Algorithm Estimates Microwave Water-Vapor Delay
NASA Technical Reports Server (NTRS)
Robinson, Steven E.
1989-01-01
Accuracy equals or exceeds conventional linear algorithms. "Profile" algorithm improved algorithm using water-vapor-radiometer data to produce estimates of microwave delays caused by water vapor in troposphere. Does not require site-specific and weather-dependent empirical parameters other than standard meteorological data, latitude, and altitude for use in conjunction with published standard atmospheric data. Basic premise of profile algorithm, wet-path delay approximated closely by solution to simplified version of nonlinear delay problem and generated numerically from each radiometer observation and simultaneous meteorological data.
Design of extensible meteorological data acquisition system based on FPGA
NASA Astrophysics Data System (ADS)
Zhang, Wen; Liu, Yin-hua; Zhang, Hui-jun; Li, Xiao-hui
2015-02-01
In order to compensate the tropospheric refraction error generated in the process of satellite navigation and positioning. Temperature, humidity and air pressure had to be used in concerned models to calculate the value of this error. While FPGA XC6SLX16 was used as the core processor, the integrated silicon pressure sensor MPX4115A and digital temperature-humidity sensor SHT75 are used as the basic meteorological parameter detection devices. The core processer was used to control the real-time sampling of ADC AD7608 and to acquire the serial output data of SHT75. The data was stored in the BRAM of XC6SLX16 and used to generate standard meteorological parameters in NEMA format. The whole design was based on Altium hardware platform and ISE software platform. The system was described in the VHDL language and schematic diagram to realize the correct detection of temperature, humidity, air pressure. The 8-channel synchronous sampling characteristics of AD7608 and programmable external resources of FPGA laid the foundation for the increasing of analog or digital meteorological element signal. The designed meteorological data acquisition system featured low cost, high performance, multiple expansions.
NASA Astrophysics Data System (ADS)
Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.
2009-04-01
The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal distributions and vertical profiles of meteorological parameters produced by the module. Verification of forecasts includes research of spatial and temporal correlations of structures generated by the model, e.g.: cloudiness, meteorological phenomena (fogs, precipitation, turbulence) and structures identified on current satellite images. The developed module determines meteorological parameters fields for vertical profiles of the atmosphere. Interpolation procedures run at user selected standard (pressure) or height levels of the model enable to determine weather conditions along any route of aircraft. Basic parameters of the procedures determining e.g. flight safety include: cloud base, visibility, cloud cover, turbulence coefficient, icing and precipitation intensity. Determining icing and turbulence characteristics is based on standard and new methods (from other mesoscale models). The research includes also investigating new generation mesoscale models, especially remote sensing data assimilation. This is required by necessity to develop and introduce objective methods of forecasting weather conditions. Current research in the Faculty of Civil Engineering and Geodesy concerns validation of the mesoscale module performance.
NASA Astrophysics Data System (ADS)
Miksovsky, J.; Raidl, A.
Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.
Resilience of urban ambulance services under future climate, meteorology and air pollution scenarios
NASA Astrophysics Data System (ADS)
Pope, Francis; Chapman, Lee; Fisher, Paul; Mahmood, Marliyyah; Sangkharat, Kamolrat; Thomas, Neil; Thornes, John
2017-04-01
Ambulances are an integral part of a country's infrastructure ensuring its citizens and visitors are kept healthy. The impact of weather, climate and climate change on ambulance services around the world has received increasing attention in recent years but most studies have been area specific and there is a need to establish basic relationships between ambulance data (both response and illness data) and meteorological parameters. In this presentation, the effects of temperature, other meteorological and air pollution variables on ambulance call out rates for different medical categories will be investigated. We use ambulance call out obtained from various ambulance services worldwide which have significantly different meteorologies, climatologies and pollution conditions. A time-series analysis is utilized to understand the relation between meteorological conditions, air pollutants and different call out categories. We will present findings that support the opinion that ambulance attendance call outs records are an effective and well-timed source of data and can be used for health early warning systems. Furthermore the presented results can much improve our understanding of the relationships between meteorology, climate, air pollution and human health thereby allowing for better prediction of ambulance use through the application of long and short-term weather, climate and pollution forecasts.
Long-term weather predictability: Ural case study
NASA Astrophysics Data System (ADS)
Kubyshen, Alexander; Shopin, Sergey
2016-04-01
The accuracy of the state-of-the-art long-term meteorological forecast (at the seasonal level) is still low. Here it is presented approach (RAMES method) realizing different forecasting methodology. It provides prediction horizon of up to 19-22 years under equal probabilities of determination of parameters in every analyzed period [1]. Basic statements of the method are the following. 1. Long-term forecast on the basis of numerical modeling of the global meteorological process is principally impossible. Extension of long-term prediction horizon could be obtained only by the revealing and using a periodicity of meteorological situations at one point of observation. 2. Conventional calendar is unsuitable for generalization of meteorological data and revealing of cyclicity of meteorological processes. RAMES method uses natural time intervals: one day, synodic month and one year. It was developed a set of special calendars using these natural periods and the Metonic cycle. 3. Long-term time series of meteorological data is not a uniform universal set, it is a sequence of 28 universal sets appropriately superseding each other in time. The specifics of the method are: 1. Usage of the original research toolkit consisting of - a set of calendars based on the Metonic cycle; - a set of charts (coordinate systems) for the construction of sequence diagrams (of daily variability of a meteorological parameter during the analyzed year; of daily variability of a meteorological parameter using long-term dynamical time series of periods-analogues; of monthly and yearly variability of accumulated value of meteorological parameter). 2. Identification and usage of new virtual meteorological objects having several degrees of generalization appropriately located in the used coordinate systems. 3. All calculations are integrated into the single technological scheme providing comparison and mutual verification of calculation results. During the prolonged testing in the Ural region, it was proved the efficiency of the method for forecasting the following meteorological parameters: - air temperature (minimum, maximum, daily mean, diurnal variation, last spring and first autumn freeze); - periods of winds with speeds of >5m/s and the maximal expected wind speed; - precipitation periods and amount of precipitations; - relative humidity; - atmospheric pressure. Atmospheric events (thunderstorms, fog) and hydrometeors also occupy the appropriate positions at the sequence diagrams that provides a possibility of long-term forecasting also for these events. Accuracy of forecasts was tested in 2006-2009 years. The difference between the forecasted monthly mean temperature and actual values was <0.5°C in 40.9% of cases, between 0.5°C and 1°C in 18.2% of cases, between 1°C and 1.5°C in 18.2% of cases, <2°C in 86% of cases. The RAMES method provides the toolkit to successfully forecast the weather conditions in advance of several years. 1. A.F. Kubyshen, "RAMES method: revealing the periodicity of meteorological processes and it usage for long-term forecast [Metodika «RAMES»: vyjavlenie periodichnosti meteorologicheskih processov i ee ispol'zovanie dlja dolgosrochnogo prognozirovanija]", in A.E. Fedorov (ed.), Sistema «Planeta Zemlja»: 200 let so dnja rozhdenija Izmaila Ivanovicha Sreznevskogo. 100 let so dnja izdanija ego slovarja drevnerusskogo jazyka. LENAND. Moscow. pp. 305-311. (In Russian)
Syllabi for Instruction in Agricultural Meteorology.
ERIC Educational Resources Information Center
De Villiers, G. D. B.; And Others
A working group of the Commission for Agricultural Meteorology has prepared this report to fill a need for detailed syllabi for instruction in agricultural meteorology required by different levels of personnel. Agrometeorological personnel are classified in three categories: (1) professional meteorological personnel (graduates with basic training…
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Rodgers, E. B.
1977-01-01
An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.
The planets of the Solar System
NASA Technical Reports Server (NTRS)
Marov, M. Y.
1986-01-01
This book is intended both for the lay person and the would-be scientist. The planets are discussed with a comparision of their basic natural features: mechanical characteristics and parameters of movement, surfaces, inner structure, physical properties of the atmosphere and meteorology. Also general problems of planetary cosmogony, thermal history and climatic evolution are considered briefly. The book is based on Soviet and foreign material, data from spacecraft, Earth optical and radio astronomical measurements and also data obtained from theoretical models.
Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.
15 CFR 950.3 - National Climatic Center (NCC).
Code of Federal Regulations, 2014 CFR
2014-01-01
...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...
15 CFR 950.3 - National Climatic Center (NCC).
Code of Federal Regulations, 2012 CFR
2012-01-01
...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...
15 CFR 950.3 - National Climatic Center (NCC).
Code of Federal Regulations, 2010 CFR
2010-01-01
...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...
15 CFR 950.3 - National Climatic Center (NCC).
Code of Federal Regulations, 2013 CFR
2013-01-01
...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...
15 CFR 950.3 - National Climatic Center (NCC).
Code of Federal Regulations, 2011 CFR
2011-01-01
...; develops analytical and descriptive products to meet user requirements; and provides facilities for the... Meteorological Experiment meteorological data, Global Atmospheric Research Program basic data set, solar...
NASA Astrophysics Data System (ADS)
Fetisova, Yu. A.; Ermolenko, B. V.; Ermolenko, G. V.; Kiseleva, S. V.
2017-04-01
We studied the information basis for the assessment of wind power potential on the territory of Russia. We described the methodology to determine the parameters of the Weibull function, which reflects the density of distribution of probabilities of wind flow speeds at a defined basic height above the surface of the earth using the available data on the average speed at this height and its repetition by gradations. The application of the least square method for determining these parameters, unlike the use of graphical methods, allows performing a statistical assessment of the results of approximation of empirical histograms by the Weibull formula. On the basis of the computer-aided analysis of the statistical data, it was shown that, at a fixed point where the wind speed changes at different heights, the range of parameter variation of the Weibull distribution curve is relatively small, the sensitivity of the function to parameter changes is quite low, and the influence of changes on the shape of speed distribution curves is negligible. Taking this into consideration, we proposed and mathematically verified the methodology of determining the speed parameters of the Weibull function at other heights using the parameter computations for this function at a basic height, which is known or defined by the average speed of wind flow, or the roughness coefficient of the geological substrate. We gave examples of practical application of the suggested methodology in the development of the Atlas of Renewable Energy Resources in Russia in conditions of deficiency of source meteorological data. The proposed methodology, to some extent, may solve the problem related to the lack of information on the vertical profile of repeatability of the wind flow speeds in the presence of a wide assortment of wind turbines with different ranges of wind-wheel axis heights and various performance characteristics in the global market; as a result, this methodology can become a powerful tool for effective selection of equipment in the process of designing a power supply system in a certain location.
NASA Technical Reports Server (NTRS)
Kiang, R.; Adimi, F.; Nigro, J.
2007-01-01
Meteorological and environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. These parameters can most conveniently be obtained using remote sensing. Selected provinces and districts in Thailand and Indonesia are used to illustrate how remotely sensed meteorological and environmental parameters may enhance the capabilities for malaria surveillance and control. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records.
Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR
Morin, Cory W.; Monaghan, Andrew J.; Hayden, Mary H.; Barrera, Roberto; Ernst, Kacey
2015-01-01
Meteorological factors influence dengue virus ecology by modulating vector mosquito population dynamics, viral replication, and transmission. Dynamic modeling techniques can be used to examine how interactions among meteorological variables, vectors and the dengue virus influence transmission. We developed a dengue fever simulation model by coupling a dynamic simulation model for Aedes aegypti, the primary mosquito vector for dengue, with a basic epidemiological Susceptible-Exposed-Infectious-Recovered (SEIR) model. Employing a Monte Carlo approach, we simulated dengue transmission during the period of 2010–2013 in San Juan, PR, where dengue fever is endemic. The results of 9600 simulations using varied model parameters were evaluated by statistical comparison (r2) with surveillance data of dengue cases reported to the Centers for Disease Control and Prevention. To identify the most influential parameters associated with dengue virus transmission for each period the top 1% of best-fit model simulations were retained and compared. Using the top simulations, dengue cases were simulated well for 2010 (r2 = 0.90, p = 0.03), 2011 (r2 = 0.83, p = 0.05), and 2012 (r2 = 0.94, p = 0.01); however, simulations were weaker for 2013 (r2 = 0.25, p = 0.25) and the entire four-year period (r2 = 0.44, p = 0.002). Analysis of parameter values from retained simulations revealed that rain dependent container habitats were more prevalent in best-fitting simulations during the wetter 2010 and 2011 years, while human managed (i.e. manually filled) container habitats were more prevalent in best-fitting simulations during the drier 2012 and 2013 years. The simulations further indicate that rainfall strongly modulates the timing of dengue (e.g., epidemics occurred earlier during rainy years) while temperature modulates the annual number of dengue fever cases. Our results suggest that meteorological factors have a time-variable influence on dengue transmission relative to other important environmental and human factors. PMID:26275146
Study of meteorological parameters over the central Himalayan region using balloon-borne sensor
NASA Astrophysics Data System (ADS)
Shrivastava, Rahul; Naja, Manish; Gwal, A. K.
2013-06-01
In the present paper we accumulate the recent advances in atmospheric research by analyzing meteorological data. We have calculated meteorological parameters over the central Himalayan region at Nainital (longitude 79.45□ E, latitude 29.35□N). It is a high altitude place (1951 meters) which is very useful for such type of measurement. We have done our work on meteorological parameters in GVAX (Ganges Valley Aerosol Experiment) project. It was an American-Indo project which was use to capture pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of Atmospheric conditions of the Ganges Valley. The Balloon Borne Sounding System (BBSS) technique was also used for in-situ measurements of meteorological parameters.
GEMPAK5 user's guide, version 5.0
NASA Technical Reports Server (NTRS)
Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.
1991-01-01
GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The User's Guide describes the GEMPAK5 programs and input parameters and details the algorithms used for the meteorological computations.
NASA Astrophysics Data System (ADS)
Cobourn, W. Geoffrey
2010-08-01
An enhanced PM 2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM 2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM 2.5 air quality is more likely to be critical for human health. The enhanced PM 2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM 2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM 2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.
Physical Processes in Coastal Stratocumulus Clouds from Aircraft Measurements During UPPEF 2012
2013-09-01
pressure, dew point, water vapor, absolute humidity, and carbon dioxide concentration. There were various upward and downward looking pyranometers ...Meteorological parameters IR Temperature -50 to +20 °C Up-looking modified Kipp & Zonen CM-22 pyranometer (CIRPAS/NRL) Meteorological parameters Down...welling Solar Irradiance 0-1400 W m -2 Down-looking modified Kipp & Zonen CM-22 pyranometer (CIRPAS/NRL) Meteorological parameters Up-welling Solar
Airline meteorological requirements
NASA Technical Reports Server (NTRS)
Chandler, C. L.; Pappas, J.
1985-01-01
A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Kanemaru, A.; Okumura, M.; Tohno, S.
2008-12-01
Biogenic VOC (BVOC) has comparably large contribution to generation of secondary air pollutants, such as photochemical oxidant or urban aerosol. In this study a BVOC emission inventory in the Kansai area, which is located in the central part of Japan, based on the field observation was developed. Some validations of the inventory were conducted by estimating the concentration distribution of oxidants with this developed and an existing BVOC emission inventory in Kansai area by meteorological model MM5 and atmospheric chemical transport model CMAQ. In the development of BVOC emission, the vegetation map by the Biodiversity Center of Japan which had been arranged as basic information on natural environmental preservation in a regional standard mesh (the third mesh) in 1999 was used. In this study isoprene and the mono-terpene were taken up as BVOC. Quercus crispula and Quercus serrata were selected as the source of isoprene, and Cryptomeria japonica, Chamaecyparis obtuse, Quercus phillyraeoides, Pinus densiflora, and Pinus thunbergii were selected as sources of mono-terpene. The parameter of the basic emission rate included in the model was decided by arranging the result of the observation in Kansai Research Center of Forestry and Forest Products Research Institute in each season. This emission flux from each species were calculated by G93 model by Guenther et al. and meteorological fields for the model, such as temperatures and sunlight intensities, were renewed hour by hour, therefore, this emission inventory has a high time resolution according to the season and time. In calculating meteorological fields, meteorological model MM5 Ver.3.7 was conducted in Japanese standard mesh in the selected five days of April, July, and October in 2004, and January 2005 respectively, and taking out the result of wind velocities and temperatures for substituting to the G93 model. Then atmospheric chemical transport model CMAQ Ver.4.6 with the emission inventories and meteorological fields was used for estimating secondary produced compounds concentration in the Kansai region. While the emission amount data of BVOC is also included in the EAGrid-Japan database, constructed by A. Kannari et al., another simulation with this existing BVOC emission inventory was conducted. As for other emission inventories of precursors, EAGrid-Japan was also used in both simulations. According to the result of estimation of BVOC emission, the total amount of BVOC is almost same as that of EAGrid-Japan, however, the ratio of isoprene to total BVOC emission is quite low in our estimation, due to the used vegetation map in this study, and the configuration of basic emission parameter in Autumn and Winter which is set to zero. According to the result of atmospheric chemical transport simulation with this developed BVOC inventory, oxidant concentrations are lower than observed values. This result suggests that the amount of isoprene emission strongly affected on the concentrations of oxidants, therefore, more accurate vegetation map data as a basis of BVOC emissions should be developed.
A review of the meteorological parameters which affect aerial application
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Frost, W.
1979-01-01
The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Desjardins, M.; Shenk, W. E.
1979-01-01
Simultaneous Geosynchronous Operational Environmental Satellite (GOES) 1 km resolution visible image pairs can provide quantitative three dimensional measurements of clouds. These data have great potential for severe storms research and as a basic parameter measurement source for other areas of meteorology (e.g. climate). These stereo cloud height measurements are not subject to the errors and ambiguities caused by unknown cloud emissivity and temperature profiles that are associated with infrared techniques. This effort describes the display and measurement of stereo data using digital processing techniques.
ERIC Educational Resources Information Center
Wallen, Carl C.
1975-01-01
The global atmospheric monitoring plans of the World Meteorological Organization are detailed. Single and multipurpose basic monitoring systems and the monitoring of chemical properties are discussed. The relationship of the World Meteorological Organization with the United Nations environment program is discussed. A map of the World…
Pirsaheb, Meghdad; Najafi, Farid; Hemati, Lida; Khosravi, Touba; Sharafi, Hooshmand
2018-06-01
The present study was aimed to evaluate the relationship between indoor radon and thoron concentrations, geological and meteorological parameters. The radon and thoron concentrations were determined in three hospitals in Kermanshah, the west part of Iran, using the RTM-1688-2 radon meter. Also, the type and porosity of the underlying soil and the meteorological parameters such as temperature, humidity, atmospheric pressure, rainfall and wind speed were studied and the obtained results analyzed using STATA-Ver.8. In this study the obtained radon concentration was furthered in buildings which constructed on the soil with clayey gravel and sand feature than the soil with clay characteristic and little pasty with a significant difference ( P < 0.05). While the lower coefficient about 1.3 was obtained in measured the thoron concentration and a significant difference was not observed. So the soil porosity can extremely effect on the indoor radon amount. Among all studied meteorological parameters, temperature has been determined as the most important meteorological parameter, influence the indoor radon and thoron concentrations.
NASA Astrophysics Data System (ADS)
Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.
2016-10-01
Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation . Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.
Astronomical, physical, and meteorological parameters for planetary atmospheres
NASA Technical Reports Server (NTRS)
Allison, Michael; Travis, Larry D.
1986-01-01
A newly compiled table of astronomical, physical, and meteorological parameters for planetary atmospheres is presented. Formulae and explanatory notes for their application and a complete listing of sources are also given.
Atmospheric Science Data Center
2018-04-03
Surface meteorology and Solar Energy (SSE) Data and Information The Release 6.0 Surface meteorology and Solar Energy ( SSE ) data set contains parameters formulated for assessing and designing renewable energy systems. This latest release contains new parameters based on ...
Overview of Dust Model Inter-comparison (DMIP) in East Asia
NASA Astrophysics Data System (ADS)
Uno, I.
2004-12-01
Dust transport modeling plays an important role in understanding the recent increase of Asian Dust episodes and its impact to the regional climate system. Several dust models have been developed in several research institutes and government agencies independently since 1990s. Their numerical results either look very similar or different. Those disagreements are caused by difference in dust modules (concepts and basic mechanisms) and atmospheric models (meteorological and transport models). Therefore common understanding of performance and uncertainty of dust erosion and transport models in the Asian region becomes very important. To have a better understanding of dust model application, we proposed the dust model intercomparison under the international cooperation networks as a part of activity of ADEC (Aeolian Dust Experiment on Climate Impact) project research. Current participants are Kyusyu Univ. (Japan), Meteorological Research Institute (Japan), Hong-Kong City Univ. (China), Korean Meteorological Agency METRI (Korea), US Naval Research Laboratory (USA), Chinese Meteorological Agency (China), Institute of Atmospheric Physics (China), Insular Coastal Dynamics (Malta) and Meteorological Service of Canada (Canada). As a case study episode, we set two huge dust storms occurred in March and April 2002. Results from the dust transport model from all the participants are compiled on the same methods and examined the model characteristics against the ground and airborne measurement data. We will also examine the dust model results from the horizontal distribution at specified levels, vertical profiles, concentration at special check point and emission flux at source region, and show the important parameters for dust modeling. In this paper, we will introduce the general overview of this DMIP activity and several important conclusions from this activity.
NASA Astrophysics Data System (ADS)
Rodny, Marek; Nolz, Reinhard
2017-04-01
Evapotranspiration (ET) is a fundamental component of the hydrological cycle, but challenging to be quantified. Lysimeter facilities, for example, can be installed and operated to determine ET, but they are costly and represent only point measurements. Therefore, lysimeter data are traditionally used to develop, calibrate, and validate models that allow calculating reference evapotranspiration (ET0) based on meteorological data, which can be measured more easily. The standardized form of the well-known FAO Penman-Monteith equation (ASCE-EWRI) is recommended as a standard procedure for estimating ET0 and subsequently plant water requirements. Applied and validated under different climatic conditions, the Penman-Monteith equation is generally known to deliver proper results. On the other hand, several studies documented deviations between measured and calculated ET0 depending on environmental conditions. Potential reasons are, for example, differing or varying surface characteristics of the lysimeter and the location where the weather instruments are placed. Advection of sensible heat (transport of dry and hot air from surrounding areas) might be another reason for deviating ET-values. However, elaborating causal processes is complex and requires comprehensive data of high quality and specific analysis techniques. In order to assess influencing factors, we correlated differences between measured and calculated ET0 with pre-selected meteorological parameters and related system parameters. Basic data were hourly ET0-values from a weighing lysimeter (ET0_lys) with a surface area of 2.85 m2 (reference crop: frequently irrigated grass), weather data (air and soil temperature, relative humidity, air pressure, wind velocity, and solar radiation), and soil water content in different depths. ET0_ref was calculated in hourly time steps according to the standardized procedure after ASCE-EWRI (2005). Deviations between both datasets were calculated as ET0_lys-ET0_ref and separated into positive and negative values. For further interpretation, we calculated daily sums of these values. The respective daily difference (positive or negative) served as independent variable (x) in linear correlation with a selected parameter as dependent variable (y). Quality of correlation was evaluated by means of coefficients of determination (R2). When ET0_lys > ET0_ref, the differences were only weakly correlated with the selected parameters. Hence, the evaluation of the causal processes leading to underestimation of measured hourly ET0 seems to require a more rigorous approach. On the other hand, when ET0_lys < ET0_ref, the differences correlated considerably with the meteorological parameters and related system parameters. Interpreting the particular correlations in detail indicated different (or varying) surface characteristics between the irrigated lysimeter and the nearby (non-irrigated) meteorological station.
Meteorological satellite accomplishments
NASA Technical Reports Server (NTRS)
Allison, L. J.; Arking, A.; Bandeen, W. R.; Shenk, W. E.; Wexler, R.
1974-01-01
The various types of meteorological satellites are enumerated. Vertical sounding, parameter extraction technique, and both macroscale and mesoscale meteorological phenomena are discussed. The heat budget of the earth-atmosphere system is considered, along with ocean surface and hydrology.
[Historical overview of medical meteorology - the new horizon in medical prevention].
Boussoussou, Nora; Boussoussou, Melinda; Nemes, Attila
2017-02-01
The aim of this article is to draw attention to the medical meteorology from the perspective of the history of science. Unfortunately medical meteorology is not part of the daily medical practice. The climate change is a new challenge for health care worldwide. It concerns millions of people a higher morbidity and mortality rate. Knowing the effects of the meteorological parameters as risk factors can allow us to create new prevention strategies. These new strategies could help to decrease the negative health effects of the meteorological parameters. Nowadays on the field of the medical prevention the medical meteorology is a new horizon and in the future it could play an important role. Health care professionals have the most important role to fight against the negative effects of the global climate change. Orv. Hetil., 2017, 158(5), 187-191.
Processing of meteorological data with ultrasonic thermoanemometers
NASA Astrophysics Data System (ADS)
Telminov, A. E.; Bogushevich, A. Ya.; Korolkov, V. A.; Botygin, I. A.
2017-11-01
The article describes a software system intended for supporting scientific researches of the atmosphere during the processing of data gathered by multi-level ultrasonic complexes for automated monitoring of meteorological and turbulent parameters in the ground layer of the atmosphere. The system allows to process files containing data sets of temperature instantaneous values, three orthogonal components of wind speed, humidity and pressure. The processing task execution is done in multiple stages. During the first stage, the system executes researcher's query for meteorological parameters. At the second stage, the system computes series of standard statistical meteorological field properties, such as averages, dispersion, standard deviation, asymmetry coefficients, excess, correlation etc. The third stage is necessary to prepare for computing the parameters of atmospheric turbulence. The computation results are displayed to user and stored at hard drive.
Atmospheric Science Data Center
2018-04-04
Surface meteorology and Solar Energy (SSE) Data and Information A new POWER home page ... The Release 6.0 Surface meteorology and Solar Energy (SSE) data set contains parameters formulated for assessing and designing renewable energy systems. This latest release contains new parameters based on ...
Meteorological tower design for severe weather and remote locations
Kelly Elder; Ilkoo Angutikjuak; Jessica Baker; Matt Belford; Tom Bennett; Karl Birkeland; Daniel Bowker; Doug Chabot; April Cheuvront; Mark Dixon; Dylan Elder; Lee Elder; Shari Gearheard; Greg Giedt; Kim Grant; Sam Green; Ethan Greene; Nick Houfek; Caleb Huntington; Henry Huntington; Thomas Huntington; Daniel Janigian; Crane Johnson; Glen Liston; Rob Maris; Andrea Marsh; Hans-Peter Marshall; Aidan Meiners; Alex Meiners; Theo Meiners; Limakee Palluq; Josh Pope; Esa Qillaq; Joelli Sanguya; Sam Sehnert; Ron Simenhois; Banning Starr; Roger Tyler
2012-01-01
We have developed a robust meteorological tower for deployment in locations with extreme conditions and for applications that require relatively maintenance-free structures. The basic design consists of a triangular base with two horizontal rails on each side, and uprights at the triangle vertices for various instrument configurations. The fabrication materials include...
