The international spinal cord injury endocrine and metabolic function basic data set.
Bauman, W A; Biering-Sørensen, F; Krassioukov, A
2011-10-01
To develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Function Basic Data Set within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of basic endocrine and metabolic findings in the SCI population. International. The International SCI Endocrine and Metabolic Function Data Set was developed by a working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies, and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Endocrine and Metabolic Function Data Set contains questions on the endocrine and metabolic conditions diagnosed before and after spinal cord lesion. If available, information collected before injury is to be obtained only once, whereas information after injury may be collected at any time. These data include information on diabetes mellitus, lipid disorders, osteoporosis, thyroid disease, adrenal disease, gonadal disease and pituitary disease. The question of gonadal status includes stage of sexual development and that for females also includes menopausal status. Data will be collected for body mass index and for the fasting serum lipid profile. The complete instructions for data collection and the data sheet itself are freely available on the websites of ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).
Mammalian Polyamine Metabolism and Function
Pegg, Anthony E.
2009-01-01
Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518
Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.
Hess, Christoph; Kemper, Claudia
2016-08-16
Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Chao, Yuanqing; Ma, Liping; Yang, Ying; Ju, Feng; Zhang, Xu-Xiang; Wu, Wei-Min; Zhang, Tong
2013-12-19
The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in 'oxidative stress' and 'detoxification' subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.
Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.
Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue
2013-03-01
The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.
2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Benning
2011-02-04
This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less
Brain Basics: Understanding Sleep
... slow, and muscles relax even further. Your body temperature drops and eye movements stop. Brain wave activity ... functions from daily fluctuations in wakefulness to body temperature, metabolism, and the release of hormones. They control ...
Sugar for the brain: the role of glucose in physiological and pathological brain function
Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A.; Meisel, Andreas
2013-01-01
The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We aim at synthesizing these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation which lead to disease. PMID:23968694
Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila
NASA Astrophysics Data System (ADS)
Wang, Bin; Chen, Nan; Wei, Yingliang; Li, Jiang; Sun, Li; Wu, Jiarui; Huang, Qing; Liu, Chang; Fan, Chunhai; Song, Haiyun
2012-08-01
Gold nanoparticles (AuNPs) are often used as vehicles to deliver drugs or biomolecules, due to their mild effect on cell survival and proliferation. However, little is known about their effect on cellular metabolism. Here we examine the in vivo effect of AuNPs on metabolism using Drosophila as a model. Drosophila and vertebrates possess similar basic metabolic functions, and a highly conserved PI3K/Akt/mTOR signaling pathway plays a central role in the regulation of energy metabolism in both organisms. We show that dietary AuNPs enter the fat body, a key metabolic tissue in Drosophila larvae. Significantly, larvae fed with AuNP show increased lipid levels without triggering stress responses. In addition, activities of the PI3K/Akt/mTOR signaling pathway and fatty acids synthesis are increased in these larvae. This study thus reveals a novel function of AuNPs in influencing animal metabolism and suggests its potential therapeutic applications for metabolic disorders.
Tumor Microenvironment Metabolism: A New Checkpoint for Anti-Tumor Immunity
Scharping, Nicole E.; Delgoffe, Greg M.
2016-01-01
When a T cell infiltrates a tumor, it is subjected to a variety of immunosuppressive and regulatory signals in the microenvironment. However, it is becoming increasingly clear that due to the proliferative and energetically-deregulated nature of tumor cells, T cells also operate at a metabolic disadvantage. The nutrient dearth of the tumor microenvironment (TME) creates “metabolic checkpoints” upon infiltrating T cells, impacting their ability to survive, proliferate and function effectively. In this review, we summarize the basics of tumor cell and T cell metabolism and discuss recent advances elucidating the individual metabolic checkpoints exerted on T cells that drive their dysfunction in the TME. PMID:27929420
Sugar for the brain: the role of glucose in physiological and pathological brain function.
Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A; Meisel, Andreas
2013-10-01
The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We synthesize these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation that lead to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ellis, L B; Hershberger, C D; Wackett, L P
1999-01-01
The University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD, http://www.labmed.umn.edu/umbbd/i nde x.html) first became available on the web in 1995 to provide information on microbial biocatalytic reactions of, and biodegradation pathways for, organic chemical compounds, especially those produced by man. Its goal is to become a representative database of biodegradation, spanning the diversity of known microbial metabolic routes, organic functional groups, and environmental conditions under which biodegradation occurs. The database can be used to enhance understanding of basic biochemistry, biocatalysis leading to speciality chemical manufacture, and biodegradation of environmental pollutants. It is also a resource for functional genomics, since it contains information on enzymes and genes involved in specialized metabolism not found in intermediary metabolism databases, and thus can assist in assigning functions to genes homologous to such less common genes. With information on >400 reactions and compounds, it is poised to become a resource for prediction of microbial biodegradation pathways for compounds it does not contain, a process complementary to predicting the functions of new classes of microbial genes. PMID:9847233
Multi-equilibrium property of metabolic networks: SSI module.
Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan
2011-06-20
Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.
Multi-equilibrium property of metabolic networks: SSI module
2011-01-01
Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474
Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei
2017-11-01
In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.
Extraskeletal effects of vitamin D: facts, uncertainties, and controversies.
Bouvard, Béatrice; Annweiler, Cédric; Sallé, Agnès; Beauchet, Olivier; Chappard, Daniel; Audran, Maurice; Legrand, Erick
2011-01-01
Vitamin D was long viewed as a hormone acting chiefly to regulate calcium-phosphate metabolism and bone mineralization. Over the last decade, however, basic science and clinical researchers have produced a bewildering amount of information on the extraskeletal effects of vitamin D. This article is a review of the clinical and biological actions of vitamin D including effects on the immune system, auto-immune diseases, infections, cancer, metabolic syndrome, fall risk, cognitive function, and muscle function. Copyright © 2010 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Keeping It All Going-Complement Meets Metabolism.
Kolev, Martin; Kemper, Claudia
2017-01-01
The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity-indicating that complement's function is likely broader than initially anticipated-the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond "classic" immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature-mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement's emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather "predictable" but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.
New insights on glucosylated lipids: metabolism and functions.
Ishibashi, Yohei; Kohyama-Koganeya, Ayako; Hirabayashi, Yoshio
2013-09-01
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
The Metabolic Microenvironment Steers Bone Tissue Regeneration.
Loeffler, Julia; Duda, Georg N; Sass, F Andrea; Dienelt, Anke
2018-02-01
Over the past years, basic findings in cancer research have revealed metabolic symbiosis between different cell types to cope with high energy demands under limited nutrient availability. Although this also applies to regenerating tissues with disrupted physiological nutrient and oxygen supply, the impact of this metabolic cooperation and metabolic reprogramming on cellular development, fate, and function during tissue regeneration has widely been neglected so far. With this review, we aim to provide a schematic overview on metabolic links that have a high potential to drive tissue regeneration. As bone is, aside from liver, the only tissue that can regenerate without excessive scar tissue formation, we will use bone healing as an exemplarily model system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metabolic networks evolve towards states of maximum entropy production.
Unrean, Pornkamol; Srienc, Friedrich
2011-11-01
A metabolic network can be described by a set of elementary modes or pathways representing discrete metabolic states that support cell function. We have recently shown that in the most likely metabolic state the usage probability of individual elementary modes is distributed according to the Boltzmann distribution law while complying with the principle of maximum entropy production. To demonstrate that a metabolic network evolves towards such state we have carried out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced metabolic network metabolic fluxes can be conveniently computed from the measured metabolite secretion pattern. Over a time span of 300 generations the specific growth rate of the strain continuously increased together with a continuous increase in the rate of entropy production. We show that the rate of entropy production asymptotically approaches the maximum entropy production rate predicted from the state when the usage probability of individual elementary modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution of a complex biological system can be predicted in highly quantitative terms using basic statistical mechanical principles. Copyright © 2011 Elsevier Inc. All rights reserved.
POMC Neurons: From Birth to Death
Toda, Chitoku; Santoro, Anna; Kim, Jung Dae
2017-01-01
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism’s basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation. PMID:28192062
Jiménez-Maldonado, Alberto; Ying, Zhe; Byun, Hyae Ran; Gomez-Pinilla, Fernando
2018-01-01
Chronic fructose ingestion is linked to the global epidemic of metabolic syndrome (MetS), and poses a serious threat to brain function. We asked whether a short period (one week) of fructose ingestion potentially insufficient to establish peripheral metabolic disorder could impact brain function. We report that the fructose treatment had no effect on liver/body weight ratio, weight gain, glucose tolerance and insulin sensitivity, was sufficient to reduce several aspects of hippocampal plasticity. Fructose consumption reduced the levels of the neuronal nuclear protein NeuN, Myelin Basic Protein, and the axonal growth-associated protein 43, concomitant with a decline in hippocampal weight. A reduction in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and Cytochrome c oxidase subunit II by fructose treatment is indicative of mitochondrial dysfunction. Furthermore, the GLUT5 fructose transporter was increased in the hippocampus after fructose ingestion suggesting that fructose may facilitate its own transport to brain. Fructose elevated levels of ketohexokinase in the liver but did not affect SIRT1 levels, suggesting that fructose is metabolized in the liver, without severely affecting liver function commensurable to an absence of metabolic syndrome condition. These results advocate that a short period of fructose can influence brain plasticity without a major peripheral metabolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Rengaraj, Deivendran; Lee, Bo Ram; Jang, Hyun-Jun; Kim, Young Min; Han, Jae Yong
2013-01-01
Metabolism provides energy and nutrients required for the cellular growth, maintenance, and reproduction. When compared with genomics and proteomics, metabolism studies provide novel findings in terms of cellular functions. In this study, we examined significant and differentially expressed genes in primordial germ cells (PGCs), gonadal stromal cells, and chicken embryonic fibroblasts compared with blastoderms using microarray. All upregulated genes (1001, 1118, and 974, respectively) and downregulated genes (504, 627, and 1317, respectively) in three test samples were categorized into functional groups according to gene ontology. Then all selected genes were tested to examine their involvement in metabolic pathways through Kyoto Encyclopedia of Genes and Genomes pathway database using overrepresentation analysis. In our results, most of the upregulated and downregulated genes were involved in at least one subcategory of seven major metabolic pathways. The main objective of this study is to compare the PGC expressed genes and their metabolic pathways with blastoderms, gonadal stromal cells, and chicken embryonic fibroblasts. Among the genes involved in metabolic pathways, a higher number of PGC upregulated genes were identified in retinol metabolism, and a higher number of PGC downregulated genes were identified in sphingolipid metabolism. In terms of the fold change, acyl-CoA synthetase medium-chain family member 3 (ACSM3), which is involved in butanoate metabolism, and N-acetyltransferase, pineal gland isozyme NAT-10 (PNAT10), which is involved in energy metabolism, showed higher expression in PGCs. To validate these gene changes, the expression of 12 nucleotide metabolism-related genes in chicken PGCs was examined by real-time polymerase chain reaction. The results of this study provide new information on the expression of genes associated with metabolism function of PGCs and will facilitate more basic research on animal PGC differentiation and function. Copyright © 2013 Elsevier Inc. All rights reserved.
Tsunoda, Ei; Gross, Josef J; Kawashima, Chiho; Bruckmaier, Rupert M; Kida, Katsuya; Miyamoto, Akio
2017-01-01
The present study investigated over 9 months the changes of fermentative quality of total mixed rations (TMR) containing grass silage (GS) as a major component, associated with changes in the volatile basic nitrogen (VBN) levels in an experimental dairy farm. Effects of VBN levels in TMR on metabolic parameters, reactive oxygen species (ROS) production by blood polymorphonuclear leukocytes (PMNs) and conception rates for dairy cows were analyzed. According to VBN levels in TMR during survey periods, three distinct phases were identified; phase A with low VBN; phase B with high VBN; and phase C with mid-VBN. Metabolic parameters in blood were all within normal range. However, during phases B and C, nitrogen metabolic indices such as blood urea nitrogen and milk urea nitrogen showed higher levels compared to those in phase A, and a simultaneous increase in ROS production by blood PMNs and the load on hepatic function in metabolic parameters was observed in the cows with a lower conception rate. This suggests that feeding TMR with elevated VBN levels due to poor fermented GS results in stimulation of ROS production by PMNs by ammonia, and negatively affects metabolism and reproductive performance in lactating dairy cow. © 2016 Japanese Society of Animal Science.
Berndt, Nikolaus; Bulik, Sascha; Wallach, Iwona; Wünsch, Tilo; König, Matthias; Stockmann, Martin; Meierhofer, David; Holzhütter, Hermann-Georg
2018-06-19
The epidemic increase of non-alcoholic fatty liver diseases (NAFLD) requires a deeper understanding of the regulatory circuits controlling the response of liver metabolism to nutritional challenges, medical drugs, and genetic enzyme variants. As in vivo studies of human liver metabolism are encumbered with serious ethical and technical issues, we developed a comprehensive biochemistry-based kinetic model of the central liver metabolism including the regulation of enzyme activities by their reactants, allosteric effectors, and hormone-dependent phosphorylation. The utility of the model for basic research and applications in medicine and pharmacology is illustrated by simulating diurnal variations of the metabolic state of the liver at various perturbations caused by nutritional challenges (alcohol), drugs (valproate), and inherited enzyme disorders (galactosemia). Using proteomics data to scale maximal enzyme activities, the model is used to highlight differences in the metabolic functions of normal hepatocytes and malignant liver cells (adenoma and hepatocellular carcinoma).
Marini, Cecilia; Ravera, Silvia; Buschiazzo, Ambra; Bianchi, Giovanna; Orengo, Anna Maria; Bruno, Silvia; Bottoni, Gianluca; Emionite, Laura; Pastorino, Fabio; Monteverde, Elena; Garaboldi, Lucia; Martella, Roberto; Salani, Barbara; Maggi, Davide; Ponzoni, Mirco; Fais, Franco; Raffaghello, Lizzia; Sambuceti, Gianmario
2016-01-01
Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This “Warburg effect” represents a standard to diagnose and monitor tumor aggressiveness with 18F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that 18F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy. PMID:27121192
Flavonoids: biosynthesis, biological functions, and biotechnological applications
Falcone Ferreyra, María L.; Rius, Sebastián P.; Casati, Paula
2012-01-01
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds. PMID:23060891
De Rosa, Maria Cristina; Carelli Alinovi, Cristiana; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno
2008-02-01
Within the red blood cell the hemoglobin molecule is subjected to modulation mechanisms, namely homo- and heterotropic interactions, which optimize its functional behavior to the specific physiological requirements. At the cellular level, these modulation mechanisms are utilized to perform a number of other functions that are not minor with respect to the basic function of oxygen transport. Here we report some key examples concerning: (i) the interaction of hemoglobin with band 3 and its influence on glucose metabolism; (ii) the role of the ligand-linked quaternary transition of hemoglobin in the control of "NO bioactivity" and of gas diffusion; (iii) the interaction of plasma membrane with the various oxidative derivatives of the hemoglobin molecule. (c) 2008 IUBMB.
The Basic Metabolic Profile in Heart Failure-Marker and Modifier.
Elfar, Ahmed; Sambandam, Kamalanathan K
2017-08-01
The physiologic determinants of each of the components of the basic metabolic profile in patients with heart failure will be explored. Additionally, the review will discuss the prognostic value of alterations in the basic metabolic profile as well as their effects on management. Abnormalities in the basic metabolic profile have significant correlation with clinical outcomes and can modify treatment in heart failure. Hypochloremia has recently received increased attention for these reasons. Elevated creatinine, increased blood urea nitrogen, hyponatremia, and hypochloremia correlate with worse mortality and diuretic resistance in heart failure. Hypokalemia, even when mild, has proven to be a worse clinical indicator than modest elevations in serum potassium. Hypochloremia is mechanistically linked to hyponatremia and metabolic alkalosis, but recent compelling data suggests that it can provide more discriminating prognostic information. Knowledge of the physiologic basis for each of these alterations informs their management.
Inference and Prediction of Metabolic Network Fluxes
Nikoloski, Zoran; Perez-Storey, Richard; Sweetlove, Lee J.
2015-01-01
In this Update, we cover the basic principles of the estimation and prediction of the rates of the many interconnected biochemical reactions that constitute plant metabolic networks. This includes metabolic flux analysis approaches that utilize the rates or patterns of redistribution of stable isotopes of carbon and other atoms to estimate fluxes, as well as constraints-based optimization approaches such as flux balance analysis. Some of the major insights that have been gained from analysis of fluxes in plants are discussed, including the functioning of metabolic pathways in a network context, the robustness of the metabolic phenotype, the importance of cell maintenance costs, and the mechanisms that enable energy and redox balancing at steady state. We also discuss methodologies to exploit 'omic data sets for the construction of tissue-specific metabolic network models and to constrain the range of permissible fluxes in such models. Finally, we consider the future directions and challenges faced by the field of metabolic network flux phenotyping. PMID:26392262
Fang, Xin; Reifman, Jaques; Wallqvist, Anders
2014-10-01
The human malaria parasite Plasmodium falciparum goes through a complex life cycle, including a roughly 48-hour-long intraerythrocytic developmental cycle (IDC) in human red blood cells. A better understanding of the metabolic processes required during the asexual blood-stage reproduction will enhance our basic knowledge of P. falciparum and help identify critical metabolic reactions and pathways associated with blood-stage malaria. We developed a metabolic network model that mechanistically links time-dependent gene expression, metabolism, and stage-specific growth, allowing us to predict the metabolic fluxes, the biomass production rates, and the timing of production of the different biomass components during the IDC. We predicted time- and stage-specific production of precursors and macromolecules for P. falciparum (strain HB3), allowing us to link specific metabolites to specific physiological functions. For example, we hypothesized that coenzyme A might be involved in late-IDC DNA replication and cell division. Moreover, the predicted ATP metabolism indicated that energy was mainly produced from glycolysis and utilized for non-metabolic processes. Finally, we used the model to classify the entire tricarboxylic acid cycle into segments, each with a distinct function, such as superoxide detoxification, glutamate/glutamine processing, and metabolism of fumarate as a byproduct of purine biosynthesis. By capturing the normal metabolic and growth progression in P. falciparum during the IDC, our model provides a starting point for further elucidation of strain-specific metabolic activity, host-parasite interactions, stress-induced metabolic responses, and metabolic responses to antimalarial drugs and drug candidates.
Tian, Zhongyuan; Fauré, Adrien; Mori, Hirotada; Matsuno, Hiroshi
2013-01-01
Glycogen and glucose are two sugar sources available during the lag phase of E. coli, but the mechanism that regulates their utilization is still unclear. Attempting to unveil the relationship between glucose and glycogen, we propose an integrated hybrid functional Petri net (HFPN) model including glycolysis, PTS, glycogen metabolic pathway, and their internal regulatory systems. By comparing known biological results to this model, basic necessary regulatory mechanism for utilizing glucose and glycogen were identified as a feedback circuit in which HPr and EIIAGlc play key roles. Based on this regulatory HFPN model, we discuss the process of glycogen utilization in E. coli in the context of a systematic understanding of carbohydrate metabolism.
Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun
2017-04-01
A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.
Physiology of Exercise for Physical Education and Athletics. Second Edition.
ERIC Educational Resources Information Center
deVries, Herbert A.
This three-part text, which is concerned with human functions under stress of muscular activity, provides a basis for the study of physical fitness and athletic training. Part 1 reviews pertinent areas of basic physiology. Muscles, the nervous system, the heart, respiratory system, exercise metabolism, and the endocrine system are reviewed. Part 2…
Protozoa in the diets of Neocalanus spp. in the oceanic subarctic Pacific Ocean
NASA Astrophysics Data System (ADS)
Gifford, Dian J.
Copepod species of the genus Neocalanus dominate the zooplankton biomass of the oceanic subarctic Pacific Ocean. Neocalanus spp. populations in the subarctic Pacific environment are successful: they feed, accumulate lipid, and persist from year to year. Prior experimental observations derived from a variety of methods indicated that, although their functional morphology is such that they clear the small phytoplankton cells characteristic of the oceanic subarctic Pacific environment efficiently, Neocalanus spp. do not consume sufficient phytoplankton to meet even basic metabolic requirements in that environment. Hence, their success in the subarctic Pacific must depend on their ability to obtain nutrition from other sources. As part of the SUPER ( SUbarctic Pacific Ecosystem Research) program, experiments were performed to test the hypothesis that N. plumchrus and N. cristatus obtain a significant portion of their nutrition from planktonic Protozoa. The experiments demonstrate that Protozoa alone do not provide sufficient nutrition for N. cristatus to meet its basic metabolic needs. Protozoa constitute the major dietary component of N. plumchrus however, in agreement with the predictions of FROST'S (1987) model of the subarctic Pacific ecosystem. At a minimum this diet permits N. plumchrus to meet basic metabolic requirements. Copepod grazing activities appear to be sufficient to control protozoan stocks in the oceanic subarctic Pacific during late spring and early summer when Neocalanus spp. inhabit the upper water column.
Biosynthesis and biological functions of terpenoids in plants.
Tholl, Dorothea
2015-01-01
Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.
Neuron-glia metabolic coupling and plasticity.
Magistretti, Pierre J
2006-06-01
The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.
Kalyanaraman, Balaraman
2017-08-01
This review of the basics of cancer metabolism focuses on exploiting the metabolic differences between normal and cancer cells. The first part of the review covers the different metabolic pathways utilized in normal cells to generate cellular energy, or ATP, and the glycolytic intermediates required to build the cellular machinery. The second part of the review discusses aerobic glycolysis, or the Warburg effect, and the metabolic reprogramming involving glycolysis, tricarboxylic acid cycle, and glutaminolysis in the context of developing targeted inhibitors in cancer cells. Finally, the selective targeting of cancer mitochondrial metabolism using positively charged lipophilic compounds as potential therapeutics and their ability to mitigate the toxic side effects of conventional chemotherapeutics in normal cells are discussed. I hope this graphical review will be useful in helping undergraduate, graduate, and medical students understand how investigating the basics of cancer cell metabolism could provide new insight in developing potentially new anticancer treatment strategies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein
2013-02-01
Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. Copyright © 2013 Mosby, Inc. All rights reserved.
Lipids, lysosomes, and autophagy
2016-01-01
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054
Mitochondrial Function in Sepsis
Arulkumaran, Nishkantha; Deutschman, Clifford S.; Pinsky, Michael R.; Zuckerbraun, Brian; Schumacker, Paul T.; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.
2015-01-01
Mitochondria are an essential part of the cellular infrastructure, being the primary site for high energy adenosine triphosphate (ATP) production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered and end organ dysfunction not only common but predictive of long term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used as both a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide. PMID:26871665
MITOCHONDRIAL FUNCTION IN SEPSIS.
Arulkumaran, Nishkantha; Deutschman, Clifford S; Pinsky, Michael R; Zuckerbraun, Brian; Schumacker, Paul T; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A
2016-03-01
Mitochondria are an essential part of the cellular infrastructure, being the primary site for high-energy adenosine triphosphate production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered, and end organ dysfunction is not only common, but also predictive of long-term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used both as a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide.
Duran, Robert; Bielen, Ana; Paradžik, Tina; Gassie, Claire; Pustijanac, Emina; Cagnon, Christine; Hamer, Bojan; Vujaklija, Dušica
2015-10-01
The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.
Sakurai, Takashi; Iimuro, Satoshi; Sakamaki, Kentaro; Umegaki, Hiroyuki; Araki, Atsushi; Ohashi, Yasuo; Ito, Hideki
2012-04-01
Type 2 diabetes increases the risk of disability. The purpose of this study was to clarify the explanatory factors for disability in Japanese diabetic elderly. The 6-year decline in physical disability and functional limitations was investigated among 317 elderly people with type 2 diabetes recruited in a large-scale prospective study of the Japanese Elderly Diabetes Intervention Trial. Information about diabetes, blood examinations and complications was obtained, and basic activities of daily living (ADL) and instrumental ADL (IADL) were assessed by total score of the Barthel index and the Tokyo Metropolitan Institute of Gerontology Index of Competence, respectively. After 6 years of follow up, 13.6% of patients had developed a new ADL disability and 38.3% had developed a new functional impairment. In the 65-74 years age group, basic ADL decreased only in males, whereas females became functionally impaired. In the 75-84 years age group, basic and IADL decreased in both males and females. Older age and metabolic syndrome were prognostic for impairment of basic ADL, whereas baseline IADL problems, lower cognitive function, physical inactivity and insulin therapy were significant predictors of a future decline in the IADL. This study identified several factors predicting the future decline of basic ADL and IADL in diabetic elderly patients, and provided a conceptual framework that might help to clarify the pathways leading to disability. Because the specific causes of each functional problem are modifiable, comprehensive treatment and care are needed to allow Japanese diabetic elderly patients to have more favorable living conditions. © 2012 Japan Geriatrics Society.
Titov, V N
2016-01-01
The phylogenetic processes continue to proceed in Homo Sapiens. At the very early stages ofphylogenesis, the ancient Archaea that formed mitochondria under symbiotic interaction with later bacterial cells conjointly formed yet another system. In this system, there are no cells' absorption of glucose if it is possible to absorb fatty acids from intercellular medium in the form of unesterfied fatty acids or ketonic bodies--metabolites of fatty acids. This is caused by objectively existed conditions and subsequent availability of substrates at the stages ofphylogenesis: acetate, ketonic bodies, fatty acids and only later glucose. The phylogenetically late insulin used after billions years the same dependencies at formation of regulation ofmetabolism offatty acids and cells' absorption of glucose. In order that syndrome ofresistance ceased to exist as afoundation of metabolic pandemic Homo Sapiens has to understand the following. After successful function ofArchaea+bacterial cells and considered by biology action of insulin for the third time in phylogenesis and using biological function of intelligence the content ofphylogenetically earlier palmitic saturated fatty acid infood can't to exceed possibilities of phylogenetically late lipoproteins to transfer it in intercellular medium and blood and cells to absorb it. It is supposed that at early stages of phylogenesis biological function of intelligence is primarily formed to bring into line "unconformities" of regulation of metabolism against the background of seeming relative biological "perfection". These unconformities were subsequently and separately formed at the level of cells in paracrin regulated cenosises of cells and organs and at the level of organism. The prevention of resistance to insulin basically requires biological function of intelligence, principle of self-restraint, bringing into line multiple desires of Homo Sapiens with much less extensive biological possibilities. The "unconformities" of regulation of metabolism in vivo are etiological factors of all metabolic pandemics including atherosclerosis, metabolic arterial hypertension, obesity and metabolic syndrome Tertiannondatum.
Allaway, Heather C M; Southmayd, Emily A; De Souza, Mary Jane
2016-02-01
An energy deficiency is the result of inadequate energy intake relative to high energy expenditure. Often observed with the development of an energy deficiency is a high drive for thinness, dietary restraint, and weight and shape concerns in association with eating behaviors. At a basic physiologic level, a chronic energy deficiency promotes compensatory mechanisms to conserve fuel for vital physiologic function. Alterations have been documented in resting energy expenditure (REE) and metabolic hormones. Observed metabolic alterations include nutritionally acquired growth hormone resistance and reduced insulin-like growth factor-1 (IGF-1) concentrations; hypercortisolemia; increased ghrelin, peptide YY, and adiponectin; and decreased leptin, triiodothyronine, and kisspeptin. The cumulative effect of the energetic and metabolic alterations is a suppression of the hypothalamic-pituitary-ovarian axis. Gonadotropin releasing hormone secretion is decreased with consequent suppression of luteinizing hormone and follicle stimulating hormone release. Alterations in hypothalamic-pituitary secretion alters the production of estrogen and progesterone resulting in subclinical or clinical menstrual dysfunction.
Widhalm, Joshua R; Rhodes, David
2016-01-01
The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant–plant (allelopathy), plant–insect and plant–microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed. PMID:27688890
Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions
Blais, Edik M.; Rawls, Kristopher D.; Dougherty, Bonnie V.; Li, Zhuo I.; Kolling, Glynis L.; Ye, Ping; Wallqvist, Anders; Papin, Jason A.
2017-01-01
The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications. PMID:28176778
Pediatric neurological syndromes and inborn errors of purine metabolism.
Camici, Marcella; Micheli, Vanna; Ipata, Piero Luigi; Tozzi, Maria Grazia
2010-02-01
This review is devised to gather the presently known inborn errors of purine metabolism that manifest neurological pediatric syndromes. The aim is to draw a comprehensive picture of these rare diseases, characterized by unexpected and often devastating neurological symptoms. Although investigated for many years, most purine metabolism disorders associated to psychomotor dysfunctions still hide the molecular link between the metabolic derangement and the neurological manifestations. This basically indicates that many of the actual functions of nucleosides and nucleotides in the development and function of several organs, in particular central nervous system, are still unknown. Both superactivity and deficiency of phosphoribosylpyrophosphate synthetase cause hereditary disorders characterized, in most cases, by neurological impairments. The deficiency of adenylosuccinate lyase and 5-amino-4-imidazolecarboxamide ribotide transformylase/IMP cyclohydrolase, both belonging to the de novo purine synthesis pathway, is also associated to severe neurological manifestations. Among catabolic enzymes, hyperactivity of ectosolic 5'-nucleotidase, as well as deficiency of purine nucleoside phosphorylase and adenosine deaminase also lead to syndromes affecting the central nervous system. The most severe pathologies are associated to the deficiency of the salvage pathway enzymes hypoxanthine-guanine phosphoribosyltransferase and deoxyguanosine kinase: the former due to an unexplained adverse effect exerted on the development and/or differentiation of dopaminergic neurons, the latter due to a clear impairment of mitochondrial functions. The assessment of hypo- or hyperuricemic conditions is suggestive of purine enzyme dysfunctions, but most disorders of purine metabolism may escape the clinical investigation because they are not associated to these metabolic derangements. This review may represent a starting point stimulating both scientists and physicians involved in the study of neurological dysfunctions caused by inborn errors of purine metabolism with the aim to find novel therapeutical approaches. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Mathematical Modeling of Cellular Metabolism.
Berndt, Nikolaus; Holzhütter, Hermann-Georg
Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.
Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity.
Aguilar, David; Fernandez, Maria Luz
2014-09-01
It is well known that hypercholesterolemia can lead to atherosclerosis and coronary heart disease. Adipose tissue represents an active endocrine and metabolic site, which might be involved in the development of chronic disease. Because adipose tissue is a key site for cholesterol metabolism and the presence of hypercholesterolemia has been shown to induce adipocyte cholesterol overload, it is critical to investigate the role of hypercholesterolemia on normal adipose function. Studies in preadipocytes revealed that cholesterol accumulation can impair adipocyte differentiation and maturation by affecting multiple transcription factors. Hypercholesterolemia has been observed to cause adipocyte hypertrophy, adipose tissue inflammation, and disruption of endocrine function in animal studies. Moreover, these effects can also be observed in obesity-independent conditions as confirmed by clinical trials. In humans, hypercholesterolemia disrupts adipose hormone secretion of visfatin, leptin, and adiponectin, adipokines that play a central role in numerous metabolic pathways and regulate basic physiologic responses such as appetite and satiety. Remarkably, treatment with cholesterol-lowering drugs has been shown to restore adipose tissue endocrine function. In this review the role of hypercholesterolemia on adipose tissue differentiation and maturation, as well as on hormone secretion and physiologic outcomes, in obesity and non–obesity conditions is presented.
Review of basic medical results of the Salyut-7-Soyuz-T 8-month manned flight
NASA Astrophysics Data System (ADS)
Gazenko, O. G.; Schulzhenko, E. B.; Grigoriev, A. I.; Atkov, O. Yu.; Egorov, A. D.
This paper presents the results of medical investigations performed in the Salyut-7 8-month mission in which a professional physician took part. The paper contains anthropometric measurements, results of investigating the vestibular function, cardiovascular function at rest and in response to multi-step tests (with emphasis on echocardiographic measurements), metabolic parameters and hormonal status. It also discusses medical aspects of the extravehicular activity. The medical investigations, although some new methods were applied, provided the continuity of methodical approaches and data accumulated in previous missions.
Lambais, M R; Barrera, S E; Santos, E C; Crowley, D E; Jumpponen, A
2017-01-01
The phyllosphere of the Brazilian Atlantic Forest has been estimated to contain several million bacterial species that are associated with approximately 20000 plant species. Despite the high bacterial diversity in the phyllosphere, the function of these microorganisms and the mechanisms driving their community assembly are largely unknown. In this study, we characterized the bacterial communities in the phyllospheres of four tree species of the Atlantic Forest (Mollinedia schottiana, Ocotea dispersa, Ocotea teleiandra, and Tabebuia serratifolia) and their metaproteomes to examine the basic protein functional groups expressed in the phyllosphere. Bacterial community analyses using 16S rRNA gene sequencing confirmed prior observations that plant species harbor distinct bacterial communities and that plants of the same taxon have more similar communities than more distantly related taxa. Using LC-ESI-Q-TOF, we identified 216 nonredundant proteins, based on 3503 peptide mass spectra. Most protein families were shared among the phyllosphere communities, suggesting functional redundancy despite differences in the species compositions of the bacterial communities. Proteins involved in glycolysis and anaerobic carbohydrate metabolism, solute transport, protein metabolism, cell motility, stress and antioxidant responses, nitrogen metabolism, and iron homeostasis were among the most frequently detected. In contrast to prior studies on crop plants and Arabidopsis, a low abundance of OTUs related to Methylobacterium and no proteins associated with the metabolism of one-carbon molecules were detected in the phyllospheres of the tree species studied here. Our data suggest that even though the phyllosphere bacterial communities of different tree species are phylogenetically diverse, their metaproteomes are functionally convergent with respect to traits required for survival on leaf surfaces.
Altered gut microbiota associated with intestinal disease in grass carp (Ctenopharyngodon idellus).
Tran, Ngoc Tuan; Zhang, Jing; Xiong, Fan; Wang, Gui-Tang; Li, Wen-Xiang; Wu, Shan-Gong
2018-05-18
Gut microbiota plays a crucial importance in their host. Disturbance of the microbial structure and function is known to be associated with inflammatory intestinal disorders. Enteritis is a significant cause of high mortality in fish species, including grass carp (Ctenopharyngodon idellus). Study regarding the association between microbial alternations and enteritis in grass carp is still absent. In this study, changes in the gut microbiota of grass carp suffering from enteritis were investigated using NGS-based 16S rRNA sequencing. Six healthy and ten abnormal fish (showing reddening anus, red odiferous fluid accumulating in the abdominal capacity, and flatulence and haemorrhage in the intestine) were collected from a fish farm in Huanggang Fisheries Institute (Hubei, China). Our results revealed that the diversity, structure, and function of gut microbiota were significantly different between diseased and healthy fish (P < 0.05). Particularly, members of the genera Dechloromonas, Methylocaldum, Planctomyces, Rhodobacter, Caulobacter, Flavobacterium, and Pseudomonas were significantly increased in diseased fish compared with that in healthy fish (P < 0.05). Predicted function indicated that microbiota significantly changed the specific metabolic pathways (related to amino acid metabolism, xenobiotics biodegradation and metabolism, and carbohydrate metabolism) in diseased fish (P < 0.05). Taken together, our findings point out the association between changes of the gut microbiota and enteritis in grass carp, which provide basic information useful for diagnoses, prevention, and treatment of intestinal diseases occurring in cultured fish.
Bernstein, Paul S.; Li, Binxing; Vachali, Preejith P.; Gorusupudi, Aruna; Shyam, Rajalekshmy; Henriksen, Bradley S.; Nolan, John M.
2015-01-01
The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age. PMID:26541886
Hypoxia and Mucosal Inflammation
Colgan, Sean P.; Campbell, Eric L.; Kominsky, Douglas J.
2016-01-01
Sites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called “inflammatory hypoxia,” which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity. PMID:27193451
Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland.
Helm, Mark; Alfonzo, Juan D
2014-02-20
Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we highlight several modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide cofactors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level. Copyright © 2014 Elsevier Ltd. All rights reserved.
The impact of functional imaging on radiation medicine.
Sharma, Nidhi; Neumann, Donald; Macklis, Roger
2008-09-15
Radiation medicine has previously utilized planning methods based primarily on anatomic and volumetric imaging technologies such as CT (Computerized Tomography), ultrasound, and MRI (Magnetic Resonance Imaging). In recent years, it has become apparent that a new dimension of non-invasive imaging studies may hold great promise for expanding the utility and effectiveness of the treatment planning process. Functional imaging such as PET (Positron Emission Tomography) studies and other nuclear medicine based assays are beginning to occupy a larger place in the oncology imaging world. Unlike the previously mentioned anatomic imaging methodologies, functional imaging allows differentiation between metabolically dead and dying cells and those which are actively metabolizing. The ability of functional imaging to reproducibly select viable and active cell populations in a non-invasive manner is now undergoing validation for many types of tumor cells. Many histologic subtypes appear amenable to this approach, with impressive sensitivity and selectivity reported. For clinical radiation medicine, the ability to differentiate between different levels and types of metabolic activity allows the possibility of risk based focal treatments in which the radiation doses and fields are more tightly connected to the perceived risk of recurrence or progression at each location. This review will summarize many of the basic principles involved in the field of functional PET imaging for radiation oncology planning and describe some of the major relevant published data behind this expanding trend.
... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...
The origin of life and its methodological challenge.
Wächtershäuser, G
1997-08-21
The problem of the origin of life is discussed from a methodological point of view as an encounter between the teleological thinking of the historian and the mechanistic thinking of the chemist; and as the Kantian task of replacing teleology by mechanism. It is shown how the Popperian situational logic of historic understanding and the Popperian principle of explanatory power of scientific theories, when jointly applied to biochemistry, lead to a methodology of biochemical retrodiction, whereby common precursor functions are constructed for disparate successor functions. This methodology is exemplified by central tenets of the theory of the chemo-autotrophic origin of life: the proposal of a surface metabolism with a two-dimensional order; the basic polarity of life with negatively charged constituents on positively charged mineral surfaces; the surface-metabolic origin of phosphorylated sugar metabolism and nucleic acids; the origin of membrane lipids and of chemi-osmosis on pyrite surfaces; and the principles of the origin of the genetic machinery. The theory presents the early evolution of life as a process that begins with chemical necessity and winds up in genetic chance.
Sánchez-Rodríguez, Dolores; Marco, Ester; Annweiler, Cédric; Ronquillo-Moreno, Natalia; Tortosa, Andrea; Vázquez-Ibar, Olga; Escalada, Ferran; Duran, Xavier; Muniesa, Josep M
2017-11-01
To determine the relationships between malnutrition and nutrition-related conditions according to the European Society of Clinical Nutrition and Metabolism (ESPEN) consensus and guidelines and clinical outcomes in postacute rehabilitation. Of 102 eligible inpatients, 95 (84.5 years old, 63.2% women) fulfilled inclusion criteria: aged ≥70 years, body mass index <30kg/m 2 , admission for rehabilitation. Mini-Nutritional Assessment-Short Form (MNA-SF≤11) identified patients "at risk" and ESPEN basic and etiology based definitions were applied. Nutrition-related conditions (sarcopenia, frailty, overweight/obesity, micronutrient abnormalities) were determined. We assessed the relationship between these conditions and the clinical and rehabilitation outcomes (relative functional gain, rehabilitation efficiency) during hospitalization. All patients were "at risk" by MNA-SF criteria and 31 reported unintentional weight loss >5% in the last year or 2-3kg in the last 6 months. Nineteen fulfilled the ESPEN basic definition, of which 10 had disease-related malnutrition with inflammation and 9 without inflammation, and 20 had cachexia. Sarcopenia (n=44), frailty (n=94), overweight/obesity (n=59), and micronutrient abnormalities (n=70) were frequent. Unintentional weight loss impaired all functional outcomes and increased length of stay [OR=6.04 (2.87-9.22); p<0.001]. In multivariate analysis, relationships between rehabilitation impact indices and the ESPEN basic and etiology-based definitions observed in univariate analysis persisted only (and marginally) for relative functional gain [OR=13.24 (0.96-181.95); p=0.005]. Infrequent in-hospital mortality prevented meaningful analysis of this outcome. ESPEN basic and etiology-based definitions and nutrition related disorders were determined in postacute care. Malnutrition was associated with poor rehabilitation outcomes, mainly due to unintentional weight loss. Copyright © 2017 Elsevier B.V. All rights reserved.
Dual function of MG53 in membrane repair and insulin signaling
Tan, Tao; Ko, Young-Gyu; Ma, Jianjie
2016-01-01
MG53 is a member of the TRIM-family protein that acts as a key component of the cell membrane repair machinery. MG53 is also an E3-ligase that ubiquinates insulin receptor substrate-1 and controls insulin signaling in skeletal muscle cells. Since its discovery in 2009, research efforts have been devoted to translate this basic discovery into clinical applications in human degenerative and metabolic diseases. This review article highlights the dual function of MG53 in cell membrane repair and insulin signaling, the mechanism that underlies the control of MG53 function, and the therapeutic value of targeting MG53 function in regenerative medicine. [BMB Reports 2016; 49(8): 414-423] PMID:27174502
Baslow, Morris H
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.
Foetal exposure to food and environmental carcinogens in human beings.
Myöhänen, Kirsi; Vähäkangas, Kirsi
2012-02-01
Exposure to many different chemicals during pregnancy through maternal circulation is possible. Transplacental transfer of xenobiotics can be demonstrated using human placental perfusion. Also, placental perfusion can give information about the placental kinetics as well as metabolism and accumulation in the placenta because it retains the tissue structure and function. Although human placental perfusion has been used extensively to study the transplacental transfer of drugs, the information on food and environmental carcinogens is much more limited. This review deals with the foetal exposure to food and environmental carcinogens in human beings. In particular, human transplacental transfer of the food carcinogens such as acrylamide, glycidamide and nitrosodimethylamine are in focus. Because these carcinogens are genotoxic, the functional capacity of human placenta to induce DNA adduct formation or metabolize these above mentioned CYP2E1 substrates is of interest in this context. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.
Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.
Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John
2016-01-01
Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.
Liu, Ye; Liu, Dan
2015-07-01
Urban metabolism is a basic theory for coping with global environmental problems, which is coherent with the aims of national environmental management. This paper analyzed the concept of urban metabolism, and pointed out the meaning for urban metabolism in physical space entities; reviewed the current methods for urban metabolism and its merits and shortages; analyzed the system boundaries, connotation, and methodologies; and summarized the advances on urban meta-bolism practices in physical space entities. At last, we made conclusions that there were shortages, including conception system, basic theory system, and interdisciplinary integrated theory system in current urban metabolism research, and the current cases studied in urban metabolism were limited and not suitable to the harmony development between society, economy, and environment. In the future, we need to strengthen comparison between different case studies from different countries, develop the prior modes of typical urban metabolism research, identify the mechanism for urban ecosystem, and strengthen the spatial decision support system of environmental management taking urban spatial entity spaces as units.
A combined computational-experimental analyses of selected metabolic enzymes in Pseudomonas species.
Perumal, Deepak; Lim, Chu Sing; Chow, Vincent T K; Sakharkar, Kishore R; Sakharkar, Meena K
2008-09-10
Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.
(Per)chlorate in Biology on Earth and Beyond.
Youngblut, Matthew D; Wang, Ouwei; Barnum, Tyler P; Coates, John D
2016-09-08
Respiration of perchlorate and chlorate [collectively, (per)chlorate] was only recognized in the last 20 years, yet substantial advances have been made in our understanding of the underlying metabolisms. Although it was once considered solely anthropogenic, pervasive natural sources, both terrestrial and extraterrestrial, indicate an ancient (per)chlorate presence across our solar system. These discoveries stimulated interest in (per)chlorate microbiology, and the application of advanced approaches highlights exciting new facets. Forward and reverse genetics revealed new information regarding underlying molecular biology and associated regulatory mechanisms. Structural and functional analysis characterized core enzymes and identified novel reaction sequences. Comparative genomics elucidated evolutionary aspects, and stress analysis identified novel response mechanisms to reactive chlorine species. Finally, systems biology identified unique metabolic versatility and novel mechanisms of (per)chlorate respiration, including symbiosis and a hybrid enzymatic-abiotic metabolism. While many published studies focus on (per)chlorate and their basic metabolism, this review highlights seminal advances made over the last decade and identifies new directions and potential novel applications.
Kaĭdashev, I P; Savchenko, L H; Kaĭdasheva, E I; Kutsenko, N L; Kutsenko, L O; Solokhina, I L; Mamontova, T V
2010-01-01
We have studied efficiency of a complex therapy with metformin and ramipril combination (1000 mg and 5 mg per day) respectively in patients with metabolic syndrome (MS). The group of patients with MS which answered the basic criteria IDF (2005) was determined. Carbohydrate and Lipidic metabolism were studied. Patients were characterized with raised weight index (WI), arterial hypertension, increased concentration of triglycerides in blood serum, of glucose, of HbAlc level and S-peptide, and also high level of endotelin (1-38) and CD32+CD40+circulating particles of endothelium. Three months treatment lead to decrease in WI, arterial pressure, triglycerides concentration, HbAlc, glucose, except CD32+CD40+. Six months treatment lead to more expressed positive dynamics. Thus, metformin and ramipril combination in patients with MS leads to decrease in insulin resistancy, carbohydrate and lipid metabolism normalization, to restoration of endothelium functions that is possible to consider as prophylaxis of the development of type 2 diabetes melitus and its cardiovascular complications.
The physical characteristics of human proteins in different biological functions.
Wang, Tengjiao; Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.
