, Faruk

    2013-10-07

    Hydroxylamine reacts as an oxygen nucleophile, most likely via its ammonia oxide tautomer, towards both phosphate di- and triesters of 2-hydroxypyridine. But the reactions are very different. The product of the two-step reaction with the triester TPP is trapped by the NH2OH present in solution to generate diimide, identified from its expected disproportionation and trapping products. The reaction with H3N(+)-O(-) shows general base catalysis, which calculations show is involved in the breakdown of the phosphorane addition-intermediate of a two-step reaction. The reactivity of the diester anion DPP(-) is controlled by its more basic pyridyl N. Hydroxylamine reacts preferentially with the substrate zwitterion DPP(±) to displace first one then a second 2-pyridone, in concerted S(N)2(P) reactions, forming O-phosphorylated products which are readily hydrolysed to inorganic phosphate. The suggested mechanisms are tested and supported by extensive theoretical calculations.

  17. Addressing unmet needs in understanding asthma mechanisms: From the European Asthma Research and Innovation Partnership (EARIP) Work Package (WP)2 collaborators.

    PubMed

    Edwards, Michael R; Saglani, Sejal; Schwarze, Jurgen; Skevaki, Chrysanthi; Smith, Jaclyn A; Ainsworth, Ben; Almond, Mark; Andreakos, Evangelos; Belvisi, Maria G; Chung, Kian Fan; Cookson, William; Cullinan, Paul; Hawrylowicz, Catherine; Lommatzsch, Marek; Jackson, David; Lutter, Rene; Marsland, Benjamin; Moffatt, Miriam; Thomas, Mike; Virchow, J Christian; Xanthou, Georgina; Edwards, Jessica; Walker, Samantha; Johnston, Sebastian L

    2017-05-01

    Asthma is a heterogeneous, complex disease with clinical phenotypes that incorporate persistent symptoms and acute exacerbations. It affects many millions of Europeans throughout their education and working lives and puts a heavy cost on European productivity. There is a wide spectrum of disease severity and control. Therapeutic advances have been slow despite greater understanding of basic mechanisms and the lack of satisfactory preventative and disease modifying management for asthma constitutes a significant unmet clinical need. Preventing, treating and ultimately curing asthma requires co-ordinated research and innovation across Europe. The European Asthma Research and Innovation Partnership (EARIP) is an FP7-funded programme which has taken a co-ordinated and integrated approach to analysing the future of asthma research and development. This report aims to identify the mechanistic areas in which investment is required to bring about significant improvements in asthma outcomes. Copyright ©ERS 2017.

  18. The Biology of Aging: Citizen Scientists and Their Pets as a Bridge Between Research on Model Organisms and Human Subjects.

    PubMed

    Kaeberlein, M

    2016-03-01

    A fundamental goal of research into the basic mechanisms of aging is to develop translational strategies that improve human health by delaying the onset and progression of age-related pathology. Several interventions have been discovered that increase life span in invertebrate organisms, some of which have similar effects in mice. These include dietary restriction and inhibition of the mechanistic target of rapamycin by treatment with rapamycin. Key challenges moving forward will be to assess the extent to which these and other interventions improve healthy longevity and increase life span in mice and to develop practical strategies for extending this work to the clinic. Companion animals may provide an optimal intermediate between laboratory models and humans. By improving healthy longevity in companion animals, important insights will be gained regarding human aging while improving the quality of life for people and their pets. © The Author(s) 2015.

  19. The energetics of mesopore formation in zeolites with surfactants.

    PubMed

    Linares, Noemi; Jardim, Erika de Oliveira; Sachse, Alexander; Serrano, Elena; Garcia-Martinez, Javier

    2018-05-02

    Mesoporosity can be conveniently introduced in zeolites by treating them in basic surfactant solutions. The apparent activation energy involved in the formation of mesopores in USY via surfactant-templating was obtained through the combination of in situ synchrotron XRD and ex situ gas adsorption. Additionally, techniques such as pH measurements and TG/DTA were employed to determine the OH- evolution and the CTA+ uptake during the development of mesoporosity, providing information about the different steps involved. By combining both in situ and ex situ techniques, we have been able, for the first time, to determine the apparent activation energies of the different processes involved in the mesostructuring of USY zeolites, which are in the same order of magnitude (30 - 65 kJ mol-1) of those involved in the crystallization of zeolites. Hence, important mechanistic insights on the surfactant-templating method were obtained. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Primary sclerosing cholangitis and the microbiota: current knowledge and perspectives on etiopathogenesis and emerging therapies.

    PubMed

    Tabibian, James H; O'Hara, Steven P; Lindor, Keith D

    2014-08-01

    Primary sclerosing cholangitis (PSC) is a chronic, fibroinflammatory, cholestatic liver disease of unknown etiopathogenesis. PSC generally progresses to liver cirrhosis, is a major risk factor for hepatobiliary and colonic neoplasia, and confers a median survival to death or liver transplantation of only 12 years. Although it is well recognized that approximately 75% of patients with PSC also have inflammatory bowel disease (IBD), the significance of this association remains elusive. Accumulating evidence now suggests a potentially important role for the intestinal microbiota, and enterohepatic circulation of molecules derived therefrom, as a putative mechanistic link between PSC and IBD and a central pathobiological driver of PSC. In this concise review, we provide a summary of and perspectives regarding the relevant basic, translational, and clinical data, which, taken together, encourage further investigation of the role of the microbiota and microbial metabolites in the etiopathogenesis of PSC and as a potential target for novel pharmacotherapies.

  1. Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges.

    PubMed

    Parker, Robert S; Clermont, Gilles

    2010-07-06

    The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made.

  2. Assessing uncertainty in mechanistic models

    Treesearch

    Edwin J. Green; David W. MacFarlane; Harry T. Valentine

    2000-01-01

    Concern over potential global change has led to increased interest in the use of mechanistic models for predicting forest growth. The rationale for this interest is that empirical models may be of limited usefulness if environmental conditions change. Intuitively, we expect that mechanistic models, grounded as far as possible in an understanding of the biology of tree...

  3. REDUCING UNCERTAINTY IN RISK ASSESSMENT USING MECHANISTIC DATA: ENHANCING THE U.S. EPA DEVELOPMENTAL NEUROTOXICITY TESTING GUIDELINES

    EPA Science Inventory

    SUMMARY: Mechanistic data should provide the Agency with a more accurate basis to estimate risk than do the Agency’s default assumptions (10x uncertainty factors, etc.), thereby improving risk assessment decisions. NTD is providing mechanistic data for toxicant effects on two maj...

  4. Estimating Time-Varying PCB Exposures Using Person-Specific Predictions to Supplement Measured Values: A Comparison of Observed and Predicted Values in Two Cohorts of Norwegian Women.

    PubMed

    Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2016-03-01

    Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007-2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman's r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen's kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements.

  5. Tea, cocoa, coffee, and affective disorders: vicious or virtuous cycle?

    PubMed

    García-Blanco, Tatiana; Dávalos, Alberto; Visioli, Francesco

    2017-12-15

    The prevalence of psychiatric disorders is increasing worldwide, which underscores the importance of increasing research in this field, in terms of better detection, prevention based on improvement of lifestyle and diet, and effectiveness of treatment. Increasing evidence suggest that diet and exercise can affect proper neuronal development and physiology and protect the brain from neurological illnesses or injuries. Of note, cocoa, tea, and coffee are being actively investigated because they are rich in (poly)phenolic compounds that can modulate mental health, namely brain plasticity, behavior, mood, depression, and cognition. We here systematically review human studies conducted on tea, cocoa, and coffee as related to affective disorders such as depression and anxiety. We carried out a systematic literature search in April 2016, using MEDLINE, on data from the last 10 years. After screening 955 articles, we selected 17 articles that met the criteria of being human studies and that used whole foods or their components. The results of our systematic review indicate that consumption of tea, cocoa, or coffee might have protective effects against depression. Even though this is encouraging, it should be underscored that the near totality of the current evidence comes from observational studies. Ad-hoc human trials and mechanistic, basic science studies are needed before we can provide sound advice to the public. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species.

    PubMed

    Rougier, Thibaud; Lassalle, Géraldine; Drouineau, Hilaire; Dumoulin, Nicolas; Faure, Thierry; Deffuant, Guillaume; Rochard, Eric; Lambert, Patrick

    2015-01-01

    Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution) which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5). We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local adaptations to cold temperatures deserved more attention in terms of modelling, but further in conservation planning as well.

  7. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species

    PubMed Central

    Rougier, Thibaud; Lassalle, Géraldine; Drouineau, Hilaire; Dumoulin, Nicolas; Faure, Thierry; Deffuant, Guillaume; Rochard, Eric; Lambert, Patrick

    2015-01-01

    Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution) which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5). We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local adaptations to cold temperatures deserved more attention in terms of modelling, but further in conservation planning as well. PMID:26426280

  8. Conceptualising population health: from mechanistic thinking to complexity science.

    PubMed

    Jayasinghe, Saroj

    2011-01-20

    The mechanistic interpretation of reality can be traced to the influential work by René Descartes and Sir Isaac Newton. Their theories were able to accurately predict most physical phenomena relating to motion, optics and gravity. This paradigm had at least three principles and approaches: reductionism, linearity and hierarchy. These ideas appear to have influenced social scientists and the discourse on population health. In contrast, Complexity Science takes a more holistic view of systems. It views natural systems as being 'open', with fuzzy borders, constantly adapting to cope with pressures from the environment. These are called Complex Adaptive Systems (CAS). The sub-systems within it lack stable hierarchies, and the roles of agency keep changing. The interactions with the environment and among sub-systems are non-linear interactions and lead to self-organisation and emergent properties. Theoretical frameworks such as epi+demos+cracy and the ecosocial approach to health have implicitly used some of these concepts of interacting dynamic sub-systems. Using Complexity Science we can view population health outcomes as an emergent property of CAS, which has numerous dynamic non-linear interactions among its interconnected sub-systems or agents. In order to appreciate these sub-systems and determinants, one should acquire a basic knowledge of diverse disciplines and interact with experts from different disciplines. Strategies to improve health should be multi-pronged, and take into account the diversity of actors, determinants and contexts. The dynamic nature of the system requires that the interventions are constantly monitored to provide early feedback to a flexible system that takes quick corrections.

  9. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop

    PubMed Central

    Duan, J; Kesisoglou, F; Novakovic, J; Amidon, GL; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-01-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled “Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation.”1 The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole‐body framework.2 PMID:28571121

  10. Toward rational design of amines for CO2 capture: Substituent effect on kinetic process for the reaction of monoethanolamine with CO2.

    PubMed

    Xie, Hongbin; Wang, Pan; He, Ning; Yang, Xianhai; Chen, Jingwen

    2015-11-01

    Amines have been considered as promising candidates for post-combustion CO2 capture. A mechanistic understanding for the chemical processes involved in the capture and release of CO2 is important for the rational design of amines. In this study, the structural effects of amines on the kinetic competition among three typical products (carbamates, carbamic acids and bicarbonate) from amines+CO2 were investigated, in contrast to previous thermodynamic studies to tune the reaction of amines with CO2 based on desirable reaction enthalpy and reaction stoichiometry. We used a quantum chemical method to calculate the activation energies (Ea) for the reactions of a range of substituted monoethanolamines with CO2 covering three pathways to the three products. The results indicate that the formation of carbamates is the most favorable, among the three considered products. In addition, we found that the Ea values for all pathways linearly correlate with pKa of amines, and more importantly, the kinetic competition between carbamate and bicarbonate absorption pathways varies with pKa of the amines, i.e. stronger basicity results in less difference in Ea. These results highlight the importance of the consideration of kinetic competition among different reaction pathways in amine design. Copyright © 2015. Published by Elsevier B.V.

  11. The evolution of honey bee dance communication: a mechanistic perspective.

    PubMed

    Barron, Andrew B; Plath, Jenny Aino

    2017-12-01

    Honey bee dance has been intensively studied as a communication system, and yet we still know very little about the neurobiological mechanisms supporting how dances are produced and interpreted. Here, we discuss how new information on the functions of the central complex (CX) of the insect brain might shed some light on possible neural mechanisms of dance behaviour. We summarise the features of dance communication across the species of the genus Apis We then propose that neural mechanisms of orientation and spatial processing found to be supported by the CX may function in dance communication also, and that this mechanistic link could explain some specific features of the dance form. This is purely a hypothesis, but in proposing this hypothesis, and how it might be investigated, we hope to stimulate new mechanistic analyses of dance communication. © 2017. Published by The Company of Biologists Ltd.

  12. Kinetic and mechanistic reactivity. Isoprene impact on ozone levels in an urban area near Tijuca Forest, Rio de Janeiro.

    PubMed

    da Silva, Cleyton Martins; da Silva, Luane Lima; Corrêa, Sergio Machado; Arbilla, Graciela

    2016-12-01

    Volatile organic compounds (VOCs) play a central role in atmospheric chemistry. In this work, the kinetic and mechanistic reactivities of VOCs are analyzed, and the contribution of the organic compounds emitted by anthropogenic and natural sources is estimated. VOCs react with hydroxyl radicals and other photochemical oxidants, such as ozone and nitrate radicals, which cause the conversion of NO to NO 2 in various potential reaction paths, including photolysis, to form oxygen atoms, which generate ozone. The kinetic reactivity was evaluated based on the reaction coefficients for hydroxyl radicals with VOCs. The mechanistic reactivity was estimated using a detailed mechanism and the incremental reactivity scale that Carter proposed. Different scenarios were proposed and discussed, and a minimum set of compounds, which may describe the tropospheric reactivity in the studied area, was determined. The role of isoprene was analyzed in terms of its contribution to ozone formation.

  13. Towards predictive models of the human gut microbiome

    PubMed Central

    2014-01-01

    The intestinal microbiota is an ecosystem susceptible to external perturbations such as dietary changes and antibiotic therapies. Mathematical models of microbial communities could be of great value in the rational design of microbiota-tailoring diets and therapies. Here, we discuss how advances in another field, engineering of microbial communities for wastewater treatment bioreactors, could inspire development of mechanistic mathematical models of the gut microbiota. We review the current state-of-the-art in bioreactor modeling and current efforts in modeling the intestinal microbiota. Mathematical modeling could benefit greatly from the deluge of data emerging from metagenomic studies, but data-driven approaches such as network inference that aim to predict microbiome dynamics without explicit mechanistic knowledge seem better suited to model these data. Finally, we discuss how the integration of microbiome shotgun sequencing and metabolic modeling approaches such as flux balance analysis may fulfill the promise of a mechanistic model of the intestinal microbiota. PMID:24727124

  14. Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies.

    PubMed

    Lee, Doris; Williamson, Caitlin L; Chan, Lina; Taylor, Mark S

    2012-05-16

    Synthetic and mechanistic aspects of the diarylborinic acid-catalyzed regioselective monofunctionalization of 1,2- and 1,3-diols are presented. Diarylborinic acid catalysis is shown to be an efficient and general method for monotosylation of pyranoside derivatives bearing three secondary hydroxyl groups (7 examples, 88% average yield). In addition, the scope of the selective acylation, sulfonylation, and alkylation is extended to 1,2- and 1,3-diols not derived from carbohydrates (28 examples); the efficiency, generality, and operational simplicity of this method are competitive with those of state-of-the-art protocols including the broadly applied organotin-catalyzed or -mediated reactions. Mechanistic details of the organoboron-catalyzed processes are explored using competition experiments, kinetics, and catalyst structure-activity relationships. These experiments are consistent with a mechanism in which a tetracoordinate borinate complex reacts with the electrophilic species in the turnover-limiting step of the catalytic cycle.

  15. An example problem illustrating the application of the national lime association mixture design and testing protocol (MDTP) to ascertain engineering properties of lime-treated subgrades for mechanistic pavement design/analysis.

    DOT National Transportation Integrated Search

    2001-09-01

    This document presents an example of mechanistic design and analysis using a mix design and : testing protocol. More specifically, it addresses the structural properties of lime-treated subgrade, : subbase, and base layers through mechanistic design ...

  16. Estimating loss of Brucella abortus antibodies from age-specific serological data in elk

    USGS Publications Warehouse

    Benavides, J. A.; Caillaud, D.; Scurlock, B. M.; Maichak, E. J.; Edwards, W.H.; Cross, Paul C.

    2017-01-01

    Serological data are one of the primary sources of information for disease monitoring in wildlife. However, the duration of the seropositive status of exposed individuals is almost always unknown for many free-ranging host species. Directly estimating rates of antibody loss typically requires difficult longitudinal sampling of individuals following seroconversion. Instead, we propose a Bayesian statistical approach linking age and serological data to a mechanistic epidemiological model to infer brucellosis infection, the probability of antibody loss, and recovery rates of elk (Cervus canadensis) in the Greater Yellowstone Ecosystem. We found that seroprevalence declined above the age of ten, with no evidence of disease-induced mortality. The probability of antibody loss was estimated to be 0.70 per year after a five-year period of seropositivity and the basic reproduction number for brucellosis to 2.13. Our results suggest that individuals are unlikely to become re-infected because models with this mechanism were unable to reproduce a significant decline in seroprevalence in older individuals. This study highlights the possible implications of antibody loss, which could bias our estimation of critical epidemiological parameters for wildlife disease management based on serological data.

  17. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods

    PubMed Central

    Hu, Marian Y; Hwang, Pung-Pung; Tseng, Yung-Che

    2015-01-01

    Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4+) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems. PMID:26716070

  18. Pacific island ‘Awa (Kava) extracts, but not isolated kavalactones, promote pro-inflammatory responses in model mast cells

    PubMed Central

    Shimoda, Lori M.N.; Park, Christy; Stokes, Alexander J.; Gomes, Henry Halenani; Turner, Helen

    2013-01-01

    Kava (‘Awa) is a traditional water-based beverage in Pacific island communities, prepared from the ground root and stems of Piper methysticum. Kava use is associated with an ichthyotic dermatitis and delayed type hypersensitivity reactions. In the current study we collated preparative methodologies from cultural practitioners and recreational kava users in various Pacific communities. We standardized culturally-informed aqueous extraction methods and prepared extracts that were subjected to basic physicochemical analysis. Mast cells exposed to these extracts displayed robust intracellular free calcium responses, and concomitant release of pro-inflammatory mediators. In contrast, mast cells were refractory to single or combinatorial stimulation with kavalactones including methysticin, dihydromethysticin and kavain. Moreover, we reproduced a traditional modification of the kava preparation methodology, pre-mixing with the mucilage of Hibiscus taliaceus, and observed its potentiating effect on the activity of aqueous extracts in mast cells. Taken together, these data indicate that water extractable active ingredients may play a role in the physiological and pathophysiological effects of kava, and suggests that mast cell activation may be a mechanistic component of kava-related skin inflammations. PMID:22473598

  19. Evaluating landfill aftercare strategies: A life cycle assessment approach.

    PubMed

    Turner, David A; Beaven, Richard P; Woodman, Nick D

    2017-05-01

    This study investigates the potential impacts caused by the loss of active environmental control measures during the aftercare period of landfill management. A combined mechanistic solute flow model and life cycle assessment (LCA) approach was used to evaluate the potential impacts of leachate emissions over a 10,000year time horizon. A continuum of control loss possibilities occurring at different times and for different durations were investigated for four different basic aftercare scenarios, including a typical aftercare scenario involving a low permeability cap and three accelerated aftercare scenarios involving higher initial infiltration rates. Assuming a 'best case' where control is never lost, the largest potential impacts resulted from the typical aftercare scenario. The maximum difference between potential impacts from the 'best case' and the 'worst case', where control fails at the earliest possible point and is never reinstated, was only a fourfold increase. This highlights potential deficiencies in standard life cycle impact assessment practice, which are discussed. Nevertheless, the results show how the influence of active control loss on the potential impacts of landfilling varies considerably depending on the aftercare strategy used and highlight the importance that leachate treatment efficiencies have upon impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Banishing the Control Homunculi in Studies of Action Control and Behavior Change

    PubMed Central

    Verbruggen, Frederick; McLaren, Ian P. L.; Chambers, Christopher D.

    2014-01-01

    For centuries, human self-control has fascinated scientists and nonscientists alike. Current theories often attribute it to an executive control system. But even though executive control receives a great deal of attention across disciplines, most aspects of it are still poorly understood. Many theories rely on an ill-defined set of “homunculi” doing jobs like “response inhibition” or “updating” without explaining how they do so. Furthermore, it is not always appreciated that control takes place across different timescales. These two issues hamper major advances. Here we focus on the mechanistic basis for the executive control of actions. We propose that at the most basic level, action control depends on three cognitive processes: signal detection, action selection, and action execution. These processes are modulated via error-correction or outcome-evaluation mechanisms, preparation, and task rules maintained in working and long-term memory. We also consider how executive control of actions becomes automatized with practice and how people develop a control network. Finally, we discuss how the application of this unified framework in clinical domains can increase our understanding of control deficits and provide a theoretical basis for the development of novel behavioral change interventions. PMID:25419227

  1. Functions of the cellular prion protein, the end of Moore's law, and Ockham's razor theory.

    PubMed

    del Río, José A; Gavín, Rosalina

    2016-01-01

    Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called "Prnp-flanking genes" that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrP(C)-mediated cell death should be considered, as Ockham's razor theory suggested.

  2. Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval

    PubMed Central

    Miller, Brian T.; D'Esposito, Mark

    2012-01-01

    Memory operations such as encoding and retrieval require the coordinated interplay of cortical regions with distinct functional contributions. The mechanistic nature of these interactions, however, remains unspecified. During the performance of a face memory task during fMRI scanning, we measured the magnitude (a measure of the strength of coupling between areas) and phase (a measure of the relative timing across areas) of coherence between regions of interest and the rest of the brain. The fusiform face area (FFA) showed robust coherence with a distributed network of subregions in the prefrontal cortex (PFC), posterior parietal cortex (PPC), precuneus, and hippocampus across both memory operations. While these findings reveal significant overlap in the cortical networks underlying mnemonic encoding and retrieval, coherence phase analyses revealed context-dependent differences in cortical dynamics. During both encoding and retrieval, PFC and PPC exhibited earlier activity than in the FFA and hippocampus. Also, during retrieval, PFC activity preceded PPC activity. These findings are consistent with prior physiology studies suggesting an early contribution of PFC and PPC in mnemonic control. Together, these findings contribute to the growing literature exploring the spatio-temporal dynamics of basic memory operations. PMID:22557959

  3. Pattern Genes Suggest Functional Connectivity of Organs

    NASA Astrophysics Data System (ADS)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  4. BioMetals: a historical and personal perspective.