Lack of evidence for meteorological effects on infradian dynamics of testosterone
NASA Astrophysics Data System (ADS)
Celec, Peter; Smreková, Lucia; Ostatníková, Daniela; Čabajová, Zlata; Hodosy, Július; Kúdela, Matúš
2009-09-01
Climatic factors are known to influence the endocrine system. Previous studies have shown that circannual seasonal variations of testosterone might be partly explained by changes in air temperature. Whether infradian variations are affected by meteorological factors is unknown. To analyze possible effects of meteorological parameters on infradian variations of salivary testosterone levels in both sexes, daily salivary testosterone levels were measured during 1 month in 14 men and 17 women. A correlation analysis between hormonal levels and selected meteorological parameters was performed. The results indicate that high testosterone levels are loosely associated with cold, sunny and dry weather in both sexes. However, only the correlations between testosterone and air temperature (men) and actual cloudiness (women) were statistically significant ( p < 0,05). Although some correlations reached the level of statistical significance, the effects of selected meteorological parameters on salivary testosterone levels remain unclear. Further longer-term studies concentrating on air temperature, cloudiness and average relative humidity in relation to the sex hormone axis are needed.
Mishra, Soumya Ranjan; Pradhan, Rudra Pratap; Prusty, B Anjan Kumar; Sahu, Sanjat Kumar
2016-07-01
The ambient air quality (AAQ) assessment was undertaken in Sukinda Valley, the chromite hub of India. The possible correlations of meteorological variables with different air quality parameters (PM10, PM2.5, SO2, NO2 and CO) were examined. Being the fourth most polluted area in the globe, Sukinda Valley has always been under attention of researchers, for hexavalent chromium contamination of water. The monitoring was carried out from December 2013 through May 2014 at six strategic locations in the residential and commercial areas around the mining cluster of Sukinda Valley considering the guidelines of Central Pollution Control Board (CPCB). In addition, meteorological parameters viz., temperature, relative humidity, wind speed, wind direction and rainfall, were also monitored. The air quality data were subjected to a general linear model (GLM) coupled with one-way analysis of variance (ANOVA) test for testing the significant difference in the concentration of various parameters among seasons and stations. Further, a two-tailed Pearson's correlation test helped in understanding the influence of meteorological parameters on dispersion of pollutants in the area. All the monitored air quality parameters varied significantly among the monitoring stations suggesting (i) the distance of sampling location to the mine site and other allied activities, (ii) landscape features and topography and (iii) meteorological parameters to be the forcing functions. The area was highly polluted with particulate matters, and in most of the cases, the PM level exceeded the National Ambient Air Quality Standards (NAAQS). The meteorological parameters seemed to play a major role in the dispersion of pollutants around the mine clusters. The role of wind direction, wind speed and temperature was apparent in dispersion of the particulate matters from their source of generation to the surrounding residential and commercial areas of the mine.
Ratto, Gustavo; Videla, Fabián; Almandos, J Reyna; Maronna, Ricardo; Schinca, Daniel
2006-10-01
This article presents and discusses SO(2) (ppbv) concentration measurements combined with meteorological data (mainly wind speed and direction) for a five-year campaign (1996 to 2000), in a site near an oil refinery plant close to the city of La Plata and surroundings (aprox. 740.000 inh.), considered one of the six most affected cities by air pollution in the country. Since there is no monitoring network in the area, the obtained results should be considered as medium term accumulated data that enables to determine trends by analyzing together gas concentrations and meteorological parameters. Preliminary characterization of the behaviour of the predominant winds of the region in relation with potential atmospheric gas pollutants from seasonal wind roses is possible to carry out from the data. These results are complemented with monthly averaged SO(2) measurements. In particular, for year 2000, pollutant roses were determined which enable predictions about contamination emission sources. As a general result we can state that there is a clear increase in annual SO(2) concentration and that the selected site should be considered as a key site for future survey monitoring network deployment. Annual SO(2) average concentration and prevailing seasonal winds determined in this work, together with the potential health impact of SO(2) reveals the need for a comprehensive and systematic study involving particulate matter an other basic pollutant gases.
Development of specifications for surface and subsurface oceanic environmental data
NASA Technical Reports Server (NTRS)
Wolff, P. M.
1976-01-01
The existing need for synoptic subsurface observations was demonstrated giving special attention to the requirements of meteorology. The current state of synoptic oceanographic observations was assessed; a preliminary design for the Basic Observational Network needed to fulfill the minimum needs of synoptic meteorology and oceanography was presented. There is an existing critical need for such a network in the support of atmospheric modeling and operational meteorological prediction, and through utilization of the regional water mass concept an adequate observational system can be designed which is realistic in terms of cost and effort.
Barrier island forest ecosystem: role of meteorologic nutrient inputs.
Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M
1974-04-05
The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.
NASA Astrophysics Data System (ADS)
Nasonova, O. N.; Gusev, Ye. M.; Kovalev, Ye. E.
2009-04-01
Global estimates of the components of terrestrial water balance depend on a technique of estimation and on the global observational data sets used for this purpose. Land surface modelling is an up-to-date and powerful tool for such estimates. However, the results of modelling are affected by the quality of both a model and input information (including meteorological forcing data and model parameters). The latter is based on available global data sets containing meteorological data, land-use information, and soil and vegetation characteristics. Now there are a lot of global data sets, which differ in spatial and temporal resolution, as well as in accuracy and reliability. Evidently, uncertainties in global data sets will influence the results of model simulations, but to which extent? The present work is an attempt to investigate this issue. The work is based on the land surface model SWAP (Soil Water - Atmosphere - Plants) and global 1-degree data sets on meteorological forcing data and the land surface parameters, provided within the framework of the Second Global Soil Wetness Project (GSWP-2). The 3-hourly near-surface meteorological data (for the period from 1 July 1982 to 31 December 1995) are based on reanalyses and gridded observational data used in the International Satellite Land-Surface Climatology Project (ISLSCP) Initiative II. Following the GSWP-2 strategy, we used a number of alternative global forcing data sets to perform different sensitivity experiments (with six alternative versions of precipitation, four versions of radiation, two pure reanalysis products and two fully hybridized products of meteorological data). To reveal the influence of model parameters on simulations, in addition to GSWP-2 parameter data sets, we produced two alternative global data sets with soil parameters on the basis of their relationships with the content of clay and sand in a soil. After this the sensitivity experiments with three different sets of parameters were performed. As a result, 16 variants of global annual estimates of water balance components were obtained. Application of alternative data sets on radiation, precipitation, and soil parameters allowed us to reveal the influence of uncertainties in input data on global estimates of water balance components.
NASA Astrophysics Data System (ADS)
Chauhan, A.; Sarkar, S.; Singh, R. P.
2017-12-01
The coastal areas have dense onshore and marine observation network and are also routinely monitored by constellation of satellites. The monitoring of ocean, land and atmosphere through a range of meteorological parameters, provides information about the land and ocean surface. Satellite data also provide information at different pressure levels that help to access the development of tropical storms and formation of hurricanes at different categories. Integration of ground, buoys, satellite and model data showing the changes in meteorological parameters during the landfall stages of hurricane Harvey will be discussed. Hurricane Harvey was one of the deadliest hurricanes at the Gulf coast which caused intense flooding from the precipitation. The various observation networks helped city administrators to evacuate the coastal areas, that minimized the loss of lives compared to the Galveston hurricane of 1900 which took 10,000 lives. Comparison of meteorological parameters derived from buoys, ground stations and satellites associated with Harvey and 2005 Katrina hurricane present some of the interesting features of the two hurricanes.
NASA Technical Reports Server (NTRS)
Suomi, V. E.; Krauss, R. J.; Barber, D.; Levanon, N.; Martin, D. W.; Mclellan, D. W.; Sikdar, D. N.; Sromovsky, L. A.; Branch, D.; Heinricy, D.
1973-01-01
The potential meteorological uses of the Synchronous Earth Observatory Satellite (SEOS) were studied for detecting and predicting hazards to life, property, or the quality of the environment. Mesoscale meteorological phenonmena, and the observations requirements for SEOS are discussed along with the sensor parameters.
ERIC Educational Resources Information Center
Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso; Adame, Jose Antonio; Parra, Alfonso; Romero, Eugenio; Parra, Jesus; Munoz, Fernando
2011-01-01
An environmental research project was carried out by a consortium established among scientists and university lecturers in collaboration with two high schools. High school students participated in a long-term study of the local temporal profiles of tropospheric ozone and the relationship to pollution and meteorological parameters. Low-cost…
NASA Astrophysics Data System (ADS)
Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia
2017-11-01
To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction of the PM2.5 concentration during APEC and 38 and 25 % during the Victory Parade, respectively, based on the assumption that the concentrations of air pollutants are only determined by meteorological conditions and emission intensities. We also estimated the contribution of meteorological conditions and control strategies in reducing the concentrations of gaseous pollutants and PM2.5 components with the GLMs, revealing the effective control of anthropogenic emissions.
Ma, Shi-Lei; Tang, Qiao-Ling; Liu, Hong-Wei; He, Juan; Gao, Si-Hua
2013-03-01
To explore the impact of meteorological factors on the outbreak of bacillary dysentery, so as to provide suggestions for disease prevention. Based on the Chinese medicine theory of Yunqi, the descriptive statistics, single-factor correlation analysis and back-propagation artificial neural net-work were conducted using data on five basic meteorological factors and data on incidence of bacillary dysentery in Beijing, China, for the period 1970-2004. The incidence of bacillary dysentery showed significant positive correlation relationship with the precipitation, relative humidity, vapor pressure, and temperature, respectively. The incidence of bacillary dysentery showed a negatively correlated relationship with the wind speed and the change trend of average wind speed. The results of medical-meteorological forecast model showed a relatively high accuracy rate. There is a close relationship between the meteorological factors and the incidence of bacillary dysentery, but the contributions of which to the onset of bacillary dysentery are different to each other.
Results of meteorological monitoring in Gorny Altai before and after the Chuya earthquake in 2003
NASA Astrophysics Data System (ADS)
Aptikaeva, O. I.; Shitov, A. V.
2014-12-01
We consider the dynamics of some meteorological parameters in Gorny Altai from 2000 to 2011. We analyzed the variations in the meteorological parameters related to the strong Chuya earthquake (September 27, 2003). A number of anomalies were revealed in the time series. Before this strong earthquake, the winter temperatures at the nearest meteorological station to the earthquake source increased by 8-10°C (by 2009 they returned to the mean values), while the air humidity in winter decreased. In the winter of 2002, we observed a long negative anomaly in the time series of the atmospheric pressure. At the same time, the decrease in the released seismic energy was replaced by the tendency to its increase. Using wavelet analysis we revealed the synchronism in the dynamics of the atmospheric parameters, variations in the solar and geomagnetic activities, and geodynamic processes. We also discuss the relationship of the atmospheric and geodynamic processes and the comfort conditions of the population in the climate analyzed here.
The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0
NASA Technical Reports Server (NTRS)
Gupta, Shashi K.; Kratz, David P.; Stackhouse, Paul W., Jr.; Wilber, Anne C.
2001-01-01
An efficient algorithm was developed during the late 1980's and early 1990's by W. F. Staylor at NASA/LaRC for the purpose of deriving shortwave surface radiation budget parameters on a global scale. While the algorithm produced results in good agreement with observations, the lack of proper documentation resulted in a weak acceptance by the science community. The primary purpose of this report is to develop detailed documentation of the algorithm. In the process, the algorithm was modified whenever discrepancies were found between the algorithm and its referenced literature sources. In some instances, assumptions made in the algorithm could not be justified and were replaced with those that were justifiable. The algorithm uses satellite and operational meteorological data for inputs. Most of the original data sources have been replaced by more recent, higher quality data sources, and fluxes are now computed on a higher spatial resolution. Many more changes to the basic radiation scheme and meteorological inputs have been proposed to improve the algorithm and make the product more useful for new research projects. Because of the many changes already in place and more planned for the future, the algorithm has been renamed the Langley Parameterized Shortwave Algorithm (LPSA).
Kelly Elder; Don Cline; Angus Goodbody; Paul Houser; Glen E. Liston; Larry Mahrt; Nick Rutter
2009-01-01
A short-term meteorological database has been developed for the Cold Land Processes Experiment (CLPX). This database includes meteorological observations from stations designed and deployed exclusively for CLPXas well as observations available from other sources located in the small regional study area (SRSA) in north-central Colorado. The measured weather parameters...
Evaluation of meteorological and epidemiological characteristics of fatal pulmonary embolism
NASA Astrophysics Data System (ADS)
Törő, Klára; Pongrácz, Rita; Bartholy, Judit; Váradi-T, Aletta; Marcsa, Boglárka; Szilágyi, Brigitta; Lovas, Attila; Dunay, György; Sótonyi, Péter
2016-03-01
The objective of the present study was to identify risk factors among epidemiological factors and meteorological conditions in connection with fatal pulmonary embolism. Information was collected from forensic autopsy records in sudden unexpected death cases where pulmonary embolism was the exact cause of death between 2001 and 2010 in Budapest. Meteorological parameters were detected during the investigated period. Gender, age, manner of death, cause of death, place of death, post-mortem pathomorphological changes and daily meteorological conditions (i.e. daily mean temperature and atmospheric pressure) were examined. We detected that the number of registered pulmonary embolism (No 467, 211 male) follows power law in time regardless of the manner of death. We first described that the number of registered fatal pulmonary embolism up to the nth day can be expressed as Y( n) = α ṡ n β where Y denotes the number of fatal pulmonary embolisms up to the nth day and α > 0 and β > 1 are model parameters. We found that there is a definite link between the cold temperature and the increasing incidence of fatal pulmonary embolism. Cold temperature and the change of air pressure appear to be predisposing factors for fatal pulmonary embolism. Meteorological parameters should have provided additional information about the predisposing factors of thromboembolism.
Air Modeling - Observational Meteorological Data
Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,
Active Learning in an Introductory Meteorology Class
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Bluestone, C.
2007-12-01
Active learning modules were introduced to the primarily minority population in the introductory meteorology class at Queensborough Community College (QCC). These activities were developed at QCC and other 4 year colleges and designed to reinforce basic meteorological concepts. The modules consisted of either Interactive Lecture Demonstrations (ILD) or discovery-based activities. During the ILD the instructor would describe an experiment that would be demonstrated in class. Students would predict what the outcome would be and compare their expected results to the actual outcome of the experiment. In the discovery-based activities students would learn about physical concepts by performing basic experiments. These activities differed from the traditional lab in that it avoided "cookbook" procedures and emphasized having the students learn about the concept using the scientific method. As a result of these activities student scores measuring conceptual understanding, as well as factual knowledge, increased as compared to student scores in a more affluent community college. Students also had higher self- efficacy scores. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Liao, Hong; Lou, Sijia
The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980–2014 and simulated PM2.5 concentrations for 1985–2005 from the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105–122.5°E, 20–45°N) increased from 21 d in 1980 to 42 d in 2014, and from 22 to 30 d between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985–2005,more » with concentrations averaged over eastern China increasing from 16.1 μg m -3 in 1985 to 38.4 μg m -3 in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (±6.2) μg m -3 decade -1 over eastern China. The increasing trend was only 1.8 (±1.5) μg m -3 decade -1 when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by -0.09 m s -1 decade -1 over 1985–2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades.« less
NASA Technical Reports Server (NTRS)
Collis, R. T. H.
1969-01-01
Lidar is an optical radar technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable information about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent difficulties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in clear air due to the thermal profile near the ground; determinations of low cloud and visibility along an air-field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes.
NASA Technical Reports Server (NTRS)
Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.
1982-01-01
The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.
The asteroid rendezvous spacecraft. An adaptation study of TIROS/DMSP technology
NASA Technical Reports Server (NTRS)
1982-01-01
The feasibility of using the TIROS/DMSP Earth orbiting meteorological satellite in application to a near Earth asteroid rendezvous mission. System and subsystems analysis was carried out to develop a configuration of the spacecraft suitable for this mission. Mission analysis studies were also done and maneuver/rendezvous scenarios developed for baseline missions to both Anteros and Eros. The fact that the Asteroid mission is the most complex of the Pioneer class missions currently under consideration notwithstanding, the basic conclusion very strongly supports the suitability of the basic TIROS bus for this mission in all systems and subsystems areas, including science accommodation. Further, the modifications which are required due to the unique mission are very low risk and can be accomplished readily. The key issue is that in virtually every key subsystem, the demands of the Asteroid mission are a subset of the basic meteorological satellite mission. This allows a relatively simple reconfiguration to be accomplished without a major system redesign.
Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107
NASA Technical Reports Server (NTRS)
Overbey, B. G.; Roberts, B. C.
2005-01-01
During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Spherical Harmonics Functions Modelling of Meteorological Parameters in PWV Estimation
NASA Astrophysics Data System (ADS)
Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan
2016-08-01
Aim of this study is to derive temperature, pressure and humidity observations using spherical harmonics modelling and to interpolate for the derivation of precipitable water vapor (PWV) of TUSAGA-Active stations in the test area encompassing 38.0°-42.0° northern latitudes and 28.0°-34.0° eastern longitudes of Turkey. In conclusion, the meteorological parameters computed by using GNSS observations for the study area have been modelled with a precision of ±1.74 K in temperature, ±0.95 hPa in pressure and ±14.88 % in humidity. Considering studies on the interpolation of meteorological parameters, the precision of temperature and pressure models provide adequate solutions. This study funded by the Scientific and Technological Research Council of Turkey (TUBITAK) (The Estimation of Atmospheric Water Vapour with GPS Project, Project No: 112Y350).
Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)
NASA Astrophysics Data System (ADS)
Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.
2017-12-01
We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.
In this study, the ability of the Eta-CMAQ forecast model to represent the vertical profiles of O3, related chemical species (CO, NO, NO2, H2O2, CH2O, HNO3, SO2, PAN, isoprene, toluene), and meteorological paramete...
Investigating malaria risk in the northern region of Nigeria using satellite imagery
NASA Astrophysics Data System (ADS)
Emetere, M. E.; Nikouravan, Bijan; Olawole, O. F.
2015-08-01
The dynamics of infectious diseases are dependent on salient environment and climate factors which are directly proportional to its transmission. Malaria is a common disease of typical tropics of the West African sub-region. The influences of malaria transmission via meteorological and environmental parameters were examined. Remotely sensed parameters i.e. skin temperature, sensible heat flux, latent heat flux and total precipitation were obtained from the NASA-MERRA. The results show that the meteorological and environmental parameters of northern Nigeria favour the long malaria dominance.
NASA Technical Reports Server (NTRS)
Glasser, M. E.; Rundel, R. D.
1978-01-01
A method for formulating these changes into the model input parameters using a preprocessor program run on a programed data processor was implemented. The results indicate that any changes in the input parameters are small enough to be negligible in comparison to meteorological inputs and the limitations of the model and that such changes will not substantially increase the number of meteorological cases for which the model will predict surface hydrogen chloride concentrations exceeding public safety levels.
Meteorological radar services: a brief discussion and a solution in practice
NASA Astrophysics Data System (ADS)
Nicolaides, K. A.
2014-08-01
The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.
A statistical investigation into the relationship between meteorological parameters and suicide
NASA Astrophysics Data System (ADS)
Dixon, Keith W.; Shulman, Mark D.
1983-06-01
Many previous studies of relationships between weather and suicides have been inconclusive and contradictory. This study investigated the relationship between suicide frequency and meteorological conditions in people who are psychologically predisposed to commit suicide. Linear regressions of diurnal temperature change, departure of temperature from the climatic norm, mean daytime sky cover, and the number of hours of precipitation for each day were performed on daily suicide totals using standard computer methods. Statistical analyses of suicide data for days with and without frontal passages were also performed. Days with five or more suicides (clusterdays) were isolated, and their weather parameters compared with those of nonclusterdays. Results show that neither suicide totals nor clusterday occurrence can be predicted using these meteorological parameters, since statistically significant relationships were not found. Although the data hinted that frontal passages and large daily temperature changes may occur on days with above average suicide totals, it was concluded that the influence of the weather parameters used, on the suicide rate, is a minor one, if indeed one exists.
Current research on aviation weather (bibliography)
NASA Technical Reports Server (NTRS)
Durham, D. E.; Frost, W.
1978-01-01
This bibliography of 326 readily usable references of basic and applied research programs related to the various areas of aviation meteorology was assembled. A literature search was conducted which surveyed the major abstract publications such as the International Aerospace Abstracts, the Meteorological and Geoastrophysical Abstracts, and the Scientific and Technical Aerospace Reports. In addition, NASA and DOT computer literature searches were run; and NASA, NOAA, and FAA research project managers were requested to provide writeups on their ongoing research.
VISSR Atmospheric Sounder (VAS) Research Review
NASA Technical Reports Server (NTRS)
Greaves, J. R. (Editor)
1983-01-01
The VAS, an experimental instrument flown onboard Geostationary Operational Environmental Satellite (GOES), is capable of achieving mutlispectral imagery of atmospheric temperature, water vapor, and cloudiness patterns over short time intervals. In addition, this instrument provides an atmospheric sounding capability from geosynchronous orbit. The VAS demonstration is an effort for evaluating the VAS instrument's performance, and for demonstrating the capabilities of a VAS prototype system to provide useful geosynchronous satellite data for supporting weather forecasts and atmospheric research. The demonstration evaluates the performance of the VAS Instruments on GOES-4-5, and -6, develops research oriented and prototype/operational VAS data processing systems, determines the accuracy of certain basic and derived meteorological parameters that can be obtained from the VAS instrument, and assesses the utility of VAS derived information in analyzing severe weather situations.
NASA Astrophysics Data System (ADS)
Herath, Imali Kaushalya; Ye, Xuchun; Wang, Jianli; Bouraima, Abdel-Kabirou
2018-02-01
Reference evapotranspiration (ETr) is one of the important parameters in the hydrological cycle. The spatio-temporal variation of ETr and other meteorological parameters that influence ETr were investigated in the Jialing River Basin (JRB), China. The ETr was estimated using the CROPWAT 8.0 computer model based on the Penman-Montieth equation for the period 1964-2014. Mean temperature (MT), relative humidity (RH), sunshine duration (SD), and wind speed (WS) were the main input parameters of CROPWAT while 12 meteorological stations were evaluated. Linear regression and Mann-Kendall methods were applied to study the spatio-temporal trends while the inverse distance weighted (IDW) method was used to identify the spatial distribution of ETr. Stepwise regression and partial correlation methods were used to identify the meteorological variables that most significantly influenced the changes in ETr. The highest annual ETr was found in the northern part of the basin, whereas the lowest rate was recorded in the western part. In the autumn, the highest ETr was recorded in the southeast part of JRB. The annual ETr reflected neither significant increasing nor decreasing trends. Except for the summer, ETr is slightly increasing in other seasons. The MT significantly increased whereas SD and RH were significantly decreased during the 50-year period. Partial correlation and stepwise regression methods found that the impact of meteorological parameters on ETr varies on an annual and seasonal basis while SD, MT, and RH contributed to the changes of annual and seasonal ETr in the JRB.
Surface meteorology and Solar Energy
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W. (Principal Investigator)
The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].
Bishop-Williams, Katherine E; Sargeant, Jan M; Berrang-Ford, Lea; Edge, Victoria L; Cunsolo, Ashlee; Harper, Sherilee L
2017-01-26
Acute respiratory infections (ARI) are a leading cause of morbidity and mortality globally, and are often linked to seasonal and/or meteorological conditions. Globally, Indigenous peoples may experience a different burden of ARI compared to non-Indigenous peoples. This protocol outlines our process for conducting a systematic review to investigate whether associations between ARI and seasonal or meteorological parameters differ between Indigenous and non-Indigenous groups residing in the same geographical region. A search string will be used to search PubMed ® , CAB Abstracts/CAB Direct © , and Science Citation Index ® aggregator databases. Articles will be screened using inclusion/exclusion criteria applied first at the title and abstract level, and then at the full article level by two independent reviewers. Articles maintained after full article screening will undergo risk of bias assessment and data will be extracted. Heterogeneity tests, meta-analysis, and forest and funnel plots will be used to synthesize the results of eligible studies. This protocol paper describes our systematic review methods to identify and analyze relevant ARI, season, and meteorological literature with robust reporting. The results are intended to improve our understanding of potential associations between seasonal and meteorological parameters and ARI and, if identified, whether this association varies by place, population, or other characteristics. The protocol is registered in the PROSPERO database (#38051).
Superduck Marine Meteorological Experiment Data Summary: Mean Values and Turbulence Parameters.
1988-08-01
number) This report summarizes the Mean values and turbulence parameters Of Meteorological measurements made during an experiment at Duck, NC, during...Sept-Oct 1986. The measure- ments wore made to Calculate wind stress in the nearshore area. Wind stress is a primary forcing function for nearshore waves...measure. Only in recent years has technology made it possible to accurately measure its fluctuations. The krypton hygrometer is a recent development
NASA Astrophysics Data System (ADS)
Alwadie, Hussein M.
A qualitative and quantitative evaluation of pollen concentration in the atmosphere of Abha city, Saudi Arabia with the relation to meteorological parameters is presented. Investigations were undertaken from January to December 2006 using a Burkard 7 day volumetric spore trap. A total of 6,492 pollen grains m-3 belonging to 50 pollen taxa was detected. Poaceae represented 55.1% of total pollen, Leguminosae (11.7%), Compositae (6.1%), Solanaceae (4.6%) and Cupressaceae (4.2%). Pollen grains were found throughout the year. July represented the highest peak of pollen number and also the highest pollen taxa. The monthly variation of pollen taxa and their relationship to meteorological parameters were investigated. It was found that the pollen concentration is positively correlated with temperature and negatively correlated with rainfall, relative humidity and wind velocity. May-September represented the months of highest pollen number (95% of total pollen).
BOREAS AES MARSII Surface Meteorological Data
NASA Technical Reports Server (NTRS)
Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)
2000-01-01
Canadian AES personnel collected several data sets related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from six MARSII meteorology stations in the BOREAS region in Canada. Parameters include site, time, temperature, dewpoint, visibility, wind speed, wind gust, wind direction, two cloud groups, precipitation, and station pressure. Temporally, the data cover the period of May to September 1994. Geo-graphically, the stations are spread across the provinces of Saskatchewan and Manitoba. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.
Evaluation of Meteorological and Aerosol Sensing with small Unmanned Aerial Systems
NASA Astrophysics Data System (ADS)
Claussen, Johanna; Möhler, Ottmar; Leisner, Thomas; Brooks, Ian; Norris, Sarah; Brooks, Barbara; Hill, Martin; Haunold, Werner; Schrod, Jann; Danielczok, Anja
2013-04-01
Atmospheric aerosols have a large impact on the climate system due to their influence on the global radiation budget. Local aerosol sources such as vegetation, (bare) soil or industrial sites have to be quantified with high resolution data to validate aerosol transport models and improve the input for high resolution weather models. Our goal is to evaluate the use of Unmanned Aerial Systems (UAS) as a method for acquisition of high resolution meteorological and aerosol data. During the INUIT measurement campaign in August 2012 at mount Großer Feldberg near Frankfurt, Germany, several flights with different sensor packages were carried out. We measured basic meteorological parameters such as temperature, relative humidity and air pressure with miniaturized onboard sensors. In addition, the Compact Lightweight Aerosol Spectrometer Probe (CLASP) for aerosol size distribution measurement or the Electrostatic Aerosol Collector (EAC) for aerosol sample collection was installed on board. CLASP measures aerosol particles with diameters from 0.17 μm to 9.5 μm in up to 32 channels at a frequency of 10 Hz. The EAC collects air samples at 2 l/min onto a sample holder. After the flight the ice nuclei on the sample holder are activated and counted in the isothermal static diffusion chamber FRIDGE. The results from the INUIT campaign and additional calibration laboratory measurements show that UAS are a valuable platform for miniaturized sensors. The number of ice nuclei was determined with the EAC at 200m above ground level and compared to the reference measurement on the ground.