The physical characteristics of human proteins in different biological functions
Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865
Cerboneschi, Matteo; Corsi, Massimo; Bianchini, Roberto; Bonanni, Marco; Tegli, Stefania
2015-10-01
Escherichia coli strain DH5α was successfully employed in the decolorization of commercial anthraquinone and azo dyes, belonging to the general classes of acid or basic dyes. The bacteria showed an aptitude to survive at different pH values on any dye solution tested, and a rapid decolorization was obtained under aerobic conditions for the whole collection of dyes. A deep investigation about the mode of action of E. coli was carried out to demonstrate that dye decolorization mainly occurred via three different pathways, specifically bacterial induced precipitation, cell wall adsorption, and metabolism, whose weight was correlated with the chemical nature of the dye. In the case of basic azo dyes, an unexpected fast decolorization was observed after just 2-h postinoculation under aerobic conditions, suggesting that metabolism was the main mechanism involved in basic azo dye degradation, as unequivocally demonstrated by mass spectrometric analysis. The reductive cleavage of the azo group by E. coli on basic azo dyes was also further demonstrated by the inhibition of decolorization occurring when glucose was added to the dye solution. Moreover, no residual toxicity was found in the E. coli-treated basic azo dye solutions by performing Daphnia magna acute toxicity assays. The results of the present study demonstrated that E. coli can be simply exploited for its natural metabolic pathways, without applying any recombinant technology. The high versatility and adaptability of this bacterium could encourage its involvement in industrial bioremediation of textile and leather dyeing wastewaters.
Molecular facets of sphingolipids: mediators of diseases.
Ozbayraktar, Fatma Betul Kavun; Ulgen, Kutlu O
2009-07-01
Sphingolipids constitute a biologically active lipid class that is significantly important from both structural and regulatory aspects. The manipulation of sphingolipid metabolism is currently being studied as a novel strategy for cancer therapy. The basics of this therapeutic approach lie in the regulation property of sphingolipids on cellular processes, which are important in a cell's fate, such as cell proliferation, apoptosis, cell cycle arrest, senescence, and inflammation. Furthermore, the mutations in the enzymes catalyzing some specific reactions in the sphingolipid metabolism cause mortal lysosomal storage diseases like Fabry, Gaucher, Niemann-Pick, Farber, Krabbe, and Metachromatic Leukodystrophy. Therefore, the alteration of the sphingolipid metabolic pathway determines the choice between life and death. Understanding the sphingolipid metabolism and regulation is significant for the development of new therapeutic approaches for all sphingolipid-related diseases, as well as for cancer. An important feature of the sphingolipid metabolic pathway is the compartmentalization into endoplasmic reticulum, the Golgi apparatus, lysosome and plasma membrane, and this compartmentalization makes the transport of sphingolipids critical for proper functioning. This paper focuses on the structures, metabolic pathways, localization, transport mechanisms, and diseases of sphingolipids in Saccharomyces cerevisiae and humans, and provides the latest comprehensive information on sphingolipid research.
What is the purpose of emission computed tomography in nuclear medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, M.E.
1977-01-01
ECT is a mathematical and physical concept, an instrument, a radionuclide tracer technique, a research procedure and it is certainly both an old (Kuhl began his work in the late fifties) and a new concept. It also has great and unique potential as a diagnostic technique. It is interesting that the basic principles of medical CT were exemplified and developed in Nuclear Medicine by Kuhl and coworkers and the concept of ''physiologic or function tomography'' provides a technique to advance the original charter of Nuclear Medicine in the use of radionuclides for the measure of metabolism and physiologic function.
Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation.
Wriessnegger, Tamara; Pichler, Harald
2013-07-01
Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. Copyright © 2013 Elsevier Ltd. All rights reserved.
The sexual dimorphism of obesity
Palmer, Biff F.; Clegg, Deborah J.
2015-01-01
The NIH has recently highlighted the importance of sexual dimorphisms and has mandated inclusion of both sexes in clinical trials and basic research. In this review we highlight new and novel ways sex hormones influence body adiposity and the metabolic syndrome. Understanding how and why metabolic processes differ by sex will enable clinicians to target and personalize therapies based on gender. Adipose tissue function and deposition differ by sex. Females differ with respect to distribution of adipose tissues, males tend to accrue more visceral fat, leading to the classic android body shape which has been highly correlated to increased cardiovascular risk; whereas females accrue more fat in the subcutaneous depot prior to menopause, a feature which affords protection from the negative consequences associated with obesity and the metabolic syndrome. After menopause, fat deposition and accrual shift to favor the visceral depot. This shift is accompanied by a parallel increase in metabolic risk reminiscent to that seen in men. A full understanding of the physiology behind why, and by what mechanisms, adipose tissues accumulate in specific depots and how these depots differ metabolically by sex is important in efforts of prevention of obesity and chronic disease. Estrogens, directly or through activation of their receptors on adipocytes and in adipose tissues, facilitate adipose tissue deposition and function. Evidence suggests that estrogens augment the sympathetic tone differentially to the adipose tissue depots favoring lipid accumulation in the subcutaneous depot in women and visceral fat deposition in men. At the level of adipocyte function, estrogens and their receptors influence the expandability of fat cells enhancing the expandability in the subcutaneous depot and inhibiting it in the visceral depot. Sex hormones clearly influence adipose tissue function and deposition, determining how to capture and utilize their function in a time of caloric surfeit, requires more information. The key will be harnessing the beneficial effects of sex hormones in such a way as to provide ‘healthy’ adiposity. PMID:25578600
Parham, Fred; Portier, Christopher J.; Chang, Xiaoqing; Mevissen, Meike
2016-01-01
Using in vitro data in human cell lines, several research groups have investigated changes in gene expression in cellular systems following exposure to extremely low frequency (ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained five studies with complete microarray data and three studies with only lists of significantly altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and human diseases were identified using a three-step process: (a) linking genes associated with classes of human diseases to molecular pathways, (b) linking pathways to ELF and RF EMF microarray data, and (c) identifying associations between human disease and EMF exposures where the pathways are significantly similar. A total of 60 pathways were associated with human diseases, mostly focused on basic cellular functions like JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no clear pattern emerged. Individual datasets showed some linkage to cancer, chemical dependency, metabolic disorders, and neurological disorders. RF EMF datasets were not strongly linked to any disorders but strongly linked to changes in several pathways. Based on these analyses, the most promising area for further research would be to focus on EMF and neurological function and disorders. PMID:27656641
Yang, Hui; Huang, Xiaochang; Fang, Shaoming; He, Maozhang; Zhao, Yuanzhang; Wu, Zhenfang; Yang, Ming; Zhang, Zhiyan; Chen, Congying; Huang, Lusheng
2017-01-01
Gut microbiota plays fundamental roles in energy harvest, nutrient digestion, and intestinal health, especially in processing indigestible components of polysaccharides in diet. Unraveling the microbial taxa and functional capacity of gut microbiome associated with feed efficiency can provide important knowledge to improve pig feed efficiency in swine industry. In the current research, we studied the association of fecal microbiota with feed efficiency in 280 commercial Duroc pigs. All experimental pigs could be clustered into two enterotype-like groups. Different enterotypes showed the tendency of association with the feed efficiency (P = 0.07). We further identified 31 operational taxonomic units (OTUs) showing the potential associations with porcine feed efficiency. These OTUs were mainly annotated to the bacteria related to the metabolisms of dietary polysaccharides. Although we did not identify the RFI-associated bacterial species at FDR < 0.05 level, metagenomic sequencing analysis did find the distinct function capacities of gut microbiome between the high and low RFI pigs (FDR < 0.05). The KEGG orthologies related to nitrogen metabolism, amino acid metabolism, and transport system, and eight KEGG pathways including glycine, serine, and threonine metabolism were positively associated with porcine feed efficiency. We inferred that gut microbiota might improve porcine feed efficiency through promoting intestinal health by the SCFAs produced by fermenting dietary polysaccharides and improving the utilization of dietary protein. The present results provided important basic knowledge for improving porcine feed efficiency through modulating gut microbiome. PMID:28861066
Mangia, Silvia; Giove, Federico; Tkáč, Ivan; Logothetis, Nikos K.; Henry, Pierre-Gilles; Olman, Cheryl A.; Maraviglia, Bruno; Di Salle, Francesco; Uğurbil, Kâmil
2009-01-01
Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the non-invasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal micro-circuitry which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by 1H MRS, 13C MRS and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission, will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI. PMID:19002199
Bernstein, Paul S; Li, Binxing; Vachali, Preejith P; Gorusupudi, Aruna; Shyam, Rajalekshmy; Henriksen, Bradley S; Nolan, John M
2016-01-01
The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biochemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age. Copyright © 2015 Elsevier Ltd. All rights reserved.
Filho, Humberto A; Machicao, Jeaneth; Bruno, Odemir M
2018-01-01
Modeling the basic structure of metabolic machinery is a challenge for modern biology. Some models based on complex networks have provided important information regarding this machinery. In this paper, we constructed metabolic networks of 17 plants covering unicellular organisms to more complex dicotyledonous plants. The metabolic networks were built based on the substrate-product model and a topological percolation was performed using the kcore decomposition. The distribution of metabolites across the percolation layers showed correlations between the metabolic integration hierarchy and the network topology. We show that metabolites concentrated in the internal network (maximum kcore) only comprise molecules of the primary basal metabolism. Moreover, we found a high proportion of a set of common metabolites, among the 17 plants, centered at the inner kcore layers. Meanwhile, the metabolites recognized as participants in the secondary metabolism of plants are concentrated in the outermost layers of the network. This data suggests that the metabolites in the central layer form a basic molecular module in which the whole plant metabolism is anchored. The elements from this central core participate in almost all plant metabolic reactions, which suggests that plant metabolic networks follows a centralized topology.
Filho, Humberto A.; Machicao, Jeaneth
2018-01-01
Modeling the basic structure of metabolic machinery is a challenge for modern biology. Some models based on complex networks have provided important information regarding this machinery. In this paper, we constructed metabolic networks of 17 plants covering unicellular organisms to more complex dicotyledonous plants. The metabolic networks were built based on the substrate-product model and a topological percolation was performed using the kcore decomposition. The distribution of metabolites across the percolation layers showed correlations between the metabolic integration hierarchy and the network topology. We show that metabolites concentrated in the internal network (maximum kcore) only comprise molecules of the primary basal metabolism. Moreover, we found a high proportion of a set of common metabolites, among the 17 plants, centered at the inner kcore layers. Meanwhile, the metabolites recognized as participants in the secondary metabolism of plants are concentrated in the outermost layers of the network. This data suggests that the metabolites in the central layer form a basic molecular module in which the whole plant metabolism is anchored. The elements from this central core participate in almost all plant metabolic reactions, which suggests that plant metabolic networks follows a centralized topology. PMID:29734359
Baslow, Morris H.
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525
Food addiction: detox and abstinence reinterpreted?
Shriner, Richard L
2013-10-01
The senior patient and/or the geriatrician are confronted with a confusing literature describing how patients interested in combating metabolic syndrome, diabesity (diabetes plus obesity) or simple obesity might best proceed. The present paper gives a brief outline of the basic disease processes that underlie metabolic pro-inflammation, including how one might go about devising the most potent and practical detoxification from such metabolic compromise. The role that dietary restriction plays in pro-inflammatory detoxification (detox), including how a modified fast (selective food abstinence) is incorporated into this process, is developed. The unique aspects of geriatric bariatric medicine are elucidated, including the concepts of sarcopenia and the obesity paradox. Important caveats involving the senior seeking weight loss are offered. By the end of the paper, the reader will have a greater appreciation for the challenges and opportunities that lie ahead for geriatric patients who wish to overcome food addiction and reverse pro-inflammatory states of ill-heath. This includes the toxic metabolic processes that create obesity complicated by type 2 diabetes mellitus (T2DM) which collectively we call diabesity. In that regard, diabesity is often the central pathology that leads to the evolution of the metabolic syndrome. The paper also affords the reader a solid review of the neurometabolic processes that effectuate anorexigenic versus orexigenic inputs to obesity that drive food addiction. We argue that these processes lead to either weight gain or weight loss by a tripartite system involving metabolic, addictive and relational levels of organismal functioning. Recalibrating the way we negotiate these three levels of daily functioning often determines success or failure in terms of overcoming metabolic syndrome and food addiction. Copyright © 2013 Elsevier Inc. All rights reserved.
Current findings on the role of oxytocin in the regulation of food intake.
Spetter, Maartje S; Hallschmid, Manfred
2017-07-01
In the face of the alarming prevalence of obesity and its associated metabolic impairments, it is of high basic and clinical interest to reach a complete understanding of the central nervous pathways that establish metabolic control. In recent years, the hypothalamic neuropeptide oxytocin, which is primarily known for its involvement in psychosocial processes and reproductive behavior, has received increasing attention as a modulator of metabolic function. Oxytocin administration to the brain of normal-weight animals, but also animals with diet-induced or genetically engineered obesity reduces food intake and body weight, and can also increase energy expenditure. Up to now, only a handful of studies in humans have investigated oxytocin's contribution to the regulation of eating behavior. Relying on the intranasal pathway of oxytocin administration, which is a non-invasive strategy to target central nervous oxytocin receptors, these experiments have yielded some promising first results. In normal-weight and obese individuals, intranasal oxytocin acutely limits meal intake and the consumption of palatable snacks. It is still unclear to which extent - or if at all - such metabolic effects of oxytocin in humans are conveyed or modulated by oxytocin's impact on cognitive processes, in particular on psychosocial function. We shortly summarize the current literature on oxytocin's involvement in food intake and metabolic control, ponder potential links to social and cognitive processes, and address future perspectives as well as limitations of oxytocin administration in experimental and clinical contexts. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Obayashi, Takeshi; Kinoshita, Kengo
2010-05-01
Gene coexpression analyses are a powerful method to predict the function of genes and/or to identify genes that are functionally related to query genes. The basic idea of gene coexpression analyses is that genes with similar functions should have similar expression patterns under many different conditions. This approach is now widely used by many experimental researchers, especially in the field of plant biology. In this review, we will summarize recent successful examples obtained by using our gene coexpression database, ATTED-II. Specifically, the examples will describe the identification of new genes, such as the subunits of a complex protein, the enzymes in a metabolic pathway and transporters. In addition, we will discuss the discovery of a new intercellular signaling factor and new regulatory relationships between transcription factors and their target genes. In ATTED-II, we provide two basic views of gene coexpression, a gene list view and a gene network view, which can be used as guide gene approach and narrow-down approach, respectively. In addition, we will discuss the coexpression effectiveness for various types of gene sets.
Selenium uptake, translocation, assimilation and metabolic fate in plants.
Sors, T G; Ellis, D R; Salt, D E
2005-12-01
The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.
Trans-methylation reactions in plants: focus on the activated methyl cycle.
Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa
2018-02-01
Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.
Model-based confirmation of alternative substrates of mitochondrial electron transport chain.
Kleessen, Sabrina; Araújo, Wagner L; Fernie, Alisdair R; Nikoloski, Zoran
2012-03-30
Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data.
Honeybee associative learning performance and metabolic stress resilience are positively associated.
Amdam, Gro V; Fennern, Erin; Baker, Nicholas; Rascón, Brenda
2010-03-17
Social-environmental influences can affect animal cognition and health. Also, human socio-economic status is a covariate factor connecting psychometric test-performance (a measure of cognitive ability), educational achievement, lifetime health, and survival. The complimentary hypothesis, that mechanisms in physiology can explain some covariance between the same traits, is disputed. Possible mechanisms involve metabolic biology affecting integrity and stability of physiological systems during development and ageing. Knowledge of these relationships is incomplete, and underlying processes are challenging to reveal in people. Model animals, however, can provide insights into connections between metabolic biology and physiological stability that may aid efforts to reduce human health and longevity disparities. We document a positive correlation between a measure of associative learning performance and the metabolic stress resilience of honeybees. This relationship is independent of social factors, and may provide basic insights into how central nervous system (CNS) function and metabolic biology can be associated. Controlling for social environment, age, and learning motivation in each bee, we establish that learning in Pavlovian conditioning to an odour is positively correlated with individual survival time in hyperoxia. Hyperoxia induces oxidative metabolic damage, and provides a measure of metabolic stress resistance that is often related to overall lifespan in laboratory animals. The positive relationship between Pavlovian learning ability and stress resilience in the bee is not equally established in other model organisms so far, and contrasts with a genetic cost of improved associative learning found in Drosophila melanogaster. Similarities in the performances of different animals need not reflect common functional principles. A correlation of honeybee Pavlovian learning and metabolic stress resilience, thereby, is not evidence of a shared biology that will give insight about systems integrity in people. Yet, the means to resolve difficult research questions often come from findings in distant areas of science while the model systems that turn out to be valuable are sometimes the least predictable. Our results add to recent findings indicating that honeybees can become instrumental to understanding how metabolic biology influences life outcomes.
Accommodation of powdery mildew fungi in intact plant cells.
Eichmann, Ruth; Hückelhoven, Ralph
2008-01-01
Parasitic powdery mildew fungi have to overcome basic resistance and manipulate host cells to establish a haustorium as a functional feeding organ in a host epidermal cell. Currently, it is of central interest how plant factors negatively regulate basal defense or whether they even support fungal development in compatible interactions. Additionally, creation of a metabolic sink in infected cells may involve host activity. Here, we review the current progress in understanding potential fungal targets for host reprogramming and nutrient acquisition.
Molecular Mechanisms of Neuroplasticity: An Expanding Universe.
Gulyaeva, N V
2017-03-01
Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.
The Blueprint of a Minimal Cell: MiniBacillus
Reuß, Daniel R.; Commichau, Fabian M.; Gundlach, Jan; Zhu, Bingyao
2016-01-01
SUMMARY Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome. PMID:27681641
Wnt-Lrp5 Signaling Regulates Fatty Acid Metabolism in the Osteoblast
Frey, Julie L.; Li, Zhu; Ellis, Jessica M.; Zhang, Qian; Farber, Charles R.; Aja, Susan; Wolfgang, Michael J.; Clemens, Thomas L.
2015-01-01
The Wnt coreceptors Lrp5 and Lrp6 are essential for normal postnatal bone accrual and osteoblast function. In this study, we identify a previously unrecognized skeletal function unique to Lrp5 that enables osteoblasts to oxidize fatty acids. Mice lacking the Lrp5 coreceptor specifically in osteoblasts and osteocytes exhibit the expected reductions in postnatal bone mass but also exhibit an increase in body fat with corresponding reductions in energy expenditure. Conversely, mice expressing a high bone mass mutant Lrp5 allele are leaner with reduced plasma triglyceride and free fatty acid levels. In this context, Wnt-initiated signals downstream of Lrp5, but not the closely related Lrp6 coreceptor, regulate the activation of β-catenin and thereby induce the expression of key enzymes required for fatty acid β-oxidation. These results suggest that Wnt-Lrp5 signaling regulates basic cellular activities beyond those associated with fate specification and differentiation in bone and that the skeleton influences global energy homeostasis via mechanisms independent of osteocalcin and glucose metabolism. PMID:25802278
Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst
2016-09-01
The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.
Heterogeneity of D-Serine Distribution in the Human Central Nervous System
Suzuki, Masataka; Imanishi, Nobuaki; Mita, Masashi; Hamase, Kenji; Aiso, Sadakazu; Sasabe, Jumpei
2017-01-01
D-serine is an endogenous ligand for N-methyl-D-aspartate glutamate receptors. Accumulating evidence including genetic associations of D-serine metabolism with neurological or psychiatric diseases suggest that D-serine is crucial in human neurophysiology. However, distribution and regulation of D-serine in humans are not well understood. Here, we found that D-serine is heterogeneously distributed in the human central nervous system (CNS). The cerebrum contains the highest level of D-serine among the areas in the CNS. There is heterogeneity in its distribution in the cerebrum and even within the cerebral neocortex. The neocortical heterogeneity is associated with Brodmann or functional areas but is unrelated to basic patterns of cortical layer structure or regional expressional variation of metabolic enzymes for D-serine. Such D-serine distribution may reflect functional diversity of glutamatergic neurons in the human CNS, which may serve as a basis for clinical and pharmacological studies on D-serine modulation. PMID:28604057
Jensen, Leonardo; Neri, Elida; Bassaneze, Vinicius; De Almeida Oliveira, Nathalia C; Dariolli, Rafael; Turaça, Lauro T; Levy, Débora; Veronez, Douglas; Ferraz, Mariana S A; Alencar, Adriano M; Bydlowski, Sérgio P; Cestari, Idágene A; Krieger, José Eduardo
2018-07-01
Neonatal cardiomyocytes are instrumental for disease modeling, but the effects of different cell extraction methods on basic cell biological processes remain poorly understood. We assessed the influence of two popular methods to extract rat neonatal cardiomyocytes, Pre-plating (PP), and Percoll (PC) on cell structure, metabolism, and function. Cardiomyocytes obtained from PP showed higher gene expression for troponins, titin, and potassium and sodium channels compared to PC. Also, PP cells displayed higher levels of troponin I protein. Cells obtained from PC displayed higher lactate dehydrogenase activity and lactate production than PP cells, indicating higher anaerobic metabolism after 8 days of culture. In contrast, reactive oxygen species levels were higher in PP cells as indicated by ethidium and hydroxyethidium production. Consistent with these data, protein nitration was higher in PP cells, as well as nitrite accumulation in cell medium. Moreover, PP cells showed higher global intracellular calcium under basal and 1 mM isoprenaline conditions. In a calcium-transient assessment under electrical stimulation (0.5 Hz), PP cells displayed higher calcium amplitude than cardiomyocytes obtained from PC and using a traction force microscope technique we observed that PP cardiomyocytes showed the highest relaxation. Collectively, we demonstrated that extraction methods influence parameters related to cell structure, metabolism, and function. Overall, PP derived cells are more active and mature than PC cells, displaying higher contractile function and generating more reactive oxygen species. On the other hand, PC derived cells display higher anaerobic metabolism, despite comparable high yields from both protocols. © 2017 Wiley Periodicals, Inc.
Emerging Role of Sensory Perception in Aging and Metabolism.
Riera, Celine E; Dillin, Andrew
2016-05-01
Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.
SMAC7; Sequential multi-channel analysis with computer-7; SMA7; Metabolic panel 7; CHEM-7 ... breathing problems, diabetes or diabetes-related complications, and medicine side effects. Talk to your provider about the ...
Gene Silencing in Crustaceans: From Basic Research to Biotechnologies
Sagi, Amir; Manor, Rivka; Ventura, Tomer
2013-01-01
Gene silencing through RNA interference (RNAi) is gaining momentum for crustaceans, both in basic research and for commercial development. RNAi has proven instrumental in a growing number of crustacean species, revealing the functionality of novel crustacean genes essential among others to development, growth, metabolism and reproduction. Extensive studies have also been done on silencing of viral transcripts in crustaceans, contributing to the understanding of the defense mechanisms of crustaceans and strategies employed by viruses to overcome these. The first practical use of gene silencing in aquaculture industry has been recently achieved, through manipulation of a crustacean insulin-like androgenic gland hormone. This review summarizes the advancements in the use of RNAi in crustaceans, and assesses the advantages of this method, as well as the current hurdles that hinder its large-scale practice. PMID:24705266
Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia
Kuhn, Viktoria; Diederich, Lukas; Keller, T.C. Stevenson; Kramer, Christian M.; Lückstädt, Wiebke; Panknin, Christina; Suvorava, Tatsiana; Isakson, Brant E.; Kelm, Malte
2017-01-01
Abstract Significance: Recent clinical evidence identified anemia to be correlated with severe complications of cardiovascular disease (CVD) such as bleeding, thromboembolic events, stroke, hypertension, arrhythmias, and inflammation, particularly in elderly patients. The underlying mechanisms of these complications are largely unidentified. Recent Advances: Previously, red blood cells (RBCs) were considered exclusively as transporters of oxygen and nutrients to the tissues. More recent experimental evidence indicates that RBCs are important interorgan communication systems with additional functions, including participation in control of systemic nitric oxide metabolism, redox regulation, blood rheology, and viscosity. In this article, we aim to revise and discuss the potential impact of these noncanonical functions of RBCs and their dysfunction in the cardiovascular system and in anemia. Critical Issues: The mechanistic links between changes of RBC functional properties and cardiovascular complications related to anemia have not been untangled so far. Future Directions: To allow a better understanding of the complications associated with anemia in CVD, basic and translational science studies should be focused on identifying the role of noncanonical functions of RBCs in the cardiovascular system and on defining intrinsic and/or systemic dysfunction of RBCs in anemia and its relationship to CVD both in animal models and clinical settings. Antioxid. Redox Signal. 26, 718–742. PMID:27889956
Zhu, Baojie; Cao, Huiting; Sun, Limin; Li, Bo; Guo, Liwei; Duan, Jinao; Zhu, Huaxu; Zhang, Qichun
2018-04-24
Huang-Lian Jie-Du decoction (HLJDD), a traditional formula of Chinese medicine constituted with Rhizoma Coptidis, RadixScutellariae, CortexPhellodendri amurensis and Fructus Gardeniae, exhibits unambiguous therapeutic effect on cerebral ischemia via multi-targets action. Further investigation, however, is still required to explore the relationship between those mechanisms and targets through system approaches. Rats of cerebral ischemia were completed by middle cerebral artery occlusion (MCAO) with reperfusion. Following evaluation of pharmacological actions of HLJDD on MCAO rats, the plasma samples from rats of control, MCAO and HLJDD-treated MCAO groups were prepared strictly and subjected to ultra-performance liquid chromatography quadrupole time of flight mass spectrometry for metabolites analysis. The raw mass data were imported to MassLynx software for peak detection and alignment, and further introduced to EZinfo 2.0 software for orthogonal projection to latent structures analysis, principal component analysis and partial least-squares-discriminant analysis. The metabolic pathways assay of those potential biomarkers were performed with MetaboAnalyst through the online database, HMDB, Metlin, KEGG and SMPD. Those intriguing metabolic pathways were further investigated via biochemical assay. HLJDD ameliorated the MCAO-induce cerebral damage and blocked the severe inflammation response. There were nineteen different biomarkers identified among control, MCAO and HLJDD-treated MCAO groups. Ten metabolic pathways were proposed from these significant metabolites. Incorporation with the biochemical assay of cerebral tissue, modulation of metabolic stress, regulation glutamate/GABA-glutamine cycle and enhancement of cholinergic neurons function were explored that involved in the actions of HLJDD on cerebral ischemia. HLJDD achieves therapeutic action on cerebral ischemia via coordinating the basic pathophysiological network of metabolic stress, glutamate metabolism, and acetylcholine levels and function. Copyright © 2018 Elsevier B.V. All rights reserved.
Regulation of cellular iron metabolism
Wang, Jian; Pantopoulos, Kostas
2011-01-01
Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron–sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance. PMID:21348856
CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae
Kuipers, Oscar P.; Neves, Ana Rute
2011-01-01
In Gram-positive bacteria, the transcriptional regulator CcpA is at the core of catabolite control mechanisms. In the human pathogen Streptococcus pneumoniae, links between CcpA and virulence have been established, but its role as a master regulator in different nutritional environments remains to be elucidated. Thus, we performed whole-transcriptome and metabolic analyses of S. pneumoniae D39 and its isogenic ccpA mutant during growth on glucose or galactose, rapidly and slowly metabolized carbohydrates presumably encountered by the bacterium in different host niches. CcpA affected the expression of up to 19% of the genome covering multiple cellular processes, including virulence, regulatory networks and central metabolism. Its prevalent function as a repressor was observed on glucose, but unexpectedly also on galactose. Carbohydrate-dependent CcpA regulation was also observed, as for the tagatose 6-phosphate pathway genes, which were activated by galactose and repressed by glucose. Metabolite analyses revealed that two pathways for galactose catabolism are functionally active, despite repression of the Leloir genes by CcpA. Surprisingly, galactose-induced mixed-acid fermentation apparently required CcpA, since genes involved in this type of metabolism were mostly under CcpA-repression. These findings indicate that the role of CcpA extends beyond transcriptional regulation, which seemingly is overlaid by other regulatory mechanisms. In agreement, CcpA influenced the level of many intracellular metabolites potentially involved in metabolic regulation. Our data strengthen the view that a true understanding of cell physiology demands thorough analyses at different cellular levels. Moreover, integration of transcriptional and metabolic data uncovered a link between CcpA and the association of surface molecules (e.g. capsule) to the cell wall. Hence, CcpA may play a key role in mediating the interaction of S. pneumoniae with its host. Overall, our results support the hypothesis that S. pneumoniae optimizes basic metabolic processes, likely enhancing in vivo fitness, in a CcpA-mediated manner. PMID:22039538
Wonodi, Ikwunga; McMahon, Robert P; Krishna, Nithin; Mitchell, Braxton D; Liu, Judy; Glassman, Matthew; Hong, L Elliot; Gold, James M
2014-12-01
Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Wonodi, Ikwunga; McMahon, Robert P.; Krishna, Nithin; Mitchell, Braxton D.; Liu, Judy; Glassman, Matthew; Hong, L. Elliot; Gold, James M.
2015-01-01
Background Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. Methods We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Results Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. Conclusions These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. PMID:25464917
He, Dongli; Wang, Qiong; Li, Ming; Damaris, Rebecca Njeri; Yi, Xingling; Cheng, Zhongyi; Yang, Pingfang
2016-03-04
Regulation of rice seed germination has been shown to mainly occur at post-transcriptional levels, of which the changes on proteome status is a major one. Lysine acetylation and succinylation are two prevalent protein post-translational modifications (PTMs) involved in multiple biological processes, especially for metabolism regulation. To investigate the potential mechanism controlling metabolism regulation in rice seed germination, we performed the lysine acetylation and succinylation analyses simultaneously. Using high-accuracy nano-LC-MS/MS in combination with the enrichment of lysine acetylated or succinylated peptides from digested embryonic proteins of 24 h after imbibition (HAI) rice seed, a total of 699 acetylated sites from 389 proteins and 665 succinylated sites from 261 proteins were identified. Among these modified lysine sites, 133 sites on 78 proteins were commonly modified by two PTMs. The overlapped PTM sites were more likely to be in polar acidic/basic amino acid regions and exposed on the protein surface. Both of the acetylated and succinylated proteins cover nearly all aspects of cellular functions. Ribosome complex and glycolysis/gluconeogenesis-related proteins were significantly enriched in both acetylated and succinylated protein profiles through KEGG enrichment and protein-protein interaction network analyses. The acetyl-CoA and succinyl-CoA metabolism-related enzymes were found to be extensively modified by both modifications, implying the functional interaction between the two PTMs. This study provides a rich resource to examine the modulation of the two PTMs on the metabolism pathway and other biological processes in germinating rice seed.
An Advance Organizer for Teaching Bacterial Metabolism
ERIC Educational Resources Information Center
Barbosa, Heloiza R.; Marques, Marilis V.; Torres, Bayardo B.
2005-01-01
The metabolic versatility of bacteria is a source of learning difficulty for students in classical microbiology courses. To facilitate the learning process, the authors developed an advance organizer. It consists of a set of six diagrams of metabolic pathways describing the basic living requirements of several types of bacteria: energy, carbon…
... Not Listed? Not Listed? 5-HIAA 17-Hydroxyprogesterone Acetaminophen Acetylcholine Receptor (AChR) Antibody Acid-Fast Bacillus (AFB) ... your healthcare provider important information about your body's metabolism , including the current status of your kidneys as ...
... different types of alkalosis. These are described below. Respiratory alkalosis is caused by a low carbon dioxide level ... test, such as basic metabolic panel to confirm alkalosis and show ... respiratory or metabolic alkalosis. Other tests may be needed ...
Lundgren, Benjamin R; Connolly, Morgan P; Choudhary, Pratibha; Brookins-Little, Tiffany S; Chatterjee, Snigdha; Raina, Ramesh; Nomura, Christopher T
2015-01-01
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.
Yang, Shuzhi; Cai, Qunfeng; Bard, Jonathan; Jamison, Jennifer; Wang, Jianmin; Yang, Weiping; Hu, Bo Hua
2015-12-01
Individual variation in the susceptibility of the auditory system to acoustic overstimulation has been well-documented at both the functional and structural levels. However, the molecular mechanism responsible for this variation is unclear. The current investigation was designed to examine the variation patterns of cochlear gene expression using RNA-seq data and to identify the genes with expression variation that increased following acoustic trauma. This study revealed that the constitutive expressions of cochlear genes displayed diverse levels of gene-specific variation. These variation patterns were altered by acoustic trauma; approximately one-third of the examined genes displayed marked increases in their expression variation. Bioinformatics analyses revealed that the genes that exhibited increased variation were functionally related to cell death, biomolecule metabolism, and membrane function. In contrast, the stable genes were primarily related to basic cellular processes, including protein and macromolecular syntheses and transport. There was no functional overlap between the stable and variable genes. Importantly, we demonstrated that glutamate metabolism is related to the variation in the functional response of the cochlea to acoustic overstimulation. Taken together, the results indicate that our analyses of the individual variations in transcriptome changes of cochlear genes provide important information for the identification of genes that potentially contribute to the generation of individual variation in cochlear responses to acoustic overstimulation. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease
Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique
2016-01-01
The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981
Unbiased and targeted mass spectrometry for the HDL proteome.
Singh, Sasha A; Aikawa, Masanori
2017-02-01
Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Synthetic biology expands chemical control of microorganisms.
Ford, Tyler J; Silver, Pamela A
2015-10-01
The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.
Expanding the Scope of Site-Specific Recombinases for Genetic and Metabolic Engineering
Gaj, Thomas; Sirk, Shannon J.; Barbas, Carlos F.
2014-01-01
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. PMID:23982993
Model-based Confirmation of Alternative Substrates of Mitochondrial Electron Transport Chain
Kleessen, Sabrina; Araújo, Wagner L.; Fernie, Alisdair R.; Nikoloski, Zoran
2012-01-01
Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data. PMID:22334689
Hericium erinaceus (Yamabushitake): a unique resource for developing functional foods and medicines.
Wang, Mingxing; Gao, Yang; Xu, Duoduo; Konishi, Tetsuya; Gao, Qipin
2014-12-01
Hericium erinaceus (HE) is a fungus inhabiting the mountainous areas of the northeast territories in Asia. HE has been used in traditional folk medicine and medicinal cuisine in China, Korea and Japan. Evidence has been adduced for a variety of physiological effects, including anti-aging, anti-cancer, anti-gastritis, and anti-metabolic disease properties. Hence, HE is an attractive target resource for developing not only medicines, but also functional foods. Basic studies on the physiological functions of HE and on the chemical identification of its active ingredients have progressed in recent decades. In this article, we provide an overview of the biochemical and pharmacological studies on HE, especially of its antitumor and neuroprotective functions, together with a survey of recent developments in the chemical analysis of its polysaccharides, which comprise its major active components.
Programmable single-cell mammalian biocomputers.
Ausländer, Simon; Ausländer, David; Müller, Marius; Wieland, Markus; Fussenegger, Martin
2012-07-05
Synthetic biology has advanced the design of standardized control devices that program cellular functions and metabolic activities in living organisms. Rational interconnection of these synthetic switches resulted in increasingly complex designer networks that execute input-triggered genetic instructions with precision, robustness and computational logic reminiscent of electronic circuits. Using trigger-controlled transcription factors, which independently control gene expression, and RNA-binding proteins that inhibit the translation of transcripts harbouring specific RNA target motifs, we have designed a set of synthetic transcription–translation control devices that could be rewired in a plug-and-play manner. Here we show that these combinatorial circuits integrated a two-molecule input and performed digital computations with NOT, AND, NAND and N-IMPLY expression logic in single mammalian cells. Functional interconnection of two N-IMPLY variants resulted in bitwise intracellular XOR operations, and a combinatorial arrangement of three logic gates enabled independent cells to perform programmable half-subtractor and half-adder calculations. Individual mammalian cells capable of executing basic molecular arithmetic functions isolated or coordinated to metabolic activities in a predictable, precise and robust manner may provide new treatment strategies and bio-electronic interfaces in future gene-based and cell-based therapies.
An introduction to the molecular basics of aryl hydrocarbon receptor biology.
Abel, Josef; Haarmann-Stemmann, Thomas
2010-11-01
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
Carbohydrates and the human gut microbiota.
Chassard, Christophe; Lacroix, Christophe
2013-07-01
Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.
Functional Roles of Slow Enzyme Conformational Changes in Network Dynamics
Wu, Zhanghan; Xing, Jianhua
2012-01-01
Extensive studies from different fields reveal that many macromolecules, especially enzymes, show slow transitions among different conformations. This phenomenon is named such things as dynamic disorder, heterogeneity, hysteretic or mnemonic enzymes across these different fields, and has been directly demonstrated by single molecule enzymology and NMR studies recently. We analyzed enzyme slow conformational changes in the context of regulatory networks. A single enzymatic reaction with slow conformational changes can filter upstream network noises, and can either resonantly respond to the system stimulus at certain frequencies or respond adaptively for sustained input signals of the network fluctuations. It thus can serve as a basic functional motif with properties that are normally for larger intermolecular networks in the field of systems biology. We further analyzed examples including enzymes functioning against pH fluctuations, metabolic state change of Artemia embryos, and kinetic insulation of fluctuations in metabolic networks. The study also suggests that hysteretic enzymes may be building blocks of synthetic networks with various properties such as narrow-banded filtering. The work fills the missing gap between studies on enzyme biophysics and network level dynamics, and reveals that the coupling between the two is functionally important; it also suggests that the conformational dynamics of some enzymes may be evolutionally selected. PMID:23009855
The Paradox of ApoA5 Modulation of Triglycerides: Evidences from Clinical and Basic Research
Garelnabi, Mahdi; Lor, Kenton; Jin, Jun; Chai, Fei; Santanam, Nalini
2012-01-01
Apolipoprotein A5 (ApoA5) is a key regulator of plasma triglycerides (TG), although its plasma concentration is very low compared to other known apoproteins. Over the years, researchers have attempted to elucidate the molecular mechanisms by which ApoA5 regulates plasma TG in vivo. Though still under debate, two theories broadly describe how ApoA5 modulates TG levels: (i) ApoA5 enhances the catabolism of TG-rich lipoproteins and (ii) it inhibits the rate of production of very low-density lipoprotein (VLDL), the major carrier of TGs. This review will summarize the basic and clinical studies that have attempted to describe the importance of ApoA5 in TG metabolism. Population studies conducted in various countries have demonstrated an association between single nucleotide polymorphisms (SNPs) in ApoA5 and the increased risk to cardiovascular disease and metabolic syndrome (including diabetes and obesity). ApoA5 is also highly expressed during liver regeneration and is an acute phase protein associated with HDL which was independent of its effects on TG metabolism. Conclusion Despite considerable evidences available from clinical and basic research studies, on the role of ApoA5 in TG metabolism and its indirect link to metabolic diseases, additional investigations are needed to understand the paradoxical role of this important apoprotein shown modulated by diet and from it polymorphism variants. PMID:23000317
Complete Blood Count (For Parents)
... Test: Basic Metabolic Panel (BMP) Blood Test: Hemoglobin Basic Blood Chemistry Tests Word! Complete Blood Count (CBC) Medical Tests and Procedures (Video Landing Page) Getting a Blood Test (Video) Medical Tests: What to Expect ... View more About Us Contact Us ...
Metabolic flexibility in health and disease
Goodpaster, Bret H.; Sparks, Lauren M.
2017-01-01
Summary Metabolic flexibility is the ability to respond or adapt to conditional changes in metabolic demand. This broad concept has been propagated to explain insulin resistance and mechanisms governing fuel selection between glucose and fatty acids, highlighting the metabolic inflexibility of obesity and type 2 diabetes. In parallel, contemporary exercise physiology research has helped to identify potential mechanisms underlying altered fuel metabolism in obesity and diabetes. Advances in ‘omics’ technologies have further stimulated additional basic and clinical-translational research to further interrogate mechanisms for improved metabolic flexibility in skeletal muscle and adipose tissue with the goal to prevent and treat metabolic disease. PMID:28467922
Giessen, Tobias W
2016-10-01
Compartmentalization is one of the defining features of life. Cells use protein compartments to exert spatial control over their metabolism, store nutrients and create unique microenvironments needed for essential physiological processes. Encapsulins are a recently discovered class of protein nanocompartments found in bacteria and archaea that naturally encapsulate cargo proteins. A short C-terminal targeting sequence directs the highly specific encapsulation process in vivo. Here, I will initially discuss the properties, diversity and putative function of encapsulins. The unique characteristics and potential uses of the self-sorting cargo-packaging process found in encapsulin systems will then be highlighted. Examples for the application of encapsulins as cell-specific optical nanoprobes and targeted therapeutic delivery systems will be discussed with an emphasis on the ability to integrate multiple functionalities within a single nanodevice. By fusing targeting sequences to non-native proteins, encapsulins can also be used as specific nanocontainers and enzymatic nanoreactors in vivo. I will end by briefly discussing future avenues for encapsulin research related to both basic microbial metabolism and applications in biomedicine, catalysis and materials science. Copyright © 2016 Elsevier Ltd. All rights reserved.
Time-resolved metabolomics reveals metabolic modulation in rice foliage
Sato, Shigeru; Arita, Masanori; Soga, Tomoyoshi; Nishioka, Takaaki; Tomita, Masaru
2008-01-01
Background To elucidate the interaction of dynamics among modules that constitute biological systems, comprehensive datasets obtained from "omics" technologies have been used. In recent plant metabolomics approaches, the reconstruction of metabolic correlation networks has been attempted using statistical techniques. However, the results were unsatisfactory and effective data-mining techniques that apply appropriate comprehensive datasets are needed. Results Using capillary electrophoresis mass spectrometry (CE-MS) and capillary electrophoresis diode-array detection (CE-DAD), we analyzed the dynamic changes in the level of 56 basic metabolites in plant foliage (Oryza sativa L. ssp. japonica) at hourly intervals over a 24-hr period. Unsupervised clustering of comprehensive metabolic profiles using Kohonen's self-organizing map (SOM) allowed classification of the biochemical pathways activated by the light and dark cycle. The carbon and nitrogen (C/N) metabolism in both periods was also visualized as a phenotypic linkage map that connects network modules on the basis of traditional metabolic pathways rather than pairwise correlations among metabolites. The regulatory networks of C/N assimilation/dissimilation at each time point were consistent with previous works on plant metabolism. In response to environmental stress, glutathione and spermidine fluctuated synchronously with their regulatory targets. Adenine nucleosides and nicotinamide coenzymes were regulated by phosphorylation and dephosphorylation. We also demonstrated that SOM analysis was applicable to the estimation of unidentifiable metabolites in metabolome analysis. Hierarchical clustering of a correlation coefficient matrix could help identify the bottleneck enzymes that regulate metabolic networks. Conclusion Our results showed that our SOM analysis with appropriate metabolic time-courses effectively revealed the synchronous dynamics among metabolic modules and elucidated the underlying biochemical functions. The application of discrimination of unidentified metabolites and the identification of bottleneck enzymatic steps even to non-targeted comprehensive analysis promise to facilitate an understanding of large-scale interactions among components in biological systems. PMID:18564421
Xianjun, Peng; Linhong, Teng; Xiaoman, Wang; Yucheng, Wang; Shihua, Shen
2014-01-01
The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.
The Biophysics and Cell Biology of Lipid Droplets
Thiam, A. Rachid; Farese, Robert V.; Walther, Tobias C.
2015-01-01
Lipid droplets (LDs) are intracellular organelles that are found in most cells, where they have fundamental and dynamic roles in metabolism. Recent investigations showed the importance of basic biophysical principles of emulsions for LD biology. At their essence, LDs are the dispersed phase of an oil-in-water emulsion in the aqueous cytosol of cells. They function prominently in storing oil-based reserves of metabolic energy and components of membrane lipids. Because of their unique architecture, with an interface between the dispersed oil phase and the aqueous cytosol, LDs require specialized mechanisms for their formation, growth, and shrinkage. Such mechanisms enable cells to use emulsified oil in a controlled manner (e.g., when demands for metabolic energy or membrane synthesis increase). Regulation of the composition of the phospholipid surfactants at the LD surface is crucial for LD growth and catabolism and also modifies protein targeting to LD surfaces. Here, we review new insights into the cell biology of LDs, with an emphasis on concepts of emulsion science and biophysics that apply to this organelle. PMID:24220094
Griffith, David A.; Kung, Daniel W.; Esler, William P.; ...
2014-11-25
Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. We disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate formore » the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. In conclusion, this demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.« less
Numerical Optimization Algorithms and Software for Systems Biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, Michael
2013-02-02
The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.
ERIC Educational Resources Information Center
Engeroff, Tobias; Fleckenstein, Johannes; Banzer, Winfried
2017-01-01
We developed an experiment to help students understand basic regulation of postabsorptive and postprandial glucose metabolism and the availability of energy sources for physical activity in the fed and fasted state. Within a practical session, teams of two or three students (1 subject and 1 or 2 investigators) performed one of three different…
Clinical Pharmacology in Sleep Medicine
Proctor, Ashley; Bianchi, Matt T.
2012-01-01
The basic treatment goals of pharmacological therapies in sleep medicine are to improve waking function by either improving sleep or by increasing energy during wakefulness. Stimulants to improve waking function include amphetamine derivatives, modafinil, and caffeine. Sleep aids encompass several classes, from benzodiazepine hypnotics to over-the-counter antihistamines. Other medications used in sleep medicine include those initially used in other disorders, such as epilepsy, Parkinson's disease, and psychiatric disorders. As these medications are prescribed or encountered by providers in diverse fields of medicine, it is important to recognize the distribution of adverse effects, drug interaction profiles, metabolism, and cytochrome substrate activity. In this paper, we review the pharmacological armamentarium in the field of sleep medicine to provide a framework for risk-benefit considerations in clinical practice. PMID:23213564
Some new food for thought: the role of vitamin D in the mental health of older adults.
Cherniack, E Paul; Troen, Bruce R; Florez, Hermes J; Roos, Bernard A; Levis, Silvina
2009-02-01
Vitamin D, a multipurpose steroid hormone vital to health, has been increasingly implicated in the pathology of cognition and mental illness. Hypovitaminosis D is prevalent among older adults, and several studies suggest an association between hypovitaminosis D and basic and executive cognitive functions, depression, bipolar disorder, and schizophrenia. Vitamin D activates receptors on neurons in regions implicated in the regulation of behavior, stimulates neurotrophin release, and protects the brain by buffering antioxidant and anti-inflammatory defenses against vascular injury and improving metabolic and cardiovascular function. Although additional studies are needed to examine the impact of supplementation on cognition and mood disorders, given the known health benefits of vitamin D, we recommend greater supplementation in older adults.
Expanding the scope of site-specific recombinases for genetic and metabolic engineering.