    PubMed

    Silver, Simon

    2011-06-01

    Understanding of BioMetals developed basically from a starting point about 60 years ago to current mechanistic understanding of the biological behavior of many metal ions from protein structural and functional studies. Figure 1 shows a Biochemical Periodic Table, element by element, with requirements, roles and biochemistry of the specific ions indicated. With few exceptions, the biology is of the ions formed and not of the elemental state of each. Early BioMetals efforts defined nutritional growth needs for animals, plants and microbes for inorganic "macro-nutrients" such as magnesium, calcium, potassium, sodium, and phosphate and of "micronutrients" such as copper, iron, manganese and zinc. Surprises came early with regard to microbes, for example the finding that Escherichia coli (then and now the standard microbial model) grows happily in the apparent total absence of calcium, sodium, and chloride, which are certainly major animal nutrients. Some elements such as mercury and arsenic are never required by living cells, but are always toxic, often at very low levels. Therefore, the division into nutrient elements and toxic elements came soon. For most inorganic nutrients, excessive amounts can be toxic as well, for example for copper and iron.

  5. More than just noise: Inter-individual differences in fear acquisition, extinction and return of fear in humans - Biological, experiential, temperamental factors, and methodological pitfalls.

    PubMed

    Lonsdorf, Tina B; Merz, Christian J

    2017-09-01

    Why do only some individuals develop pathological anxiety following adverse events? Fear acquisition, extinction and return of fear paradigms serve as experimental learning models for the development, treatment and relapse of anxiety. Individual differences in experimental performance were however mostly regarded as 'noise' by researchers interested in basic associative learning principles. Our work for the first time presents a comprehensive literature overview and methodological discussion on inter-individual differences in fear acquisition, extinction and return of fear. We tell a story from noise that steadily develops into a meaningful tune and converges to a model of mechanisms contributing to individual risk/resilience with respect to fear and anxiety-related behavior. Furthermore, in light of the present 'replicability crisis' we identify methodological pitfalls and provide suggestions for study design and analyses tailored to individual difference research in fear conditioning. Ultimately, synergistic transdisciplinary and collaborative efforts hold promise to not only improve our mechanistic understanding but can also be expected to contribute to the development of specifically tailored ('individualized') intervention and targeted prevention programs in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Use of ferrets for electrophysiologic monitoring of ion transport

    PubMed Central

    Kaza, Niroop; Raju, S. Vamsee; Cadillac, Joan M.; Trombley, John A.; Rasmussen, Lawrence; Tang, Liping; Dohm, Erik; Harrod, Kevin S.

    2017-01-01

    Limited success achieved in translating basic science discoveries into clinical applications for chronic airway diseases is attributed to differences in respiratory anatomy and physiology, poor approximation of pathologic processes, and lack of correlative clinical endpoints between humans and laboratory animal models. Here, we discuss advantages of using ferrets (Mustela putorus furo) as a model for improved understanding of human airway physiology and demonstrate assays for quantifying airway epithelial ion transport in vivo and ex vivo, and establish air-liquid interface cultures of ferret airway epithelial cells as a complementary in vitro model for mechanistic studies. We present data here that establishes the feasibility of measuring these human disease endpoints in ferrets. Briefly, potential difference across the nasal and the lower airway epithelium in ferrets could be consistently assessed, were highly reproducible, and responsive to experimental interventions. Additionally, ferret airway epithelial cells were amenable to primary cell culture methods for in vitro experiments as was the use of ferret tracheal explants as an ex vivo system for assessing ion transport. The feasibility of conducting multiple assessments of disease outcomes supports the adoption of ferrets as a highly relevant model for research in obstructive airway diseases. PMID:29077751

  7. Use of ferrets for electrophysiologic monitoring of ion transport.

    PubMed

    Kaza, Niroop; Raju, S Vamsee; Cadillac, Joan M; Trombley, John A; Rasmussen, Lawrence; Tang, Liping; Dohm, Erik; Harrod, Kevin S; Rowe, Steven M

    2017-01-01

    Limited success achieved in translating basic science discoveries into clinical applications for chronic airway diseases is attributed to differences in respiratory anatomy and physiology, poor approximation of pathologic processes, and lack of correlative clinical endpoints between humans and laboratory animal models. Here, we discuss advantages of using ferrets (Mustela putorus furo) as a model for improved understanding of human airway physiology and demonstrate assays for quantifying airway epithelial ion transport in vivo and ex vivo, and establish air-liquid interface cultures of ferret airway epithelial cells as a complementary in vitro model for mechanistic studies. We present data here that establishes the feasibility of measuring these human disease endpoints in ferrets. Briefly, potential difference across the nasal and the lower airway epithelium in ferrets could be consistently assessed, were highly reproducible, and responsive to experimental interventions. Additionally, ferret airway epithelial cells were amenable to primary cell culture methods for in vitro experiments as was the use of ferret tracheal explants as an ex vivo system for assessing ion transport. The feasibility of conducting multiple assessments of disease outcomes supports the adoption of ferrets as a highly relevant model for research in obstructive airway diseases.

  8. A coupled biophysical model for the distribution of the great scallop Pecten maximus in the English Channel

    NASA Astrophysics Data System (ADS)

    Le Goff, Clément; Lavaud, Romain; Cugier, Philippe; Jean, Fred; Flye-Sainte-Marie, Jonathan; Foucher, Eric; Desroy, Nicolas; Fifas, Spyros; Foveau, Aurélie

    2017-03-01

    In this paper we used a modelling approach integrating both physical and biological constraints to understand the biogeographical distribution of the great scallop Pecten maximus in the English Channel during its whole life cycle. A 3D bio-hydrodynamical model (ECO-MARS3D) providing environmental conditions was coupled to (i) a population dynamics model and (ii) an individual ecophysiological model (Dynamic Energy Budget model). We performed the coupling sequentially, which underlined the respective role of biological and physical factors in defining P. maximus distribution in the English Channel. Results show that larval dispersion by hydrodynamics explains most of the scallop distribution and enlighten the main known hotspots for the population, basically corresponding to the main fishing areas. The mechanistic description of individual bioenergetics shows that food availability and temperature control growth and reproduction and explain how populations may maintain themselves in particular locations. This last coupling leads to more realistic densities and distributions of adults in the English Channel. The results of this study improves our knowledge on the stock and distribution dynamics of P. maximus, and provides grounds for useful tools to support management strategies.

  9. Mechanistic Analysis of the C-H Amination Reaction of Menthol by CuBr2 and Selectfluor.

    PubMed

    Sathyamoorthi, Shyam; Lai, Yin-Hung; Bain, Ryan M; Zare, Richard N

    2018-05-18

    The mechanism of the Ritter-type C-H amination reaction of menthol with acetonitrile using CuBr 2 , Selectfluor, and Zn(OTf) 2 , first disclosed by Baran and coworkers in 2012, was studied using a combination of online electrospray ionization mass spectrometry, continuous UV/vis spectrometric monitoring, and density functional theory calculations. In addition to corroborating Baran's original mechanistic proposal, these studies uncovered a second pathway to product formation, which likely only occurs in microdroplets. DFT calculations show that neither pathway has a barrier that is greater than 6.8 kcal/mol, suggesting that both mechanisms are potentially operative under ambient conditions.

  10. Incorporating zebrafish omics into chemical biology and toxicology.

    PubMed

    Sukardi, Hendrian; Ung, Choong Yong; Gong, Zhiyuan; Lam, Siew Hong

    2010-03-01

    In this communication, we describe the general aspects of omics approaches for analyses of transcriptome, proteome, and metabolome, and how they can be strategically incorporated into chemical screening and perturbation studies using the zebrafish system. Pharmacological efficacy and selectivity of chemicals can be evaluated based on chemical-induced phenotypic effects; however, phenotypic observation has limitations in identifying mechanistic action of chemicals. We suggest adapting gene-expression-based high-throughput screening as a complementary strategy to zebrafish-phenotype-based screening for mechanistic insights about the mode of action and toxicity of a chemical, large-scale predictive applications and comparative analysis of chemical-induced omics signatures, which are useful to identify conserved biological responses, signaling pathways, and biomarkers. The potential mechanistic, predictive, and comparative applications of omics approaches can be implemented in the zebrafish system. Examples of these using the omics approaches in zebrafish, including data of ours and others, are presented and discussed. Omics also facilitates the translatability of zebrafish studies across species through comparison of conserved chemical-induced responses. This review is intended to update interested readers with the current omics approaches that have been applied in chemical studies on zebrafish and their potential in enhancing discovery in chemical biology.

  11. The Russo-Williamson Theses in the social sciences: causal inference drawing on two types of evidence.

    PubMed

    Claveau, François

    2012-12-01

    This article examines two theses formulated by Russo and Williamson (2007) in their study of causal inference in the health sciences. The two theses are assessed against evidence from a specific case in the social sciences, i.e., research on the institutional determinants of the aggregate unemployment rate. The first Russo-Williamson Thesis is that a causal claim can only be established when it is jointly supported by difference-making and mechanistic evidence. This thesis is shown not to hold. While researchers in my case study draw extensively on both types of evidence, one causal claim out of the three analyzed is established even though it is exclusively supported by mechanistic evidence. The second Russo-Williamson Thesis is that standard accounts of causality fail to handle the dualist epistemology highlighted in the first Thesis. I argue that a counterfactual-manipulationist account of causality--which is endorsed by many philosophers as well as many social scientists--can perfectly make sense of the typical strategy in my case study to draw on both difference-making and mechanistic evidence; it is just an instance of the common strategy of increasing evidential variety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Evidence, illness, and causation: an epidemiological perspective on the Russo-Williamson Thesis.

    PubMed

    Fiorentino, Alexander R; Dammann, Olaf

    2015-12-01

    According to the Russo-Williamson Thesis, causal claims in the health sciences need to be supported by both difference-making and mechanistic evidence. In this article, we attempt to determine whether Evidence-based Medicine (EBM) can be improved through the consideration of mechanistic evidence. We discuss the practical composition and function of each RWT evidence type and propose that exposure-outcome evidence (previously known as difference-making evidence) provides associations that can be explained through a hypothesis of causation, while mechanistic evidence provides finer-grained associations and knowledge of entities that ultimately explains a causal hypothesis. We suggest that mechanistic evidence holds untapped potential to add value to the assessment of evidence quality in EBM and propose initial recommendations for the integration of mechanistic and exposure-outcome evidence to improve EBM by robustly leveraging available evidence in support of good medical decisions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Planning for climate change: the need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases

    PubMed Central

    Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-01-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810

  14. Hidden Hydride Transfer as a Decisive Mechanistic Step in the Reactions of the Unligated Gold Carbide [AuC]+ with Methane under Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Schlangen, Maria; Weiske, Thomas; Schwarz, Helmut

    2016-10-10

    The reactivity of the cationic gold carbide [AuC] + (bearing an electrophilic carbon atom) towards methane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The product pairs generated, that is, Au + /C 2 H 4 , [Au(C 2 H 2 )] + /H 2 , and [C 2 H 3 ] + /AuH, point to the breaking and making of C-H, C-C, and H-H bonds under single-collision conditions. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations. As a major result, based on molecular orbital and NBO-based charge analysis, an unprecedented hydride transfer from methane to the carbon atom of [AuC] + has been identified as a key step. Also, the origin of this novel mechanistic scenario has been addressed. The mechanistic insights derived from this study may provide guidance for the rational design of carbon-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mechanistic models versus machine learning, a fight worth fighting for the biological community?

    PubMed

    Baker, Ruth E; Peña, Jose-Maria; Jayamohan, Jayaratnam; Jérusalem, Antoine

    2018-05-01

    Ninety per cent of the world's data have been generated in the last 5 years ( Machine learning: the power and promise of computers that learn by example Report no. DES4702. Issued April 2017. Royal Society). A small fraction of these data is collected with the aim of validating specific hypotheses. These studies are led by the development of mechanistic models focused on the causality of input-output relationships. However, the vast majority is aimed at supporting statistical or correlation studies that bypass the need for causality and focus exclusively on prediction. Along these lines, there has been a vast increase in the use of machine learning models, in particular in the biomedical and clinical sciences, to try and keep pace with the rate of data generation. Recent successes now beg the question of whether mechanistic models are still relevant in this area. Said otherwise, why should we try to understand the mechanisms of disease progression when we can use machine learning tools to directly predict disease outcome? © 2018 The Author(s).

  16. Estimating indices of range shifts in birds using dynamic models when detection is imperfect

    USGS Publications Warehouse

    Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.

    2016-01-01

    There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.

  17. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Wang, Jianguo; Wang, Yang-Gang

    The effects of structure and size on the selectivity of catalytic furfural conversion over supported Pt catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Four Pt model systems, i.e., periodic Pt(111), Pt(211) surfaces, as well as small nanoclusters (Pt13 and Pt55) are chosen to represent the terrace, step, and corner sites of Pt nanoparticles. Our DFT results show that the reaction routes for furfural hydrogenation and decarbonylation are strongly dependent on the type of reactive sites, which lead to the different selectivity. On the basis of the size-dependentmore » site distribution rule, we correlate the site distributions as a function of the Pt particle size. Our microkinetic results indicate the critical particle size that controls the furfural selectivity is about 1.0 nm, which is in good agreement with the reported experimental value under reaction conditions. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501) and the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001, 21101137 and 91334103). This work was also partially supported by the US Department of Energy (DOE), the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  18. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  19. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules

    PubMed Central

    Huang, Weiguo; Diallo, Abdou Karim; Dailey, Jennifer L.; Besar, Kalpana

    2017-01-01

    Electronic biosensing is a leading technology for determining concentrations of biomolecules. In some cases, the presence of an analyte molecule induces a measured change in current flow, while in other cases, a new potential difference is established. In the particular case of a field effect biosensor, the potential difference is monitored as a change in conductance elsewhere in the device, such as across a film of an underlying semiconductor. Often, the mechanisms that lead to these responses are not specifically determined. Because improved understanding of these mechanisms will lead to improved performance, it is important to highlight those studies where various mechanistic possibilities are investigated. This review explores a range of possible mechanistic contributions to field-effect biosensor signals. First, we define the field-effect biosensor and the chemical interactions that lead to the field effect, followed by a section on theoretical and mechanistic background. We then discuss materials used in field-effect biosensors and approaches to improving signals from field-effect biosensors. We specifically cover the biomolecule interactions that produce local electric fields, structures and processes at interfaces between bioanalyte solutions and electronic materials, semiconductors used in biochemical sensors, dielectric layers used in top-gated sensors, and mechanisms for converting the surface voltage change to higher signal/noise outputs in circuits. PMID:29238595

  20. Engineering properties of resin modified pavement (RMP) for mechanistic design

    NASA Astrophysics Data System (ADS)

    Anderton, Gary Lee

    1997-11-01

    The research study described in this report focuses on determining the engineering properties of the resin modified pavement (RMP) material relating to pavement performance, and then developing a rational mechanistic design procedure to replace the current empirical design procedure. A detailed description of RMP is provided, including a review of the available literature on this relatively new pavement technology. Field evaluations of four existing and two new RMP project sites were made to assess critical failure modes and to obtain pavement samples for subsequent laboratory testing. Various engineering properties of laboratory-produced and field-recovered samples of RMP were measured and analyzed. The engineering properties evaluated included those relating to the material's stiffness, strength, thermal properties, and traffic-related properties. Comparisons of these data to typical values for asphalt concrete and portland cement concrete were made to relate the physical nature of RMP to more common pavement surfacing materials. A mechanistic design procedure was developed to determine appropriate thickness profiles of RMP, using stiffness and fatigue properties determined by this study. The design procedure is based on the U.S. Army Corps of Engineers layered elastic method for airfield flexible pavements. The WESPAVE computer program was used to demonstrate the new design procedure for a hypothetical airfield apron design. The results of the study indicated that RMP is a relatively stiff, viscoelastic pavement surfacing material with many of its strength and stiffness properties falling between those of typical asphalt concrete and portland cement concrete. The RMP's thermal and traffic-related properties indicated favorable field performance. The layered elastic design approach appeared to be a reasonable and practical method for RMP mechanistic pavement design, and this design procedure was recommended for future use and development.

  1. A dynamic and mechanistic model of PCB bioaccumulation in the European hake ( Merluccius merluccius)

    NASA Astrophysics Data System (ADS)

    Bodiguel, Xavier; Maury, Olivier; Mellon-Duval, Capucine; Roupsard, François; Le Guellec, Anne-Marie; Loizeau, Véronique

    2009-08-01

    Bioaccumulation is difficult to document because responses differ among chemical compounds, with environmental conditions, and physiological processes characteristic of each species. We use a mechanistic model, based on the Dynamic Energy Budget (DEB) theory, to take into account this complexity and study factors impacting accumulation of organic pollutants in fish through ontogeny. The bioaccumulation model proposed is a comprehensive approach that relates evolution of hake PCB contamination to physiological information about the fish, such as diet, metabolism, reserve and reproduction status. The species studied is the European hake ( Merluccius merluccius, L. 1758). The model is applied to study the total concentration and the lipid normalised concentration of 4 PCB congeners in male and female hakes from the Gulf of Lions (NW Mediterranean sea) and the Bay of Biscay (NE Atlantic ocean). Outputs of the model compare consistently to measurements over the life span of fish. Simulation results clearly demonstrate the relative effects of food contamination, growth and reproduction on the PCB bioaccumulation in hake. The same species living in different habitats and exposed to different PCB prey concentrations exhibit marked difference in the body accumulation of PCBs. At the adult stage, female hakes have a lower PCB concentration compared to males for a given length. We successfully simulated these sex-specific PCB concentrations by considering two mechanisms: a higher energy allocation to growth for females and a transfer of PCBs from the female to its eggs when allocating lipids from reserve to eggs. Finally, by its mechanistic description of physiological processes, the model is relevant for other species and sets the stage for a mechanistic understanding of toxicity and ecological effects of organic contaminants in marine organisms.

  2. Protein Electrochemistry: Questions and Answers.

    PubMed

    Fourmond, V; Léger, C

    This chapter presents the fundamentals of electrochemistry in the context of protein electrochemistry. We discuss redox proteins and enzymes that are not photoactive. Of course, the principles described herein also apply to photobioelectrochemistry, as discussed in later chapters of this book. Depending on which experiment is considered, electron transfer between proteins and electrodes can be either direct or mediated, and achieved in a variety of configurations: with the protein and/or the mediator free to diffuse in solution, immobilized in a thick, hydrated film, or adsorbed as a sub-monolayer on the electrode. The experiments can be performed with the goal to study the protein or to use it. Here emphasis is on mechanistic studies, which are easier in the configuration where the protein is adsorbed and electron transfer is direct, but we also explain the interpretation of signals obtained when diffusion processes affect the response.This chapter is organized as a series of responses to questions. Questions 1-5 are related to the basics of electrochemistry: what does "potential" or "current" mean, what does an electrochemical set-up look like? Questions 6-9 are related to the distinction between adsorbed and diffusive redox species. The answers to questions 10-13 explain the interpretation of slow and fast scan voltammetry with redox proteins. Questions 14-19 deal with catalytic electrochemistry, when the protein studied is actually an enzyme. Questions 20, 21 and 22 are general.

  3. Nucleophilically assisted and cationic ring-opening polymerization of tin-bridged [1]ferrocenophanes.

    PubMed

    Baumgartner, Thomas; Jäkle, Frieder; Rulkens, Ron; Zech, Gernot; Lough, Alan J; Manners, Ian

    2002-08-28

    To obtain mechanistic insight, detailed studies of the intriguing "spontaneous" ambient temperature ring-opening polymerization (ROP) of tin-bridged [1]ferrocenophanes Fe(eta-C(5)H(4))(2)SnR(2) 3a (R = t-Bu) and 3b (R = Mes) in solution have been performed. The investigations explored the influence of non-nucleophilic additives such as radicals and radical traps, neutral and anionic nucleophiles, Lewis acids, protic species, and other cationic electrophiles. Significantly, two novel methodologies and mechanisms for the ROP of strained [1]ferrocenophanes are proposed based on this study. First, as the addition of amine nucleophiles such as pyridine was found to strongly accelerate the polymerization rate in solution, a new nucleophilicallyassisted ROP methodology was proposed. This operates at ambient temperature in solution even in the presence of chlorosilanes but, unlike the anionic polymerization of ferrocenophanes, does not involve cyclopentadienyl anions. Second, the addition of small quantities of the electrophilic species H(+) and Bu(3)Sn(+) was found to lead to a cationic ROP process. These studies suggest that the "spontaneous" ROP of tin-bridged [1]ferrocenophanes may be a consequence of the presence of spurious, trace quantities of Lewis basic or acidic impurities. The new ROP mechanisms reported are likely to be of general significance for the ROP of other metallocenophanes (e.g., for thermal ROP in the melt) and for other metallacycles containing group 14 elements.

  4. Extremity war injuries: collaborative efforts in research, host nation care, and disaster preparedness.

    PubMed

    Pollak, Andrew N; Ficke, Col James R

    2010-01-01

    The fourth annual Extremity War Injuries (EWI) Symposium addressed ongoing challenges and opportunities in the management of combat-related musculoskeletal injury. The symposium, which also examined host-nation care and disaster preparedness and response, defined opportunities for synergy between several organizations with similar missions and goals. Within the Department of Defense, the Orthopaedic Extremity Trauma Research Program (OETRP) has funded basic research related to a series of protocols first identified and validated at prior EWI symposia. A well-funded clinical research arm of OETRP has been developed to help translate and validate research advances from each of the protocols. The Armed Forces Institute for Regenerative Medicine, a consortium of academic research institutions, employs a tissue-engineering approach to EWI challenges, particularly with regard to tissue loss. Programs within the National Institute of Arthritis and Musculoskeletal and Skin Diseases and throughout the National Institutes of Health have also expanded tissue-engineering efforts by emphasizing robust mechanistic basic science programs. Much of the clinical care delivered by US military medical personnel and nongovernmental agencies has been to host-nation populations; coordinating delivery to maximize the number of injured who receive care requires understanding of the breadth and scope of resources available within the war zone. Similarly, providing the most comprehensive care to the greatest number of injured in the context of domestic mass casualty requires discussion and planning by all groups involved.