NASA Technical Reports Server (NTRS)
Koren, Ilan; Feingold, Graham; Remer, Lorraine A.
2010-01-01
Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.
Darniot, Magali; Pitoiset, Cécile; Millière, Laurine; Aho-Glélé, Ludwig Serge; Florentin, Emmanuel; Bour, Jean-Baptiste; Manoha, Catherine
2018-05-05
Both human metapneumovirus (hMPV) and respiratory syncytial virus (RSV) cause epidemics during the cold season in temperate climates. The purpose of this study was to find out whether climatic factors are associated with RSV and hMPV epidemics. Our study was based on data from 4300 patients admitted to the Dijon University Hospital for acute respiratory infection (ARI) over three winter seasons chosen for their dissimilar meteorological and virological patterns. Cases of hMPV and RSV were correlated with meteorological parameters recorded in the Dijon area. The relationship between virus data and local meteorological conditions was analyzed by univariate and multivariate negative binomial regression analysis. RSV detection was inversely associated with temperature and positively with relative humidity and air pressure, whereas hMPV was inversely associated with temperature and positively with wind speed. The association among meteorological variables and weekly ARIs cases due to RSV and hMPV demonstrated the relevance of climate factors as contributors to both hMPV and RSV activities. Meteorological drivers of RSV and hMPV epidemics are different. Low temperatures influence both hMPV and RSV activity. Relative humidity is an important predictor of RSV activity, but it does not influence hMPV activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Intercomparison of microphysical datasets collected from CAIPEEX observations and WRF simulation
NASA Astrophysics Data System (ADS)
Pattnaik, S.; Goswami, B.; Kulkarni, J.
2009-12-01
In the first phase of ongoing Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) program of Indian Institute of Tropical Meteorology (IITM), intensive cloud microphysical datasets are collected over India during the May through September, 2009. This study is designed to evaluate the forecast skills of existing cloud microphysical parameterization schemes (i.e. single moment/double moments) within the WRF-ARW model (Version 3.1.1) during different intensive observation periods (IOP) over the targeted regions spreading all across India. Basic meteorological and cloud microphysical parameters obtained from the model simulations are validated against the observed data set collected during CAIPEEX program. For this study, we have considered three IOP phases (i.e. May 23-27, June 11-15, July 3-7) carried out over northern, central and western India respectively. This study emphasizes the thrust to understand the mechanism of evolution, intensification and distribution of simulated precipitation forecast upto day four (i.e. 96 hour forecast). Efforts have also been made to carryout few important microphysics sensitivity experiments within the explicit schemes to investigate their respective impact on the formation and distribution of vital cloud parameters (e.g. cloud liquid water, frozen hydrometeors) and model rainfall forecast over the IOP regions. The characteristic features of liquid and frozen hydrometers in the pre-monsoon and monsoon regimes are examined from model forecast as well as from CAIPEEX observation data set for different IOPs. The model is integrated in a triply nested fashion with an innermost nest explicitly resolved at a horizontal resolution of 4km.In this presentation preliminary results from aforementioned research initiatives will be introduced.
NASA Astrophysics Data System (ADS)
Yang, Shi-Qi; Matzarakis, Andreas
2016-11-01
Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.
Yang, Shi-Qi; Matzarakis, Andreas
2016-11-01
Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000-2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.
The 1981 current research on aviation weather (bibliography)
NASA Technical Reports Server (NTRS)
Daniel, J.; Frost, W.
1982-01-01
Current and ongoing research programs related to various areas of aviation meteorology are presented. Literature searches of major abstract publications, were conducted. Research project managers of various government agencies involved in aviation meteorology research provided a list of current research project titles and managers, supporting organizations, performing organizations, the principal investigators, and the objectives. These are tabulated under the headings of advanced meteorological instruments, forecasting, icing, lightning and atmospheric electricity; fog, visibility, and ceilings; low level wind shear, storm hazards/severe storms, turbulence, winds, and ozone and other meteorological parameters. This information was reviewed and assembled into a bibliography providing a current readily useable source of information in the area of aviation meteorology.
Analysis of a Meteorological Database for London Heathrow in the Context of Wake Vortex Hazards
NASA Astrophysics Data System (ADS)
Agnew, P.; Ogden, D. J.; Hoad, D. J.
2003-04-01
A database of meteorological parameters collected by aircraft arriving at LHR has recently been compiled. We have used the recorded variation of temperature and wind with height to deduce the 'wake vortex behaviour class' (WVBC) along the glide slope, as experienced by each flight. The integrated state of the glide slope has been investigated, allowing us to estimate the proportion of time for which the wake vortex threat is reduced, due to either rapid decay or transport off the glide slope. A numerical weather prediction model was used to forecast the meteorological parameters for periods coinciding with the aircraft data. This allowed us to perform a comparison of forecast WVBC with those deduced from the aircraft measurements.
A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING
Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...
GEMPAK5. Part 2: GEMPLT programmer's guide, version 5.0
NASA Technical Reports Server (NTRS)
Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.
1991-01-01
GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The GEMPAK Programmer's Guide describes the subroutines which can be used in the GEMPAK graphics and transformation subsystem, GEMPLT.
Influence of long-range anthropogenic transport on arctic cloud phase transition
NASA Astrophysics Data System (ADS)
Riedi, J.; Coopman, Q.; Garrett, T. J.; Finch, D.
2016-12-01
A decrease in precipitation during winter allows polluted air parcels from mid-latitudes to reach the Arctic. Low vertical mixing in the region concentrates aerosols and decreases scavenging. Aerosol impacts on cloud microphysical parameters remain poorly understood. However, cloud properties and pollution concentrations also vary with meteorological state, which poses the challenge of how to disentangle the impact of aerosols on clouds from that of natural thermodynamic variability. In this study we combine measurements from satellite instruments POLDER-3 and MODIS to temporally and spatially co-locate cloud properties over 65º in latitude with carbon monoxide concentrations, passive tracer of aerosol content, from GEOS-Chem between 2005 and 2010. We also add ERA-I reanalysis of meteorological parameters to stratify meteorological parameters, such as specific humidity and lower tropospheric stability. The goal is to determine the extent to which differences in cloud phase can be attributed to differences in aerosol content and not in meteorological parameters.We evaluated the amount of supercooling ΔT50 that is required for 50% of a chosen ensemble of low-level clouds to be in the ice phase. Consistent with Rangno & Hobbs (2001), our results suggest that small droplet effective radii are related to high values of ΔT50. Also, anthropogenic pollution plumes lower the degree of supercooling by approximately 5°C, independent of the decrease in effective radius and change of meteorological regime. This effect of anthropogenic aerosol on the transition temperature to freezing has not been reported before to our knowledge and lacks clear explanation. Rangno, A. L., & Hobbs, P. V. (2001). Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. Journal of geophysical research, 106, 15.
NASA Technical Reports Server (NTRS)
Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.
1985-01-01
The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.
Chico, Belén; de la Fuente, Daniel; Díaz, Iván; Simancas, Joaquín; Morcillo, Manuel
2017-01-01
In the 1980s, three ambitious international programmes on atmospheric corrosion (ISOCORRAG, ICP/UNECE and MICAT), involving the participation of a total of 38 countries on four continents, Europe, America, Asia and Oceania, were launched. Though each programme has its own particular characteristics, the similarity of the basic methodologies used makes it possible to integrate the databases obtained in each case. This paper addresses such an integration with the aim of establishing simple universal damage functions (DF) between first year carbon steel corrosion in the different atmospheres and available environmental variables, both meteorological (temperature (T), relative humidity (RH), precipitation (P), and time of wetness (TOW)) and pollution (SO2 and NaCl). In the statistical processing of the data, it has been chosen to differentiate between marine atmospheres and those in which the chloride deposition rate is insignificant (<3 mg/m2.d). In the DF established for non-marine atmospheres a great influence of the SO2 content in the atmosphere was seen, as well as lesser effects by the meteorological parameters of RH and T. Both NaCl and SO2 pollutants, in that order, are seen to be the most influential variables in marine atmospheres, along with a smaller impact of TOW. PMID:28772966
NASA Astrophysics Data System (ADS)
Liu, Gang; Zhao, Rong; Liu, Jiping; Zhang, Qingpu
2007-06-01
The Lancang River Basin is so narrow and its hydrological and meteorological information are so flexible. The Rainfall, evaporation, glacial melt water and groundwater affect the runoff whose replenishment forms changing notable with the season in different areas at the basin. Characters of different kind of distributed model and conceptual hydrological model are analyzed. A semi-distributed hydrological model of relation between monthly runoff and rainfall, temperate and soil type has been built in Changdu County based on Visual Basic and ArcObject. The way of discretization of distributed hydrological model was used in the model, and principles of conceptual model are taken into account. The sub-catchment of Changdu is divided into regular cells, and all kinds of hydrological and meteorological information and land use classes and slope extracted from 1:250000 digital elevation models are distributed in each cell. The model does not think of the rainfall-runoff hydro-physical process but use the conceptual model to simulate the whole contributes to the runoff of the area. The affection of evapotranspiration loss and underground water is taken into account at the same time. The spatial distribute characteristics of the monthly runoff in the area are simulated and analyzed with a few parameters.
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Bui, T. P.; Dean-Day, J.
2016-01-01
Indirect evidence indicates a role for vertical mixing in the Tropical Tropopause Layer (TTL). In particular, detailed model studies suggest that such vertical mixing may be required to explain the value of the water vapor minimum in the TTL. There have been previous observations during the STEP Tropical aircraft campaign (1987) of bursts of high frequency activity associated with convectively generated gravity waves in the tropical western Pacific. Higher frequency, higher quality measurements from NASA high altitude aircraft (ER-2, WB-57, and Global Hawk) have been made available in the last 20 years. These include measurements of vertical velocity and other meteorological parameters. Most recently, during the ATTREX Global Hawk aircraft mission (Airborne Tropical TRopopause EXperiment), there have been extensive measurements at all altitudes of the TTL in both convective (winter western Pacific) and less convective (winter eastern Pacific) regions. This presentation represents an initial analysis of high frequency small scale (a few km max) meteorological measurements from the ATTREX dataset. We obtain some basic information about the distribution and character of high frequency activity in vertical velocity in the TTL. In particular, we focus on relating the high frequency activity to nearby tropical convection and to vertical shears associated with gravity and inertia-gravity waves.
Analysis of traffic and meteorology on airborne particulate matter in Münster, northwest Germany.
Gietl, Johanna K; Klemm, Otto
2009-07-01
The importance of street traffic and meteorological conditions on the concentrations of particulate matter (PM) with an aerodynamic diameter smaller than 10 microm (PM10) was studied in the city of Münster in northwest Germany. The database consisted of meteorological data, data of PM10 mass concentrations and fine particle number (6-225 nm diameter) concentrations, and traffic intensity data as counted with tally hand counters at a four- to six-lane road. On working days, a significant correlation could be found between the diurnal mean PM10 mass concentration and vehicle number. The lower number of heavy-duty vehicles compared with passenger cars contributed more to the particle number concentration on working days than on weekend days. On weekends, when the vehicle number was very low, the correlation between PM10 mass concentration and vehicle number changed completely. Other sources of PM and the meteorology dominated the PM concentration. Independent of the weekday, by decreasing the traffic by approximately 99% during late-night hours, the PM10 concentration was reduced by 12% of the daily mean value. A correlation between PM10 and the particle number concentration was found for each weekday. In this study, meteorological parameters, including the atmospheric stability of the boundary layer, were also accounted for. The authors deployed artificial neural networks to achieve more information on the influence of various meteorological parameters, traffic, and the day of the week. A multilayer perceptron network showed the best results for predicting the PM10 concentration, with the correlation coefficient being 0.72. The influence of relative humidity, temperature, and wind was strong, whereas the influence of atmospheric stability and the traffic parameters was weak. Although traffic contributes a constant amount of particles in a daily and weekly cycle, it is the meteorology that drives most of the variability.
NASA Astrophysics Data System (ADS)
Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad
2016-09-01
Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.
The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.
A study of air-to-ground sound propagation using an instrumented meteorological tower
NASA Technical Reports Server (NTRS)
Kasper, P. K.; Pappa, R. S.; Keefe, L. R.; Sutherland, L. C.
1975-01-01
The results of an exploratory NASA study, leading to a better understanding of the effects of meteorological conditions on the propagation of aircraft noise, are reported. The experimental program utilized a known sound source fixed atop an instrumented meteorological tower. The basic experimental scheme consisted of measuring the amplitude of sound radiated toward the ground along a line of microphones fixed to a tower guy wire. Experimental results show the feasibility of this approach in the acquisition of data indicating the variations encountered in the time-averaged and instantaneous amplitudes of propagated sound. The investigation included a consideration of ground reflections, a comparison of measured attenuations with predicted atmospheric absorption losses, and an evaluation of the amplitude fluctuations of recorded sound pressures.
BOREAS AES READAC Surface Meteorological Data
NASA Technical Reports Server (NTRS)
Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)
2000-01-01
Canadian AES personnel collected and processed data related to surface atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from one READAC meteorology station in Hudson Bay, Saskatchewan. Parameters include day, time, type of report, sky condition, visibility, mean sea level pressure, temperature, dewpoint, wind, altimeter, opacity, minimum and maximum visibility, station pressure, minimum and maximum air temperature, a wind group, precipitation, and precipitation in the last hour. The data were collected non-continuously from 24-May-1994 to 20-Sep-1994. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.
GEMPAK5. Part 1: GEMPAK5 programmer's guide, version 5.0
NASA Technical Reports Server (NTRS)
Desjardins, Mary L.; Brill, Keith F.; Schotz, Steven S.
1991-01-01
GEMPAK is a general meteorological software package used to analyze and display conventional meteorological data as well as satellite derived parameters. The Programmer's Guide describes the subroutines which can be used to build new GEMPAK programs. Part 1 contains GEMPAK subroutines.
Pan, Long; Yao, Enjian; Yang, Yang
2016-12-01
With the rapid development of urbanization and motorization in China, traffic-related air pollution has become a major component of air pollution which constantly jeopardizes public health. This study proposes an integrated framework for estimating the concentration of traffic-related air pollution with real-time traffic and basic meteorological information and also for further evaluating the impact of traffic-related air pollution. First, based on the vehicle emission factor models sensitive to traffic status, traffic emissions are calculated according to the real-time link-based average traffic speed, traffic volume, and vehicular fleet composition. Then, based on differences in meteorological conditions, traffic pollution sources are divided into line sources and point sources, and the corresponding methods to determine the dynamic affecting areas are also proposed. Subsequently, with basic meteorological data, Gaussian dispersion model and puff integration model are applied respectively to estimate the concentration of traffic-related air pollution. Finally, the proposed estimating framework is applied to calculate the distribution of CO concentration in the main area of Beijing, and the population exposure is also calculated to evaluate the impact of traffic-related air pollution on public health. Results show that there is a certain correlation between traffic indicators (i.e., traffic speed and traffic intensity) of the affecting area and traffic-related CO concentration of the target grid, which indicates the methods to determine the affecting areas are reliable. Furthermore, the reliability of the proposed estimating framework is verified by comparing the predicted and the observed ambient CO concentration. In addition, results also show that the traffic-related CO concentration is higher in morning and evening peak hours, and has a heavier impact on public health within the Fourth Ring Road of Beijing due to higher population density and higher CO concentration under calm wind condition in this area. Copyright © 2016 Elsevier Ltd. All rights reserved.
A program and data base for evaluating SMMR algorithms
NASA Technical Reports Server (NTRS)
1979-01-01
A program (PARAM) is described which enables a user to compare the values of meteorological parameters derived from data obtained by the scanning multichannel microwave radiometer (SMMR) instrument on NIMBUS 7 with surface observations made over the ocean. The input to this program is a data base, also described, which contains the surface observations and coincident SMMR data. The evaluation of meteorological parameters using SMMR data is done by a user supplied subroutine. Instruments are given for executing the program and writing the subroutine.
Studies of saharan dust intrusions over bucharest using ceilometer's measurements and satellite data
NASA Astrophysics Data System (ADS)
Urlea, Denisa; Boscornea, Andreea; Nicolae Vâjâiac, Sorin; Ţoancă, Florica; Barbu, Nicu; Ştefan, Sabina; Bunescu, Ionuț
2018-04-01
Three case studies of Saharan dust intrusions over southern Romania were performed. For these studies the database from the ceilometers located at Magurele and Strejnic was used. In addition, the meteorological conditions were analyzed using the WLK Catalogue based on the Objektive Wetterlagenklassifikation classification of the weather types [1]. This catalogue uses information from three basic tropospheric levels: 925, 700 and 500 hPa, and information on the precipitable water content over the entire atmosphere column. Geopotential fields at 925hPa and 500hPa are used for establishing the cyclonicity or anticyclonicity, while the U and V components of wind at 700hPa for establishing the dominant direction of the wind flow. For better understanding of the atmospheric parameters we performed HYSPLIT dispersion and trajectories analysis in conjunction with DREAM model output data.
BOREAS AFM-5 Level-1 Upper Air Network Data
NASA Technical Reports Server (NTRS)
Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).
This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...
NASA Astrophysics Data System (ADS)
Almaguer, Michel; Aira, María-Jesús; Rodríguez-Rajo, F. Javier; Rojas, Teresa I.
2014-09-01
The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a "dry season" and a "rainy season". A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/ Penicillium."
NASA Astrophysics Data System (ADS)
Chen, K. S.; Ho, Y. T.; Lai, C. H.; Chou, Youn-Min
The events of high ozone concentrations and meteorological conditions covering the Kaohsiung metropolitan area were investigated based on data analysis and model simulation. A photochemical grid model was employed to analyze two ozone episodes in autumn (2000) and winter (2001) seasons, each covering three consecutive days (or 72 h) in the Kaohsiung City. The potential influence of the initial and boundary conditions on model performance was assessed. Model performance can be improved by separately considering the daytime and nighttime ozone concentrations on the lateral boundary conditions of the model domain. The sensitivity analyses of ozone concentrations to the emission reductions in volatile organic compounds (VOC) and nitrogen oxides (NO x) show a VOC-sensitive regime for emission reductions to lower than 30-40% VOC and 30-50% NO x and a NO x-sensitive regime for larger percentage reductions. Meteorological parameters show that warm temperature, sufficient sunlight, low wind, and high surface pressure are distinct parameters that tend to trigger ozone episodes in polluted urban areas, like Kaohsiung.
Study of spacecraft direct readout meteorological systems
NASA Technical Reports Server (NTRS)
Bartlett, R.; Elam, W.; Hoedemaker, R.
1973-01-01
Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link.
Research relative to weather radar measurement techniques
NASA Technical Reports Server (NTRS)
Smith, Paul L.
1992-01-01
Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.
Influence of meteorological parameters on air quality
NASA Astrophysics Data System (ADS)
Gioda, Adriana; Ventura, Luciana; Lima, Igor; Luna, Aderval
2013-04-01
The physical characterization representative of ambient air particle concentrations is becoming a topic of great interest for urban air quality monitoring and human exposure assessment. Human exposure to particulate matter of less than 2.5 µm in diameter (PM2.5) can result in a variety of adverse health impacts, including reduced lung function and premature mortality. Numerous studies have shown that fine airborne inhalable particulate matter particles (PM2.5) are more dangerous to human health than coarse particles, e.g. PM10. This study investigates meteorological parameter impacts on PM2.5 concentrations in the atmosphere of Rio de Janeiro, Brazil. Samples were collected during 24 h every six days using a high-volume sampler from six sites in the metropolitan area of Rio de Janeiro from January to December 2011. The particles mass was determined by Gravimetry. Meteorological parameters were obtained from automatic stations near the sampling sites. The average PM2.5 concentrations ranged from 9 to 32 µg/m3 for all sites, exceeding the suggested annual limit of WHO (10 µg/m3). The relationship between the effects of temperature, relative humidity, wind speed and direction and particle concentration was examined using a Principal Component Analysis (PCA) for the different sites and seasons. The results for each sampling point and season presented different principal component numbers, varying from 2 to 4, and extremely different relationships with the parameters. This clearly shows that changes in meteorological conditions exert a marked influence on air quality.
NASA Astrophysics Data System (ADS)
Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Elina Manninen, Hanna; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram
2018-02-01
This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.
New York Bight Study. Report 1. Hydrodynamic Modeling
1994-08-01
function of time. Values of these parameters, averaged daily, were computed from meteorological data recorded at the John F. Kennedy ( JFK ) Airport for...Island Sound "exchange coefficient values were obtained as before from meteorological data collected at the JFK Airport . They are shown in Figures 62-63
Saskatchewan Forest Fire Control Centre Surface Meteorological Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Funk, Barry; Strub, Richard
2000-01-01
The Saskatchewan Forest Fire Control Centre (SFFCC) provided surface meteorological data to BOREAS from its archive. This data set contains hourly surface meteorological data from 18 of the Meteorological stations located across Saskatchewan. Included in these data are parameters of date, time, temperature, relative humidity, wind direction, wind speed, and precipitation. Temporally, the data cover the period of May through September of 1994 and 1995. The data are provided in comma-delimited ASCII files, and are classified as AFM-Staff data. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Planetary entry, descent, and landing technologies
NASA Astrophysics Data System (ADS)
Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.
2003-04-01
Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.
NASA Astrophysics Data System (ADS)
Konstantinov, Pavel; Varentsov, Mikhail; Platonov, Vladimir; Samsonov, Timofey; Zhdanova, Ekaterina; Chubarova, Natalia
2017-04-01
The main goal of this investigation is to develop a kind of "urban reanalysis" - the database of meteorological and radiation fields under Moscow megalopolis for period 1981-2014 with high spatial resolution. Main meteorological fields for Moscow region are reproduced with COSMO_CLM regional model (including urban parameters) with horizontal resolution 1x1 km. Time resolution of output fields is 1 hour. For radiation fields is quite useful to calculate SVF (Sky View Factor) for obtaining losses of UV radiation in complex urban conditions. Usually, the raster-based SVF analysis the shadow-casting algorithm proposed by Richens (1997) is popular (see Ratti and Richens 2004, Gal et al. 2008, for example). SVF image is obtained by combining shadow images obtained from different directions. An alternative is to use raster-based SVF calculation similar to vector approach using digital elevation model of urban relief. Output radiation field includes UV-radiation with horizontal resolution 1x1 km This study was financially supported by the Russian Foundation for Basic Research within the framework of the scientific project no. 15-35-21129 _mol_a_ved and project no 15-35-70006 mol_a_mos References: 1. Gal, T., Lindberg, F., and Unger, J., 2008. Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. Theoretical and applied climatology, 95 (1-2), 111-123. 2. Richens, P., 1997. Image processing for urban scale environmental modelling. In: J.D. Spitler and J.L.M. Hensen, eds. th Intemational IBPSA Conference Building Simulation, Prague. 3. Ratti, C. and Richens, P., 2004. Raster analysis of urban form. Environment and Planning B: Planning and Design, 31 (2), 297-309.
Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates
NASA Astrophysics Data System (ADS)
Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry
2018-01-01
Modeling net ecosystem exchange (NEE) at the regional scale with land surface models (LSMs) is relevant for the estimation of regional carbon balances, but studies on it are very limited. Furthermore, it is essential to better understand and quantify the uncertainty of LSMs in order to improve them. An important key variable in this respect is the prognostic leaf area index (LAI), which is very sensitive to forcing data and strongly affects the modeled NEE. We applied the Community Land Model (CLM4.5-BGC) to the Rur catchment in western Germany and compared estimated and default ecological key parameters for modeling carbon fluxes and LAI. The parameter estimates were previously estimated with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) for four of the most widespread plant functional types in the catchment. It was found that the catchment-scale annual NEE was strongly positive with default parameter values but negative (and closer to observations) with the estimated values. Thus, the estimation of CLM parameters with local NEE observations can be highly relevant when determining regional carbon balances. To obtain a more comprehensive picture of model uncertainty, CLM ensembles were set up with perturbed meteorological input and uncertain initial states in addition to uncertain parameters. C3 grass and C3 crops were particularly sensitive to the perturbed meteorological input, which resulted in a strong increase in the standard deviation of the annual NEE sum (σ
NASA Astrophysics Data System (ADS)
Septiadi, Deni; S, Yarianto Sugeng B.; Sriyana; Anzhar, Kurnia; Suntoko, Hadi
2018-03-01
The potential sources of meteorological phenomena in Nuclear Power Plant (NPP) area of interest are identified and the extreme values of the possible resulting hazards associated which such phenomena are evaluated to derive the appropriate design bases for the NPP. The appropriate design bases shall be determined according to the Nuclear Energy Regulatory Agency (Bapeten) applicable regulations, which presently do not indicate quantitative criteria for purposes of determining the design bases for meteorological hazards. These meteorological investigations are also carried out to evaluate the regional and site specific meteorological parameters which affect the transport and dispersion of radioactive effluents on the environment of the region around the NPP site. The meteorological hazards are to be monitored and assessed periodically over the lifetime of the plant to ensure that consistency with the design assumptions is maintained throughout the full lifetime of the facility.
Uncertainty in predictions of forest carbon dynamics: separating driver error from model error.
Spadavecchia, L; Williams, M; Law, B E
2011-07-01
We present an analysis of the relative magnitude and contribution of parameter and driver uncertainty to the confidence intervals on estimates of net carbon fluxes. Model parameters may be difficult or impractical to measure, while driver fields are rarely complete, with data gaps due to sensor failure and sparse observational networks. Parameters are generally derived through some optimization method, while driver fields may be interpolated from available data sources. For this study, we used data from a young ponderosa pine stand at Metolius, Central Oregon, and a simple daily model of coupled carbon and water fluxes (DALEC). An ensemble of acceptable parameterizations was generated using an ensemble Kalman filter and eddy covariance measurements of net C exchange. Geostatistical simulations generated an ensemble of meteorological driving variables for the site, consistent with the spatiotemporal autocorrelations inherent in the observational data from 13 local weather stations. Simulated meteorological data were propagated through the model to derive the uncertainty on the CO2 flux resultant from driver uncertainty typical of spatially extensive modeling studies. Furthermore, the model uncertainty was partitioned between temperature and precipitation. With at least one meteorological station within 25 km of the study site, driver uncertainty was relatively small ( 10% of the total net flux), while parameterization uncertainty was larger, 50% of the total net flux. The largest source of driver uncertainty was due to temperature (8% of the total flux). The combined effect of parameter and driver uncertainty was 57% of the total net flux. However, when the nearest meteorological station was > 100 km from the study site, uncertainty in net ecosystem exchange (NEE) predictions introduced by meteorological drivers increased by 88%. Precipitation estimates were a larger source of bias in NEE estimates than were temperature estimates, although the biases partly compensated for each other. The time scales on which precipitation errors occurred in the simulations were shorter than the temporal scales over which drought developed in the model, so drought events were reasonably simulated. The approach outlined here provides a means to assess the uncertainty and bias introduced by meteorological drivers in regional-scale ecological forecasting.