Gaj, Thomas; Sirk, Shannon J; Barbas, Carlos F
2014-01-01
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study. © 2013 Wiley Periodicals, Inc.
On the Mass Distribution of Animal Species
NASA Astrophysics Data System (ADS)
Redner, Sidney; Clauset, Aaron; Schwab, David
2009-03-01
We develop a simple diffusion-reaction model to account for the broad and asymmetric distribution of adult body masses for species within related taxonomic groups. The model assumes three basic evolutionary features that control body mass: (i) a fixed lower limit that is set by metabolic constraints, (ii) a species extinction risk that is a weakly increasing function of body mass, and (iii) cladogenetic diffusion, in which daughter species have a slight tendency toward larger mass. The steady-state solution for the distribution of species masses in this model can be expressed in terms of the Airy function. This solution gives mass distributions that are in good agreement with data on 4002 terrestrial mammal species from the late Quaternary and 8617 extant bird species.
The paradox of ApoA5 modulation of triglycerides: evidence from clinical and basic research.
Garelnabi, Mahdi; Lor, Kenton; Jin, Jun; Chai, Fei; Santanam, Nalini
2013-01-01
Apolipoprotein A5 (ApoA5) is a key regulator of plasma triglycerides (TG), even though its plasma concentration is very low compared to other known apoproteins. Over the years, researchers have attempted to elucidate the molecular mechanisms by which ApoA5 regulates plasma TG in vivo. Though still under debate, two theories broadly describe how ApoA5 modulates TG levels: (i) ApoA5 enhances the catabolism of TG-rich lipoproteins and (ii) it inhibits the rate of production of very low-density lipoprotein (VLDL), the major carrier of TGs. This review will summarize the basic and clinical studies that describe the importance of ApoA5 in TG metabolism. Population studies conducted in various countries have demonstrated an association between single nucleotide polymorphisms (SNPs) in ApoA5 and the increased risk to cardiovascular disease and metabolic syndrome (including diabetes and obesity). ApoA5 is also highly expressed during liver regeneration and is an acute phase protein associated with HDL, which is independent of its effects on TG metabolism. Despite considerable evidences available from clinical and basic research studies on the role of ApoA5 in TG metabolism and its indirect link to metabolic diseases, additional investigations are needed to understand the paradoxical role of this important apoprotein is modulated by both diet and its polymorphism variants. Copyright © 2012 The Canadian Society of Clinical Chemists. All rights reserved.
Terpenoids and Their Biosynthesis in Cyanobacteria
Pattanaik, Bagmi; Lindberg, Pia
2015-01-01
Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610
Prevention of Colorectal Cancer by Targeting Obesity-Related Disorders and Inflammation.
Shirakami, Yohei; Ohnishi, Masaya; Sakai, Hiroyasu; Tanaka, Takuji; Shimizu, Masahito
2017-04-26
Colorectal cancer is a major healthcare concern worldwide. Many experimental and clinical studies have been conducted to date to discover agents that help in the prevention of this disease. Chronic inflammation in colonic mucosa and obesity, and its related metabolic abnormalities, are considered to increase the risk of colorectal cancer. Therefore, treatments targeting these factors might be a promising strategy to prevent the development of colorectal cancer. Among a number of functional foods, various phytochemicals, including tea catechins, which have anti-inflammatory and anti-obesity properties, and medicinal agents that ameliorate metabolic disorders, might also be beneficial in the prevention of colorectal cancer. In this review article, we summarize the strategies for preventing colorectal cancer by targeting obesity-related disorders and inflammation through nutraceutical and pharmaceutical approaches, and discuss the mechanisms of several phytochemicals and medicinal drugs used in basic and clinical research, especially focusing on the effects of green tea catechins.
NASA Technical Reports Server (NTRS)
Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.
1979-01-01
A 10-kg male pig-tailed monkey (Macaca nemestrina) was selected as an optimal species for spaceflight studies on weightlessness. Three days before the simulated launch, the animal was placed in a fiberglass pod system to provide continuous measurement of respiratory gas exchange. Attention is given to examining the effects of weightlessness on several basic parameters of metabolic and cardiovascular function in an adult nonhuman primate. The 10.7-day total simulated-experiment period consisted of preflight 2.6 days, inflight 6.3 days, and postflight 1.8 days. Statistically significant diurnal variation was noted in oxygen consumption and CO2 production rates, body temperature and HR, but not in respiratory quotient or blood pressure. The high quality of the continuous data obtained demonstrates the feasibility of performing sound physiological experimentation on nonhuman primates in the Spacelab environment.
Androgens: basic biology and clinical implication.
Orwoll, E S
2001-10-01
Although androgens have been considered essential modulators of bone biology in men, recent studies have indicated that estrogen may have an important, if not dominant, role. Nevertheless, there is strong evidence that androgens have independent skeletal actions. Nonaromatizable androgens influence a variety of aspects of bone cell biology and are capable of modulating bone remodeling and bone mass. It appears that androgens are particularly important in the control of periosteal bone formation, an effect that might underlie the gender difference in bone size. Alterations in androgen receptor function affect bone metabolism, and new information suggests that androgens modulate receptor homeostasis. The clinical implications of androgen effects, and how they interact with those of estrogens, are somewhat unclear. It is likely that overall bone homeostasis and gender differences depend on a combination of androgenic and estrogenic actions. Androgens may well provide advantages in the prevention and therapy of metabolic bone disorders in both men and women.
Prevention of Colorectal Cancer by Targeting Obesity-Related Disorders and Inflammation
Shirakami, Yohei; Ohnishi, Masaya; Sakai, Hiroyasu; Tanaka, Takuji; Shimizu, Masahito
2017-01-01
Colorectal cancer is a major healthcare concern worldwide. Many experimental and clinical studies have been conducted to date to discover agents that help in the prevention of this disease. Chronic inflammation in colonic mucosa and obesity, and its related metabolic abnormalities, are considered to increase the risk of colorectal cancer. Therefore, treatments targeting these factors might be a promising strategy to prevent the development of colorectal cancer. Among a number of functional foods, various phytochemicals, including tea catechins, which have anti-inflammatory and anti-obesity properties, and medicinal agents that ameliorate metabolic disorders, might also be beneficial in the prevention of colorectal cancer. In this review article, we summarize the strategies for preventing colorectal cancer by targeting obesity-related disorders and inflammation through nutraceutical and pharmaceutical approaches, and discuss the mechanisms of several phytochemicals and medicinal drugs used in basic and clinical research, especially focusing on the effects of green tea catechins. PMID:28445390
Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism
Fessler, Michael B.
2015-01-01
Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587
Solomons, Noel W
2013-01-01
Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.
Pircher, Andreas; Treps, Lucas; Bodrug, Natalia; Carmeliet, Peter
2016-10-01
Atherosclerosis is a leading cause of morbidity and mortality in Western society. Despite improved insight into disease pathogenesis and therapeutic options, additional treatment strategies are required. Emerging evidence highlights the relevance of endothelial cell (EC) metabolism for angiogenesis, and indicates that EC metabolism is perturbed when ECs become dysfunctional to promote atherogenesis. In this review, we overview the latest insights on EC metabolism and discuss current knowledge on how atherosclerosis deregulates EC metabolism, and how maladaptation of deregulated EC metabolism can contribute to atherosclerosis progression. We will also highlight possible therapeutic avenues, based on targeting EC metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Metabolic Flexibility in Health and Disease.
Goodpaster, Bret H; Sparks, Lauren M
2017-05-02
Metabolic flexibility is the ability to respond or adapt to conditional changes in metabolic demand. This broad concept has been propagated to explain insulin resistance and mechanisms governing fuel selection between glucose and fatty acids, highlighting the metabolic inflexibility of obesity and type 2 diabetes. In parallel, contemporary exercise physiology research has helped to identify potential mechanisms underlying altered fuel metabolism in obesity and diabetes. Advances in "omics" technologies have further stimulated additional basic and clinical-translational research to further interrogate mechanisms for improved metabolic flexibility in skeletal muscle and adipose tissue with the goal of preventing and treating metabolic disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Research Advances at the Institute for Nutritional Sciences at Shanghai, China12
Chen, Yan; Lin, Xu; Liu, Yong; Xie, Dong; Fang, Jing; Le, Yingying; Ke, Zunji; Zhai, Qiwei; Wang, Hui; Guo, Feifan; Wang, Fudi; Liu, Yi
2011-01-01
Nutrition-related health issues have emerged as a major threat to public health since the rebirth of the economy in China starting in the 1980s. To meet this challenge, the Chinese Academy of Sciences established the Institute for Nutritional Sciences (INS) at Shanghai, China ∼8 y ago. The mission of the INS is to apply modern technologies and concepts in nutritional research to understand the molecular mechanism and provide means of intervention in the combat against nutrition-related diseases, including type 2 diabetes, metabolic syndrome, obesity, cardiovascular diseases, and many types of cancers. Through diligent and orchestrated efforts by INS scientists, graduate students, and research staff in the past few years, the INS has become the leading institution in China in the areas of basic nutritional research and metabolic regulation. Scientists at the INS have made important progress in many areas, including the characterization of genetic and nutritional properties of the Chinese population, metabolic control associated with nutrient sensing, molecular mechanisms underlying glucose and lipid metabolism, regulation of metabolism by adipokines and inflammatory pathways, disease intervention using functional foods or extracts of Chinese herbs, and many biological studies related to carcinogenesis. The INS will continue its efforts in understanding the optimal nutritional needs for Chinese people and the molecular causes associated with metabolic diseases, thus paving the way for effective and individualized intervention in the future. This review highlights the major research endeavors undertaken by INS scientists in recent years. PMID:22332084
Kuppusamy, Kavitha T.; Jones, Daniel C.; Sperber, Henrik; Madan, Anup; Fischer, Karin A.; Rodriguez, Marita L.; Pabon, Lil; Zhu, Wei-Zhong; Tulloch, Nathaniel L.; Yang, Xiulan; Sniadecki, Nathan J.; Laflamme, Michael A.; Murry, Charles E.; Ruohola-Baker, Hannele
2015-01-01
In metazoans, transition from fetal to adult heart is accompanied by a switch in energy metabolism-glycolysis to fatty acid oxidation. The molecular factors regulating this metabolic switch remain largely unexplored. We first demonstrate that the molecular signatures in 1-year (y) matured human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are similar to those seen in in vivo-derived mature cardiac tissues, thus making them an excellent model to study human cardiac maturation. We further show that let-7 is the most highly up-regulated microRNA (miRNA) family during in vitro human cardiac maturation. Gain- and loss-of-function analyses of let-7g in hESC-CMs demonstrate it is both required and sufficient for maturation, but not for early differentiation of CMs. Overexpression of let-7 family members in hESC-CMs enhances cell size, sarcomere length, force of contraction, and respiratory capacity. Interestingly, large-scale expression data, target analysis, and metabolic flux assays suggest this let-7–driven CM maturation could be a result of down-regulation of the phosphoinositide 3 kinase (PI3K)/AKT protein kinase/insulin pathway and an up-regulation of fatty acid metabolism. These results indicate let-7 is an important mediator in augmenting metabolic energetics in maturing CMs. Promoting maturation of hESC-CMs with let-7 overexpression will be highly significant for basic and applied research. PMID:25964336
Research advances at the Institute for Nutritional Sciences at Shanghai, China.
Chen, Yan; Lin, Xu; Liu, Yong; Xie, Dong; Fang, Jing; Le, Yingying; Ke, Zunji; Zhai, Qiwei; Wang, Hui; Guo, Feifan; Wang, Fudi; Liu, Yi
2011-09-01
Nutrition-related health issues have emerged as a major threat to public health since the rebirth of the economy in China starting in the 1980s. To meet this challenge, the Chinese Academy of Sciences established the Institute for Nutritional Sciences (INS) at Shanghai, China ≈ 8 y ago. The mission of the INS is to apply modern technologies and concepts in nutritional research to understand the molecular mechanism and provide means of intervention in the combat against nutrition-related diseases, including type 2 diabetes, metabolic syndrome, obesity, cardiovascular diseases, and many types of cancers. Through diligent and orchestrated efforts by INS scientists, graduate students, and research staff in the past few years, the INS has become the leading institution in China in the areas of basic nutritional research and metabolic regulation. Scientists at the INS have made important progress in many areas, including the characterization of genetic and nutritional properties of the Chinese population, metabolic control associated with nutrient sensing, molecular mechanisms underlying glucose and lipid metabolism, regulation of metabolism by adipokines and inflammatory pathways, disease intervention using functional foods or extracts of Chinese herbs, and many biological studies related to carcinogenesis. The INS will continue its efforts in understanding the optimal nutritional needs for Chinese people and the molecular causes associated with metabolic diseases, thus paving the way for effective and individualized intervention in the future. This review highlights the major research endeavors undertaken by INS scientists in recent years.
Fuller, Scott; Stephens, Jacqueline M
2015-03-01
Metabolic syndrome and its complications continue to rise in prevalence and show no signs of abating in the immediate future. Therefore, the search for effective treatments is a high priority in biomedical research. Products derived from botanicals have a time-honored history of use in the treatment of metabolic diseases including type 2 diabetes. Trigonella foenum-graecum, commonly known as fenugreek, is an annual herbaceous plant that has been a staple of traditional herbal medicine in many cultures. Although fenugreek has been studied in both clinical and basic research settings, questions remain about its efficacy and biologic mechanisms of action. Diosgenin, 4-hydroxyisoleucine, and the fiber component of the plant are the most intensively studied bioactive constituents present in fenugreek. These compounds have been demonstrated to exert beneficial effects on several physiologic markers including glucose tolerance, inflammation, insulin action, liver function, blood lipids, and cardiovascular health. Although insights into the molecular mechanisms underlying the favorable effects of fenugreek have been gained, we still do not have definitive evidence establishing its role as a therapeutic agent in metabolic disease. This review aims to summarize the currently available evidence on the physiologic effects of the 3 best-characterized bioactive compounds of fenugreek, with particular emphasis on biologic mechanisms of action relevant in the context of metabolic syndrome. © 2015 American Society for Nutrition.
Energy metabolism and inflammation in brain aging and Alzheimer's disease.
Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique
2016-11-01
The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.
A systems biology road map for the discovery of drugs targeting cancer cell metabolism.
Alberghina, Lilia; Gaglio, Daniela; Moresco, Rosa Maria; Gilardi, Maria Carla; Messa, Cristina; Vanoni, Marco
2014-01-01
Despite their different histological and molecular properties, different types of cancers share few essential functional alterations. Some of these cancer hallmarks may easily be studied in in vitro cultures, while others are related to the way in which tumors grow in vivo. According to the systems biology paradigm, complex cellular functions arise as system-level properties from the dynamic interaction of a large number of biomolecules. We previously newly defined four basic cancer cell properties derived from known cancer hallmarks amenable to system-level investigation in cell cultures: enhanced growth, altered response to apoptotic cues, genomic instability and inability to enter senescence following oncogenic signaling. Here we summarize the major properties of enhanced growth that is dependent on metabolism rewiring - in which glucose is mostly used by fermentation while glutamine provides nitrogen and carbon atoms for biosyntheses - and controlled by oncogene signaling. We then briefly review the major drugs used to target signaling pathways in preclinical and clinical studies, whose clinical efficacy is unfortunately severely limited by tumor resistance, substantially due to signaling cross-talk. We present a systems biology roadmap that integrates different types of mathematical models with conventional and post-genomic biomolecular analyses that will provide a deeper mechanistic understanding of the links between metabolism and uncontrolled cancer cell growth. This approach is taken to be instrumental both in unraveling cancer's first principles and in designing novel drugs able to target one or more control or execution steps of the cancer rewired metabolism, in order to achieve permanent arrest of tumor development.
Cerami, Chiara; Dodich, Alessandra; Iannaccone, Sandro; Marcone, Alessandra; Lettieri, Giada; Crespi, Chiara; Gianolli, Luigi; Cappa, Stefano F.; Perani, Daniela
2015-01-01
The behavioural variant of frontotemporal dementia (bvFTD) is a rare disease mainly affecting the social brain. FDG-PET fronto-temporal hypometabolism is a supportive feature for the diagnosis. It may also provide specific functional metabolic signatures for altered socio-emotional processing. In this study, we evaluated the emotion recognition and attribution deficits and FDG-PET cerebral metabolic patterns at the group and individual levels in a sample of sporadic bvFTD patients, exploring the cognitive-functional correlations. Seventeen probable mild bvFTD patients (10 male and 7 female; age 67.8±9.9) were administered standardized and validated version of social cognition tasks assessing the recognition of basic emotions and the attribution of emotions and intentions (i.e., Ekman 60-Faces test-Ek60F and Story-based Empathy task-SET). FDG-PET was analysed using an optimized voxel-based SPM method at the single-subject and group levels. Severe deficits of emotion recognition and processing characterized the bvFTD condition. At the group level, metabolic dysfunction in the right amygdala, temporal pole, and middle cingulate cortex was highly correlated to the emotional recognition and attribution performances. At the single-subject level, however, heterogeneous impairments of social cognition tasks emerged, and different metabolic patterns, involving limbic structures and prefrontal cortices, were also observed. The derangement of a right limbic network is associated with altered socio-emotional processing in bvFTD patients, but different hypometabolic FDG-PET patterns and heterogeneous performances on social tasks at an individual level exist. PMID:26513651
Martínez-Montes, Eduardo
2013-01-01
This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356
Hassan, Sarah F.; Wearne, Travis A.; Cornish, Jennifer L.
2016-01-01
Key points Methamphetamine (METH) abuse is escalating worldwide, with the most common cause of death resulting from cardiovascular failure and hyperthermia; however, the underlying physiological mechanisms are poorly understood.Systemic administration of METH in anaesthetised rats reduced the effectiveness of some protective cardiorespiratory reflexes, increased central respiratory activity independently of metabolic function, and increased heart rate, metabolism and respiration in a pattern indicating that non‐shivering thermogenesis contributes to the well‐described hyperthermia.In animals that showed METH‐induced behavioural sensitisation following chronic METH treatment, no changes were evident in baseline cardiovascular, respiratory and metabolic measures and the METH‐evoked effects in these parameters were similar to those seen in saline‐treated or drug naïve animals.Physiological effects evoked by METH were retained but were neither facilitated nor depressed following chronic treatment with METH.These data highlight and identify potential mechanisms for targeted intervention in patients vulnerable to METH overdose. Abstract Methamphetamine (METH) is known to promote cardiovascular failure or life‐threatening hyperthermia; however, there is still limited understanding of the mechanisms responsible for evoking the physiological changes. In this study, we systematically determined the effects on both autonomic and respiratory outflows, as well as reflex function, following acute and repeated administration of METH, which enhances behavioural responses. Arterial pressure, heart rate, phrenic nerve discharge amplitude and frequency, lumbar and splanchnic sympathetic nerve discharge, interscapular brown adipose tissue and core temperatures, and expired CO2 were measured in urethane‐anaesthetised male Sprague‐Dawley rats. Novel findings include potent increases in central inspiratory drive and frequency that are not dependent on METH‐evoked increases in expired CO2 levels. Increases in non‐shivering thermogenesis correlate with well‐described increases in body temperature and heart rate. Unexpectedly, METH evoked minor effects on both sympathetic outflows and mean arterial pressure. METH modified cardiorespiratory reflex function in response to hypoxia, hypercapnia and baroreceptor unloading. Chronically METH‐treated rats failed to exhibit changes in baseline sympathetic, cardiovascular, respiratory and metabolic parameters. The tonic and reflex cardiovascular, respiratory and metabolic responses to METH challenge were similar to those seen in saline‐treated and drug naive animals. Overall, these findings describe independent and compound associations between physiological systems evoked by METH and serve to highlight that a single dose of METH can significantly impact basic homeostatic systems and protective functions. These effects of METH persist even following chronic METH treatment. PMID:26584821
Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
Kiparissides, A; Hatzimanikatis, V
2017-01-01
The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
The Contribution of Mathematical Modeling to Understanding Dynamic Aspects of Rumen Metabolism
Bannink, André; van Lingen, Henk J.; Ellis, Jennifer L.; France, James; Dijkstra, Jan
2016-01-01
All mechanistic rumen models cover the main drivers of variation in rumen function, which are feed intake, the differences between feedstuffs and feeds in their intrinsic rumen degradation characteristics, and fractional outflow rate of fluid and particulate matter. Dynamic modeling approaches are best suited to the prediction of more nuanced responses in rumen metabolism, and represent the dynamics of the interactions between substrates and micro-organisms and inter-microbial interactions. The concepts of dynamics are discussed for the case of rumen starch digestion as influenced by starch intake rate and frequency of feed intake, and for the case of fermentation of fiber in the large intestine. Adding representations of new functional classes of micro-organisms (i.e., with new characteristics from the perspective of whole rumen function) in rumen models only delivers new insights if complemented by the dynamics of their interactions with other functional classes. Rumen fermentation conditions have to be represented due to their profound impact on the dynamics of substrate degradation and microbial metabolism. Although the importance of rumen pH is generally acknowledged, more emphasis is needed on predicting its variation as well as variation in the processes that underlie rumen fluid dynamics. The rumen wall has an important role in adapting to rapid changes in the rumen environment, clearing of volatile fatty acids (VFA), and maintaining rumen pH within limits. Dynamics of rumen wall epithelia and their role in VFA absorption needs to be better represented in models that aim to predict rumen responses across nutritional or physiological states. For a detailed prediction of rumen N balance there is merit in a dynamic modeling approach compared to the static approaches adopted in current protein evaluation systems. Improvement is needed on previous attempts to predict rumen VFA profiles, and this should be pursued by introducing factors that relate more to microbial metabolism. For rumen model construction, data on rumen microbiomes are preferably coupled with knowledge consolidated in rumen models instead of relying on correlations with rather general aspects of treatment or animal. This helps to prevent the disregard of basic principles and underlying mechanisms of whole rumen function. PMID:27933039
Amino acids--a life between metabolism and signaling.
Häusler, Rainer E; Ludewig, Frank; Krueger, Stephan
2014-12-01
Amino acids serve as constituents of proteins, precursors for anabolism, and, in some cases, as signaling molecules in mammalians and plants. This review is focused on new insights, or speculations, on signaling functions of serine, γ-aminobutyric acid (GABA) and phenylalanine-derived phenylpropanoids. Serine acts as signal in brain tissue and mammalian cancer cells. In plants, de novo serine biosynthesis is also highly active in fast growing tissues such as meristems, suggesting a similar role of serine as in mammalians. GABA functions as inhibitory neurotransmitter in the brain. In plants, GABA is also abundant and seems to be involved in sexual reproduction, cell elongation, patterning and cell identity. The aromatic amino acids phenylalanine, tyrosine, and tryptophan are precursors for the production of secondary plant products. Besides their pharmaceutical value, lignans, neolignans and hydroxycinnamic acid amides (HCAA) deriving from phenylpropanoid metabolism and, in the case of HCAA, also from arginine have been shown to fulfill signaling functions or are involved in the response to biotic and abiotic stress. Although some basics on phenylpropanoid-derived signaling have been described, little is known on recognition- or signal transduction mechanisms. In general, mutant- and transgenic approaches will be helpful to elucidate the mechanistic basis of metabolite signaling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Assessment of Mitochondrial Dysfunction Arising from Treatment with Hepatotoxicants
King, Adrienne L.; Bailey, Shannon M.
2010-01-01
Studies demonstrate that mitochondrial dysfunction is a key causative factor in liver disease. Indeed, defects in mitochondrial energy metabolism, disrupted calcium handling, and increased reactive oxygen/nitrogen species production are observed in many metabolic disorders and diseases induced by toxicants. Mitochondria have emerged as a main research focus through work defining new functions of this key organelle in normal cellular physiology and pathophysiology. Specifically, studies show a critical role of mitochondrial reactive oxygen/nitrogen species production in regulating cellular signaling pathways involved in cell survival and death. Given this, along with advances made in proteomics technologies, mitochondria are recognized as top candidates for proteomics analysis. However, assessment of mitochondrial function and it’s proteome following toxicant exposure are not trivial undertakings. In this chapter a technique used to isolate mitochondria from liver tissue is presented along with methods needed to assess mitochondria functionality. The methods described include measurement of mitochondrial respiration, calcium accumulation, and reactive oxygen species production. A presentation of proteomics approaches is also included to allow researchers the basic tools needed to identify alterations in the mitochondrial proteome that contribute to toxicant-mediated diseases. Specifically, methods are presented that demonstrate how thiol labeling reagents in combination with electrophoresis and western blotting can be used to detect oxidant-mediated alterations in mitochondrial protein thiols. A few select pieces data are presented highlighting the power of proteomics to identify mitochondrial targets that contribute to mitochondrial dysfunction and hepatotoxicity in response to specific toxicant exposures and metabolic stressors such as alcohol and environmental tobacco smoke. PMID:23045017
Kudriavtseva, M V; Bezborodkina, N N; Okovityĭ, S V; Ivanova, O V; Kudriavtsev, B N
2002-01-01
Effect of actoprotector bemithyl (2-ethylthiobenzimidazole hydrobromide) on glycogen metabolism in hepatocytes of patients with chronic hepatitis and liver cirrhosis was investigated. Using cytofluorimetric method, the content of glycogen and its fractions in isolated hepatocytes was measured. The treatment with bemithyl resulted in a decrease in glycogen levels in hepatocytes, and in a marked restoration of fractional glycogen composition as compared to the basic therapy. Besides, it was established that the degree of glycogen decrease in cells of patients with chronic hepatitis depended on the increase of glucose-6-phosphatase activity (r = 0.75, P < 0.05), and on the levels of glycogen in hepatocytes prior to bemitil treatment (r = = 0.87, P < 0.01). Positive changes in glycogen metabolism after bemithyl treatment are pronounced in patients with chronic hepatitis. These positive alterations take place simultaneously with the conservation of basic structural disturbances in the liver parenchyma. However, even in this case, the indices of glycogen metabolism do not reach the normal levels.
COBRApy: COnstraints-Based Reconstruction and Analysis for Python.
Ebrahim, Ali; Lerman, Joshua A; Palsson, Bernhard O; Hyduke, Daniel R
2013-08-08
COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely used for genome-scale modeling of metabolic networks in both prokaryotes and eukaryotes. Due to the successes with metabolism, there is an increasing effort to apply COBRA methods to reconstruct and analyze integrated models of cellular processes. The COBRA Toolbox for MATLAB is a leading software package for genome-scale analysis of metabolism; however, it was not designed to elegantly capture the complexity inherent in integrated biological networks and lacks an integration framework for the multiomics data used in systems biology. The openCOBRA Project is a community effort to promote constraints-based research through the distribution of freely available software. Here, we describe COBRA for Python (COBRApy), a Python package that provides support for basic COBRA methods. COBRApy is designed in an object-oriented fashion that facilitates the representation of the complex biological processes of metabolism and gene expression. COBRApy does not require MATLAB to function; however, it includes an interface to the COBRA Toolbox for MATLAB to facilitate use of legacy codes. For improved performance, COBRApy includes parallel processing support for computationally intensive processes. COBRApy is an object-oriented framework designed to meet the computational challenges associated with the next generation of stoichiometric constraint-based models and high-density omics data sets. http://opencobra.sourceforge.net/
A discrete mathematical model applied to genetic regulation and metabolic networks.
Asenjo, A J; Ramirez, P; Rapaport, I; Aracena, J; Goles, E; Andrews, B A
2007-03-01
This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-à-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an inrtegrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 (2(3)) fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.
NASA Astrophysics Data System (ADS)
Apostel, C.; Dippold, M. A.; Kuzyakov, Y.
2015-12-01
Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations. Quantitative models to assess microbial group specific metabolic pathways can be generated and parameterized by this approach. The knowledge of submolecular C transformation steps and its regulating factors is essential for understanding C cycling and long-term C storage in soils.
Metabolic network modeling with model organisms.
Yilmaz, L Safak; Walhout, Albertha Jm
2017-02-01
Flux balance analysis (FBA) with genome-scale metabolic network models (GSMNM) allows systems level predictions of metabolism in a variety of organisms. Different types of predictions with different accuracy levels can be made depending on the applied experimental constraints ranging from measurement of exchange fluxes to the integration of gene expression data. Metabolic network modeling with model organisms has pioneered method development in this field. In addition, model organism GSMNMs are useful for basic understanding of metabolism, and in the case of animal models, for the study of metabolic human diseases. Here, we discuss GSMNMs of most highly used model organisms with the emphasis on recent reconstructions. Published by Elsevier Ltd.
Metabolic network modeling with model organisms
Yilmaz, L. Safak; Walhout, Albertha J.M.
2017-01-01
Flux balance analysis (FBA) with genome-scale metabolic network models (GSMNM) allows systems level predictions of metabolism in a variety of organisms. Different types of predictions with different accuracy levels can be made depending on the applied experimental constraints ranging from measurement of exchange fluxes to the integration of gene expression data. Metabolic network modeling with model organisms has pioneered method development in this field. In addition, model organism GSMNMs are useful for basic understanding of metabolism, and in the case of animal models, for the study of metabolic human diseases. Here, we discuss GSMNMs of most highly used model organisms with the emphasis on recent reconstructions. PMID:28088694
Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function.
Levengood, Jeffrey D; Tolbert, Blanton S
2018-04-09
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that function in most stages of RNA metabolism. The prototypical member, hnRNP A1, is composed of three major domains; tandem N-terminal RNA Recognition Motifs (RRMs) and a C-terminal mostly intrinsically disordered region. HnRNP A1 is broadly implicated in basic cellular RNA processing events such as splicing, stability, nuclear export and translation. Due to its ubiquity and abundance, hnRNP A1 is also frequently usurped to control viral gene expression. Deregulation of the RNA metabolism functions of hnRNP A1 in neuronal cells contributes to several neurodegenerative disorders. Because of these roles in human pathologies, the study of hnRNP A1 provides opportunities for the development of novel therapeutics, with disruption of its RNA binding capabilities being the most promising target. The functional diversity of hnRNP A1 is reflected in the complex nature by which it interacts with various RNA targets. Indeed, hnRNP A1 binds both structured and unstructured RNAs with binding affinities that span several magnitudes. Available structures of hnRNP A1-RNA complexes also suggest a degree of plasticity in molecular recognition. Given the reinvigoration in hnRNP A1, the goal of this review is to use the available structural biochemical developments as a framework to interpret its wide-range of RNA functions. Copyright © 2018. Published by Elsevier Ltd.
Developmental cardiovascular physiology of the olive ridley sea turtle (Lepidochelys olivacea).
Crossley, Dane Alan; Crossley, Janna Lee; Smith, Camilla; Harfush, Martha; Sánchez-Sánchez, Hermilo; Garduño-Paz, Mónica Vanessa; Méndez-Sánchez, José Fernando
2017-09-01
Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system. Although prior studies have been pivotal in characterizing development, and factors that influence it, the development of cardiovascular function, which supplies metabolic function, is unknown in sea turtles. During our investigation we focused on quantifying how cardiovascular morphological and functional parameters change, to provide basic knowledge of development in the olive ridley sea turtle (Lepidochelys olivacea). Embryonic mass, as well as mass of the heart, lungs, liver, kidney, and brain increased during turtle embryo development. Although heart rate was constant during this developmental period, arterial pressure approximately doubled. Further, while embryonic olive ridley sea turtles lacked cholinergic tone on heart rate, there was a pronounced beta adrenergic tone on heart rate that decreased in strength at 90% of incubation. This beta adrenergic tone may be partially originating from the sympathetic nervous system at 90% of incubation, with the majority originating from circulating catecholamines. Data indicates that olive ridley sea turtles share traits of embryonic functional cardiovascular maturation with the American alligator (Alligator mississippiensis) but not the common snapping turtle (Chelydra serpentina). Copyright © 2017 Elsevier Inc. All rights reserved.
Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang
2016-11-03
The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1 H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.
[Folate, vitamin B12 and human health].
Brito, Alex; Hertrampf, Eva; Olivares, Manuel; Gaitán, Diego; Sánchez, Hugo; Allen, Lindsay H; Uauy, Ricardo
2012-11-01
During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared functions and intertwined metabolic pathways that define the size of the "methyl donor" pool utilized in multiple metabolic pathways; these include DNA methylation and synthesis of nucleic acids. In Chile, folate deficiency is virtually nonexistent, while vitamin B12 deficiency affects approximately 8.5-51% depending on the cut-off value used to define deficiency. Folate is found naturally mainly in vegetables or added as folic acid to staple foods. Vitamin B12 in its natural form is present only in foods of animal origin, which is why deficit is more common among strict vegetarians and populations with a low intake of animal foods. Poor folate status in vulnerable women of childbearing age increases the risk of neural tube birth defects, so the critical time for the contribution of folic acid is several months before conception since neural tube closure occurs during the first weeks of life. The absorption of vitamin B12 from food is lower in older adults, who are considered to have higher risk of gastric mucosa atrophy, altered production of intrinsic factor and acid secretion. Deficiency of these vitamins is associated with hematological disorders. Vitamin B12 deficiency can also induce clinical and sub-clinical neurological and of other disorders. The purpose of this review is to provide an update on recent advances in the basic and applied knowledge of these vitamins relative to human health.
Explanted Diseased Livers – A Possible Source of Metabolic Competent Primary Human Hepatocytes
Krech, Till; DeTemple, Daphne; Jäger, Mark D.; Lehner, Frank; Manns, Michael P.; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W. R.
2014-01-01
Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5′-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might represent a valuable source of metabolically competent PHH which are comparable in viability and function to cells obtained from specimens following partial liver resection. PMID:24999631
Mitochondria targeting by environmental stressors: Implications for redox cellular signaling.
Blajszczak, Chuck; Bonini, Marcelo G
2017-11-01
Mitochondria are cellular powerhouses as well as metabolic and signaling hubs regulating diverse cellular functions, from basic physiology to phenotypic fate determination. It is widely accepted that reactive oxygen species (ROS) generated in mitochondria participate in the regulation of cellular signaling, and that some mitochondria chronically operate at a high ROS baseline. However, it is not completely understood how mitochondria adapt to persistently high ROS states and to environmental stressors that disturb the redox balance. Here we will review some of the current concepts regarding how mitochondria resist oxidative damage, how they are replaced when excessive oxidative damage compromises function, and the effect of environmental toxicants (i.e. heavy metals) on the regulation of mitochondrial ROS (mtROS) production and subsequent impact. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong
The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.
Metabolic Myopathies and Physical Activity: When Fatigue Is More Than Simple Exertion.
ERIC Educational Resources Information Center
Tarnopolsky, Mark A.
2002-01-01
When patients experience fatigue and muscle cramps beyond exercise adaptation, physicians should consider metabolic myopathies. The most common conditions seen in active patients are myoadenylate deaminase deficiency and disorders such as McArdle's disease. Targeted family histories and basic laboratory studies help rule out conditions mimicking…
BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities
Chipman, Hugh; Gu, Hong; Bielawski, Joseph P.
2014-01-01
Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise from opportunist growth of bacteria that can circumvent the host's nutrient-based mechanism for bacterial partner selection. PMID:25412107
Anderson, Olin D; Coleman-Derr, Devin; Gu, Yong Q; Heath, Sekou
2010-06-16
Among the dietary essential amino acids, the most severely limiting in the cereals is lysine. Since cereals make up half of the human diet, lysine limitation has quality/nutritional consequences. The breakdown of lysine is controlled mainly by the catabolic bifunctional enzyme lysine ketoglutarate reductase - saccharopine dehydrogenase (LKR/SDH). The LKR/SDH gene has been reported to produce transcripts for the bifunctional enzyme and separate monofunctional transcripts. In addition to lysine metabolism, this gene has been implicated in a number of metabolic and developmental pathways, which along with its production of multiple transcript types and complex exon/intron structure suggest an important node in plant metabolism. Understanding more about the LKR/SDH gene is thus interesting both from applied standpoint and for basic plant metabolism. The current report describes a wheat genomic fragment containing an LKR/SDH gene and adjacent genes. The wheat LKR/SDH genomic segment was found to originate from the A-genome of wheat, and EST analysis indicates all three LKR/SDH genes in hexaploid wheat are transcriptionally active. A comparison of a set of plant LKR/SDH genes suggests regions of greater sequence conservation likely related to critical enzymatic functions and metabolic controls. Although most plants contain only a single LKR/SDH gene per genome, poplar contains at least two functional bifunctional genes in addition to a monofunctional LKR gene. Analysis of ESTs finds evidence for monofunctional LKR transcripts in switchgrass, and monofunctional SDH transcripts in wheat, Brachypodium, and poplar. The analysis of a wheat LKR/SDH gene and comparative structural and functional analyses among available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and the immediately adjacent genes show lineage-specific differences between monocots and dicots, and findings suggest variation in activity of LKR/SDH genes among plants. Although most plant genomes seem to contain a single conserved LKR/SDH gene per genome, poplar possesses multiple contiguous genes. A preponderance of SDH transcripts suggests the LKR region may be more rate-limiting. Only switchgrass has EST evidence for LKR monofunctional transcripts. Evidence for monofunctional SDH transcripts shows a novel intron in wheat, Brachypodium, and poplar.
Nutrition, Epigenetics, and Metabolic Syndrome
Wang, Junjun; Wu, Zhenlong; Li, Defa; Li, Ning; Dindot, Scott V.; Satterfield, M. Carey; Bazer, Fuller W.
2012-01-01
Significance: Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. Recent Advances: DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. Critical Issues: Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. Future Directions: Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition. Antioxid. Redox Signal. 17, 282–301. PMID:22044276
Emerging roles for riboflavin in functional rescue of mitochondrial β-oxidation flavoenzymes.
Henriques, Bárbara J; Olsen, Rikke K; Bross, Peter; Gomes, Cláudio M
2010-01-01
Riboflavin, commonly known as vitamin B2, is the precursor of flavin cofactors. It is present in our typical diet, and inside the cells it is metabolized to FMN and FAD. As a result of their rather unique and flexible chemical properties these flavins are among the most important redox cofactors present in a large series of different enzymes. A problem in riboflavin metabolism or a low intake of this vitamin will have consequences on the level of FAD and FMN in the cell, resulting in disorders associated with riboflavin deficiency. In a few number of cases, riboflavin deficiency is associated with impaired oxidative folding, cell damage and impaired heme biosynthesis. More relevant are several studies referring reduced activity of enzymes such as dehydrogenases involved in oxidative reactions, respiratory complexes and enzymes from the fatty acid β-oxidation pathway. The role of this vitamin in mitochondrial metabolism, and in particular in fatty acid oxidation, will be discussed in this review. The basic aspects concerning riboflavin and flavin metabolism and deficiency will be addressed, as well as an overview of the role of the different flavoenzymes and flavin chemistry in fatty acid β-oxidation, merging clinical, cellular and biochemical perspectives. A number of recent studies shedding new light on the cellular processes and biological effects of riboflavin supplementation in metabolic disease will also be overviewed. Overall, a deeper understanding of these emerging roles of riboflavin intake is essential to design better therapies.
Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.
Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum
2007-09-15
The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.
Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging
NASA Astrophysics Data System (ADS)
Kaczanowski, Szymon
2016-06-01
Programmed cell death is a basic cellular mechanism. Apoptotic-like programmed cell death (called apoptosis in animals) occurs in both unicellular and multicellular eukaryotes, and some apoptotic mechanisms are observed in bacteria. Endosymbiosis between mitochondria and eukaryotic cells took place early in the eukaryotic evolution, and some of the apoptotic-like mechanisms of mitochondria that were retained after this event now serve as parts of the eukaryotic apoptotic machinery. Apoptotic mechanisms have several functions in unicellular organisms: they include kin-selected altruistic suicide that controls population size, sharing common goods, and responding to viral infection. Apoptotic factors also have non-apoptotic functions. Apoptosis is involved in the cellular aging of eukaryotes, including humans. In addition, apoptosis is a key part of the innate tumor-suppression mechanism. Several anticancer drugs induce apoptosis, because apoptotic mechanisms are inactivated during oncogenesis. Because of the ancient history of apoptosis, I hypothesize that there is a deep relationship between mitochondrial metabolism, its role in aerobic versus anaerobic respiration, and the connection between apoptosis and cancer. Whereas normal cells rely primarily on oxidative mitochondrial respiration, most cancer cells use anaerobic metabolism. According to the Warburg hypothesis, the remodeling of the metabolism is one of the processes that leads to cancer. Recent studies indicate that anaerobic, non-mitochondrial respiration is particularly active in embryonic cells, stem cells, and aggressive stem-like cancer cells. Mitochondrial respiration is particularly active during the pathological aging of human cells in neurodegenerative diseases. According to the reversed Warburg hypothesis formulated by Demetrius, pathological aging is induced by mitochondrial respiration. Here, I advance the hypothesis that the stimulation of mitochondrial metabolism leads to pathological aging.
Yoshida, Kenta; Zhao, Ping; Zhang, Lei; Abernethy, Darrell R; Rekić, Dinko; Reynolds, Kellie S; Galetin, Aleksandra; Huang, Shiew-Mei
2017-09-01
Evaluation of drug-drug interaction (DDI) risk is vital to establish benefit-risk profiles of investigational new drugs during drug development. In vitro experiments are routinely conducted as an important first step to assess metabolism- and transporter-mediated DDI potential of investigational new drugs. Results from these experiments are interpreted, often with the aid of in vitro-in vivo extrapolation methods, to determine whether and how DDI should be evaluated clinically to provide the basis for proper DDI management strategies, including dosing recommendations, alternative therapies, or contraindications under various DDI scenarios and in different patient population. This article provides an overview of currently available in vitro experimental systems and basic in vitro-in vivo extrapolation methodologies for metabolism- and transporter-mediated DDIs. Published by Elsevier Inc.
Interfacing microbiology and biotechnology. Conference abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maupin, Julia A.
2001-05-19
The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction andmore » future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.« less
GM1 and GM2 gangliosides: recent developments.
Bisel, Blaine; Pavone, Francesco S; Calamai, Martino
2014-03-01
GM1 and GM2 gangliosides are important components of the cell membrane and play an integral role in cell signaling and metabolism. In this conceptual overview, we discuss recent developments in our understanding of the basic biological functions of GM1 and GM2 and their involvement in several diseases. In addition to a well-established spectrum of disorders known as gangliosidoses, such as Tay-Sachs disease, more and more evidence points at an involvement of GM1 in Alzheimer's and Parkinson's diseases. New emerging methodologies spanning from single-molecule imaging in vivo to simulations in silico have complemented standard studies based on ganglioside extraction.
[Basic results of an experiment with mammals on the Kosmos-782 biosatellite].
Gazenko, O G; Genin, A M; Il'in, E A; Portugalov, V V; Serova, L V
1978-01-01
The rat experiments carried out onboard the biosatellite Cosmos-782 contributed to our understanding of mechanisms of animal adaption to prolonged weightlessness. Postflight analysis helped to study nonspecific changes related to the stress-reaction accompanying space flight and return to the Earth gravity as well as specific changes associated with functional unloading of the musculoskeletal system in weightlessness. The flight results confirmed the previously made conclusions concerning possible adaptation of mammals to prolonged weightlessness and lack of pathological changes in vital weightlessness. They included: metabolic and hormonal changes, muscle atrophy, osteoporosis and delayed bone growth, decrease of ATPase activity of myocardial myosin, inhibition of erythropoiesis.
Sanchita; Singh, Swati; Sharma, Ashok
2014-11-01
Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.
From chemical metabolism to life: the origin of the genetic coding process
2017-01-01
Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life. PMID:28684991
Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction
Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.
2016-01-01
Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025
2010-01-01
Background Comparative genomics methods such as phylogenetic profiling can mine powerful inferences from inherently noisy biological data sets. We introduce Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL), a method that applies the Partial Phylogenetic Profiling (PPP) approach locally within a protein sequence to discover short sequence signatures associated with functional sites. The approach is based on the basic scoring mechanism employed by PPP, namely the use of binomial distribution statistics to optimize sequence similarity cutoffs during searches of partitioned training sets. Results Here we illustrate and validate the ability of the SIMBAL method to find functionally relevant short sequence signatures by application to two well-characterized protein families. In the first example, we partitioned a family of ABC permeases using a metabolic background property (urea utilization). Thus, the TRUE set for this family comprised members whose genome of origin encoded a urea utilization system. By moving a sliding window across the sequence of a permease, and searching each subsequence in turn against the full set of partitioned proteins, the method found which local sequence signatures best correlated with the urea utilization trait. Mapping of SIMBAL "hot spots" onto crystal structures of homologous permeases reveals that the significant sites are gating determinants on the cytosolic face rather than, say, docking sites for the substrate-binding protein on the extracellular face. In the second example, we partitioned a protein methyltransferase family using gene proximity as a criterion. In this case, the TRUE set comprised those methyltransferases encoded near the gene for the substrate RF-1. SIMBAL identifies sequence regions that map onto the substrate-binding interface while ignoring regions involved in the methyltransferase reaction mechanism in general. Neither method for training set construction requires any prior experimental characterization. Conclusions SIMBAL shows that, in functionally divergent protein families, selected short sequences often significantly outperform their full-length parent sequence for making functional predictions by sequence similarity, suggesting avenues for improved functional classifiers. When combined with structural data, SIMBAL affords the ability to localize and model functional sites. PMID:20102603
Division of Energy Biosciences annual report and summaries of FY 1996 activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanism affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes. This report gives summaries on 225 projects on photosynthesis, membrane or ion transport, plant metabolism and biosynthesis, carbohydrate metabolism lipid metabolism, plant growth and development, plant genetic regulation and genetic mechanisms, plant cell wall development, lignin-polysaccharide breakdown, nitrogen fixation and plant-microbial symbiosis, mechanism for plant adaptation, fermentative microbial metabolism, one and two carbon microbial metabolism, extremophilic microbes, microbial respiration, nutrition and metal metabolism, and materials biosynthesis.« less
Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling
Powell, J. Elijah; Steele, Margaret I.; Dietrich, Carsten; Moran, Nancy A.