  5. Integration of Basic Knowledge Models for the Simulation of Cereal Foods Processing and Properties.

    PubMed

    Kristiawan, Magdalena; Kansou, Kamal; Valle, Guy Della

    Cereal processing (breadmaking, extrusion, pasting, etc.) covers a range of mechanisms that, despite their diversity, can be often reduced to a succession of two core phenomena: (1) the transition from a divided solid medium (the flour) to a continuous one through hydration, mechanical, biochemical, and thermal actions and (2) the expansion of a continuous matrix toward a porous structure as a result of the growth of bubble nuclei either by yeast fermentation or by water vaporization after a sudden pressure drop. Modeling them is critical for the domain, but can be quite challenging to address with mechanistic approaches relying on partial differential equations. In this chapter we present alternative approaches through basic knowledge models (BKM) that integrate scientific and expert knowledge, and possess operational interest for domain specialists. Using these BKMs, simulations of two cereal foods processes, extrusion and breadmaking, are provided by focusing on the two core phenomena. To support the use by non-specialists, these BKMs are implemented as computer tools, a Knowledge-Based System developed for the modeling of the flour mixing operation or Ludovic ® , a simulation software for twin screw extrusion. They can be applied to a wide domain of compositions, provided that the data on product rheological properties are available. Finally, it is stated that the use of such systems can help food engineers to design cereal food products and predict their texture properties.

  6. Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop.

    PubMed

    Zhang, X; Duan, J; Kesisoglou, F; Novakovic, J; Amidon, G L; Jamei, M; Lukacova, V; Eissing, T; Tsakalozou, E; Zhao, L; Lionberger, R

    2017-08-01

    On May 19, 2016, the US Food and Drug Administration (FDA) hosted a public workshop, entitled "Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation." The topic of mechanistic oral absorption modeling, which is one of the major applications of physiologically based pharmacokinetic (PBPK) modeling and simulation, focuses on predicting oral absorption by mechanistically integrating gastrointestinal transit, dissolution, and permeation processes, incorporating systems, active pharmaceutical ingredient (API), and the drug product information, into a systemic mathematical whole-body framework. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  7. Application of the key characteristics of carcinogens in cancer hazard identification

    PubMed Central

    Guyton, Kathryn Z; Rusyn, Ivan; Chiu, Weihsueh A; Corpet, Denis E; van den Berg, Martin; Ross, Matthew K; Christiani, David C; Beland, Frederick A; Smith, Martyn T

    2018-01-01

    Abstract Smith et al. (Env. Health Perspect. 124: 713, 2016) identified 10 key characteristics (KCs), one or more of which are commonly exhibited by established human carcinogens. The KCs reflect the properties of a cancer-causing agent, such as ‘is genotoxic,’ ‘is immunosuppressive’ or ‘modulates receptor-mediated effects,’ and are distinct from the hallmarks of cancer, which are the properties of tumors. To assess feasibility and limitations of applying the KCs to diverse agents, methods and results of mechanistic data evaluations were compiled from eight recent IARC Monograph meetings. A systematic search, screening and evaluation procedure identified a broad literature encompassing multiple KCs for most (12/16) IARC Group 1 or 2A carcinogens identified in these meetings. Five carcinogens are genotoxic and induce oxidative stress, of which pentachlorophenol, hydrazine and malathion also showed additional KCs. Four others, including welding fumes, are immunosuppressive. The overall evaluation was upgraded to Group 2A based on mechanistic data for only two agents, tetrabromobisphenol A and tetrachloroazobenzene. Both carcinogens modulate receptor-mediated effects in combination with other KCs. Fewer studies were identified for Group 2B or 3 agents, with the vast majority (17/18) showing only one or no KCs. Thus, an objective approach to identify and evaluate mechanistic studies pertinent to cancer revealed strong evidence for multiple KCs for most Group 1 or 2A carcinogens but also identified opportunities for improvement. Further development and mapping of toxicological and biomarker endpoints and pathways relevant to the KCs can advance the systematic search and evaluation of mechanistic data in carcinogen hazard identification. PMID:29562322

  8. Application of the key characteristics of carcinogens in cancer hazard identification.

    PubMed

    Guyton, Kathryn Z; Rusyn, Ivan; Chiu, Weihsueh A; Corpet, Denis E; van den Berg, Martin; Ross, Matthew K; Christiani, David C; Beland, Frederick A; Smith, Martyn T

    2018-04-05

    Smith et al. (Env. Health Perspect. 124: 713, 2016) identified 10 key characteristics (KCs), one or more of which are commonly exhibited by established human carcinogens. The KCs reflect the properties of a cancer-causing agent, such as 'is genotoxic,' 'is immunosuppressive' or 'modulates receptor-mediated effects,' and are distinct from the hallmarks of cancer, which are the properties of tumors. To assess feasibility and limitations of applying the KCs to diverse agents, methods and results of mechanistic data evaluations were compiled from eight recent IARC Monograph meetings. A systematic search, screening and evaluation procedure identified a broad literature encompassing multiple KCs for most (12/16) IARC Group 1 or 2A carcinogens identified in these meetings. Five carcinogens are genotoxic and induce oxidative stress, of which pentachlorophenol, hydrazine and malathion also showed additional KCs. Four others, including welding fumes, are immunosuppressive. The overall evaluation was upgraded to Group 2A based on mechanistic data for only two agents, tetrabromobisphenol A and tetrachloroazobenzene. Both carcinogens modulate receptor-mediated effects in combination with other KCs. Fewer studies were identified for Group 2B or 3 agents, with the vast majority (17/18) showing only one or no KCs. Thus, an objective approach to identify and evaluate mechanistic studies pertinent to cancer revealed strong evidence for multiple KCs for most Group 1 or 2A carcinogens but also identified opportunities for improvement. Further development and mapping of toxicological and biomarker endpoints and pathways relevant to the KCs can advance the systematic search and evaluation of mechanistic data in carcinogen hazard identification.

  9. Data-Driven Mechanistic Modeling of Influence of Microstructure on High-Cycle Fatigue Life of Nickel Titanium

    NASA Astrophysics Data System (ADS)

    Kafka, Orion L.; Yu, Cheng; Shakoor, Modesar; Liu, Zeliang; Wagner, Gregory J.; Liu, Wing Kam

    2018-04-01

    A data-driven mechanistic modeling technique is applied to a system representative of a broken-up inclusion ("stringer") within drawn nickel-titanium wire or tube, e.g., as used for arterial stents. The approach uses a decomposition of the problem into a training stage and a prediction stage. It is applied to compute the fatigue crack incubation life of a microstructure of interest under high-cycle fatigue. A parametric study of a matrix-inclusion-void microstructure is conducted. The results indicate that, within the range studied, a larger void between halves of the inclusion increases fatigue life, while larger inclusion diameter reduces fatigue life.

  10. Adrenomedullin and Pregnancy: Perspectives from Animal Models to Humans

    PubMed Central

    Lenhart, Patricia M.; Caron, Kathleen M.

    2012-01-01

    A healthy pregnancy requires strict coordination of genetic, physiologic, and environmental factors. The relatively common incidence of infertility and pregnancy complications has resulted in increased interest in understanding the mechanisms that underlie normal versus abnormal pregnancy. The peptide hormone adrenomedullin has recently been the focus of some exciting breakthroughs in the pregnancy field. Supported by mechanistic studies in genetic animal models, there continues to be a growing body of evidence demonstrating the importance of adrenomedullin protein levels in a variety of human pregnancy complications. With more extensive mechanistic studies and improved consistency in clinical measurements of adrenomedullin, there is great potential for the development of adrenomedullin as a clinically-relevant biomarker in pregnancy and pregnancy complications. PMID:22425034

  11. From patterns to emerging processes in mechanistic urban ecology.

    PubMed

    Shochat, Eyal; Warren, Paige S; Faeth, Stanley H; McIntyre, Nancy E; Hope, Diane

    2006-04-01

    Rapid urbanization has become an area of crucial concern in conservation owing to the radical changes in habitat structure and loss of species engendered by urban and suburban development. Here, we draw on recent mechanistic ecological studies to argue that, in addition to altered habitat structure, three major processes contribute to the patterns of reduced species diversity and elevated abundance of many species in urban environments. These activities, in turn, lead to changes in animal behavior, morphology and genetics, as well as in selection pressures on animals and plants. Thus, the key to understanding urban patterns is to balance studying processes at the individual level with an integrated examination of environmental forces at the ecosystem scale.

  12. Safety, Efficacy, and Mechanistic Studies Regarding Citrus aurantium (Bitter Orange) Extract and p‐Synephrine

    PubMed Central

    2017-01-01

    Citrus aurantium L. (bitter orange) extracts that contain p‐synephrine as the primary protoalkaloid are widely used for weight loss/weight management, sports performance, appetite control, energy, and mental focus and cognition. Questions have been raised about the safety of p‐synephrine because it has some structural similarity to ephedrine. This review focuses on current human, animal, in vitro, and mechanistic studies that address the safety, efficacy, and mechanisms of action of bitter orange extracts and p‐synephrine. Numerous studies have been conducted with respect to p‐synephrine and bitter orange extract because ephedra and ephedrine were banned from use in dietary supplements in 2004. Approximately 30 human studies indicate that p‐synephrine and bitter orange extracts do not result in cardiovascular effects and do not act as stimulants at commonly used doses. Mechanistic studies suggest that p‐synephrine exerts its effects through multiple actions, which are discussed. Because p‐synephrine exhibits greater adrenergic receptor binding in rodents than humans, data from animals cannot be directly extrapolated to humans. This review, as well as several other assessments published in recent years, has concluded that bitter orange extract and p‐synephrine are safe for use in dietary supplements and foods at the commonly used doses. Copyright © 2017 The Authors Phytotherapy Research Published by John Wiley & Sons Ltd. PMID:28752649

  13. Explanation and inference: mechanistic and functional explanations guide property generalization.

    PubMed

    Lombrozo, Tania; Gwynne, Nicholas Z

    2014-01-01

    The ability to generalize from the known to the unknown is central to learning and inference. Two experiments explore the relationship between how a property is explained and how that property is generalized to novel species and artifacts. The experiments contrast the consequences of explaining a property mechanistically, by appeal to parts and processes, with the consequences of explaining the property functionally, by appeal to functions and goals. The findings suggest that properties that are explained functionally are more likely to be generalized on the basis of shared functions, with a weaker relationship between mechanistic explanations and generalization on the basis of shared parts and processes. The influence of explanation type on generalization holds even though all participants are provided with the same mechanistic and functional information, and whether an explanation type is freely generated (Experiment 1), experimentally provided (Experiment 2), or experimentally induced (Experiment 2). The experiments also demonstrate that explanations and generalizations of a particular type (mechanistic or functional) can be experimentally induced by providing sample explanations of that type, with a comparable effect when the sample explanations come from the same domain or from a different domains. These results suggest that explanations serve as a guide to generalization, and contribute to a growing body of work supporting the value of distinguishing mechanistic and functional explanations.

  14. Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups

    PubMed Central

    Chiu, Weihsueh A.; Guyton, Kathryn Z.; Martin, Matthew T.; Reif, David M.; Rusyn, Ivan

    2017-01-01

    Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112 -113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets peroxisome proliferator activated and other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of “induces oxidative stress” and “alters cell proliferation, cell death or nutrient supply” and filling gaps for “modulates receptor-mediated effects.” Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations. PMID:28738424

  15. Use of high-throughput in vitro toxicity screening data in cancer hazard evaluations by IARC Monograph Working Groups.

    PubMed

    Chiu, Weihsueh A; Guyton, Kathryn Z; Martin, Matthew T; Reif, David M; Rusyn, Ivan

    2018-01-01

    Evidence regarding carcinogenic mechanisms serves a critical role in International Agency for Research on Cancer (IARC) Monograph evaluations. Three recent IARC Working Groups pioneered inclusion of the US Environmental Protection Agency (EPA) ToxCast program high-throughput screening (HTS) data to supplement other mechanistic evidence. In Monograph V110, HTS profiles were compared between perfluorooctanoic acid (PFOA) and prototypical activators across multiple nuclear receptors. For Monograph V112-113, HTS assays were mapped to 10 key characteristics of carcinogens identified by an IARC expert group, and systematically considered as an additional mechanistic data stream. Both individual assay results and ToxPi-based rankings informed mechanistic evaluations. Activation of multiple nuclear receptors in HTS assays showed that PFOA targets not only peroxisome proliferator activated receptors, but also other receptors. ToxCast assays substantially covered 5 of 10 key characteristics, corroborating literature evidence of "induces oxidative stress" and "alters cell proliferation, cell death or nutrient supply" and filling gaps for "modulates receptor-mediated effects." Thus, ToxCast HTS data were useful both in evaluating specific mechanistic hypotheses and in contributing to the overall evaluation of mechanistic evidence. However, additional HTS assays are needed to provide more comprehensive coverage of the 10 key characteristics of carcinogens that form the basis of current IARC mechanistic evaluations.

  16. A Question of Control? Examining the Role of Control Conditions in Experimental Psychopathology using the Example of Cognitive Bias Modification Research.

    PubMed

    Blackwell, Simon E; Woud, Marcella L; MacLeod, Colin

    2017-10-26

    While control conditions are vitally important in research, selecting the optimal control condition can be challenging. Problems are likely to arise when the choice of control condition is not tightly guided by the specific question that a given study aims to address. Such problems have become increasingly apparent in experimental psychopathology research investigating the experimental modification of cognitive biases, particularly as the focus of this research has shifted from theoretical questions concerning mechanistic aspects of the association between cognitive bias and emotional vulnerability, to questions that instead concern the clinical efficacy of 'cognitive bias modification' (CBM) procedures. We discuss the kinds of control conditions that have typically been employed in CBM research, illustrating how difficulties can arise when changes in the types of research questions asked are not accompanied by changes in the control conditions employed. Crucially, claims made on the basis of comparing active and control conditions within CBM studies should be restricted to those conclusions allowed by the specific control condition employed. CBM studies aiming to establish clinical utility are likely to require quite different control conditions from CBM studies aiming to illuminate mechanisms. Further, conclusions concerning the clinical utility of CBM interventions cannot necessarily be drawn from studies in which the control condition has been chosen to answer questions concerning mechanisms. Appreciating the need to appropriately alter control conditions in the transition from basic mechanisms-focussed investigations to applied clinical research could greatly facilitate the translational process.

  17. Hypochloremia and Diuretic Resistance in Heart Failure: Mechanistic Insights

    PubMed Central

    Hanberg, Jennifer S.; Rao, Veena; ter Maaten, Jozine M.; Laur, Olga; Brisco, Meredith A.; Wilson, F. Perry; Grodin, Justin L.; Assefa, Mahlet; Broughton, J. Samuel; Planavsky, Noah J.; Ahmad, Tariq; Bellumkonda, Lavanya; Wilson Tang, W. H.; Parikh, Chirag R.; Testani, Jeffrey M.

    2016-01-01

    Background Recent epidemiologic studies have implicated chloride, rather than sodium, as the driver of poor survival previously attributed to hyponatremia in heart failure (HF). Accumulating basic science evidence has identified chloride as a critical factor in renal salt sensing. Our goal was to probe the physiology bridging this basic and epidemiologic literature. Methods and Results Two HF cohorts were included: (1) Observational: Patients receiving loop diuretics at the Yale Transitional Care Center (YTCC; N=162); (2) Interventional Pilot: Stable outpatients receiving ≥80mg furosemide equivalents were studied before and after three days of 115 mmol/d supplemental lysine chloride (N=10). In YTCC, 31.5% of patients had hypochloremia (chloride ≤96 mmol/L). Plasma renin concentration correlated with serum chloride (r=−0.46, p<0.001) with no incremental contribution from serum sodium (p=0.49). Hypochloremic vs. non-hypochloremic patients exhibited renal wasting of chloride (p=0.04) and of chloride relative to sodium (p=0.01), despite better renal free water excretion (urine osmolality 372±94 mOsm/kg vs. 507±118, p<0.001). Hypochloremia was associated with poor diuretic response (OR=7.3, 95% CI 3.3–16.1, p<0.001). In the interventional pilot, lysine chloride supplementation was associated with an increase in serum chloride levels of 2.2±2.3 mmol/L and the majority of participants experienced findings such as hemoconcentration, weight loss, reduction in NT-proBNP, increased plasma renin activity, and increased blood urea nitrogen to creatinine ratio. Conclusions Hypochloremia is associated with neurohormonal activation and diuretic resistance with chloride depletion as a candidate mechanism. Sodium-free chloride supplementation was associated with increases in serum chloride and changes in several cardio-renal parameters. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT02031354. PMID:27507113

  18. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction

    PubMed Central

    Chartoff, Elena H.; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we identify several gaps in our understanding of “if” and “how” DYN and KORs modulate addictive behavior in a sex-dependent manner. Future work may address these gaps by building on the mechanistic studies outlined in this review. Ultimately this will enable the development of novel and effective addiction treatments tailored to either males or females. PMID:26733781

  19. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches.

    PubMed

    Jones, Hannah M; Mayawala, Kapil; Poulin, Patrick

    2013-04-01

    Physiologically based pharmacokinetic (PBPK) models are built using differential equations to describe the physiology/anatomy of different biological systems. Readily available in vitro and in vivo preclinical data can be incorporated into these models to not only estimate pharmacokinetic (PK) parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. They provide a mechanistic framework to understand and extrapolate PK and dose across in vitro and in vivo systems and across different species, populations and disease states. Using small molecule and large molecule examples from the literature and our own company, we have shown how PBPK techniques can be utilised for human PK and dose prediction. Such approaches have the potential to increase efficiency, reduce the need for animal studies, replace clinical trials and increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however some limitations need to be addressed to realise its application and utility more broadly.

  20. Productivity of "collisions generate heat" for reconciling an energy model with mechanistic reasoning: A case study

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.; Robertson, Amy D.

    2015-06-01

    We observe teachers in professional development courses about energy constructing mechanistic accounts of energy transformations. We analyze a case in which teachers investigating adiabatic compression develop a model of the transformation of kinetic energy to thermal energy. Among their ideas is the idea that thermal energy is generated as a byproduct of individual particle collisions, which is represented in science education research literature as an obstacle to learning. We demonstrate that in this instructional context, the idea that individual particle collisions generate thermal energy is not an obstacle to learning, but instead is productive: it initiates intellectual progress. Specifically, this idea initiates the reconciliation of the teachers' energy model with mechanistic reasoning about adiabatic compression, and leads to a canonically correct model of the transformation of kinetic energy into thermal energy. We claim that the idea's productivity is influenced by features of our particular instructional context, including the instructional goals of the course, the culture of collaborative sense making, and the use of certain representations of energy.

  1. Tear gas: an epidemiological and mechanistic reassessment

    PubMed Central

    Rothenberg, Craig; Achanta, Satyanarayana; Svendsen, Erik R.

    2016-01-01

    Deployments of tear gas and pepper spray have rapidly increased worldwide. Large amounts of tear gas have been used in densely populated cities, including Cairo, Istanbul, Rio de Janeiro, Manama (Bahrain), and Hong Kong. In the United States, tear gas was used extensively during recent riots in Ferguson, Missouri. Whereas tear gas deployment systems have rapidly improved—with aerial drone systems tested and requested by law enforcement—epidemiological and mechanistic research have lagged behind and have received little attention. Case studies and recent epidemiological studies revealed that tear gas agents can cause lung, cutaneous, and ocular injuries, with individuals affected by chronic morbidities at high risk for complications. Mechanistic studies identified the ion channels TRPV1 and TRPA1 as targets of capsaicin in pepper spray, and of the tear gas agents chloroacetophenone, CS, and CR. TRPV1 and TRPA1 localize to pain‐sensing peripheral sensory neurons and have been linked to acute and chronic pain, cough, asthma, lung injury, dermatitis, itch, and neurodegeneration. In animal models, transient receptor potential inhibitors show promising effects as potential countermeasures against tear gas injuries. On the basis of the available data, a reassessment of the health risks of tear gas exposures in the civilian population is advised, and development of new countermeasures is proposed. PMID:27391380

  2. Changes in Black-legged Tick Population in New England with Future Climate Change

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Huber, M.

    2015-12-01

    Lyme disease is one of the most frequently reported vector-borne diseases in the United States. In the Northeastern United States, vector transmission is maintained in a horizontal transmission cycle between the vector, the black-legged ticks, and the vertebrate reservoir hosts, which include white-tailed deer, rodents and other medium to large sized mammals. Predicting how vector populations change with future climate change is critical to understanding disease spread in the future, and for developing suitable regional adaptation strategies. For the United States, these predictions have mostly been made using regressions based on field and lab studies, or using spatial suitability studies. However, the relation between tick populations at various life-cycle stages and climate variables are complex, necessitating a mechanistic approach. In this study, we present a framework for driving a mechanistic tick population model with high-resolution regional climate modeling projections. The goal is to estimate changes in black-legged tick populations in New England for the 21st century. The tick population model used is based on the mechanistic approach of Ogden et al., (2005) developed for Canada. Dynamically downscaled climate projections at a 3-kms resolution using the Weather and Research Forecasting Model (WRF) are used to drive the tick population model.

  3. In Silico, Experimental, Mechanistic Model for Extended-Release Felodipine Disposition Exhibiting Complex Absorption and a Highly Variable Food Interaction

    PubMed Central

    Kim, Sean H. J.; Jackson, Andre J.; Hunt, C. Anthony

    2014-01-01

    The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog’s plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability. PMID:25268237

  4. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth

    PubMed Central

    Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang

    2017-01-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182

  5. Mechanistic Kinetic Modeling of Thiol-Michael Addition Photopolymerizations via Photocaged "Superbase" Generators: An Analytical Approach.