NASA Astrophysics Data System (ADS)
Mues, Andrea; Lauer, Axel; Lupascu, Aurelia; Rupakheti, Maheswar; Kuik, Friderike; Lawrence, Mark G.
2018-06-01
An evaluation of the meteorology simulated using the Weather Research and Forecast (WRF) model for the region of south Asia and Nepal with a focus on the Kathmandu Valley is presented. A particular focus of the model evaluation is placed on meteorological parameters that are highly relevant to air quality such as wind speed and direction, boundary layer height and precipitation. The same model setup is then used for simulations with WRF including chemistry and aerosols (WRF-Chem). A WRF-Chem simulation has been performed using the state-of-the-art emission database, EDGAR HTAP v2.2, which is the Emission Database for Global Atmospheric Research of the Joint Research Centre (JRC) of the European Commission, in cooperation with the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) organized by the United Nations Economic Commission for Europe, along with a sensitivity simulation using observation-based black carbon emission fluxes for the Kathmandu Valley. The WRF-Chem simulations are analyzed in comparison to black carbon measurements in the valley and to each other. The evaluation of the WRF simulation with a horizontal resolution of 3×3 km2 shows that the model is often able to capture important meteorological parameters inside the Kathmandu Valley and the results for most meteorological parameters are well within the range of biases found in other WRF studies especially in mountain areas. But the evaluation results also clearly highlight the difficulties of capturing meteorological parameters in such complex terrain and reproducing subgrid-scale processes with a horizontal resolution of 3×3 km2. The measured black carbon concentrations are typically systematically and strongly underestimated by WRF-Chem. A sensitivity study with improved emissions in the Kathmandu Valley shows significantly reduced biases but also underlines several limitations of such corrections. Further improvements of the model and of the emission data are needed before being able to use the model to robustly assess air pollution mitigation scenarios in the Kathmandu region.
Correlation between isotopic and meteorological parameters in Italian wines: a local-scale approach.
Aghemo, Costanza; Albertino, Andrea; Gobetto, Roberto; Spanna, Federico
2011-08-30
Since the beginning of the 1980s deuterium nuclear magnetic resonance and carbon-13 mass spectrometry have proved to be reliable techniques for detecting adulteration and for classifying natural products by their geographic origin. Scientific literature has so far mainly focused on data acquired at regional level where isotopic parameters are correlated to climatic mean data relative to large territories. Nebbiolo and Barbera wine samples of various vintages and from different areas within the Piedmont region (northern Italy) were analysed using SNIF-NMR and GC-C-IRMS and a large set of meteorological parameters were recorded by means of weather stations placed in fields where the grapes were grown. Correlations between isotopic ((2)H and (13)C) data and several climatic parameters at a local level (mean temperature, total rainfall, mean humidity and thermal sums) were attempted and some linear correlations were found. Mean temperature and total rainfall were found to be correlated to isotopic ((2)H and (13)C) abundance in linear direct and inverse proportions respectively. Lower or no correlations between deuterium and carbon-13 abundances and other meteorological parameters such as mean humidity and thermal sums were found. Moreover, wines produced from different grape varieties in the same grape field showed significantly different isotopic values. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng
2016-05-01
Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.
NASA Astrophysics Data System (ADS)
Kornilov, V. G.; Kornilov, M. V.; Shatsky, N. I.; Vozyakova, O. V.; Gorbunov, I. A.; Safonov, B. S.; Potanin, S. A.; Cheryasov, D. V.; Senik, V. A.
2016-09-01
Based on the measurements performed from 2007 to 2015 at the summit of Mount Shatdzhatmaz adjacent to the 2.5-m telescope at the Caucasus Observatory of the SAI MSU, we have determined the statistical characteristics of basic meteorological parameters: the ambient air temperature, the ground wind speed, and the relative humidity. The stability of these parameters over the entire period of our measurements and their variations within an annual cycle have been studied. The median temperature on clear nights is +3.2°C, although there are nights with a temperature below -15°C. The typical ground wind speed is 3 m s-1; the probability of a wind stronger than 10 m s-1 does not exceed 2%. The losses of observing time due to high humidity are maximal in the summer period but, on the whole, are small over a year, less than 10%. We have estimated the absolute water vapor content in the atmosphere, which is especially important for infrared observations. Minimum precipitablewater vapor is observed in December-February; the median value over these months is 5 mm. We additionally provide the wind speeds at various altitudes above the ground (from 1 to 16 km) that we obtained when measuring the optical turbulence. We present the results and technique of our measurements of the annual amount of clear night astronomical time, which is, on average, 1320 h, i.e., 45% of the possible one at the latitude of the observatory. The period from mid-September to mid-March accounts for about 70% of the clear time. A maximum of clear skies is observed in November, when its fraction reaches 60% of the possible astronomical night time.
Temperature lapse rate as an adjunct to wind shear detection
NASA Technical Reports Server (NTRS)
Zweifil, Terry
1991-01-01
Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System.
Impact of climate change on hydrological extremes in Dobrogea region, Romania
NASA Astrophysics Data System (ADS)
Buta, Constantin; Maftei, Carmen
2015-04-01
Over time, Dobrogea territory has faced with fluctuations more or less severe in terms of basic parameters such as temperature, precipitations and annual discharges of rivers. It is highlighted the trend of aridity in the area, because of the fact that Dobrogea receives small amounts of water, ranging between 200-450 mm/year, with annual average temperatures lying around and above the average of 11°C. This fact is also proceeding from the many studies realized by other researchers. For this area there are also characteristic torrents (form of rainfall during the summer), the storms and floods accompanying these torrents of water on the narrow valleys, often intermittent, sometimes causing significant damage and even fatalities. Torrential rainfalls and flash floods are sometimes very strong and produce catastrophic damages, as happened at Constanta (in 2001), at Tulcea (in 13.07.2004 and in 29.08.2004), at Tuzla, Pantelimon, Agigea and others. At the opposite pole of the sporadic excess rainfall is drought, which is the largest meteorological phenomenon (both in time and in space) and the most obvious in Dobrogea climate. Drought represents the main argument of semi aridity of this region and the most visible image component which is observed by the inhabitants of this environment. Correlation and study of hydro-meteorological extremes is performed using indices that take into account meteorological and hydrological parameters such as precipitations, temperature, discharges of rivers etc. Hydro-meteorological indices used for this study are: Angot rainfall index; Peguy Climograms; de Martonne drought index; Thornthwaite index Moduli coefficients and Deciles. According to the studied indices, for the accomplishment of this present paper, we can say that Dobrogea is among the driest regions in the country. History of drought in Romania includes many dry years, of which are mentioned: 1894, 1888, 1904, 1918, 1934, 1945, but the droughts years with greater durations, more extensive in territory and severe, were those of 1946 and 2000, which affected Dobrogea region. According to this study and analysis carried out for the period 1965-2005 (regarding of temperatures and precipitations) at eight stations in the Dobrogea region, and for the period 1965 to 2011 (regarding the discharges of rivers) there can be mentioned several dry years, but between them some of them have proved extremely dry, such as the range of years 1973 - 1976, 1980 - 1983, 1986 - 1987 and 2000, and the years with risk by excess of water were: 1966, 1969, 1988, 1997, 2004 and 2005.
Aviation--An Individualized Approach
ERIC Educational Resources Information Center
Seeds, Fred F.
1974-01-01
Describes an individualized aviation course for high school seniors. The course, broken down into Learner Education Guides with students progressing at their own learning rates, consists of the history of aviation, career opportunities, the space program, basic aeronautics, navigation, meteorology, Federal Aviation Administration regulations and…
As-Built documentation of programs to implement the Robertson and Doraiswamy/Thompson models
NASA Technical Reports Server (NTRS)
Valenziano, D. J. (Principal Investigator)
1981-01-01
The software which implements two spring wheat phenology models is described. The main program routines for the Doraiswamy/Thompson crop phenology model and the basic Robertson crop phenology model are DTMAIN and BRMAIN. These routines read meteorological data files and coefficient files, accept the planting date information and other information from the user, and initiate processing. Daily processing for the basic Robertson program consists only of calculation of the basic Robertson increment of crop development. Additional processing in the Doraiswamy/Thompson program includes the calculation of a moisture stress index and correction of the basic increment of development. Output for both consists of listings of the daily results.
BOREAS AES Campbell Scientific Surface Meteorological Data
NASA Technical Reports Server (NTRS)
Atkinson, G. Barrie; Funk, Barrie; Knapp. David E. (Editor); Hall, Forrest G. (Editor)
2000-01-01
Canadian AES personnel collected data related to surface and atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from 14 automated meteorology stations located across the BOREAS region. Included in this data are parameters of date, time, mean sea level pressure, station pressure, temperature, dew point, wind speed, resultant wind speed, resultant wind direction, peak wind, precipitation, maximum temperature in the last hour, minimum temperature in the last hour, pressure tendency, liquid precipitation in the last hour, relative humidity, precipitation from a weighing gauge, and snow depth. Temporally, the data cover the period of August 1993 to December 1996. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.
An Investigation of High Frequency Motions in the Tropical Tropopause Layer near Convection
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Bui, T. P.; Dean-Day, Jon; Lim, Boon; Lawson, Paul
2016-01-01
Indirect evidence indicates a role for vertical mixing in the Tropical Tropopause Layer (TTL). In the past 20 years, high altitude NASA aircraft such as the ER-2, WB-57, and GLobal Hawk have been making 20hz measurements of vertical velocity and other meteorological parameters in the Upper Tropospere-Lower Stratosphere region, many in the tropics, most recently in connection with the Airborne Tropical TRopopause EXperiment (ATTREX). In the stable environment of the UTLS, high frequency activity occurs in bursts, presumably in connection with nearby convection or strong vertical shear associated with larger scale gravity waves. This paper examines tropical high frequency aircraft data to obtain some basic information about the distribution and character of high frequency activity in vertical velocity in the TTL. In particular, we focus on relating the high frequency activity to nearby tropical convection.
Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Gao, Meng; Yin, Liting; Ning, Jicai
2018-07-01
Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.
Selection of meteorological conditions to apply in an Ecotron facility
NASA Astrophysics Data System (ADS)
Leemans, Vincent; De Cruz, Lesley; Dumont, Benjamin; Hamdi, Rafiq; Delaplace, Pierre; Heinesh, Bernard; Garré, Sarah; Verheggen, François; Theodorakopoulos, Nicolas; Longdoz, Bernard
2017-04-01
This presentation aims to propose a generic method to produce meteorological input data that is useful for climate research infrastructures such as an Ecotron, where researchers will face the need to generate representative actual or future climatic conditions. Depending on the experimental objectives and the research purposes, typical conditions or more extreme values such as dry or wet climatic scenarios might be requested. Four variables were considered here, the near-surface air temperature, the near-surface relative humidity, the cloud cover and precipitation. The meteorological datasets, among which a specific meteorological year can be picked up, are produced by the ALARO-0 model from the RMIB (Royal Meteorological Institute of Belgium). Two future climate scenarios (RCP 4.5 and 8.5) and two time periods (2041-2070 and 2071-2100) were used as well as a historical run of the model (1981-2010) which is used as a reference. When the data from a historical run were compared to the observed historical data, biases were noticed. A linear correction was proposed for all the variables except for precipitation, for which a non-linear correction (using a power function) was chosen to maintain a zero-precipitation occurrences. These transformations were able to remove most of the differences between the observed and historical run of the model for the means and for the standard deviations. For the relative humidity, because of non-linearities, only one half of the average bias was corrected and a different path might have to be chosen. For the selection of a meteorological year, a position and a dispersion parameter have been proposed to characterise each meteorological year for each variable. For precipitation, a third parameter quantifying the importance of dry and wet periods has been defined. In order to select a specific climate, for each of these nine parameters the experimenter should provide a percentile and a weight to prioritize the importance of each variable in the process of a global climate selection. The proposed algorithm computed the weighted distance for each year between the parameters and the point representing the position of the percentile in the nine-dimensional space. The five closest values were then selected and represented in different graphs. The proposed method is able to provide a decision aid in the selection of the meteorological conditions to be generated within an Ecotron. However, with a limited number of years available in each case (thirty years for each RCP and each time period), there is no perfect match and the ultimate trade-off will be the responsibility of the researcher. For typical years, close to the median, the relative frequency is higher and the trade-off is more easy than for more extreme years where the relative frequency is low.
The Ogallala Agro-Climate Tool (Technical Description)
USDA-ARS?s Scientific Manuscript database
A Visual Basic agro-climate application capable of estimating irrigation demand and crop water use over the Ogallala Aquifer region is described here. The application’s meteorological database consists of daily precipitation and temperature data from 141 U.S. Historical Climatology Network stations ...
NASA Astrophysics Data System (ADS)
Bouya, Z.; Terkildsen, M.; Maher, P.
2016-12-01
Space Weather Services, Australian Bureau of Meteorology, Sydney, Australia Abstract:The Australian Bureau of Meteorology through its Space Weather Service (SWS) provides ionospheric products and services to a diverse group of customers. In this work, we present a regional approach to characterizing the Australian regional Total Electron Content (TEC) and an assimilative model to map the Ionospheric layer parameter foF2. Finally we outline the design of an Australian regional Ionospheric forecast model at SWS. Keywords: TEC, foF2, regional, data assimilation, forecast
METEO in the TALNET project after 5 years - meteorology for talented high schools students
NASA Astrophysics Data System (ADS)
Pisoft, P.; Miksovsky, J.
2010-09-01
TALNET is a project aiming to systematically identify and work with gifted youth (13-19 years). Specifically, it applies online educational activities combined with face to face activities. It has been organised by the Faculty of Maths and Physics (MFF) of Charles University in Prague (UK) and National Institute for Youth (NIDM) since 2003, later in cooperation with other faculties, e.g. Natural Sciences (PrF UK), universities and science and research institutes in the Czech Republic and abroad, e.g. DLR, Germany. Topics of the educational activities come from natural sciences (such as physics, astronomy, biology, chemistry, meteorology etc.) and mathematics. The presented project's part METEO embraces lessons primarily focused on basics of meteorology and atmospheric physics in general and it has been part of the Talnet project for 5 years. The meteorological lectures consist of description of, e.g., climate system, meteorological quantities, weather forecasting, ozone and the stratosphere, climate change or atmospheric optics. On top of the lectures, the students are encouraged to work on enclosed homework such as meteorological time series analysis, clouds observation and classification, halo simulation and so on. The METEO course lasts one semester and the students make their seminar thesis at the end. The presented materials will consist of examples of the contemporary lectures and their organization, homeworks or seminar theses.
Numerical experiments on short-term meteorological effects on solar variability
NASA Technical Reports Server (NTRS)
Somerville, R. C. J.; Hansen, J. E.; Stone, P. H.; Quirk, W. J.; Lacis, A. A.
1975-01-01
A set of numerical experiments was conducted to test the short-range sensitivity of a large atmospheric general circulation model to changes in solar constant and ozone amount. On the basis of the results of 12-day sets of integrations with very large variations in these parameters, it is concluded that realistic variations would produce insignificant meteorological effects. Any causal relationships between solar variability and weather, for time scales of two weeks or less, rely upon changes in parameters other than solar constant or ozone amounts, or upon mechanisms not yet incorporated in the model.
Atmospheric environment for Space Shuttle (STS-3) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Brown, S. C.; Batts, G. W.
1982-01-01
Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.
WRF-based fire risk modelling and evaluation for years 2010 and 2012 in Poland
NASA Astrophysics Data System (ADS)
Stec, Magdalena; Szymanowski, Mariusz; Kryza, Maciej
2016-04-01
Wildfires are one of the main ecosystems' disturbances for forested, seminatural and agricultural areas. They generate significant economic loss, especially in forest management and agriculture. Forest fire risk modeling is therefore essential e.g. for forestry administration. In August 2015 a new method of forest fire risk forecasting entered into force in Poland. The method allows to predict a fire risk level in a 4-degree scale (0 - no risk, 3 - highest risk) and consists of a set of linearized regression equations. Meteorological information is used as predictors in regression equations, with air temperature, relative humidity, average wind speed, cloudiness and rainfall. The equations include also pine litter humidity as a measure of potential fuel characteristics. All these parameters are measured routinely in Poland at 42 basic and 94 auxiliary sites. The fire risk level is estimated for a current (basing on morning measurements) or next day (basing on midday measurements). Entire country is divided into 42 prognostic zones, and fire risk level for each zone is taken from the closest measuring site. The first goal of this work is to assess if the measurements needed for fire risk forecasting may be replaced by the data from mesoscale meteorological model. Additionally, the use of a meteorological model would allow to take into account much more realistic spatial differentiation of weather elements determining the fire risk level instead of discrete point-made measurements. Meteorological data have been calculated using the Weather Research and Forecasting model (WRF). For the purpose of this study the WRF model is run in the reanalysis mode allowing to estimate all required meteorological data in a 5-kilometers grid. The only parameter that cannot be directly calculated using WRF is the litter humidity, which has been estimated using empirical formula developed by Sakowska (2007). The experiments are carried out for two selected years: 2010 and 2012. The year 2010 was characterized by the smallest number of wildfires and burnt area whereas 2012 - by the biggest number of fires and the largest area of conflagration. The data about time, localization, scale and causes of individual wildfire occurrence in given years are taken from the National Forest Fire Information System (KSIPL), administered by Forest Fire Protection Department of Polish Forest Research Institute. The database is a part of European Forest Fire Information System (EFFIS). Basing on this data and on the WRF-based fire risk modelling we intend to achieve the second goal of the study, which is the evaluation of the forecasted fire risk with an occurrence of wildfires. Special attention is paid here to the number, time and the spatial distribution of wildfires occurred in cases of low-level predicted fire risk. Results obtained reveals the effectiveness of the new forecasting method. The outcome of our investigation allows to draw a conclusion that some adjustments are possible to improve the efficiency on the fire-risk estimation method.
NASA Astrophysics Data System (ADS)
Dvorska, Alice; Milan, Váňa; Vlastimil, Hanuš; Marian, Pavelka
2013-04-01
The collocated station Košetice - Křešín u Pacova, central Czech Republic, is a major research and monitoring infrastructure in the Czech Republic and central Europe. It consists of two basic components: the observatory Košetice run since 1988 by the Czech Hydrometeorological Institute and the atmospheric station (AS) Křešín u Pacova starting operation in 2013. The AS is built and run by CzechGlobe - Global Change Research Centre, Academy of Sciences of the Czech Republic and is situated 100 m far from the observatory. There are three research and monitoring activities at the collocated station providing data necessary for the research on climate and related changes. The AS Křešín u Pacova consists of a 250 m tall tower serving for ground-based and vertical gradient measurements of (i) concentrations of CO2, CO, CH4, total gaseous mercury and tropospheric ozone (continuously), (ii) elemental and organic carbon (semicontinuously), (iii) carbon and oxygen isotopes, radon, N2O, SF6 and other species (episodically), (iv) optical properties of atmospheric aerosols and (v) meteorological parameters and the boundary layer height. Further, eddy covariance measurements in the nearby agroecosystem provide data on CO2 and H2O fluxes between the atmosphere and the ecosystem. Finally, monitoring activities at the nearby small hydrological catchment Anenské povodí run under the GEOMON network enables studying local hydrological and biogeochemical cycles. These measurements are supported by the long-term monitoring of meteorological and air quality parameters at the observatory Košetice, that are representative for the central European background. The collocated station provides a big research opportunity and challenge due to (i) a broad spectra of monitored chemical species, meteorological, hydrological and other parameters, (ii) measurements in various environmental compartments and especially the atmosphere, (iii) provision of data suitable for conducting multidisciplinar research activities and (iv) participation in a number of international programmes and projects, i.e. ICOS (AS Křešín u Pacova), ACTRIS, ACCENT, CLRTAP/EMEP, GAW and ICP-IM (Košetice) and others. Finally, the collocated station has potential for a successful participation in the planned network of European superstations covering both climate and air quality issues, one of the key areas in the European Strategy Forum on Research Infrastructures (ESFRI) process. Acknowledgement: This work is supported by the CzechGlobe (CZ.1.05/1.1.00/02.0073) and CZ.1.07/2.4.00/31.0056 projects.
Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India.
Sahoo, Sushanta Ku; Katlamudi, Madhusudhanarao; Shaji, Jerin P; Murali Krishna, K S; Udaya Lakshmi, G
2018-02-02
The soil radon (Rn 222 ) and thoron (Rn 220 ) concentrations recorded at Badargadh and Desalpar observatories in the Kutch region of Gujarat, India, have been analyzed to study the sources of the radon emissions, earthquake precursors, and the influence of meteorological parameters on radon emission. Radon and meteorological parameters were recorded using Radon Monitor RMT 1688-2 at these two stations. We used the radon data during February 21, 2011 to June 8, 2011, for Badargadh and March 2, 2011 to May 19, 2011, for the Desalpar station with a sampling interval of 10 min. It is observed that the radon concentrations at Desalpar varies between 781 and 4320 Bq m -3 with an average value of 2499 Bq m -3 , whereas thoron varies between 191 and 2017 Bq m -3 with an average value of 1433.69 Bq m -3 . The radon concentration at Badargadh varies between 264 and 2221 Bq m -3 with an average value of 1135.4 Bq m -3 , whereas thoron varies between 97 and 556 Bq m -3 . To understand how the meteorological parameters influence radon emanation, the radon and other meteorological parameters were correlated with linear regression analysis. Here, it was observed that radon and temperature are negatively correlated whereas radon and other two parameters, i.e., humidity and pressure are positively correlated. The cross correlogram also ascertains similar relationships between radon and other parameters. Further, the ratio between radon and thoron has been analyzed to determine the deep or shallow source of the radon emanation in the study area. These results revealed that the ratio radon/thoron enhanced during this period which indicates the deeper source contribution is prominent. Incidentally, all the local earthquakes occurred with a focal depth of 18-25 km at the lower crust in this region. We observed the rise in the concentrations of radon and the ratio radon/thoron at Badargadh station before the occurrence of the local earthquakes on 29th March 2011 (M 3.7) and 17th May 2011 (M 4.2). We clearly observed the radon level crossing the mean + 2*sigma level before the occurrence of these events. We conclude that these enhanced radon emissions are linked with alteration of the crustal stress/strain in this region as this observing station is near the epicenters of the earthquakes. We did not observe considerable variations in radon at the Desalpar station which is far from the earthquake location.
NASA Astrophysics Data System (ADS)
Bieringer, Paul E.; Rodriguez, Luna M.; Vandenberghe, Francois; Hurst, Jonathan G.; Bieberbach, George; Sykes, Ian; Hannan, John R.; Zaragoza, Jake; Fry, Richard N.
2015-12-01
Accurate simulations of the atmospheric transport and dispersion (AT&D) of hazardous airborne materials rely heavily on the source term parameters necessary to characterize the initial release and meteorological conditions that drive the downwind dispersion. In many cases the source parameters are not known and consequently based on rudimentary assumptions. This is particularly true of accidental releases and the intentional releases associated with terrorist incidents. When available, meteorological observations are often not representative of the conditions at the location of the release and the use of these non-representative meteorological conditions can result in significant errors in the hazard assessments downwind of the sensors, even when the other source parameters are accurately characterized. Here, we describe a computationally efficient methodology to characterize both the release source parameters and the low-level winds (eg. winds near the surface) required to produce a refined downwind hazard. This methodology, known as the Variational Iterative Refinement Source Term Estimation (STE) Algorithm (VIRSA), consists of a combination of modeling systems. These systems include a back-trajectory based source inversion method, a forward Gaussian puff dispersion model, a variational refinement algorithm that uses both a simple forward AT&D model that is a surrogate for the more complex Gaussian puff model and a formal adjoint of this surrogate model. The back-trajectory based method is used to calculate a ;first guess; source estimate based on the available observations of the airborne contaminant plume and atmospheric conditions. The variational refinement algorithm is then used to iteratively refine the first guess STE parameters and meteorological variables. The algorithm has been evaluated across a wide range of scenarios of varying complexity. It has been shown to improve the source parameters for location by several hundred percent (normalized by the distance from source to the closest sampler), and improve mass estimates by several orders of magnitude. Furthermore, it also has the ability to operate in scenarios with inconsistencies between the wind and airborne contaminant sensor observations and adjust the wind to provide a better match between the hazard prediction and the observations.
Alkhaldy, Ibrahim
2017-04-01
The aim of this study was to examine the role of environmental factors in the temporal distribution of dengue fever in Jeddah, Saudi Arabia. The relationship between dengue fever cases and climatic factors such as relative humidity and temperature was investigated during 2006-2009 to determine whether there is any relationship between dengue fever cases and climatic parameters in Jeddah City, Saudi Arabia. A generalised linear model (GLM) with a break-point was used to determine how different levels of temperature and relative humidity affected the distribution of the number of cases of dengue fever. Break-point analysis was performed to modelled the effect before and after a break-point (change point) in the explanatory parameters under various scenarios. Akaike information criterion (AIC) and cross validation (CV) were used to assess the performance of the models. The results showed that maximum temperature and mean relative humidity are most probably the better predictors of the number of dengue fever cases in Jeddah. In this study three scenarios were modelled: no time lag, 1-week lag and 2-weeks lag. Among these scenarios, the 1-week lag model using mean relative humidity as an explanatory variable showed better performance. This study showed a clear relationship between the meteorological variables and the number of dengue fever cases in Jeddah. The results also demonstrated that meteorological variables can be successfully used to estimate the number of dengue fever cases for a given period of time. Break-point analysis provides further insight into the association between meteorological parameters and dengue fever cases by dividing the meteorological parameters into certain break-points. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-07-01
In the consideration of the meteorological aspects of energy problems, the latter is divided into three main groups: energy production, energy transport and exploration, and new energy resources. Increased energy production will have an impact on the environment. Although at present there is insufficient information for precise forecasts, meteorologists and hydrologists will be able to make reasonable assumptions for the future. Human use of energy is strongly influenced by variations of weather. Such systems as electric power transmission networks, shipping of hydrocarbons by sea, and pipelines for the transportation of large quantities of oil and gas, are all particularly sensitivemore » to weather and climate. The meteorologist provides basic data on weather and climate to facilitate energy exploration. The new energy resources addressed in this article are solar, wind, geothermal, and nuclear. The World Meteorological Organization's Executive Committee established a set of priorities in dealing with energy problems. This paper also briefly examines the burden imposed on global energy resources.« less
Integrating Meteorology into Research on Migration
Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E. Emiel
2010-01-01
Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. PMID:20811515
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Sackes, Mesut
2010-01-01
It is important to help young children make connections between events in their lives and science concepts in preschool classrooms, so introducing basic meteorology ideas offer a great opportunity to make weather connections and awaken scientific curiosity (Spiropoulou, Kostopoulos, and Jacovides 1999). Therefore, this article presents a science…
Efficient Ways to Learn Weather Radar Polarimetry
ERIC Educational Resources Information Center
Cao, Qing; Yeary, M. B.; Zhang, Guifu
2012-01-01
The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…
14 CFR 63.35 - Knowledge requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...
14 CFR 63.35 - Knowledge requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...
14 CFR 63.35 - Knowledge requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...
14 CFR 63.35 - Knowledge requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...
Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela
2016-02-01
Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.