2017-01-01
Social bees harbor a simple and specialized microbiota that is spatially organized into different gut compartments. Recent results on the potential involvement of bee gut communities in pathogen protection and nutritional function have drawn attention to the impact of the microbiota on bee health. However, the contributions of gut microbiota to host physiology have yet to be investigated. Here we show that the gut microbiota promotes weight gain of both whole body and the gut in individual honey bees. This effect is likely mediated by changes in host vitellogenin, insulin signaling, and gustatory response. We found that microbial metabolism markedly reduces gut pH and redox potential through the production of short-chain fatty acids and that the bacteria adjacent to the gut wall form an oxygen gradient within the intestine. The short-chain fatty acid profile contributed by dominant gut species was confirmed in vitro. Furthermore, metabolomic analyses revealed that the gut community has striking impacts on the metabolic profiles of the gut compartments and the hemolymph, suggesting that gut bacteria degrade plant polymers from pollen and that the resulting metabolites contribute to host nutrition. Our results demonstrate how microbial metabolism affects bee growth, hormonal signaling, behavior, and gut physicochemical conditions. These findings indicate that the bee gut microbiota has basic roles similar to those found in some other animals and thus provides a model in studies of host–microbe interactions. PMID:28420790
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, David A.; Kung, Daniel W.; Esler, William P.
We found that Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. Here, we disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 asmore » a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, David A.; Kung, Daniel W.; Esler, William P.
Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. We disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate formore » the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. In conclusion, this demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.« less
Forests and ozone: productivity, carbon storage, and feedbacks.
Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T
2016-02-22
Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.
Wei, Hua; Hu, Bo; Tang, Suming; Zhao, Guojie; Guan, Yifu
2016-01-01
Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology. PMID:27869177
[SSR loci information analysis in transcriptome of Andrographis paniculata].
Li, Jun-Ren; Chen, Xiu-Zhen; Tang, Xiao-Ting; He, Rui; Zhan, Ruo-Ting
2018-06-01
To study the SSR loci information and develop molecular markers, a total of 43 683 Unigenes in transcriptome of Andrographis paniculata were used to explore SSR. The distribution frequency of SSR and the basic characteristics of repeat motifs were analyzed using MicroSAtellite software, SSR primers were designed by Primer 3.0 software and then validated by PCR. Moreover, the gene function analysis of SSR Unigene was obtained by Blast. The results showed that 14 135 SSR loci were found in the transcriptome of A. paniculata, which distributed in 9 973 Unigenes with a distribution frequency of 32.36%. Di-nucleotide and Tri-nucleotide repeat were the main types, accounted for 75.54% of all SSRs. The repeat motifs of AT/AT and CCG/CGG were the predominant repeat types of Di-nucleotide and Tri-nucleotide, respectively. A total of 4 740 pairs of SSR primers with the potential to produce polymorphism were designed for maker development. Ten pairs of primers in 20 pairs of randomly picked primers produced fragments with expected molecular size. The gene function of Unigenes containing SSR were mostly related to the basic metabolism function of A. paniculata. The SSR markers in transcriptome of A. paniculata show rich type, strong specificity and high potential of polymorphism, which will benefit the candidate gene mining and marker-assisted breeding. Copyright© by the Chinese Pharmaceutical Association.
3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.
Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali
2017-07-28
Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.
Tian, Ji-Xin; Wang, Min; Xu, Lei; Tian, Yuan; Song, Rui; Xu, Feng-Guo; Zhang, Zun-Jian
2014-01-01
Brucine is a widely prescribed glycine antagonist, but a complete understanding of its metabolic pathway is still lacking. The present work represents the first investigation of in vivo metabolism of brucine in rats using LC-ESI-ion trap-TOF-MS. A total of 12 Phase I and five Phase II metabolites were tentatively identified. Brucine can be metabolized by hydrolysis, demethylation and methoxylation, in addition to diverse oxidations in a Phase I manner followed by glucuronidation in Phase II metabolism. Both the renal and biliary routes were observed for the excretion of brucine and its metabolites. Our results update the metabolism and disposition data on brucine, which provides basic information for better understanding of the pharmacological and toxicological activities of brucine-containing medicines.
The Tangled Circuitry of Metabolism and Apoptosis
Andersen, Joshua L.; Kornbluth, Sally
2013-01-01
For single cell organisms, nutrient uptake and metabolism are at the crux of their most basic decision of whether to grow or divide. In metazoans, cell fate decisions are more complex: organismal homeostasis must be strictly maintained by balancing cell proliferation and death. Despite this increased complexity, cell fate within multicellular organisms is also influenced by metabolism; recent studies, triggered in part be an interest tumor metabolism, are beginning to illuminate the mechanisms through which proliferation, death, and metabolism are intertwined. In particular, work on Bcl-2 family proteins suggests that the signaling pathways governing metabolism and apoptosis are inextricably linked. Here, we review the crosstalk between these pathways, emphasizing recent work that illustrates the emerging dual nature of several core apoptotic proteins in regulating both metabolism and cell death. PMID:23395270
Papadopoulos, Anthony
2009-01-01
The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.
Navigable networks as Nash equilibria of navigation games.
Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri
2015-07-03
Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.
Fleischman, Nicholas M; Das, Debanu; Kumar, Abhinav; Xu, Qingping; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Klock, Heath E; Miller, Mitchell D; Elsliger, Marc-André; Godzik, Adam; Lesley, Scott A; Deacon, Ashley M; Wilson, Ian A; Toney, Michael D
2014-08-01
Pyridoxal-5'-phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP-dependent enzymes account for ∼1.5% of most prokaryotic genomes and are estimated to be involved in ∼4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP-dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram-positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP-dependent enzyme fold and structure-guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases. © 2014 The Protein Society.
Tiptoeing to chromosome tips: facts, promises and perils of today's human telomere biology.
Fajkus, J; Simícková, M; Maláska, J
2002-04-29
The past decade has witnessed an explosion of knowledge concerning the structure and function of chromosome terminal structures-telomeres. Today's telomere research has advanced from a pure descriptive approach of DNA and protein components to an elementary understanding of telomere metabolism, and now to promising applications in medicine. These applications include 'passive' ones, among which the use of analysis of telomeres and telomerase (a cellular reverse transcriptase that synthesizes telomeres) for cancer diagnostics is the best known. The 'active' applications involve targeted downregulation or upregulation of telomere synthesis, either to mortalize immortal cancer cells, or to rejuvenate mortal somatic cells and tissues for cellular transplantations, respectively. This article reviews the basic data on structure and function of human telomeres and telomerase, as well as both passive and active applications of human telomere biology.
Hotspots for allosteric regulation on protein surfaces
Reynolds, Kimberly A.; McLaughlin, Richard N.; Ranganathan, Rama
2012-01-01
Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and co-evolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved “wiring” mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation. PMID:22196731
Sleep and Development in Genetically Tractable Model Organisms
Kayser, Matthew S.; Biron, David
2016-01-01
Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564
Pattern Genes Suggest Functional Connectivity of Organs
NASA Astrophysics Data System (ADS)
Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang
2016-05-01
Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.
Parts plus pipes: synthetic biology approaches to metabolic engineering
Boyle, Patrick M.; Silver, Pamela A.
2011-01-01
Synthetic biologists combine modular biological “parts” to create higher-order devices. Metabolic engineers construct biological “pipes” by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design. PMID:22037345
DrugMetZ DB: an anthology of human drug metabolizing Chytochrome P450 enzymes.
Antony, Tresa Remya Thomas; Nagarajan, Shanthi
2006-11-14
Understandings the basics of Cytochrome P450 (P450 or CYP) will help to discern drug metabolism. CYP, a super-family of heme-thiolate proteins, are found in almost all living organisms and is involved in the biotransformation of a diverse range of xenobiotics, therapeutic drugs and toxins. Here, we describe DrugMetZ DB, a database for CYP metabolizing drugs. The DB is implemented in MySQL, PHP and HTML. www.bicpu.edu.in/DrugMetZDB/
Hadarits, Ferenc; Kisfali, Péter; Mohás, Márton; Maász, Anita; Duga, Balázs; Janicsek, Ingrid; Wittmann, István; Melegh, Béla
2012-02-01
The common functional variants of the apolipoprotein A5 (APOA5) and the glucokinase regulatory protein genes (GCKR) have been shown to associate with increased fasting triglyceride (TG) levels. Albeit the basic association has been extensively investigated in several populations of different origin, less is known about quantitative traits of them. In our study accumulation rates of four APOA5 (T-1131, IVS3 + G476A, T1259C and C56G) and two GCKR (C1337T and rs780094) functional SNPs were analyzed in patients stratified into four TG quartile groups. Randomly selected 325 metabolic syndrome patients were separated into four quartile (q) groups based on the TG levels as follows q1: TG <1.38 mmol/l; q2: 1.38-1.93 mmol/l; q3: 1.94-2.83 mmol/l; and q4: TG >2.83 mmol/l. We observed significant stepwise increase of prevalence rates of minor allele frequencies in the four plasma TG quartiles for three APOA5 SNPs: -1131C (q1: 4.94%; q2: 8.64%; q3: 11.6%; q4: 12.3%), IVS3 + 476A (q1: 4.32%; q2: 7.4%; q3: 10.36%; q4: 11.1%), and 1259C (q1: 4.94%; q2: 7.41%; q3: 10.4%; q4: 11.7%). The haplotype analysis revealed, that the frequency of APOA5*2 haplotype gradually increased in q2, q3 and q4 (q1: 9.87%; q2: 14.8%; q3: 18.3%; q4: 21%). The distribution of the homozygotes of the two analyzed GCKR variants resembled to the APOA5 pattern. Contrary to the hypothetically predictable linear association coming from the current knowledge about the APOA5 and GCKR functions, the findings presented here revealed a unique, TG raise dependent gradual accumulation of the functional variants of in MS patients. Thus, the findings of the current study serve indirect evidence for the existence of rare APOA5 and GCKR haplotypes in metabolic syndrome patients with higher TG levels, which contribute to the complex lipid metabolism alteration in this disease.
Joseph, Jamie; Depp, Colin; Shih, Pei-an B.; Cadenhead, Kristen S.; Schmid-Schönbein, Geert
2017-01-01
Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive therapy for people with schizophrenia. PMID:28396623
Carvajal-Zarrabal, Octavio; Nolasco-Hipolito, Cirilo; Aguilar-Uscanga, M Guadalupe; Melo-Santiesteban, Guadalupe; Hayward-Jones, Patricia M; Barradas-Dermitz, Dulce M
2014-01-01
The purpose of this study was to evaluate the effects of avocado oil administration on biochemical markers of cardiovascular risk profile in rats with metabolic changes induced by sucrose ingestion. Twenty-five rats were divided into five groups: a control group (CG; basic diet), a sick group (MC; basic diet plus 30% sucrose solution), and three other groups (MCao, MCac, and MCas; basic diet plus 30% sucrose solution plus olive oil and avocado oil extracted by centrifugation or using solvent, resp.). Glucose, total cholesterol, triglycerides, phospholipids, low- and high-density lipoproteins (LDL, HDL), very low-density lipoprotein (VLDL), lactic dehydrogenase, creatine kinase, and high sensitivity C-reactive protein concentration were analyzed. Avocado oil reduces TG, VLDL, and LDL levels, in the LDL case significantly so, without affecting HDL levels. An effect was exhibited by avocado oil similar to olive oil, with no significant difference between avocado oil extracted either by centrifugation or solvent in myocardial injury biochemical indicators. Avocado oil decreased hs-CRP levels, indicating that inflammatory processes were partially reversed. These findings suggested that avocado oil supplementation has a positive health outcome because it reduces inflammatory events and produces positive changes in the biochemical indicators studied, related to the development of metabolic syndrome.
Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins.
Hu, Pingzhao; Janga, Sarath Chandra; Babu, Mohan; Díaz-Mejía, J Javier; Butland, Gareth; Yang, Wenhong; Pogoutse, Oxana; Guo, Xinghua; Phanse, Sadhna; Wong, Peter; Chandran, Shamanta; Christopoulos, Constantine; Nazarians-Armavil, Anaies; Nasseri, Negin Karimi; Musso, Gabriel; Ali, Mehrab; Nazemof, Nazila; Eroukova, Veronika; Golshani, Ashkan; Paccanaro, Alberto; Greenblatt, Jack F; Moreno-Hagelsieb, Gabriel; Emili, Andrew
2009-04-28
One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.
Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.
Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang
Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13 C Metabolic Flux Analysis ( 13 C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13 C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13 C-MFA and illustrate how 13 C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.
Nosrati, Nagisa; Bakovic, Marica; Paliyath, Gopinadhan
2017-09-25
A unique feature of bioactive food ingredients is their broad antioxidant function. Antioxidants having a wide spectrum of chemical structure and activity beyond basic nutrition; display different health benefits by the prevention and progression of chronic diseases. Functional food components are capable of enhancing the natural antioxidant defense system by scavenging reactive oxygen and nitrogen species, protecting and repairing DNA damage, as well as modulating the signal transduction pathways and gene expression. Major pathways affected by bioactive food ingredients include the pro-inflammatory pathways regulated by nuclear factor kappa B (NF-κB), as well as those associated with cytokines and chemokines. The present review summarizes the importance of plant bioactives and their roles in the regulation of inflammatory pathways. Bioactives influence several physiological processes such as gene expression, cell cycle regulation, cell proliferation, cell migration, etc., resulting in cancer prevention. Cancer initiation is associated with changes in metabolic pathways such as glucose metabolism, and the effect of bioactives in normalizing this process has been provided. Initiation and progression of inflammatory bowel diseases (IBD) which increase the chances of developing of colorectal cancers can be downregulated by plant bioactives. Several aspects of the potential roles of microRNAs and epigenetic modifications in the development of cancers have also been presented.
Measuring bioenergetics in T cells using a Seahorse Extracellular Flux Analyzer
van der Windt, Gerritje J.W.; Chang, Chih-Hao; Pearce, Erika L.
2016-01-01
This unit contains several protocols to determine the energy utilization of T cells in real-time using a Seahorse Extracellular Flux Analyzer (www.seahorsebio.com). The advantages to using this machine over traditional metabolic assays include the simultaneous measurement of glycolysis and mitochondrial respiration, in real-time, on relatively small numbers of cells, without any radioactivity. The Basic Protocol describes a standard mitochondrial stress test on the XFe96, which yields information about oxidative phosphorylation and glycolysis, two energy-generating pathways. The alternate protocols provide examples of adaptations to the Basic Protocol, including adjustments for the use of the XFe24. A protocol for real-time bioenergetic responses to T cell activation allows for the analysis of immediate metabolic changes after T cell receptor stimulation. Specific substrate utilization can be determined by the use of differential assay media, or the injection of drugs that specifically affect certain metabolic processes. Accurate cell numbers, purity, and viability are critical to obtain reliable results. PMID:27038461
Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer.
van der Windt, Gerritje J W; Chang, Chih-Hao; Pearce, Erika L
2016-04-01
This unit contains several protocols to determine the energy utilization of T cells in real-time using a Seahorse Extracellular Flux Analyzer (http://www.seahorsebio.com). The advantages to using this machine over traditional metabolic assays include the simultaneous measurement of glycolysis and mitochondrial respiration, in real-time, on relatively small numbers of cells, without any radioactivity. The Basic Protocol describes a standard mitochondrial stress test on the XF(e) 96, which yields information about oxidative phosphorylation and glycolysis, two energy-generating pathways. The alternate protocols provide examples of adaptations to the Basic Protocol, including adjustments for the use of the XF(e) 24. A protocol for real-time bioenergetic responses to T cell activation allows for the analysis of immediate metabolic changes after T cell receptor stimulation. Specific substrate utilization can be determined by the use of differential assay media, or the injection of drugs that specifically affect certain metabolic processes. Accurate cell numbers, purity, and viability are critical to obtain reliable results. Copyright © 2016 John Wiley & Sons, Inc.
Friebe, Andreas; Sandner, Peter; Seifert, Roland
2015-12-01
During the past decade, our knowledge on the physiology, pathophysiology, basic pharmacology, and clinical pharmacology of the second messenger (cGMP) has increased tremendously. It is now well-established that cGMP, generated by soluble and particulate guanylate cyclases, is highly compartmentalized in cells and regulates numerous body functions. New cGMP-regulated physiological functions include meiosis and temperature perception. cGMP is involved in the genesis of numerous pathologies including cardiovascular, pulmonary, endocrine, metabolic, neuropsychiatric, eye, and tumor diseases. Several new clinical uses of stimulators and activators of soluble guanylate cyclase and of phosphodiesterase inhibitors such as heart failure, kidney failure, cognitive disorders, obesity bronchial asthma, and osteoporosis are emerging. The combination of neprilysin inhibitors-enhancing stimulation of the particulate guanylate cyclase pathway by preventing natriuretic peptide degradation-with angiotensin AT1 receptor antagonists constitutes a novel promising strategy for heart failure treatment. The role of oxidative stress in cGMP signaling, application of cGMP sensors, and gene therapy for degenerative eye diseases are emerging topics. It is anticipated that cGMP research will further prosper over the next years and reach out into more and more basic and clinical disciplines.
Dietz, Karl-Josef; Krause, G Heinrich; Siebke, Katharina; Krieger-Liszkay, Anja
2018-07-01
The dynamic and efficient coordination of primary photosynthetic reactions with leaf energization and metabolism under a wide range of environmental conditions is a fundamental property of plants involving processes at all functional levels. The present historical perspective covers 60 years of research aiming to understand the underlying mechanisms, linking major breakthroughs to current progress. It centers on the contributions of Ulrich Heber who had pioneered novel concepts, fundamental methods, and mechanistic understanding of photosynthesis. An important first step was the development of non-aqueous preparation of chloroplasts allowing the investigation of chloroplast metabolites ex vivo (meaning that the obtained results reflect the in vivo situation). Later on, intact chloroplasts, retaining their functional envelope membranes, were isolated in aqueous media to investigate compartmentation and exchange of metabolites between chloroplasts and external medium. These studies elucidated metabolic interaction between chloroplasts and cytoplasm during photosynthesis. Experiments with isolated intact chloroplasts clarified that oxygenation of ribulose-1.5-bisphosphate generates glycolate in photorespiration. The development of non-invasive optical methods enabled researchers identifying mechanisms that balance electron flow in the photosynthetic electron transport system avoiding its over-reduction. Recording chlorophyll a (Chl a) fluorescence allowed one to monitor, among other parameters, thermal energy dissipation by means of 'nonphotochemical quenching' of the excited state of Chl a. Furthermore, studies both in vivo and in vitro led to basic understanding of the biochemical mechanisms of freezing damage and frost tolerance of plant leaves, to SO 2 tolerance of tree leaves and dehydrating lichens and mosses.
Complex carbohydrates as a possible source of high energy to formulate functional feeds.
Ochoa, Leonel; Paniagua Michel, José de Jesús; Olmos-Soto, Jorge
2014-01-01
Carbohydrates (CHOs) are the most abundant organic compounds found in living organisms and are a great source of metabolic energy, both for plants and animals. Besides of CHOs great potential to solve animal's energy requirements and diminishing high feed cost, we first must to understand its digestibility and assimilation to avoid several inconvenients. Today, CHOs feed animal inclusions are of great concern about cost-benefits, animal's health status, and environmental pollution. In this chapter, we make a brief description about sugars (DP1-2), oligosaccharides (DP3-9), polysaccharides (DP ≥10), and their essential characteristics to understand the role of marine and terrestrial CHOs in animal nutrition. Subsequently, we talk about basic concepts, CHOs functional benefits, suggestions about their application and successful cases. This information will contribute to produce a new generation of high-quality and energetic functional feed formulations for livestock and aquaculture farms; which must be of low cost, healthy, and environmentally friendly, with the inclusion of prebiotics and probiotics. © 2014 Elsevier Inc. All rights reserved.
Oligodendroglia: metabolic supporters of axons.
Morrison, Brett M; Lee, Youngjin; Rothstein, Jeffrey D
2013-12-01
Axons are specialized extensions of neurons that are critical for the organization of the nervous system. To maintain function in axons that often extend some distance from the cell body, specialized mechanisms of energy delivery are likely to be necessary. Over the past decade, greater understanding of human demyelinating diseases and the development of animal models have suggested that oligodendroglia are critical for maintaining the function of axons. In this review, we discuss evidence for the vulnerability of neurons to energy deprivation, the importance of oligodendrocytes for axon function and survival, and recent data suggesting that transfer of energy metabolites from oligodendroglia to axons through monocarboxylate transporter 1 (MCT1) may be critical for the survival of axons. This pathway has important implications both for the basic biology of the nervous system and for human neurological disease. New insights into the role of oligodendroglial biology provide an exciting opportunity for revisions in nervous system biology, understanding myelin-based disorders, and therapeutics development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Resilience of biochemical activity in protein domains in the face of structural divergence.
Zhang, Dapeng; Iyer, Lakshminarayan M; Burroughs, A Maxwell; Aravind, L
2014-06-01
Recent studies point to the prevalence of the evolutionary phenomenon of drastic structural transformation of protein domains while continuing to preserve their basic biochemical function. These transformations span a wide spectrum, including simple domains incorporated into larger structural scaffolds, changes in the structural core, major active site shifts, topological rewiring and extensive structural transmogrifications. Proteins from biological conflict systems, such as toxin-antitoxin, restriction-modification, CRISPR/Cas, polymorphic toxin and secondary metabolism systems commonly display such transformations. These include endoDNases, metal-independent RNases, deaminases, ADP ribosyltransferases, immunity proteins, kinases and E1-like enzymes. In eukaryotes such transformations are seen in domains involved in chromatin-related peptide recognition and protein/DNA-modification. Intense selective pressures from 'arms-race'-like situations in conflict and macromolecular modification systems could favor drastic structural divergence while preserving function. Published by Elsevier Ltd.
Hereditary spastic paraplegia.
Blackstone, Craig
2018-01-01
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurologic disorders with the common feature of prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. The HSPs exist not only in "pure" forms but also in "complex" forms that are associated with additional neurologic and extraneurologic features. The HSPs are among the most genetically diverse neurologic disorders, with well over 70 distinct genetic loci, for which about 60 mutated genes have already been identified. Numerous studies elucidating the molecular pathogenesis underlying HSPs have highlighted the importance of basic cellular functions - especially membrane trafficking, mitochondrial function, organelle shaping and biogenesis, axon transport, and lipid/cholesterol metabolism - in axon development and maintenance. An encouragingly small number of converging cellular pathogenic themes have been identified for the most common HSPs, and some of these pathways present compelling targets for future therapies. Copyright © 2018 Elsevier B.V. All rights reserved.
Navigable networks as Nash equilibria of navigation games
Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri
2015-01-01
Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277
Kim, Eunjin; Kang, Hyunook; Choi, Insung; Song, Jihyeon; Mok, Hyejung; Jung, Woong; Yeo, Woon-Seok
2018-05-09
Detection and quantitation of flavonoids are relatively difficult compared to those of other small-molecule analytes because flavonoids undergo rapid metabolic processes, resulting in their elimination from the body. Here, we report an efficient enrichment method for facilitating the analysis of vicinal-diol-containing flavonoid molecules using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In our strategy, boronic-acid-functionalized polyacrylamide particles were used, where boronic acids bound to vicinal diols to form boronate monoesters at basic pH. This complex remained intact during the enrichment processes, and the vicinal-diol-containing flavonoids were easily separated by centrifugation and subsequent acidic treatments. The selectivity and limit of detection of our strategy were confirmed by mass spectrometry analysis, and the validity was assessed by performing the detection and quantitation of quercetin in mouse organs.
Fiedler, Jan; Baker, Andrew H; Dimmeler, Stefanie; Heymans, Stephane; Mayr, Manuel; Thum, Thomas
2018-05-23
Non-coding RNAs are increasingly recognized not only as regulators of various biological functions but also as targets for a new generation of RNA therapeutics and biomarkers. We hereby review recent insights relating to non-coding RNAs including microRNAs (e.g. miR-126, miR-146a), long non-coding RNAs (e.g. MIR503HG, GATA6-AS, SMILR) and circular RNAs (e.g. cZNF292) and their role in vascular diseases. This includes identification and therapeutic use of hypoxia-regulated non-coding RNAs and endogenous non-coding RNAs that regulate intrinsic smooth muscle cell signalling, age-related non-coding RNAs and non-coding RNAs involved in the regulation of mitochondrial biology and metabolic control. Finally, we discuss non-coding RNA species with biomarker potential.
Ultraweak photon emission in the brain.
Salari, V; Valian, H; Bassereh, H; Bókkon, I; Barkhordari, A
2015-09-01
Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.
Sleep and Development in Genetically Tractable Model Organisms.
Kayser, Matthew S; Biron, David
2016-05-01
Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.
Promising application of dynamic nuclear polarization for in vivo (13)C MR imaging.
Yen, Yi-Fen; Nagasawa, Kiyoshi; Nakada, Tsutomu
2011-01-01
Use of hyperpolarized (13)C in magnetic resonance (MR) imaging is a new technique that enhances signal tens of thousands-fold. Recent in vivo animal studies of metabolic imaging that used hyperpolarized (13)C demonstrated its potential in many applications for disease indication, metabolic profiling, and treatment monitoring. We review the basic physics for dynamic nuclear polarization (DNP) and in vivo studies reported in prostate cancer research, hepatocellular carcinoma research, diabetes and cardiac applications, brain metabolism, and treatment response as well as investigations of various DNP (13)C substrates.
Jansson, Erik Karl Håkan; Clemens, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc
2014-01-01
Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models.
Riess, Olaf; Nguyen, Huu Phuc
2014-01-01
Huntington disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive, psychiatric and metabolic symptoms. Animal models of HD show phenotypes that can be divided into similar categories, with the metabolic phenotype of certain models being characterized by obesity. Although interesting in terms of modeling metabolic symptoms of HD, the obesity phenotype can be problematic as it might confound the results of certain behavioral tests. This concerns the assessment of cognitive function in particular, as tests for such phenotypes are often based on food depriving the animals and having them perform tasks for food rewards. The BACHD rat is a recently established animal model of HD, and in order to ensure that behavioral characterization of these rats is done in a reliable way, a basic understanding of their physiology is needed. Here, we show that BACHD rats are obese and suffer from discrete developmental deficits. When assessing the motivation to lever push for a food reward, BACHD rats were found to be less motivated than wild type rats, although this phenotype was dependent on the food deprivation strategy. Specifically, the phenotype was present when rats of both genotypes were deprived to 85% of their respective free-feeding body weight, but not when deprivation levels were adjusted in order to match the rats' apparent hunger levels. The study emphasizes the importance of considering metabolic abnormalities as a confounding factor when performing behavioral characterization of HD animal models. PMID:25144554
MacFabe, Derrick F.
2015-01-01
Clinical observations suggest that gut and dietary factors transiently worsen and, in some cases, appear to improve behavioral symptoms in a subset of persons with autism spectrum disorders (ASDs), but the reason for this is unclear. Emerging evidence suggests ASDs are a family of systemic disorders of altered immunity, metabolism, and gene expression. Pre- or perinatal infection, hospitalization, or early antibiotic exposure, which may alter gut microbiota, have been suggested as potential risk factors for ASD. Can a common environmental agent link these disparate findings? This review outlines basic science and clinical evidence that enteric short-chain fatty acids (SCFAs), present in diet and also produced by opportunistic gut bacteria following fermentation of dietary carbohydrates, may be environmental triggers in ASD. Of note, propionic acid, a major SCFA produced by ASD-associated gastrointestinal bacteria (clostridia, bacteroides, desulfovibrio) and also a common food preservative, can produce reversible behavioral, electrographic, neuroinflammatory, metabolic, and epigenetic changes closely resembling those found in ASD when administered to rodents. Major effects of these SCFAs may be through the alteration of mitochondrial function via the citric acid cycle and carnitine metabolism, or the epigenetic modulation of ASD-associated genes, which may be useful clinical biomarkers. It discusses the hypothesis that ASDs are produced by pre- or post-natal alterations in intestinal microbiota in sensitive sub-populations, which may have major implications in ASD cause, diagnosis, prevention, and treatment. PMID:26031685
Chen, Yuhan; Wang, Shengjun
2017-01-01
The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases. PMID:28961235
Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C; Zhou, Changsong
2017-09-01
The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases.
Whole Grains in Amelioration of Metabolic Derangements
Develaraja, Samir; Reddy, Anup; Yadav, Mukesh; Jain, Shalini; Yadav, Hariom
2017-01-01
Daily diet influences whole body metabolism, and intricately linked to the prevention or progression of metabolic diseases including obesity, diabetes and cardiovascular diseases. Several epidemiological and large scale studies have shown that diets enriched with whole grains improves metabolic function and protect from the development of metabolic diseases. Direct impact of whole grain diet can be mediated on several levels of metabolic functions i.e. reduced glycemic index, improved fat oxidation potential, increased cholesterol clearance or decreased cholesterol biosynthesis and modulation of gut microbiome. In this article we reviewed several studies indicating the beneficial effects of whole grain diets on metabolic functions, as well as discussed the potential active phytochemicals present in these whole grain foods to contribute in modulation of metabolic function in our body. PMID:28944285
Acid-sensing ion channels: trafficking and synaptic function.
Zha, Xiang-ming
2013-01-02
Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels.
Functional magnetic resonance imaging: basic principles and application in the neurosciences.
Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C
2018-03-12
Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Predictive value of plasma β2-microglobulin on human body function and senescence.
Dong, X-M; Cai, R; Yang, F; Zhang, Y-Y; Wang, X-G; Fu, S-L; Zhang, J-R
2016-06-01
To explore the correlation between plasma β2-microglobulin (β2-MG) as senescence factor with age, heart, liver and kidney function as well as the predictive value of β2-MG in human metabolism function and senescence. 387 cases of healthy people of different ages were selected and the automatic biochemical analyzer was used to test β2-MG in plasma based on immunoturbidimetry and also all biochemical indexes. The correlation between β2-MG and age, gender and all biochemical indexes was analyzed. β2-MG was positively correlated to age, r = 0.373; and the difference was of statistical significance (p < 0.010). It was significantly negative correlated to HDL-C but positively correlated to LP (a), BUN, CREA, UA, CYS-C, LDH, CK-MB, HBDH, AST, GLB and HCY. β2-MG was closely correlated to age, heart, kidney and liver biochemical indexes, which can be taken as an important biomarker for human body function and anti-senescence and have significant basic research and clinical guidance values.
Wan, Pin-Jun; Yuan, San-Yue; Wang, Wei-Xia; Chen, Xu; Lai, Feng-Xiang; Fu, Qiang
2016-01-01
The basic helix-loop-helix (bHLH) transcription factors in insects play essential roles in multiple developmental processes including neurogenesis, sterol metabolism, circadian rhythms, organogenesis and formation of olfactory sensory neurons. The identification and function analysis of bHLH family members of the most destructive insect pest of rice, Nilaparvata lugens, may provide novel tools for pest management. Here, a genome-wide survey for bHLH sequences identified 60 bHLH sequences (NlbHLHs) encoded in the draft genome of N. lugens. Phylogenetic analysis of the bHLH domains successfully classified these genes into 40 bHLH families in group A (25), B (14), C (10), D (1), E (8) and F (2). The number of NlbHLHs with introns is higher than many other insect species, and the average intron length is shorter than those of Acyrthosiphon pisum. High number of ortholog families of NlbHLHs was found suggesting functional conversation for these proteins. Compared to other insect species studied, N. lugens has the highest number of bHLH members. Furthermore, gene duplication events of SREBP, Kn(col), Tap, Delilah, Sim, Ato and Crp were found in N. lugens. In addition, a putative full set of NlbHLH genes is defined and compared with another insect species. Thus, our classification of these NlbHLH members provides a platform for further investigations of bHLH protein functions in the regulation of N. lugens, and of insects in general. PMID:27869716
Matched and Mismatched Metabolic Fuels in Lymphocyte Function
Caro-Maldonado, Alfredo; Gerriets, Valerie A.; Rathmell, Jeffrey C.
2012-01-01
Immunological function requires metabolic support to suit the needs of lymphocytes at a variety of distinct differentiation and activation states. It is now evident that the signaling pathways that drive lymphocyte survival and activity can directly control cellular metabolism. This linkage provides a mechanism by which activation and specific signaling pathways provide a supply of appropriate and required nutrients to support cell functions in a pro-active supply rather than consumption-based metabolic model. In this way, the metabolism and fuel choices of lymphocytes are guided to specifically match the anticipated needs. If the fuel choice or metabolic pathways of lymphocytes are dysregulated, however, metabolic checkpoints can become activated to disrupt immunological function. These changes are now shown in several immunological diseases and may open new opportunities to selectively enhance or suppress specific immune functions through targeting of glucose, lipid, or amino acid metabolism. PMID:23290889
Yang, Wei-Sin; Chen, Pei-Chun; Hsu, Hsiu-Ching; Su, Ta-Chen; Lin, Hung-Ju; Chen, Ming-Fong; Lee, Yuan-Teh; Chien, Kuo-Liong
2018-06-01
We investigated the association between plasma saturated fatty acids (SFAs) and the risk of metabolic syndrome among ethnic Chinese adults in Taiwan who attended a health check-up center. A case-control study based on 1000 cases of metabolic syndrome and 1:1 matched control participants (mean age, 54.9 ± 10.7 y; 36% females) were recruited. Metabolic syndrome was defined according to the criteria of the International Diabetes Federation. Gas chromatography was used to measure the distribution of fatty acids in plasma (% of total fatty acids). Even-chain SFAs, including 14:0, 16:0, and 18:0, were associated with metabolic syndrome; the adjusted odds ratio [OR] and 95% confidence interval [CI] per standard deviation [SD] difference was 3.32, [1.98-5.59]; however, very-long-chain SFAs, including 20:0, 21:0, 22:0, 23:0, and 24:0, were inversely associated with metabolic syndrome. The adjusted OR [95% CI] per SD difference was 0.67 [0.58-0.78]. The area under the receiver operative characteristic curve increased from 0.814 in the basic model to 0.815 (p = 0.54, compared with the basic model), 0.818 (p < 0.0001), and 0.820 (p < 0.0001) after adding odd-chain, even-chain, and very-long chain SFAs. A meta-analysis based on 12 studies showed that the summarized OR for type 2 diabetes mellitus was 1.16 [0.96-1.41] for the top versus bottom SFAs. Different carbon numbers of SFAs have been shown to have differential effects on the status of metabolic syndrome, implying that SFAs are not homogenous for the effects. Copyright © 2018 Elsevier Inc. All rights reserved.
Metabolic Syndrome and 16-year Cognitive Decline in Community-Dwelling Older Adults
McEvoy, Linda K.; Laughlin, Gail A.; Barrett-Connor, Elizabeth; Bergstrom, Jaclyn; Kritz-Silverstein, Donna; Der-Martirosian, Claudia; von Mühlen, Denise
2012-01-01
PURPOSE To determine whether metabolic syndrome is associated with accelerated cognitive decline in community-dwelling older adults. METHODS Longitudinal study of 993 adults (mean 66.8 ± 8.7 years) from the Rancho Bernardo Study. Metabolic syndrome components, defined by 2001 NCEP-ATP III criteria, were measured in 1984–87. Cognitive function was first assessed in 1988–92. Cognitive assessments were repeated approximately every four years, for a maximum 16-year follow-up. Mixed-effects models examined longitudinal rate of cognitive decline by metabolic syndrome status, controlling for factors plausibly associated with cognitive function (diabetes, inflammation). RESULTS Metabolic syndrome was more common in men than women (14% vs. 9%, p=0.01). In women, metabolic syndrome was associated with greater executive function and long term memory decline. These associations did not differ by inflammatory biomarker levels. Diabetes did not alter the association of metabolic syndrome with long-term recall but modified the association with executive function: metabolic syndrome was associated with accelerated executive function decline in diabetic women only. Metabolic syndrome was not related to rate of decline on any cognitive measure in men. CONCLUSIONS Metabolic syndrome was a risk factor for accelerated cognitive decline, but only in women. Prevention of metabolic syndrome may aid in maintenance of cognitive function with age. PMID:22285865
Exhaled volatile substances mirror clinical conditions in pediatric chronic kidney disease
Obermeier, Juliane; Trefz, Phillip; Happ, Josephine; Schubert, Jochen K.; Staude, Hagen
2017-01-01
Monitoring metabolic adaptation to chronic kidney disease (CKD) early in the time course of the disease is challenging. As a non-invasive technique, analysis of exhaled breath profiles is especially attractive in children. Up to now, no reports on breath profiles in this patient cohort are available. 116 pediatric subjects suffering from mild-to-moderate CKD (n = 48) or having a functional renal transplant KTx (n = 8) and healthy controls (n = 60) matched for age and sex were investigated. Non-invasive quantitative analysis of exhaled breath profiles by means of a highly sensitive online mass spectrometric technique (PTR-ToF) was used. CKD stage, the underlying renal disease (HUS; glomerular diseases; abnormalities of kidney and urinary tract or polycystic kidney disease) and the presence of a functional renal transplant were considered as classifiers. Exhaled volatile organic compound (VOC) patterns differed between CKD/ KTx patients and healthy children. Amounts of ammonia, ethanol, isoprene, pentanal and heptanal were higher in patients compared to healthy controls (556, 146, 70.5, 9.3, and 5.4 ppbV vs. 284, 82.4, 49.6, 5.30, and 2.78 ppbV). Methylamine concentrations were lower in the patient group (6.5 vs 10.1 ppbV). These concentration differences were most pronounced in HUS and kidney transplanted patients. When patients were grouped with respect to degree of renal failure these differences could still be detected. Ammonia accumulated already in CKD stage 1, whereas alterations of isoprene (linked to cholesterol metabolism), pentanal and heptanal (linked to oxidative stress) concentrations were detectable in the breath of patients with CKD stage 2 to 4. Only weak associations between serum creatinine and exhaled VOCs were noted. Non-invasive breath testing may help to understand basic mechanisms and metabolic adaptation accompanying progression of CKD. Our results support the current notion that metabolic adaptation occurs early during the time course of CKD. PMID:28570715
Acyl Coenzyme A Thioesterase 7 Regulates Neuronal Fatty Acid Metabolism To Prevent Neurotoxicity
Ellis, Jessica M.; Wong, G. William
2013-01-01
Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7N−/−, revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7N−/− mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7N−/− mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity. PMID:23459938
Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.
Ellis, Jessica M; Wong, G William; Wolfgang, Michael J
2013-05-01
Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.
Glutamine Metabolism in Cancer: Understanding the Heterogeneity
Cluntun, Ahmad A; Lukey, Michael J; Cerione, Richard A; Locasale, Jason W
2017-01-01
Reliance on glutamine has long been considered a hallmark of cancer cell metabolism. However, some recent studies have challenged this notion in vivo, prompting a need for further clarifications on the role of glutamine metabolism in cancer. We find that there is ample evidence of an essential role for glutamine in tumors and that a variety of factors, including tissue type, the underlying cancer genetics, the tumor microenvironment and other variables such as diet and host physiology collectively influence the role of glutamine in cancer. Thus the requirements for glutamine in cancer are overall highly heterogeneous. In this review, we discuss the implications both for basic science and for targeting glutamine metabolism in cancer therapy. PMID:28393116
Lindquist, Randall L; Bayat-Sarmadi, Jannike; Leben, Ruth; Niesner, Raluca; Hauser, Anja E
2018-05-04
The balance between various cellular subsets of the innate and adaptive immune system and microbiota in the gastrointestinal tract is carefully regulated to maintain tolerance to the normal flora and dietary antigens, while protecting against pathogens. The intestinal epithelial cells and the network of dendritic cells and macrophages in the lamina propria are crucial lines of defense that regulate this balance. The complex relationship between the myeloid compartment (dendritic cells and macrophages) and lymphocyte compartment (T cells and innate lymphoid cells), as well as the impact of the epithelial cell layer have been studied in depth in recent years, revealing that the regulatory and effector functions of both innate and adaptive immune compartments exhibit more plasticity than had been previously appreciated. However, little is known about the metabolic activity of these cellular compartments, which is the basic function underlying all other additional tasks the cells perform. Here we perform intravital NAD(P)H fluorescence lifetime imaging in the small intestine of fluorescent reporter mice to monitor the NAD(P)H-dependent metabolism of epithelial and myeloid cells. The majority of myeloid cells which comprise the surveilling network in the lamina propria have a low metabolic activity and remain resting even upon stimulation. Only a few myeloid cells, typically localized at the tip of the villi, are metabolically active and are able to activate NADPH oxidases upon stimulation, leading to an oxidative burst. In contrast, the epithelial cells are metabolically highly active and, although not considered professional phagocytes, are also able to activate NADPH oxidases, leading to massive production of reactive oxygen species. Whereas the oxidative burst in myeloid cells is mainly catalyzed by the NOX2 isotype, in epithelial cells other isotypes of the NADPH oxidases family are involved, especially NOX4. They are constitutively expressed by the epithelial cells, but activated only on demand to ensure rapid defense against pathogens. This minimizes the potential for inadvertent damage from resting NOX activation, while maintaining the capacity to respond quickly if needed.
CRISPR-Cas9 Toolkit for Actinomycete Genome Editing.
Tong, Yaojun; Robertsen, Helene Lunde; Blin, Kai; Weber, Tilmann; Lee, Sang Yup
2018-01-01
Bacteria of the order Actinomycetales are one of the most important sources of bioactive natural products, which are the source of many drugs. However, many of them still lack efficient genome editing methods, some strains even cannot be manipulated at all. This restricts systematic metabolic engineering approaches for boosting known and discovering novel natural products. In order to facilitate the genome editing for actinomycetes, we developed a CRISPR-Cas9 toolkit with high efficiency for actinomyces genome editing. This basic toolkit includes a software for spacer (sgRNA) identification, a system for in-frame gene/gene cluster knockout, a system for gene loss-of-function study, a system for generating a random size deletion library, and a system for gene knockdown. For the latter, a uracil-specific excision reagent (USER) cloning technology was adapted to simplify the CRISPR vector construction process. The application of this toolkit was successfully demonstrated by perturbation of genomes of Streptomyces coelicolor A3(2) and Streptomyces collinus Tü 365. The CRISPR-Cas9 toolkit and related protocol described here can be widely used for metabolic engineering of actinomycetes.
Changes in Nutritional Status Impact Immune Cell Metabolism and Function.
Alwarawrah, Yazan; Kiernan, Kaitlin; MacIver, Nancie J
2018-01-01
Immune cell function and metabolism are closely linked. Many studies have now clearly demonstrated that alterations in cellular metabolism influence immune cell function and that, conversely, immune cell function determines the cellular metabolic state. Less well understood, however, are the effects of systemic metabolism or whole organism nutritional status on immune cell function and metabolism. Several studies have demonstrated that undernutrition is associated with immunosuppression, which leads to both increased susceptibility to infection and protection against several types of autoimmune disease, whereas overnutrition is associated with low-grade, chronic inflammation that increases the risk of metabolic and cardiovascular disease, promotes autoreactivity, and disrupts protective immunity. Here, we review the effects of nutritional status on immunity and highlight the effects of nutrition on circulating cytokines and immune cell populations in both human studies and mouse models. As T cells are critical members of the immune system, which direct overall immune response, we will focus this review on the influence of systemic nutritional status on T cell metabolism and function. Several cytokines and hormones have been identified which mediate the effects of nutrition on T cell metabolism and function through the expression and action of key regulatory signaling proteins. Understanding how T cells are sensitive to both inadequate and overabundant nutrients may enhance our ability to target immune cell metabolism and alter immunity in both malnutrition and obesity.
Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review
Meng, Shengxi; Cao, Jianmei; Feng, Qin; Peng, Jinghua; Hu, Yiyang
2013-01-01
Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism. PMID:24062792
The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia.
Venter, Leonie; Loots, Du Toit; Mienie, Lodewyk J; Jansen van Rensburg, Peet J; Mason, Shayne; Vosloo, Andre; Lindeque, Jeremie Z
2018-03-23
Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone ( Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia
Venter, Leonie; Loots, Du Toit; Mienie, Lodewyk J.; Jansen van Rensburg, Peet J.; Mason, Shayne; Vosloo, Andre
2018-01-01
ABSTRACT Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone (Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia. This article has an associated First Person interview with the first author of the paper. PMID:29572259
Ten Have, Gabriella A M; Deutz, Renske C I; Engelen, Mariëlle P K J; Wolfe, Robert R; Deutz, Nicolaas E P
2018-04-01
Survival of sepsis is related to loss of muscle mass. Therefore, it is imperative to further define and understand the basic alterations in nutrient metabolism in order to improve targeted sepsis nutritional therapies. We developed and evaluated a controlled hyperdynamic severe sepsis pig model that can be used for in vivo multi-organ metabolic studies in a conscious state. In this catheterized pig model, bacteremia was induced intravenously with 10 9 CFU/h Pseudomonas aeruginosa (PA) in 13 pigs for 18 h. Both the PA and control (nine) animals received fluid resuscitation and were continuously monitored. We examined in detail their hemodynamics, blood gases, clinical chemistry, inflammation, histopathology and organ plasma flows. The systemic inflammatory response (SIRS) diagnostic scoring system was used to determine the clinical septic state. Within 6 h from the start of PA infusion, a septic state developed, as was reflected by hyperthermia and cardiovascular changes. After 12 h of PA infusion, severe sepsis was diagnosed. Disturbed cardiovascular function, decreased portal drained viscera plasma flow (control: 37.6 ± 4.6 mL/kg body weight (bw)/min; PA 20.3 ± 2.6 mL/kg bw/min, P < 0.001), as well as moderate villous injury in the small intestines were observed. No lung, kidney or liver failure was observed. Acute phase C-reactive protein (CRP) and interleukin-6 (IL-6) levels did not change in the PA group. However, significant metabolic changes such as enhanced protein breakdown, hypocalcemia and hypocholesterolemia were found. In conclusion, PA-induced bacteremia in a catheterized pig is a clinically relevant model for acute severe sepsis and enables the study of complex multi-organ metabolisms.
The energetic cost of walking: a comparison of predictive methods.
Kramer, Patricia Ann; Sylvester, Adam D
2011-01-01
The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is "best", but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1) to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2) to investigate to what degree the prediction methods explain the variation in energy expenditure. We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. Our results indicate that the choice of predictive method is dependent on the question(s) of interest and the data available for use as inputs. Although we used modern humans as our model organism, these results can be extended to other species.