    PubMed

    Claudino, Mauro; Zhang, Xinpeng; Alim, Marvin D; Podgórski, Maciej; Bowman, Christopher N

    2016-11-08

    A kinetic mechanism and the accompanying mathematical framework are presented for base-mediated thiol-Michael photopolymerization kinetics involving a photobase generator. Here, model kinetic predictions demonstrate excellent agreement with a representative experimental system composed of 2-(2-nitrophenyl)propyloxycarbonyl-1,1,3,3-tetramethylguanidine (NPPOC-TMG) as a photobase generator that is used to initiate thiol-vinyl sulfone Michael addition reactions and polymerizations. Modeling equations derived from a basic mechanistic scheme indicate overall polymerization rates that follow a pseudo-first-order kinetic process in the base and coreactant concentrations, controlled by the ratio of the propagation to chain-transfer kinetic parameters ( k p / k CT ) which is dictated by the rate-limiting step and controls the time necessary to reach gelation. Gelation occurs earlier as the k p / k CT ratio reaches a critical value, wherefrom gel times become nearly independent of k p / k CT . The theoretical approach allowed determining the effect of induction time on the reaction kinetics due to initial acid-base neutralization for the photogenerated base caused by the presence of protic contaminants. Such inhibition kinetics may be challenging for reaction systems that require high curing rates but are relevant for chemical systems that need to remain kinetically dormant until activated although at the ultimate cost of lower polymerization rates. The pure step-growth character of this living polymerization and the exhibited kinetics provide unique potential for extended dark-cure reactions and uniform material properties. The general kinetic model is applicable to photobase initiators where photolysis follows a unimolecular cleavage process releasing a strong base catalyst without cogeneration of intermediate radical species.

  6. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.

    PubMed

    Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang

    2017-02-01

    Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.

  7. Nanoscale Experimental Characterization and 3D Mechanistic Modeling of Shale with Quantified Heterogeneity

    NASA Astrophysics Data System (ADS)

    Bennett, K. C.; Borja, R. I.

    2014-12-01

    Shale is a fine-grained sedimentary rock consisting primarily of clay and silt, and is of particular interest with respect to hydrocarbon production as both a source and seal rock. The deformation and fracture properties of shale depend on the mechanical properties of its basic constituents, including solid clay particles, inclusions such as silt and organics, and multiscale porosity. This paper presents the results of a combined experimental/numerical investigation into the mechanical behavior of shale at the nanoscale. Large grids of nanoindentation tests, spanning various length scales ranging from 200-20000 nanometers deep, were performed on a sample of Woodford shale in both the bedding plane normal (BPN) and bedding plane parallel (BPP) directions. The nanoindentions were performed in order to determine the mechanical properties of the constituent materials in situ as well as those of the highly heterogeneous composite material at this scale. Focused ion beam (FIB) milling and scanning electron microscopy (SEM) were used in conjunction (FIB-SEM) to obtain 2D and 3D images characterizing the heterogeneity of the shale at this scale. The constituent materials were found to be best described as consisting of near micrometer size clay and silt particles embedded in a mixed organic/clay matrix, with some larger (near 10 micrometers in diameter) pockets of organic material evident. Indented regions were identified through SEM, allowing the 200-1000 nanometer deep indentations to be classified according to the constituent materials which they engaged. We use nonlinear finite element modeling to capture results of low-load (on the order of milliNewtons) and high-load (on the order of a few Newtons) nanoindentation tests. Experimental results are used to develop a 3D mechanistic model that interprets the results of nanoindentation tests on specimens of Woodford shale with quantified heterogeneity.

  8. [Investigation of noise hazards and hearing status of workers in outdoor quarries].

    PubMed

    Zhang, Guoying; Tang, Zhifeng; Yao, Yongping; Wang, Haiying

    2014-08-01

    To investigate the noise hazards in open quarries and to provide a basis for further control of noise hazards. An investigation was performed during 2010 to 2011 among all open quarries in Deqing County of Zhejiang Province, China. The investigation included basic information of the quarries, the occupational health situation and noise intensity at the workplace, and the hearing loss of workers exposed to noise in quarry enterprises. The hearing test results were evaluated based on the Diagnostic criteria of occupational noise-induced hearing loss (GBZ 49-2007). A total of 25 enterprises with open quarries were investigated, of which only 30.4% (17/56) workplaces met the national standard. The median noise level was 92.5 dB (A). Fifty-four (10.6%) out of 508 workers in the 25 enterprises were diagnosed with binaural hearing loss in the initial physical examination, with 18.3% (93/508) under surveillance. The rate of normal hearing among crushing workers, mechanists, drilling workers, and blasting workers ranged between 27.6% and 41.4%, which was significantly lower than that among workers exposed to slight noise hazards (80.0%) or other workers (63.7%) (P < 0.05). With increasing working years, the binaural hearing loss of crushing workers became serious. Serious occupational noise hazards existed in most jobs in open quarries, with crushing workers, mechanists, drilling workers, and blasting workers most seriously jeopardized. Among crushing workers, those working in the first-line or unprotected second?line positions suffered more than the others. Further measures should be taken by the supervision department and the enterprises to control the noise hazards in open quarries.

  9. Bath salts, mephedrone, and methylenedioxypyrovalerone as emerging illicit drugs that will need targeted therapeutic intervention

    PubMed Central

    Glennon, Richard A.

    2015-01-01

    The term “synthetic cathinones” is fairly new; but, although the abuse of synthetic cathinones is a recent problem, research on cathinone analogs dates back >100 years. One structural element cathinone analogs have in common is an α-aminophenone moiety. Introduction of amine and/or aryl substituents affords a large number of agents. Today, >40 synthetic cathinones have been identified on the clandestine market and many have multiple “street names”. Many cathinone analogs, although not referred to as such until the late 1970s, were initially prepared as intermediates in the synthesis of ephedrine analogs. The cathinones do not represent a pharmacologically or mechanistically homogeneous class of agents. Currently abused synthetic cathinones are derived from earlier agents and seem to produce their actions primarily via the dopamine, norepinephrine, and/or serotonin transporter; that is, they either release and/or inhibit the reuptake of one or more of these neurotransmitters. The actions of these agents can resemble those of central stimulants such as methamphetamine, cocaine, and/or empathogens such as 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; Ecstasy) and/or produce other effects. Side effects are primarily of a neurological and/or cardiovascular nature. The use of the “and/or” term is emphasized because synthetic cathinones represent a broad class of agents that produce a variety of actions; the agents cannot be viewed as being pharmacologically equivalent. Until valid structure-activity relationships are formulated for each behavioral/mechanistic action, individual synthetic cathinones remain to be evaluated on a case-by-case basis. Treatment of synthetic cathinone intoxication requires more “basic science” research. At this time, treatment is mostly palliative. PMID:24484988

  10. Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include

  11. Cognitive science as an interface between rational and mechanistic explanation.

    PubMed

    Chater, Nick

    2014-04-01

    Cognitive science views thought as computation; and computation, by its very nature, can be understood in both rational and mechanistic terms. In rational terms, a computation solves some information processing problem (e.g., mapping sensory information into a description of the external world; parsing a sentence; selecting among a set of possible actions). In mechanistic terms, a computation corresponds to causal chain of events in a physical device (in engineering context, a silicon chip; in biological context, the nervous system). The discipline is thus at the interface between two very different styles of explanation--as the papers in the current special issue well illustrate, it explores the interplay of rational and mechanistic forces. Copyright © 2014 Cognitive Science Society, Inc.

  12. Comparison of mechanistic transport cycle models of ABC exporters.

    PubMed

    Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas

    2018-04-01

    ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Evolutionary and mechanistic drivers of laterality: A review and new synthesis.

    PubMed

    Wiper, Mallory L

    2017-11-01

    Laterality, best understood as asymmetries of bilateral structures or biases in behaviour, has been demonstrated in species from all major vertebrate classes, and in many invertebrates, showing a large degree of evolutionary conservation across vertebrate groups. Despite the establishment of this phenomenon in so many species, however, the evolutionary and mechanistic study of laterality is uneven with numerous areas in this field requiring greater attention. Here, I present a partial review of how far the study of laterality has come, outlining previous pioneering work, I discuss the hypothesized costs and benefits of a lateralized brain and the suggested path of the evolution of laterality for populations and individuals. I propose an expansion of laterality research into areas that have been touched upon in the past but require stronger evidence from which the field will greatly benefit. Namely, I suggest a continuation of the phylogenetic approach to investigating laterality to better understand its evolutionary path; and a further focus on mechanistic drivers, with special attention to genetic and environmental effects. Putting together the puzzle of laterality using as many pieces as possible will provide a stronger understanding of this field, allowing us to continue to expand the field in novel ways.

  14. Use of mechanistic simulations as a quantitative risk-ranking tool within the quality by design framework.

    PubMed

    Stocker, Elena; Toschkoff, Gregor; Sacher, Stephan; Khinast, Johannes G

    2014-11-20

    The purpose of this study is to evaluate the use of computer simulations for generating quantitative knowledge as a basis for risk ranking and mechanistic process understanding, as required by ICH Q9 on quality risk management systems. In this specific publication, the main focus is the demonstration of a risk assessment workflow, including a computer simulation for the generation of mechanistic understanding of active tablet coating in a pan coater. Process parameter screening studies are statistically planned under consideration of impacts on a potentially critical quality attribute, i.e., coating mass uniformity. Based on computer simulation data the process failure mode and effects analysis of the risk factors is performed. This results in a quantitative criticality assessment of process parameters and the risk priority evaluation of failure modes. The factor for a quantitative reassessment of the criticality and risk priority is the coefficient of variation, which represents the coating mass uniformity. The major conclusion drawn from this work is a successful demonstration of the integration of computer simulation in the risk management workflow leading to an objective and quantitative risk assessment. Copyright © 2014. Published by Elsevier B.V.

  15. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    PubMed

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Integrating perspectives on vocal performance and consistency

    PubMed Central

    Sakata, Jon T.; Vehrencamp, Sandra L.

    2012-01-01

    SUMMARY Recent experiments in divergent fields of birdsong have revealed that vocal performance is important for reproductive success and under active control by distinct neural circuits. Vocal consistency, the degree to which the spectral properties (e.g. dominant or fundamental frequency) of song elements are produced consistently from rendition to rendition, has been highlighted as a biologically important aspect of vocal performance. Here, we synthesize functional, developmental and mechanistic (neurophysiological) perspectives to generate an integrated understanding of this facet of vocal performance. Behavioral studies in the field and laboratory have found that vocal consistency is affected by social context, season and development, and, moreover, positively correlated with reproductive success. Mechanistic investigations have revealed a contribution of forebrain and basal ganglia circuits and sex steroid hormones to the control of vocal consistency. Across behavioral, developmental and mechanistic studies, a convergent theme regarding the importance of vocal practice in juvenile and adult songbirds emerges, providing a basis for linking these levels of analysis. By understanding vocal consistency at these levels, we gain an appreciation for the various dimensions of song control and plasticity and argue that genes regulating the function of basal ganglia circuits and sex steroid hormones could be sculpted by sexual selection. PMID:22189763

  17. Mechanistic analysis of challenge-response experiments.

    PubMed

    Shotwell, M S; Drake, K J; Sidorov, V Y; Wikswo, J P

    2013-09-01

    We present an application of mechanistic modeling and nonlinear longitudinal regression in the context of biomedical response-to-challenge experiments, a field where these methods are underutilized. In this type of experiment, a system is studied by imposing an experimental challenge, and then observing its response. The combination of mechanistic modeling and nonlinear longitudinal regression has brought new insight, and revealed an unexpected opportunity for optimal design. Specifically, the mechanistic aspect of our approach enables the optimal design of experimental challenge characteristics (e.g., intensity, duration). This article lays some groundwork for this approach. We consider a series of experiments wherein an isolated rabbit heart is challenged with intermittent anoxia. The heart responds to the challenge onset, and recovers when the challenge ends. The mean response is modeled by a system of differential equations that describe a candidate mechanism for cardiac response to anoxia challenge. The cardiac system behaves more variably when challenged than when at rest. Hence, observations arising from this experiment exhibit complex heteroscedasticity and sharp changes in central tendency. We present evidence that an asymptotic statistical inference strategy may fail to adequately account for statistical uncertainty. Two alternative methods are critiqued qualitatively (i.e., for utility in the current context), and quantitatively using an innovative Monte-Carlo method. We conclude with a discussion of the exciting opportunities in optimal design of response-to-challenge experiments. © 2013, The International Biometric Society.

  18. Biochar: from laboratory mechanisms through the greenhouse to field trials

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Gao, X.; Dugan, B.; Silberg, J. J.; Zygourakis, K.; Alvarez, P. J. J.

    2014-12-01

    The biochar community is excellent at pointing to individual cases where biochar amendment has changed soil properties, with some studies showing significant improvements in crop yields, reduction in nutrient export, and remediation of pollutants. However, many studies exist which do not show improvements, and in some cases, studies clearly show detrimental outcomes. The next, crucial step in biochar science and engineering research will be to develop a process-based understanding of how biochar acts to improve soil properties. In particular, we need a better mechanistic understanding of how biochar sorbs and desorbs contaminants, how it interacts with soil water, and how it interacts with the soil microbial community. These mechanistic studies need to encompass processes that range from the nanometer to the kilometer scale. At the nanometer scale, we need a predictive model of how biochar will sorb and desorb hydrocarbons, nutrients, and toxic metals. At the micrometer scale we need models that explain biochar's effects on soil water, especially the plant-available fraction of soil water. The micrometer scale is also where mechanistic information is neeed about microbial processes. At the macroscale we need physical models to describe the landscape mobility of biochar, because biochar that washes away from fields can no longer provide crop benefits. To be most informative, biochar research should occur along a lab-greenhouse-field trial trajectory. Laboratory experiments should aim determine what mechanisms may act to control biochar-soil processes, and then greenhouse experiments can be used to test the significance of lab-derived mechanisms in short, highly replicated, controlled experiments. Once evidence of effect is determined from greenhouse experiments, field trials are merited. Field trials are the gold standard needed prior to full deployment, but results from field trials cannot be extrapolated to other field sites without the mechanistic backup provided by greenhouse and lab trials.

  19. Reactivity of Nucleic Acid Radicals

    PubMed Central

    Greenberg, Marc M.

    2016-01-01

    Nucleic acid oxidation plays a vital role in the etiology and treatment of diseases, as well as aging. Reagents that oxidize nucleic acids are also useful probes of the biopolymers’ structure and folding. Radiation scientists have contributed greatly to our understanding of nucleic acid oxidation using a variety of techniques. During the past two decades organic chemists have applied the tools of synthetic and mechanistic chemistry to independently generate and study the reactive intermediates produced by ionizing radiation and other nucleic acid damaging agents. This approach has facilitated resolving mechanistic controversies and lead to the discovery of new reactive processes. PMID:28529390

  20. Understanding and Exploitation of Neighboring Heteroatom Effect for the Mild N-Arylation of Heterocycles with Diaryliodonium Salts under Aqueous Conditions: A Theoretical and Experimental Mechanistic Study.

    PubMed

    Bihari, Tamás; Babinszki, Bence; Gonda, Zsombor; Kovács, Szabolcs; Novák, Zoltán; Stirling, András

    2016-07-01

    The mechanism of arylation of N-heterocycles with unsymmetric diaryliodonium salts is elucidated. The fast and efficient N-arylation reaction is interpreted in terms of the bifunctionality of the substrate: The consecutive actions of properly oriented Lewis base and Brønsted acid centers in sufficient proximity result in the fast and efficient N-arylation. The mechanistic picture points to a promising synthetic strategy where suitably positioned nucleophilic and acidic centers enable functionalization, and it is tested experimentally.

  1. Mechanistic insight into formation and changes of nanoparticles in MgF2 sols evidenced by liquid and solid state NMR.

    PubMed

    Karg, M; Scholz, G; König, R; Kemnitz, E

    2012-02-28

    The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.

  2. Assessment of glycemic response to an oral glucokinase activator in a proof of concept study: application of a semi-mechanistic, integrated glucose-insulin-glucagon model.

    PubMed

    Schneck, Karen B; Zhang, Xin; Bauer, Robert; Karlsson, Mats O; Sinha, Vikram P

    2013-02-01

    A proof of concept study was conducted to investigate the safety and tolerability of a novel oral glucokinase activator, LY2599506, during multiple dose administration to healthy volunteers and subjects with Type 2 diabetes mellitus (T2DM). To analyze the study data, a previously established semi-mechanistic integrated glucose-insulin model was extended to include characterization of glucagon dynamics. The model captured endogenous glucose and insulin dynamics, including the amplifying effects of glucose on insulin production and of insulin on glucose elimination, as well as the inhibitory influence of glucose and insulin on hepatic glucose production. The hepatic glucose production in the model was increased by glucagon and glucagon production was inhibited by elevated glucose concentrations. The contribution of exogenous factors to glycemic response, such as ingestion of carbohydrates in meals, was also included in the model. The effect of LY2599506 on glucose homeostasis in subjects with T2DM was investigated by linking a one-compartment, pharmacokinetic model to the semi-mechanistic, integrated glucose-insulin-glucagon system. Drug effects were included on pancreatic insulin secretion and hepatic glucose production. The relationships between LY2599506, glucose, insulin, and glucagon concentrations were described quantitatively and consequently, the improved understanding of the drug-response system could be used to support further clinical study planning during drug development, such as dose selection.

  3. How mechanisms explain interfield cooperation: biological-chemical study of plant growth hormones in Utrecht and Pasadena, 1930-1938.

    PubMed

    Schürch, Caterina

    2017-09-01

    This article examines to what extent a particular case of cross-disciplinary research in the 1930s was structured by mechanistic reasoning. For this purpose, it identifies the interfield theories that allowed biologists and chemists to use each other's techniques and findings, and that provided the basis for the experiments performed to identify plant growth hormones and to learn more about their role in the mechanism of plant growth. In 1930, chemists and biologists in Utrecht and Pasadena began to cooperatively study plant growth. I will argue that these researchers decided to join forces because they believed to rely on each other's findings and methods to solve their research problems adequately. In the course of the cooperation, organic chemists arrived at isolating plant growth hormones by using a test method developed in plant physiology. This achievement, in turn, facilitated biologists' investigation of the mechanism of plant growth. Researchers eventually believed to have the means to study the relation between a substance's molecular structure and its physiological activity. The way they conceptualized the problem of identifying hormones and unraveling the mechanism of plant growth, as well as their actual research actions are compatible with the new mechanists' account of mechanism research. The study illustrates that focusing on researchers' mechanistic reasoning can contribute considerably to explaining the structure of cross-disciplinary research projects.

  4. Cross-study and cross-omics comparisons of three nephrotoxic compounds reveal mechanistic insights and new candidate biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheis, Katja A., E-mail: katja.matheis@boehringer-ingelheim.com; Com, Emmanuelle; High-Throughput Proteomics Core Facility OUEST-genopole

    2011-04-15

    The European InnoMed-PredTox project was a collaborative effort between 15 pharmaceutical companies, 2 small and mid-sized enterprises, and 3 universities with the goal of delivering deeper insights into the molecular mechanisms of kidney and liver toxicity and to identify mechanism-linked diagnostic or prognostic safety biomarker candidates by combining conventional toxicological parameters with 'omics' data. Mechanistic toxicity studies with 16 different compounds, 2 dose levels, and 3 time points were performed in male Crl: WI(Han) rats. Three of the 16 investigated compounds, BI-3 (FP007SE), Gentamicin (FP009SF), and IMM125 (FP013NO), induced kidney proximal tubule damage (PTD). In addition to histopathology and clinicalmore » chemistry, transcriptomics microarray and proteomics 2D-DIGE analysis were performed. Data from the three PTD studies were combined for a cross-study and cross-omics meta-analysis of the target organ. The mechanistic interpretation of kidney PTD-associated deregulated transcripts revealed, in addition to previously described kidney damage transcript biomarkers such as KIM-1, CLU and TIMP-1, a number of additional deregulated pathways congruent with histopathology observations on a single animal basis, including a specific effect on the complement system. The identification of new, more specific biomarker candidates for PTD was most successful when transcriptomics data were used. Combining transcriptomics data with proteomics data added extra value.« less

  5. Role of the P-F bond in fluoride-promoted aqueous VX hydrolysis: an experimental and theoretical study.

    PubMed

    Marciano, Daniele; Columbus, Ishay; Elias, Shlomi; Goldvaser, Michael; Shoshanim, Ofir; Ashkenazi, Nissan; Zafrani, Yossi

    2012-11-16

    Following our ongoing studies on the reactivity of the fluoride ion toward organophosphorus compounds, we established that the extremely toxic and environmentally persistent chemical warfare agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is exclusively and rapidly degraded to the nontoxic product EMPA (ethyl methylphosphonic acid) even in dilute aqueous solutions of fluoride. The unique role of the P-F bond formation in the reaction mechanism was explored using both experimental and computational mechanistic studies. In most cases, the "G-analogue" (O-ethyl methylphosphonofluoridate, Et-G) was observed as an intermediate. Noteworthy and of practical importance is the fact that the toxic side product desethyl-VX, which is formed in substantial quantities during the slow degradation of VX in unbuffered water, is completely avoided in the presence of fluoride. A computational study on a VX-model, O,S-diethyl methylphosphonothioate (1), clarifies the distinctive tendency of aqueous fluoride ions to react with such organophosphorus compounds. The facility of the degradation process even in dilute fluoride solutions is due to the increased reactivity of fluoride, which is caused by the significant low activation barrier for the P-F bond formation. In addition, the unique nucleophilicity of fluoride versus hydroxide toward VX, in contrast to their relative basicity, is discussed. Although the reaction outcomes were similar, much slower reaction rates were observed experimentally for the VX-model (1) in comparison to VX.

  6. Manipulating glucocorticoids in wild animals: basic and applied perspectives

    PubMed Central

    Sopinka, Natalie M.; Patterson, Lucy D.; Redfern, Julia C.; Pleizier, Naomi K.; Belanger, Cassia B.; Midwood, Jon D.; Crossin, Glenn T.; Cooke, Steven J.