NASA Technical Reports Server (NTRS)
Scoggins, J. R. (Editor)
1978-01-01
Four diagnostic studies of AVE 3. are presented. AVE 3 represents a high wind speed wintertime situation, while most AVE's analyzed previously represented springtime conditions with rather low wind speeds. The general areas of analysis include the examination of budgets of vorticity, moisture, kinetic energy, and potential energy and a synoptic and statistical study of the horizontal gradients of meteorological parameters. Conclusions are integrated with and compared to those obtained in previously analyzed experiments (mostly springtime weather situations) so as to establish a more definitive understanding of the structure and dynamics of the atmosphere under a wide range of synoptic conditions.
An analysis of the first two years of GASP data
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.
1977-01-01
Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes.
NASA Technical Reports Server (NTRS)
Scoggins, J. R.; Clark, T. L.; Possiel, N. C.
1975-01-01
Procedures for forecasting clear air turbulence in the stratosphere over the western United States from rawinsonde data are described and results presented. Approaches taken to relate meteorological parameters to regions of turbulence and nonturbulence encountered by the XB-70 during 46 flights at altitudes between 12-20 km include: empirical probabilities, discriminant function analysis, and mountainwave theory. Results from these techniques were combined into a procedure to forecast regions of clear air turbulence with an accuracy of 70-80 percent. A computer program was developed to provide an objective forecast directly from the rawinsonde sounding data.
Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří
2017-12-01
The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical simulation of a meteorological regime of Pontic region
NASA Astrophysics Data System (ADS)
Toropov, P.; Silvestrova, K.
2012-04-01
The Black Sea Coast of Caucasus is one of priority in sense of meteorological researches. It is caused both strategic and economic importance of coast, and current development of an infrastructure for the winter Olympic Games «Sochi-2014». During the winter period at the Black Sea Coast of Caucasus often there are the synoptic conditions leading to occurrence of the dangerous phenomena of weather: «northeast», ice-storms, strong rains, etc. The Department of Meteorology (Moscow State University) throughout 8 years spends regular measurements on the basis of Southern Department of Institute of Oenology of the Russian Academy of Sciences in July and February. They include automatically measurements with the time resolution of 5 minutes in three points characterizing landscape or region (coast, steppe plain, top of the Markothsky ridge), measurements of flux of solar radiation, measurements an atmospheric precipitation in 8 points, which remoteness from each other - 2-3 km. The saved up material has allowed to reveal some features of a meteorological mode of coast. But an overall objective of measurements - an estimation of quality of the numerical forecast by means of «meso scale» models (for example - model WRF). The first of numerical experiments by WRF model were leaded in 2007 year and were devoted reproduction of a meteorological mode of the Black Sea coast. The second phase of experiments has been directed on reproduction the storm phenomena (Novorossiysk nord-ost). For estimation of the modeling data was choused area witch limited by coordinates 44,1 - 44,75 (latitude) and 37,6 - 39 (longitude). Estimations are spent for the basic meteorological parameters - for pressure, temperature, speed of a wind. As earlier it was marked, 8 meteorological stations are located in this territory. Their values are accepted for the standard. Errors are calculated for February 2005, 2006, 2008, 2011 years, because in these periods was marked a strong winds. As the initial data in WRF model are used FNL the analysis, pumped up each six hours. The data is in the open access (http://nomad3.ncep.noaa.gov/pub/) in a grib format. Spatial step FNL of the FNL analysis is 1 degree. In the experiment 1-3 February 2011, was made the assimilation of station data located within the territory or identified during our expeditions. It is shown that the model WRF successfully reproduces the meteorological regime the Black Sea coast. The average error of simulation n without learning station data is as follows: for a temperature of 1.5 s for wind speed - 2 m / sec. The maximum error for the temperature is 5 C, and for wind speed 10 m / sec. To experiment with the assimilation of station data the error is reduced by an average of 20%. The spatial structure of temperature and wind fields close to the actually observed. Thus, it can be argued that the model WRF can be successfully applied to numerical forecast a dangerous phenomenon, such as «Novorossiysk nord-ost». The work is done in Natural Risk Assessment Laboratory under contract G.34.31.0007.
14 CFR Appendix D to Part 141 - Commercial Pilot Certification Course
Code of Federal Regulations, 2011 CFR
2011-01-01
... Board; (3) Basic aerodynamics and the principles of flight; (4) Meteorology, to include recognition of critical weather situations, windshear recognition and avoidance, and the use of aeronautical weather... pattern); and (iv) 3 hours in a gyroplane in preparation for the practical test within 60 days preceding...
14 CFR Appendix D to Part 141 - Commercial Pilot Certification Course
Code of Federal Regulations, 2010 CFR
2010-01-01
... Board; (3) Basic aerodynamics and the principles of flight; (4) Meteorology, to include recognition of critical weather situations, windshear recognition and avoidance, and the use of aeronautical weather... pattern); and (iv) 3 hours in a gyroplane in preparation for the practical test within 60 days preceding...
NASA Astrophysics Data System (ADS)
Soja, G.; Soja, A.-M.
This study tested the usefulness of extremely simple meteorological models for the prediction of ozone indices. The models were developed with the input parameters of daily maximum temperature and sunshine duration and are based on a data collection period of three years. For a rural environment in eastern Austria, the meteorological and ozone data of three summer periods have been used to develop functions to describe three ozone exposure indices (daily maximum, 7 h mean 9.00-16.00 h, accumulated ozone dose AOT40). Data sets for other years or stations not included in the development of the models were used as test data to validate the performance of the models. Generally, optimized regression models performed better than simplest linear models, especially in the case of AOT40. For the description of the summer period from May to September, the mean absolute daily differences between observed and calculated indices were 8±6 ppb for the maximum half hour mean value, 6±5 ppb for the 7 h mean and 41±40 ppb h for the AOT40. When the parameters were further optimized to describe individual months separately, the mean absolute residuals decreased by ⩽10%. Neural network models did not always perform better than the regression models. This is attributed to the low number of inputs in this comparison and to the simple architecture of these models (2-2-1). Further factorial analyses of those days when the residuals were higher than the mean plus one standard deviation should reveal possible reasons why the models did not perform well on certain days. It was observed that overestimations by the models mainly occurred on days with partly overcast, hazy or very windy conditions. Underestimations more frequently occurred on weekdays than on weekends. It is suggested that the application of this kind of meteorological model will be more successful in topographically homogeneous regions and in rural environments with relatively constant rates of emission and long-range transport of ozone precursors. Under conditions too demanding for advanced physico/chemical models, the presented models may offer useful alternatives to derive ecologically relevant ozone indices directly from meteorological parameters.
1981-01-01
Meteorological Parameters at Meteorological Station 1, 31 May 1980 ........................ 68 $24 Relationship of Jubai. Port Datum to Tide Table Datum. .70 25...around which was a circular weight with two handles. Once assembled, the device was nositioned vertically at the point to be sampled and manually...limited use for sampling very fluid or unconsolidated sand or shell. In the former case, the upper few centimeters of cohesive sediment became embedded
Bayesian dynamic modeling of time series of dengue disease case counts.
Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander
2017-07-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.
Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago.
Binaku, Katrina; O'Brien, Timothy; Schmeling, Martina; Fosco, Tinamarie
2013-09-01
Both canonical correlation analysis (CCA) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations and meteorological data collected in Chicago during the summer months of 2002, 2003, and 2004. Concentrations of ammonium, calcium, nitrate, sulfate, and oxalate particulate matter, as well as, meteorological parameters temperature, wind speed, wind direction, and humidity were subjected to CCA and PCA. Ozone and nitrogen oxide mixing ratios were also included in the data set. The purpose of statistical analysis was to determine the extent of existing linear relationship(s), or lack thereof, between meteorological parameters and pollutant concentrations in addition to reducing dimensionality of the original data to determine sources of pollutants. In CCA, the first three canonical variate pairs derived were statistically significant at the 0.05 level. Canonical correlation between the first canonical variate pair was 0.821, while correlations of the second and third canonical variate pairs were 0.562 and 0.461, respectively. The first canonical variate pair indicated that increasing temperatures resulted in high ozone mixing ratios, while the second canonical variate pair showed wind speed and humidity's influence on local ammonium concentrations. No new information was uncovered in the third variate pair. Canonical loadings were also interpreted for information regarding relationships between data sets. Four principal components (PCs), expressing 77.0 % of original data variance, were derived in PCA. Interpretation of PCs suggested significant production and/or transport of secondary aerosols in the region (PC1). Furthermore, photochemical production of ozone and wind speed's influence on pollutants were expressed (PC2) along with overall measure of local meteorology (PC3). In summary, CCA and PCA results combined were successful in uncovering linear relationships between meteorology and air pollutants in Chicago and aided in determining possible pollutant sources.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo
2016-11-01
The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.
Assessment and prediction of short term hospital admissions: the case of Athens, Greece
NASA Astrophysics Data System (ADS)
Kassomenos, P.; Papaloukas, C.; Petrakis, M.; Karakitsios, S.
The contribution of air pollution on hospital admissions due to respiratory and heart diseases is a major issue in the health-environmental perspective. In the present study, an attempt was made to run down the relationships between air pollution levels and meteorological indexes, and corresponding hospital admissions in Athens, Greece. The available data referred to a period of eight years (1992-2000) including the daily number of hospital admissions due to respiratory and heart diseases, hourly mean concentrations of CO, NO 2, SO 2, O 3 and particulates in several monitoring stations, as well as, meteorological data (temperature, relative humidity, wind speed/direction). The relations among the above data were studied through widely used statistical techniques (multivariate stepwise analyses) and Artificial Neural Networks (ANNs). Both techniques revealed that elevated particulate concentrations are the dominant parameter related to hospital admissions (an increase of 10 μg m -3 leads to an increase of 10.2% in the number of admissions), followed by O 3 and the rest of the pollutants (CO, NO 2 and SO 2). Meteorological parameters also play a decisive role in the formation of air pollutant levels affecting public health. Consequently, increased/decreased daily hospital admissions are related to specific types of meteorological conditions that favor/do not favor the accumulation of pollutants in an urban complex. In general, the role of meteorological factors seems to be underestimated by stepwise analyses, while ANNs attribute to them a more important role. Comparison of the two models revealed that ANN adaptation in complicate environmental issues presents improved modeling results compared to a regression technique. Furthermore, the ANN technique provides a reliable model for the prediction of the daily hospital admissions based on air quality data and meteorological indices, undoubtedly useful for regulatory purposes.
NASA Astrophysics Data System (ADS)
Vyas, B. M.; Saxenna, Abhishek; Panwar, Chhagan
2016-05-01
The present study has been focused to the identify the role of meteorological processes on changing the monthly variation of AOD at 550nm, Angstrom Exponent Coefficient (AEC, 440/670nm) and Cloud Effective Radius (CER, μm) measured during January, 2005 to December 2013 over western Indian location i.e., Udaipur (24.6° N, 73.7° E, 560 m amsl). The monthly variation of AOD 550nm, AEC and during entire study period have shown the strong combined influence of different local surface meteorological parameters in varying amplitude with different nature. The higher values of wind speed, ambient surface temperature, planetary boundary layer, and favorable wind direction coming from desert and oceanic region (W and SW) may be recognize as some of possible factor to exhibit the higher aerosols loading of bigger aerosol size particles in pre-monsoon. These meteorological factors seem also to be plausible responsible factors for drastically reducing the cloud effective radius in pre-monsoon season. In contrary to this, in winter, lower atmospheric aerosols burden and more abundance of fine size particles along with increasing the CER sizes also seem to be influenced and governed by the adverse nature of meteorological conditions such lowering the PBL, T, WS as well as with air pollutants transportation by wind from the N and NE region, of high aerosols loading of fine size particles as anthropogenic aerosols located far away to the observing site.
Augustaitis, Algirdas; Bytnerowicz, Andrzej
2008-10-01
The study aimed to explore if changes in crown defoliation and stem growth of Scots pines (Pinus sylvestris L.) could be related to changes in ambient ozone (O(3)) concentration in central Europe. To meet this objective the study was performed in 3 Lithuanian national parks, close to the ICP integrated monitoring stations from which data on meteorology and pollution were provided. Contribution of peak O(3) concentrations to the integrated impact of acidifying compounds and meteorological parameters on pine stem growth was found to be more significant than its contribution to the integrated impact of acidifying compounds and meteorological parameters on pine defoliation. Findings of the study provide statistical evidence that peak concentrations of ambient O(3) can have a negative impact on pine tree crown defoliation and stem growth reduction under field conditions in central and northeastern Europe where the AOT40 values for forests are commonly below their phytotoxic levels.
Negrini, Arsenio Corrado; Negrini, Simone; Giunta, Vania; Quaglini, Silvana; Ciprandi, Giorgio
2011-01-01
Pollen allergy represents a relevant health issue. Betulaceae sensitization significantly increased in Genoa, Italy, in the last decades. This study investigated possible relationships among pollen count, meteorological changes, air pollution, and sensitizations in this city during a 30-year period. Betulaceae, Urticaceae, Gramineae, and Oleaceae pollen counts were measured from 1981 to 2010 in Genoa. Sensitization to these pollens was also considered in large populations of allergic patients. Meteorological parameters and pollutants were also measured in the same area. Betulaceae sensitization increased over time. All pollen species significantly increased over this time. Pollen season advanced for Betulaceae and Urticaceae. Only Urticaceae season significantly increased. Temperature increased while rainfall decreased over the time. Pollutants significantly decreased. There were some relationships between pollen changes and climatic and air pollution parameters. This 30-year study conducted in an urbanized area provided evidence that Betulaceae sensitization significantly increased, pollen load significantly augmented, and climate and air pollution changed with a possible influence on pollen release.
NASA Astrophysics Data System (ADS)
Mei, F.; Dexheimer, D.; Hubbe, J. M.; deBoer, G.; Schmid, B.; Ivey, M.; Longbottom, C.; Carroll, P.
2017-12-01
The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) had been launched in 2016 and then the effort has been continued in 2017. ICARUS centered on Oliktok Point, Alaska focusses on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The operation routine practiced during ICARUS 2016 provided valuable guidance for the ICARUS 2017 deployment. During two intensive operation periods in 2017, a small DataHawk II UAS has been deployed to collect data for two weeks each in May and August. Coordinated with DataHawk flights, the TBS has been launched with meteorology sensors such as iMet and Tethersondes, therefore vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind) were observed simultaneously by UAS and TBS. In addition, an aerosol payload was attached and launched with 2 TBS flights in April and 7 TBS flights in May, which include a condensation particle counter (CPC, TSI 3007) and two printed optical particle spectrometers (POPS, Handix TBS version). The two POPS were operated at different inlet temperatures. This approach provided potential measurements for aerosol optical closure in future. Measured aerosol properties include total particle number concentrations, particle size distribution, at different ambient temperature and relative humidity. Vertical profiles of atmospheric state and aerosol properties will be discussed based on the coordinated flights. Monthly variation will be assessed with data from the upcoming August flights.
Water Resource Assessment in KRS Reservoir Using Remote Sensing and GIS Modelling
NASA Astrophysics Data System (ADS)
Manubabu, V. H.; Gouda, K. C.; Bhat, N.; Reddy, A.
2014-12-01
In the recent time the fresh water resource becomes very important because of various reasons like population growth, pollution, over exploitation of the ground water resources etc. As there is no efficient and proper measures for recharging ground water exists and also the climatological impacts on water resources like global warming exacerbating water shortages, growing populations and rising demand for freshwater in agriculture, industry, and energy production. There is a need and challenging task for analyzing the future changes in regional water availability and it is also very much necessary to asses and predict the fresh water present in a lake or reservoir to make better decision making in the optimal usage of surface water. In the present study is intended to provide a practical discussion of methodology that deals with how to asses and predict amount of surface water available in the future using Remote Sensing(RS) data , Geographical Information System(GIS) techniques, and GCM (Global Circulation Model). Basically the study emphasized over one of the biggest reservoir i.e. the Krishna Raja Sagara (KRS) reservoir situated in the state of Karnataka in India. Multispectral satellite images like IRS LISS III and Landsat L8 from different open source web portals like NRSC-Bhuvan and NASA Earth Explorer respectively are used for the present analysis. The multispectral satellite images are used to identify the temporal changes of the water quantity in the reservoir for the period 2000 to 2014. Also the water volume are being calculated using Advances Space born Thermal Emission and Reflection Radiometer (ASTER) Global DEM over the reservoir basin. The hydro meteorological parameters are also studied using multi-source observed data and the empirical water budget models for the reservoir in terms of rainfall, temperature, run off, water inflow and outflow etc. are being developed and analyzed. Statistical analysis are also carried out to quantify the relation between reservoir water volume and the hydrological parameters (Figure 1). A general circulation model (GCM) is used for the prediction of major hydro meteorological parameters like rainfall and using the GCM predictions the water availability in terms of water volume in future are simulated using the empirical water budget model.
Inherent uncertainties in meteorological parameters for wind turbine design
NASA Technical Reports Server (NTRS)
Doran, J. C.
1982-01-01
Major difficulties associated with meteorological measurments such as the inability to duplicate the experimental conditions from one day to the next are discussed. This lack of consistency is compounded by the stochastic nature of many of the meteorological variables of interest. Moreover, simple relationships derived in one location may be significantly altered by topographical or synoptic differences encountered at another. The effect of such factors is a degree of inherent uncertainty if an attempt is made to describe the atmosphere in terms of universal laws. Some of these uncertainties and their causes are examined, examples are presented and some implications for wind turbine design are suggested.
BOREAS AES Five-Day Averaged Surface Meteorological and Upper Air Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Strub, Richard; Newcomer, Jeffrey A.
2000-01-01
The Canadian Atmospheric Environment Service (AES) provided BOREAS with hourly and daily surface meteorological data from 23 of the AES meteorological stations located across Canada and upper air data from 1 station at The Pas, Manitoba. Due to copyright restrictions on the full resolution surface meteorological data, this data set contains 5-day average values for the surface parameters. The upper air data are provided in their full resolution form. The 5-day averaging was performed in order to create a data set that could be publicly distributed at no cost. Temporally, the surface meteorological data cover the period of January 1975 to December 1996 and the upper air data cover the period of January 1961 to November 1996. The data are provided in tabular ASCII files, and are classified as AFM-staff data. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
NASA Astrophysics Data System (ADS)
Singh, Ajit; Bloss, William J.; Pope, Francis D.
2016-04-01
Poor visibility can be an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to accidents particularly during winter when fogs are prevalent. The present quantitative analysis attempts to explain the influence of aerosol concentration and composition, and meteorology on long-term UK visibility. We use visibility data from eight UK meteorological stations which have been running since the 1950s. The site locations include urban, rural and marine environments. Overall, most stations show a long term trend of visibility increase, which is indicative of reductions in aerosol pollution, especially in urban areas. Additionally, results at all sites show a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosols to scatter radiation and hence impact upon visibility. The dependence of visibility on other meteorological parameters (e.g. relative humidity, air temperature, wind speed & direction) is also investigated. To explain the long term visibility trends and their dependence on meteorological conditions, a light extinction model was constructed incorporating the concentrations and composition of historic aerosol. The lack of historic aerosol size distributions and aerosol composition data, which determine hygroscopicity and refractive index, leads to an under-constrained model. Aerosol measurements from the last 10 years are used to constrain these model parameters, and hence their historical variation can be estimated; sensitivity analyses are used to estimate errors for the time period before regular aerosol measurements are available. A good agreement is observed between modelled and measured visibility. This work has generated a unique 60 year data set with which to understand how aerosol concentration and composition has varied over the UK. The model is applicable and easily transferrable to other data sets worldwide. Hence, different clean air legislation can be assessed for its effectiveness in reducing aerosol pollution. The implications for the UK will be discussed.
NASA Astrophysics Data System (ADS)
Singh, A.; Bloss, W.; Pope, F.
2015-12-01
Reduced visibility can be an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to accidents particularly during the winter season when fogs are prevalent. Here, we explore the combined influence of aerosol characteristics and meteorology on long-term visibility. We use visibility data from eight meteorological stations, situated in the UK, which have been running since the 1950s. The site locations include urban, rural and marine environments. Most stations show a long term trend of visibility increase, which is indicative of reductions in aerosol pollution, especially in urban areas. Additionally, results at all sites show a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosols to scatter radiation and hence impact upon visibility. The dependence of visibility on other meteorological parameters (e.g. wind speed, wind direction) is also investigated. To explain the long term visibility trends and their dependence on meteorological conditions, a light extinction model was constructed incorporating the concentrations and composition of historic aerosol. The lack of historic aerosol size distributions and aerosol composition data, which determine hygroscopicity and refractive index, leads to an under-constrained model. Aerosol measurements from the last 10 years are used to constrain these model parameters, and hence their historical variation can be estimated; sensitivity analyses are used to estimate errors for the time period before regular aerosol measurements are available. This work has generated a unique 60 year data set with which to understand how aerosol concentration and composition has varied over the UK. The model is applicable and easily transferrable to other data sets worldwide. Hence, different clean air legislation can be assessed for its effectiveness in reducing aerosol pollution. The implications for the UK will be discussed.
NASA Astrophysics Data System (ADS)
Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.
2016-12-01
The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most recent CMIP5 global climate model data output.
Predictability Analysis of PM10 Concentrations in Budapest
NASA Astrophysics Data System (ADS)
Ferenczi, Zita
2013-04-01
Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.
NASA Astrophysics Data System (ADS)
Papadavid, G.; Hadjimitsis, D.; Michaelides, S.; Nisantzi, A.
2011-05-01
Cyprus is frequently confronted with severe droughts and the need for accurate and systematic data on crop evapotranspiration (ETc) is essential for decision making, regarding water irrigation management and scheduling. The aim of this paper is to highlight how data from meteorological stations in Cyprus can be used for monitoring and determining the country's irrigation demands. This paper shows how daily ETc can be estimated using FAO Penman-Monteith method adapted to satellite data and auxiliary meteorological parameters. This method is widely used in many countries for estimating crop evapotranspiration using auxiliary meteorological data (maximum and minimum temperatures, relative humidity, wind speed) as inputs. Two case studies were selected in order to determine evapotranspiration using meteorological and low resolution satellite data (MODIS - TERRA) and to compare it with the results of the reference method (FAO-56) which estimates the reference evapotranspiration (ETo) by using only meteorological data. The first approach corresponds to the FAO Penman-Monteith method adapted for using both meteorological and remotely sensed data. Furthermore, main automatic meteorological stations in Cyprus were mapped using Geographical Information System (GIS). All the agricultural areas of the island were categorized according to the nearest meteorological station which is considered as "representative" of the area. Thiessen polygons methodology was used for this purpose. The intended goal was to illustrate what can happen to a crop, in terms of water requirements, if meteorological data are retrieved from other than the representative stations. The use of inaccurate data can result in low yields or excessive irrigation which both lead to profit reduction. The results have shown that if inappropriate meteorological data are utilized, then deviations from correct ETc might be obtained, leading to water losses or crop water stress.
NASA Technical Reports Server (NTRS)
Burns, R. E.
1973-01-01
The problem with predicting pollutant diffusion from a line source of arbitrary geometry is treated. The concentration at the line source may be arbitrarily varied with time. Special attention is given to the meteorological inputs which act as boundary conditions for the problem, and a mixing layer of arbitrary depth is assumed. Numerical application of the derived theory indicates the combinations of meteorological parameters that may be expected to result in high pollution concentrations.
Integrating meteorology into research on migration.
Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel
2010-09-01
Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
Application of stepwise multiple regression techniques to inversion of Nimbus 'IRIS' observations.
NASA Technical Reports Server (NTRS)
Ohring, G.
1972-01-01
Exploratory studies with Nimbus-3 infrared interferometer-spectrometer (IRIS) data indicate that, in addition to temperature, such meteorological parameters as geopotential heights of pressure surfaces, tropopause pressure, and tropopause temperature can be inferred from the observed spectra with the use of simple regression equations. The technique of screening the IRIS spectral data by means of stepwise regression to obtain the best radiation predictors of meteorological parameters is validated. The simplicity of application of the technique and the simplicity of the derived linear regression equations - which contain only a few terms - suggest usefulness for this approach. Based upon the results obtained, suggestions are made for further development and exploitation of the stepwise regression analysis technique.
Zhou, Shui S; Huang, Fang; Wang, Jian J; Zhang, Shao S; Su, Yun P; Tang, Lin H
2010-11-24
Malaria still represents a significant public health problem in China, and the cases dramatically increased in the areas along the Huang-Huai River of central China after 2001. Considering spatial aggregation of malaria cases and specific vectors, the geographical, meteorological and vectorial factors were analysed to determine the key factors related to malaria re-emergence in these particular areas. The geographic information of 357 malaria cases and 603 water bodies in 113 villages were collected to analyse the relationship between the residence of malaria cases and water body. Spearman rank correlation, multiple regression, curve fitting and trend analysis were used to explain the relationship between the meteorological factors and malaria incidence. Entomological investigation was conducted in two sites to get the vectorial capacity and the basic reproductive rate to determine whether the effect of vector lead to malaria re-emergence. The distances from household of cases to the nearest water-body was positive-skew distributed, the median was 60.9 m and 74% malaria cases were inhabited in the extent of 60 m near the water body, and the risk rate of people live there attacked by malaria was higher than others(OR = 1.6, 95%CI (1.042, 2.463), P < 0.05). The annual average temperature and rainfall may have close relationship with annual incidence. The average monthly temperature and rainfall were the key factors, and the correlation coefficients are 0.501 and 0.304(P < 0.01), respectively. Moreover, 75.3% changes of monthly malaria incidence contributed to the average monthly temperature (T(mean)), the average temperature of last two months(T(mean₀₁)) and the average rainfall of current month (R(mean)) and the regression equation was Y = -2.085 + 0.839I₁ + 0.998T(mean₀) - 0.86T(mean₀₁) + 0.16R(mean₀). All the collected mosquitoes were Anopheles sinensis. The vectorial capacity and the basic reproductive rate of An. sinensis in two sites were 0.6969, 0.4983 and 2.1604, 1.5447, respectively. The spatial distribution between malaria cases and water-body, the changing of meteorological factors, and increasing vectorial capacity and basic reproductive rate of An. sinensis leaded to malaria re-emergence in these areas.
2010-01-01
Background Malaria still represents a significant public health problem in China, and the cases dramatically increased in the areas along the Huang-Huai River of central China after 2001. Considering spatial aggregation of malaria cases and specific vectors, the geographical, meteorological and vectorial factors were analysed to determine the key factors related to malaria re-emergence in these particular areas. Methods The geographic information of 357 malaria cases and 603 water bodies in 113 villages were collected to analyse the relationship between the residence of malaria cases and water body. Spearman rank correlation, multiple regression, curve fitting and trend analysis were used to explain the relationship between the meteorological factors and malaria incidence. Entomological investigation was conducted in two sites to get the vectorial capacity and the basic reproductive rate to determine whether the effect of vector lead to malaria re-emergence. Results The distances from household of cases to the nearest water-body was positive-skew distributed, the median was 60.9 m and 74% malaria cases were inhabited in the extent of 60 m near the water body, and the risk rate of people live there attacked by malaria was higher than others(OR = 1.6, 95%CI (1.042, 2.463), P < 0.05). The annual average temperature and rainfall may have close relationship with annual incidence. The average monthly temperature and rainfall were the key factors, and the correlation coefficients are 0.501 and 0.304(P < 0.01), respectively. Moreover, 75.3% changes of monthly malaria incidence contributed to the average monthly temperature (Tmean), the average temperature of last two months(Tmean01) and the average rainfall of current month (Rmean) and the regression equation was Y = -2.085 + 0.839I1 + 0.998Tmean0 - 0.86Tmean01 + 0.16Rmean0. All the collected mosquitoes were Anopheles sinensis. The vectorial capacity and the basic reproductive rate of An. sinensis in two sites were 0.6969, 0.4983 and 2.1604, 1.5447, respectively. Conclusion The spatial distribution between malaria cases and water-body, the changing of meteorological factors, and increasing vectorial capacity and basic reproductive rate of An. sinensis leaded to malaria re-emergence in these areas. PMID:21092326
NASA Astrophysics Data System (ADS)
Vorontsov, V.; Pichkhadze, K.; Polyakov, A.