The 5 Alpha-Reductase Isozyme Family: A Review of Basic Biology and Their Role in Human Diseases
Azzouni, Faris; Godoy, Alejandro; Li, Yun; Mohler, James
2012-01-01
Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family. PMID:22235201
De la Fuente, Ildefonso M.; Cortes, Jesus M.; Perez-Pinilla, Martin B.; Ruiz-Rodriguez, Vicente; Veguillas, Juan
2011-01-01
Background Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. Methodology/Principal Findings In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. Conclusions/Significance We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic Metabolic Structure. PMID:22125607
Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation
2014-08-20
understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of
Diagnosis and treatment of simple acid-base disorders.
Ayers, Phil; Warrington, Laurie
2008-01-01
The ability to diagnose and treat acid-base disorders is an important component in the practice of the nutrition support clinician. A complete understanding of the basic principles of metabolic and respiratory disorders allows the practitioner to formulate educated decisions regarding fluids, parenteral nutrition salts, and the management of electrolytes. This review will discuss the diagnosis and treatment of common metabolic and respiratory disorders encountered in nutrition support practice.
Independent component model for cognitive functions of multiple subjects using [15O]H2O PET images.
Park, Hae-Jeong; Kim, Jae-Jin; Youn, Tak; Lee, Dong Soo; Lee, Myung Chul; Kwon, Jun Soo
2003-04-01
An independent component model of multiple subjects' positron emission tomography (PET) images is proposed to explore the overall functional components involved in a task and to explain subject specific variations of metabolic activities under altered experimental conditions utilizing the Independent component analysis (ICA) concept. As PET images represent time-compressed activities of several cognitive components, we derived a mathematical model to decompose functional components from cross-sectional images based on two fundamental hypotheses: (1) all subjects share basic functional components that are common to subjects and spatially independent of each other in relation to the given experimental task, and (2) all subjects share common functional components throughout tasks which are also spatially independent. The variations of hemodynamic activities according to subjects or tasks can be explained by the variations in the usage weight of the functional components. We investigated the plausibility of the model using serial cognitive experiments of simple object perception, object recognition, two-back working memory, and divided attention of a syntactic process. We found that the independent component model satisfactorily explained the functional components involved in the task and discuss here the application of ICA in multiple subjects' PET images to explore the functional association of brain activations. Copyright 2003 Wiley-Liss, Inc.
Cui, Jian; Liu, Jinghua; Li, Yuhua; Shi, Tieliu
2011-01-01
Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome. PMID:21297957
[Rehabilitation for digestive and metabolic diseases. Quo vadis?].
Stockbrugger, R; Rosemeyer, D; Armbrecht, U
2010-10-01
The position of rehabilitation in gastroenterology, hepatology and metabolic diseases has changed little in the last 25 years. Initial improvements in quality are oriented more to the content of rehabilitative measures and less to organizational basic conditions. Nevertheless, there is an urgent need for action if rehabilitation medicine is to achieve an equivalent and recognized position in the interaction between primary care and other medical specialties. In this article suggestions for expedient prerequisites and utilization options of rehabilitation in the fields of hepatogastroenterology and metabolism will be presented, which are also oriented to the exemplary implemented concepts from Sweden and The Netherlands.
Zhou, Bin; Xie, Jingyi; Liu, Xiaokai; Wang, Bin; Pan, Li
2016-11-15
HacA is a conserved basic leucine zipper transcription factor that serves as the master transcriptional regulator in the unfolded protein response (UPR). To comprehensively evaluate the role of HacA in Aspergillus oryzae, a homokaryotic hacA disruption mutant (HacA-DE) and a strain that expressed a constitutively active form of HacA (HacA-CA) were successfully generated, and transcriptome analyses of these mutants were performed. Growth and phenotypic profiles demonstrated that hyphal growth and sporulation were impaired in the HacA-DE and HacA-CA strains that were grown on complete and minimal media, and the growth impairment was more pronounced for the HacA-CA strain. Compared with a wild-type (WT) strain, the transcriptome results indicated that differentially expressed genes in these mutants mainly fell into four categories: the protein secretory pathway, amino acid metabolism, lipid metabolism, and carbohydrate metabolism. Furthermore, we identified 80 and 36 genes of the secretory pathway whose expression significantly differed in the HacA-CA strain (compared with the WT and HacA-DE strains) and HacA-DE strain (compared with the WT strain), respectively, which mostly belonged to protein folding/UPR, glycosylation, and vesicle transport processes. Both the HacA-CA and HacA-DE strains exhibited reduced expression of extracellular enzymes, especially amylolytic enzymes, which resulted from the activation of the repression under secretion stress mechanism in response to endoplasmic reticulum stress. Collectively, our results suggest that the function of HacA is important not only for UPR induction, but also for growth and fungal physiology, as it serves to reduce secretion stress in A. oryzae. Copyright © 2016 Elsevier B.V. All rights reserved.
Brant, Luisa C C; Wang, Na; Ojeda, Francisco M; LaValley, Michael; Barreto, Sandhi M; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S; Palmisano, Joseph N; Münzel, Thomas; Blankenberg, Stefan; Wild, Philipp S; Zeller, Tanja; Ribeiro, Antonio L P; Schnabel, Renate B; Hamburg, Naomi M
2017-03-08
Microvascular dysfunction is a marker of early vascular disease that predicts cardiovascular events. Whether metabolically healthy obese individuals have impaired microvascular function remains unclear. The aim of this study was to evaluate the relation of obesity phenotypes stratified by metabolic status to microvascular function. We meta-analyzed aggregate data from 3 large cohorts (Brazilian Longitudinal Study of Adult Health, the Framingham Heart Study, and the Gutenberg Heart Study; n=16 830 participants, age range 19-90, 51.3% men). Regression slopes between cardiovascular risk factors and microvascular function, measured by peripheral arterial tonometry (PAT), were calculated. Individuals were classified as normal-weight, overweight, or obese by body mass index (BMI) and stratified by healthy or unhealthy metabolic status based on metabolic syndrome using the ATP-III criteria. Male sex, BMI, and metabolic risk factors were associated with higher baseline pulse amplitude and lower PAT ratio. There was stepwise impairment of vascular measures from normal weight to obesity in both metabolic status strata. Metabolically healthy obese individuals had more impaired vascular function than metabolically healthy normal-weight individuals (baseline pulse amplitude 6.12±0.02 versus 5.61±0.01; PAT ratio 0.58±0.01 versus 0.76±0.01, all P <0.0001). Metabolically unhealthy obese individuals had more impaired vascular function than metabolically healthy obese individuals (baseline pulse amplitude 6.28±0.01 versus 6.12±0.02; PAT ratio 0.49±0.01 versus 0.58±0.01, all P <0.0001). Metabolically healthy obese individuals have impaired microvascular function, though the degree of impairment is less marked than in metabolically unhealthy obese individuals. Our findings suggest that obesity is detrimental to vascular health irrespective of metabolic status. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Mitochondrial Pyruvate Carrier Function and Cancer Metabolism
Rauckhorst, Adam J.
2016-01-01
Metabolic reprograming in cancer supports the increased biosynthesis required for unchecked proliferation. Increased glucose utilization is a defining feature of many cancers that is accompanied by altered pyruvate partitioning and mitochondrial metabolism. Cancer cells also require mitochondrial tricarboxylic acid cycle activity and electron transport chain function for biosynthetic competency and proliferation. Recent evidence demonstrates that mitochondrial pyruvate carrier (MPC) function is abnormal in some cancers and that increasing MPC activity may decrease cancer proliferation. Here we examine recent findings on MPC function and cancer metabolism. Special emphasis is placed on the compartmentalization of pyruvate metabolism and the alternative routes of metabolism that maintain the cellular biosynthetic pools required for unrestrained proliferation in cancer. PMID:27269731
... symptoms. Tests that may be done include: Blood chemistry tests (basic or comprehensive metabolic panel ) CT scan of the abdomen MRI of the abdomen Stool examination for cause of diarrhea and electrolyte levels VIP level in the blood
Jia, Xuan; Xi, Bei-Dou; Li, Ming-Xiao; Yang, Yang; Wang, Yong
2017-01-01
A metaproteomic approach was used to analyse the proteins expressed and provide functional evidence of key metabolic pathways in the combined production of hydrogen and methane by anaerobic fermentation (CHMP-AF) for reed straw utilisation. The functions and structures of bacteria and archaea populations show significant succession in the CHMP-AF process. There are many kinds of bacterial functional proteins, mainly belonging to phyla Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes, that are involved in carbohydrate metabolism, energy metabolism, lipid metabolism, and amino acid metabolism. Ferredoxin-NADP reductase, present in bacteria in genus Azotobacter, is an important enzyme for NADH/NAD+ equilibrium regulation in hydrogen production. The archaeal functional proteins are mainly involved in methane metabolism in energy metabolism, such as acetyl-CoA decarboxylase, and methyl-coenzyme M reductase, and the acetic acid pathway exhibited the highest proportion of the total. The archaea of genus Methanosarcina in phylum Euryarchaeota can produce methane under the effect of multi-functional proteins through acetic acid, CO2 reduction, and methyl nutrient pathways. The study demonstrates metaproteomics as a new way of uncovering community functional and metabolic activity. The combined information was used to identify the metabolic pathways and organisms crucial for lignocellulosic biomass degradation and biogas production. This also regulates the process from its protein levels and improves the efficiency of biogas production using reed straw biomass.
Yang, Yang; Wang, Yong
2017-01-01
A metaproteomic approach was used to analyse the proteins expressed and provide functional evidence of key metabolic pathways in the combined production of hydrogen and methane by anaerobic fermentation (CHMP-AF) for reed straw utilisation. The functions and structures of bacteria and archaea populations show significant succession in the CHMP-AF process. There are many kinds of bacterial functional proteins, mainly belonging to phyla Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes, that are involved in carbohydrate metabolism, energy metabolism, lipid metabolism, and amino acid metabolism. Ferredoxin-NADP reductase, present in bacteria in genus Azotobacter, is an important enzyme for NADH/NAD+ equilibrium regulation in hydrogen production. The archaeal functional proteins are mainly involved in methane metabolism in energy metabolism, such as acetyl-CoA decarboxylase, and methyl-coenzyme M reductase, and the acetic acid pathway exhibited the highest proportion of the total. The archaea of genus Methanosarcina in phylum Euryarchaeota can produce methane under the effect of multi-functional proteins through acetic acid, CO2 reduction, and methyl nutrient pathways. The study demonstrates metaproteomics as a new way of uncovering community functional and metabolic activity. The combined information was used to identify the metabolic pathways and organisms crucial for lignocellulosic biomass degradation and biogas production. This also regulates the process from its protein levels and improves the efficiency of biogas production using reed straw biomass. PMID:28817657
A Rat Model of Ventricular Fibrillation and Resuscitation by Conventional Closed-chest Technique
Lamoureux, Lorissa; Radhakrishnan, Jeejabai; Gazmuri, Raúl J.
2015-01-01
A rat model of electrically-induced ventricular fibrillation followed by cardiac resuscitation using a closed chest technique that incorporates the basic components of cardiopulmonary resuscitation in humans is herein described. The model was developed in 1988 and has been used in approximately 70 peer-reviewed publications examining a myriad of resuscitation aspects including its physiology and pathophysiology, determinants of resuscitability, pharmacologic interventions, and even the effects of cell therapies. The model featured in this presentation includes: (1) vascular catheterization to measure aortic and right atrial pressures, to measure cardiac output by thermodilution, and to electrically induce ventricular fibrillation; and (2) tracheal intubation for positive pressure ventilation with oxygen enriched gas and assessment of the end-tidal CO2. A typical sequence of intervention entails: (1) electrical induction of ventricular fibrillation, (2) chest compression using a mechanical piston device concomitantly with positive pressure ventilation delivering oxygen-enriched gas, (3) electrical shocks to terminate ventricular fibrillation and reestablish cardiac activity, (4) assessment of post-resuscitation hemodynamic and metabolic function, and (5) assessment of survival and recovery of organ function. A robust inventory of measurements is available that includes – but is not limited to – hemodynamic, metabolic, and tissue measurements. The model has been highly effective in developing new resuscitation concepts and examining novel therapeutic interventions before their testing in larger and translationally more relevant animal models of cardiac arrest and resuscitation. PMID:25938619
ADAPTIVE REACTIONS OF INDIGENOUS POPULATION OF YAKUTIA.
Borisova, N V; Petrova, P G
2015-01-01
The researches of organism's adaptive possibilities of indigenous population of the Arctic region are extremely important in modern conditions of the development of northern territories. The functional reserve of basic physiological systems and their interaction define "the health's resources", its potential level. This research has substantiated the adaptive reactions of organism of the North inhabitants on the basis of medical-physiological results. Physical development was estimated by the standard anthopometrical method: the height and body mass were measured, index of body mass (BM), Quetelet's index, Rohrer's index were defined, area of body surface was calculated. Carbon dioxide in the air was defined by portable infra-red gas analyzer of firm "Fudji" for measurements indoors and outdoors. The parametres of blood acid-base state (ABS) were analyzed by standard procedures with microevaluator application ABL-330 (Denmark). Computer spirometry was done on the hardware-software diagnostic complex (HSDC) for analyses of external respiration function (NSRIMT - Russia) and "Pneumoscrin-2" of Erih Eger company (Germany). Arterial pressure was measured by Korotkov's method. The inhabitants of the North irrespective of ethnicity have conditions for more effective lung ventilation to satisfaction of the high metabolic requirements of the organism. Stability of arterial pressure among indigenous population, microcirculation optimisation and transcapillary tissues exchange, conserves steady level of metabolism that testifies a high level of adaptation of the person to severe climate- geographic North conditions.
Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang
2015-01-01
Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms PMID:28952565
Targeted Disruption of the Basic Krüppel-Like Factor Gene (Klf3) Reveals a Role in Adipogenesis ▿ †
Sue, Nancy; Jack, Briony H. A.; Eaton, Sally A.; Pearson, Richard C. M.; Funnell, Alister P. W.; Turner, Jeremy; Czolij, Robert; Denyer, Gareth; Bao, Shisan; Molero-Navajas, Juan Carlos; Perkins, Andrew; Fujiwara, Yuko; Orkin, Stuart H.; Bell-Anderson, Kim; Crossley, Merlin
2008-01-01
Krüppel-like factors (KLFs) recognize CACCC and GC-rich sequences in gene regulatory elements. Here, we describe the disruption of the murine basic Krüppel-like factor gene (Bklf or Klf3). Klf3 knockout mice have less white adipose tissue, and their fat pads contain smaller and fewer cells. Adipocyte differentiation is altered in murine embryonic fibroblasts from Klf3 knockouts. Klf3 expression was studied in the 3T3-L1 cellular system. Adipocyte differentiation is accompanied by a decline in Klf3 expression, and forced overexpression of Klf3 blocks 3T3-L1 differentiation. Klf3 represses transcription by recruiting C-terminal binding protein (CtBP) corepressors. CtBPs bind NADH and may function as metabolic sensors. A Klf3 mutant that does not bind CtBP cannot block adipogenesis. Other KLFs, Klf2, Klf5, and Klf15, also regulate adipogenesis, and functional CACCC elements occur in key adipogenic genes, including in the C/ebpα promoter. We find that C/ebpα is derepressed in Klf3 and Ctbp knockout fibroblasts and adipocytes from Klf3 knockout mice. Chromatin immunoprecipitations confirm that Klf3 binds the C/ebpα promoter in vivo. These results implicate Klf3 and CtBP in controlling adipogenesis. PMID:18391014
Andersen, Mikael Rørdam
2014-11-01
Primary metabolism affects all phenotypical traits of filamentous fungi. Particular examples include reacting to extracellular stimuli, producing precursor molecules required for cell division and morphological changes as well as providing monomer building blocks for production of secondary metabolites and extracellular enzymes. In this review, all annotated genes from four Aspergillus species have been examined. In this process, it becomes evident that 80-96% of the genes (depending on the species) are still without verified function. A significant proportion of the genes with verified metabolic functions are assigned to secondary or extracellular metabolism, leaving only 2-4% of the annotated genes within primary metabolism. It is clear that primary metabolism has not received the same attention in the post-genomic area as many other research areas--despite its role at the very centre of cellular function. However, several methods can be employed to use the metabolic networks in tandem with comparative genomics to accelerate functional assignment of genes in primary metabolism. In particular, gaps in metabolic pathways can be used to assign functions to orphan genes. In this review, applications of this from the Aspergillus genes will be examined, and it is proposed that, where feasible, this should be a standard part of functional annotation of fungal genomes. © The Author 2014. Published by Oxford University Press.
Computer program for the reservoir model of metabolic crossroads.
Ribeiro, J M; Juzgado, D; Crespo, E; Sillero, A
1990-01-01
A program containing 344 sentences, written in BASIC and adapted to run in personal computers (PC) has been developed to simulate the reservoir model of metabolic crossroads. The program draws the holes of the reservoir with shapes reflecting the Vmax, Km (S0.5) and cooperativity coefficients (n) of the enzymes and calculates both the actual velocities and the percentage of contribution of every enzyme to the overall removal of their common substrate.
Evolutionary tradeoffs in cellular composition across diverse bacteria
Kempes, Christopher P; Wang, Lawrence; Amend, Jan P; Doyle, John; Hoehler, Tori
2016-01-01
One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components. PMID:27046336
Gerriets, Valerie A.; Danzaki, Keiko; Kishton, Rigel J.; Eisner, William; Nichols, Amanda G.; Saucillo, Donte C.; Shinohara, Mari L.; MacIver, Nancie J.
2016-01-01
Upon activation, T cells require energy for growth, proliferation and function. Effector T cells (Teff), such as Th1 and Th17, utilize high levels of glucose uptake and glycolysis to fuel proliferation and function. In contrast, Treg instead require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg metabolism is altered in settings of malnutrition, when nutrients are limited and circulating leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff number, function, and glucose metabolism, but did not alter Treg metabolism or suppressive function. Using the autoimmune model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff, but not Treg, glucose metabolism and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg. PMID:27222115
Blood Test: Basic Metabolic Panel (BMP)
... the body's fluid levels and its acid-base balance. Normal levels of these electrolytes help keep cells in the body working as they should. Blood urea nitrogen (BUN) and creatinine , which are waste products filtered ...
Zhao, Yang; Hebert, Mary F.; Venkataramanan, Raman
2017-01-01
Pregnancy is associated with a variety of physiological changes that can alter the pharmacokinetics and pharmacodynamics of several drugs. However, limited data exists on the pharmacokinetics and pharmacodynamics of the majority of the medications used in pregnancy. In this article, we first describe basic concepts (drug absorption, bioavailability, distribution, metabolism, elimination, and transport) in pharmacokinetics. Then, we discuss several physiological changes that occur during pregnancy that theoretically affect absorption, distribution, metabolism, and elimination. Further, we provide a brief review of the literature on the clinical pharmacokinetic studies performed in pregnant women in recent years. In general, pregnancy increases the clearance of several drugs and correspondingly decreases drug exposure during pregnancy. Based on current drug exposure measurements during pregnancy, alterations in the dose or dosing regimen of certain drugs are essential during pregnancy. More pharmacological studies in pregnant women are needed to optimize drug therapy in pregnancy. PMID:25281357
Adjustments in metabolic heat production by squirrel monkeys exposed to microwaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adair, E.R.; Adams, B.W.
1982-04-01
The basic fact that microwave exposure can lower metabolic heat production has been previously demonstrated for the mouse by Ho and Edwards (1977) and for the rat by Phillips et al. (1975). The general conclusion drawn from both studies was that the metabolic reduction produced by microwave exposure was dose dependent. The present study extends the investigation into the effects of microwave exposure on metabolic heat production to a primate, the squirrel monkey. When squirrel monkeys are restrained in cool environments, body temperature is regulated by an increase in metabolic heat production. The results of the current study demonstrate thatmore » either brief or prolonged whole-body exposure to a microwave field will cause a reduction of this elevated heat production by an amount directly related to the microwave energy absorbed.« less
2009-01-01
and Nutrition Board (2001). Dietary Reference Intakes: A Report of the Panel on Micronutrients , Subcommittees on Upper Reference Levels of Nutrients...Respiratory Infections in Air Force Academy Cadets in Basic Training Summary Background: As a dietary essential, zinc plays a number of important roles...Introduction Zinc is considered one of the essential micronutrients used by the human body. Although zinc fulfills a number of metabolic and
Vashisht, Rohit; Bhat, Ashwini G; Kushwaha, Shreeram; Bhardwaj, Anshu; Brahmachari, Samir K
2014-10-11
The effectiveness of current therapeutic regimens for Mycobacterium tuberculosis (Mtb) is diminished by the need for prolonged therapy and the rise of drug resistant/tolerant strains. This global health threat, despite decades of basic research and a wealth of legacy knowledge, is due to a lack of systems level understanding that can innovate the process of fast acting and high efficacy drug discovery. The enhanced functional annotations of the Mtb genome, which were previously obtained through a crowd sourcing approach was used to reconstruct the metabolic network of Mtb in a bottom up manner. We represent this information by developing a novel Systems Biology Spindle Map of Metabolism (SBSM) and comprehend its static and dynamic structure using various computational approaches based on simulation and design. The reconstructed metabolism of Mtb encompasses 961 metabolites, involved in 1152 reactions catalyzed by 890 protein coding genes, organized into 50 pathways. By accounting for static and dynamic analysis of SBSM in Mtb we identified various critical proteins required for the growth and survival of bacteria. Further, we assessed the potential of these proteins as putative drug targets that are fast acting and less toxic. Further, we formulate a novel concept of metabolic persister genes (MPGs) and compared our predictions with published in vitro and in vivo experimental evidence. Through such analyses, we report for the first time that de novo biosynthesis of NAD may give rise to bacterial persistence in Mtb under conditions of metabolic stress induced by conventional anti-tuberculosis therapy. We propose such MPG's as potential combination of drug targets for existing antibiotics that can improve their efficacy and efficiency for drug tolerant bacteria. The systems level framework formulated by us to identify potential non-toxic drug targets and strategies to circumvent the issue of bacterial persistence can substantially aid in the process of TB drug discovery and translational research.
Association of Metabolic Syndrome With Kidney Function and Histology in Living Kidney Donors
Ohashi, Y.; Thomas, G.; Nurko, S.; Stephany, B.; Fatica, R.; Chiesa, A.; Rule, A. D.; Srinivas, T.; Schold, J. D.; Navaneethan, S. D.; Poggio, E. D.
2013-01-01
The selection of living kidney donors is based on a formal evaluation of the state of health. However, this spectrum of health includes subtle metabolic derangements that can cluster as metabolic syndrome. We studied the association of metabolic syndrome with kidney function and histology in 410 donors from 2005 to 2012, of whom 178 donors were systematically followed after donation since 2009. Metabolic syndrome was defined as per the NCEP ATPIII criteria, but using a BMI > 25 kg/m2 instead of waist circumference. Following donation, donors received counseling on lifestyle modification. Metabolic syndrome was present in 50 (12.2%) donors. Donors with metabolic syndrome were more likely to have chronic histological changes on implant biopsies than donors with no metabolic syndrome (29.0% vs. 9.3%, p < 0.001). This finding was associated with impaired kidney function recovery following donation. At last follow-up, reversal of metabolic syndrome was observed in 57.1% of donors with predonation metabolic syndrome, while only 10.8% of donors developed de novo metabolic syndrome (p < 0.001). In conclusion, metabolic syndrome in donors is associated with chronic histological changes, and nephrectomy in these donors was associated with subsequent protracted recovery of kidney function. Importantly, weight loss led to improvement of most abnormalities that define metabolic syndrome. PMID:23865821
Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.
Kiyatkin, Eugene A; Wakabayashi, Ken T
2015-01-21
Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism.
Sarkar, Chaitali; Pal, Sudipta; Das, Niranjan; Dinda, Biswanath
2014-04-01
Beneficial effects of oleanolic acid on fluoride-induced oxidative stress and certain metabolic dysfunctions were studied in four regions of rat brain. Male Wistar rats were treated with sodium fluoride at a dose of 20 mg/kg b.w./day (orally) for 30 days. Results indicate marked reduction in acidic, basic and neutral protein contents due to fluoride toxicity in cerebrum, cerebellum, pons and medulla. DNA, RNA contents significantly decreased in those regions after fluoride exposure. Activities of proteolytic enzymes (such as cathepsin, trypsin and pronase) were inhibited by fluoride, whereas transaminase enzyme (GOT and GPT) activities increased significantly in brain tissue. Fluoride appreciably elevated brain malondialdehyde level, free amino acid nitrogen, NO content and free OH radical generation. Additionally, fluoride perturbed GSH content and markedly reduced SOD, GPx, GR and CAT activities in brain tissues. Oral supplementation of oleanolic acid (a plant triterpenoid), at a dose of 5mg/kgb.w./day for last 14 days of fluoride treatment appreciably ameliorated fluoride-induced alteration of brain metabolic functions. Appreciable counteractive effects of oleanolic acid against fluoride-induced changes in protein and nucleic acid contents, proteolytic enzyme activities and other oxidative stress parameters indicate that oleanolic acid has potential antioxidative effects against fluoride-induced oxidative brain damage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review.
Vatansever, Recep; Ozyigit, Ibrahim Ilker; Filiz, Ertugrul
2017-01-01
The essentiality of 14 mineral elements so far have been reported in plant nutrition. Eight of these elements were known as micronutrients due to their lower concentrations in plants (usually ≤100 mg/kg/dw). However, it is still challenging to mention an exact number of plant micronutrients since some elements have not been strictly proposed yet either as essential or beneficial. Micronutrients participate in very diverse metabolic processes, including from the primary and secondary metabolism to the cell defense, and from the signal transduction to the gene regulation, energy metabolism, and hormone perception. Thus, the attempt to understand the molecular mechanism(s) behind their transport has great importance in terms of basic and applied plant sciences. Moreover, their deficiency or toxicity also caused serious disease symptoms in plants, even plant destruction if not treated, and many people around the world suffer from the plant-based dietary deficiencies or metal toxicities. In this sense, shedding some light on this issue, the 13 mineral elements (Fe, B, Cu, Mn, Mo, Si, Zn, Ni, Cl, Se, Na, Al, and Co), required by plants at trace amounts, has been reviewed with the primary focus on the transport proteins (transporters/channels) in plant roots. So, providing the compiled but extensive information about the structural and functional roles of micronutrient transport genes/proteins in plant roots.
Yoshida, Ryu; Cheng, Mingyu; Murray, Martha M
2014-02-01
Tissue engineering is one new strategy being developed to treat ACL ruptures. One such approach is bio-enhanced ACL repair, where a suture repair is supplemented with a bio-active scaffold containing platelets. However, the optimal concentration of platelets to stimulate ACL healing is not known. We hypothesized that increasing platelet concentrations in the scaffold would enhance critical cell behaviors. Porcine ACL fibroblasts were obtained from explant culture and suspended in platelet poor plasma (PPP), 1× platelet-rich plasma (PRP), 3× PRP, 5× PRP, or phosphate buffered saline (PBS). The cell suspensions were cultured in a 3D collagen scaffold. Cellular metabolism (MTT assay), apoptosis (TUNEL assay), and gene expression for type I and type III collagen were measured. 1× PRP significantly outperformed 5× PRP in all parameters studied: Type I and III collagen gene expression, apoptosis prevention, and cell metabolism stimulation. ACL fibroblasts cultured with 1× PRP had the highest type I and type III collagen gene expression. 1× PRP and PPP groups had the highest cell metabolism and lowest apoptosis rates. Concentration of platelets had significant effects on the behavior of ACL fibroblasts; thus, it is an important parameter that should be specified in clinical or basic science studies. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula
2012-01-01
Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.
Traditional Chinese Medicine in Treatment of Metabolic Syndrome
Yin, Jun; Zhang, Hanjie; Ye, Jianping
2008-01-01
In management of metabolic syndrome, the traditional Chinese medicine (TCM) is an excellent representative in alternative and complementary medicines with a complete theory system and substantial herb remedies. In this article, basic principle of TCM is introduced and 22 traditional Chinese herbs are reviewed for their potential activities in the treatment of metabolic syndrome. Three herbs, ginseng, rhizoma coptidis (berberine, the major active compound) and bitter melon, were discussed in detail on their therapeutic potentials. Ginseng extracts made from root, rootlet, berry and leaf of Panax quinquefolium (American ginseng) and Panax ginseng (Asian ginseng), are proved for anti-hyperglycemia, insulin sensitization, islet protection, anti-obesity and anti-oxidation in many model systems. Energy expenditure is enhanced by ginseng through thermogenesis. Ginseng-specific saponins (ginsenosides) are considered as the major bioactive compounds for the metabolic activities of ginseng. Berberine from rhizoma coptidis is an oral hypoglycemic agent. It also has anti-obesity and anti-dyslipidemia activities. The action mechanism is related to inhibition of mitochondrial function, stimulation of glycolysis, activation of AMPK pathway, suppression of adipogenesis and induction of low-density lipoprotein (LDL) receptor expression. Bitter melon or bitter gourd (Momordica charantia) is able to reduce blood glucose and lipids in both normal and diabetic animals. It may also protect β cells, enhance insulin sensitivity and reduce oxidative stress. Although evidence from animals and humans consistently supports the therapeutic activities of ginseng, berberine and bitter melon, multi-center large-scale clinical trials have not been conducted to evaluate the efficacy and safety of these herbal medicines. PMID:18537696
Phylogenetic Analysis Supports the Aerobic-Capacity Model for the Evolution of Endothermy.
Nespolo, Roberto F; Solano-Iguaran, Jaiber J; Bozinovic, Francisco
2017-01-01
The evolution of endothermy is a controversial topic in evolutionary biology, although several hypotheses have been proposed to explain it. To a great extent, the debate has centered on the aerobic-capacity model (AC model), an adaptive hypothesis involving maximum and resting rates of metabolism (MMR and RMR, respectively; hereafter "metabolic traits"). The AC model posits that MMR, a proxy of aerobic capacity and sustained activity, is the target of directional selection and that RMR is also influenced as a correlated response. Associated with this reasoning are the assumptions that (1) factorial aerobic scope (FAS; MMR/RMR) and net aerobic scope (NAS; MMR - RMR), two commonly used indexes of aerobic capacity, show different evolutionary optima and (2) the functional link between MMR and RMR is a basic design feature of vertebrates. To test these assumptions, we performed a comparative phylogenetic analysis in 176 vertebrate species, ranging from fish and amphibians to birds and mammals. Using disparity-through-time analysis, we also explored trait diversification and fitted different evolutionary models to study the evolution of metabolic traits. As predicted, we found (1) a positive phylogenetic correlation between RMR and MMR, (2) diversification of metabolic traits exceeding that of random-walk expectations, (3) that a model assuming selection fits the data better than alternative models, and (4) that a single evolutionary optimum best fits FAS data, whereas a model involving two optima (one for ectotherms and another for endotherms) is the best explanatory model for NAS. These results support the AC model and give novel information concerning the mode and tempo of physiological evolution of vertebrates.
McLean, Stephanie; Persson, Anna; Norin, Tommy; Killen, Shaun S
2018-04-02
Group living is ubiquitous among animals [1, 2], but the exact benefits of group living experienced by individual groupmates is related to their spatial location within the overall group [3-5]. Individual variation in behavioral traits and nutritional state is known to affect interactions between individuals and their social group [6, 7], but physiological mechanisms underpinning collective animal behavior remain largely unexplored [8]. Here, we show that while fish at the front of moving groups are most successful at capturing food items, these individuals then show a systematic, post-feeding movement toward the rear of groups. Using observations of fish feeding in groups coupled with estimates of metabolic rate in fish consuming different meal sizes, we demonstrate that the magnitude of this shift in spatial position is directly related to the aerobic metabolic scope remaining after accounting for energetic costs of digestion. While previous work has shown that hungry individuals occupy anterior positions in moving groups [9, 10], our results show that the metabolic demand of food processing reduces the aerobic capacity available for locomotion in individuals that eat most, thus preventing them from maintaining leading positions. This basic trade-off between feeding and locomotor capacity could fundamentally dictate the spatial position of individuals within groups, perhaps obviating the role of individual traits in determining spatial preferences over shorter timescales (e.g., hours to days). This may be a general constraint for individuals within animal collectives, representing a key, yet overlooked, mediator of group functioning that could affect leadership, social information transfer, and group decision making. Copyright © 2018 Elsevier Ltd. All rights reserved.
Anderson, Mark L
2013-05-01
Research on the role of digestion in overall health has driven increasing interest in the use of digestive enzymes, which may improve nutrient absorption and reduce gastrointestinal symptoms. Sales of digestive aids and enzymes have grown over 8% in 2009, with enzymes accounting for $69 million of this growing category. Recent clinical research reported that acute dosing of Aminogen®, a patented blend of digestive protease enzymes isolated from Aspergillus and blended with whey protein concentrate, increased the rate of protein absorption. The results indicated a faster rate of amino acid absorption reflected in significantly higher blood levels of amino acids, increased nitrogen retention, and significantly reduced levels of C-reactive protein. Few studies, however, have examined the safety of repeated dosing of oral enzymes with an appropriate substrate. The purpose of this study, therefore, was to evaluate basic measures of clinical safety during 30 days of continuous, repeated dosing of Aminogen® and whey protein supplementation in healthy, active men maintaining a regimen of resistance training. Parameters evaluated include various markers of general physical health, metabolic function, hepato-renal function, and cardiovascular health including fasting blood lipids. Forty healthy, resistance-trained men (27.1 ± 7.9 years) were recruited for this double-blind, randomized study. Group A ingested two 40-g doses of whey protein per day containing Aminogen®. Group B ingested two 40-g doses of whey protein per day. No significant changes were noted in measures of general physical health, metabolic function, cardiovascular health, and hepato-renal function within or between groups. However, total cholesterol, LDL cholesterol, and serum calcium significantly increased ( P < 0.05) in group B. In group A, whey protein containing Aminogen® was well tolerated with no adverse reactions reported. No differences in serum markers of clinical safety and an improved blood lipid profile are also reported.
Metabolic function of the CTRP family of hormones
Seldin, Marcus M.; Tan, Stefanie Y.; Wong, G. William
2013-01-01
Maintaining proper energy balance in mammals entails intimate crosstalk between various tissues and organs. These inter-organ communications are mediated, to a great extent, by secreted hormones that circulate in blood. Regulation of the complex metabolic networks by secreted hormones (e.g., insulin, glucagon, leptin, adiponectin, FGF21) constitutes an important mechanism governing the integrated control of whole-body metabolism. Disruption of hormone-mediated metabolic circuits frequently results in dysregulated energy metabolism and pathology. As part of an effort to identify novel metabolic hormones, we recently characterized a highly conserved family of fifteen secreted proteins, the C1q/TNF-related proteins (CTRP1–15). While related to adiponectin in sequence and structural organization, each CTRP has its own unique tissue expression profile and non-redundant function in regulating sugar and/or fat metabolism. Here, we summarize the current understanding of the physiological functions of CTRPs, emphasizing their metabolic roles. Future studies using gain-of-function and loss-of-function mouse models will provide greater mechanistic insights into the critical role CTRPs play in regulating systemic energy homeostasis. PMID:23963681
Gong, Y-H; Ai, G-M; Li, M; Shi, X-Y; Diao, Q-Y; Gao, X-W
2017-12-01
Carboxylesterases (CarEs) play an important role in detoxifying insecticides in insects. Over-expression and structural modification of CarEs have been implicated in the development of organophosphate (OP) insecticide resistance in insects. A previous study identified four nonsynonymous mutations (resulting in four amino acid residue substitutions) in the open reading frame of the carboxylesterase gene of resistant cotton aphids compared to the omethoate susceptible strain, which has possibly influenced the development of resistance to omethoate (a systemic OP insecticide). The current study further characterized the function of these mutations, both alone and in combination, in the hydrolysis of OP insecticides. The metabolism results suggest that the combination of four mutations, mainly existing in the laboratory-selected OP-resistant cotton aphid population, increased the OP hydrolase activity (approximately twofold) at the cost of detectable carboxylesterase activity. The functional studies of single or multiple mutations suggest the positive effect of H104R, A128V and T333P on the acquisition of OP hydrolase activity, especially the combination of H104R with A128V or T333P. K484R substitution decreased both the OP hydrolase activity and the CarE activity, indicating that this mutation primarily drives the negative effect on the acquisition of OP hydrolase activity amongst these four mutations in the resistant strain. The modelling and docking results are basically consistent with the metabolic results, which strongly suggest that the structural gene modification is the molecular basis for the OP resistance in this laboratory-selected cotton aphid strain. © 2017 The Royal Entomological Society.
Gerriets, Valerie A; Danzaki, Keiko; Kishton, Rigel J; Eisner, William; Nichols, Amanda G; Saucillo, Donte C; Shinohara, Mari L; MacIver, Nancie J
2016-08-01
Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heart failure—potential new targets for therapy
Nabeebaccus, Adam; Zheng, Sean; Shah, Ajay M.
2016-01-01
Abstract Introduction/background Heart failure is a major cause of cardiovascular morbidity and mortality. This review covers current heart failure treatment guidelines, emerging therapies that are undergoing clinical trial, and potential new therapeutic targets arising from basic science advances. Sources of data A non-systematic search of MEDLINE was carried out. International guidelines and relevant reviews were searched for additional articles. Areas of agreement Angiotensin-converting enzyme inhibitors and beta-blockers are first line treatments for chronic heart failure with reduced left ventricular function. Areas of controversy Treatment strategies to improve mortality in heart failure with preserved left ventricular function are unclear. Growing points Many novel therapies are being tested for clinical efficacy in heart failure, including those that target natriuretic peptides and myosin activators. A large number of completely novel targets are also emerging from laboratory-based research. Better understanding of pathophysiological mechanisms driving heart failure in different settings (e.g. hypertension, post-myocardial infarction, metabolic dysfunction) may allow for targeted therapies. Areas timely for developing research Therapeutic targets directed towards modifying the extracellular environment, angiogenesis, cell viability, contractile function and microRNA-based therapies. PMID:27365454
Biochemical Engineering Approaches for Increasing Viability and Functionality of Probiotic Bacteria
Nguyen, Huu-Thanh; Truong, Dieu-Hien; Kouhoundé, Sonagnon; Ly, Sokny; Razafindralambo, Hary; Delvigne, Frank
2016-01-01
The literature presents a growing body of evidence demonstrating the positive effect of probiotics on health. Probiotic consumption levels are rising quickly in the world despite the fluctuation of their viability and functionality. Technological methods aiming at improving probiotic characteristics are thus highly wanted. However, microbial metabolic engineering toolbox is not available for this kind of application. On the other hand, basic microbiology teaches us that bacteria are able to exhibit adaptation to external stresses. It is known that adequately applied sub-lethal stress, i.e., controlled in amplitude and frequency at a given stage of the culture, is able to enhance microbial robustness. This property could be potentially used to improve the viability of probiotic bacteria, but some technical challenges still need to be overcome before any industrial implementation. This review paper investigates the different technical tools that can be used in order to define the proper condition for improving viability of probiotic bacteria and their implementation at the industrial scale. Based on the example of Bifidobacterium bifidum, potentialities for simultaneously improving viability, but also functionality of probiotics will be described. PMID:27271598
Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury
Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.
2009-01-01
Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795
NASA Technical Reports Server (NTRS)
Yopp, John H.; Tindall, Donald R.; Pavlicek, Kenneth
1987-01-01
Major accomplishments underlying the basic understanding of cyanobacterial resistance to salt tolerance and osmotic stress were made. The methodology proposed included: the tracing of the pathways of formation of osmoregulatory solutes by traditional methods involving C-14 labelled substrates; gas chromatography; amino acid analysis; X-ray analysis using scanning transmission electron microscopy; and most importantly, C-13 labelled substrates, followed by Nuclear Magnetic Resonance (NMR) spectroscopy. It was found that the cyanobacteria employ a diversity of organic, osmoregulatory solutes. Osmoregulatory solutes were found to serve four functions: adjustment of water activity, noninhibition of enzymes; lowering of K sub m of enzymes to allow functioning at normal levels when the intracellular salt accumulates, and extending the pH optimum of enzymes as intracellular pH rises due to proton-potassium ion pump action during osmoregulation. Differences in osmoregulatory solutes may, but are not always, be attributed to differences in nutritional capabilities. The mechanism of osmoregulation and concomitant salt tolerance in halophilic cyanobacteria was elucidated. The activities of betaine and S-Adenosylhomocysteine hydrolase are discussed.
Gannon, Nicholas P; Lambalot, Emily L; Vaughan, Roger A
2016-05-01
There is increasing interest in dietary chemicals that may provide benefits for pathologies such as diabetes and obesity. Capsaicinoids found in chili peppers and pepper extracts, are responsible for the "hot" or "spicy" sensation associated with these foods. Capsaicinoid consumption is also associated with enhanced metabolism, making them potentially therapeutic for metabolic disease by promoting weight loss. This review summarizes much of the current experimental evidence (ranging from basic to applied investigations) of the biochemical and molecular metabolic effects of capsaicinoids in metabolically significant cell types. Along with influencing metabolic rate, findings demonstrate capsaicinoids appear to alter molecular metabolic signaling, regulate hunger and satiety, blood metabolites, and catecholamine release. Notably, the majority of the experiments summarized herein utilized isolated supplemental or research grade capsaicinoids rather than natural food sources for experimental interventions. Additional work should be conducted using primary food sources of capsaicin to explore pharmacological, physiological, and metabolic benefits of both chronic and acute capsaicin consumption. © 2016 BioFactors, 42(3):229-246, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Kinlein, Scott A; Shahanoor, Ziasmin; Romeo, Russell D; Karatsoreos, Ilia N
2017-07-01
Glucocorticoids are potent modulators of metabolic and behavioral function. Their role as mediators in the "stress response" is well known, but arguably their primary physiological function is in the regulation of cellular and organismal metabolism. Disruption of normal glucocorticoid function is linked to metabolic disease, such as Cushing syndrome. Glucocorticoids are also elevated in many forms of obesity, suggesting that there are bidirectional effects of these potent hormones on metabolism and metabolic function. Adolescence is a time of rapid physical growth, and disruptions during this critical time likely have important implications for adult function. The hypothalamic-pituitary-adrenal axis continues to mature during this period, as do tissues that respond to glucocorticoids. In this work, we investigate how chronic noninvasive exposure to corticosterone affects metabolic outcomes (body weight, body composition, insulin, and glucose homeostasis), as well as changes in bone density in both adult and adolescent male mice. Specifically, we report a different pattern of metabolic effects in adolescent mice compared with adults, as well as an altered trajectory of recovery in adolescents and adults. Together, these data indicate the profound influence that adolescent development has on the metabolic outcomes of chronic corticosterone exposure, and describe a tractable model for understanding the short- and long-term impacts of hypercortisolemic states on physiological and neurobehavioral functions. Copyright © 2017 Endocrine Society.
Flues, Sebastian; Bass, David; Bonkowski, Michael
2017-08-01
Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Functional Food and Cardiovascular Disease Prevention and Treatment: A Review.
Asgary, Sedigheh; Rastqar, Ali; Keshvari, Mahtab
2018-03-12
Cardiovascular disease (CVD) is now the leading cause of death globally and is a growing health concern. Lifestyle factors, including nutrition, play an important role in the etiology and treatment of CVD. Functional foods based on their basic nutritional functions can decrease the risk of many chronic diseases and have some physiological benefits. They contain physiologically active components either from plant or animal sources, marketed with the claim of their ability to reduce heart disease risk, focusing primarily on established risk factors, which are hyperlipidemia, diabetes, metabolic syndrome, obesity/overweight, elevated lipoprotein A level, small dense low-density lipoprotein cholesterol (LDL-C), and elevated inflammatory marker levels. Functional foods are suspected to exert their cardioprotective effects mainly through blood lipid profile level and improve hypertension control, endothelial function, platelet aggregation, and antioxidant actions. Clinical and epidemiological observations indicate that vegetable and fruit fiber, nuts and seeds, sea foods, coffee, tea, and dark chocolate have cardioprotective potential in humans, as well whole-grain products containing intact grain kernels rich in fiber and trace nutrients. They are nutritionally more important because they contain phytoprotective substances that might work synergistically to reduce cardiovascular risk. This review will focus on the reciprocal interaction between functional foods and the potential link to cardiovascular health and the possible mechanisms of action.
[The characteristics of the development of an adaptation syndrome in severe gestosis].
Ivanchenko, S A
2000-01-01
Basic metabolic pathways were studied of formation of the adaptive syndrome in the organism of patients with grave gestoses: glycolysis, gluconeogenesis, and pentosephosphate pathway of production of nicotinamide coenzymes. It has been found out that a stressful character of reconstruction of metabolic homeostasis tends to change the processes of glycolysis and gluconeogenesis that had come to be formed by evolution. This warrants further study, its purpose being a specific correction of intracellular metabolism and prevention of complications. Ozonohemo- and antioxidant therapy in a complex of intensive treatment measures for patients with severe gestoses make for stimulation of pentosephosphate pathway and glycolysis.
Nutrition and the science of disease prevention: a systems approach to support metabolic health
Bennett, Brian J.; Hall, Kevin D.; Hu, Frank B.; McCartney, Anne L.; Roberto, Christina
2017-01-01
Progress in nutritional science, genetics, computer science, and behavioral economics can be leveraged to address the challenge of noncommunicable disease. This report highlights the connection between nutrition and the complex science of preventing disease and discusses the promotion of optimal metabolic health, building on input from several complementary disciplines. The discussion focuses on (1) the basic science of optimal metabolic health, including data from gene–diet interactions, microbiome, and epidemiological research in nutrition, with the goal of defining better targets and interventions, and (2) how nutrition, from pharma to lifestyle, can build on systems science to address complex issues. PMID:26415028
Hamilton, Joshua J; Reed, Jennifer L
2012-01-01
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.
Hamilton, Joshua J.; Reed, Jennifer L.
2012-01-01
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here. PMID:22666308
Association of metabolic syndrome with kidney function and histology in living kidney donors.