    2015-01-01

    One of the most comprehensively studied responses to stressors in vertebrates is the endogenous production and regulation of glucocorticoids (GCs). Extensive laboratory research using experimental elevation of GCs in model species is instrumental in learning about stressor-induced physiological and behavioural mechanisms; however, such studies fail to inform our understanding of ecological and evolutionary processes in the wild. We reviewed emerging research that has used GC manipulations in wild vertebrates to assess GC-mediated effects on survival, physiology, behaviour, reproduction and offspring quality. Within and across taxa, exogenous manipulation of GCs increased, decreased or had no effect on traits examined in the reviewed studies. The notable diversity in responses to GC manipulation could be associated with variation in experimental methods, inherent differences among species, morphs, sexes and age classes, and the ecological conditions in which responses were measured. In their current form, results from experimental studies may be applied to animal conservation on a case-by-case basis in contexts such as threshold-based management. We discuss ways to integrate mechanistic explanations for changes in animal abundance in altered environments with functional applications that inform conservation practitioners of which species and traits may be most responsive to environmental change or human disturbance. Experimental GC manipulation holds promise for determining mechanisms underlying fitness impairment and population declines. Future work in this area should examine multiple life-history traits, with consideration of individual variation and, most importantly, validation of GC manipulations within naturally occurring and physiologically relevant ranges. PMID:27293716

  7. Bridging paradigms: hybrid mechanistic-discriminative predictive models.

    PubMed

    Doyle, Orla M; Tsaneva-Atansaova, Krasimira; Harte, James; Tiffin, Paul A; Tino, Peter; Díaz-Zuccarini, Vanessa

    2013-03-01

    Many disease processes are extremely complex and characterized by multiple stochastic processes interacting simultaneously. Current analytical approaches have included mechanistic models and machine learning (ML), which are often treated as orthogonal viewpoints. However, to facilitate truly personalized medicine, new perspectives may be required. This paper reviews the use of both mechanistic models and ML in healthcare as well as emerging hybrid methods, which are an exciting and promising approach for biologically based, yet data-driven advanced intelligent systems.

  8. Atopic Dermatitis According to GARP: New Mechanistic Insights in Disease Pathogenesis.

    PubMed

    Nousbeck, Janna; Irvine, Alan D

    2016-12-01

    In complex disease such as atopic dermatitis, the journey from identification of strong risk loci to profound functional and mechanistic insights can take several years. Here, Manz et al. have elegantly deciphered the mechanistic pathways in the well-established 11q13.5 atopic dermatitis risk locus. Their genetic and functional insights emphasize a role for T regulatory cells in atopic dermatitis pathogenesis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Improvements In AF Ablation Outcome Will Be Based More On Technological Advancement Versus Mechanistic Understanding.

    PubMed

    Jiang Md, Chen-Yang; Jiang Ms, Ru-Hong

    2014-01-01

    Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. Catheter ablation has proven more effective than antiarrhythmic drugs in preventing clinical recurrence of AF, however long-term outcome remains unsatisfactory. Ablation strategies have evolved based on progress in mechanistic understanding, and technologies have advanced continuously. This article reviews current mechanistic concepts and technological advancements in AF treatment, and summarizes their impact on improvement of AF ablation outcome.

  10. Clinical Research Strategies for Fructose Metabolism12

    PubMed Central

    Laughlin, Maren R.; Bantle, John P.; Havel, Peter J.; Parks, Elizabeth; Klurfeld, David M.; Teff, Karen; Maruvada, Padma

    2014-01-01

    Fructose and simple sugars are a substantial part of the western diet, and their influence on human health remains controversial. Clinical studies in fructose nutrition have proven very difficult to conduct and interpret. NIH and USDA sponsored a workshop on 13–14 November 2012, “Research Strategies for Fructose Metabolism,” to identify important scientific questions and parameters to be considered while designing clinical studies. Research is needed to ascertain whether there is an obesogenic role for fructose-containing sugars via effects on eating behavior and energy balance and whether there is a dose threshold beyond which these sugars promote progression toward diabetes and liver and cardiovascular disease, especially in susceptible populations. Studies tend to fall into 2 categories, and design criteria for each are described. Mechanistic studies are meant to validate observations made in animals or to elucidate the pathways of fructose metabolism in humans. These highly controlled studies often compare the pure monosaccharides glucose and fructose. Other studies are focused on clinically significant disease outcomes or health behaviors attributable to amounts of fructose-containing sugars typically found in the American diet. These are designed to test hypotheses generated from short-term mechanistic or epidemiologic studies and provide data for health policy. Discussion brought out the opinion that, although many mechanistic questions concerning the metabolism of monosaccharide sugars in humans remain to be addressed experimentally in small highly controlled studies, health outcomes research meant to inform health policy should use large, long-term studies using combinations of sugars found in the typical American diet rather than pure fructose or glucose. PMID:24829471

  11. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    PubMed Central

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  12. Copper-free asymmetric allylic alkylation with a Grignard reagent: design of the ligand and mechanistic studies.

    PubMed

    Grassi, David; Dolka, Chrysanthi; Jackowski, Olivier; Alexakis, Alexandre

    2013-01-21

    The Cu-free asymmetric allylic alkylation, catalysed by NHC, with Grignard reagents is reported on allyl bromide derivatives with good results. The enantioselectivity was quite homogeneous (around 85% ee) on large and various substrates, regardless of the nature of the Grignard reagent. The formation of stereogenic quaternary centres was highly regioselective for both aliphatic and aromatic derivatives with good enantiomeric excess (up to 92% ee). The methodology developed was found to be complementary with the Cu-catalysed version. Several new NHCs were tested with improved efficiency. In addition, mechanistic studies, using NMR spectroscopy, led to the discovery of the catalytically active species. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool.

    PubMed

    Blackmond, Donna G

    2015-09-02

    The use of modern kinetic tools to obtain virtually continuous reaction progress data over the course of a catalytic reaction opens up a vista that provides mechanistic insights into both simple and complex catalytic networks. Reaction profiles offer a rate/concentration scan that tells the story of a batch reaction time course in a qualitative "fingerprinting" manner as well as in quantitative detail. Reaction progress experiments may be mathematically designed to elucidate catalytic rate laws from only a fraction of the number of experiments required in classical kinetic measurements. The information gained from kinetic profiles provides clues to direct further mechanistic analysis by other approaches. Examples from a variety of catalytic reactions spanning two decades of the author's work help to delineate nuances on a central mechanistic theme.

  14. Highlights of the mechanistic and therapeutic cachexia and sarcopenia research 2010 to 2012 and their relevance for cardiology.

    PubMed

    Anker, Markus S; von Haehling, Stephan; Springer, Jochen; Banach, Maciej; Anker, Stefan D

    2013-01-10

    Sarcopenia and cachexia are significant medical problems with a high disease related burden in cardiovascular illness. Muscle wasting and weight loss are very frequent particularly in chronic heart failure and they relate to poor prognosis. Although clinically largely underestimated, the fields of cachexia and sarcopenia are of great relevance to cardiologists. In cachexia and sarcopenia a significant number of research publications related to basic science questions of muscle wasting and lipolysis were published between 2010 and 2012. Recently, the two processes of muscle wasting and lipolysis were found to be closely linked. Treatment research in pre-clinical models involves studies on a number of different therapeutic entities, including ghrelin, selective androgen receptor modulators (SARMs), as well as drugs targeting myostatin or melanocortin-4. In the human setting, studies using enobosarm (a SARM) and anamorelin (ghrelin) are in phase III. The last 3 years has seen significant efforts to define the field using consensus statements. In the future, these definitions should also be considered for guidelines and treatment trials in cardiovascular medicine. The current review aims to summarize important information and development in the fields of muscle wasting, sarcopenia and cachexia focussing on findings in cardiovascular research, in order for cardiologists to have a better understanding of the progress in the still not well enough known field. Copyright © 2012. Published by Elsevier Ireland Ltd.

  15. Mechanical constraint from growing jaw facilitates mammalian dental diversity

    PubMed Central

    Renvoisé, Elodie; Kavanagh, Kathryn D.; Lazzari, Vincent; Häkkinen, Teemu J.; Rice, Ritva; Pantalacci, Sophie; Salazar-Ciudad, Isaac; Jernvall, Jukka

    2017-01-01

    Much of the basic information about individual organ development comes from studies using model species. Whereas conservation of gene regulatory networks across higher taxa supports generalizations made from a limited number of species, generality of mechanistic inferences remains to be tested in tissue culture systems. Here, using mammalian tooth explants cultured in isolation, we investigate self-regulation of patterning by comparing developing molars of the mouse, the model species of mammalian research, and the bank vole. A distinct patterning difference between the vole and the mouse molars is the alternate cusp offset present in the vole. Analyses of both species using 3D reconstructions of developing molars and jaws, computational modeling of cusp patterning, and tooth explants cultured with small braces show that correct cusp offset requires constraints on the lateral expansion of the developing tooth. Vole molars cultured without the braces lose their cusp offset, and mouse molars cultured with the braces develop a cusp offset. Our results suggest that cusp offset, which changes frequently in mammalian evolution, is more dependent on the 3D support of the developing jaw than other aspects of tooth shape. This jaw–tooth integration of a specific aspect of the tooth phenotype indicates that organs may outsource specific aspects of their morphology to be regulated by adjacent body parts or organs. Comparative studies of morphologically different species are needed to infer the principles of organogenesis. PMID:28808032

  16. Dietary phytochemicals and neuro-inflammaging: from mechanistic insights to translational challenges.

    PubMed

    Davinelli, Sergio; Maes, Michael; Corbi, Graziamaria; Zarrelli, Armando; Willcox, Donald Craig; Scapagnini, Giovanni

    2016-01-01

    An extensive literature describes the positive impact of dietary phytochemicals on overall health and longevity. Dietary phytochemicals include a large group of non-nutrients compounds from a wide range of plant-derived foods and chemical classes. Over the last decade, remarkable progress has been made to realize that oxidative and nitrosative stress (O&NS) and chronic, low-grade inflammation are major risk factors underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant negative immunoregulatory, and/or anti-O&NS activities in the context of brain aging. Despite the translational gap between basic and clinical research, the current understanding of the molecular interactions between phytochemicals and immune-inflammatory and O&NS (IO&NS) pathways could help in designing effective nutritional strategies to delay brain aging and improve cognitive function. This review attempts to summarise recent evidence indicating that specific phytochemicals may act as positive modulators of IO&NS pathways by attenuating pro-inflammatory pathways associated with the age-related redox imbalance that occurs in brain aging. We will also discuss the need to initiate long-term nutrition intervention studies in healthy subjects. Hence, we will highlight crucial aspects that require further study to determine effective physiological concentrations and explore the real impact of dietary phytochemicals in preserving brain health before the onset of symptoms leading to cognitive decline and inflammatory neurodegeneration.

  17. More ecological ERA: incorporating natural environmental factors and animal behavior.

    PubMed

    Bednarska, Agnieszka J; Jevtić, Dragan M; Laskowski, Ryszard

    2013-07-01

    We discuss the importance of selected natural abiotic and biotic factors in ecological risk assessment based on simplistic laboratory bioassays. Although it is impossible to include all possible natural factors in standard lower-tier ecotoxicological testing, neglecting them is not an option. Therefore, we try to identify the most important factors and advocate redesigning standard testing procedures to include theoretically most potent interactions. We also point out a few potentially important factors that have not been studied enough so far. The available data allowed us to identify temperature and O2 depletion as the most critical factors that should be included in ecotoxicity testing as soon as possible. Temporal limitations and fluctuations in food availability also appear important, but at this point more fundamental research in this area is necessary before making decisions on their inclusion in risk assessment procedures. We propose using specific experimental designs, such as Box-Behnken or Central Composite, which allow for simultaneous testing of 3 or more factors for their individual and interactive effects with greater precision and without increasing the effort and costs of tests dramatically. Factorial design can lead to more powerful tests and help to extend the validity of conclusions. Finally, ecological risk assessment procedures should include information on animal behavior, especially feeding patterns. This requires more basic studies, but already at this point adequate mechanistic effect models can be developed for some species. Copyright © 2013 SETAC.

  18. Molecular-level insights of early-stage prion protein aggregation on mica and gold surface determined by AFM imaging and molecular simulation.

    PubMed

    Lou, Zhichao; Wang, Bin; Guo, Cunlan; Wang, Kun; Zhang, Haiqian; Xu, Bingqian

    2015-11-01

    By in situ time-lapse AFM, we investigated early-stage aggregates of PrP formed at low concentration (100 ng/mL) on mica and Au(111) surfaces in acetate buffer (pH 4.5). Remarkably different PrP assemblies were observed. Oligomeric structures of PrP aggregates were observed on mica surface, which was in sharp contrast to the multi-layer PrP aggregates yielding parallel linear patterns observed Au(111) surface. Combining molecular dynamics and docking simulations, PrP monomers, dimers and trimers were revealed as the basic units of the observed aggregates. Besides, the mechanisms of the observed PrP aggregations and the corresponding molecular-substrate and intermolecular interactions were suggested. These interactions involved gold-sulfur interaction, electrostatic interaction, hydrophobic interaction, and hydrogen binding interaction. In contrast, the PrP aggregates observed in pH 7.2 PBS buffer demonstrated similar large ball-like structures on both mica and Au(111) surfaces. The results indicate that the pH of a solution and the surface of the system can have strong effects on supramolecular assemblies of prion proteins. This study provides in-depth understanding on the structural and mechanistic nature of PrP aggregation, and can be used to study the aggregation mechanisms of other proteins with similar misfolding properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Review of the carcinogenic potential of gasoline.

    PubMed Central

    Raabe, G K

    1993-01-01

    This review examines the animal, human, and mechanistic studies that precede the new studies reported in this volume. Wholly vaporized unleaded gasoline was found to produce a dose-dependent increase in renal carcinoma in male rats and an excess above background incidence of hepatocellular tumors in female mice in the high-dose group. Mechanistic studies suggest that gasoline is not mutagenic and that the probable mechanism for the male rat renal tumors involves a rat-specific protein, alpha 2u-globulin, whose binding with highly branched aliphatic compounds results in renal tubule cell death and, in turn, a proliferative sequence that increases renal tubule tumors. Human evidence generated predominantly from studies of refinery workers does not support a kidney or liver cancer risk in humans. The current epidemiologic database is inadequate to access leukemia risk from low-level benzene exposure from gasoline. Studies of gasoline-exposed workers that incorporate quantitative exposure information are needed. PMID:8020448

  20. ATOMIC-SCALE DESIGN OF IRON FISCHER-TROPSCH CATALYSTS: A COMBINED COMPUTATIONAL CHEMISTRY, EXPERIMENTAL, AND MICROKINETIC MODELING APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale

    2005-03-22

    Efforts during this first year focused on four areas: (1) searching/summarizing published FTS mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) construction of mass spectrometer-TPD and Berty CSTR reactor systems; (3) preparation and characterization of unsupported iron and alumina-supported iron catalysts at various iron loadings (4) Determination of thermochemical parameters such as binding energies of reactive intermediates, heat of FTS elementary reaction steps, and kinetic parameters such as activation energies, and frequency factors of FTS elementary reaction steps on a number of model surfaces. Literature describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts wasmore » compiled in a draft review. Construction of the mass spectrometer-TPD system is 90% complete and of a Berty CSTR reactor system 98% complete. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by nonaqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2}, thus ideal for kinetic and mechanistic studies. The alumina-supported iron catalysts will be used for kinetic and mechanistic studies. In the coming year, adsorption/desorption properties, rates of elementary steps, and global reaction rates will be measured for these catalysts, with and without promoters, providing a database for understanding effects of dispersion, metal loading, and support on elementary kinetic parameters and for validation of computational models that incorporate effects of surface structure and promoters. Furthermore, using state-of-the-art self-consistent Density Functional Theory (DFT) methods, we have extensively studied the thermochemistry and kinetics of various elementary steps on three different model surfaces: (1) Fe(110), (2) Fe(110) modified by subsurface C, and (3) Fe surface modified with Pt adatoms. These studies have yielded valuable insights into the reactivity of Fe surfaces for FTS, and provided accurate estimates for the effect of Fe modifiers such as subsurface C and surface Pt.« less

  1. COLLABORATION ON NHEERL EPIDEMIOLOGY STUDIES

    EPA Science Inventory

    This task will continue ORD's efforts to develop a biologically plausible, quantitative health risk model for particulate matter (PM) based on epidemiological, toxicological, and mechanistic studies using matched exposure assessments. The NERL, in collaboration with the NHEERL, ...

  2. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  3. The Plasma Membrane Calcium Pump: New Ways to Look at an Old Enzyme

    PubMed Central

    Lopreiato, Raffaele; Giacomello, Marta; Carafoli, Ernesto

    2014-01-01

    The three-dimensional structure of the PMCA pump has not been solved, but its basic mechanistic properties are known to repeat those of the other Ca2+ pumps. However, the pump also has unique properties. They concern essentially its numerous regulatory mechanisms, the most important of which is the autoinhibition by its C-terminal tail. Other regulatory mechanisms involve protein kinases and the phospholipids of the membrane in which the pump is embedded. Permanent activation of the pump, e.g. by calmodulin, is physiologically as harmful to cells as its absence. The concept is now emerging that the global control of cell Ca2+ may not be the main function of the pump; in some cell types, it could even be irrelevant. The main pump role would be the regulation of Ca2+ in cell microdomains in which the pump co-segregates with partners that modulate the Ca2+ message and transduce it to important cell functions. PMID:24570005

  4. Live Cell Imaging of Alphaherpes Virus Anterograde Transport and Spread

    PubMed Central

    Taylor, Matthew P.; Kratchmarov, Radomir; Enquist, Lynn W.

    2013-01-01

    Advances in live cell fluorescence microscopy techniques, as well as the construction of recombinant viral strains that express fluorescent fusion proteins have enabled real-time visualization of transport and spread of alphaherpes virus infection of neurons. The utility of novel fluorescent fusion proteins to viral membrane, tegument, and capsids, in conjunction with live cell imaging, identified viral particle assemblies undergoing transport within axons. Similar tools have been successfully employed for analyses of cell-cell spread of viral particles to quantify the number and diversity of virions transmitted between cells. Importantly, the techniques of live cell imaging of anterograde transport and spread produce a wealth of information including particle transport velocities, distributions of particles, and temporal analyses of protein localization. Alongside classical viral genetic techniques, these methodologies have provided critical insights into important mechanistic questions. In this article we describe in detail the imaging methods that were developed to answer basic questions of alphaherpes virus transport and spread. PMID:23978901

  5. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks

    NASA Astrophysics Data System (ADS)

    Ivanov, Valeriy Y.; Bras, Rafael L.; Vivoni, Enrique R.

    2008-03-01

    Vegetation, particularly its dynamics, is the often-ignored linchpin of the land-surface hydrology. This work emphasizes the coupled nature of vegetation-water-energy dynamics by considering linkages at timescales that vary from hourly to interannual. A series of two papers is presented. A dynamic ecohydrological model [tRIBS + VEGGIE] is described in this paper. It reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. The framework focuses on ecohydrology of semiarid environments exhibiting abundant input of solar energy but limiting soil water that correspondingly affects vegetation structure and organization. The mechanisms through which water limitation influences plant dynamics are related to carbon assimilation via the control of photosynthesis and stomatal behavior, carbon allocation, stress-induced foliage loss, as well as recruitment and phenology patterns. This first introductory paper demonstrates model performance using observations for a site located in a semiarid environment of central New Mexico.

  6. A cytokine axis regulates elastin formation and degradation

    PubMed Central

    Sproul, Erin P.; Argraves, W. Scott

    2013-01-01

    Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093

  7. Maximal aggregation of polynomial dynamical systems

    PubMed Central

    Cardelli, Luca; Tschaikowski, Max

    2017-01-01

    Ordinary differential equations (ODEs) with polynomial derivatives are a fundamental tool for understanding the dynamics of systems across many branches of science, but our ability to gain mechanistic insight and effectively conduct numerical evaluations is critically hindered when dealing with large models. Here we propose an aggregation technique that rests on two notions of equivalence relating ODE variables whenever they have the same solution (backward criterion) or if a self-consistent system can be written for describing the evolution of sums of variables in the same equivalence class (forward criterion). A key feature of our proposal is to encode a polynomial ODE system into a finitary structure akin to a formal chemical reaction network. This enables the development of a discrete algorithm to efficiently compute the largest equivalence, building on approaches rooted in computer science to minimize basic models of computation through iterative partition refinements. The physical interpretability of the aggregation is shown on polynomial ODE systems for biochemical reaction networks, gene regulatory networks, and evolutionary game theory. PMID:28878023

  8. Percolation Model of Sensory Transmission and Loss of Consciousness Under General Anesthesia

    NASA Astrophysics Data System (ADS)

    Zhou, David W.; Mowrey, David D.; Tang, Pei; Xu, Yan

    2015-09-01

    Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.

  9. The pathophysiology of heart failure: a tale of two old paradigms revisited.

    PubMed

    Ashrafian, Houman; Williams, Lynne; Frenneaux, Michael P

    2008-04-01

    Although our current appreciation of the detrimental role of neurohumoral activation in heart failure (HF) has been intellectually appealing and has led to neurohumoral antagonism that has reduced morbidity and mortality from HF, the persisting disability and death rates remain unacceptably high. In the search for novel strategies to improve on these outcomes, we must reacquaint ourselves with basic cardiac physiology at levels ranging from the molecular to the systemic in order to identify new targets for the treatment of HF. This approach has already begun to yield results; in this review, two such aspects will be focused on: diastolic ventricular interaction and cardiac energetics. These two examples will be used to illuminate how fundamental research has elucidated age-old, although mechanistically elusive, principles (for example, the Frank-Starling law), explained why existing and emerging therapeutic approaches (for example, biventricular pacing in HF) have proved successful, and successfully identified novel therapy modes (for example, perhexiline as an energy augmentation agent).

  10. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  11. Twitching in Sensorimotor Development from Sleeping Rats to Robots

    PubMed Central

    Marques, Hugo Gravato; Iida, Fumiya

    2013-01-01

    It is still not known how the “rudimentary” movements of fetuses and infants are transformed into the coordinated, flexible, and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: When twitches are mimicked in robot models of the musculoskeletal system, basic neural circuitry self-organizes. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain. PMID:23787051

  12. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes

    PubMed Central

    Liepe, Juliane; Holzhütter, Hermann-Georg; Bellavista, Elena; Kloetzel, Peter M; Stumpf, Michael PH; Mishto, Michele

    2015-01-01

    Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. DOI: http://dx.doi.org/10.7554/eLife.07545.001 PMID:26393687

  13. RNA-binding proteins in neurodegeneration: mechanisms in aggregate

    PubMed Central

    Conlon, Erin G.; Manley, James L.

    2017-01-01

    Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens. PMID:28912172

  14. Regime, phase and paradigm shifts: making community ecology the basic science for fisheries

    PubMed Central

    Mangel, Marc; Levin, Phillip S.