2002-01-01
Martian meteorological lander (MML) is dedicated for landing onto the Mars surface with the purpose to carry on the monitoring of Mars atmosphere condition at a landing point during one Martian year. MML is supposed to become the basic element of a global net of meteorological mini stations and will permit to observe the dynamics of Martian atmosphere parameters changes during a long time duration. The main scientific tasks of MML are as follows: -study of vertical structure of Mars atmosphere during MML descending; -meteorological observations on Mars surface during one Martian year. One of the essential factor influencing to the lander design is descent trajectory design. During the preliminary phase of development five (5) options of MML were considered. In our opinion, these variants provide the accomplishment of the above-mentioned tasks with a high effectiveness. Joined into the first group, variants with parachute system and with Inflatable Air Brakes+Inflatable Airbag are similar in arranging of pre-landing braking stage and completely analogous in landing by means of airbags. The usage of additional Inflatable Braking Unit (IBU) in the second variant does not affect the procedure of braking - decreasing of velocity by the moment of touching the surface due to decreasing of ballistic parameter Px. A distinctive feature of MML development variants of other three concepts is the presence of Inflatable Braking Unit (IBU) in their configurations (IBU is rigidly joined with landing module up to the moment of its touching the surface). Besides, in variant with the tore-shaped IBU it acts as a shock- absorbing unit. In two options, Inflatable Braking Shock-Absorbing Unit (IBSAU) (or IBU) releases the surface module after its landing at the moment of IBSAU (or IBU) elastic recoil. Variants of this concept are equal in terms of mass (approximately 15 kg). For variants of concepts with IBU the landing velocity is up to50-70 m/s. Stations of last three options are much more reliable in comparison with MML of first and second options because their functional diagram is realized by operation of 3-4 (instead of 8-10 for MML of first and second concepts) executive devices. A distinctive moment for MML of last three concepts , namely for variants 3 and 5, is the final stage of landing stipulated by penetration of forebody into the soil. Such a profile of landing was taken into account during the development of one of the landing vehicles for the "MARS-96" SC. This will permit to implement simple technical decisions for putting the meteorological complex into operation and to carry out its further operations on the surface. After comparative analysis of 5 concepts for the more detailed development concepts with parachute system and with IBU and penetration unit have been chosen as most prospective. However, finally, on the next step the new modification of the lander (hybrid version of third and fifth option with inflatable braking device and penetrating unit) has been proposed and chosen for the next step of development. The several small stations should be transported to Mars in frameworks of Scout Mars mission, or Phobos Sample Return mission as piggyback payload.
Application of troposphere model from NWP and GNSS data into real-time precise positioning
NASA Astrophysics Data System (ADS)
Wilgan, Karina; Hadas, Tomasz; Kazmierski, Kamil; Rohm, Witold; Bosy, Jaroslaw
2016-04-01
The tropospheric delay empirical models are usually functions of meteorological parameters (temperature, pressure and humidity). The application of standard atmosphere parameters or global models, such as GPT (global pressure/temperature) model or UNB3 (University of New Brunswick, version 3) model, may not be sufficient, especially for positioning in non-standard weather conditions. The possible solution is to use regional troposphere models based on real-time or near-real time measurements. We implement a regional troposphere model into the PPP (Precise Point Positioning) software GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) developed at Wroclaw University of Environmental and Life Sciences. The software is capable of processing static and kinematic multi-GNSS data in real-time and post-processing mode and takes advantage of final IGS (International GNSS Service) products as well as IGS RTS (Real-Time Service) products. A shortcoming of PPP technique is the time required for the solution to converge. One of the reasons is the high correlation among the estimated parameters: troposphere delay, receiver clock offset and receiver height. To efficiently decorrelate these parameters, a significant change in satellite geometry is required. Alternative solution is to introduce the external high-quality regional troposphere delay model to constrain troposphere estimates. The proposed model consists of zenith total delays (ZTD) and mapping functions calculated from meteorological parameters from Numerical Weather Prediction model WRF (Weather Research and Forecasting) and ZTDs from ground-based GNSS stations using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zurich.
NASA Astrophysics Data System (ADS)
Park, J.; Lim, Y. J.; Sung, J. H.; Kang, H. S.
2017-12-01
The widely used meteorological drought index, the Standardized Precipitation Index (SPI) basically assumes stationarity, but recent change in the climate have led to a need to review this hypothesis. In this study, a new non-stationary SPI that considers not only the modified probability distribution parameter but also the return period under the non-stationary process has been proposed. The results are evaluated for two severe drought cases during the last 10 years in South Korea. As a result, SPIs considered the non-stationary hypothesis underestimated the drought severity than the stationary SPI despite these past two droughts were recognized as significantly severe droughts. It may be caused by that the variances of summer and autumn precipitation become larger over time then it can make the shape of probability distribution function wider than before. This understanding implies that drought expressions by statistical index such as SPI can be distorted by stationary assumption and cautious approach is needed when deciding drought level considering climate changes.
NASA Astrophysics Data System (ADS)
Park, Junehyeong; Sung, Jang Hyun; Lim, Yoon-Jin; Kang, Hyun-Suk
2018-05-01
The widely used meteorological drought index, the Standardized Precipitation Index (SPI), basically assumes stationarity, but recent changes in the climate have led to a need to review this hypothesis. In this study, a new non-stationary SPI that considers not only the modified probability distribution parameter but also the return period under the non-stationary process was proposed. The results were evaluated for two severe drought cases during the last 10 years in South Korea. As a result, SPIs considered that the non-stationary hypothesis underestimated the drought severity than the stationary SPI despite that these past two droughts were recognized as significantly severe droughts. It may be caused by that the variances of summer and autumn precipitation become larger over time then it can make the probability distribution wider than before. This implies that drought expressions by statistical index such as SPI can be distorted by stationary assumption and cautious approach is needed when deciding drought level considering climate changes.
Early warning and crop condition assessment research
NASA Technical Reports Server (NTRS)
Boatwright, G. O.; Whitehead, V. S.
1986-01-01
The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.
Gunaseelan, Indira; Bhaskar, B Vijay; Muthuchelian, K
2014-01-01
Rainfall is a key link in the global water cycle and a proxy for changing climate; therefore, proper assessment of the urban environment's impact on rainfall will be increasingly important in ongoing climate diagnostics and prediction. Aerosol optical depth (AOD) measurements on the monsoon seasons of the years 2008 to 2010 were made over four metro regional hotspots in India. The highest average of AOD was in the months of June and July for the four cities during 3 years and lowest was in September. Comparing the four regions, Kolkata was in the peak of aerosol contamination and Chennai was in least. Pearson correlation was made between AOD with climatic parameters. Some changes in the parameters were found during drought year. Temperature, cloud parameters, and humidity play an important role for the drought conditions. The role of aerosols, meteorological parameters, and their impacts towards the precipitation during the monsoon was studied.
Land-Sea-Atmosphere Interaction and Their Association with Drought Conditions
NASA Astrophysics Data System (ADS)
Singh, R. P.; Nath, A.
2017-12-01
Detailed analysis of satellite data for the period 2002-2016 provides an understanding of the land-sea interaction and its association with the vegetation conditions over the Indian continent. The Indian Ocean dipole (IOD) phenomenon is also considered to understand the atmospheric dynamics and meteorological parameters. GPS water vapor and meteorological parameters (relative humidity and water vapor) from the Indian Institute of Science (IISC) Bangalore have been considered for meteorological data for the period 2008-2016. Atmospheric parameters (water vapor, precipitation rate, land temperature, total ozone column) have been considered using through NASA Giovanni portal and GPS water vapor through SoumiNet data to study relation between Sea Surface temperature (SST) from Indian Ocean, Bay of Bengal and Arabian Sea. Our detailed analysis shows that SST has strong impact on the NDVI at different locations, the maximum impact of SST is observed at lower latitudes. The NDVI over the central and northern India (Indo-Gangetic plains (IGP) is not affected. The SST and NDVI shows high correlation in the central and northern parts, whereas the correlation is poor in the southern parts i.e. close to the ocean. The detailed analysis of NDVI data provides progression of the drought conditions especially in the southern parts of India and also shows impact of the El Nino during 2015-2016.
NASA Astrophysics Data System (ADS)
Jatczak, K.; Linkowska, J.; Rapiejko, P.
2010-09-01
In Poland phenological data is used mainly as a natural indicator of the influence of climate changes on environment. In relation to the growing interest of phenology in scientific research, we substantially extended observation ranges, concentrating mainly on phenophases of selected species that are important for allergology. Phenological data application in complex analysis together with meteorological and aerobiological data, give an opportunity for drawing conclusions on variability of the starting date of pollen season and its dynamics in a meteorological aspect. Species have their regional phenological characteristics, however the characteristics depends on meteorological conditions in a particular year. Therefore, the calculation of pheno-meteorological parameters is important for pollen release prediction. Availability of phenological database can also be useful in the field of preventive health care, through phenological data application in different atmospheric models (NWP models, phenological models, pollen release models) for numerical forecasting of pollen concentration in the air. Genetic conditions, industrial development, increase of air pollution are regarded as the main determinants of allergic diseases. The results of pheno - aero- meteorological analysis enable the estimation of the influence of natural environmental changes on the increasing prevalence of allergic diseases in Poland.
A Summary of the Naval Postgraduate School Research Program
1988-08-30
Teh.(accepted). F. P. Kel lyr C.-F. Shih , D. L. Reinke, and T. H. Vonder Haart "Metric Statistical Comparison of Objective Cloud Detectors," Er...February 5, 1988, Anaheim, CAP American Meteorological Society# Boston, MA. 211 Publications: C.-F. Shih , M. Wentzel, and T. H. Yonder Haar, (cont... Shih , "Estimation of Meteorological Parameters Over Mesoscale Regions from Satel l ite and In Situ Data." Preprints, Third Conference DR Satellite
The Automatic Meteorological Station System AN/TMQ-30 ( ).
1982-08-01
network, the station electronics initiate the above operating sequence. 3.2.1 Meteorological Parameters Vindspeed. Windspeed measurements are made over a...much like a pocket calculator. Provision has been made to enable the operator to set or read the clock of the master station and to * set, modify, or...conditions is occuring during a regular cycle period. A normal report is not made under these conditions. Control is passed to the read data module under
NASA Technical Reports Server (NTRS)
Beverly, R. E., III
1980-01-01
The primary emphasis of this research activity was to investigate the effect of the environment on laser power transmission/reception from space to ground. Potential mitigation techniques to minimize the environment effect by a judicious choice of laser operating parameters was investigated. Using these techniques, the availability of power at selected sites was determined using statistical meteorological data for each site.
NASA Astrophysics Data System (ADS)
Andersen, Hendrik; Cermak, Jan
2015-04-01
This contribution studies the determinants of low cloud properties based on the application of various global observation data sets in machine learning algorithms. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. A main challenge in the research of aerosol-cloud interactions is the separation of aerosol effects from meteorological influence. To gain understanding of the processes that govern low cloud properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, artificial neural networks are used to relate a selection of predictors (meteorological parameters, aerosol loading) to a set of predictands (cloud microphysical and optical properties). As meteorological parameters, wind direction and velocity, sea level pressure, static stability of the lower troposphere, atmospheric water vapour and temperature at the surface are used (re-analysis data by the European Centre for Medium-Range Weather Forecasts). In addition to meteorological conditions, aerosol loading is used as a predictor of cloud properties (MODIS collection 6 aerosol optical depth). The statistical model reveals significant relationships between predictors and predictands and is able to represent the aerosol-cloud-meteorology system better than frequently used bivariate relationships. The most important predictors can be identified by the additional error when excluding one predictor at a time. The sensitivity of each predictand to each of the predictors is analyzed.
NASA Technical Reports Server (NTRS)
OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)
1998-01-01
This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).
NASA Astrophysics Data System (ADS)
Visheratin, K. N.
2016-01-01
We present the results of the analysis of the phase relationships between the quasi-decadal variations (QDVs) (in the range from 8 to 13 years) in the total ozone content (TOC) at the Arosa station for 1932-2012 and a number of meteorological parameters: monthly mean values of temperature, meridional and zonal components of wind velocity, and geopotential heights for isobaric surfaces in the layer of 10-925 hPa over the Arosa station using the Fourier methods and composite and cross-wavelet analysis. It has been shown that the phase relationships of the QDVs in the TOC and meteorological parameters with an 11-year cycle of solar activity change in time and height; starting with cycle 24 of solar activity (2008-2010), the variations in the TOC and a number of meteorological parameters occur in almost counter phase with the variations in solar activity. The periods of the maximum growth rate of the temperature at isobaric surfaces 50-100 hPa nearly correspond to the TOC's maximum periods, and the periods of the maximum temperature correspond the periods of the decrease of the peak TOC rate. The highest correlation coefficients between the meridional wind velocity and temperature are observed at 50 hPa at positive and negative delays of ~27 months. The times of the maxima (minima) of the QDVs in the meridional wind velocity nearly correspond to the periods of the maximum amplification (attenuation) rate of the temperature of the QDVs. The QDVs in the geopotential heights of isobaric surfaces fall behind the variations in the TOC by an average of 1.5 years everywhere except in the lower troposphere. In general, the periods of variations in the TOC and meteorological parameters in the range of 8-13 years are smaller than the period of variations in the level of solar activity.
NASA Astrophysics Data System (ADS)
Macedonio, Giovanni; Costa, Antonio; Scollo, Simona; Neri, Augusto
2015-04-01
Uncertainty in the tephra fallout hazard assessment may depend on different meteorological datasets and eruptive source parameters used in the modelling. We present a statistical study to analyze this uncertainty in the case of a sub-Plinian eruption of Vesuvius of VEI = 4, column height of 18 km and total erupted mass of 5 × 1011 kg. The hazard assessment for tephra fallout is performed using the advection-diffusion model Hazmap. Firstly, we analyze statistically different meteorological datasets: i) from the daily atmospheric soundings of the stations located in Brindisi (Italy) between 1962 and 1976 and between 1996 and 2012, and in Pratica di Mare (Rome, Italy) between 1996 and 2012; ii) from numerical weather prediction models of the National Oceanic and Atmospheric Administration and of the European Centre for Medium-Range Weather Forecasts. Furthermore, we modify the total mass, the total grain-size distribution, the eruption column height, and the diffusion coefficient. Then, we quantify the impact that different datasets and model input parameters have on the probability maps. Results shows that the parameter that mostly affects the tephra fallout probability maps, keeping constant the total mass, is the particle terminal settling velocity, which is a function of the total grain-size distribution, particle density and shape. Differently, the evaluation of the hazard assessment weakly depends on the use of different meteorological datasets, column height and diffusion coefficient.
An investigation of the key parameters for predicting PV soiling losses
Micheli, Leonardo; Muller, Matthew
2017-01-25
One hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination ( R 2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of drymore » periods had the best correlation with the soiling ratio. Lastly, a preliminary investigation of two-variable regressions was attempted and resulted in an adjusted R 2 of 0.90 when a combination of PM 2.5 and a binary classification for the average length of the dry period was introduced.« less
Surface Meteorology and Solar Energy (SSE) Data Release 5.1
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W. (Principal Investigator)
The Surface meteorology and Solar Energy (SSE) data set contains over 200 parameters formulated for assessing and designing renewable energy systems.The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree].
Calibration of the ER-2 meteorological measurement system
NASA Technical Reports Server (NTRS)
Bowen, Stuart W.; Chan, K. Roland; Bui, T. Paul
1991-01-01
The Meteorological Measurement System (MMS) on the high altitude ER-2 aircraft was developed specifically for atmospheric research. The MMS provides accurate measurements of pressure, temperature, wind vector, position (longitude, latitude, altitude), pitch, roll, heading, angle of attack, angle of sideslip, true airspeed, aircraft eastward velocity, northward velocity, vertical acceleration, and time, at a sample rate of 5/s. MMS data products are presented in the form of either 5 or 1 Hz time series. The 1 Hz data stream, generally used by ER-2 investigators, is obtained from the 5 Hz data stream by filtering and desampling. The method of measurement of the meteorological parameters is given and the results of their analyses are discussed.
INDIRECT ESTIMATION OF CONVECTIVE BOUNDARY LAYER STRUCTURE FOR USE IN ROUTINE DISPERSION MODELS
Dispersion models of the convectively driven atmospheric boundary layer (ABL) often require as input meteorological parameters that are not routinely measured. These parameters usually include (but are not limited to) the surface heat and momentum fluxes, the height of the cappin...
Dueñas, C; Fernández, M C; Cañete, S; Carretero, J; Liger, E
2002-11-01
Ozone concentrations are valuable indicators of possible health and environmental impacts. However, they are also used to monitor changes and trends in the sources of both ozone and its precursors. For this purpose, the influence of meteorological variables is a confusing factor. This study presents an analysis of a year of ozone concentrations measured in a coastal Spanish city. Firstly, the aim of this study was to perceive the daily, monthly and seasonal variation patterns of ozone concentrations. Diurnal cycles are presented by season and the fit of the data to a normal distribution is tested. In order to assess ozone behaviour under temperate weather conditions, local meteorological variables (wind direction and speed, temperature, relative humidity, pressure and rainfall) were monitored together with ozone concentrations. The main relationships we could observe in these analyses were then used to obtain a regression equation linking diurnal ozone concentrations in summer with meteorological parameters.
Abstraction the public from scientific - applied meteorological-climatologic data
NASA Astrophysics Data System (ADS)
Trajanoska, L.
2010-09-01
Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific methods for the needed purposes. Hours, days, years and periods with characteristic meanings are separated for the purposes of the comprehensive analyze and application.
Kurowski, Marcin; Jurczyk, Janusz; Moskwa, Sylwia; Jarzębska, Marzanna; Krysztofiak, Hubert; Kowalski, Marek L
2018-01-01
Regular training modulates airway inflammation and modifies susceptibility to respiratory infections. The impact of exercise and ambient conditions on airway hyperreactivity and innate immunity has not been well studied. We aimed to assess exercise-related symptoms, lung function, airway hyperresponsiveness and innate immunity proteins in relation to meteorological conditions and exercise load in competitive athletes. Thirty-six speed skaters were assessed during winter (WTP) and summer (STP) periods. The control group comprised 22 non-exercising subjects. An allergy questionnaire for athletes (AQUA) and IPAQ (International Physical Activity Questionnaire) were used to assess symptoms and exercise. Meteorological parameters were acquired from World Meteorological Organization resources. Serum innate immunity proteins were measured by ELISA. Exercise-associated respiratory symptoms were reported by 79.4% of skaters. Despite similar exercise load and lung parameters during both periods, positive methacholine challenge was more frequent during winter ( p = 0.04). Heat shock protein HSPA1 and IL-1RA were significantly decreased during STP compared to WTP and controls. During WTP, IL-1RA was elevated in skaters reporting exercise-induced symptoms ( p = 0.007). sCD14 was elevated in athletes versus controls in both periods ( p < 0.05). HSPA1 was significantly higher in WTP compared to STP irrespective of presence of respiratory tract infections (RTIs). IL-1RA in WTP was elevated versus STP ( p = 0.004) only in RTI-negative athletes. Serum IL-1RA negatively correlated with most meteorological parameters during WTP. Ambient training conditions, but not training load, influence bronchial hyperreactivity and the innate immune response in competitive athletes assessed during winter. The protective effect of regular exercise against respiratory infections is associated with a shift in serum innate immunity proteins.
A comparison of selected models for estimating cable icing
NASA Astrophysics Data System (ADS)
McComber, Pierre; Druez, Jacques; Laflamme, Jean
In many cold climate countries, it is becoming increasingly important to monitor transmission line icing. Indeed, by knowing in advance of localized danger for icing overloads, electric utilities can take measures in time to prevent generalized failure of the power transmission network. Recently in Canada, a study was made to compare the estimation of a few icing models working from meteorological data in estimating ice loads for freezing rain events. The models tested were using only standard meteorological parameters, i.e. wind speed and direction, temperature and precipitation rate. This study has shown that standard meteorological parameters can only achieve very limited accuracy, especially for longer icing events. However, with the help of an additional instrument monitoring the icing rate intensity, a significant improvement in model prediction might be achieved. The icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe can be used to estimate the icing intensity. A cable icing estimation is then made by taking into consideration the accretion size, temperature, wind speed and direction, and precipitation rate. In this paper, a comparison is made between the predictions of two previously tested models (one obtained and the other reconstructed from their description in the public literature) and of a model based on the icing rate meter readings. The models are tested against nineteen events recorded on an icing test line at Mt. Valin, Canada, during the winter season 1991-1992. These events are mostly rime resulting from in-cloud icing. However, freezing rain and wet snow events were also recorded. Results indicate that a significant improvement in the estimation is attained by using the icing rate meter data together with the other standard meteorological parameters.
Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin
2016-08-10
Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm-661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm-30 nm), Aitken mode (30 nm-100 nm), and accumulation mode (100 nm-661 nm) reached 4923 cm(-3), 12193 cm(-3) and 4801 cm(-3), respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of "repeated, short-lived" nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries.
Urban and regional land use analysis: CARETS and census cities experiment package
NASA Technical Reports Server (NTRS)
Alexander, R. (Principal Investigator); Lins, H. F., Jr.; Gallagher, D. B.
1975-01-01
The author has identified the following significant results. Temperatures in degrees Celsius were derived from PCM counts using the Pease's modified gray window technique. The Outcalt simulator was setup on the USGS computer. The input data to the model are basically meteorological and geographical in nature. The output data is presented in three matrices.
Central American Flying Weather
1985-12-01
CEILING; VISIBILITY; WIND, PRECIPITATIDNc’--." HAZE, SMOKE, TEMPORALE ; MOUNTAIN WAVE; MILITARY METEOROLOGY. 4k- / ’A. bstract; Asummary of~ing weather...1 The " Temporale " ....................................1 Mountain Waves ......................I...............1 Severe Thunderstorms...charts. The for any part of Central America lies in having: Tactical Pilota.e Chart series , produced by the Df -.nse Mapping Agency, is * A good, basic
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This course, adapted from military curriculum materials for use in vocational and technical education, was designed to provide the theory portion of the Marine Science Technician Program. It includes a review of basic subjects, marine biology, oceanography, as well as meteorologic observations and recording. The course consists of a lesson book…
NASA Astrophysics Data System (ADS)
Pehnec, Gordana; Jakovljević, Ivana; Šišović, Anica; Bešlić, Ivan; Vađić, Vladimira
2016-04-01
Concentrations of ten polycyclic aromatic hydrocarbons (PAHs) in the PM10 particle fraction were measured together with ozone and meteorological parameters at an urban site (Zagreb, Croatia) over a one-year period. Data were subjected to regression analysis in order to determine the relationship between the measured pollutants and selected meteorological variables. All of the PAHs showed seasonal variations with high concentrations in winter and autumn and very low concentrations during summer and spring. All of the ten PAHs concentrations also correlated well with each other. A statistically significant negative correlation was found between the concentrations of PAHs and ozone concentrations and concentrations of PAHs and temperature, as well as a positive correlation between concentrations of PAHs and PM10 mass concentration and relative humidity. Multiple regression analysis showed that concentrations of PM10 and ozone, temperature, relative humidity and pressure accounted for 43-70% of PAHs variability. Concentrations of PM10 and temperature were significant variables for all of the measured PAH's concentrations in all seasons. Ozone concentrations were significant for only some of the PAHs, particularly 6-ring PAHs.
Additional applications and related topics, chapter 4, part B
NASA Technical Reports Server (NTRS)
1975-01-01
Satellite mounted microwave instruments and their use to measure surface pressure are investigated. Data cover instrument accuracy, atmospheric transmission, and meteorological parameter determinations.
In situ sensors for measurements in the global trosposphere
NASA Technical Reports Server (NTRS)
Saeger, M. L.; Eaton, W. C.; Wright, R. S.; White, J. H.; Tommerdahl, J. B.
1981-01-01
Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere.
A Summary of Meteorological Parameters During Space Shuttle Pad Exposure Periods
NASA Technical Reports Server (NTRS)
Overbey, Glenn; Roberts, Barry C.
2005-01-01
During the 113 missions of the Space Transportation System (STS), the Space Shuffle fleet has been exposed to the elements on the launch pad for a total of 4195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This paper provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Sources of the surface parameters, including temperature, dew point temperature, relative humidity, wind speed, wind direction, sea level pressure and precipitation are presented. Data is provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.
Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping
2011-06-01
It is a great challenge to specify meteorological forcing in estuarine and coastal circulation modeling using observed data because of the lack of complete datasets. As a result of this limitation, water temperature is often not simulated in estuarine and coastal modeling, with the assumption that density-induced currents are generally dominated by salinity gradients. However, in many situations, temperature gradients could be sufficiently large to influence the baroclinic motion. In this paper, we present an approach to simulate water temperature using outputs from advanced meteorological models. This modeling approach was applied to simulate annual variations of water temperatures of Pugetmore » Sound, a fjordal estuary in the Pacific Northwest of USA. Meteorological parameters from North American Region Re-analysis (NARR) model outputs were evaluated with comparisons to observed data at real-time meteorological stations. Model results demonstrated that NARR outputs can be used to drive coastal ocean models for realistic simulations of long-term water-temperature distributions in Puget Sound. Model results indicated that the net flux from NARR can be further improved with the additional information from real-time observations.« less
Meteorological Decision Assistance.
1981-08-01
500 for labor and materials. The most economical course of action can be determined by computing the cost/loss ratio (C/L) and comparing it to the...interest, a clima - tology of these parameters, the impact of these parameters on the customer’s mission, and the techniques for assessing the probability of
Sensor data monitoring and decision level fusion scheme for early fire detection
NASA Astrophysics Data System (ADS)
Rizogiannis, Constantinos; Thanos, Konstantinos Georgios; Astyakopoulos, Alkiviadis; Kyriazanos, Dimitris M.; Thomopoulos, Stelios C. A.