Ohashi, Y; Thomas, G; Nurko, S; Stephany, B; Fatica, R; Chiesa, A; Rule, A D; Srinivas, T; Schold, J D; Navaneethan, S D; Poggio, E D
2013-09-01
The selection of living kidney donors is based on a formal evaluation of the state of health. However, this spectrum of health includes subtle metabolic derangements that can cluster as metabolic syndrome. We studied the association of metabolic syndrome with kidney function and histology in 410 donors from 2005 to 2012, of whom 178 donors were systematically followed after donation since 2009. Metabolic syndrome was defined as per the NCEP ATPIII criteria, but using a BMI > 25 kg/m(2) instead of waist circumference. Following donation, donors received counseling on lifestyle modification. Metabolic syndrome was present in 50 (12.2%) donors. Donors with metabolic syndrome were more likely to have chronic histological changes on implant biopsies than donors with no metabolic syndrome (29.0% vs. 9.3%, p < 0.001). This finding was associated with impaired kidney function recovery following donation. At last follow-up, reversal of metabolic syndrome was observed in 57.1% of donors with predonation metabolic syndrome, while only 10.8% of donors developed de novo metabolic syndrome (p < 0.001). In conclusion, metabolic syndrome in donors is associated with chronic histological changes, and nephrectomy in these donors was associated with subsequent protracted recovery of kidney function. Importantly, weight loss led to improvement of most abnormalities that define metabolic syndrome. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.
Energetics of basic karate kata.
Bussweiler, Jens; Hartmann, Ulrich
2012-12-01
Knowledge about energy requirements during exercises seems necessary to develop training concepts in combat sport Karate. It is a commonly held view that the anaerobic lactic energy metabolism plays a key role, but this assumption could not be confirmed so far. The metabolic cost and fractional energy supply of basic Karate Kata (Heian Nidan, Shotokan style) with duration of about 30 s were analyzed. Six male Karateka [mean ± SD (age 29 ± 8 years; height 177 ± 5 cm, body mass 75 ± 9 kg)] with different training experience (advanced athletes, experts, elite athletes) were examined while performing one time and two time continuously the sport-specific movements. During Kata performance oxygen uptake was measured with a portable spirometric device, blood lactate concentrations were examined before and after testing and fractional energy supply was calculated. The results have shown that on average 52 % of the energy supply for one Heian Nidan came from anaerobic alactic metabolism, 25 % from anaerobic lactic and 23 % from aerobic metabolism. For two sequentially executed Heian Nidan and thus nearly doubling the duration, the calculated percentages were 33, 25 and 42 %. Total energy demand for one Kata and two Kata was approximately 61 and 99 kJ, respectively. Despite measured blood lactate concentrations up to 8.1 mmol l(-1), which might suggest a dominance of lactic energy supply, a lactic fraction of only 17-31 % during these relatively short and intense sequences could be found. A heavy use of lactic energy metabolism had to be rejected.
Wajda, A; Łapczuk, J; Grabowska, M; Pius-Sadowska, E; Słojewski, M; Laszczynska, M; Urasinska, E; Machalinski, B; Drozdzik, M
2017-04-01
Aryl hydrocarbon receptor (AhR) plays multiple important functions in adaptive responses. Exposure to AhR ligands may produce an altered metabolic activity controlled by the AhR pathways, and consequently affect drug/toxin responses, hormonal status and cellular homeostasis. This research revealed species-, cell- and region-specific pattern of the AhR system expression in the rat and human testis and epididymis, complementing the existing knowledge, especially within the epididymal segments. The study showed that AhR level in the rat and human epididymis is higher than in the testis. The downregulation of AhR expression after TCDD treatment was revealed in the spermatogenic cells at different stages and the epididymal epithelial cells, but not in the Sertoli and Leydig cells. Hence, this basic research provides information about the AhR function in the testis and epididymis, which may provide an insight into deleterious effects of drugs, hormones and environmental pollutants on male fertility. Copyright © 2017 Elsevier Inc. All rights reserved.
Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms.
Bertelli, Claire; Greub, Gilbert
2012-01-01
Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).
New Roles of Carboxypeptidase E in Endocrine and Neural Function and Cancer
Cawley, Niamh X.; Wetsel, William C.; Murthy, Saravana R. K.; Park, Joshua J.; Pacak, Karel
2012-01-01
Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors. PMID:22402194
Can features of phosphate toxicity appear in normophosphatemia?
Osuka, Satoko; Razzaque, Mohammed S
2012-01-01
Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels.
Can features of phosphate toxicity appear in normophosphatemia?
Osuka, Satoko; Razzaque, Mohammed S.
2013-01-01
Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells. Impaired phosphate balance can affect the functionality of almost all human systems, including muscular, skeletal, and vascular systems, leading to an increase in morbidity and mortality of the involved patients. Currently, measuring serum phosphate level is the gold standard to estimate the overall phosphate status of the body. Despite the biological and clinical significance of maintaining delicate phosphate balance, serum levels do not always reflect the amount of phosphate uptake and its distribution. This article briefly discusses the potential that some of the early consequences of phosphate toxicity might not be evident from serum phosphate levels. PMID:22219005
Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome
O’Connor, James P.B.; Rose, Chris J.; Waterton, John C.; Carano, Richard A.D.; Parker, Geoff J.M.; Jackson, Alan
2014-01-01
Tumors exhibit genomic and phenotypic heterogeneity which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks. These methods can establish whether one tumor is more or less heterogeneous than another and can identify sub-regions with differing biology. In this article we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, rather than be developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. PMID:25421725
Martin, François-Pierre J; Montoliu, Ivan; Kochhar, Sunil; Rezzi, Serge
2010-12-01
Over the past decade, the analysis of metabolic data with advanced chemometric techniques has offered the potential to explore functional relationships among biological compartments in relation to the structure and function of the intestine. However, the employed methodologies, generally based on regression modeling techniques, have given emphasis to region-specific metabolic patterns, while providing only limited insights into the spatiotemporal metabolic features of the complex gastrointestinal system. Hence, novel approaches are needed to analyze metabolic data to reconstruct the metabolic biological space associated with the evolving structures and functions of an organ such as the gastrointestinal tract. Here, we report the application of multivariate curve resolution (MCR) methodology to model metabolic relationships along the gastrointestinal compartments in relation to its structure and function using data from our previous metabonomic analysis. The method simultaneously summarizes metabolite occurrence and contribution to continuous metabolic signatures of the different biological compartments of the gut tract. This methodology sheds new light onto the complex web of metabolic interactions with gut symbionts that modulate host cell metabolism in surrounding gut tissues. In the future, such an approach will be key to provide new insights into the dynamic onset of metabolic deregulations involved in region-specific gastrointestinal disorders, such as Crohn's disease or ulcerative colitis.
Metabolic Reprogramming and Oncogenesis: One Hallmark, Many Organelles.
Costa, A S H; Frezza, C
2017-01-01
The process of tumorigenesis can be described by a series of molecular features, among which alteration of cellular metabolism has recently emerged. This metabolic rewiring fulfills the energy and biosynthetic demands of fast proliferating cancer cells and amplifies their metabolic repertoire to survive and proliferate in the poorly oxygenated and nutrient-deprived tumor microenvironment. During the last decade, the complex reprogramming of cancer cell metabolism has been widely investigated, revealing cancer-specific metabolic alterations. These include dysregulation of glucose and glutamine metabolism, alterations of lipid synthesis and oxidation, and a complex rewiring of mitochondrial function. However, mitochondria are not the only metabolically active organelles within the cell, and other organelles, including lysosomes, peroxisomes, and endoplasmic reticulum, harbor components of the metabolic network. Of note, dysregulation of the function of these organelles is increasingly recognized in cancer cells. However, to what extent these organelles contribute to the metabolic reprogramming of cancer is not fully understood. In this review, we describe the main metabolic functions of these organelles and provide insights into how they communicate to orchestrate a coordinated metabolic reprogramming during transformation. © 2017 Elsevier Inc. All rights reserved.
Plant toxins that affect nicotinic acetylcholine receptors: A review
USDA-ARS?s Scientific Manuscript database
Plants produce wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. ...
Functional Alignment of Metabolic Networks.
Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded
2016-05-01
Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.
Synthetic metabolism: metabolic engineering meets enzyme design.
Erb, Tobias J; Jones, Patrik R; Bar-Even, Arren
2017-04-01
Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yin, Jinbao; Liu, Su; Yu, Jing; Wu, Bing
2017-07-01
Diabetes is a common metabolic disease, which might influence susceptibility of the kidney to arsenic toxicity. However, relative report is limited. In this study, we compared the influence of inorganic arsenic (iAs) on renal oxidative damage and urinary metabolic profiles of normal and diabetic mice. Results showed that iAs exposure increased renal lipid peroxidation in diabetic mice and oxidative DNA damage in normal mice, meaning different effects of iAs exposure on normal and diabetic individuals. Nuclear magnetic resonance (NMR)-based metabolome analyses found that diabetes significantly changed urinary metabolic profiles of mice. Oxidative stress-related metabolites, such as arginine, glutamine, methionine, and β-hydroxybutyrate, were found to be changed in diabetic mice. The iAs exposure altered amino acid metabolism, lipid metabolism, carbohydrate metabolism, and energy metabolism in normal and diabetic mice, but had higher influence on metabolic profiles of diabetic mice than normal mice, especially for oxidative stress-related metabolites and metabolisms. Above results indicate that diabetes increased susceptibility to iAs exposure. This study provides basic information on differential toxicity of iAs on renal toxicity and urinary metabolic profiles in normal and diabetic mice and suggests that diabetic individuals should be considered as susceptible population in toxicity assessment of arsenic.
Physical Chemistry of Bile: Detailed Pathogenesis of Cholelithiasis.
Itani, Malak; Dubinsky, Theodore J
2017-09-01
Despite the overwhelming prevalence of cholelithiasis, many health care professionals are not familiar with the basic pathophysiology of gallstone formation. This article provides an overview of the biochemical pathways related to bile, with a focus on the physical chemistry of bile. We describe the important factors in bile synthesis and secretion that affect the composition of bile and consequently its liquid state. Within this biochemical background lies the foundation for understanding the clinical and sonographic manifestation of cholelithiasis, including the pathophysiology of cholesterol crystallization, gallbladder sludge, and gallstones. There is a brief discussion of the clinical manifestations of inflammatory and obstructive cholestasis and the impact on bile metabolism and subsequently on liver function tests. Despite being the key modality in diagnosing cholelithiasis, ultrasound has a limited role in the characterization of stone composition.
Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang
2018-01-01
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408
Dueck, Alexander; Berger, Christoph; Wunsch, Katharina; Thome, Johannes; Cohrs, Stefan; Reis, Olaf; Haessler, Frank
2017-02-01
A more recent branch of research describes the importance of sleep problems in the development and treatment of mental disorders in children and adolescents, such as attention-deficit hyperactivity disorder (ADHD) and mood disorders (MD). Research about clock genes has continued since 2012 with a focus on metabolic processes within all parts of the mammalian body, but particularly within different cerebral regions. Research has focused on complex regulatory circuits involving clock genes themselves and their influence on circadian rhythms of diverse body functions. Current publications on basic research in human and animal models indicate directions for the treatment of mental disorders targeting circadian rhythms and mechanisms. The most significant lines of research are described in this paper.
Liu, Yan; Wang, Hai; Zhao, Wei; Zhang, Min; Qin, Hongbo; Xie, Yongqiang
2018-02-22
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.
Plasticity of the Muscle Stem Cell Microenvironment.
Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph
2017-01-01
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.
Approach to Assessing Determinants of Glucose Homeostasis in the Conscious Mouse
Hughey, Curtis C.; Wasserman, David H.; Lee-Young, Robert S.; Lantier, Louise
2014-01-01
Obesity and type 2 diabetes lessen the quality of life of those afflicted and place considerable burden on the healthcare system. Furthermore, the detrimental impact of these pathologies is expected to persist or even worsen. Diabetes is characterized by impaired insulin action and glucose homeostasis. This has led to a rapid increase in the number of mouse models of metabolic disease being used in the basic sciences to assist in facilitating a greater understanding of the metabolic dysregulation associated with obesity and diabetes, the identification of therapeutic targets, and the discovery of effective treatments. This review briefly describes the most frequently utilized models of metabolic disease. A presentation of standard methods and technologies on the horizon for assessing metabolic phenotypes in mice, with particular emphasis on glucose handling and energy balance, is provided. The article also addresses issues related to study design, selection and execution of metabolic tests of glucose metabolism, the presentation of data, and interpretation of results. PMID:25074441
Automated Routines for Calculating Whole-Stream Metabolism: Theoretical Background and User's Guide
Bales, Jerad D.; Nardi, Mark R.
2007-01-01
In order to standardize methods and facilitate rapid calculation and archival of stream-metabolism variables, the Stream Metabolism Program was developed to calculate gross primary production, net ecosystem production, respiration, and selected other variables from continuous measurements of dissolved-oxygen concentration, water temperature, and other user-supplied information. Methods for calculating metabolism from continuous measurements of dissolved-oxygen concentration and water temperature are fairly well known, but a standard set of procedures and computation software for all aspects of the calculations were not available previously. The Stream Metabolism Program addresses this deficiency with a stand-alone executable computer program written in Visual Basic.NET?, which runs in the Microsoft Windows? environment. All equations and assumptions used in the development of the software are documented in this report. Detailed guidance on application of the software is presented, along with a summary of the data required to use the software. Data from either a single station or paired (upstream, downstream) stations can be used with the software to calculate metabolism variables.
NASA Astrophysics Data System (ADS)
Lihua, Guo; Xinxing, He; Guoxin, Xu; Xin, Qi
2012-12-01
Trace chemical contaminants generated by human metabolism is a major source of contamination in spacecraft crew module. In this research, types and generation rates of pollutants from human metabolism were determined in the Chinese diets. Expired air, skin gas, and sweat of 20 subjects were analyzed at different exercise states in a simulated module. The exercise states were designed according to the basic activities in the orbit of astronauts. Qualitative and quantitative analyses of contaminants generated by human metabolic were performed with gas chromatography/mass spectrometry, gas chromatography and UV spectrophotometer. Sixteen chemical compounds from metabolic sources were found. With the increase in physical load, the concentrations of chemical compounds from human skin and expired air correspondingly increased. The species and the offgassing rates of pollutants from human metabolism are different among the Chinese, Americans and the Russians due to differences in ethnicity and dietary customs. This research provides data to aid in the design, development and operation of China's long duration space mission.
Hoppe, Andreas; Hoffmann, Sabrina; Holzhütter, Hermann-Georg
2007-01-01
Background In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions. Results To augment the reliability of FBA-based flux calculations we propose an additional side constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for which plausible ranges can be inferred from experimental data. Computationally, our method results in the solution of a mixed integer linear optimization problem with quadratic scoring function. An optimal flux distribution together with a metabolite profile is determined which assures thermodynamic realizability with minimal deviations of metabolite levels from their expected values. We applied our novel approach to two exemplary metabolic networks of different complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network iJR904 of Escherichia coli (931 reactions). Our calculations show that increasing network complexity entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free energy changes and metabolite concentration ranges. We demonstrate the usefulness of our method for assessing critical concentrations of external metabolites preventing attainment of a metabolic steady state. Conclusion Our method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm. The weakness of conventional FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome. This enables the computation of reliable flux distributions even under extreme conditions of the network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where metabolite concentrations may be drastically altered. PMID:17543097
Zhang, Hongyin; Dong, Manjia; Yang, Qiya; Apaliya, Maurice Tibiru; Li, Jun; Zhang, Xiaoyun
2016-06-30
The mycotoxin zearalenone, also known as F-2 mycotoxin or RAL is a potent estrogenic metabolite produced by some Gibberella and Fusarium species. It is a common contaminant of cereal crops, livestock and poultry products. However, detoxification of zearalenone (ZEN) remains a challenge. Recently, biological approach for ZEN detoxification is being explored. In this study, we investigated the biodegradation of ZEN by using Saccharomyces cerevisiae and the possible mechanisms involved. The findings revealed that, after 48h of incubation of S. cerevisiae in combination with ZEN, the ZEN was completely degraded by S. cerevisiae. On the contrary, heat-killed cells and cell-free culture filtrates of S. cerevisiae could not degrade ZEN. Furthermore, addition of cycloheximide to S. cerevisiae combined with ZEN at time 0h prevented ZEN degradation, while addition of cycloheximide at 12h significantly slowed down degradation. The results also indicated cellular proteomics of S. cerevisiae. Several differential proteins were identified, most of which were related to basic metabolism. The findings revealed that, after 48h of incubating ZEN together with S. cerevisiae, ZEN was completely degraded by S. cerevisiae. The mechanisms involved in the degradation of ZEN by S. cerevisiae may be the production of associated intracellular and extracellular enzymes, which have the ability to degrade ZEN. In addition, there were some functional proteins produced by S. cerevisiae, indicating that the basic metabolism of S. cerevisiae was improved when ZEN was added. This novel discovery by the authors, will greatly contribute to the field of biodegradation of mycotoxin by antagonists. The authors also believed this innovation will open the grounds for further research and improvement of S. cerevisiae in the field of biodegradation. Copyright © 2016 Elsevier B.V. All rights reserved.
Sánchez-Rodríguez, Dolores; Marco, Ester; Ronquillo-Moreno, Natalia; Maciel-Bravo, Liev; Gonzales-Carhuancho, Abel; Duran, Xavier; Guillén-Solà, Anna; Vázquez-Ibar, Olga; Escalada, Ferran; Muniesa, Josep M
2018-01-25
The aim of this study was to assess the prevalence of malnutrition by applying the ASPEN/AND definition and the ESPEN consensus definition in a postacute-care population, and secondly, to determine the metrological properties of the set of six clinical characteristics that constitute the ASPEN/AND basic diagnosis, compared to the ESPEN consensus, based mostly on objective anthropometric measurements. Prospective study of 84 consecutive deconditioned older inpatients (85.4 ± 6.2; 59.5% women) admitted for rehabilitation in postacute care. ASPEN/AND diagnosis of malnutrition was considered in presence of at least two of the following: low energy intake, fluid accumulation, diminished handgrip strength, and loss of weight, muscle mass, or subcutaneous fat. Sensitivity, specificity, positive and negative predictive values, accuracy, likelihood ratios, and kappa statistics were calculated for ASPEN/AND criteria and compared with ESPEN consensus. The prevalence of malnutrition by ASPEN/AND criteria was 63.1% and by ESPEN consensus, 20.2%; both diagnoses were associated with significantly longer length of stay, but the ESPEN definition was significantly associated with poorer functional outcomes after the rehabilitation program. Compared to ESPEN consensus, ASPEN/AND diagnosis showed fair validity (sensitivity = 94.1%; specificity = 44.8%); kappa statistic was 2.217. Applying the ASPEN/AND definition obtained a higher prevalence of malnutrition in a postacute-care population than was identified by the ESPEN definition. ASPEN/AND criteria had fair validity and agreement compared with the ESPEN definition. A simple, evidence-based, unified malnutrition definition might improve geriatric care. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Triglycerides and Heart Disease, Still a Hypothesis?
Goldberg, Ira J.; Eckel, Robert H.; McPherson, Ruth
2011-01-01
The purpose of this article is to review the basic and clinical science relating plasma triglycerides and cardiovascular disease. Although many aspects of the basic physiology of triglyceride production, its plasma transport and tissue uptake have been known for several decades, the relationship of plasma triglyceride levels to vascular disease is uncertain. Are triglyceride rich lipoproteins, their influence on HDL and LDL, or the underlying diseases leading to defects in triglyceride metabolism the culprit? Animal models have failed to confirm that anything other than early fatty lesions can be produced by triglyceride-rich lipoproteins. Metabolic products of triglyceride metabolism can be toxic to arterial cells; however, these studies are primarily in vitro. Correlative studies of fasting and postprandial triglycerides and genetic diseases implicate VLDL and their remnants, and chylomicron remnants in atherosclerosis development; but the concomitant alterations in other lipoproteins and other risk factors obscure any conclusions about direct relationships between disease and triglycerides. Genes that regulate triglyceride levels also correlate with vascular disease. Human intervention trials, however, have lacked an appropriately defined population, and have produced outcomes without definitive conclusions. The time is more than ripe for new and creative approaches to understanding the relationship of triglycerides and heart disease. PMID:21527746
The Effects of Obesity on Drug Metabolism in Children.
Oeser, Steffen G; Rougee, Luc R A; Collier, Abby C
2015-01-01
Obesity in children is a significant clinical concern. There are many anecdotes and case studies regarding specific reactions of obese children to medications including therapeutic failure, adverse drug reactions and/or requirements for higher weight-adjusted dosing. There isis, however, a lack of basic and clinical data dissecting the mechanisms of these effects on pharmaceutical efficacy and safety. At present it is unknown how much of the difference in drug disposition in obese children can be attributed to obesity, to maturation or to an interaction between the two. Since a major determinant of drug disposition is hepatic metabolism, here we review how obesity alters hepatic drug disposition in children. Basic as well as clinical data summarizing the current knowledge of biochemical, physiological and clinical effects of pediatric obesity on drug disposition are considered. We conclude that there is a dire need for increased research into the direct effects of obesity on absorption, distribution, metabolism and excretion, as well as changes to pharmacokinetic parameters such as bioavailability and clearance. Increased effort in this area may elucidate the effects of obesity on clinical drug disposition with sufficient detail to provide better dosing guidelines where needed for children.
Effects of Dietary Flavonoids on Reverse Cholesterol Transport, HDL Metabolism, and HDL Function12
Millar, Courtney L; Duclos, Quinn
2017-01-01
Strong experimental evidence confirms that HDL directly alleviates atherosclerosis. HDL particles display diverse atheroprotective functions in reverse cholesterol transport (RCT), antioxidant, anti-inflammatory, and antiapoptotic processes. In certain inflammatory disease states, however, HDL particles may become dysfunctional and proatherogenic. Flavonoids show the potential to improve HDL function through their well-documented effects on cellular antioxidant status and inflammation. The aim of this review is to summarize the basic science and clinical research examining the effects of dietary flavonoids on RCT and HDL function. Based on preclinical studies that used cell culture and rodent models, it appears that many flavonoids (e.g., anthocyanidins, flavonols, and flavone subclasses) influence RCT and HDL function beyond simple HDL cholesterol concentration by regulating cellular cholesterol efflux from macrophages and hepatic paraoxonase 1 expression and activity. In clinical studies, dietary anthocyanin intake is associated with beneficial changes in serum biomarkers related to HDL function in a variety of human populations (e.g., in those who are hyperlipidemic, hypertensive, or diabetic), including increased HDL cholesterol concentration, as well as HDL antioxidant and cholesterol efflux capacities. However, clinical research on HDL functionality is lacking for some flavonoid subclasses (e.g., flavanols, flavones, flavanones, and isoflavones). Although there has been a tremendous effort to develop HDL-targeted drug therapies, more research is warranted on how the intake of foods or specific nutrients affects HDL function. PMID:28298268
Ren, Ze; Wang, Fang; Qu, Xiaodong; Elser, James J.; Liu, Yang; Chu, Limin
2017-01-01
Understanding microbial communities in terms of taxon and function is essential to decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input streams are highly linked. However, the differences between microbial assemblages in streams and lakes are still unclear. In this study, we conducted an intensive field sampling of microbial communities from lake water and stream biofilms in the Qinghai Lake watershed, the largest lake in China. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt to determine the taxonomic and functional differences between microbial communities in stream biofilms and lake water. The results showed that stream biofilms and lake water harbored distinct microbial communities. The microbial communities were different taxonomically and functionally between stream and lake. Moreover, streams biofilms had a microbial network with higher connectivity and modularity than lake water. Functional beta diversity was strongly correlated with taxonomic beta diversity in both the stream and lake microbial communities. Lake microbial assemblages displayed greater predicted metabolic potentials of many metabolism pathways while the microbial assemblages in stream biofilms were more abundant in xenobiotic biodegradation and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had stronger predicted metabolic potentials in amino acid metabolism, carbon fixation, and photosynthesis while stream microbial assemblages were higher in carbohydrate metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to our knowledge of stream-lake linkages from the functional and taxonomic composition of microbial assemblages. PMID:29213266
Dörries, Kirsten; Lalk, Michael
2013-01-01
During infection processes, Staphylococcus aureus is able to survive within the host and to invade tissues and cells. For studying the interaction between the pathogenic bacterium and the host cell, the bacterial growth behaviour and its metabolic adaptation to the host cell environment provides first basic information. In the present study, we therefore cultivated S. aureus COL and HG001 in the eukaryotic cell culture medium RPMI 1640 and analyzed the extracellular metabolic uptake and secretion patterns of both commonly used laboratory strains. Extracellular accumulation of D-isoleucine was detected starting during exponential growth of COL and HG001 in RPMI medium. This non-canonical D-amino acid is known to play a regulatory role in adaptation processes. Moreover, individual uptake of glucose, accumulation of acetate, further overflow metabolites, and intermediates of the branched-chain amino acid metabolism constitute unique metabolic footprints. Altogether these time-resolved footprint analyses give first metabolic insights into staphylococcal growth behaviour in a culture medium used for infection related studies. PMID:24312553
NASA Astrophysics Data System (ADS)
Cescon, Marzia; Johansson, Rolf; Renard, Eric; Maran, Alberto
2014-07-01
One of the main limiting factors in improving glucose control for type 1 diabetes mellitus (T1DM) subjects is the lack of a precise description of meal and insulin intake effects on blood glucose. Knowing the magnitude and duration of such effects would be useful not only for patients and physicians, but also for the development of a controller targeting glycaemia regulation. Therefore, in this paper we focus on estimating low-complexity yet physiologically sound and individualised multi-input single-output (MISO) models of the glucose metabolism in T1DM able to reflect the basic dynamical features of the glucose-insulin metabolic system in response to a meal intake or an insulin injection. The models are continuous-time second-order transfer functions relating the amount of carbohydrate of a meal and the insulin units of the accordingly administered dose (inputs) to plasma glucose evolution (output) and consist of few parameters clinically relevant to be estimated. The estimation strategy is continuous-time data-driven system identification and exploits a database in which meals and insulin boluses are separated in time, allowing the unique identification of the model parameters.
Overgaard, Rune Viig; Holford, Nick; Rytved, Klaus A; Madsen, Henrik
2007-02-01
To describe the pharmacodynamic effects of recombinant human interleukin-21 (IL-21) on core body temperature in cynomolgus monkeys using basic mechanisms of heat regulation. A major effort was devoted to compare the use of ordinary differential equations (ODEs) with stochastic differential equations (SDEs) in pharmacokinetic pharmacodynamic (PKPD) modelling. A temperature model was formulated including circadian rhythm, metabolism, heat loss, and a thermoregulatory set-point. This model was formulated as a mixed-effects model based on SDEs using NONMEM. The effects of IL-21 were on the set-point and the circadian rhythm of metabolism. The model was able to describe a complex set of IL-21 induced phenomena, including 1) disappearance of the circadian rhythm, 2) no effect after first dose, and 3) high variability after second dose. SDEs provided a more realistic description with improved simulation properties, and further changed the model into one that could not be falsified by the autocorrelation function. The IL-21 induced effects on thermoregulation in cynomolgus monkeys are explained by a biologically plausible model. The quality of the model was improved by the use of SDEs.
Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes
Corvera, Silvia; Gealekman, Olga
2013-01-01
The growth and function of tissues is critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data point to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. PMID:23770388
Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.; ...
2015-03-27
Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.
Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less
Ruaño, Gualberto; Szarek, Bonnie L; Villagra, David; Gorowski, Krystyna; Kocherla, Mohan; Seip, Richard L; Goethe, John W; Schwartz, Harold I
2013-06-01
This study aimed to determine the effect of the CYP2D6 genotype on the length of hospitalization stay for patients treated for major depressive disorder. A total of 149 inpatients with a diagnosis of major depressive disorder at the Institute of Living, Hartford Hospital (CT, USA), were genotyped to detect altered alleles in the CYP2D6 gene. Prospectively defined drug metabolism indices (metabolic reserve, metabolic alteration and allele alteration) were determined quantitatively and assessed for their relationship to length of hospitalization stay. Hospital stay was significantly longer in deficient CYP2D6 metabolizers (metabolic reserve <2) compared with functional or suprafunctional metabolizers (metabolic reserve ≥2; 7.8 vs 5.7 days, respectively; p = 0.002). CYP2D6 enzymatic functional status significantly affected length of hospital stay, perhaps due to reduced efficacy or increased side effects of the medications metabolized by the CYP2D6 isoenzyme. Functional scoring of CYP2D6 alleles may have a substantial impact on the quality of care, patient satisfaction and the economics of psychiatric treatment.
Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages
The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...
'Fish matters': the relevance of fish skin biology to investigative dermatology.
Rakers, Sebastian; Gebert, Marina; Uppalapati, Sai; Meyer, Wilfried; Maderson, Paul; Sell, Anne F; Kruse, Charli; Paus, Ralf
2010-04-01
Fish skin is a multi-purpose tissue that serves numerous vital functions including chemical and physical protection, sensory activity, behavioural purposes or hormone metabolism. Further, it is an important first-line defense system against pathogens, as fish are continuously exposed to multiple microbial challenges in their aquatic habitat. Fish skin excels in highly developed antimicrobial features, many of which have been preserved throughout evolution, and infection defense principles employed by piscine skin are still operative in human skin. This review argues that it is both rewarding and important for investigative dermatologists to revive their interest in fish skin biology, as it provides insights into numerous fundamental issues that are of major relevance to mammalian skin. The basic molecular insights provided by zebrafish in vivo-genomics for genetic, regeneration and melanoma research, the complex antimicrobial defense systems of fish skin and the molecular controls of melanocyte stem cells are just some of the fascinating examples that illustrate the multiple potential uses of fish skin models in investigative dermatology. We synthesize the essentials of fish skin biology and highlight selected aspects that are of particular comparative interest to basic and clinically applied human skin research.
2013-01-01
Background Clinical psychiatry has always been limited by the lack of objective tests to substantiate diagnoses and a lack of specific treatments that target underlying pathophysiology. One area in which these twin failures has been most frustrating is major depression. Due to very considerable progress in the basic and clinical neurosciences of sleep-wake cycles and underlying circadian systems this situation is now rapidly changing. Discussion The development of specific behavioral or pharmacological strategies that target these basic regulatory systems is driving renewed clinical interest. Here, we explore the extent to which objective tests of sleep-wake cycles and circadian function - namely, those that measure timing or synchrony of circadian-dependent physiology as well as daytime activity and nighttime sleep patterns - can be used to identify a sub-class of patients with major depression who have disturbed circadian profiles. Summary Once this unique pathophysiology is characterized, a highly personalized treatment plan can be proposed and monitored. New treatments will now be designed and old treatments re-evaluated on the basis of their effects on objective measures of sleep-wake cycles, circadian rhythms and related metabolic systems. PMID:23521808
Concurrent cervical and craniofacial pain. A review of empiric and basic science evidence.
Browne, P A; Clark, G T; Kuboki, T; Adachi, N Y
1998-12-01
Because many patients present themselves for treatment with both craniofacial and craniocervical pain, 2 questions arise: (1) What are the sensory and motor consequences of dysfunction in either of these areas on the other? (2) Do craniofacial and craniocervical pain have a similar cause? These questions formed the impetus for this review article. The phenomenon of concurrent pain in craniofacial and cervical structures is considered, and clinical reports and opinions are presented regarding theories of cervical-to-craniofacial and craniofacial-to-cervical pain referral. Because pain referral between these 2 areas requires anatomic and functional connectivity between trigeminally and cervically innervated structures, basic neurophysiologic and neuroanatomic literature is reviewed. The published data clearly demonstrate neurophysiologic and structural convergence of cervical sensory and muscle afferent inputs onto trigeminal subnucleus caudalis nociceptive and non-nociceptive neurons. Moreover, changes in metabolic activity and blood flow in the brainstem and cervical dorsal horn of the spinal cord in both monkeys and cats have been demonstrated after electric stimulation of the V1-innervated superior sagittal sinus. In conclusion, the animal experimental data support the findings of human empiric and experimental studies, which suggest that strong connectivity exists between trigeminal and cervical motor and sensory responses.
Dalal, Jamshed J; Mishra, Sundeep
The combined and relative contribution of glucose and fatty acid oxidation generates myocardial energy, which regulates the cardiac function and efficiency. Any dysregulation in this metabolic homeostasis can adversely affect the function of heart and contribute to cardiac conditions such as angina and heart failure. Metabolic agents ameliorate this internal metabolic anomaly, by shifting the energy production pathway from free fatty acids to glucose, resulting in a better performance of the heart. Metabolic therapy is relatively a new modality, which functions through optimization of cardiac substrate metabolism. Among the metabolic therapies, trimetazidine and ranolazine are the agents presently available in India. In the present review, we would like to present the metabolic perspective of pathophysiology of coronary artery disease and heart failure, and metabolic therapy by using trimetazidine and ranolazine. Copyright © 2017. Published by Elsevier B.V.
An objective function exploiting suboptimal solutions in metabolic networks
2013-01-01
Background Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally limits their predictive power. Results We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation. Conclusion Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models. Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a functionally robust metabolic network. PMID:24088221
Vinpocetine modulates metabolic activity and function during retinal ischemia.
Nivison-Smith, Lisa; O'Brien, Brendan J; Truong, Mai; Guo, Cindy X; Kalloniatis, Michael; Acosta, Monica L
2015-05-01
Vinpocetine protects against a range of degenerative conditions and insults of the central nervous system via multiple modes of action. Little is known, however, of its effects on metabolism. This may be highly relevant, as vinpocetine is highly protective against ischemia, a process that inhibits normal metabolic function. This study uses the ischemic retina as a model to characterize vinpocetine's effects on metabolism. Vinpocetine reduced the metabolic demand of the retina following ex vivo hypoxia and ischemia to normal levels based on lactate dehydrogenase activity. Vinpocetine delivered similar effects in an in vivo model of retinal ischemia-reperfusion, possibly through increasing glucose availability. Vinpocetine's effects on glucose also appeared to improve glutamate homeostasis in ischemic Müller cells. Other actions of vinpocetine following ischemia-reperfusion, such as reduced cell death and improved retinal function, were possibly a combination of the drug's actions on metabolism and other retinal pathways. Vinpocetine's metabolic effects appeared independent of its other known actions in ischemia, as it recovered retinal function in a separate metabolic model where the glutamate-to-glutamine metabolic pathway was inhibited in Müller cells. The results of this study indicate that vinpocetine mediates ischemic damage partly through altered metabolism and has potential beneficial effects as a treatment for ischemia of neuronal tissues. Copyright © 2015 the American Physiological Society.
Elements of the cellular metabolic structure
De la Fuente, Ildefonso M.
2015-01-01
A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell. PMID:25988183
Identifying metabolic enzymes with multiple types of association evidence
Kharchenko, Peter; Chen, Lifeng; Freund, Yoav; Vitkup, Dennis; Church, George M
2006-01-01
Background Existing large-scale metabolic models of sequenced organisms commonly include enzymatic functions which can not be attributed to any gene in that organism. Existing computational strategies for identifying such missing genes rely primarily on sequence homology to known enzyme-encoding genes. Results We present a novel method for identifying genes encoding for a specific metabolic function based on a local structure of metabolic network and multiple types of functional association evidence, including clustering of genes on the chromosome, similarity of phylogenetic profiles, gene expression, protein fusion events and others. Using E. coli and S. cerevisiae metabolic networks, we illustrate predictive ability of each individual type of association evidence and show that significantly better predictions can be obtained based on the combination of all data. In this way our method is able to predict 60% of enzyme-encoding genes of E. coli metabolism within the top 10 (out of 3551) candidates for their enzymatic function, and as a top candidate within 43% of the cases. Conclusion We illustrate that a combination of genome context and other functional association evidence is effective in predicting genes encoding metabolic enzymes. Our approach does not rely on direct sequence homology to known enzyme-encoding genes, and can be used in conjunction with traditional homology-based metabolic reconstruction methods. The method can also be used to target orphan metabolic activities. PMID:16571130
Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu
2015-01-01
The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746
Byrne, Nikole J; Levasseur, Jody; Sung, Miranda M; Masson, Grant; Boisvenue, Jamie; Young, Martin E; Dyck, Jason R B
2016-05-15
Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.
Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P
2018-06-05
Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.
Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications
Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R.; Holmgren, Arne; Arnér, Elias S. J.
2015-01-01
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways. PMID:26681794
Xia, Jun; Zhang, Chang-Rong; Zhang, Shan; Li, Fang-Fang; Feng, Ming-Guang; Wang, Xiao-Wei; Liu, Shu-Sheng
2013-01-01
The fungal pathogen, Beauveria bassiana, is an efficient biocontrol agent against a variety of agricultural pests. A thorough understanding of the basic principles of insect-fungus interactions may enable the genetic modification of Beauveria bassiana to enhance its virulence. However, the molecular mechanism of insect response to Beauveria bassiana infection is poorly understood, let alone the identification of fungal virulent factors involved in pathogenesis. Here, next generation sequencing technology was applied to examine the expression of whitefly (Bemisia tabaci) genes in response to the infection of Beauveria bassiana. Results showed that, compared to control, 654 and 1,681genes were differentially expressed at 48 hours and 72 hours post-infected whiteflies, respectively. Functional and enrichment analyses indicated that the DNA damage stimulus response and drug metabolism were important anti-fungi strategies of the whitefly. Mitogen-activated protein kinase (MAPK) pathway was also likely involved in the whitefly defense responses. Furthermore, the notable suppression of general metabolism and ion transport genes observed in 72 hours post-infected B. tabaci might be manipulated by fungal secreted effectors. By mapping the sequencing tags to B. bassiana genome, we also identified a number of differentially expressed fungal genes between the early and late infection stages. These genes are generally associated with fungal cell wall synthesis and energy metabolism. The expression of fungal cell wall protein genes might play an important role in fungal pathogenesis and the dramatically up-regulated enzymes of carbon metabolism indicate the increasing usage of energy during the fungal infection. To our knowledge, this is the first report on the molecular mechanism of fungus-whitefly interactions. Our results provide a road map for future investigations on insect-pathogen interactions and genetically modifying the fungus to enhance its efficiency in whitefly control.
Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications.
Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R; Holmgren, Arne; Arnér, Elias S J
2016-01-01
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways. Copyright © 2016 the American Physiological Society.
Rupasinghe, H P Vasantha; Sekhon-Loodu, Satvir; Mantso, Theodora; Panayiotidis, Mihalis I
2016-09-01
Excessive accumulation of fat as the result of more energy intake and less energy expenditure is known as obesity. Lipids are essential components in the human body and are vital for maintaining homeostasis and physiological as well as cellular metabolism. Fatty acid synthesis and catabolism (by fatty acid oxidation) are normal part of basic fuel metabolism in animals. Fatty acids are degraded in the mitochondria by a biochemical process called β-oxidation in which two-carbon fragments are produced in each cycle. The increase in fatty acid β-oxidation is negatively correlated with body mass index. Although healthy life style, avoiding Western diet, dieting and strenuous exercise are the commonly used methods to lose weight, they are not considered a permanent solution in addition to risk attenuation of basal metabolic rate (BMR). Pharmacotherapy offers benefits of weight loss by altering the satiety and lowering absorption of fat from the food; however, its side effects may outweigh the benefits of weight loss. Alternatively, dietary phytochemicals and natural health products offer great potential as an efficient weight loss strategy by modulating lipid metabolism and/or increasing BMR and thermogenesis. Specifically, polyphenols such as citrus flavonoids, green tea epigallocatechin gallate, resveratrol, capsaicin and curcumin, have been reported to increase lipolysis and induce fatty acid β-oxidation through modulation of hormone sensitive lipase, acetyl-coA carboxylase, carnitine acyl transferase and peroxisome proliferator-activated receptor gamma coactivator-1. In this review article, we discuss selected phytochemicals in relation to their integrated functionalities and specific mechanisms for weight loss. Copyright © 2016 Elsevier Inc. All rights reserved.
Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.
Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J
2013-02-01
Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.
Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.
Chin, Chen-Shan; Chubukov, Victor; Jolly, Emmitt R; DeRisi, Joe; Li, Hao
2008-06-17
The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point-the intermediate metabolite alpha-isopropylmalate (alphaIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when alphaIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.
Urodynamic measurements reflect physiological bladder function in rats.
Schneider, Marc P; Sartori, Andrea M; Tampé, Juliane; Moors, Selina; Engmann, Anne K; Ineichen, Benjamin V; Hofer, Anna-Sophie; Schwab, Martin E; Kessler, Thomas M
2018-04-01
Our objective was to investigate and compare bladder function in rats assessed by metabolic cage and by urodynamic measurements in fully awake animals. Bladder function of female Lewis rats was investigated in naïve animals by metabolic cage at baseline, 14-16 days after bladder catheter and external urethral sphincter electromyography electrode implantation in fully awake animals by urodynamics, and again by metabolic cage. Investigating the same animals (n = 8), voided volume, average flow, and duration of voiding were similar (P > 0.05) in naïve animals measured by metabolic cage and after catheter implantation by urodynamic measurements and by metabolic cage. In naïve animals measured by metabolic cage, voided volumes were significantly different in the light (resting phase) versus the dark (active phase) part of the 24 h cycle (mean difference 0.14 mL, 21%, P = 0.004, n = 27). Lower urinary tract function assessed by metabolic cage or by urodynamic meaurements in fully awake rats was indistinguishable. Thus, catheter implantation did not significantly change physiological bladder function. This shows that urodynamic measurements in awake animals are an appropriate approach to study lower urinary tract function in health and disease in animal models, directly paralleling the human diagnostic procedures. © 2017 Wiley Periodicals, Inc.
Hallschmid, M; Schultes, B
2009-11-01
Research on functions and signalling pathways of insulin has traditionally focused on peripheral tissues such as muscle, fat and liver, while the brain was commonly believed to be insensitive to the effects of this hormone secreted by pancreatic beta cells. However, since the discovery some 30 years ago that insulin receptors are ubiquitously found in the central nervous system, an ever-growing research effort has conclusively shown that circulating insulin accesses the brain, which itself does not synthesise insulin, and exerts pivotal functions in central nervous networks. As an adiposity signal reflecting the amount of body fat, insulin provides direct negative feedback to hypothalamic nuclei that control whole-body energy and glucose homeostasis. Moreover, insulin affects distinct cognitive processes, e.g. by triggering the formation of psychological memory contents. Accordingly, metabolic and cognitive disorders such as obesity, type 2 diabetes mellitus and Alzheimer's disease are associated with resistance of central nervous structures to the effects of insulin, which may derive from genetic polymorphisms as well as from long-term exposure to excess amounts of circulating insulin due to peripheral insulin resistance. Thus, overcoming central nervous insulin resistance, e.g. by pharmacological interventions, appears to be an attractive strategy in the treatment and prevention of these disorders. Enhancement of central nervous insulin signalling by administration of intranasal insulin, insulin analogues and insulin sensitisers in basic research approaches has yielded encouraging results that bode well for the successful translation of these effects into future clinical practice.
A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function
Dowhan, William
2012-01-01
Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633
Zhang, Lei; Zhao, Haiyu; Liu, Yang; Dong, Honghuan; Lv, Beiran; Fang, Min; Zhao, Huihui
2016-06-01
This study was conducted to establish the multicomponent sequential metabolism (MSM) method based on comparative analysis along the digestive system following oral administration of licorice (Glycyrrhiza uralensis Fisch., leguminosae), a traditional Chinese medicine widely used for harmonizing other ingredients in a formulae. The licorice water extract (LWE) dissolved in Krebs-Ringer buffer solution (1 g/mL) was used to carry out the experiments and the comparative analysis was performed using HPLC and LC-MS/MS methods. In vitro incubation, in situ closed-loop and in vivo blood sampling were used to measure the LWE metabolic profile along the digestive system. The incubation experiment showed that the LWE was basically stable in digestive juice. A comparative analysis presented the metabolic profile of each prototype and its corresponding metabolites then. Liver was the major metabolic organ for LWE, and the metabolism by the intestinal flora and gut wall was also an important part of the process. The MSM method was practical and could be a potential method to describe the metabolic routes of multiple components before absorption into the systemic blood stream. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
The Educated Guess: Determining Drug Doses in Exotic Animals Using Evidence-Based Medicine.
Visser, Marike; Oster, Seth C
2018-05-01
Lack of species-specific pharmacokinetic and pharmacodynamic data is a challenge for pharmaceutical and dose selection. If available, dose extrapolation can be accomplished via basic equations. If unavailable, several methods have been described. Linear scaling uses an established milligrams per kilograms dose based on weight. This does not allow for differences in species drug metabolism, sometimes resulting in toxicity. Allometric scaling correlates body weight and metabolic rate but fails for drugs with significant hepatic metabolism and cannot be extrapolated to avians or reptiles. Evidence-based veterinary medicine for dose design based on species similarity is discussed, considering physiologic differences between classes. Copyright © 2018 Elsevier Inc. All rights reserved.
Kupffer Cell Metabolism and Function
Nguyen-Lefebvre, Anh Thu; Horuzsko, Anatolij
2015-01-01
Kupffer cells are resident liver macrophages and play a critical role in maintaining liver functions. Under physiological conditions, they are the first innate immune cells and protect the liver from bacterial infections. Under pathological conditions, they are activated by different components and can differentiate into M1-like (classical) or M2-like (alternative) macrophages. The metabolism of classical or alternative activated Kupffer cells will determine their functions in liver damage. Special functions and metabolism of Kupffer cells suggest that they are an attractive target for therapy of liver inflammation and related diseases, including cancer and infectious diseases. Here we review the different types of Kupffer cells and their metabolism and functions in physiological and pathological conditions. PMID:26937490
Structural Control of Metabolic Flux
Sajitz-Hermstein, Max; Nikoloski, Zoran
2013-01-01
Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic information. Here, we introduce structural metabolic control as a framework to examine individual reactions' potential to control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a metabolic function is determined using flux balance analysis (FBA). We examine structural metabolic control on the example of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC). This framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to assign “share of control” to individual reactions with respect to metabolic functions and environmental conditions. A comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate and ATP under various respiratory conditions. PMID:24367246
Parsing Glucose Entry into the Brain: Novel Findings Obtained with Enzyme-Based Glucose Biosensors
2015-01-01
Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between “active” and “passive” glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the “neuronal” hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism. PMID:25490002
Tomato Fruits-A Platform for Metabolic Engineering of Terpenes.