    2005-01-01

    Modern fishery science, which began in 1957 with Beverton and Holt, is ca. 50 years old. At its inception, fishery science was limited by a nineteenth century mechanistic worldview and by computational technology; thus, the relatively simple equations of population ecology became the fundamental ecological science underlying fisheries. The time has come for this to change and for community ecology to become the fundamental ecological science underlying fisheries. This point will be illustrated with two examples. First, when viewed from a community perspective, excess production must be considered in the context of biomass left for predators. We argue that this is a better measure of the effects of fisheries than spawning biomass per recruit. Second, we shall analyse a simple, but still multi-species, model for fishery management that considers the alternatives of harvest regulations, inshore marine protected areas and offshore marine protected areas. Population or community perspectives lead to very different predictions about the efficacy of reserves. PMID:15713590

  15. gem-Difluoroolefination of diaryl ketones and enolizable aldehydes with difluoromethyl 2-pyridyl sulfone: new insights into the Julia-Kocienski reaction.

    PubMed

    Gao, Bing; Zhao, Yanchuan; Hu, Mingyou; Ni, Chuanfa; Hu, Jinbo

    2014-06-16

    The direct conversion of diaryl ketones and enolizable aliphatic aldehydes into gem-difluoroalkenes has been a long-standing challenge in organofluorine chemistry. Herein, we report efficient strategies to tackle this problem by using difluoromethyl 2-pyridyl sulfone as a general gem-difluoroolefination reagent. The gem-difluoroolefination of diaryl ketones proceeds by acid-promoted Smiles rearrangement of the carbinol intermediate; the gem-difluoroolefination is otherwise difficult to achieve through a conventional Julia-Kocienski olefination protocol under basic conditions due to the retro-aldol type decomposition of the key intermediate. Efficient gem-difluoroolefination of aliphatic aldehydes was achieved by the use of an amide base generated in situ (from CsF and tris(trimethylsilyl)amine), which diminishes the undesired enolization of aliphatic aldehydes and provides a powerful synthetic method for chemoselective gem-difluoroolefination of multi-carbonyl compounds. Our results provide new insights into the mechanistic understanding of the classical Julia-Kocienski reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. | Office of Cancer Genomics

    Cancer.gov

    We introduce and validate a new precision oncology framework for the systematic prioritization of drugs targeting mechanistic tumor dependencies in individual patients. Compounds are prioritized on the basis of their ability to invert the concerted activity of master regulator proteins that mechanistically regulate tumor cell state, as assessed from systematic drug perturbation assays. We validated the approach on a cohort of 212 gastroenteropancreatic neuroendocrine tumors (GEP-NETs), a rare malignancy originating in the pancreas and gastrointestinal tract.

  17. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Charles P

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton frommore » an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to the aldehyde carbon and of a proton from the CpOH unit to the aldehyde oxygen and support reduction of the aldehyde without its prior coordination to ruthenium. Another important step in the catalysis is the regeneration of 1 from reaction of H2 with the stable diruthenium bridging hydride complex 2. Studies of the microscopic reverse of this process (hydrogen evolution from 1 which occurs at 80°C) in the presence of alcohol (the product of aldehyde hydrogenation) have shown that a dihydrogen complex is formed reversibly at a rate much faster than hydrogen evolution. Kinetic and theoretical studies in collaboration with Professor Qiang Cui of Wisconsin indicated an important role for alcohol in mediating transfer of hydrogen to ruthenium. One key to developing more active catalysts was to destabilize the bridging hydride intermediate 2 to prevent its formation or to speed its conversion to a reactive monohydride 1 by reaction with H2. We found several successful ways to destabilize the bridging hydride and to obtain more active catalysts. Most recently, we discovered related iron catalysts for hydrogenation that do not form dimers; the cost advantage of iron catalysts is spectacular. Iron Catalysts. In an exciting development, we found that a related iron complex is also a very active ketone hydrogenation catalyst. This hydrogenation catalyst shows high chemoselectivity for aldehydes, ketones, and imines and isolated C=C, CºC, C-X, -NO2, epoxides, and ester functions are unaffected by the hydrogenation conditions. Mechanistic studies have established a reversible hydrogen transfer step followed by rapid dihydrogen activation. The same iron complex also catalyzes transfer hydrogenation of ketones.« less

  18. Free Radicals in Chemical Biology: from Chemical Behavior to Biomarker Development

    PubMed Central

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Masi, Annalisa; Melchiorre, Michele; Sansone, Anna; Terzidis, Michael A.; Torreggiani, Armida

    2013-01-01

    The involvement of free radicals in life sciences has constantly increased with time and has been connected to several physiological and pathological processes. This subject embraces diverse scientific areas, spanning from physical, biological and bioorganic chemistry to biology and medicine, with applications to the amelioration of quality of life, health and aging. Multidisciplinary skills are required for the full investigation of the many facets of radical processes in the biological environment and chemical knowledge plays a crucial role in unveiling basic processes and mechanisms. We developed a chemical biology approach able to connect free radical chemical reactivity with biological processes, providing information on the mechanistic pathways and products. The core of this approach is the design of biomimetic models to study biomolecule behavior (lipids, nucleic acids and proteins) in aqueous systems, obtaining insights of the reaction pathways as well as building up molecular libraries of the free radical reaction products. This context can be successfully used for biomarker discovery and examples are provided with two classes of compounds: mono-trans isomers of cholesteryl esters, which are synthesized and used as references for detection in human plasma, and purine 5',8-cyclo-2'-deoxyribonucleosides, prepared and used as reference in the protocol for detection of such lesions in DNA samples, after ionizing radiations or obtained from different health conditions. PMID:23629513

  19. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia

    PubMed Central

    Kuhn, Viktoria; Diederich, Lukas; Keller, T.C. Stevenson; Kramer, Christian M.; Lückstädt, Wiebke; Panknin, Christina; Suvorava, Tatsiana; Isakson, Brant E.; Kelm, Malte

    2017-01-01

    Abstract Significance: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. Critical Issues: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. Future Directions: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718–742. PMID:27889956

  20. Current understanding of interactions between nanoparticles and the immune system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrovolskaia, Marina A., E-mail: marina@mail.nih.

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guidemore » safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.« less

  1. Structural Basis of Membrane Targeting by the Dock180 Family of Rho Family Guanine Exchange Factors (Rho-GEFs)*

    PubMed Central

    Premkumar, Lakshmanane; Bobkov, Andrey A.; Patel, Manishha; Jaroszewski, Lukasz; Bankston, Laurie A.; Stec, Boguslaw; Vuori, Kristiina; Côté, Jean-Francois; Liddington, Robert C.

    2010-01-01

    The Dock180 family of atypical Rho family guanine nucleotide exchange factors (Rho-GEFs) regulate a variety of processes involving cellular or subcellular polarization, including cell migration and phagocytosis. Each contains a Dock homology region-1 (DHR-1) domain that is required to localize its GEF activity to a specific membrane compartment where levels of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) are up-regulated by the local activity of PtdIns 3-kinase. Here we define the structural and energetic bases of phosphoinositide specificity by the DHR-1 domain of Dock1 (a GEF for Rac1), and show that DHR-1 utilizes a C2 domain scaffold and surface loops to create a basic pocket on its upper surface for recognition of the PtdIns(3,4,5)P3 head group. The pocket has many of the characteristics of those observed in pleckstrin homology domains. We show that point mutations in the pocket that abolish phospholipid binding in vitro ablate the ability of Dock1 to induce cell polarization, and propose a model that brings together recent mechanistic and structural studies to rationalize the central role of DHR-1 in dynamic membrane targeting of the Rho-GEF activity of Dock180. PMID:20167601

  2. Addition of Cryoprotectant Significantly Alters the Epididymal Sperm Proteome

    PubMed Central

    Yoon, Sung-Jae; Rahman, Md Saidur; Kwon, Woo-Sung; Park, Yoo-Jin; Pang, Myung-Geol

    2016-01-01

    Although cryopreservation has been developed and optimized over the past decades, it causes various stresses, including cold shock, osmotic stress, and ice crystal formation, thereby reducing fertility. During cryopreservation, addition of cryoprotective agent (CPA) is crucial for protecting spermatozoa from freezing damage. However, the intrinsic toxicity and osmotic stress induced by CPA cause damage to spermatozoa. To identify the effects of CPA addition during cryopreservation, we assessed the motility (%), motion kinematics, capacitation status, and viability of epididymal spermatozoa using computer-assisted sperm analysis and Hoechst 33258/chlortetracycline fluorescence staining. Moreover, the effects of CPA addition were also demonstrated at the proteome level using two-dimensional electrophoresis. Our results demonstrated that CPA addition significantly reduced sperm motility (%), curvilinear velocity, viability (%), and non-capacitated spermatozoa, whereas straightness and acrosome-reacted spermatozoa increased significantly (p < 0.05). Ten proteins were differentially expressed (two decreased and eight increased) (>3 fold, p < 0.05) after CPA, whereas NADH dehydrogenase flavoprotein 2, f-actin-capping protein subunit beta, superoxide dismutase 2, and outer dense fiber protein 2 were associated with several important signaling pathways (p < 0.05). The present study provides a mechanistic basis for specific cryostresses and potential markers of CPA-induced stress. Therefore, these might provide information about the development of safe biomaterials for cryopreservation and basic ground for sperm cryopreservation. PMID:27031703

  3. Chronic hepatitis C and liver fibrosis

    PubMed Central

    Sebastiani, Giada; Gkouvatsos, Konstantinos; Pantopoulos, Kostas

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide and predisposes to liver fibrosis and end-stage liver complications. Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, and is considered as a wound healing response to chronic liver injury. Its staging is critical for the management and prognosis of chronic hepatitis C (CHC) patients, whose number is expected to rise over the next decades, posing a major health care challenge. This review provides a brief update on HCV epidemiology, summarizes basic mechanistic concepts of HCV-dependent liver fibrogenesis, and discusses methods for assessment of liver fibrosis that are routinely used in clinical practice. Liver biopsy was until recently considered as the gold standard to diagnose and stage liver fibrosis. However, its invasiveness and drawbacks led to the development of non-invasive methods, which include serum biomarkers, transient elastography and combination algorithms. Clinical studies with CHC patients demonstrated that non-invasive methods are in most cases accurate for diagnosis and for monitoring liver disease complications. Moreover, they have a high prognostic value and are cost-effective. Non-invasive methods for assessment of liver fibrosis are gradually being incorporated into new guidelines and are becoming standard of care, which significantly reduces the need for liver biopsy. PMID:25170193

  4. Omega-3 fatty acids: benefits for cardio-cerebro-vascular diseases.

    PubMed

    Siegel, G; Ermilov, E

    2012-12-01

    Intracranial artery stenosis (ICAS) is a narrowing of an intracranial artery, which is a common etiology for ischemic stroke. In this commentary, we review key aspects of the discrimination between non-stroke controls and ischemic stroke patients on the background of phospholipid ω3-fatty acid (DHA, EPA) composition. The discussion is embedded in the presentation of general effects of long-chain ω3 polyunsaturated fatty acids (PUFAs) in cardio-cerebro-vascular diseases (CCVDs) and Alzheimer dementia (AD). ICAS is a common stroke subtype and has emerged as a major factor in recurrent stroke and vascular mortality. DHA and EPA are important fatty acids to distinguish between NCAS (no cerebral arteriosclerotic stenosis) and ICAS in stroke. The risk of ICAS is inversely correlated with the DHA content in phospholipids. Furthermore, a mechanistic explanation has been proposed for the beneficial effects of PUFAs in CCVDs and AD. Whereas the beneficial effects of EPA/DHA for cardiovascular diseases and stroke seem to be beyond question, preventive effects in patients with very mild cognitive dysfunction and beginning Alzheimer's disease undoubtedly need confirmation by larger clinical trials. A collaborative international basic science approach is warranted considering cautiously designed studies in order to avoid ethical problems. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. A nested mechanistic sub-study into the effect of tranexamic acid versus placebo on intracranial haemorrhage and cerebral ischaemia in isolated traumatic brain injury: study protocol for a randomised controlled trial (CRASH-3 Trial Intracranial Bleeding Mechanistic Sub-Study [CRASH-3 IBMS]).

    PubMed

    Mahmood, Abda; Roberts, Ian; Shakur, Haleema

    2017-07-17

    Tranexamic acid prevents blood clots from breaking down and reduces bleeding. However, it is uncertain whether tranexamic acid is effective in traumatic brain injury. The CRASH-3 trial is a randomised controlled trial that will examine the effect of tranexamic acid (versus placebo) on death and disability in 13,000 patients with traumatic brain injury. The CRASH-3 trial hypothesizes that tranexamic acid will reduce intracranial haemorrhage, which will reduce the risk of death. Although it is possible that tranexamic acid will reduce intracranial bleeding, there is also a potential for harm. In particular, tranexamic acid may increase the risk of cerebral thrombosis and ischaemia. The protocol detailed here is for a mechanistic sub-study nested within the CRASH-3 trial. This mechanistic sub-study aims to examine the effect of tranexamic acid (versus placebo) on intracranial bleeding and cerebral ischaemia. The CRASH-3 Intracranial Bleeding Mechanistic Sub-Study (CRASH-3 IBMS) is nested within a prospective, double-blind, multi-centre, parallel-arm randomised trial called the CRASH-3 trial. The CRASH-3 IBMS will be conducted in a cohort of approximately 1000 isolated traumatic brain injury patients enrolled in the CRASH-3 trial. In the CRASH-3 IBMS, brain scans acquired before and after randomisation are examined, using validated methods, for evidence of intracranial bleeding and cerebral ischaemia. The primary outcome is the total volume of intracranial bleeding measured on computed tomography after randomisation, adjusting for baseline bleeding volume. Secondary outcomes include progression of intracranial haemorrhage (from pre- to post-randomisation scans), new intracranial haemorrhage (seen on post- but not pre-randomisation scans), intracranial haemorrhage following neurosurgery, and new focal ischaemic lesions (seen on post-but not pre-randomisation scans). A linear regression model will examine whether receipt of the trial treatment can predict haemorrhage volume. Bleeding volumes and new ischaemic lesions will be compared across treatment groups using relative risks and 95% confidence intervals. The CRASH-3 IBMS will provide an insight into the mechanism of action of tranexamic acid in traumatic brain injury, as well as information about the risks and benefits. Evidence from this trial could inform the management of patients with traumatic brain injury. The CRASH-3 trial was prospectively registered and the CRASH-3 IBMS is an addition to the original protocol registered at the International Standard Randomised Controlled Trials registry ( ISRCTN15088122 ) 19 July 2011, and ClinicalTrials.gov on 25 July 2011 (NCT01402882).

  6. Emerging structural insights into the function of ionotropic glutamate receptors

    PubMed Central

    Karakas, Erkan; Regan, Michael C.; Furukawa, Hiro

    2015-01-01

    Summary Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function including learning and memory formation. Recently a wealth of structural studies on iGluRs, including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available.. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, which illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. Here we review mechanistic insights into iGluR functions gained through structural studies of multiple groups. PMID:25941168

  7. A mechanistic physicochemical model of carbon dioxide transport in blood.

    PubMed

    O'Neill, David P; Robbins, Peter A

    2017-02-01

    A number of mathematical models have been produced that, given the Pco 2 and Po 2 of blood, will calculate the total concentrations for CO 2 and O 2 in blood. However, all these models contain at least some empirical features, and thus do not represent all of the underlying physicochemical processes in an entirely mechanistic manner. The aim of this study was to develop a physicochemical model of CO 2 carriage by the blood to determine whether our understanding of the physical chemistry of the major chemical components of blood together with their interactions is sufficiently strong to predict the physiological properties of CO 2 carriage by whole blood. Standard values are used for the ionic composition of the blood, the plasma albumin concentration, and the hemoglobin concentration. All K m values required for the model are taken from the literature. The distribution of bicarbonate, chloride, and H + ions across the red blood cell membrane follows that of a Gibbs-Donnan equilibrium. The system of equations that results is solved numerically using constraints for mass balance and electroneutrality. The model reproduces the phenomena associated with CO 2 carriage, including the magnitude of the Haldane effect, very well. The structural nature of the model allows various hypothetical scenarios to be explored. Here we examine the effects of 1) removing the ability of hemoglobin to form carbamino compounds; 2) allowing a degree of Cl - binding to deoxygenated hemoglobin; and 3) removing the chloride (Hamburger) shift. The insights gained could not have been obtained from empirical models. This study is the first to incorporate a mechanistic model of chloride-bicarbonate exchange between the erythrocyte and plasma into a full physicochemical model of the carriage of carbon dioxide in blood. The mechanistic nature of the model allowed a theoretical study of the quantitative significance for carbon dioxide transport of carbamino compound formation; the putative binding of chloride to deoxygenated hemoglobin, and the chloride (Hamburger) shift. Copyright © 2017 the American Physiological Society.

  8. A mechanistic physicochemical model of carbon dioxide transport in blood

    PubMed Central

    O’Neill, David P.

    2017-01-01

    A number of mathematical models have been produced that, given the Pco2 and Po2 of blood, will calculate the total concentrations for CO2 and O2 in blood. However, all these models contain at least some empirical features, and thus do not represent all of the underlying physicochemical processes in an entirely mechanistic manner. The aim of this study was to develop a physicochemical model of CO2 carriage by the blood to determine whether our understanding of the physical chemistry of the major chemical components of blood together with their interactions is sufficiently strong to predict the physiological properties of CO2 carriage by whole blood. Standard values are used for the ionic composition of the blood, the plasma albumin concentration, and the hemoglobin concentration. All Km values required for the model are taken from the literature. The distribution of bicarbonate, chloride, and H+ ions across the red blood cell membrane follows that of a Gibbs-Donnan equilibrium. The system of equations that results is solved numerically using constraints for mass balance and electroneutrality. The model reproduces the phenomena associated with CO2 carriage, including the magnitude of the Haldane effect, very well. The structural nature of the model allows various hypothetical scenarios to be explored. Here we examine the effects of 1) removing the ability of hemoglobin to form carbamino compounds; 2) allowing a degree of Cl− binding to deoxygenated hemoglobin; and 3) removing the chloride (Hamburger) shift. The insights gained could not have been obtained from empirical models. NEW & NOTEWORTHY This study is the first to incorporate a mechanistic model of chloride-bicarbonate exchange between the erythrocyte and plasma into a full physicochemical model of the carriage of carbon dioxide in blood. The mechanistic nature of the model allowed a theoretical study of the quantitative significance for carbon dioxide transport of carbamino compound formation; the putative binding of chloride to deoxygenated hemoglobin, and the chloride (Hamburger) shift. PMID:27881667

  9. Perspectives on the Application of Mechanistic Information in Chemical Hazard and Dose-Response Assessments

    EPA Science Inventory

    This overview summarizes several EPA Assessment publications reviewing approaches for applying mechanistic information in human health risk assessment and exploring opportunities for progress in this area.

  10. Organizational (role structuring) and personal (organizational commitment and job involvement) factors: do they predict interprofessional team effectiveness?

    PubMed

    Freund, Anat; Drach-Zahavy, Anat

    2007-06-01

    Teamwork in community clinics was examined to propose and test a model that views the different kinds of commitment (job involvement and organizational commitment) and the potential conflict between them, as mediators between personal and organizational factors (mechanistic structuring and organic structuring) and the effectiveness of interprofessional teamwork. Differences among the professional groups became evident with regard to their views of the goals of teamwork and the ways to achieve them. As for mechanistic structuring, although the clinic members saw their mechanistic structuring in a more bureaucratic sense, the combination of mechanistic structuring and organic structuring led to effective teamwork. In terms of commitment, while staff members were committed primarily to their job and not the organization, commitment to the organization produced effective teamwork in the clinics.

  11. Improving Interpretation of New and Old Serum Biomarkers of Drug-Induced Liver Injury Through Mechanistic Modeling.

    PubMed

    Watkins, Paul B

    2018-04-26

    The study by Mason et al. in this issue used mechanistic modeling and simulation to address how both the dose of acetaminophen consumed and the time since ingestion can be estimated from biomarkers measured in a single serum sample in mice. Translation into the clinic would potentially be an advance in the treatment of acetaminophen poisoning. Importantly, this approach could transform the evaluation of liver safety in clinical trials of new drug candidates. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  12. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Mechanistic Studies and Methods for Improving the Structural Identification of Carbohydrates

    PubMed Central

    Lai, Yin-Hung; Wang, Yi-Sheng

    2017-01-01

    Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is one of the most widely used soft ionization methods for biomolecules, the lack of detailed understanding of ionization mechanisms restricts its application in the analysis of carbohydrates. Structural identification of carbohydrates achieved by MALDI mass spectrometry helps us to gain insights into biological functions and pathogenesis of disease. In this review, we highlight mechanistic details of MALDI, including both ionization and desorption. Strategies to improve the ion yield of carbohydrates are also reviewed. Furthermore, commonly used fragmentation methods to identify the structure are discussed. PMID:28959517

  13. Aryl-O reductive elimination from reaction of well-defined aryl-Cu(III) species with phenolates: the importance of ligand reactivity.

    PubMed

    Casitas, Alicia; Ioannidis, Nikolaos; Mitrikas, George; Costas, Miquel; Ribas, Xavi

    2011-09-21

    Well-defined aryl-Cu(III) species undergo rapid reductive elimination upon reaction with phenolates (PhO(-)), to form aryl-OPh cross-coupling products. Kinetic studies show that the reaction follows a different mechanistic pathway compared to the reaction with phenols. The pH active cyclized pincer-like ligand undergoes an initial amine deprotonation that triggers a faster reactivity at room temperature. A mechanistic proposal for the enhanced reactivity and the role of EPR-detected Cu(II) species will be discussed in detail. This journal is © The Royal Society of Chemistry 2011

  14. New mechanistic insights in the NH 3-SCR reactions at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggeri, Maria Pia; Selleri, Tomasso; Nova, Isabella

    2016-05-06

    The present study is focused on the investigation of the low temperature Standard SCR reaction mechanism over Fe- and Cu-promoted zeolites. Different techniques are employed, including in situ DRIFTS, transient reaction analysis and chemical trapping techniques. The results present strong evidence of nitrite formation in the oxidative activation of NO and of their role in SCR reactions. These elements lead to a deeper understanding of the standard SCR chemistry at low temperature and can potentially improve the consistency of mechanistic mathematical models. Furthermore, comprehension of the mechanism on a fundamental level can contribute to the development of improved SCR catalysts.