2017-05-01
The aim of this paper is to present the sensor monitoring and decision level fusion scheme for early fire detection which has been developed in the context of the AF3 Advanced Forest Fire Fighting European FP7 research project, adopted specifically in the OCULUS-Fire control and command system and tested during a firefighting field test in Greece with prescribed real fire, generating early-warning detection alerts and notifications. For this purpose and in order to improve the reliability of the fire detection system, a two-level fusion scheme is developed exploiting a variety of observation solutions from air e.g. UAV infrared cameras, ground e.g. meteorological and atmospheric sensors and ancillary sources e.g. public information channels, citizens smartphone applications and social media. In the first level, a change point detection technique is applied to detect changes in the mean value of each measured parameter by the ground sensors such as temperature, humidity and CO2 and then the Rate-of-Rise of each changed parameter is calculated. In the second level the fire event Basic Probability Assignment (BPA) function is determined for each ground sensor using Fuzzy-logic theory and then the corresponding mass values are combined in a decision level fusion process using Evidential Reasoning theory to estimate the final fire event probability.
Bayesian dynamic modeling of time series of dengue disease case counts
López-Quílez, Antonio; Torres-Prieto, Alexander
2017-01-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Rahman, Rosnani
2016-02-01
Global Positioning System (GPS) receivers are widely installed throughout the Peninsular Malaysia, but the implementation for monitoring weather hazard system such as flash flood is still not optimal. To increase the benefit for meteorological applications, the GPS system should be installed in collocation with meteorological sensors so the precipitable water vapor (PWV) can be measured. The distribution of PWV is a key element to the Earth's climate for quantitative precipitation improvement as well as flash flood forecasts. The accuracy of this parameter depends on a large extent on the number of GPS receiver installations and meteorological sensors in the targeted area. Due to cost constraints, a spatial interpolation method is proposed to address these issues. In this paper, we investigated spatial distribution of GPS PWV and meteorological variables (surface temperature, relative humidity, and rainfall) by using thin plate spline (tps) and ordinary kriging (Krig) interpolation techniques over the Klang Valley in Peninsular Malaysia (longitude: 99.5°-102.5°E and latitude: 2.0°-6.5°N). Three flash flood cases in September, October, and December 2013 were studied. The analysis was performed using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) to determine the accuracy and reliability of the interpolation techniques. Results at different phases (pre, onset, and post) that were evaluated showed that tps interpolation technique is more accurate, reliable, and highly correlated in estimating GPS PWV and relative humidity, whereas Krig is more reliable for predicting temperature and rainfall during pre-flash flood events. During the onset of flash flood events, both methods showed good interpolation in estimating all meteorological parameters with high accuracy and reliability. The finding suggests that the proposed method of spatial interpolation techniques are capable of handling limited data sources with high accuracy, which in turn can be used to predict future floods.
NASA Astrophysics Data System (ADS)
Khanmohammadi, Neda; Rezaie, Hossein; Montaseri, Majid; Behmanesh, Javad
2017-10-01
The reference evapotranspiration (ET0) plays an important role in water management plans in arid or semi-arid countries such as Iran. For this reason, the regional analysis of this parameter is important. But, ET0 process is affected by several meteorological parameters such as wind speed, solar radiation, temperature and relative humidity. Therefore, the effect of distribution type of effective meteorological variables on ET0 distribution was analyzed. For this purpose, the regional probability distribution of the annual ET0 and its effective parameters were selected. Used data in this research was recorded data at 30 synoptic stations of Iran during 1960-2014. Using the probability plot correlation coefficient (PPCC) test and the L-moment method, five common distributions were compared and the best distribution was selected. The results of PPCC test and L-moment diagram indicated that the Pearson type III distribution was the best probability distribution for fitting annual ET0 and its four effective parameters. The results of RMSE showed that the ability of the PPCC test and L-moment method for regional analysis of reference evapotranspiration and its effective parameters was similar. The results also showed that the distribution type of the parameters which affected ET0 values can affect the distribution of reference evapotranspiration.
NASA Astrophysics Data System (ADS)
López, Laura; Guerrero-Higueras, Ángel Manuel; Sánchez, José Luis; Matía, Pedro; Ortiz de Galisteo, José Pablo; Rodríguez, Vicente; Lorente, José Manuel; Merino, Andrés; Hermida, Lucía; García-Ortega, Eduardo; Fernández-Manso, Oscar
2013-04-01
Evaluating the meteorological alert chain, or, how information is transmitted from the meteorological forecasters to the final users, passing through risk managers, is a useful tool that benefits all the links of the chain, especially the meteorology researchers and forecasters. In fact, the risk managers can help significantly to improve meteorological forecasts in different ways. Firstly, by pointing out the most appropriate type of meteorological format, and its characteristics when representing the meteorological information, consequently improving the interpretation of the already-existing forecasts. Secondly, by pointing out the specific predictive needs in their workplaces related to the type of significant meteorological parameters, temporal or spatial range necessary, meteorological products "custom-made" for each type of risk manager, etc. In order to carry out an evaluation of the alert chain in Castilla y León, we opted for the creation of a Panel of Experts made up of personnel specialized in risk management (Responsible for Protection Civil, Responsible for Alert Services and Hydrological Planning of Hydrographical Confederations, Responsible for highway maintenance, and management of fires, fundamentally). In creating this panel, a total of twenty online questions were evaluated, and the majority of the questions were multiple choice or open-ended. Some of the results show how the risk managers think that it would be interesting, or very interesting, to carry out environmental educational campaigns about the meteorological risks in Castilla y León. Another result is the elevated importance that the risk managers provide to the observation data in real-time (real-time of wind, lightning, relative humidity, combined indices of risk of avalanches, snowslides, index of fires due to convective activity, etc.) Acknowledgements The authors would like to thank the Junta de Castilla y León for its financial support through the project LE220A11-2.
Solving the African Climate Observation Puzzle, and Concurrently Building Capacity
NASA Astrophysics Data System (ADS)
Selker, J. S.; Van De Giesen, N.; Annor, F. O.; Hochreutener, R.; Jachens, E. R.
2017-12-01
The Trans-African Hydro-Meteorological Observatory (TAHMO.org) is directly addressing basic issues of climate observation, climate science, and education through a novel public-private partnership. With 500 stations now reporting from over 20 African countries, TAHMO is the largest single source of continental-scale weather and climate data for Africa. Working directly with national meteorological agencies, TAHMO first builds local human capacity and real-time data to the host country. TAHMO also provides all of these data free of charge to all researchers and teams seeking to develop peer-reviewed scientific contributions. This will be the basis of a whole new level of observation-informed science for the African continent. Most TAHMO stations are housed at African schools, with a local host-teacher who attends to basic day-to-day cleaning. These schools also receive free curricular support providing geographic, mathematical, statistical, hydrologic, and meteorological lessons that connect student to their environment and creates climate-aware citizens, which we believe is the most fundamental element of developing a climate-resilient society. Installation of these stations have been made possible through the support of private companies like IBM and development programmes through the Global Resilience Partnership, World Bank, USAID among others. The availability of these new data sets will help generate more accurate weather forecasts which will be made freely available across the African continent. TAHMO leverages low-cost cell phone data transmission with solid-state sensor technology (provided by the METER corporation) to provide a cost-effective, sustainable, and transformative solution to the climate observation gap in Africa.
NASA Astrophysics Data System (ADS)
Varghese, Saji; Langmann, Baerbel; Ceburnis, Darius; O'Dowd, Colin D.
2011-08-01
Horizontal resolution sensitivity can significantly contribute to the uncertainty in predictions of meteorology and air-quality from a regional climate model. In the study presented here, a state-of-the-art regional scale atmospheric climate-chemistry-aerosol model REMOTE is used to understand the influence of spatial model resolutions of 1.0°, 0.5° and 0.25° on predicted meteorological and aerosol parameters for June 2003 for the European domain comprising North-east Atlantic and Western Europe. Model precipitation appears to improve with resolution while wind speed has shown best results for 0.25° resolution for most of the stations compared with ECAD data. Low root mean square error and spatial bias for surface pressure, precipitation and surface temperature show that the model is very reliable. Spatial and temporal variation in black carbon, primary organic carbon, sea-salt and sulphate concentrations and their burden are presented. In most cases, chemical species concentrations at the surface show no particular trend or improvement with increase in resolution. There has been a pronounced influence of horizontal resolution on the vertical distribution pattern of some aerosol species. Some of these effects are due to the improvement in topographical details, flow characteristics and associated vertical and horizontal dynamic processes. The different sink processes have contributed very differently to the various aerosol species in terms of deposition (wet and dry) and sedimentation which are strongly linked to the meteorological processes. Overall, considering the performance of meteorological parameters and chemical species concentrations, a horizontal model resolution of 0.5° is suggested to achieve reasonable results within the limitations of this model.
Silva, Denise R; Viana, Vinícius P; Müller, Alice M; Livi, Fernando P; Dalcin, Paulo de Tarso R
2014-01-01
Background Respiratory viral infections (RVIs) are the most common causes of respiratory infections. The prevalence of respiratory viruses in adults is underestimated. Meteorological variations and air pollution are likely to play a role in these infections. Objectives The objectives of this study were to determine the number of emergency visits for influenza-like illness (ILI) and severe acute respiratory infection (SARI) and to evaluate the association between ILI/SARI, RVI prevalence, and meteorological factors/air pollution, in the city of Porto Alegre, Brazil, from November 2008 to October 2010. Methods Eleven thousand nine hundred and fifty-three hospitalizations (adults and children) for respiratory symptoms were correlated with meteorological parameters and air pollutants. In a subset of adults, nasopharyngeal aspirates were collected and analyzed through IFI test. The data were analyzed using time-series analysis. Results Influenza-like illness and SARI were diagnosed in 3698 (30·9%) and 2063 (17·7%) patients, respectively. Thirty-seven (9·0%) samples were positive by IFI and 93 of 410 (22·7%) were IFI and/or PCR positive. In a multivariate logistic regression model, IFI positivity was statistically associated with absolute humidity, use of air conditioning, and presence of mold in home. Sunshine duration was significantly associated with the frequency of ILI cases. For SARI cases, the variables mean temperature, sunshine duration, relative humidity, and mean concentration of pollutants were singnificant. Conclusions At least 22% of infections in adult patients admitted to ER with respiratory complaints were caused by RVI. The correlations among meteorological variables, air pollution, ILI/SARI cases, and respiratory viruses demonstrated the relevance of climate factors as significant underlying contributors to the prevalence of RVI. PMID:24034701
Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng
2014-04-01
On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumenthal, D.L.; Tommerdahl, J.B.; McDonald, J.A.
1981-09-01
As part of the EPRI sulfate regional experiment (SURE), Meteorology Research, Inc., (MRI) and Research Triangle Institute (RTI) conducted six air quality sampling programs in the eastern United States using instrumented aircraft. This volume includes the air quality and meteorological data obtained during the August 1977 Intensive when MRI sampled near the Rockport, Indiana, SURE Station and RTI sampled near the Duncan Falls, Ohio, SURE Station. Sampling data are presented for all measured parameters.
NARSTO EPA SS BALTIMORE JHU MET DATA
Atmospheric Science Data Center
2018-04-09
... Meteorological Station Instrument: Temperature Probe Humidity Probe Cup Anemometer Rain Gauge Sonic ... E arthdata Search Parameters: Air Temperature Humidity Surface Winds Precipitation Amount Heat Flux ...
Rajačić, M M; Todorović, D J; Krneta Nikolić, J D; Janković, M M; Djurdjević, V S
2016-09-01
Air sample monitoring in Serbia, Belgrade started in the 1960s, while (7)Be activity in air and total (dry and wet) deposition has been monitored for the last 22 years by the Environment and Radiation Protection Department of the Institute for Nuclear Sciences, Vinca. Using this data collection, the changes of the (7)Be activity in the air and the total (wet and dry) deposition samples, as well as their correlation with meteorological parameters (temperature, pressure, cloudiness, sunshine duration, precipitation and humidity) that affect (7)Be concentration in the atmosphere, were mathematically described using the Fourier analysis. Fourier analysis confirmed the expected; the frequency with the largest intensity in the harmonic spectra of the (7)Be activity corresponds to a period of 1 year, the same as the largest intensity frequency in Fourier series of meteorological parameters. To analyze the quality of the results produced by the Fourier analysis, we compared the measured values of the parameters with the values calculated according to the Fourier series. Absolute deviations between measured and predicted mean monthly values are in range from 0.02 mBq/m(3) to 0.7 mBq/m(3) for (7)Be activity in air, and 0.01 Bq/m(2) and 0.6 Bq/m(2) for (7)Be activity in deposition samples. Relatively good agreement of measured and predicted results offers the possibility of prediction of the (7)Be activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regional yield predictions of malting barley by remote sensing and ancillary data
NASA Astrophysics Data System (ADS)
Weissteiner, Christof J.; Braun, Matthias; Kuehbauch, Walter
2004-02-01
Yield forecasts are of high interest to the malting and brewing industry in order to allow the most convenient purchasing policy of raw materials. Within this investigation, malting barley yield forecasts (Hordeum vulgare L.) were performed for typical growing regions in South-Western Germany. Multisensoral and multitemporal Remote Sensing data on one hand and ancillary meteorological, agrostatistical, topographical and pedological data on the other hand were used as input data for prediction models, which were based on an empirical-statistical modeling approach. Since spring barley production is depending on acreage and on the yield per area, classification is needed, which was performed by a supervised multitemporal classification algorithm, utilizing optical Remote Sensing data (LANDSAT TM/ETM+). Comparison between a pixel-based and an object-oriented classification algorithm was carried out. The basic version of the yield estimation model was conducted by means of linear correlation of Remote Sensing data (NOAA-AVHRR NDVI), CORINE land cover data and agrostatistical data. In an extended version meteorological data (temperature, precipitation, etc.) and soil data was incorporated. Both, basic and extended prediction systems, led to feasible results, depending on the selection of the time span for NDVI accumulation.
Boesch, Maria; Sefidan, Sandra; Annen, Hubert; Ehlert, Ulrike; Roos, Lilian; Van Uum, Stan; Russell, Evan; Koren, Gideon; La Marca, Roberto
2015-01-01
The analysis of hair cortisol concentrations (HCC) is a promising new biomarker for retrospective measurement of chronic stress. The effect of basic military training (BMT) on chronic stress has not yet been reported. The aim of this study was to investigate the effect of 10-week BMT on HCC, while further exploring the role of known and novel covariates. Young healthy male recruits of the Swiss Army participated twice, 10 weeks apart, in data collection (1st examination: n = 177; 2nd examination: n = 105). On two occasions, we assessed HCC, perceived stress and different candidate variables that may affect HCC (e.g. socioeconomic status, meteorological data). Military training increased perceived stress from the first to the second examination, but did not affect HCC. In line with this, there was no correlation between HCC and perceived stress ratings. This could be interpreted as a missing influence of mainly physical stress (e.g. exercise) on HCC. In contrast, significant correlations were found between HCC and ambient temperature, humidity and education. Future studies should control for meteorological data and educational status when examining HCC.
How do scientists respond to anomalies? Different strategies used in basic and applied science.
Trickett, Susan Bell; Trafton, J Gregory; Schunn, Christian D
2009-10-01
We conducted two in vivo studies to explore how scientists respond to anomalies. Based on prior research, we identify three candidate strategies: mental simulation, mental manipulation of an image, and comparison between images. In Study 1, we compared experts in basic and applied domains (physics and meteorology). We found that the basic scientists used mental simulation to resolve an anomaly, whereas applied science practitioners mentally manipulated the image. In Study 2, we compared novice and expert meteorologists. We found that unlike experts, novices used comparison to address anomalies. We discuss the nature of expertise in the two kinds of science, the relationship between the type of science and the task performed, and the relationship of the strategies investigated to scientific creativity. Copyright © 2009 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Kalabokas, Pavlos; Repapis, Christos; Mihalopoulos, Nikos; Zerefos, Christos
2017-04-01
For the identification of the nature of spring and summertime ozone episodes, rural ozone measurements from the Eastern Mediterranean station of Finokalia-Crete, Greece during the first 4-year period of its record (1998-2001) have been analyzed with emphasis on periods of high ozone concentrations, according to the daily variation of the afternoon (12:00 - 18:00) ozone values. For the 7% highest spring and summertime ozone episodes composite NOAA/ESRL reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical wind velocity omega, vector wind speed and temperature) have been examined together with their corresponding HYSPLIT back trajectories. This work is a continuation of a previous first approach regarding summer highest and lowest surface ozone episodes in Finokalia and other Central and Eastern Mediterranean stations (Kalabokas et al., 2008), which is now extended to more meteorological parameters and higher pressure levels. The results show that the examined synoptic meteorological condition during springtime ozone episodes over the Eastern Mediterranean station of Finokalia are quite similar with those conditions during high ozone springtime episodes observed at rural stations over the Western Mediterranean (Kalabokas et al., 2016). On the other hand the summer time synoptic conditions corresponding to highest surface ozone episodes at Finokalia are comparable with the conditions encountered during highest ozone episodes in the lower troposphere following analysis of MOZAIC vertical profiles over the Aegean Sea and the Eastern Mediterranean (Kalabokas et al., 2015 and references therein). During the highest ozone episodes, for both examined seasons, the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high and low pressure synoptic meteorological systems. References Kalabokas, P. D., Mihalopoulos, N., Ellul, R., Kleanthous, S., and Repapis, C. C., 2008. An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean, Atmos. Environ., 42, 7894-7906. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.
NASA Astrophysics Data System (ADS)
Timuhins, Andrejs; Bethers, Uldis; Bethers, Peteris; Klints, Ilze; Sennikovs, Juris; Frishfelds, Vilnis
2017-04-01
In a changing climate it is essential to estimate its impacts on different economic fields. In our study we tried to create a framework for climate change assessment and climate change impact estimation for the territory of Latvia and to create results which are also understandable for non-scientists (stakeholder, media and public). This approach allowed us to more carefully assess the presentation and interpretation of results and their validation, for public viewing. For the presentation of our work a website was created (www.modlab.lv/klimats) containing two types of documents in a unified framework, meteorological parameter analysis of different easily interpretable derivative values. Both of these include analysis of the current situation as well as illustrate the projection for future time periods. Derivate values are calculated using two data sources: the bias corrected regional climate data and meteorological observation data. Derivative documents contain description of derived value, some interesting facts and conclusions. Additionally, all results may be viewed in temporal and spatial graphs and maps, for different time periods as well as different seasons. Bias correction (Sennikovs and Bethers, 2009) for the control period 1961-1990 is applied to RCM data series. Meteorological observation data of the Latvian Environment, Geology, and Meteorology Agency and ENSEMBLES project daily data of 13 RCM runs for the period 1960-2100 are used. All the documents are prepared in python notebooks, which allow for flexible changes. At the moment following derivative values have been published: forest fire risk index, wind energy, phenology (Degree days), road condition (friction, ice conditions), daily minimal meteorological visibility, headache occurrence rate, firs snow date and meteorological parameter analysis: temperature, precipitation, wind speed, relative humidity, and cloudiness. While creating these products RCM ability to represent the actual climate was analysed from different perspectives, for example, we found that forest fire index has qualitative differences depending on the data used in calculation either using observed data or RCM data, which could be caused by the differences in precipitation and temperature cross correlation (Bethers, P., Sennikovs, J. and Timuhins, A. 2011) The present work has been funded by the Latvian National Research Program on the "The value and dynamic of Latvia's ecosystems under changing climate" (EVIDEnT). References Sennikovs, J. and Bethers, U. (2009), Statistical downscaling method of regional climate model results for hydrological modelling. 18th World IMACS / MODSIM Congress, Cairns, Australia Bethers, P., Sennikovs, J. and Timuhins, A. (2011), Skill assessment of regional climate models:T/P correlations impacts on hydrological modeling. Geophysical Research Abstracts Vol. 13, EGU2011-7068, 2011 EGU General Assembly 2011
Atmospheric environment for Space Shuttle (STS-5) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1983-01-01
This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.
NASA Technical Reports Server (NTRS)
1981-01-01
Progress in the study of the intensity of the urban heat island is reported. The intensity of the heat island is commonly defined as the temperature difference between the center of the city and the surrounding suburban and rural regions. The intensity is considered as a function of changes in the season and changes in meteorological conditions in order to derive various parameters which may be used in numerical models for urban climate. Twelve case studies were selected and CCT's were ordered. In situ data was obtained from sixteen stations scattered about the city of St. Louis. Upper-air meteorological data were obtained and the water vapor and the temperature data were processed. Atmospheric transmissivities were computed for each of the case studies.
An analysis of the first two years of GASP data. [Global Atmospheric Sampling Program
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.
1978-01-01
Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes. The GASP water vapor data, analyzed with respect to the location of the tropopause, correlates well with the simultaneously obtained ozone and cloud data.
Grid-based Meteorological and Crisis Applications
NASA Astrophysics Data System (ADS)
Hluchy, Ladislav; Bartok, Juraj; Tran, Viet; Lucny, Andrej; Gazak, Martin
2010-05-01
We present several applications from domain of meteorology and crisis management we developed and/or plan to develop. Particularly, we present IMS Model Suite - a complex software system designed to address the needs of accurate forecast of weather and hazardous weather phenomena, environmental pollution assessment, prediction of consequences of nuclear accident and radiological emergency. We discuss requirements on computational means and our experiences how to meet them by grid computing. The process of a pollution assessment and prediction of the consequences in case of radiological emergence results in complex data-flows and work-flows among databases, models and simulation tools (geographical databases, meteorological and dispersion models, etc.). A pollution assessment and prediction requires running of 3D meteorological model (4 nests with resolution from 50 km to 1.8 km centered on nuclear power plant site, 38 vertical levels) as well as running of the dispersion model performing the simulation of the release transport and deposition of the pollutant with respect to the numeric weather prediction data, released material description, topography, land use description and user defined simulation scenario. Several post-processing options can be selected according to particular situation (e.g. doses calculation). Another example is a forecasting of fog as one of the meteorological phenomena hazardous to the aviation as well as road traffic. It requires complicated physical model and high resolution meteorological modeling due to its dependence on local conditions (precise topography, shorelines and land use classes). An installed fog modeling system requires a 4 time nested parallelized 3D meteorological model with 1.8 km horizontal resolution and 42 levels vertically (approx. 1 million points in 3D space) to be run four times daily. The 3D model outputs and multitude of local measurements are utilized by SPMD-parallelized 1D fog model run every hour. The fog forecast model is a subject of the parameterization and parameter optimization before its real deployment. The parameter optimization requires tens of evaluations of the parameterized model accuracy and each evaluation of the model parameters requires re-running of the hundreds of meteorological situations collected over the years and comparison of the model output with the observed data. The architecture and inherent heterogeneity of both examples and their computational complexity and their interfaces to other systems and services make them well suited for decomposition into a set of web and grid services. Such decomposition has been performed within several projects we participated or participate in cooperation with academic sphere, namely int.eu.grid (dispersion model deployed as a pilot application to an interactive grid), SEMCO-WS (semantic composition of the web and grid services), DMM (development of a significant meteorological phenomena prediction system based on the data mining), VEGA 2009-2011 and EGEE III. We present useful and practical applications of technologies of high performance computing. The use of grid technology provides access to much higher computation power not only for modeling and simulation, but also for the model parameterization and validation. This results in the model parameters optimization and more accurate simulation outputs. Having taken into account that the simulations are used for the aviation, road traffic and crisis management, even small improvement in accuracy of predictions may result in significant improvement of safety as well as cost reduction. We found grid computing useful for our applications. We are satisfied with this technology and our experience encourages us to extend its use. Within an ongoing project (DMM) we plan to include processing of satellite images which extends our requirement on computation very rapidly. We believe that thanks to grid computing we are able to handle the job almost in real time.
NASA Technical Reports Server (NTRS)
Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Stackhouse, Paul W., Jr.
2013-01-01
A primary objective of NASA's Prediction of Worldwide Energy Resource (POWER) project is to adapt and infuse NASA's solar and meteorological data into the energy, agricultural, and architectural industries. Improvements are continuously incorporated when higher resolution and longer-term data inputs become available. Climatological data previously provided via POWER web applications were three-hourly and 1x1 degree latitude/longitude. The NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) data set provides higher resolution data products (hourly and 1/2x1/2 degree) covering the entire globe. Currently POWER solar and meteorological data are available for more than 30 years on hourly (meteorological only), daily, monthly and annual time scales. These data may be useful to several renewable energy sectors: solar and wind power generation, agricultural crop modeling, and sustainable buildings. A recent focus has been working with ASHRAE to assess complementing weather station data with MERRA data. ASHRAE building design parameters being investigated include heating/cooling degree days and climate zones.
Hinkle, M.E.
1991-01-01
To increase understanding of natural variations in soil gas concentrations, CO2, He, O2 and N2 were measured in soil gases collected regularly for several months from four sites at the Roosevelt Hot Springs Known Geothermal Resource Area, Utah. Soil temperature, air temperature, per cent relative humidity, barometric pressure and amounts of rain and snowfall were also monitored to determine the effect of meteorological parameters on concentrations of the measured gases. Considerable seasonal variation existed in concentrations of CO2 and He. The parameters that most affected the soil-gas concentrations were soil and air temperatures. Moisture from rain and snow probably affected the soil-gas concentrations also. However, annual variations in meteorological parameters did not appear to affect measurements of anomalous concentrations in samples collected within a time period of a few days. Production from some of the geothermal wells probably affected the soil-gas concentrations. ?? 1990.
NASA Astrophysics Data System (ADS)
Lin, J.-T.; Liu, Z.; Zhang, Q.; Liu, H.; Mao, J.; Zhuang, G.
2012-12-01
Errors in chemical transport models (CTMs) interpreting the relation between space-retrieved tropospheric column densities of nitrogen dioxide (NO2) and emissions of nitrogen oxides (NOx) have important consequences on the inverse modeling. They are however difficult to quantify due to lack of adequate in situ measurements, particularly over China and other developing countries. This study proposes an alternate approach for model evaluation over East China, by analyzing the sensitivity of modeled NO2 columns to errors in meteorological and chemical parameters/processes important to the nitrogen abundance. As a demonstration, it evaluates the nested version of GEOS-Chem driven by the GEOS-5 meteorology and the INTEX-B anthropogenic emissions and used with retrievals from the Ozone Monitoring Instrument (OMI) to constrain emissions of NOx. The CTM has been used extensively for such applications. Errors are examined for a comprehensive set of meteorological and chemical parameters using measurements and/or uncertainty analysis based on current knowledge. Results are exploited then for sensitivity simulations perturbing the respective parameters, as the basis of the following post-model linearized and localized first-order modification. It is found that the model meteorology likely contains errors of various magnitudes in cloud optical depth, air temperature, water vapor, boundary layer height and many other parameters. Model errors also exist in gaseous and heterogeneous reactions, aerosol optical properties and emissions of non-nitrogen species affecting the nitrogen chemistry. Modifications accounting for quantified errors in 10 selected parameters increase the NO2 columns in most areas with an average positive impact of 18% in July and 8% in January, the most important factor being modified uptake of the hydroperoxyl radical (HO2) on aerosols. This suggests a possible systematic model bias such that the top-down emissions will be overestimated by the same magnitude if the model is used for emission inversion without corrections. The modifications however cannot eliminate the large model underestimates in cities and other extremely polluted areas (particularly in the north) as compared to satellite retrievals, likely pointing to underestimates of the a priori emission inventory in these places with important implications for understanding of atmospheric chemistry and air quality. Note that these modifications are simplified and should be interpreted with caution for error apportionment.
NASA Astrophysics Data System (ADS)
Smirnov, S. E.; Mikhailova, G. A.; Mikhailov, Yu. M.; Kapustina, O. V.