Gutensohn, M; Dudareva, N
2016-01-01
Terpenoids are a large and diverse class of plant metabolites including mono-, sesqui-, and diterpenes. They have numerous functions in basic physiological processes as well as the interaction of plants with their biotic and abiotic environment. Due to the tight regulation of biosynthetic pathways and the resulting limited natural availability of terpenes, there is a strong interest in increasing their production in plants by metabolic engineering for agricultural, pharmaceutical, and industrial applications. The tomato fruit system was developed as a platform for metabolic engineering of terpenes to overcome detrimental effects on overall plant growth and photosynthesis traits, which are affected when terpenoid engineering is performed in vegetative tissues. Here we describe how the use of fruit-specific promoters for transgene expression can avoid these unwanted effects. In addition, targeting the expression of the introduced terpene biosynthetic gene to fruit tissue can take advantage of the large precursor pool provided by the methylerythritol-phosphate (MEP) pathway, which is highly active during tomato fruit ripening to facilitate the accumulation of carotenoids. We also discuss how the production of high levels of target terpene compounds can be achieved in fruits by the expression of individual or a combination of (i) the MEP or mevalonic acid pathway enzymes, (ii) prenyltransferases, and/or (iii) terpene synthases. Finally, we provide a brief outline of how the emitted as well as internal pools of terpenes can be analyzed in transgenic tomato fruits. © 2016 Elsevier Inc. All rights reserved.
Mapping the landscape of metabolic goals of a cell
Zhao, Qi; Stettner, Arion I.; Reznik, Ed; ...
2016-05-23
Here, genome-scale flux balance models of metabolism provide testable predictions of all metabolic rates in an organism, by assuming that the cell is optimizing a metabolic goal known as the objective function. We introduce an efficient inverse flux balance analysis (invFBA) approach, based on linear programming duality, to characterize the space of possible objective functions compatible with measured fluxes. After testing our algorithm on simulated E. coli data and time-dependent S. oneidensis fluxes inferred from gene expression, we apply our inverse approach to flux measurements in long-term evolved E. coli strains, revealing objective functions that provide insight into metabolic adaptationmore » trajectories.« less
The Energetic Cost of Walking: A Comparison of Predictive Methods
Kramer, Patricia Ann; Sylvester, Adam D.
2011-01-01
Background The energy that animals devote to locomotion has been of intense interest to biologists for decades and two basic methodologies have emerged to predict locomotor energy expenditure: those based on metabolic and those based on mechanical energy. Metabolic energy approaches share the perspective that prediction of locomotor energy expenditure should be based on statistically significant proxies of metabolic function, while mechanical energy approaches, which derive from many different perspectives, focus on quantifying the energy of movement. Some controversy exists as to which mechanical perspective is “best”, but from first principles all mechanical methods should be equivalent if the inputs to the simulation are of similar quality. Our goals in this paper are 1) to establish the degree to which the various methods of calculating mechanical energy are correlated, and 2) to investigate to what degree the prediction methods explain the variation in energy expenditure. Methodology/Principal Findings We use modern humans as the model organism in this experiment because their data are readily attainable, but the methodology is appropriate for use in other species. Volumetric oxygen consumption and kinematic and kinetic data were collected on 8 adults while walking at their self-selected slow, normal and fast velocities. Using hierarchical statistical modeling via ordinary least squares and maximum likelihood techniques, the predictive ability of several metabolic and mechanical approaches were assessed. We found that all approaches are correlated and that the mechanical approaches explain similar amounts of the variation in metabolic energy expenditure. Most methods predict the variation within an individual well, but are poor at accounting for variation between individuals. Conclusion Our results indicate that the choice of predictive method is dependent on the question(s) of interest and the data available for use as inputs. Although we used modern humans as our model organism, these results can be extended to other species. PMID:21731693
Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity
Breit, Marc; Netzer, Michael
2015-01-01
The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars) were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS) with the concept of stable isotope dilution (SID) for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs) in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2), showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001). In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001), classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001). These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling approach demonstrates high potential for dynamic biomarker identification and the investigation of kinetic mechanisms in disease or pharmacodynamics studies using MS data from longitudinal cohort studies. PMID:26317529
Selote, Devarshi; Samira, Rozalynne; Matthiadis, Anna; Gillikin, Jeffrey W.; Long, Terri A.
2015-01-01
Iron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation. To further characterize the function of this protein, we examined the expression pattern of recombinant ProBTS::β-GLUCURONIDASE and found that it is expressed in developing embryos and other reproductive tissues, corresponding with its apparent role in reproductive growth and development. Our findings also indicate that the interactions between BTS and PYE-like (PYEL) basic helix-loop-helix transcription factors occur within the nucleus and are dependent on the presence of the RING domain. We provide evidence that BTS facilitates 26S proteasome-mediated degradation of PYEL proteins in the absence of iron. We also determined that, upon binding iron at the HHE domains, BTS is destabilized and that this destabilization relies on specific residues within the HHE domains. This study reveals an important and unique mechanism for plant iron homeostasis whereby an E3 ubiquitin ligase may posttranslationally control components of the transcriptional regulatory network involved in the iron deficiency response. PMID:25452667
Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.
2015-01-01
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346
NASA Technical Reports Server (NTRS)
Bishop, Phillip; Greenisen, M. C.
1997-01-01
The Launch and Entry Suit (LES) and Advanced Crew Escape Suit (ACES) are worn by astronauts for launch and entry. Previous work by Waligora, et al., 1992, Waligora and Gilbert, 1992, and Dalrymple 1996, have found that carbon dioxide (CO2) accumulation in the LES/ACES helmet may be problematic. CO2 accumulation is important because high inspired levels of CO2 reduce physical function and pose a safety hazard (e.g. levels of CO2 accumulation of 3.6% in the Extravehicular Mobility Unit are sufficient to terminate Extra Vehicular Activities). My task was to design a suitable test protocol for determining the important physiological aspects of LES/ACES use. Three basic issues arose. First was the determination of the astronaut's CO2 inspiration during visor-down use at rest and during walking at 3.5 mph. A sub-issue was the impact of a pneumotach on CO2 since it has been previously observed that when the Aerosport pneumotach was used, performance seemed improved, which might be attributable to a lowered respiration rate when using the pneumotach. The second issue was the energy costs of waLking in the LES/ACES with various G-suit inflation levels, since G-suit inflation increases metabolic costs and metabolic costs influence the C02 production in the LES/ACES helmet. Since G-suit inflation improves orthostatic tolerance after space flight, but likely increases the energy costs of walking, the balance between G-suit inflation and C02 accumulation is an important safety consideration. The third issue which arose from pilot work was the substantial reduction in physical function after a 10 min visor-down period prior to walk.
Nutritional Approaches for Managing Obesity-Associated Metabolic Diseases
Botchlett, Rachel; Woo, Shih-Lung; Liu, Mengyang; Pei, Ya; Guo, Xin; Li, Honggui; Wu, Chaodong
2017-01-01
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscle, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in the control of the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis. PMID:28400405
Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa
2016-01-01
Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991
Raethong, Nachon; Wong-Ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa
2016-01-01
Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H(+)-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.
Ruaño, Gualberto; Szarek, Bonnie L; Villagra, David; Gorowski, Krystyna; Kocherla, Mohan; Seip, Richard L; Goethe, John W; Schwartz, Harold I
2016-01-01
Aim This study aimed to determine the effect of the CYP2D6 genotype on the length of hospitalization stay for patients treated for major depressive disorder. Methods A total of 149 inpatients with a diagnosis of major depressive disorder at the Institute of Living, Hartford Hospital (CT, USA), were genotyped to detect altered alleles in the CYP2D6 gene. Prospectively defined drug metabolism indices (metabolic reserve, metabolic alteration and allele alteration) were determined quantitatively and assessed for their relationship to length of hospitalization stay. Results Hospital stay was significantly longer in deficient CYP2D6 metabolizers (metabolic reserve <2) compared with functional or suprafunctional metabolizers (metabolic reserve ≥2; 7.8 vs 5.7 days, respectively; p = 0.002). Conclusion CYP2D6 enzymatic functional status significantly affected length of hospital stay, perhaps due to reduced efficacy or increased side effects of the medications metabolized by the CYP2D6 isoenzyme. Functional scoring of CYP2D6 alleles may have a substantial impact on the quality of care, patient satisfaction and the economics of psychiatric treatment. PMID:23734807
Martínez-Romero, Marcos; Vázquez-Naya, José M; Rabuñal, Juan R; Pita-Fernández, Salvador; Macenlle, Ramiro; Castro-Alvariño, Javier; López-Roses, Leopoldo; Ulla, José L; Martínez-Calvo, Antonio V; Vázquez, Santiago; Pereira, Javier; Porto-Pazos, Ana B; Dorado, Julián; Pazos, Alejandro; Munteanu, Cristian R
2010-05-01
Colorectal cancer is one of the most frequent types of cancer in the world and generates important social impact. The understanding of the specific metabolism of this disease and the transformations of the specific drugs will allow finding effective prevention, diagnosis and treatment of the colorectal cancer. All the terms that describe the drug metabolism contribute to the construction of ontology in order to help scientists to link the correlated information and to find the most useful data about this topic. The molecular components involved in this metabolism are included in complex network such as metabolic pathways in order to describe all the molecular interactions in the colorectal cancer. The graphical method of processing biological information such as graphs and complex networks leads to the numerical characterization of the colorectal cancer drug metabolic network by using invariant values named topological indices. Thus, this method can help scientists to study the most important elements in the metabolic pathways and the dynamics of the networks during mutations, denaturation or evolution for any type of disease. This review presents the last studies regarding ontology and complex networks of the colorectal cancer drug metabolism and a basic topology characterization of the drug metabolic process sub-ontology from the Gene Ontology.
The sirtuins: Markers of metabolic health.
Covington, Jeffrey D; Bajpeyi, Sudip
2016-01-01
The sirtuins represent a class of proteins first discovered orthologus to the yeast silent information regulator 2 protein that have been retained in mammalian species. Currently, seven sirtuins have been identified in humans, and their functions currently surpass their originally identified role as histone deacetylase and chromatin silencers to encompass nutrient sensing and metabolic function. All seven sirtuins require NAD(+) in order to carry out their enzymatic activity, and thus become activated in conditions of nutrient depletion, starvation, and cellular stress. Caloric restriction and increased physical activity have been postulated, though perhaps controversially, to mediate sirtuin function. Here, we review the current literature surrounding the functions of the seven human sirtuins, mediators of their function, and the roles they play in metabolic health related to dietary and physical activity interventions. Despite the controversy surrounding sirtuin function with regard to longevity, we have aimed to show that regardless of its effects on aging, sirtuin function is pivotal to pathways involving metabolic health, and should therefore be investigated with regard to improving metabolic diseases such as obesity and type 2 diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Jintian; Dong, Li; Xu, Wen; Bai, Kaiwen; Lu, Changhui; Wu, Yanan; Huang, Qiang; Zhang, Lili; Wang, Tian
2015-01-01
Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P < 0.05) concentrations of insulin in the serum, higher (P < 0.05) HOMA-IR and total cholesterol, triglycerides (TG), non-esterified fatty acid (NEFA) in the liver, and lower (P < 0.05) enzyme activities (hepatic lipase [HL], lipoprotein lipase [LPL], total lipase [TL]) and concentration of glycogen in the liver than the NBW group. TB supplementation decreased (P < 0.05) the concentrations of insulin, HOMA-IR, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the serum, and the concentrations of TG and NEFA in the liver, and increased (P < 0.05) enzyme activities (HL, LPL, and TL) and concentration of glycogen in the liver of the IT group. The mRNA expression for insulin signal transduction pathway and hepatic lipogenic pathway (including transcription factors and nuclear factors) was significantly (P < 0.05) affected in the liver by IUGR, which was efficiently (P < 0.05) attenuated by diets supplemented with TB. TB supplementation has therapeutic potential for attenuating insulin resistance and abnormal lipid metabolism in IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets. PMID:26317832
Tan, Wen; Zhong, Zhangfeng; Wang, Shengpeng; Suo, Zhanwei; Yang, Xian; Hu, Xiaodong; Wang, Yitao
2015-01-01
Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.
Tan, Wen; Zhong, Zhangfeng; Suo, Zhanwei; Yang, Xian; Hu, Xiaodong; Wang, Yitao
2015-01-01
Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL. PMID:26351511
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2017-05-01
GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.
Exercise (and Estrogen) Make Fat Cells “Fit”
Vieira-Potter, Victoria J.; Zidon, Terese M.; Padilla, Jaume
2016-01-01
Adipose tissue inflammation links obesity and metabolic disease. Both exercise and estrogen improve metabolic health, enhance mitochondrial function, and have anti-inflammatory effects. We hypothesize that there is an inverse relationship between mitochondrial function and inflammation in adipose tissue and that exercise acts as an estrogen “mimetic”. Explicitly, exercise may improve adipose tissue “immunometabolism” by improving mitochondrial function and reducing inflammation. Summary Exercise improves adipose tissue metabolic health by reducing inflammation and improving mitochondrial function. PMID:25906425
Research progress on combat trauma treatment in cold regions.
Wang, Hui-Shan; Han, Jin-Song
2014-01-01
Cold regions are a special combat environment in which low temperatures have a great impact on human metabolism and other vital functions, including the nervous, motion, cardiovascular, circulatory, respiratory, and urinary systems; consequently, low temperatures often aggravate existing trauma, leading to high mortality rates if rapid and appropriate treatment is not provided. Hypothermia is an independent risk factor of fatality following combat trauma; therefore, proactive preventative measures are needed to reduce the rate of mortality. After summarizing the basic research on battlefield environments and progress in the prevention and treatment of trauma, this article concludes that current treatment and prevention measures for combat trauma in cold regions are inadequate. Future molecular biology studies are needed to elucidate the mechanisms and relevant cell factors underlying bodily injury caused by cold environment, a research goal will also allow further exploration of corresponding treatments.
Plasticity of the Muscle Stem Cell Microenvironment
Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph
2018-01-01
Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes. PMID:29204832
Spiegler, Elizabeth; Kim, Youn-Kyung; Wassef, Lesley; Shete, Varsha; Quadro, Loredana
2012-01-01
The requirement of the developing mammalian embryo for retinoic acid is well established. Retinoic acid, the active form of vitamin A, can be generated from retinol and retinyl ester obtained from food of animal origin, and from carotenoids, mainly β-carotene, from vegetables and fruits. The mammalian embryo relies on retinol, retinyl ester and β-carotene circulating in the maternal bloodstream for its supply of vitamin A. The maternal-fetal transfer of retinoids and carotenoids, as well as the metabolism of these compounds in the developing tissues are still poorly understood. The existing knowledge in this field has been summarized in this review in reference to our basic understanding of the transport and metabolism of retinoids and carotenoids in adult tissues. The need for future research on the metabolism of these essential lipophilic nutrients during development is highlighted. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism. © 2011 Elsevier B.V. All rights reserved.
A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism.
Mauvais-Jarvis, Franck; Arnold, Arthur P; Reue, Karen
2017-06-06
In animal models, the physiological systems involved in metabolic homeostasis exhibit a sex difference. Investigators often use male rodents because they show metabolic disease better than females. Thus, females are not used precisely because of an acknowledged sex difference that represents an opportunity to understand novel factors reducing metabolic disease more in one sex than the other. The National Institutes of Health (NIH) mandate to consider sex as a biological variable in preclinical research places new demands on investigators and peer reviewers who often lack expertise in model systems and experimental paradigms used in the study of sex differences. This Perspective discusses experimental design and interpretation in studies addressing the mechanisms of sex differences in metabolic homeostasis and disease, using animal models and cells. We also highlight current limitations in research tools and attitudes that threaten to delay progress in studies of sex differences in basic animal research. Copyright © 2017 Elsevier Inc. All rights reserved.
Development of Nano/Micro Probes for Femtoliter Volume and Single Cell Measurements
NASA Astrophysics Data System (ADS)
Gao, Yang
Single cell analysis has recently emerged as an important field of biomedical re- search. It is now clear that heterogeneity of cell metabolism functions in complex biological systems is correlated to changes in biological function and disease processes. A variety of nano/micro probes were developed to enable investigation of cells properties such as membrane stiffness, pH value. However, very few designs were focused on single cell metabolic function studies. There is a critical need for technologies that provide analysis of heterogeneity of cell metabolic functions, especially on metabolism. Nevertheless, the few existing approaches suffer from fundamental defects and need to be improved. This work focused on developing nano/micro probes that are suitable for single cell functionality investigation. Both types of probes are designed to measure cell-to-cell/time-to-time heterogeneity in metabolic functions over a long period of time. Lab-made carbon nanoprobes were developed especially for electro-physiological measurement. The unique structure of the carbon nanoprobes makes them suitable for important intracellular applications like trans-membrane potential measurements and various electrochemical measurement for cell function studies. While it is important of have ability to carry out intracellular measure, there are also occasions where the information of a cell as a whole is collected. One of the most important indicator of a cells metabolic functions is cell respiration rate/oxygen consumption rate. A micro-perfusion based multi-functional single cell sensing probe was the developed to carry out measurements on cell as a whole. Formed by a double-barrel theta pipette, the perfusion flow enables the direct measurement of the metabolic flux for example oxygen consumption rate. In conclusion, this work developed nano/micro-probes as novel single cell investigation tools. The data acquired from these tools could provide valuable assistance on applications including cell metabolism studies, cancer diagnoses, and therapy evaluations.
Basic Emotions in Human Neuroscience: Neuroimaging and Beyond.
Celeghin, Alessia; Diano, Matteo; Bagnis, Arianna; Viola, Marco; Tamietto, Marco
2017-01-01
The existence of so-called 'basic emotions' and their defining attributes represents a long lasting and yet unsettled issue in psychology. Recently, neuroimaging evidence, especially related to the advent of neuroimaging meta-analytic methods, has revitalized this debate in the endeavor of systems and human neuroscience. The core theme focuses on the existence of unique neural bases that are specific and characteristic for each instance of basic emotion. Here we review this evidence, outlining contradictory findings, strengths and limits of different approaches. Constructionism dismisses the existence of dedicated neural structures for basic emotions, considering that the assumption of a one-to-one relationship between neural structures and their functions is central to basic emotion theories. While these critiques are useful to pinpoint current limitations of basic emotions theories, we argue that they do not always appear equally generative in fostering new testable accounts on how the brain relates to affective functions. We then consider evidence beyond PET and fMRI, including results concerning the relation between basic emotions and awareness and data from neuropsychology on patients with focal brain damage. Evidence from lesion studies are indeed particularly informative, as they are able to bring correlational evidence typical of neuroimaging studies to causation, thereby characterizing which brain structures are necessary for, rather than simply related to, basic emotion processing. These other studies shed light on attributes often ascribed to basic emotions, such as automaticity of perception, quick onset, and brief duration. Overall, we consider that evidence in favor of the neurobiological underpinnings of basic emotions outweighs dismissive approaches. In fact, the concept of basic emotions can still be fruitful, if updated to current neurobiological knowledge that overcomes traditional one-to-one localization of functions in the brain. In particular, we propose that the structure-function relationship between brain and emotions is better described in terms of pluripotentiality, which refers to the fact that one neural structure can fulfill multiple functions, depending on the functional network and pattern of co-activations displayed at any given moment.
Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet.
Hunter, Ian; Soler, Amanda; Joseph, Gregory; Hutcheson, Brenda; Bradford, Chastity; Zhang, Frank Fan; Potter, Barry; Proctor, Spencer; Rocic, Petra
2017-04-01
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet. Copyright © 2017 the American Physiological Society.
Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet
Hunter, Ian; Soler, Amanda; Joseph, Gregory; Hutcheson, Brenda; Bradford, Chastity; Zhang, Frank Fan; Potter, Barry; Proctor, Spencer
2017-01-01
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet. PMID:28087518
ERIC Educational Resources Information Center
Begland, Robert R.
In reviewing the Army Continuing Education System in 1979, the Assistant Secretary of the Army found a basic skills program based on traditional academic level goals was inadequate to meet the Army's requirement to provide functional, job-related basic skill education. Combining the shrinking manpower pool and projected basic skill deficiencies of…
Fernández Fernández, Isabel; Pascual de la Pisa, Beatriz
2006-05-31
To evaluate the presence of diabetes mellitus (DM) or short-term alterations in glucose metabolism, obesity and vascular risk factors after birth in women with pregnancy metabolic syndrome (PMS). To evaluate the incidence of obesity, lipaemia, glucaemia disorder, blood pressure (BP), or lipid figures in the period after birth in children of women with PMS. DESIGN. Cohort study. SETTING. Forty two primary care centres. Study cohort (SC): women with PMS and their children. Control cohort (CC): women without primary criteria of PMS and their children. SC, 980 women and CC, also 980. Consecutive sampling. Mother: basic data, 75 g oral overload, lipid profile, insulinaemia, toxic habits, nutrition survey, and physical activity. Child: weight, height, BP, nutrition survey, glucaemia, insulinaemia, and lipid profile. Father: basic data, BP, glucaemia, lipid profile, insulinaemia, toxic habits, nutrition survey, and physical activity. We will study genes related to insulin resistance in all subjects. Comparison of proportions with *2 test; ANOVA to measure means. Evaluation of effect of intra-uteral exposure through logistical regression and COX regression, whilst controlling potentially confusing and interactive variables. This study will contribute to locating the moment when diabetes and vascular risk start and to finding the optimum moment for starting prevention strategies.
Metabolic Cages for a Space Flight Model in the Rat
NASA Technical Reports Server (NTRS)
Harper, Jennifer S.; Mulenburg, Gerald M.; Evans, Juli; Navidi, Meena; Wolinsky, Ira; Arnaud, Sara B.
1994-01-01
A variety of space flight models are available to mimic the physiologic changes seen in the rat during weightlessness. The model reported by Wronski and Morey-Holton has been widely used by many investigators, in musculoskeletal physiologic studies especially, resulting in accumulation of an extensive database that enables scientists to mimic space flight effects in the 1-g environment of Earth. However, information on nutrition or gastrointestinal and renal function in this space flight model is limited by the difficulty in acquiring uncontaminated metabolic specimens for analysis. In the Holton system, a traction tape harness is applied to the tail, and the rat's hindquarters are elevated by attaching the harness to a pulley system. Weight-bearing hind limbs are unloaded, and there is a headward fluid shift. The tail-suspended rats are able to move freely about their cages on their forelimbs and tolerate this procedure with minimal signs of stress. The cage used in Holton's model is basically a clear acrylic box set on a plastic grid floor with the pulley and tail harness system attached to the open top of the cage. Food is available from a square food cup recessed into a corner of the floor. In this system, urine, feces, and spilled food fall through the grid floor onto absorbent paper beneath the cage and cannot be separated and recovered quantitatively for analysis in metabolic balance studies. Commercially available metabolic cages are generally cylindrical and have been used with a centrally located suspension apparatus in other space flight models. The large living area, three times as large as most metabolic cages, and the free range of motion unique to Holton's model, essential for musculoskeletal investigations, were sacrificed. Holton's cages can accommodate animals ranging in weight from 70 to 600 g. Although an alternative construction of Holton's cage has been reported, it does not permit collection of separate urine and fecal samples. We describe the modifications to Holton's food delivery system, cage base, and the addition of a separator system for the collection of urine and fecal samples for metabolic and nutrition studies in the tail suspension model.
[Advances in metabolic engineering of Escherichia coli for isoprene biosynthesis].
Guo, Jing; Cao, Yujin; Xian, Mo; Liu, Huizhou
2016-08-25
As an important industrial chemical, isoprene is mainly used as a precursor for synthetic rubbers. In addition, it also has wide applications in the field of pharmaceutical and chemical intermediates, food, adhesives and aviation fuel. Compared with conventional petrochemical routes, production of isoprene in microbial systems has been the research focus considering environment friendly and sustainable development features. This article summarizes the metabolic pathways and key enzymes of isoprene biosynthesis, reviews current methods and strategies in improving isoprene production of Escherichia coli, and also gives some basic ideas and expectation.
Recent advances on the functional and evolutionary morphology of the amniote respiratory apparatus.
Lambertz, Markus
2016-02-01
Increased organismic complexity in metazoans was achieved via the specialization of certain parts of the body involved in different faculties (structure-function complexes). One of the most basic metabolic demands of animals in general is a sufficient supply of all tissues with oxygen. Specialized structures for gas exchange (and transport) consequently evolved many times and in great variety among bilaterians. This review focuses on some of the latest advancements that morphological research has added to our understanding of how the respiratory apparatus of the primarily terrestrial vertebrates (amniotes) works and how it evolved. Two main components of the respiratory apparatus, the lungs as the "exchanger" and the ventilatory apparatus as the "active pump," are the focus of this paper. Specific questions related to the exchanger concern the structure of the lungs of the first amniotes and the efficiency of structurally simple snake lungs in health and disease, as well as secondary functions of the lungs in heat exchange during the evolution of sauropod dinosaurs. With regard to the active pump, I discuss how the unique ventilatory mechanism of turtles evolved and how understanding the avian ventilatory strategy affects animal welfare issues in the poultry industry. © 2016 New York Academy of Sciences.
Hahn, D; Beer, M; Sandstede, J
2000-10-01
The introduction of magnetic resonance (MR) tomography has fundamentally changed radiological diagnosis for many diseases. Invasive digital subtraction angiography has already been widely replaced by noninvasive MR angiography for most of the vascular diseases. The rapid technical development of MR imaging in recent years has opened new functional imaging techniques. MR imaging of the heart allows simultaneous measurement of morphological and functional parameters in a single noninvasive examination without any radiation exposure. Because of the high spatial resolution and the reproducibility cine MR imaging is now the gold standard for functional analysis. With the improvement of myocardial perfusion and viability studies many diseases of the heart can be diagnosed in a single examination. MR spectroscopy is the only method which allows a view of the metabolism of the heart. New examinations for vascular imaging and flow quantification complete the goal of "one-stop-shop" imaging of the heart. MR imaging is the only diagnostic modality which allows a complete evaluation of many diseases of the heart with one technique, basic examination as well as follow-up studies. The very rapid improvement in MRI will overcome most of the limitations in the near future, especially concerning MR coronary angiography.
A large, switchable optical clearing skull window for cerebrovascular imaging
Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan
2018-01-01
Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069
Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application.
Klein, Matthias S; Shearer, Jane
2016-01-01
Type 2 diabetes (T2D) and its comorbidities have reached epidemic proportions, with more than half a billion cases expected by 2030. Metabolomics is a fairly new approach for studying metabolic changes connected to disease development and progression and for finding predictive biomarkers to enable early interventions, which are most effective against T2D and its comorbidities. In metabolomics, the abundance of a comprehensive set of small biomolecules (metabolites) is measured, thus giving insight into disease-related metabolic alterations. This review shall give an overview of basic metabolomics methods and will highlight current metabolomics research successes in the prediction and diagnosis of T2D. We summarized key metabolites changing in response to T2D. Despite large variations in predictive biomarkers, many studies have replicated elevated plasma levels of branched-chain amino acids and their derivatives, aromatic amino acids and α-hydroxybutyrate ahead of T2D manifestation. In contrast, glycine levels and lysophosphatidylcholine C18:2 are depressed in both predictive studies and with overt disease. The use of metabolomics for predicting T2D comorbidities is gaining momentum, as are our approaches for translating basic metabolomics research into clinical applications. As a result, metabolomics has the potential to enable informed decision-making in the realm of personalized medicine.
Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application
Klein, Matthias S.; Shearer, Jane
2016-01-01
Type 2 diabetes (T2D) and its comorbidities have reached epidemic proportions, with more than half a billion cases expected by 2030. Metabolomics is a fairly new approach for studying metabolic changes connected to disease development and progression and for finding predictive biomarkers to enable early interventions, which are most effective against T2D and its comorbidities. In metabolomics, the abundance of a comprehensive set of small biomolecules (metabolites) is measured, thus giving insight into disease-related metabolic alterations. This review shall give an overview of basic metabolomics methods and will highlight current metabolomics research successes in the prediction and diagnosis of T2D. We summarized key metabolites changing in response to T2D. Despite large variations in predictive biomarkers, many studies have replicated elevated plasma levels of branched-chain amino acids and their derivatives, aromatic amino acids and α-hydroxybutyrate ahead of T2D manifestation. In contrast, glycine levels and lysophosphatidylcholine C18:2 are depressed in both predictive studies and with overt disease. The use of metabolomics for predicting T2D comorbidities is gaining momentum, as are our approaches for translating basic metabolomics research into clinical applications. As a result, metabolomics has the potential to enable informed decision-making in the realm of personalized medicine. PMID:26636104
Bellaire, Anke; Ischebeck, Till; Staedler, Yannick; Weinhaeuser, Isabell; Mair, Andrea; Parameswaran, Sriram; Ito, Toshiro; Schönenberger, Jürg; Weckwerth, Wolfram
2014-01-01
The interrelationship of morphogenesis and metabolism is a poorly studied phenomenon. The main paradigm is that development is controlled by gene expression. The aim of the present study was to correlate metabolism to early and late stages of flower and fruit development in order to provide the basis for the identification of metabolic adjustment and limitations. A highly detailed picture of morphogenesis is achieved using nondestructive micro computed tomography. This technique was used to quantify morphometric parameters of early and late flower development in an Arabidopsis thaliana mutant with synchronized flower initiation. The synchronized flower phenotype made it possible to sample enough early floral tissue otherwise not accessible for metabolomic analysis. The integration of metabolomic and morphometric data enabled the correlation of metabolic signatures with the process of flower morphogenesis. These signatures changed significantly during development, indicating a pronounced metabolic reprogramming in the tissue. Distinct sets of metabolites involved in these processes were identified and were linked to the findings of previous gene expression studies of flower development. High correlations with basic leucine zipper (bZIP) transcription factors and nitrogen metabolism genes involved in the control of metabolic carbon : nitrogen partitioning were revealed. Based on these observations a model for metabolic adjustment during flower development is proposed. PMID:24350948
Sekito, Takayuki; Chardwiriyapreecha, Soracom; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi
2014-01-01
Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.
Effects of velocity and weight support on ground reaction forces and metabolic power during running.
Grabowski, Alena M; Kram, Rodger
2008-08-01
The biomechanical and metabolic demands of human running are distinctly affected by velocity and body weight. As runners increase velocity, ground reaction forces (GRF) increase, which may increase the risk of an overuse injury, and more metabolic power is required to produce greater rates of muscular force generation. Running with weight support attenuates GRFs, but demands less metabolic power than normal weight running. We used a recently developed device (G-trainer) that uses positive air pressure around the lower body to support body weight during treadmill running. Our scientific goal was to quantify the separate and combined effects of running velocity and weight support on GRFs and metabolic power. After obtaining this basic data set, we identified velocity and weight support combinations that resulted in different peak GRFs, yet demanded the same metabolic power. Ideal combinations of velocity and weight could potentially reduce biomechanical risks by attenuating peak GRFs while maintaining aerobic and neuromuscular benefits. Indeed, we found many combinations that decreased peak vertical GRFs yet demanded the same metabolic power as running slower at normal weight. This approach of manipulating velocity and weight during running may prove effective as a training and/or rehabilitation strategy.
2016-11-01
The modernization strategy of traditional Chinese medicine (TCM) has been implemented for 20 years. A great deal of basic and innovative researches have been done on basic theory of TCM, effective substance, efficacy evaluation, action mechanism, intracorporal metabolic process, safety evaluation, clinical evaluation and quality standards. As a result, a series of remarkable achievements in scientific research have been generated and promoted the interpretation of the connotation of TCM, supported the industry development of TCM and accelerated internationalization of TCM. Copyright© by the Chinese Pharmaceutical Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de; Tautenhahn, Hans-Michael, E-mail: hans-michael.tautenhahn@medizin.uni-leipzig.de; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103
Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention inmore » the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The hepatocyte differentiation of porcine adipose tissue-derived MSC was shown for the first time yielding hepatocyte-like cells with specific functions similar in bone marrow and subcutaneous adipose tissue-derived MSC. That makes them good pre-clinical candidates for supportive approaches after liver resection in the pig. - Highlights: • First time to show hepatocytic differentiation of porcine adipose tissue-derived MSC. • Hepatocytic-differentiated MSC display metabolic qualities of primary hepatocytes. • Metabolic potency varies between differentiated MSC from different tissues. • MSC are good candidates for pre-clinical evaluation of stem cell-based therapies.« less
Kato, Michiko; Lin, Su-Ju
2014-11-01
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability. Copyright © 2014 Elsevier B.V. All rights reserved.
Kato, Michiko; Lin, Su-Ju
2014-01-01
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD+ homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability. PMID:25096760
Low-level light therapy of the eye and brain.
Rojas, Julio C; Gonzalez-Lima, F
2011-01-01
Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual, neurological, and psychological conditions, and supports that neuronal energy metabolism could constitute a major target for neurotherapeutics of the eye and brain.
Low-level light therapy of the eye and brain
Rojas, Julio C; Gonzalez-Lima, F
2011-01-01
Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual, neurological, and psychological conditions, and supports that neuronal energy metabolism could constitute a major target for neurotherapeutics of the eye and brain. PMID:28539775
Toscano, Chrystiane V A; Carvalho, Humberto M; Ferreira, José P
2018-02-01
This study examined the effects of a 48-week exercise-based intervention on the metabolic profile, autism traits, and perceived quality of life in children with autism spectrum disorder (ASD). We randomly allocated 64 children with ASD (aged 6-12 years) to experimental ( n = 46) and control groups ( n = 18) and used multilevel regression modeling to examine responses to receiving or not receiving the intervention. The experimental group showed beneficial effects on metabolic indicators (high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol), autism traits, and parent-perceived quality of life. Our results provide support for exercise and physical activity, including basic coordination and strength exercises, as important therapeutic interventions for children with ASD.
Roointan, Amir; Morowvat, Mohammad Hossein
The rising potential for CRISPR-Cas-mediated genome editing has revolutionized our strategies in basic and practical bioengineering research. It provides a predictable and precise method for genome modification in a robust and reproducible fashion. Emergence of systems biotechnology and synthetic biology approaches coupled with CRISPR-Cas technology could change the future of cell factories to possess some new features which have not been found naturally. We have discussed the possibility and versatile potentials of CRISPR-Cas technology for metabolic engineering of a recombinant host for heterologous protein production. We describe the mechanisms involved in this metabolic engineering approach and present the diverse features of its application in biotechnology and protein production.
Bioenergetics of Mammalian Sperm Capacitation
Ferramosca, Alessandra; Zara, Vincenzo
2014-01-01
After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods. PMID:24791005
Bioenergetics of mammalian sperm capacitation.
Ferramosca, Alessandra; Zara, Vincenzo
2014-01-01
After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods.
The limits of life on Earth and searching for life on Mars
NASA Technical Reports Server (NTRS)
Nealson, K. H.
1997-01-01
Considerations of basic properties of bacteria such as size, structure, and metabolic versatility allow one to understand how these remarkable life-forms are so adaptable to environments previously thought to be uninhabitable. It is now appreciated that bacteria on Earth can utilize almost any redox couple that yields energy, taking advantage of this energy, while transforming the elements during metabolism. The ability to grow at the expense of inorganic redox couples allows the microbes to occupy niches not available to the more metabolically constrained eukaryotes. Furthermore, the simplicity of the bacterial structure allows them considerably more resistance to environmental variables (pH, salinity, temperature) that are toxic or lethal to more complex organisms. This information can be used to explain the predominance of prokaryotes in extreme environments on Earth, and to speculate as to simple types of metabolism and biogeochemical cycles that may exist on this planet, Mars, and perhaps other non-Earth environments.
The limits of life on Earth and searching for life on Mars.
Nealson, K H
1997-10-25
Considerations of basic properties of bacteria such as size, structure, and metabolic versatility allow one to understand how these remarkable life-forms are so adaptable to environments previously thought to be uninhabitable. It is now appreciated that bacteria on Earth can utilize almost any redox couple that yields energy, taking advantage of this energy, while transforming the elements during metabolism. The ability to grow at the expense of inorganic redox couples allows the microbes to occupy niches not available to the more metabolically constrained eukaryotes. Furthermore, the simplicity of the bacterial structure allows them considerably more resistance to environmental variables (pH, salinity, temperature) that are toxic or lethal to more complex organisms. This information can be used to explain the predominance of prokaryotes in extreme environments on Earth, and to speculate as to simple types of metabolism and biogeochemical cycles that may exist on this planet, Mars, and perhaps other non-Earth environments.
[A novel method for targeting and characterizing healthy older people].
Carrasco, Marcela; Martínez, Gabriel; Foradori, Arnaldo; Hoyl, Trinidad; Valenzuela, Eduardo; Quiroga, Teresa; Gac, Homero; Ihle, Sofia; Marin, Pedro Paulo
2010-09-01
there is no established definition of healthy aging in clinical practice, although it is a World Health Organization goal. to develop a clinical protocol to identify healthy older people living in the community and study their clinical, laboratory and functional characteristics. healthy people aged 60 years or older, were invited to participate in the study, by newspapers and radio, if they selfperceived as healthy, lived in the community, were functionally independent and had low disease burden. Potential participants were initially screened by telephone, and those who met the inclusion criteria were included. They had a comprehensive geriatric assessment which included clinical, anthropometric, laboratory and functional assessments. of 384 people who answered the call, 83 subjects aged 60 to 98 years (57% women) met the inclusion criteria of healthy older people. Seventy eight percent did not consume any medication, 100% were able to perform physical activities that required at least three metabolic equivalents (Mets). Basic laboratory showed that approximately 90% of subjects had normal values, using standard benchmarks established for an adult population. the protocol used in this work was able to identify healthy older people with low disease burden and good functionality. It also validated history and comprehensive geriatric assessment as reliable instruments to identify these subjects.
MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis[W
Dombrecht, Bruno; Xue, Gang Ping; Sprague, Susan J.; Kirkegaard, John A.; Ross, John J.; Reid, James B.; Fitt, Gary P.; Sewelam, Nasser; Schenk, Peer M.; Manners, John M.; Kazan, Kemal
2007-01-01
The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2–regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway. PMID:17616737
Li, Leyuan; Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Butcher, James; Chiang, Cheng-Kang; Mack, David; Stintzi, Alain; Figeys, Daniel
2018-01-05
In vitro culture based approaches are time- and cost-effective solutions for rapidly evaluating the effects of drugs or natural compounds against microbiomes. The nutritional composition of the culture medium is an important determinant for effectively maintaining the gut microbiome in vitro. This study combines orthogonal experimental design and a metaproteomics approach to obtaining functional insights into the effects of different medium components on the microbiome. Our results show that the metaproteomic profile respond differently to medium components, including inorganic salts, bile salts, mucin, and short-chain fatty acids. Multifactor analysis of variance further revealed significant main and interaction effects of inorganic salts, bile salts, and mucin on the different functional groups of gut microbial proteins. While a broad regulating effect was observed on basic metabolic pathways, different medium components also showed significant modulations on cell wall, membrane, and envelope biogenesis and cell motility related functions. In particular, flagellar assembly related proteins were significantly responsive to the presence of mucin. This study provides information on the functional influences of medium components on the in vitro growth of microbiome communities and gives insight on the key components that must be considered when selecting and optimizing media for culturing ex vivo microbiotas.
Comparative genomics approaches to understanding and manipulating plant metabolism.
Bradbury, Louis M T; Niehaus, Tom D; Hanson, Andrew D
2013-04-01
Over 3000 genomes, including numerous plant genomes, are now sequenced. However, their annotation remains problematic as illustrated by the many conserved genes with no assigned function, vague annotations such as 'kinase', or even wrong ones. Around 40% of genes of unknown function that are conserved between plants and microbes are probably metabolic enzymes or transporters; finding functions for these genes is a major challenge. Comparative genomics has correctly predicted functions for many such genes by analyzing genomic context, and gene fusions, distributions and co-expression. Comparative genomics complements genetic and biochemical approaches to dissect metabolism, continues to increase in power and decrease in cost, and has a pivotal role in modeling and engineering by helping identify functions for all metabolic genes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Folate, vitamin B12 and human health
USDA-ARS?s Scientific Manuscript database
During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared func...
A Problem-Based Learning Design for Teaching Biochemistry.
ERIC Educational Resources Information Center
Dods, Richard F.
1996-01-01
Describes the design of a biochemistry course that uses problem-based learning. Provides opportunities for students to question, dispute, confirm, and disconfirm their understanding of basic concepts. Emphasizes self-correction through dialogue. Topics covered include amino acids, metabolic pathways and inherited disease, proteins, enzymes and…
Jiang, Mengxi; He, Jinhan; Kucera, Heidi; Gaikwad, Nilesh W; Zhang, Bin; Xu, Meishu; O'Doherty, Robert M; Selcer, Kyle W; Xie, Wen
2014-03-21
The steroid sulfatase (STS)-mediated desulfation is a critical metabolic mechanism that regulates the chemical and functional homeostasis of endogenous and exogenous molecules. In this report, we first showed that the liver expression of Sts was induced in both the high fat diet (HFD) and ob/ob models of obesity and type 2 diabetes and during the fed to fasting transition. In defining the functional relevance of STS induction in metabolic disease, we showed that overexpression of STS in the liver of transgenic mice alleviated HFD and ob/ob models of obesity and type 2 diabetes, including reduced body weight, improved insulin sensitivity, and decreased hepatic steatosis and inflammation. Interestingly, STS exerted its metabolic benefit through sex-specific mechanisms. In female mice, STS may have increased hepatic estrogen activity by converting biologically inactive estrogen sulfates to active estrogens and consequently improved the metabolic functions, whereas ovariectomy abolished this protective effect. In contrast, the metabolic benefit of STS in males may have been accounted for by the male-specific decrease of inflammation in white adipose tissue and skeletal muscle as well as a pattern of skeletal muscle gene expression that favors energy expenditure. The metabolic benefit in male STS transgenic mice was retained after castration. Treatment with the STS substrate estrone sulfate also improved metabolic functions in both the HFD and ob/ob models. Our results have uncovered a novel function of STS in energy metabolism and type 2 diabetes. Liver-specific STS induction or estrogen/estrogen sulfate delivery may represent a novel approach to manage metabolic syndrome.
Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles.
Rakus, Dariusz; Gizak, Agnieszka; Wiśniewski, Jacek R
2016-08-05
Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders.
Gold nanostructure materials in diabetes management
NASA Astrophysics Data System (ADS)
Si, Satyabrata; Pal, Arttatrana; Mohanta, Jagdeep; Sagar Satapathy, Smith
2017-04-01
Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia, and is now one of the most non-communicable diseases globally and can be lethal if not properly controlled. Prolonged exposure to chronic hyperglycemia, without proper management, can lead to various vascular complications and represents the main cause of morbidity and mortality in diabetes patients. Studies have indicated that major long-term complications of diabetes arise from persistent oxidative-nitrosative stress and dysregulation in multiple metabolic pathways. Presently, the main focus for diabetes management is to optimize the available techniques to ensure adequate blood sugar level, blood pressure and lipid profile, thereby minimizing the diabetes complications. In this regard, nanomedicine utilizing gold nanostructures has great potential and seems to be a promising option. The present review highlights the basic concepts and up-to-date literature survey of gold nanostructure materials in management of diabetes in several ways, which include sensing, imaging, drug delivery and therapy. The work can be of interest to various researchers working on basic and applied sciences including nanosciences.
Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation
Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan
2016-01-01
Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747
The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function.
Goossens, Gijs H
2017-01-01
The current obesity epidemic poses a major public health issue since obesity predisposes towards several chronic diseases. BMI and total adiposity are positively correlated with cardiometabolic disease risk at the population level. However, body fat distribution and an impaired adipose tissue function, rather than total fat mass, better predict insulin resistance and related complications at the individual level. Adipose tissue dysfunction is determined by an impaired adipose tissue expandability, adipocyte hypertrophy, altered lipid metabolism, and local inflammation. Recent human studies suggest that adipose tissue oxygenation may be a key factor herein. A subgroup of obese individuals - the 'metabolically healthy obese' (MHO) - have a better adipose tissue function, less ectopic fat storage, and are more insulin sensitive than obese metabolically unhealthy persons, emphasizing the central role of adipose tissue function in metabolic health. However, controversy has surrounded the idea that metabolically healthy obesity may be considered really healthy since MHO individuals are at increased (cardio)metabolic disease risk and may have a lower quality of life than normal weight subjects due to other comorbidities. Detailed metabolic phenotyping of obese persons will be invaluable in understanding the pathophysiology of metabolic disturbances, and is needed to identify high-risk individuals or subgroups, thereby paving the way for optimization of prevention and treatment strategies to combat cardiometabolic diseases. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.
Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E
2016-02-01
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Estrela, Sylvie; Brown, Sam P.
2013-01-01
Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies. PMID:24385891
Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism
Park, Hyeong-Kyu; Ahima, Rexford S.
2014-01-01
Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978
Klancic, Teja; Woodward, Lavinia; Hofmann, Susanna M.; Fisher, Edward A.
2016-01-01
Background High density lipoproteins (HDLs) are thought to be atheroprotective and to reduce the risk of cardiovascular disease (CVD). Besides their antioxidant, antithrombotic, anti-inflammatory, anti-apoptotic properties in the vasculature, HDLs also improve glucose metabolism in skeletal muscle. Scope of the review Herein, we review the functional role of HDLs to improve metabolic disorders, especially those involving insulin resistance and to induce regression of CVD with a particular focus on current pharmacological treatment options as well as lifestyle interventions, particularly exercise. Major conclusions Functional properties of HDLs continue to be considered important mediators to reverse metabolic dysfunction and to regress atherosclerotic cardiovascular disease. Lifestyle changes are often recommended to reduce the risk of CVD, with exercise being one of the most important of these. Understanding how exercise improves HDL function will likely lead to new approaches to battle the expanding burden of obesity and the metabolic syndrome. PMID:27110484
Imaging and Modeling of Myocardial Metabolism
Jamshidi, Neema; Karimi, Afshin; Birgersdotter-Green, Ulrika; Hoh, Carl
2010-01-01
Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic approaches. Potential clinical applications of metabolic imaging include hypertensive and ischemic heart disease, heart failure, cardiac transplantation, as well as cardiomyopathies. Furthermore, response to therapeutic intervention can be monitored using metabolic imaging. Analysis of metabolic data in the past has been limited, focusing primarily on isolated metabolites. Models of myocardial metabolism, however, such as the oxygen transport and cellular energetics model and constraint-based metabolic network modeling, offer opportunities for evaluation interactions between greater numbers of metabolites in the heart. In this review, the roles of metabolic myocardial imaging and analysis of metabolic data using modeling methods for expanding our understanding of cardiac pathology are discussed. PMID:20559785
Files, Matthew D.; Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Des Rosiers, Christine; Isern, Nancy; Portman, Michael A.