  15. Mechanistic Insight of Probiotics Derived Anticancer Pharmaceuticals: A Road Forward for Cancer Therapeutics.

    PubMed

    Kumar, Raman; Dhanda, Suman

    2017-04-01

    Probiotics are living organisms that confer health benefits when administered in adequate amounts. Probiotics are continuously being explored for their different health beneficiary activities. Anticancer activity is one of the most important benefits both from a preventive and therapeutic point of view. Though not many studies have been conducted to date in this area, a number suggest using laboratory animal models and different cell lines that there may be a mechanistic basis for the anticancer effects of probiotics and require more scientific justification and clinical trials. Most studies of probiotics are conducted for colon cancer associated with inflammatory bowel disease. Studies are also being extended to other types of cancer in different cell lines. This review summarizes studied probiotics considered for treatment of colon cancer and some other cancers (in cancer cell lines) and also proposed mechanism how probiotics are inhibiting cancer growth along with some challenges and future perspectives.

  16. The importance of mechanisms for the evolution of cooperation

    PubMed Central

    van den Berg, Pieter; Weissing, Franz J.

    2015-01-01

    Studies aimed at explaining the evolution of phenotypic traits have often solely focused on fitness considerations, ignoring underlying mechanisms. In recent years, there has been an increasing call for integrating mechanistic perspectives in evolutionary considerations, but it is not clear whether and how mechanisms affect the course and outcome of evolution. To study this, we compare four mechanistic implementations of two well-studied models for the evolution of cooperation, the Iterated Prisoner's Dilemma (IPD) game and the Iterated Snowdrift (ISD) game. Behavioural strategies are either implemented by a 1 : 1 genotype–phenotype mapping or by a simple neural network. Moreover, we consider two different scenarios for the effect of mutations. The same set of strategies is feasible in all four implementations, but the probability that a given strategy arises owing to mutation is largely dependent on the behavioural and genetic architecture. Our individual-based simulations show that this has major implications for the evolutionary outcome. In the ISD, different evolutionarily stable strategies are predominant in the four implementations, while in the IPD each implementation creates a characteristic dynamical pattern. As a consequence, the evolved average level of cooperation is also strongly dependent on the underlying mechanism. We argue that our findings are of general relevance for the evolution of social behaviour, pleading for the integration of a mechanistic perspective in models of social evolution. PMID:26246554

  17. Biomechanics meets the ecological niche: the importance of temporal data resolution.

    PubMed

    Kearney, Michael R; Matzelle, Allison; Helmuth, Brian

    2012-03-15

    The emerging field of mechanistic niche modelling aims to link the functional traits of organisms to their environments to predict survival, reproduction, distribution and abundance. This approach has great potential to increase our understanding of the impacts of environmental change on individuals, populations and communities by providing functional connections between physiological and ecological response to increasingly available spatial environmental data. By their nature, such mechanistic models are more data intensive in comparison with the more widely applied correlative approaches but can potentially provide more spatially and temporally explicit predictions, which are often needed by decision makers. A poorly explored issue in this context is the appropriate level of temporal resolution of input data required for these models, and specifically the error in predictions that can be incurred through the use of temporally averaged data. Here, we review how biomechanical principles from heat-transfer and metabolic theory are currently being used as foundations for mechanistic niche models and consider the consequences of different temporal resolutions of environmental data for modelling the niche of a behaviourally thermoregulating terrestrial lizard. We show that fine-scale temporal resolution (daily) data can be crucial for unbiased inference of climatic impacts on survival, growth and reproduction. This is especially so for species with little capacity for behavioural buffering, because of behavioural or habitat constraints, and for detecting temporal trends. However, coarser-resolution data (long-term monthly averages) can be appropriate for mechanistic studies of climatic constraints on distribution and abundance limits in thermoregulating species at broad spatial scales.

  18. Estimation of adsorption isotherm and mass transfer parameters in protein chromatography using artificial neural networks.

    PubMed

    Wang, Gang; Briskot, Till; Hahn, Tobias; Baumann, Pascal; Hubbuch, Jürgen

    2017-03-03

    Mechanistic modeling has been repeatedly successfully applied in process development and control of protein chromatography. For each combination of adsorbate and adsorbent, the mechanistic models have to be calibrated. Some of the model parameters, such as system characteristics, can be determined reliably by applying well-established experimental methods, whereas others cannot be measured directly. In common practice of protein chromatography modeling, these parameters are identified by applying time-consuming methods such as frontal analysis combined with gradient experiments, curve-fitting, or combined Yamamoto approach. For new components in the chromatographic system, these traditional calibration approaches require to be conducted repeatedly. In the presented work, a novel method for the calibration of mechanistic models based on artificial neural network (ANN) modeling was applied. An in silico screening of possible model parameter combinations was performed to generate learning material for the ANN model. Once the ANN model was trained to recognize chromatograms and to respond with the corresponding model parameter set, it was used to calibrate the mechanistic model from measured chromatograms. The ANN model's capability of parameter estimation was tested by predicting gradient elution chromatograms. The time-consuming model parameter estimation process itself could be reduced down to milliseconds. The functionality of the method was successfully demonstrated in a study with the calibration of the transport-dispersive model (TDM) and the stoichiometric displacement model (SDM) for a protein mixture. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Urine: Waste product or biologically active tissue?

    PubMed

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  20. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept

    USGS Publications Warehouse

    Luoma, Samuel N.; Rainbow, Philip S.

    2005-01-01

    Ecological risks from metal contaminants are difficult to document because responses differ among species, threats differ among metals, and environmental influences are complex. Unifying concepts are needed to better tie together such complexities. Here we suggest that a biologically based conceptualization, the biodynamic model, provides the necessary unification for a key aspect in risk:  metal bioaccumulation (internal exposure). The model is mechanistically based, but empirically considers geochemical influences, biological differences, and differences among metals. Forecasts from the model agree closely with observations from nature, validating its basic assumptions. The biodynamic metal bioaccumulation model combines targeted, high-quality geochemical analyses from a site of interest with parametrization of key physiological constants for a species from that site. The physiological parameters include metal influx rates from water, influx rates from food, rate constants of loss, and growth rates (when high). We compiled results from 15 publications that forecast species-specific bioaccumulation, and compare the forecasts to bioaccumulation data from the field. These data consider concentrations that cover 7 orders of magnitude. They include 7 metals and 14 species of animals from 3 phyla and 11 marine, estuarine, and freshwater environments. The coefficient of determination (R2) between forecasts and independently observed bioaccumulation from the field was 0.98. Most forecasts agreed with observations within 2-fold. The agreement suggests that the basic assumptions of the biodynamic model are tenable. A unified explanation of metal bioaccumulation sets the stage for a realistic understanding of toxicity and ecological effects of metals in nature.

  1. A movement ecology paradigm for unifying organismal movement research

    PubMed Central

    Nathan, Ran; Getz, Wayne M.; Revilla, Eloy; Holyoak, Marcel; Kadmon, Ronen; Saltz, David; Smouse, Peter E.

    2008-01-01

    Movement of individual organisms is fundamental to life, quilting our planet in a rich tapestry of phenomena with diverse implications for ecosystems and humans. Movement research is both plentiful and insightful, and recent methodological advances facilitate obtaining a detailed view of individual movement. Yet, we lack a general unifying paradigm, derived from first principles, which can place movement studies within a common context and advance the development of a mature scientific discipline. This introductory article to the Movement Ecology Special Feature proposes a paradigm that integrates conceptual, theoretical, methodological, and empirical frameworks for studying movement of all organisms, from microbes to trees to elephants. We introduce a conceptual framework depicting the interplay among four basic mechanistic components of organismal movement: the internal state (why move?), motion (how to move?), and navigation (when and where to move?) capacities of the individual and the external factors affecting movement. We demonstrate how the proposed framework aids the study of various taxa and movement types; promotes the formulation of hypotheses about movement; and complements existing biomechanical, cognitive, random, and optimality paradigms of movement. The proposed framework integrates eclectic research on movement into a structured paradigm and aims at providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes. ”Now we must consider in general the common reason for moving with any movement whatever.“ (Aristotle, De Motu Animalium, 4th century B.C.) PMID:19060196

  2. Testing mechanistic models of growth in insects.

    PubMed

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. © 2015 The Author(s).

  3. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  4. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    PubMed

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  5. Mechanistic Insights into the Efficacy of Sodium Bicarbonate Supplementation to Improve Athletic Performance.

    PubMed

    Siegler, Jason C; Marshall, Paul W M; Bishop, David; Shaw, Greg; Green, Simon

    2016-12-01

    A large proportion of empirical research and reviews investigating the ergogenic potential of sodium bicarbonate (NaHCO 3 ) supplementation have focused predominately on performance outcomes and only speculate about underlying mechanisms responsible for any benefit. The aim of this review was to critically evaluate the influence of NaHCO 3 supplementation on mechanisms associated with skeletal muscle fatigue as it translates directly to exercise performance. Mechanistic links between skeletal muscle fatigue, proton accumulation (or metabolic acidosis) and NaHCO 3 supplementation have been identified to provide a more targeted, evidence-based approach to direct future research, as well as provide practitioners with a contemporary perspective on the potential applications and limitations of this supplement. The mechanisms identified have been broadly categorised under the sections 'Whole-body Metabolism', 'Muscle Physiology' and 'Motor Pathways', and when possible, the performance outcomes of these studies contextualized within an integrative framework of whole-body exercise where other factors such as task demand (e.g. large vs. small muscle groups), cardio-pulmonary and neural control mechanisms may outweigh any localised influence of NaHCO 3 . Finally, the 'Performance Applications' section provides further interpretation for the practitioner founded on the mechanistic evidence provided in this review and other relevant, applied NaHCO 3 performance-related studies.

  6. Transgenerational Adaptation to Pollution Changes Energy Allocation in Populations of Nematodes.

    PubMed

    Goussen, Benoit; Péry, Alexandre R R; Bonzom, Jean-Marc; Beaudouin, Rémy

    2015-10-20

    Assessing the evolutionary responses of long-term exposed populations requires multigeneration ecotoxicity tests. However, the analysis of the data from these tests is not straightforward. Mechanistic models allow the in-depth analysis of the variation of physiological traits over many generations, by quantifying the trend of the physiological and toxicological parameters of the model. In the present study, a bioenergetic mechanistic model has been used to assess the evolution of two populations of the nematode Caenorhabditis elegans in control conditions or exposed to uranium. This evolutionary pressure resulted in a brood size reduction of 60%. We showed an adaptation of individuals of both populations to experimental conditions (increase of maximal length, decrease of growth rate, decrease of brood size, and decrease of the elimination rate). In addition, differential evolution was also highlighted between the two populations once the maternal effects had been diminished after several generations. Thus, individuals that were greater in maximal length, but with apparently a greater sensitivity to uranium were selected in the uranium population. In this study, we showed that this bioenergetics mechanistic modeling approach provided a precise, certain, and powerful analysis of the life strategy of C. elegans populations exposed to heavy metals resulting in an evolutionary pressure across successive generations.

  7. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement

    PubMed Central

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J.; Hengeveld, Geerten M.; Nolet, Bart A.; Herman, Peter M. J.; van de Koppel, Johan

    2014-01-01

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern. PMID:24225464

  8. How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement.

    PubMed

    de Jager, Monique; Bartumeus, Frederic; Kölzsch, Andrea; Weissing, Franz J; Hengeveld, Geerten M; Nolet, Bart A; Herman, Peter M J; van de Koppel, Johan

    2014-01-07

    Ecological theory uses Brownian motion as a default template for describing ecological movement, despite limited mechanistic underpinning. The generality of Brownian motion has recently been challenged by empirical studies that highlight alternative movement patterns of animals, especially when foraging in resource-poor environments. Yet, empirical studies reveal animals moving in a Brownian fashion when resources are abundant. We demonstrate that Einstein's original theory of collision-induced Brownian motion in physics provides a parsimonious, mechanistic explanation for these observations. Here, Brownian motion results from frequent encounters between organisms in dense environments. In density-controlled experiments, movement patterns of mussels shifted from Lévy towards Brownian motion with increasing density. When the analysis was restricted to moves not truncated by encounters, this shift did not occur. Using a theoretical argument, we explain that any movement pattern approximates Brownian motion at high-resource densities, provided that movement is interrupted upon encounters. Hence, the observed shift to Brownian motion does not indicate a density-dependent change in movement strategy but rather results from frequent collisions. Our results emphasize the need for a more mechanistic use of Brownian motion in ecology, highlighting that especially in rich environments, Brownian motion emerges from ecological interactions, rather than being a default movement pattern.

  9. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate

    NASA Astrophysics Data System (ADS)

    Barb, A. W.; Hekmatyar, S. K.; Glushka, J. N.; Prestegard, J. H.

    2013-03-01

    Hyperpolarized metabolites offer a tremendous sensitivity advantage (>104 fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, 13C-enriched analog of pyruvic acid, 13C3D3-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct 13C observation and indirect observation through methyl protons introduced by ALT-catalyzed H-D exchange. Exchange on injecting hyperpolarized 13C3D3-pyruvate into ALT dissolved in buffered 1H2O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5 s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized 13C3-pyruvate and products in imaging applications are discussed.

  10. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    PubMed

    Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen

    2014-01-01

    Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  11. Calibrating the mechanistic-empirical pavement design guide for Kansas.

    DOT National Transportation Integrated Search

    2015-04-01

    The Kansas Department of Transportation (KDOT) is moving toward the implementation of the new American : Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) : for pavement design. The...

  12. Mechanistic-empirical design concepts for continuously reinforced concrete pavements in Illinois.

    DOT National Transportation Integrated Search

    2009-04-01

    The Illinois Department of Transportation (IDOT) currently has an existing jointed plain concrete pavement : (JPCP) design based on mechanistic-empirical (M-E) principles. However, their continuously reinforced concrete : pavement (CRCP) design proce...

  13. Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions.

    PubMed

    Cheng, Gui-Juan; Zhang, Xinhao; Chung, Lung Wa; Xu, Liping; Wu, Yun-Dong

    2015-02-11

    Understanding the mechanisms of chemical reactions, especially catalysis, has been an important and active area of computational organic chemistry, and close collaborations between experimentalists and theorists represent a growing trend. This Perspective provides examples of such productive collaborations. The understanding of various reaction mechanisms and the insight gained from these studies are emphasized. The applications of various experimental techniques in elucidation of reaction details as well as the development of various computational techniques to meet the demand of emerging synthetic methods, e.g., C-H activation, organocatalysis, and single electron transfer, are presented along with some conventional developments of mechanistic aspects. Examples of applications are selected to demonstrate the advantages and limitations of these techniques. Some challenges in the mechanistic studies and predictions of reactions are also analyzed.

  14. Mechanistic aspects of protein corona formation: insulin adsorption onto gold nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Grass, Stefan; Treuel, Lennart

    2014-02-01

    In biological fluids, an adsorption layer of proteins, a "protein corona" forms around nanoparticles (NPs) largely determining their biological identity. In many interactions with NPs proteins can undergo structural changes. Here, we study the adsorption of insulin onto gold NPs (mean hydrodynamic particle diameter 80 ± 18 nm), focusing on the structural consequences of the adsorption process for the protein. We use surface enhanced Raman scattering (SERS) spectroscopy to study changes in the protein's secondary structure as well as the impact on integrity and conformations of disulfide bonds immediately on the NP surface. A detailed comparison to SERS spectra of cysteine and cystine provides first mechanistic insights into the causes for these conformational changes. Potential biological and toxicological implications of these findings are also discussed.

  15. Implementation of the MEPDG for flexible pavements in Idaho.

    DOT National Transportation Integrated Search

    2012-05-01

    This study was conducted to assist the Idaho Transportation Department (ITD) in the implementation of the Mechanistic-Empirical Pavement Design Guide (MEPDG) for flexible pavements. The main research work in this study focused on establishing a mater...

  16. Summary of lessons learned from the MDOT MEPDG materials library study.

    DOT National Transportation Integrated Search

    2010-06-01

    From 2004 to 2009, Burns Cooley Dennis, Inc. (BCD) participated in two important research studies designed to populate the materials library for implementation of the new Mechanistic-Empirical pavement design method (MEPDG) in Mississippi. The purpos...

  17. Developing the WCRF International/University of Bristol Methodology for Identifying and Carrying Out Systematic Reviews of Mechanisms of Exposure-Cancer Associations.

    PubMed

    Lewis, Sarah J; Gardner, Mike; Higgins, Julian; Holly, Jeff M P; Gaunt, Tom R; Perks, Claire M; Turner, Suzanne D; Rinaldi, Sabina; Thomas, Steve; Harrison, Sean; Lennon, Rosie J; Tan, Vanessa; Borwick, Cath; Emmett, Pauline; Jeffreys, Mona; Northstone, Kate; Mitrou, Giota; Wiseman, Martin; Thompson, Rachel; Martin, Richard M

    2017-11-01

    Background: Human, animal, and cell experimental studies; human biomarker studies; and genetic studies complement epidemiologic findings and can offer insights into biological plausibility and pathways between exposure and disease, but methods for synthesizing such studies are lacking. We, therefore, developed a methodology for identifying mechanisms and carrying out systematic reviews of mechanistic studies that underpin exposure-cancer associations. Methods: A multidisciplinary team with expertise in informatics, statistics, epidemiology, systematic reviews, cancer biology, and nutrition was assembled. Five 1-day workshops were held to brainstorm ideas; in the intervening periods we carried out searches and applied our methods to a case study to test our ideas. Results: We have developed a two-stage framework, the first stage of which is designed to identify mechanisms underpinning a specific exposure-disease relationship; the second stage is a targeted systematic review of studies on a specific mechanism. As part of the methodology, we also developed an online tool for text mining for mechanism prioritization (TeMMPo) and a new graph for displaying related but heterogeneous data from epidemiologic studies (the Albatross plot). Conclusions: We have developed novel tools for identifying mechanisms and carrying out systematic reviews of mechanistic studies of exposure-disease relationships. In doing so, we have outlined how we have overcome the challenges that we faced and provided researchers with practical guides for conducting mechanistic systematic reviews. Impact: The aforementioned methodology and tools will allow potential mechanisms to be identified and the strength of the evidence underlying a particular mechanism to be assessed. Cancer Epidemiol Biomarkers Prev; 26(11); 1667-75. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Prescription patterns of Chinese herbal products for patients with uterine fibroid in Taiwan: A nationwide population-based study.

    PubMed

    Yen, Hung-Rong; Chen, Ying-Yu; Huang, Tzu-Ping; Chang, Tung-Ti; Tsao, Jung-Ying; Chen, Bor-Chyuan; Sun, Mao-Feng

    2015-08-02

    Uterine fibroid (myoma) is one of the most common diseases in women. Although there are several studies on the efficacy of Chinese herbs, there is a lack of large-scale survey on the use of traditional Chinese medicine (TCM) for the treatment of uterine fibroid. This study aimed to investigate the utilization of Chinese herbal products for patients with uterine fibroid, prescribed by licensed TCM doctors in Taiwan. A random sample comprised of one million individuals with newly diagnosed uterine fibroid between 2002 and 2010 from the Taiwanese National Health Insurance Research Database was analyzed. Demographic characteristics, TCM usage, the frequency as well as average daily dose of Chinese herbal formulas and the single herbs prescribed for patients with uterine fibroid, were analyzed. Overall, 35,786 newly diagnosed subjects with uterine fibroid were included. Majority of these patients (87.1%; n=31,161) had visited TCM clinics. Among them, 61.8% of their visits used Chinese herbal remedies. Patients less than 45 years of age tended to use TCM more frequently than elder patients. Gui-Zhi-Fu-Ling-Wan (Cinnamon Twig and Poria Pill) was the most frequently prescribed Chinese herbal formula, while San-Leng (Rhizoma Sparganii) was the most commonly prescribed single herb. Our study identified the characteristics and prescription patterns of TCM for patients with uterine fibroid in Taiwan. Further basic mechanistic studies and clinical trials are needed to confirm the therapeutic effects and mechanisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Investigation of mechanistic deterioration modeling for bridge design and management.

    DOT National Transportation Integrated Search

    2017-04-01

    The ongoing deterioration of highway bridges in Colorado dictates that an effective method for allocating limited management resources be developed. In order to predict bridge deterioration in advance, mechanistic models that analyze the physical pro...

  20. Mechanistic-empirical pavement design guide calibration for pavement rehabilitation.

    DOT National Transportation Integrated Search

    2013-01-01

    The Oregon Department of Transportation (ODOT) is in the process of implementing the recently introduced AASHTO : Mechanistic-Empirical Pavement Design Guide (MEPDG) for new pavement sections. The majority of pavement work : conducted by ODOT involve...

  1. Draft user's guide for UDOT mechanistic-empirical pavement design.

    DOT National Transportation Integrated Search

    2009-10-01

    Validation of the new AASHTO Mechanistic-Empirical Pavement Design Guides (MEPDG) nationally calibrated pavement distress and smoothness prediction models when applied under Utah conditions, and local calibration of the new hot-mix asphalt (HMA) p...

  2. Calibrating the mechanistic-empirical pavement design guide for Kansas : [technical summary].

    DOT National Transportation Integrated Search

    2015-04-01

    The Kansas Department of Transportation (KDOT) is moving toward the implementation : of the new American Association of State Highway and Transportation Officials : (AASHTO) Mechanistic-Empirical Pavement Design Guide (MEPDG) for pavement : design. T...

  3. Managing mechanistic and organic structure in health care organizations.

    PubMed

    Olden, Peter C

    2012-01-01

    Managers at all levels in a health care organization must organize work to achieve the organization's mission and goals. This requires managers to decide the organization structure, which involves dividing the work among jobs and departments and then coordinating them all toward the common purpose. Organization structure, which is reflected in an organization chart, may range on a continuum from very mechanistic to very organic. Managers must decide how mechanistic versus how organic to make the entire organization and each of its departments. To do this, managers should carefully consider 5 factors for the organization and for each individual department: external environment, goals, work production, size, and culture. Some factors may push toward more mechanistic structure, whereas others may push in the opposite direction toward more organic structure. Practical advice can help managers at all levels design appropriate structure for their departments and organization.

  4. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    DOEpatents

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  5. Mechanisms, determination and the metaphysics of neuroscience.