2014-01-01
Background Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia‐reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia‐reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. Methods and Results Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2‐13C]pyruvate and [13C6, 15N]l‐leucine to evaluate oxidative metabolism by gas chromatography‐mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. Conclusions Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO‐induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning. PMID:24650924
Files, Matthew D; Kajimoto, Masaki; O'Kelly Priddy, Colleen M; Ledee, Dolena R; Xu, Chun; Des Rosiers, Christine; Isern, Nancy; Portman, Michael A
2014-03-20
Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia-reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2-(13)C]pyruvate and [(13)C6, (15)N]l-leucine to evaluate oxidative metabolism by gas chromatography-mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO-induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning.
Metabolic flux estimation using particle swarm optimization with penalty function.
Long, Hai-Xia; Xu, Wen-Bo; Sun, Jun
2009-01-01
Metabolic flux estimation through 13C trace experiment is crucial for quantifying the intracellular metabolic fluxes. In fact, it corresponds to a constrained optimization problem that minimizes a weighted distance between measured and simulated results. In this paper, we propose particle swarm optimization (PSO) with penalty function to solve 13C-based metabolic flux estimation problem. The stoichiometric constraints are transformed to an unconstrained one, by penalizing the constraints and building a single objective function, which in turn is minimized using PSO algorithm for flux quantification. The proposed algorithm is applied to estimate the central metabolic fluxes of Corynebacterium glutamicum. From simulation results, it is shown that the proposed algorithm has superior performance and fast convergence ability when compared to other existing algorithms.
Huang, You-Jun; Zhou, Qin; Huang, Jian-Qin; Zeng, Yan-Ru; Wang, Zheng-Jia; Zhang, Qi-Xiang; Zhu, Yi-Hang; Shen, Chen; Zheng, Bing-Song
2015-06-01
Hickory (Carya cathayensis Sarg.) seed has one of the highest oil content and is rich in polyunsaturated fatty acids (PUFAs), which kernel is helpful to human health, particularly to human brain function. A better elucidation of lipid accumulation mechanism would help to improve hickory production and seed quality. DDRT-PCR analysis was used to examine gene expression in hickory at thirteen time points during seed development process. A total of 67 unique genes involved in seed development were obtained, and those expression patterns were further confirmed by semi-quantitative RT-PCR and real time RT-PCR analysis. Of them, the genes with known functions were involved in signal transduction, amino acid metabolism, nuclear metabolism, fatty acid metabolism, protein metabolism, carbon metabolism, secondary metabolism, oxidation of fatty acids and stress response, suggesting that hickory underwent a complex metabolism process in seed development. Furthermore, 6 genes related to fatty acid synthesis were explored, and their functions in seed development process were further discussed. The data obtained here would provide the first clues for guiding further functional studies of fatty acid synthesis in hickory. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Badyaev, Alexander V; Morrison, Erin S; Belloni, Virginia; Sanderson, Michael J
2015-08-20
Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification.
Metabolic enzymes: key modulators of functionality in cancer stem-like cells
Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan
2017-01-01
Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs. PMID:28009990
Metabolic enzymes: key modulators of functionality in cancer stem-like cells.
Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan
2017-02-21
Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.
[Metabolic functions and sport].
Riviere, Daniel
2004-01-01
Current epidemiological studies emphasize the increased of metabolic diseases of the adults, such as obesity, type-2 diabetes and metabolic syndromes. Even more worrying is the rising prevalence of obesity in children. It is due more to sedentariness, caused more by inactivity (television, video, games, etc.) than by overeating. Many studies have shown that regular physical activities benefit various bodily functions including metabolism. After dealing with the major benefits of physical exercise on some adult metabolic disorders, we focus on the prime role played by physical activity in combating the public health problem of childhood obesity.
The role of astrocytes in the hypothalamic response and adaptation to metabolic signals.
Chowen, Julie A; Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Frago, Laura M; Horvath, Tamas L; Argente, Jesús
2016-09-01
The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism.
Karlstädt, Anja; Fliegner, Daniela; Kararigas, Georgios; Ruderisch, Hugo Sanchez; Regitz-Zagrosek, Vera; Holzhütter, Hermann-Georg
2012-08-29
Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.
Three good reasons for heart surgeons to understand cardiac metabolism.
Doenst, Torsten; Bugger, Heiko; Schwarzer, Michael; Faerber, Gloria; Borger, Michael A; Mohr, Friedrich W
2008-05-01
It is the principal goal of cardiac surgeons to improve or reinstate contractile function with, through or after a surgical procedure on the heart. Uninterrupted contractile function of the heart is irrevocably linked to the uninterrupted supply of energy in the form of ATP. Thus, it would appear natural that clinicians interested in myocardial contractile function are interested in the way the heart generates ATP, i.e. the processes generally referred to as energy metabolism. Yet, it may appear that the relevance of energy metabolism in cardiac surgery is limited to the area of cardioplegia, which is a declining research interest. It is the goal of this review to change this trend and to illustrate the role and the therapeutic potential of metabolism and metabolic interventions for management. We present three compelling reasons why cardiac metabolism is of direct, practical interest to the cardiac surgeon and why a better understanding of energy metabolism might indeed result in improved surgical outcomes: (1) To understand cardioplegic arrest, ischemia and reperfusion, one needs a working knowledge of metabolism; (2) hyperglycemia is an underestimated and modifiable risk factor; (3) acute metabolic interventions can be effective in patients undergoing cardiac surgery.
Non-metabolic functions of glycolytic enzymes in tumorigenesis.
Yu, X; Li, S
2017-05-11
Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.
A cellular perspective on brain energy metabolism and functional imaging.
Magistretti, Pierre J; Allaman, Igor
2015-05-20
The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. Copyright © 2015 Elsevier Inc. All rights reserved.
Cremona, Fabien; Kõiv, Toomas; Kisand, Veljo; Laas, Alo; Zingel, Priit; Agasild, Helen; Feldmann, Tõnu; Järvalt, Ain; Nõges, Peeter; Nõges, Tiina
2014-01-01
The influence of functional group specific production and respiration patterns on a lake's metabolic balance remains poorly investigated to date compared to whole-system estimates of metabolism. We employed a summed component ecosystem approach for assessing lake-wide and functional group-specific metabolism (gross primary production (GPP) and respiration (R)) in shallow and eutrophic Lake Võrtsjärv in central Estonia during three years. Eleven functional groups were considered: piscivorous and benthivorous fish; phyto-, bacterio-, proto- and metazooplankton; benthic macroinvertebrates, bacteria and ciliates; macrophytes and their associated epiphytes. Metabolism of these groups was assessed by allometric equations coupled with daily records of temperature and hydrology of the lake and measurements of food web functional groups biomass. Results revealed that heterotrophy dominated most of the year, with a short autotrophic period observed in late spring. Most of the metabolism of the lake could be attributed to planktonic functional groups, with phytoplankton contributing the highest share (90% of GPP and 43% of R). A surge of protozooplankton and bacterioplankton populations forming the microbial loop caused the shift from auto- to heterotrophy in midsummer. Conversely, the benthic functional groups had overall a very small contribution to lake metabolism. We validated our ecosystem approach by comparing the GPP and R with those calculated from O2 measurements in the lake. Our findings are also in line with earlier productivity studies made with 14C or chlorophyll a (chl-a) based equations. Ideally, the ecosystem approach should be combined with diel O2 approach for investigating critical periods of metabolism shifts caused by dynamics in food-web processes. PMID:25014117
Marin, Marie-France; Song, Huijin; VanElzakker, Michael B; Staples-Bradley, Lindsay K; Linnman, Clas; Pace-Schott, Edward F; Lasko, Natasha B; Shin, Lisa M; Milad, Mohammed R
2016-09-01
Exposure-based therapy, an effective treatment for posttraumatic stress disorder (PTSD), relies on extinction learning principles. In PTSD patients, dysfunctional patterns in the neural circuitry underlying fear extinction have been observed using resting-state or functional activation measures. It remains undetermined whether resting activity predicts activations during extinction recall or PTSD symptom severity. Moreover, it remains unclear whether trauma exposure per se affects resting activity in this circuitry. The authors employed a multimodal approach to examine the relationships among resting metabolism, clinical symptoms, and activations during extinction recall. Three cohorts were recruited: PTSD patients (N=24), trauma-exposed individuals with no PTSD (TENP) (N=20), and trauma-unexposed healthy comparison subjects (N=21). Participants underwent a resting positron emission tomography scan 4 days before a functional MRI fear conditioning and extinction paradigm. Amygdala resting metabolism negatively correlated with clinical functioning (as measured by the Global Assessment of Functioning Scale) in the TENP group, and hippocampal resting metabolism negatively correlated with clinical functioning in the PTSD group. In the PTSD group, dorsal anterior cingulate cortex (dACC) resting metabolism positively correlated with PTSD symptom severity, and it predicted increased dACC activations but decreased hippocampal and ventromedial prefrontal cortex activations during extinction recall. The TENP group had lower amygdala resting metabolism compared with the PTSD and healthy comparison groups, and it exhibited lower hippocampus resting metabolism relative to the healthy comparison group. Resting metabolism in the fear circuitry correlated with functioning, PTSD symptoms, and extinction recall activations, further supporting the relevance of this network to the pathophysiology of PTSD. The study findings also highlight the fact that chronic dysfunction in the amygdala and hippocampus is demonstrable in PTSD and other trauma-exposed individuals, even without exposure to an evocative stimulus.
The pathophysiological basis of the protective effects of metformin in heart failure.
Dziubak, Aleksandra; Wójcicka, Grażyna
2017-08-24
Metformin, currently recommended as the drug of first choice in type 2 diabetes mellitus (T2DM), is one of the few antihiperglycemic drugs to reduce cardiovascular risk. Nonetheless, due to the risk of lactic acidosis during metformin therapy, its usage in patients with diabetes and heart failure (HF) is still a matter of debate. The aim of this review is to present data supporting the possibility of using metformin in the treatment of diabetic patients with concomitant heart failure. In the failing heart, metformin through the mechanism related to AMP-activated protein kinase (AMPK) activity, improves free fatty acids (FFA) and glucose metabolism, mitochondrial biogenesis, as well as nitric oxide (NO)-NO synthase pathway. Metformin can also inhibit the generation and accumulation of advanced glycation end products (AGEs) and thereby prevents the development of the adverse structural and functional changes in myocardium.In summary, experimental and clinical data indicate the ability of metformin to prevent the development of the structural and functional changes in myocardium, although further basic research and clinical studies assessing benefits and safety of metformin therapy in patients with HF are required.
Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms
Bertelli, Claire; Greub, Gilbert
2012-01-01
Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs). PMID:22919697
Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie
2016-01-01
Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radwan, Heba Mohammed; El-Gharib, Amani Mohamed; Erfan, Adel Ali; Emara, Afaf Ahmad
2017-05-01
Delay in ABR and CAEPs wave latencies in children with type 1DM indicates that there is abnormality in the neural conduction in DM patients. The duration of DM has greater effect on auditory function than the control of DM. Diabetes mellitus (DM) is a common endocrine and metabolic disorder. Evoked potentials offer the possibility to perform a functional evaluation of neural pathways in the central nervous system. To investigate the effect of type 1 diabetes mellitus (T1DM) on auditory brain stem response (ABR) and cortical evoked potentials (CAEPs). This study included two groups: a control group (GI), which consisted of 20 healthy children with normal peripheral hearing, and a study group (GII), which consisted of 30 children with type I DM. Basic audiological evaluation, ABR, and CAEPs were done in both groups. Delayed absolute latencies of ABR and CAEPs waves were found. Amplitudes showed no significant difference between both groups. Positive correlation was found between ABR wave latencies and duration of DM. No correlation was found between ABR, CAEPs, and glycated hemoglobin.
Bilal, Muhammad; Guo, Shuqi; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-10-03
Pseudomonas strains are increasingly attracting considerable attention as a valuable bacterial host both for basic and applied research. It has been considered as a promising candidate to produce a variety of bioactive secondary metabolites, particularly phenazines. Apart from the biotechnological perspective, these aromatic compounds have the notable potential to inhibit plant-pathogenic fungi and thus are useful in controlling plant diseases. Nevertheless, phenazines production is quite low by the wild-type strains that necessitated its yield improvement for large-scale agricultural applications. Metabolic engineering approaches with the advent of plentiful information provided by systems-level genomic and transcriptomic analyses enabled the development of new biological agents functioning as potential cell factories for producing the desired level of value-added bioproducts. This study presents an up-to-date overview of recombinant Pseudomonas strains as the preferred choice of host organisms for the biosynthesis of natural phenazines. The biosynthetic pathway and regulatory mechanism involved in the phenazine biosynthesis are comprehensively discussed. Finally, a summary of biological functionalities and biotechnological applications of the phenazines is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lausanne, A.B.D.
In 47 expert contributions, this volume provides a summary of the latest research on radionuclides in nephro-urology together with current and new clinical applications especially in renovascular hypertension, kidney transplantation, and metabolic and urological diseases. In addition, attention is given to aspects of basic renal physiology and function and possible applications of nuclear magnetic resonance and spectroscopy in nephro-urology. New testing procedures which promise to improve diagnosis, and new radiopharmaceuticals are described. The reports are divided into eight sections, the first of which features studies on the renin-angiotensin system, cisplatin, atrial natriuretic factor and determining plasma oxalate. Four papers describemore » a number of new radiopharmaceuticals which have the potential to replace hippuran. In the third section, radionuclide methods for the measurement of renal function parameters are discussed. The book then focuses on the potential role of captopril in the improved diagnosis of renovascular hypertension. Applications of nuclear magnetic resonance and spectroscopy are demonstrated in the diagnosis of acute pyelonephritis, kidney assessment after lithotripsy, kidney evaluation prior to transplantation, and in monitoring renal ischemia during hypotension.« less
Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome.
O'Connor, James P B; Rose, Chris J; Waterton, John C; Carano, Richard A D; Parker, Geoff J M; Jackson, Alan
2015-01-15
Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. ©2014 American Association for Cancer Research.
Vitamin D metabolism, sex hormones, and male reproductive function.
Blomberg Jensen, Martin
2012-08-01
The spectrum of vitamin D (VD)-mediated effects has expanded in recent years, and VD is now recognized as a versatile signaling molecule rather than being solely a regulator of bone health and calcium homeostasis. One of the recently identified target areas of VD is male reproductive function. The VD receptor (VDR) and the VD metabolizing enzyme expression studies documented the presence of this system in the testes, mature spermatozoa, and ejaculatory tract, suggesting that both systemic and local VD metabolism may influence male reproductive function. However, it is still debated which cell is the main VD target in the testis and to what extent VD is important for sex hormone production and function of spermatozoa. This review summarizes descriptive studies on testicular VD metabolism and spatial distribution of VDR and the VD metabolizing enzymes in the mammalian testes and discusses mechanistic and association studies conducted in animals and humans. The reviewed evidence suggests some effects of VD on estrogen and testosterone biosynthesis and implicates involvement of both systemic and local VD metabolism in the regulation of male fertility potential.
Glucose metabolism regulates T cell activation, differentiation, and functions.
Palmer, Clovis S; Ostrowski, Matias; Balderson, Brad; Christian, Nicole; Crowe, Suzanne M
2015-01-01
The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation, and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The "Warburg effect" originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here, we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.
The Enzyme Function Initiative†
Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V.
2011-01-01
The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily-specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include: 1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation); 2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia; 3) computational and bioinformatic tools for using the strategy; 4) provision of experimental protocols and/or reagents for enzyme production and characterization; and 5) dissemination of data via the EFI’s website, enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal and pharmaceutical efforts. PMID:21999478
The Enzyme Function Initiative.
Gerlt, John A; Allen, Karen N; Almo, Steven C; Armstrong, Richard N; Babbitt, Patricia C; Cronan, John E; Dunaway-Mariano, Debra; Imker, Heidi J; Jacobson, Matthew P; Minor, Wladek; Poulter, C Dale; Raushel, Frank M; Sali, Andrej; Shoichet, Brian K; Sweedler, Jonathan V
2011-11-22
The Enzyme Function Initiative (EFI) was recently established to address the challenge of assigning reliable functions to enzymes discovered in bacterial genome projects; in this Current Topic, we review the structure and operations of the EFI. The EFI includes the Superfamily/Genome, Protein, Structure, Computation, and Data/Dissemination Cores that provide the infrastructure for reliably predicting the in vitro functions of unknown enzymes. The initial targets for functional assignment are selected from five functionally diverse superfamilies (amidohydrolase, enolase, glutathione transferase, haloalkanoic acid dehalogenase, and isoprenoid synthase), with five superfamily specific Bridging Projects experimentally testing the predicted in vitro enzymatic activities. The EFI also includes the Microbiology Core that evaluates the in vivo context of in vitro enzymatic functions and confirms the functional predictions of the EFI. The deliverables of the EFI to the scientific community include (1) development of a large-scale, multidisciplinary sequence/structure-based strategy for functional assignment of unknown enzymes discovered in genome projects (target selection, protein production, structure determination, computation, experimental enzymology, microbiology, and structure-based annotation), (2) dissemination of the strategy to the community via publications, collaborations, workshops, and symposia, (3) computational and bioinformatic tools for using the strategy, (4) provision of experimental protocols and/or reagents for enzyme production and characterization, and (5) dissemination of data via the EFI's Website, http://enzymefunction.org. The realization of multidisciplinary strategies for functional assignment will begin to define the full metabolic diversity that exists in nature and will impact basic biochemical and evolutionary understanding, as well as a wide range of applications of central importance to industrial, medicinal, and pharmaceutical efforts. © 2011 American Chemical Society
Rao, Xiaolan; Dixon, Richard A
2016-01-01
As an adaptation to changing climatic conditions that caused high rates of photorespiration, C 4 plants have evolved to display higher photosynthetic efficiency than C 3 plants under elevated temperature, high light intensities, and drought. The C 4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C 4 mechanisms to concentrate CO 2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C 4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C 4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C 4 metabolic flow, C 4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C 4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.
Rao, Xiaolan; Dixon, Richard A.
2016-01-01
As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes. PMID:27790235
Comparison of effects on macrophage cultures of glass fibre, glass powder, and chrysotile asbestos
Beck, E. G.; Holt, P. F.; Manojlović, N.
1972-01-01
Beck, E. G., Holt, P. F., and Manojlović, N. (1972).Brit. J. industr. Med.,29, 280-286. Comparison of effects on macrophage cultures of glass fibre, glass powder, and chrysotile asbestos. The effects on macrophage cultures of glass fibre, glass powder, and chrysotile asbestos are compared. Glass fibre behaves like chrysotile in producing an increase in cell membrane permeability in cultured macrophages. This is demonstrable by the increase in lactic dehydrogenase activity in the supernatant fluid. The metabolism, measured by lactate production, is not reduced as it is when quartz is phagocytosed. Glass powder behaves like the inert dust corundum, producing little change in the number of cells stained by erythrosin B and a small increase in lactate dehydrogenase activity, both being in the range of the control. There is an increase in lactate production as a result of higher metabolism due to phagocytosis. Dusts may produce two basic effects, namely a toxic effect and change in cell membrane permeability. A non-specific effect on the cell membrane due to the slow and sometimes incomplete process of ingestion of long fibres is probably a function of the morphology, particularly the length of the fibres. A primary specific effect induced by some dusts immediately follows contact with the cell membrane. Images PMID:4339803
Bile acids: analysis in biological fluids and tissues
Griffiths, William J.; Sjövall, Jan
2010-01-01
The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry. PMID:20008121
Grabner, Gernot F; Zimmermann, Robert; Schicho, Rudolf; Taschler, Ulrike
2017-07-01
Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL. Copyright © 2017 Elsevier Inc. All rights reserved.
Livermore, Thomas Miles; Chubb, Jonathan Robert; Saiardi, Adolfo
2016-01-01
Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP. PMID:26755590
Leptin Metabolically Licenses T Cells for Activation to Link Nutrition and Immunity
Saucillo, Donte C.; Gerriets, Valerie A.; Sheng, John; Rathmell, Jeffrey C.; MacIver, Nancie J.
2013-01-01
Immune responses are highly energy dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. While it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show here that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell-intrinsic and specific to activated effector T cells, as naïve T cells and Treg did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency. PMID:24273001
Jehan, Frédéric; Voloc, Alexandru
2014-01-01
At the beginning of the 20th century, the discovery of vitamin D by Sir EV McCollum allowed a better comprehension of its origin and its role, and made it possible to cure rickets, a largely prevalent disease at that time. The main role of vitamin D3 is to maintain calcium and phosphate homeostasis through the action of 1,25-dihydroxyvitamin D3, its active form. This underlies physiological functions related to calcium and phosphate, such as bone mineralization or muscle function. Progress in basic research for the last 40 years led to the discovery of the main hydroxylation steps that produce and catabolize the active form of vitamin D. It also uncovered the molecular aspects of vitamin D action, from its nuclear receptor, VDR, to the various target genes of this hormone. Recent progress in human genetics pointed out mutations in genes involved in vitamin D metabolism and 1,25-dihydroxyvitamin D3 actions. It also helped to understand the role of the major actors that control vitamin D production and effects, through 1,25-dihydroxyvitamin D3 actions on phosphate and calcium homeostasis, and on bone biology. Genetical engineering targeting the whole animal or defined tissues or cell types have yielded many mouse models in the past decades. When targeted to tissues important for vitamin D metabolism and activity, these models allowed a more detailed comprehension of vitamin effects on calcium and phosphorus homeostasis. © Société de Biologie, 2014.
Rodovalho, Cynara M; Ferro, Milene; Fonseca, Fernando Pp; Antonio, Erik A; Guilherme, Ivan R; Henrique-Silva, Flávio; Bacci, Maurício
2011-06-17
Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters.
Software applications for flux balance analysis.
Lakshmanan, Meiyappan; Koh, Geoffrey; Chung, Bevan K S; Lee, Dong-Yup
2014-01-01
Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to operational environment, user-interface and supported analysis algorithms. Presented herein is an in-depth evaluation of currently available FBA applications, focusing mainly on usability, functionality, graphical representation and inter-operability. Overall, most of the applications are able to perform basic features of model creation and FBA simulation. COBRA toolbox, OptFlux and FASIMU are versatile to support advanced in silico algorithms to identify environmental and genetic targets for strain design. SurreyFBA, WEbcoli, Acorn, FAME, GEMSiRV and MetaFluxNet are the distinct tools which provide the user friendly interfaces in model handling. In terms of software architecture, FBA-SimVis and OptFlux have the flexible environments as they enable the plug-in/add-on feature to aid prospective functional extensions. Notably, an increasing trend towards the implementation of more tailored e-services such as central model repository and assistance to collaborative efforts was observed among the web-based applications with the help of advanced web-technologies. Furthermore, most recent applications such as the Model SEED, FAME, MetaFlux and MicrobesFlux have even included several routines to facilitate the reconstruction of genome-scale metabolic models. Finally, a brief discussion on the future directions of FBA applications was made for the benefit of potential tool developers.
Ghosh, Amartya
2017-01-01
Plants’ reaction to underground microorganisms is complex as sessile nature of plants compels them to prioritize their responses to diverse microorganisms both pathogenic and symbiotic. Roots of important crops are directly exposed to diverse microorganisms, but investigations involving root pathogens are significantly less. Thus, more studies involving root pathogens and their target crops are necessitated to enrich the understanding of underground interactions. Present study reported the molecular complexities in chickpea during Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) infection. Transcriptomic dissections using RNA-seq showed significantly differential expression of molecular transcripts between infected and control plants of both susceptible and resistant genotypes. Radar plot analyses showed maximum expressional undulations after infection in both susceptible and resistant plants. Gene ontology and functional clustering showed large number of transcripts controlling basic metabolism of plants. Network analyses demonstrated defense components like peptidyl cis/trans isomerase, MAP kinase, beta 1,3 glucanase, serine threonine kinase, patatin like protein, lactolylglutathione lyase, coproporphyrinogen III oxidase, sulfotransferases; reactive oxygen species regulating components like respiratory burst oxidase, superoxide dismutases, cytochrome b5 reductase, glutathione reductase, thioredoxin reductase, ATPase; metabolism regulating components, myo inositol phosphate, carboxylate synthase; transport related gamma tonoplast intrinsic protein, and structural component, ubiquitins to serve as important nodals of defense signaling network. These nodal molecules probably served as hub controllers of defense signaling. Functional characterization of these hub molecules would not only help in developing better understanding of chickpea-Foc1 interaction but also place them as promising candidates for resistance management programs against vascular wilt of legumes. PMID:28542579
2011-01-01
Background Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. Based on leafcutters lifestyle and reports of genes involved in key processes of other social insects, we identified 146 sequences potential targets for controlling pest leafcutters. The targets are responsible for antixenobiosis, development and longevity, immunity, resistance to pathogens, pheromone function, cell signaling, behavior, polysaccharide metabolism and arginine kynase activity. Conclusion The generation and analysis of expressed sequence tags from Atta laevigata have provided important genetic basis for future studies on the biology of leaf-cutting ants and may contribute to the development of a more specific and environmentally friendly method for the control of agricultural pest leafcutters. PMID:21682882
Basic Emotions in Human Neuroscience: Neuroimaging and Beyond
Celeghin, Alessia; Diano, Matteo; Bagnis, Arianna; Viola, Marco; Tamietto, Marco
2017-01-01
The existence of so-called ‘basic emotions’ and their defining attributes represents a long lasting and yet unsettled issue in psychology. Recently, neuroimaging evidence, especially related to the advent of neuroimaging meta-analytic methods, has revitalized this debate in the endeavor of systems and human neuroscience. The core theme focuses on the existence of unique neural bases that are specific and characteristic for each instance of basic emotion. Here we review this evidence, outlining contradictory findings, strengths and limits of different approaches. Constructionism dismisses the existence of dedicated neural structures for basic emotions, considering that the assumption of a one-to-one relationship between neural structures and their functions is central to basic emotion theories. While these critiques are useful to pinpoint current limitations of basic emotions theories, we argue that they do not always appear equally generative in fostering new testable accounts on how the brain relates to affective functions. We then consider evidence beyond PET and fMRI, including results concerning the relation between basic emotions and awareness and data from neuropsychology on patients with focal brain damage. Evidence from lesion studies are indeed particularly informative, as they are able to bring correlational evidence typical of neuroimaging studies to causation, thereby characterizing which brain structures are necessary for, rather than simply related to, basic emotion processing. These other studies shed light on attributes often ascribed to basic emotions, such as automaticity of perception, quick onset, and brief duration. Overall, we consider that evidence in favor of the neurobiological underpinnings of basic emotions outweighs dismissive approaches. In fact, the concept of basic emotions can still be fruitful, if updated to current neurobiological knowledge that overcomes traditional one-to-one localization of functions in the brain. In particular, we propose that the structure-function relationship between brain and emotions is better described in terms of pluripotentiality, which refers to the fact that one neural structure can fulfill multiple functions, depending on the functional network and pattern of co-activations displayed at any given moment. PMID:28883803
[Education and training in neurology: update].
Yanagisawa, Nobuo
2010-11-01
Progress in basic neurosciences and advances in technology in the last decades have contributed to clarification of neural mechanisms in behavior or cognition in health and disease. They have elaborated diagnosis and treatment of nervous diseases remarkably. Needs in neurologists in both primary and specific medical services are rapidly increasing, with aging society and progresses in medical care in Japan. Attraction of neurology for students and junior residents is a great concern of Japanese Society of Neurology. In the undergraduate education, recent achievement in basic neurosciences including neurogenetics, molecular cytology, physio-pathology and imaging technique should be taught comprehensively. In the early postgraduate course for two years, neurology is either elective or obligatory depending on the curriculum of training institutions. Work at the stroke care unit is strongly recommended in the course of emergency service, which is mandatory. Experiences in acute infectious diseases, in various stages of neurodegenerative diseases, in collaboration with other specialist doctors for systemic diseases including metabolic or collagen diseases, in collaboration with other medical personnel in care of dementia are all included in advanced stages of postgraduate education before board examination. In summary, studies for practical services as well as clinical researches, teaching of symptoms and signs based on neural functions, and socio-economical issues for chronic nervous diseases in aged society are important in the education in neurology.
Identification of genetic elements in metabolism by high-throughput mouse phenotyping.
Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin
2018-01-18
Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.
Impact of Hypoglycemia on Brain Metabolism During Diabetes.
Rehni, Ashish K; Dave, Kunjan R
2018-04-10
Diabetes is a metabolic disease afflicting millions of people worldwide. A substantial fraction of world's total healthcare expenditure is spent on treating diabetes. Hypoglycemia is a serious consequence of anti-diabetic drug therapy, because it induces metabolic alterations in the brain. Metabolic alterations are one of the central mechanisms mediating hypoglycemia-related functional changes in the brain. Acute, chronic, and/or recurrent hypoglycemia modulate multiple metabolic pathways, and exposure to hypoglycemia increases consumption of alternate respiratory substrates such as ketone bodies, glycogen, and monocarboxylates in the brain. The aim of this review is to discuss hypoglycemia-induced metabolic alterations in the brain in glucose counterregulation, uptake, utilization and metabolism, cellular respiration, amino acid and lipid metabolism, and the significance of other sources of energy. The present review summarizes information on hypoglycemia-induced metabolic changes in the brain of diabetic and non-diabetic subjects and the manner in which they may affect brain function.
Secor, Stephen M; Taylor, Josi R; Grosell, Martin
2012-01-01
Snakes exhibit an apparent dichotomy in the regulation of gastrointestinal (GI) performance with feeding and fasting; frequently feeding species modestly regulate intestinal function whereas infrequently feeding species rapidly upregulate and downregulate intestinal function with the start and completion of each meal, respectively. The downregulatory response with fasting for infrequently feeding snakes is hypothesized to be a selective attribute that reduces energy expenditure between meals. To ascertain the links between feeding habit, whole-animal metabolism, and GI function and metabolism, we measured preprandial and postprandial metabolic rates and gastric and intestinal acid-base secretion, epithelial conductance and oxygen consumption for the frequently feeding diamondback water snake (Nerodia rhombifer) and the infrequently feeding Burmese python (Python molurus). Independent of body mass, Burmese pythons possess a significantly lower standard metabolic rate and respond to feeding with a much larger metabolic response compared with water snakes. While fasting, pythons cease gastric acid and intestinal base secretion, both of which are stimulated with feeding. In contrast, fasted water snakes secreted gastric acid and intestinal base at rates similar to those of digesting snakes. We observed no difference between fasted and fed individuals for either species in gastric or intestinal transepithelial potential and conductance, with the exception of a significantly greater gastric transepithelial potential for fed pythons at the start of titration. Water snakes experienced no significant change in gastric or intestinal metabolism with feeding. Fed pythons, in contrast, experienced a near-doubling of gastric metabolism and a tripling of intestinal metabolic rate. For fasted individuals, the metabolic rate of the stomach and small intestine was significantly lower for pythons than for water snakes. The fasting downregulation of digestive function for pythons is manifested in a depressed gastric and intestinal metabolism, which selectively serves to reduce basal metabolism and hence promote survival between infrequent meals. By maintaining elevated GI performance between meals, fasted water snakes incur the additional cost of tissue activity, which is expressed in a higher standard metabolic rate.
Accessing Autonomic Function Can Early Screen Metabolic Syndrome
Dai, Meng; Li, Mian; Yang, Zhi; Xu, Min; Xu, Yu; Lu, Jieli; Chen, Yuhong; Liu, Jianmin; Ning, Guang; Bi, Yufang
2012-01-01
Background Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. Methodology and Principal Findings The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend <0.0001). Moreover, EZSCAN value was associated with an increase in the number of metabolic syndrome components (p for trend <0.0001). Compared with the no risk group (EZSCAN value 0–24), participants at the high risk group (EZSCAN value: 50–100) had a 2.35 fold increased risk of prevalent metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61–0.64) for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. Conclusions and Significance In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome. PMID:22916265
Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography
NASA Astrophysics Data System (ADS)
O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.
2015-12-01
The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.
Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism.
Park, Hyeong-Kyu; Ahima, Rexford S
2015-01-01
Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
The progress and challenges in metabolic research in China.
Xu, Li; Ren, Hao; Gao, Guangang; Zhou, Linkang; Malik, Muhammad Arshad; Li, Peng
2016-11-01
Metabolism refers to a chain of chemical reactions converting food/fuel into energy to conduct cellular processes, including the synthesis of the building blocks of the body, such as proteins, lipids, nucleic acids, and carbohydrates, and the elimination of nitrogenous wastes. Metabolic chain reactions are catalyzed by various enzymes that are orchestrated in specific pathways. Metabolic pathways are important for organisms to grow and reproduce, maintain their structures, and respond to their environments. The coordinated regulation of metabolic pathways is important for maintaining metabolic homeostasis. The key steps and crucial enzymes in these pathways have been well investigated. However, the crucial regulatory factors and feedback (or feedforward) mechanisms of nutrients and intermediate metabolites of these biochemical processes remain to be fully elucidated. In addition, the roles of these enzymes and regulatory factors in controlling metabolism under physiological and pathological conditions are largely unknown. In particular, metabolic dysregulation is closely linked to the development of many diseases, including obesity, fatty liver, diabetes, cancer, cardiovascular, cerebrovascular, and neurodegenerative diseases. Therefore, metabolism, an old area of biochemistry, has attracted much attention in the last decade. With substantially increased government funding, the involvement of talented researchers, an improved infrastructure and scientific environment over the last ten years, the basic research in the field of metabolism in China has dramatically advanced. Here, we have summarized the major discoveries of scientists in China in the last decade in the area of metabolism. Due to the vast amount of information, we focused this review on specific aspects of metabolism, particularly metabolic regulation and lipid metabolism in vertebrates. © 2016 IUBMB Life, 68(11):847-853, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Yamagata, Kazuo
2018-02-04
Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.
Yamagata, Kazuo
2018-01-01
Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome. PMID:29401716
Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI.
Barton, Gregory P; Vildberg, Lauren; Goss, Kara; Aggarwal, Niti; Eldridge, Marlowe; McMillan, Alan B
2018-05-01
Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model. Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18 F-fluorodeoxyglucose ( 18 F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (F I O 2 = .209) and hypoxic gas (F I O 2 = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner. Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO 2 , LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress. PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.
Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance
Dietrich, Christoph G; Götze, Oliver; Geier, Andreas
2016-01-01
Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests. PMID:26755861
The basic helix-loop-helix transcription factor family in the sacred lotus, Nelumbo nucifera
USDA-ARS?s Scientific Manuscript database
Nelumbo nucifera (Sacred Lotus) is a basal eudicot with exceptional physiological and metabolic properties including seed longevity, adaptations for an aquatic habit, and floral thermiogenesis. It also occupies a unique position in the phylogeny of land plants and can be a useful species for studies...
Epilepsy; A Review of Basic and Clinical Research. NINDB Monograph Number 1.
ERIC Educational Resources Information Center
Robb, Preston
A discussion of the incidence of epilepsy is followed by a discussion of etiology including the following causes: genetic and birth factors, infectious diseases, toxic factors, trauma or physical agents, heredofamilial and degenerative disorders, circulatory disturbances, metabolic and nutritional disturbances, and neoplasms. Epileptic seizures…
Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K.; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R.; Lutas, Andrew; Yellen, Gary; Danial, Nika N.
2012-01-01
Summary Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phospho-regulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive KATP channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the KATP channel, implicating the BAD-KATP axis in metabolic control of neuronal excitation and seizure responses. PMID:22632729
Diémé, Binta; Halimi, Jean Michel; Emond, Patrick; Büchler, Matthias; Nadal-Desbarat, Lydie; Blasco, Hélène; Le Guellec, Chantal
2014-07-27
Biomarkers that can predict graft function and/or renal side effects of calcineurin inhibitors (CNI) at each stage of treatment in kidney transplantation are still lacking. We report the first untargeted GC-MS-based metabolomic study on urines of renal transplant patients. This approach would bring insight in biomarkers useable for graft function monitoring. All consecutive patients receiving a kidney allograft in our transplantation department over a 6-month period were prospectively included and followed up for 12 months. We collected urine samples on the seventh day (D7) after transplantation, then at month 3 (M3) and month 12 (M12), and obtained mass-spectrometry-based urinary metabolic profiles. Multivariate analyses were conducted to compare metabolic profiles at the 3 different periods and to assess potential differences between cyclosporine and tacrolimus. Differences in metabolic signatures were also assessed according to graft function at D7 and renal function at M3 and M12. The urinary metabolic patterns varied over time in cyclosporine- and tacrolimus-treated patients and were somewhat different at D7, M3, and M12 between the 2 treatment groups. Principal metabolites that differed, regardless of the treatment used, were mainly sugars, inositol, and hippuric acid. Interestingly, among tacrolimus-treated patients, different metabolic signatures were found between patients with immediate or delayed graft function at D7. Urinary metabolomics represents a noninvasive way of monitoring immunosuppressive therapy in renal transplant patients. Although it is too early to consider it as a biomarker of CNI-induced injury or graft function, metabolomics appears a promising evaluation tool in this area.
Systems biology solutions for biochemical production challenges.
Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J
2017-06-01
There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERIC Educational Resources Information Center
Loman, Sheldon L.; Horner, Robert H.
2014-01-01
This study evaluated the effects of manualized training in "Basic" functional behavioral assessment (FBA) for typical school professionals on the ability of these professionals to complete technically adequate FBAs. Twelve school professionals participated in four 1-hr training sessions using the Basic FBA training handbook. After…
Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate.
San Martín, Alejandro; Ceballo, Sebastián; Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L Felipe
2014-01-01
Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function.
Assessing the Links Between Anthropometrics Data and Akabane Test Results.
Muzhikov, Valery; Vershinina, Elena; Belenky, Vadim; Muzhikov, Ruslan
2018-02-01
According to popular belief, metabolic disorders and imbalances are one of the main factors contributing to various human illnesses. Early diagnosis of these disorders is one of the main methods for preventing serious diseases. The goal of this study was to assess the correlations between main physical indicators and the activity of certain acupuncture channels using the thermal Akabane test based on ancient Chinese diagnostic methods. This test measures the pain thresholds' temperature sensitivity when a point source of heat is applied to the "entrance-exit" points of each channel. The skin temperature sensitivity in our bodies is a basic reactive system; it is as significant as such important indicators as body temperature and provides a very clear representation of functional and psychophysiological profiles. On the basis of our statistical study, we revealed reliable correspondence between the activity of certain acupuncture channels and main anthropometric and biometric data. Copyright © 2018. Published by Elsevier B.V.
Creating single-copy genetic circuits
Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.
2017-01-01
SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413
Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for Pyruvate
Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L. Felipe
2014-01-01
Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function. PMID:24465702
Yuan, Jialan; Wang, Zhao; Xing, Junjie; Yang, Qingyong; Chen, Xiao-Lin
2018-04-30
Numerous circRNAs have been identified in different organisms, but little attention has been addressed on fungal circRNAs. Here, we identified a total of 8,848 circRNAs from the model plant pathogenic fungus M. oryzae. 5,840 circRNAs were identified from mycelium, 2,721 circRNAs from conidium, while only 287 circRNAs from both tissues. This indicated that most of the M. oryzae circRNAs were specifically expressed in mycelium or in conidium. Parental genes of circRNAs in mycelium were enriched in basic metabolisms required for normal growth, while in conidium, they were enriched in biogenesis of storages potentially used for infection. M. oryzae circRNAs could also bind to miRNAs, suggesting they may also function as sponges in fungi. This study suggested M. oryzae circRNAs could play important roles in regulation of growth and development.
Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design.
Meanwell, Nicholas A
2018-02-05
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Egg Phospholipids and Cardiovascular Health
Blesso, Christopher N.
2015-01-01
Eggs are a major source of phospholipids (PL) in the Western diet. Dietary PL have emerged as a potential source of bioactive lipids that may have widespread effects on pathways related to inflammation, cholesterol metabolism, and high-density lipoprotein (HDL) function. Based on pre-clinical studies, egg phosphatidylcholine (PC) and sphingomyelin appear to regulate cholesterol absorption and inflammation. In clinical studies, egg PL intake is associated with beneficial changes in biomarkers related to HDL reverse cholesterol transport. Recently, egg PC was shown to be a substrate for the generation of trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite associated with increased cardiovascular disease (CVD) risk. More research is warranted to examine potential serum TMAO responses with chronic egg ingestion and in different populations, such as diabetics. In this review, the recent basic science, clinical, and epidemiological findings examining egg PL intake and risk of CVD are summarized. PMID:25871489
Genetic and metabolic engineering in diatoms.
Huang, Weichao; Daboussi, Fayza
2017-09-05
Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).
Metabolomics for Assessment of Nutritional Status
Zivkovic, Angela M.; German, J. Bruce
2010-01-01
Purpose of review The current rise in diet-related diseases continues to be one of the most significant health problems facing both the developed and the developing world. The use of metabolomics – the accurate and comprehensive measurement of a significant fraction of important metabolites in accessible biological fluids – for the assessment of nutritional status, is a promising way forward. The basic toolset, targets, and knowledge are all being developed in the emerging field of metabolomics, yet important knowledge and technology gaps will need to be addressed in order to bring such assessment to practice. Recent findings Dysregulation within the principal metabolic organs (e.g. intestine, adipose, skeletal muscle, liver) are at the center of a diet-disease paradigm that includes metabolic syndrome, type 2 diabetes, and obesity. The assessment of both essential nutrient status, and the more comprehensive systemic metabolic response to dietary, lifestyle, and environmental influences (e.g. metabolic phenotype) are necessary for the evaluation of status in individuals that can identify the multiple targets of intervention needed to address metabolic disease. Summary The first proofs of principle building the knowledge to bring actionable metabolic diagnostics to practice through metabolomics are now appearing. PMID:19584717
Xie, Jianping; He, Zhili; Liu, Xinxing; Liu, Xueduan; Van Nostrand, Joy D.; Deng, Ye; Wu, Liyou; Zhou, Jizhong; Qiu, Guanzhou
2011-01-01
Acid mine drainage (AMD) is an extreme environment, usually with low pH and high concentrations of metals. Although the phylogenetic diversity of AMD microbial communities has been examined extensively, little is known about their functional gene diversity and metabolic potential. In this study, a comprehensive functional gene array (GeoChip 2.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of AMD microbial communities from three copper mines in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, gene overlapping, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 2.0 were detected in the AMD microbial communities, including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, which suggested that the functional gene diversity was higher than was previously thought. Mantel test results indicated that AMD microbial communities are shaped largely by surrounding environmental factors (e.g., S, Mg, and Cu). Functional genes (e.g., narG and norB) and several key functional processes (e.g., methane generation, ammonification, denitrification, sulfite reduction, and organic contaminant degradation) were significantly (P < 0.10) correlated with environmental variables. This study presents an overview of functional gene diversity and the structure of AMD microbial communities and also provides insights into our understanding of metabolic potential in AMD ecosystems. PMID:21097602
Hayes, A Wallace; Dixon, Darlene
2017-01-01
The 35th Annual Society of Toxicologic Pathology Symposium, held in June 2016 in San Diego, California, focused on "The Basis and Relevance of Variation in Toxicologic Responses." In order to review the basic tenants of toxicology, a "broad brush" interactive talk that gave an overview of the Cornerstones of Toxicology was presented. The presentation focused on the historical milestones and perspectives of toxicology and through many scientific graphs, data, and real-life examples covered the three basic principles of toxicology that can be summarized, as dose matters (as does timing), people differ, and things change (related to metabolism and biotransformation).
Hayes, A. Wallace; Dixon, Darlene
2016-01-01
The 35th Annual Society of Toxicologic Pathology Symposium, held in June 2016 in San Diego, CA, focused on “The Basis and Relevance of Variation in Toxicologic Responses. In order to review the basic tenants of toxicology a ‘broad brush” interactive talk was presented that gave an overview of the Cornerstones of Toxicology. The presentation focused on the historical milestones and perspectives of toxicology and through many scientific graphs, data, and real-life examples covered the three basic principles of toxicology that can be summarized as dose matters (as does timing), people differ, and things change (related to metabolism and biotransformation). PMID:28068892
Ruthrauff, Daniel R.; Dekinga, Anne; Gill, Robert E.; Piersma, Theunis
2013-01-01
Closely related species or subspecies can exhibit metabolic differences that reflect site-specific environmental conditions. Whether such differences represent fixed traits or flexible adjustments to local conditions, however, is difficult to predict across taxa. The nominate race of Rock Sandpiper (Calidris ptilocnemis) exhibits the most northerly nonbreeding distribution of any shorebird in the North Pacific, being common during winter in cold, dark locations as far north as upper Cook Inlet, Alaska (61°N). By contrast, the tschuktschorum subspecies migrates to sites ranging from about 59°N to more benign locations as far south as ~37°N. These distributional extremes exert contrasting energetic demands, and we measured common metabolic parameters in the two subspecies held under identical laboratory conditions to determine whether differences in these parameters are reflected by their nonbreeding life histories. Basal metabolic rate and thermal conductance did not differ between subspecies, and the subspecies had a similar metabolic response to temperatures below their thermoneutral zone. Relatively low thermal conductance values may, however, reflect intrinsic metabolic adaptations to northerly latitudes. In the absence of differences in basic metabolic parameters, the two subspecies’ nonbreeding distributions will likely be more strongly influenced by adaptations to regional variation in ecological factors such as prey density, prey quality, and foraging habitat.