    PubMed

    Soom, Patrice

    2012-09-01

    In this paper, I evaluate recently defended mechanistic accounts of the unity of neuroscience from a metaphysical point of view. Considering the mechanistic framework in general (Sections 2 and 3), I argue that explanations of this kind are essentially reductive (Section 4). The reductive character of mechanistic explanations provides a sufficiency criterion, according to which the mechanism underlying a certain phenomenon is sufficient for the latter. Thus, the concept of supervenience can be used in order to describe the relation between mechanisms and phenomena (Section 5). Against this background, I show that the mechanistic framework is subject to the causal exclusion problem and faces the classical metaphysical options when it comes to the relations obtaining between different levels of mechanisms (Section 6). Finally, an attempt to improve the metaphysics of mechanisms is made (Section 7) and further difficulties are pointed out (Section 8). Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Performance evaluation of Louisiana superpave mixtures.

    DOT National Transportation Integrated Search

    2008-12-01

    This report documents the performance of Louisiana Superpave mixtures through laboratory mechanistic tests, mixture : volumetric properties, gradation analysis, and early field performance. Thirty Superpave mixtures were evaluated in this : study. Fo...

  7. Computational modeling of neurostimulation in brain diseases.

    PubMed

    Wang, Yujiang; Hutchings, Frances; Kaiser, Marcus

    2015-01-01

    Neurostimulation as a therapeutic tool has been developed and used for a range of different diseases such as Parkinson's disease, epilepsy, and migraine. However, it is not known why the efficacy of the stimulation varies dramatically across patients or why some patients suffer from severe side effects. This is largely due to the lack of mechanistic understanding of neurostimulation. Hence, theoretical computational approaches to address this issue are in demand. This chapter provides a review of mechanistic computational modeling of brain stimulation. In particular, we will focus on brain diseases, where mechanistic models (e.g., neural population models or detailed neuronal models) have been used to bridge the gap between cellular-level processes of affected neural circuits and the symptomatic expression of disease dynamics. We show how such models have been, and can be, used to investigate the effects of neurostimulation in the diseased brain. We argue that these models are crucial for the mechanistic understanding of the effect of stimulation, allowing for a rational design of stimulation protocols. Based on mechanistic models, we argue that the development of closed-loop stimulation is essential in order to avoid inference with healthy ongoing brain activity. Furthermore, patient-specific data, such as neuroanatomic information and connectivity profiles obtainable from neuroimaging, can be readily incorporated to address the clinical issue of variability in efficacy between subjects. We conclude that mechanistic computational models can and should play a key role in the rational design of effective, fully integrated, patient-specific therapeutic brain stimulation. © 2015 Elsevier B.V. All rights reserved.

  8. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term – Trial Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-10-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is notmore » without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.« less

  9. MECHANISTIC DOSIMETRY MODELS OF NANOMATERIAL DEPOSITION IN THE RESPIRATORY TRACT

    EPA Science Inventory

    Accurate health risk assessments of inhalation exposure to nanomaterials will require dosimetry models that account for interspecies differences in dose delivered to the respiratory tract. Mechanistic models offer the advantage to interspecies extrapolation that physicochemica...

  10. Base course resilient modulus for the mechanistic-empirical pavement design guide.

    DOT National Transportation Integrated Search

    2011-11-01

    The Mechanistic-Empirical Pavement Design Guidelines (MEPDG) recommend use of modulus in lieu of structural number for base layer thickness design. Modulus is nonlinear with respect to effective confinement stress, loading strain, and moisture. For d...

  11. Dose-response relationships and extrapolation in toxicology - Mechanistic and statistical considerations

    EPA Science Inventory

    Controversy on toxicological dose-response relationships and low-dose extrapolation of respective risks is often the consequence of misleading data presentation, lack of differentiation between types of response variables, and diverging mechanistic interpretation. In this chapter...

  12. Characterization of material properties for mechanistic-empirical pavement design in Wyoming : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    The Wyoming Department of Transportation (WYDOT) recently transitioned from the empirical AASHTO Design for Design of Pavement Structures to the Mechanistic Empirical Pavement Design Guide (MEPDG) as their standard pavement design procedure. A compre...

  13. Implementation of the AASHTO mechanistic-empirical pavement design guide for Colorado.

    DOT National Transportation Integrated Search

    2000-01-01

    The objective of this project was to integrate the American Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical Pavement Design Guide, Interim Edition: A Manual of Practice and its accompanying software into the d...

  14. Base course resilient modulus for the mechanistic-empirical pavement design guide : [summary].

    DOT National Transportation Integrated Search

    2011-01-01

    Elastic modulus determination is often used in designing pavements and evaluating pavement performance. The Mechanistic-Empirical Pavement Design Guide (MEPDG) has become an important source of guidance for pavement design and rehabilitation. MEPDG r...

  15. RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer's disease.

    PubMed

    Bishof, Isaac; Dammer, Eric B; Duong, Duc M; Kundinger, Sean; Gearing, Marla; Lah, James J; Levey, Allan I; Seyfried, Nicholas T

    2018-05-25

    U1 small nuclear ribonucleoprotein 70 kDa (U1-70K) and other RNA-binding proteins (RBPs) are mislocalized to cytoplasmic neurofibrillary tau aggregates in Alzheimer's disease (AD), yet the co-aggregation mechanisms are incompletely understood. U1-70K harbors two disordered low-complexity domains (LC1 and LC2) that are necessary for aggregation in AD brain extracts. The LC1 domain contains highly repetitive basic (R/K) and acidic (D/E) residues, referred to as a basic-acidic dipeptide (BAD) domain. We report here that this domain shares many of the properties of the Q/N-rich LC domains in RBPs that also aggregate in neurodegenerative disease. These properties included self-assembly into oligomers and localization to nuclear granules. Co-immunoprecipitations of recombinant U1-70K and deletions lacking the LC domain(s) followed by quantitative proteomic analyses were used to resolve functional classes of U1-70K-interacting proteins that depend on the BAD domain for their interaction. Within this interaction network, we identified a class of RBPs with BAD domains nearly identical to that found in U1-70K. Two members of this class, LUC7L3 and RBM25, required their respective BAD domains for reciprocal interactions with U1-70K and nuclear granule localization. Strikingly, a significant proportion of RBPs with BAD domains had elevated insolubility in the AD brain proteome. Furthermore, we show that the BAD domain of U1-70K can interact with tau from AD brains, but not from other tauopathies. These findings highlight a mechanistic role for BAD domains in stabilizing RBP interactions and in potentially mediating co-aggregation with pathological, AD-specific tau isoforms. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Estimating Time-Varying PCB Exposures Using Person-Specific Predictions to Supplement Measured Values: A Comparison of Observed and Predicted Values in Two Cohorts of Norwegian Women

    PubMed Central

    Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2015-01-01

    Background Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Objectives Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Methods Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007–2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. Results CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman’s r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen’s kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. Conclusions The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements. Citation Nøst TH, Breivik K, Wania F, Rylander C, Odland JØ, Sandanger TM. 2016. Estimating time-varying PCB exposures using person-specific predictions to supplement measured values: a comparison of observed and predicted values in two cohorts of Norwegian women. Environ Health Perspect 124:299–305; http://dx.doi.org/10.1289/ehp.1409191 PMID:26186800

  17. Perception of mind and dehumanization: Human, animal, or machine?

    PubMed

    Morera, María D; Quiles, María N; Correa, Ana D; Delgado, Naira; Leyens, Jacques-Philippe

    2016-08-02

    Dehumanization is reached through several approaches, including the attribute-based model of mind perception and the metaphor-based model of dehumanization. We performed two studies to find different (de)humanized images for three targets: Professional people, Evil people, and Lowest of the low. In Study 1, we examined dimensions of mind, expecting the last two categories to be dehumanized through denial of agency (Lowest of the low) or experience (Evil people), compared with humanized targets (Professional people). Study 2 aimed to distinguish these targets using metaphors. We predicted that Evil and Lowest of the low targets would suffer mechanistic and animalistic dehumanization, respectively; our predictions were confirmed, but the metaphor-based model nuanced these results: animalistic and mechanistic dehumanization were shown as overlapping rather than independent. Evil persons were perceived as "killing machines" and "predators." Finally, Lowest of the low were not animalized but considered human beings. We discuss possible interpretations. © 2016 International Union of Psychological Science.

  18. Emerging structural insights into the function of ionotropic glutamate receptors.

    PubMed

    Karakas, Erkan; Regan, Michael C; Furukawa, Hiro

    2015-06-01

    Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate excitatory neurotransmission crucial for brain development and function, including learning and memory formation. Recently a wealth of structural studies on iGluRs including AMPA receptors (AMPARs), kainate receptors, and NMDA receptors (NMDARs) became available. These studies showed structures of non-NMDARs including AMPAR and kainate receptor in various functional states, thereby providing the first visual sense of how non-NMDAR iGluRs may function in the context of homotetramers. Furthermore, they provided the first view of heterotetrameric NMDAR ion channels, and this illuminated the similarities with and differences from non-NMDARs, thus raising a mechanistic distinction between the two groups of iGluRs. We review mechanistic insights into iGluR functions gained through structural studies of multiple groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Understanding essential tremor: progress on the biological front.

    PubMed

    Louis, Elan D

    2014-06-01

    For many years, little was written about the underlying biology of ET, despite its high prevalence. Discussions of disease mechanisms were dominated by a focus on tremor physiology. The traditional model of ET, the olivary model, was proposed in the 1970s. The model suffers from several critical problems, and its relevance to ET has been questioned. Recent mechanistic research has focused on the cerebellum. Clinical and neuroimaging studies strongly implicate the importance of this brain region in ET. Recent mechanistic research has been grounded more in tissue-based changes (i.e., postmortem studies of the brain). These studies have collectively and systematically identified a sizable number of changes in the ET cerebellum, and have led to a new model of ET, referred to as the cerebellar degenerative model. Hence, there is a renewed interest in the science behind the biology of ET. How the new understanding of ET will translate into treatment changes is an open question.

  20. Research notes : measuring the strain of the road.

    DOT National Transportation Integrated Search

    2005-09-01

    This study will monitor the pavement structure to investigate if the assumptions used in a mechanistic-empirical design analysis are valid, or if adjustments are needed. The study will be assessing the reaction of the pavement structure to traffic lo...

  1. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite.

    PubMed

    Boronat, Mercedes; Martínez, Cristina; Corma, Avelino

    2011-02-21

    The activity and selectivity towards carbonylation presented by Brønsted acid sites located inside the 8MR pockets or in the main 12MR channels of mordenite is studied by means of quantum-chemical calculations, and the mechanistic differences between methanol and DME carbonylation are investigated. The selectivity towards carbonylation is higher inside the 8MR pockets, where the competitive formation of DME and hydrocarbons that finally leads to catalyst deactivation is sterically impeded. Moreover, inclusion of dispersion interactions in the calculations leads to agreement between the calculated activation barriers for the rate determining step and the experimentally observed higher reactivity of methoxy groups located inside the 8MR channels.

  2. Lights, Camera, Action! Antimicrobial Peptide Mechanisms Imaged in Space and Time

    PubMed Central

    Choi, Heejun; Rangarajan, Nambirajan; Weisshaar, James C.

    2015-01-01

    Deeper understanding of the bacteriostatic and bactericidal mechanisms of antimicrobial peptides (AMPs) should help in the design of new antibacterial agents. Over several decades, a variety of biochemical assays have been applied to bulk bacterial cultures. While some of these bulk assays provide time resolution on the order of 1 min, they do not capture faster mechanistic events. Nor can they provide subcellular spatial information or discern cell-to-cell heterogeneity within the bacterial population. Single-cell, time-resolved imaging assays bring a completely new spatiotemporal dimension to AMP mechanistic studies. We review recent work that provides new insights into the timing, sequence, and spatial distribution of AMP-induced effects on bacterial cells. PMID:26691950

  3. Spectroscopic Studies of the Chan-Lam Amination: A Mechanism-Inspired Solution to Boronic Ester Reactivity.

    PubMed

    Vantourout, Julien C; Miras, Haralampos N; Isidro-Llobet, Albert; Sproules, Stephen; Watson, Allan J B

    2017-04-05

    We report an investigation of the Chan-Lam amination reaction. A combination of spectroscopy, computational modeling, and crystallography has identified the structures of key intermediates and allowed a complete mechanistic description to be presented, including off-cycle inhibitory processes, the source of amine and organoboron reactivity issues, and the origin of competing oxidation/protodeboronation side reactions. Identification of key mechanistic events has allowed the development of a simple solution to these issues: manipulating Cu(I) → Cu(II) oxidation and exploiting three synergistic roles of boric acid has allowed the development of a general catalytic Chan-Lam amination, overcoming long-standing and unsolved amine and organoboron limitations of this valuable transformation.

  4. Characterization of unbound materials (soils/aggregates) for mechanistic-empirical pavement design guide.

    DOT National Transportation Integrated Search

    2009-02-01

    The resilient modulus (MR) input parameters in the Mechanistic-Empirical Pavement Design Guide (MEPDG) program have a significant effect on the projected pavement performance. The MEPDG program uses three different levels of inputs depending on the d...

  5. MECHANISTIC-BASED DISINFECTION AND DISINFECTION BYPRODUCT MODELS

    EPA Science Inventory

    We propose developing a mechanistic-based numerical model for chlorine decay and regulated DBP (THM and HAA) formation derived from (free) chlorination; the model framework will allow future modifications for other DBPs and chloramination. Predicted chlorine residual and DBP r...

  6. MECHANISTIC AND SOURCE UNDERSTANDING OF PCDD/F FORMATION

    EPA Science Inventory

    The paper discusses mechanistic and source understanding of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) formation. (NOTE: Considerable research effort has been expended over the last 15-plus years to understand how combustion sources result in formation of PCDDs/F...

  7. Application of Mechanistic Toxicology Data to Ecological Risk Assessments

    EPA Science Inventory

    The ongoing evolution of knowledge and tools in the areas of molecular biology, bioinformatics, and systems biology holds significant promise for reducing uncertainties associated with ecological risk assessment. As our understanding of the mechanistic basis of responses of organ...

  8. A traffic data plan for mechanistic-empirical pavement designs (2002 pavement design guide).

    DOT National Transportation Integrated Search

    2003-01-01

    The Virginia Department of Transportation (VDOT) is preparing to implement the mechanistic-empirical pavement design methodology being developed under the National Cooperative Research Program's Project 1-37A, commonly referred to as the 2002 Pavemen...

  9. Development of traffic data input resources for the mechanistic empirical pavement design process.

    DOT National Transportation Integrated Search

    2011-12-12

    The Mechanistic-Empirical Pavement Design Guide (MEPDG) for New and Rehabilitated Pavement Structures uses : nationally based data traffic inputs and recommends that state DOTs develop their own site-specific and regional : values. To support the MEP...

  10. Development of local calibration factors and design criteria values for mechanistic-empirical pavement design.

    DOT National Transportation Integrated Search

    2015-08-01

    A mechanistic-empirical (ME) pavement design procedure allows for analyzing and selecting pavement structures based : on predicted distress progression resulting from stresses and strains within the pavement over its design life. The Virginia : Depar...

  11. Validation of pavement performance curves for the mechanistic-empirical pavement design guide.

    DOT National Transportation Integrated Search

    2009-02-01

    The objective of this research is to determine whether the nationally calibrated performance models used in the Mechanistic-Empirical : Pavement Design Guide (MEPDG) provide a reasonable prediction of actual field performance, and if the desired accu...

  12. Implementation of mechanistic pavement design : field and laboratory implementation.

    DOT National Transportation Integrated Search

    2006-12-01

    One of the most important parameters needed for 2002 Mechanistic Pavement Design Guide is the dynamic modulus (E*). : The dynamic modulus (E*) describes the relationship between stress and strain for a linear viscoelastic material. The E* is the : pr...

  13. Investigation of Dynamic Modulus and Flow Number Properties of Asphalt Mixtures In Washington State

    DOT National Transportation Integrated Search

    2011-11-11

    Pavement design is now moving toward more mechanistic based design methodologies for the purpose of producing long : lasting and higher performance pavements in a cost-effective manner. The recent Mechanistic-Empirical pavement : design guide (MEPDG)...

  14. Asphalt materials characterization in support of implementation of the proposed mechanistic-empirical pavement design guide.

    DOT National Transportation Integrated Search

    2007-01-01

    The proposed Mechanistic-Empirical Pavement Design Guide (MEPDG) procedure is an improved methodology for pavement design and evaluation of paving materials. Since this new procedure depends heavily on the characterization of the fundamental engineer...

  15. Mechanistic-empirical design, implementation, and monitoring for flexible pavements : a project summary.

    DOT National Transportation Integrated Search

    2014-05-01

    This document is a summary of tasks performed for Project ICT-R27-060. : Mechanistic-empirical (M-E)based flexible pavement design concepts and procedures were : developed in previous Illinois Cooperative Highway Research Program projects (IHR-510...

  16. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization.

    PubMed

    Roberts, David W; Patlewicz, Grace; Kern, Petra S; Gerberick, Frank; Kimber, Ian; Dearman, Rebecca J; Ryan, Cindy A; Basketter, David A; Aptula, Aynur O

    2007-07-01

    The goal of eliminating animal testing in the predictive identification of chemicals with the intrinsic ability to cause skin sensitization is an important target, the attainment of which has recently been brought into even sharper relief by the EU Cosmetics Directive and the requirements of the REACH legislation. Development of alternative methods requires that the chemicals used to evaluate and validate novel approaches comprise not only confirmed skin sensitizers and non-sensitizers but also substances that span the full chemical mechanistic spectrum associated with skin sensitization. To this end, a recently published database of more than 200 chemicals tested in the mouse local lymph node assay (LLNA) has been examined in relation to various chemical reaction mechanistic domains known to be associated with sensitization. It is demonstrated here that the dataset does cover the main reaction mechanistic domains. In addition, it is shown that assignment to a reaction mechanistic domain is a critical first step in a strategic approach to understanding, ultimately on a quantitative basis, how chemical properties influence the potency of skin sensitizing chemicals. This understanding is necessary if reliable non-animal approaches, including (quantitative) structure-activity relationships (Q)SARs, read-across, and experimental chemistry based models, are to be developed.

  17. Antimony photoresists for EUV lithography: mechanistic studies

    NASA Astrophysics Data System (ADS)

    Murphy, Michael; Narasimhan, Amrit; Grzeskowiak, Steven; Sitterly, Jacob; Schuler, Philip; Richards, Jeff; Denbeaux, Greg; Brainard, Robert L.

    2017-03-01

    We have developed a method to study the photomechanism of our antimony carboxylate platform R3Sb(COOR')2. A series of mechanistic studies followed the production of reaction byproducts by mass spectrometer, as they left the film during exposure to EUV photons and 80 eV electrons. We identified several prominent outgassing fragments and their rates of production as a function of ligand structure. The degree of outgassing appears to be well-correlated with the bond dissociation energy of the carboxylate ligand R' group. Furthermore, a deuterium labeling study was conducted to determine from which ligand hydrogen is abstracted to form benzene and phenol during exposure. Benzene and phenol were found to abstract hydrogen from opposing sites within the film, and with greater than 95% isotopic purity. Using the results of the outgassing studies alongside established mechanisms for electron-induced reactions; a series of reaction pathways were proposed to generate the aforementioned outgassing species and a possible nonvolatile negative-tone photoproduct.

  18. A semi-mechanistic model of dead fine fuel moisture for Temperate and Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Resco de Dios, Víctor; Fellows, Aaron; Boer, Matthias; Bradstock, Ross; Nolan, Rachel; Goulden, Michel

    2014-05-01

    Fire is a major disturbance in terrestrial ecosystems globally. It has an enormous economic and social cost, and leads to fatalities in the worst cases. The moisture content of the vegetation (fuel moisture) is one of the main determinants of fire risk. Predicting the moisture content of dead and fine fuel (< 2.5 cm in diameter) is particularly important, as this is often the most important component of the fuel complex for fire propagation. A variety of drought indices, empirical and mechanistic models have been proposed to model fuel moisture. A commonality across these different approaches is that they have been neither validated across large temporal datasets nor validated across broadly different vegetation types. Here, we present the results of a study performed at 6 locations in California, USA (5 sites) and New South Wales, Australia (1 site), where 10-hours fuel moisture content was continuously measured every 30 minutes during one full year at each site. We observed that drought indices did not accurately predict fuel moisture, and that empirical and mechanistic models both needed site-specific calibrations, which hinders their global application as indices of fuel moisture. We developed a novel, single equation and semi-mechanistic model, based on atmospheric vapor-pressure deficit. Across sites and years, mean absolute error (MAE) of predicted fuel moisture was 4.7%. MAE dropped <1% in the critical range of fuel moisture <10%. The high simplicity, accuracy and precision of our model makes it suitable for a wide range of applications: from operational purposes, to global vegetation models.

  19. Mechanistic Explanations for Restricted Evolutionary Paths That Emerge from Gene Regulatory Networks

    PubMed Central

    Cotterell, James; Sharpe, James

    2013-01-01

    The extent and the nature of the constraints to evolutionary trajectories are central issues in biology. Constraints can be the result of systems dynamics causing a non-linear mapping between genotype and phenotype. How prevalent are these developmental constraints and what is their mechanistic basis? Although this has been extensively explored at the level of epistatic interactions between nucleotides within a gene, or amino acids within a protein, selection acts at the level of the whole organism, and therefore epistasis between disparate genes in the genome is expected due to their functional interactions within gene regulatory networks (GRNs) which are responsible for many aspects of organismal phenotype. Here we explore epistasis within GRNs capable of performing a common developmental function – converting a continuous morphogen input into discrete spatial domains. By exploring the full complement of GRN wiring designs that are able to perform this function, we analyzed all possible mutational routes between functional GRNs. Through this study we demonstrate that mechanistic constraints are common for GRNs that perform even a simple function. We demonstrate a common mechanistic cause for such a constraint involving complementation between counter-balanced gene-gene interactions. Furthermore we show how such constraints can be bypassed by means of “permissive” mutations that buffer changes in a direct route between two GRN topologies that would normally be unviable. We show that such bypasses are common and thus we suggest that unlike what was observed in protein sequence-function relationships, the “tape of life” is less reproducible when one considers higher levels of biological organization. PMID:23613807

  20. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data

    PubMed Central

    Tsamandouras, Nikolaos; Rostami-Hodjegan, Amin; Aarons, Leon

    2015-01-01

    Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical data and develop mechanistically sound models with clinical relevance. PMID:24033787

Top