2017-09-01
The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, M = 8.3; January 13, 2007, M = 8.1; January 30, 2016, M = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six-seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of "winter thunderstorm" conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.
Effect of spatial averaging on multifractal properties of meteorological time series
NASA Astrophysics Data System (ADS)
Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika
2016-04-01
Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Peter
2014-01-24
This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.
The optical slit sensor as a standard sensor for spacecraft attitude determination
NASA Technical Reports Server (NTRS)
Wertz, J.
1975-01-01
The basic concept of an optical slit sensor as a standard altitude sensor is considered for any missions using a spinning spacecraft or where rotating sensors or mirrors could be used. Information available from a single sensor or from two sensors is analyzed. A standard slit sensor package is compared with the altitude package flown on the first synchronous meteorological satellite.
The influence of weather on migraine – are migraine attacks predictable?
Hoffmann, Jan; Schirra, Tonio; Lo, Hendra; Neeb, Lars; Reuter, Uwe; Martus, Peter
2015-01-01
Objective The study aimed at elucidating a potential correlation between specific meteorological variables and the prevalence and intensity of migraine attacks as well as exploring a potential individual predictability of a migraine attack based on meteorological variables and their changes. Methods Attack prevalence and intensity of 100 migraineurs were correlated with atmospheric pressure, relative air humidity, and ambient temperature in 4-h intervals over 12 consecutive months. For each correlation, meteorological parameters at the time of the migraine attack as well as their variation within the preceding 24 h were analyzed. For migraineurs showing a positive correlation, logistic regression analysis was used to assess the predictability of a migraine attack based on meteorological information. Results In a subgroup of migraineurs, a significant weather sensitivity could be observed. In contrast, pooled analysis of all patients did not reveal a significant association. An individual prediction of a migraine attack based on meteorological data was not possible, mainly as a result of the small prevalence of attacks. Interpretation The results suggest that only a subgroup of migraineurs is sensitive to specific weather conditions. Our findings may provide an explanation as to why previous studies, which commonly rely on a pooled analysis, show inconclusive results. The lack of individual attack predictability indicates that the use of preventive measures based on meteorological conditions is not feasible. PMID:25642431
NASA Astrophysics Data System (ADS)
Takemi, T.; Nomura, S.; Oku, Y.; Ishikawa, H.
2011-12-01
Understanding and forecasting of convective rain due to intense thunderstorms, which develop under conditions both with and without significant synoptic-scale and/or mesoscale forcings, are critical in dealing with disaster prevention/mitigation and developing urban planning appropriate for disaster management. Thunderstorms rapidly develop even during the daytimes of fair weather conditions without any external forcings, and sometimes become strong enough to induce local-scale meteorological disasters such as torrential rain, flush flooding, high winds, and tornadoes/gusts. With the growing interests in climate change, future changes in the behavior of such convectively generated extreme events have gained scientific and societal interests. This study conducted the regional-scale evaluations on the environmental stability conditions for convective rain that develops under synoptically undisturbed, summertime conditions by using the outputs of super-high-resolution AGCM simulations, at a 20-km resolution, for the present, the near-future, and the future climates under global warming with IPCC A1B emission scenario. The GCM, MRI-AGCM3.2S, was developed by Meteorological Research Institute of Japan Meteorological Agency under the KAKUSHIN program funded by the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The climate simulation outputs that were used in this study corresponded to three 25-year periods: 1980-2004 for the present climate; 2020-2044 for the near-future climate; and 2075-2099 for the future climate. The Kanto Plain that includes the Tokyo metropolitan area was chosen as the study area, since the Tokyo metropolitan area is one of the largest metropolises in the world and is vulnerable to extreme weather events. Therefore, one of the purposes of this study was to examine how regional-scale evaluations are performed from the super-high-resolution GCM outputs. After verifying the usefulness of the GCM present-climate outputs with observations and operational mesoscale analyses, we examined, as another purpose of this study, the future changes in the environmental stability for convective rain. To diagnose the environmental conditions, some of the commonly used stability parameters and indices were examined. In the future climates, temperature lapse rate decreased in the lower troposphere, while water vapor mixing ratio increased throughout the deep troposphere. The changes in the temperature and moisture profiles resulted in the increase in both precipitable water vapor and convective available potential energy. These projected changes will be enhanced with the future period. Furthermore, the statistical analyses for the differences of the stability parameters between no-rain and rain days under the synoptically undisturbed condition in each simulated climate period indicated that the environmental conditions in terms of the stability parameters that distinguish no-rain and rain events are basically unchanged between the present and the future climates. This result suggests that the environmental characteristics favorable for afternoon rain events in the synoptically undisturbed environments will not change under global warming.
The USWRP Workshop on the Weather Research Needs of the Private Sector.
NASA Astrophysics Data System (ADS)
Pielke, Roger A., Jr.; Abraham, Jim; Abrams, Elliot; Block, Jim; Carbone, Richard; Chang, David; Droegemeier, Kelvin; Emanuel, Kerry; Friday, Elbert W. Joe, Jr.; Gall, Robert; Gaynor, John; Getz, Rodger R.; Glickman, Todd; Hoggatt, Bradley; Hooke, William H.; Johnson, Edward R.; Kalnay, Eugenia; Kimpel, James Jeff; Kocin, Paul; Marler, Byron; Morss, Rebecca; Nathan, Ravi; Nelson, Steve; Pielke, Roger, Sr.; Pirone, Maria; Prater, Erwin; Qualley, Warren; Simmons, Kevin; Smith, Michael; Thomson, John; Wilson, Greg
2003-07-01
Private sector meteorology is a rapidly growing enterprise. It has been estimated that the provision of weather information has, by some estimates, a global market totaling in the billions of dollars. Further, the decisions based on such information could easily total trillions of dollars in the U.S. economy alone. The private sector clearly plays an important, and growing, role at the interface of weather research and the weather information needs of society. To date, little information has been paid to the connections of the meteorological research community and the scientific needs of the private sector. Thus, the time is ripe to stimulate a more active dialogue between what is generally considered the "basic" research community of physical and social scientists and those individuals and businesses that provide weather information to myriad customers across the U.S. economy. In December 2000, the U.S. Weather Research Program (supported by NSF, NOAA, NASA, and the U.S. Navy) sponsored a workshop in Palm Springs, California, to bring together weather researchers and representatives of private sector meteorology to discuss needs, wants, opportunities, and challenges and how to enhance the linkages between the two relatively detached communities. The workshop focused on developing a better understanding of the relations of research and private sector meteorology, which ultimately means a better understanding of one of the important connections of research and societal needs.
Quality Control of Meteorological Observations
NASA Technical Reports Server (NTRS)
Collins, William; Dee, Dick; Rukhovets, Leonid
1999-01-01
For the first time, a problem of the meteorological observation quality control (QC) was formulated by L.S. Gandin at the Main Geophysical Observatory in the 70's. Later in 1988 L.S. Gandin began adapting his ideas in complex quality control (CQC) to the operational environment at the National Centers for Environmental Prediction. The CQC was first applied by L.S.Gandin and his colleagues to detection and correction of errors in rawinsonde heights and temperatures using a complex of hydrostatic residuals.Later, a full complex of residuals, vertical and horizontal optimal interpolations and baseline checks were added for the checking and correction of a wide range of meteorological variables. some other of Gandin's ideas were applied and substantially developed at other meteorological centers. A new statistical QC was recently implemented in the Goddard Data Assimilation System. The central component of any quality control is a buddy check which is a test of individual suspect observations against available nearby non-suspect observations. A novel feature of this test is that the error variances which are used for QC decision are re-estimated on-line. As a result, the allowed tolerances for suspect observations can depend on local atmospheric conditions. The system is then better able to accept extreme values observed in deep cyclones, jet streams and so on. The basic statements of this adaptive buddy check are described. Some results of the on-line QC including moisture QC are presented.
Making the Introductory Meteorology Class Relevant in a Minority Serving Community College
NASA Astrophysics Data System (ADS)
Marchese, P. J.; Tremberger, G.; Bluestone, C.
2008-12-01
Queensborough Community College (QCC), a constituent campus of the City University of New York (CUNY), has modified the introductory Meteorology Class lecture and lab to include active learning activities and discovery based learning. The modules were developed at QCC and other 4 year colleges and designed to introduce basic physical concepts important in meteorology. The modules consisted of either interactive lecture demonstrations or discovery-based activities. The discovery based activities are intended to have students become familiar with scientific investigation. Students engage in formulating hypotheses, developing and carrying out experiments, and analyzing scientific data. These activities differ from traditional lab experiments in that they avoid "cookbook" procedures and emphasize having the students learn about physical concepts by applying the scientific method. During the interactive lecture demonstrations the instructor describes an experiment/phenomenon that is to be demonstrated in class. Students discuss the phenomenon based on their experiences and make a prediction about the outcome. The class then runs the experiment, makes observations, and compares the expected results to the actual outcome. As a result of these activities students in the introductory Meteorology class scored higher in exams questions measuring conceptual understanding, as well as factual knowledge. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes. All students also had higher self-efficacy scores after the intervention, compared to an unmodified class.
Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09
NASA Technical Reports Server (NTRS)
Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark
2009-01-01
This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keifer, W.S.; Blumenthal, D.L.; Tommerdahl, J.B.
1981-09-01
As part of the EPRI sulfate regional experiment (SURE), Meteorology Research, Inc., (MRI) and Research Triangle Institute (RTI) conducted six air quality sampling programs in the eastern United States using instrumented aircraft. This volume includes the air quality and meteorological data obtained during the January/February 1978 Intensive when MRI sampled near the Duncan Falls, Ohio, SURE Station and RTI sampled near the Lewisburg, Virginia, SURE Station. Sampling data are presented for all measured parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keifer, W.S.; Blumenthal, D.L.; Tommerdahl, J.B.
1981-09-01
As part of the EPRI sulfate regional experiment (SURE), Meteorology Research, Inc., (MRI) and Research Triangle Institute (RTI) conducted six air quality sampling programs in the eastern United States using instrumented aircraft. This volume includes the air quality and meteorological data obtained during the October 1978 intensive when MRI sampled near the Giles County, Tennessee, SURE Station and RTI sampled near the Duncan Falls, Ohio, SURE Station. Sampling data are presented for all measured parameters.
NASA Technical Reports Server (NTRS)
Youngbluth, Otto; Owens, Thomas L.; Storey, Richard W.
1990-01-01
Systems take meteorological measurements for variety of research projects. Report describes work done by NASA Langley Research Center in atmospheric research using tethered balloon systems composed of commercially available equipment. Two separate tethered balloon systems described in report have payloads and configurations tailored to requirements of specific projects. Each system capable of measuring atmospheric parameter or species in situ and then telemetering this data in real time to ground station. Meteorological data and concentration of ozone typically measured. Indicates instrumented tethered balloon systems have distinct advantages over other systems for gathering data on troposphere.
Microwave radiometer studies of atmospheric water over the oceans, volume 2
NASA Technical Reports Server (NTRS)
Katsaros, Kristina B.
1992-01-01
Since the Seasat carried the Scanning Multichannel Microwave Radiometer (SMMR) into space in July of 1978, shortly followed by the SMMR on Nimbus 7, which operated for almost a decade, a new type of data source on atmospheric water vapor and other meteorological parameters has been available for analysis of weather systems over the ocean. Since 1987, we have had the Scanning Multichannel Microwave/Imager (SSM/I) instrument on Defense Meteorological Satellites providing similar data. We present a collection of our work performed over the last years of the study.
NASA Technical Reports Server (NTRS)
Swift, C. T.; Goodberlet, M. A.; Wilkerson, J. C.
1990-01-01
The Defence Meteorological Space Program's (DMSP) Special Sensor Microwave/Imager (SSM/I), an operational wind speed algorithm was developed. The algorithm is based on the D-matrix approach which seeks a linear relationship between measured SSM/I brightness temperatures and environmental parameters. D-matrix performance was validated by comparing algorithm derived wind speeds with near-simultaneous and co-located measurements made by off-shore ocean buoys. Other topics include error budget modeling, alternate wind speed algorithms, and D-matrix performance with one or more inoperative SSM/I channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)
Aerosol and gamma background measurements at Basic Environmental Observatory Moussala
NASA Astrophysics Data System (ADS)
Angelov, Christo; Arsov, Todor; Penev, Ilia; Nikolova, Nina; Kalapov, Ivo; Georgiev, Stefan
2016-03-01
Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW) station Moussala BEO (2925 m a.s.l., 42°10'45'' N, 23°35'07'' E). Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.
Cricket Ball Aerodynamics: Myth Versus Science
NASA Technical Reports Server (NTRS)
Mehta, Rabindra D.; Koga, Demmis J. (Technical Monitor)
2000-01-01
Aerodynamics plays a prominent role in the flight of a cricket ball released by a bowler. The main interest is in the fact that the ball can follow a curved flight path that is not always under the control of the bowler. ne basic aerodynamic principles responsible for the nonlinear flight or "swing" of a cricket ball were identified several years ago and many papers have been published on the subject. In the last 20 years or so, several experimental investigations have been conducted on cricket ball swing, which revealed the amount of attainable swing, and the parameters that affect it. A general overview of these findings is presented with emphasis on the concept of late swing and the effects of meteorological conditions on swing. In addition, the relatively new concept of "reverse" swing, how it can be achieved in practice and the role in it of ball "tampering", are discussed in detail. A discussion of the "white" cricket ball used in last year's World Cup, which supposedly possesses different swing properties compared to a conventional red ball, is also presented.
Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction
NASA Astrophysics Data System (ADS)
Su, X.
2017-12-01
A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.
What Level 2 Products are available?
Atmospheric Science Data Center
2014-12-08
The Aerosol data (MIL2ASAE) contains aerosol optical depth, aerosol compositional model, ancillary meteorological data, and related parameters on a 17.6 km grid. The Land Surface data (MIL2ASLS) includes bihemispherical and...
Spatial interpolation of monthly mean air temperature data for Latvia
NASA Astrophysics Data System (ADS)
Aniskevich, Svetlana
2016-04-01
Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.
González-Parrado, Zulima; Valencia-Barrera, Rosa Ma; Vega-Maray, Ana Ma; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia
2014-09-01
Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11% (1997) to 3% (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.
NASA Astrophysics Data System (ADS)
González-Parrado, Zulima; Valencia-Barrera, Rosa Ma.; Vega-Maray, Ana Ma.; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia
2014-09-01
Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11 % (1997) to 3 % (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.
Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.
2018-04-01
The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.
NASA Astrophysics Data System (ADS)
Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.
2014-12-01
Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2 exchanges.
Zhang, Tianhao; Zhu, Zhongmin; Gong, Wei; Xiang, Hao; Fang, Ruimin
2016-01-01
Atmospheric fine particles (diameter < 1 μm) attract a growing global health concern and have increased in urban areas that have a strong link to nucleation, traffic emissions, and industrial emissions. To reveal the characteristics of fine particles in an industrial city of a developing country, two-year measurements of particle number size distribution (15.1 nm–661 nm), meteorological parameters, and trace gases were made in the city of Wuhan located in central China from June 2012 to May 2014. The annual average particle number concentrations in the nucleation mode (15.1 nm–30 nm), Aitken mode (30 nm–100 nm), and accumulation mode (100 nm–661 nm) reached 4923 cm−3, 12193 cm−3 and 4801 cm−3, respectively. Based on Pearson coefficients between particle number concentrations and meteorological parameters, precipitation and temperature both had significantly negative relationships with particle number concentrations, whereas atmospheric pressure was positively correlated with the particle number concentrations. The diurnal variation of number concentration in nucleation mode particles correlated closely with photochemical processes in all four seasons. At the same time, distinct growth of particles from nucleation mode to Aitken mode was only found in spring, summer, and autumn. The two peaks of Aitken mode and accumulation mode particles in morning and evening corresponded obviously to traffic exhaust emissions peaks. A phenomenon of “repeated, short-lived” nucleation events have been created to explain the durability of high particle concentrations, which was instigated by exogenous pollutants, during winter in a case analysis of Wuhan. Measurements of hourly trace gases and segmental meteorological factors were applied as proxies for complex chemical reactions and dense industrial activities. The results of this study offer reasonable estimations of particle impacts and provide references for emissions control strategies in industrial cities of developing countries. PMID:27517948
Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds
NASA Astrophysics Data System (ADS)
Li, Jiming; Lv, Qiaoyi; Zhang, Min; Wang, Tianhe; Kawamoto, Kazuaki; Chen, Siyu; Zhang, Beidou
2017-02-01
Based on 8 years of (January 2008-December 2015) cloud phase information from the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), aerosol products from CALIPSO and meteorological parameters from the ERA-Interim products, the present study investigates the effects of atmospheric dynamics on the supercooled liquid cloud fraction (SCF) during nighttime under different aerosol loadings at global scale to better understand the conditions of supercooled liquid water gradually transforming to ice phase. Statistical results indicate that aerosols' effect on nucleation cannot fully explain all SCF changes, especially in those regions where aerosols' effect on nucleation is not a first-order influence (e.g., due to low ice nuclei aerosol frequency). By performing the temporal and spatial correlations between SCFs and different meteorological factors, this study presents specifically the relationship between SCF and different meteorological parameters under different aerosol loadings on a global scale. We find that the SCFs almost decrease with increasing of aerosol loading, and the SCF variation is closely related to the meteorological parameters but their temporal relationship is not stable and varies with the different regions, seasons and isotherm levels. Obviously negative temporal correlations between SCFs versus vertical velocity and relative humidity indicate that the higher vertical velocity and relative humidity the smaller SCFs. However, the patterns of temporal correlation for lower-tropospheric static stability, skin temperature and horizontal wind are relatively more complex than those of vertical velocity and humidity. For example, their close correlations are predominantly located in middle and high latitudes and vary with latitude or surface type. Although these statistical correlations have not been used to establish a certain causal relationship, our results may provide a unique point of view on the phase change of mixed-phase cloud and have potential implications for further improving the parameterization of the cloud phase and determining the climate feedbacks.
Carbonaceous aerosols and Impacts on regional climate over South Asia
NASA Astrophysics Data System (ADS)
Pathak, B.; Parottil, A.
2017-12-01
A comprehensive assessment on the effects of carbonaceous aerosols over regional climate of South Asia CORDEX Domain is carried out using the ICTP developed Regional climate model version 4 (RegCM 4.4). Five different simulations considering (a) Carbonaceous aerosols with feedback to meteorological field (EXP1), (b) Carbonaceous aerosols without feedback to meteorological field (c) only Black Carbon with feed back to meteorological field (EXP3) and (d) only Black Carbon without feed back to meteorological field (EXP4) and only meteorology simulation (CNTL) are performed. All the five experiments are integrated from 01 January 2008 to 01 January 2012 continuously with a horizontal resolution of 50 km with first one year as spin up time. The simulated meteorology for all the simulations is validated by comparing with observations. The influence of carbonaceous aerosols on Direct Radiative Forcing (DRF) at the top of the atmosphere (TOA) and within the atmosphere (ATM) over the South Asian region with focus on Indian subcontinent is carried out. The contribution of black carbon to the total DRF and its significance is analyzed. Modulation in precipitation and temperature with the aerosol-climate feedback is studied by comparing the meteorological parameters in CNTL with CARB/BC with and without feedback simulations. In general, black carbon is found to reduce the precipitation, wind over the region more strongly than total carbonaceous aerosols. Role of black carbon in warming the surface is investigated by comparing the RegCM simulation considering both biomass burning and anthropogenic emissions with simulations considering only anthropogenic simulations.
Zhang, Hai Ping; Li, Feng Ri; Dong, Li Hu; Liu, Qiang
2017-06-18
Based on the 212 re-measured permanent plots for natural Betula platyphylla fore-sts in Daxing'an Mountains and Xiaoxing'an Mountains and 30 meteorological stations data, an individual tree growth model based on meteorological factors was constructed. The differences of stand and meteorological factors between Daxing'an Mountains and Xiaoxing'an Mountains were analyzed and the diameter increment model including the regional effects was developed by dummy variable approach. The results showed that the minimum temperature (T g min ) and mean precipitation (P g m ) in growing season were the main meteorological factors which affected the diameter increment in the two study areas. T g min and P g m were positively correlated with the diameter increment, but the influence strength of T g min was obviously different between the two research areas. The adjusted coefficient of determination (R a 2 ) of the diameter increment model with meteorological factors was 0.56 and had an 11% increase compared to the one without meteorological factors. It was concluded that meteorological factors could well explain the diameter increment of B. platyphylla. R a 2 of the model with regional effects was 0.59, and increased by 18% compared to the one without regional effects, and effectively solved the incompatible problem of parameters between the two research areas. The validation results showed that the individual tree diameter growth model with regional effect had the best prediction accuracy in estimating the diameter increment of B. platyphylla. The mean error, mean absolute error, mean error percent and mean prediction error percent were 0.0086, 0.4476, 5.8% and 20.0%, respectively. Overall, dummy variable model of individual tree diameter increment based on meteorological factors could well describe the diameter increment process of natural B. platyphylla in Daxing'an Mountains and Xiaoxing'an Mountains.
A GIS Procedure to Monitor PWV During Severe Meteorological Events
NASA Astrophysics Data System (ADS)
Ferrando, I.; Federici, B.; Sguerso, D.
2016-12-01
As widely known, the observation of GNSS signal's delay can improve the knowledge of meteorological phenomena. The local Precipitable Water Vapour (PWV), which can be easily derived from Zenith Total Delay (ZTD), Pressure (P) and Temperature (T) (Bevis et al., 1994), is not a satisfactory parameter to evaluate the occurrence of severe meteorological events. Hence, a GIS procedure, called G4M (GNSS for Meteorology), has been conceived to produce 2D PWV maps with high spatial and temporal resolution (1 km and 6 minutes respectively). The input data are GNSS, P and T observations not necessarily co-located coming from existing infrastructures, combined with a simplified physical model, owned by the research group.On spite of the low density and the different configurations of GNSS, P and T networks, the procedure is capable to detect severe meteorological events with reliable results. The procedure has already been applied in a wide and orographically complex area covering approximately the north-west of Italy and the French-Italian border region, to study two severe meteorological events occurred in Genoa (Italy) and other meteorological alert cases. The P, T and PWV 2D maps obtained by the procedure have been compared with the ones coming from meteorological re-analysis models, used as reference to obtain statistics on the goodness of the procedure in representing these fields. Additionally, the spatial variability of PWV was taken into account as indicator for representing potential critical situations; this index seems promising in highlighting remarkable features that precede intense precipitations. The strength and originality of the procedure lie into the employment of existing infrastructures, the independence from meteorological models, the high adaptability to different networks configurations, and the ability to produce high-resolution 2D PWV maps even from sparse input data. In the next future, the procedure could also be set up for near real-time applications.
NASA Astrophysics Data System (ADS)
Kántor, Noémi; Égerházi, Lilla; Unger, János
2012-11-01
During two investigation periods in transient seasons (14 weekdays in autumn 2009 and 15 weekdays in spring 2010) 967 visitors in two inner city squares of Szeged (Hungary) were asked about their estimation of their thermal environment. Interrelationships of subjective assessments—thermal sensation, perceptions and preferences for individual climate parameters—were analyzed, as well as their connections with the prevailing thermal conditions [air temperature, relative humidity, wind velocity, mean radiant temperature and physiologically equivalent temperature (PET)]. Thermal sensation showed strong positive relationships with air temperature and solar radiation perception, while wind velocity and air humidity perception had a negative (and weaker) impact. If a parameter was perceived to be low or weak, then it was usually desired to be higher or stronger. This negative correlation was weakest in the case of humidity. Of the basic meteorological parameters, Hungarians are most sensitive to variations in wind. Above PET = 29°C, people usually prefer lower air temperature and less solar radiation. The temperature values perceived by the interviewees correlated stronger with PET, but their means were more similar to air temperature. It was also found that the mean thermal sensation of Hungarians in transient seasons depends on PET according to a quadratic function ( R 2 = 0.912) and, consequently, the thermal comfort ranges of the locals differ from that usually adopted.
Application of web-GIS approach for climate change study
NASA Astrophysics Data System (ADS)
Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Bogomolov, Vasily; Martynova, Yuliya; Shulgina, Tamara
2013-04-01
Georeferenced datasets are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated web-GIS information-computational system for analysis of georeferenced climatological and meteorological data has been created. It is based on OGC standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. The main advantage of the system lies in a possibility to perform mathematical and statistical data analysis, graphical visualization of results with GIS-functionality, and to prepare binary output files with just only a modern graphical web-browser installed on a common desktop computer connected to Internet. Several geophysical datasets represented by two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others are available for processing by the system. And this list is extending. Also a functionality to run WRF and "Planet simulator" models was implemented in the system. Due to many preset parameters and limited time and spatial ranges set in the system these models have low computational power requirements and could be used in educational workflow for better understanding of basic climatological and meteorological processes. The Web-GIS information-computational system for geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified web-interface in a common graphical web-browser. This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.
NASA Astrophysics Data System (ADS)
Halenka, T.; Bednar, J.; Brechler, J.
The spatial distribution of air pollution on the regional scale (Bohemian region) is simulated by means of Charles University puff model SMOG. The results are used for the assessment of the concentration fields of ozone, nitrogen oxides and other ozone precursors. Current improved version of the model covers up to 16 groups of basic compounds and it is based on trajectory computation and puff interaction both by means of Gaussian diffusion mixing and chemical reactions of basic species. Gener- ally, the method used for trajectory computation is valuable mainly for episodes sim- ulation, nevertheless, climatological study can be solved as well by means of average wind rose. For the study being presented huge database of real emission sources was incorporated with all kind of sources included. Some problem with the background values of concentrations was removed. The model SMOG has been nested into the forecast model ETA to obtain appropriate meteorological data input. We can estimate air pollution characteristics both for episodes analysis and the prediction of future air quality conditions. Necessary prognostic variables from the numerical weather pre- diction model are taken for the region of the central Bohemia, where the original puff model was tested. We used mainly 850 hPa wind field for computation of prognos- tic trajectories, the influence of surface temperature as a parameter of photochemistry reactions as well as the effect of cloudness has been tested.
Numerical Weather Prediction Models on Linux Boxes as tools in meteorological education in Hungary
NASA Astrophysics Data System (ADS)
Gyongyosi, A. Z.; Andre, K.; Salavec, P.; Horanyi, A.; Szepszo, G.; Mille, M.; Tasnadi, P.; Weidiger, T.
2012-04-01
Education of Meteorologist in Hungary - according to the Bologna Process - has three stages: BSc, MSc and PhD, and students graduating at each stage get the respective degree (BSc, MSc and PhD). The three year long base BSc course in Meteorology can be chosen by undergraduate students in the fields of Geosciences, Environmental Sciences and Physics. BasicsFundamentals in Mathematics (Calculus), Physics (General and Theoretical) Physics and Informatics are emphasized during their elementary education. The two year long MSc course - in which about 15 to 25 students are admitted each year - can be studied only at our the Eötvös Loránd uUniversity in the our country. Our aim is to give a basic education in all fields of Meteorology. Main topics are: Climatology, Atmospheric Physics, Atmospheric Chemistry, Dynamic and Synoptic Meteorology, Numerical Weather Prediction, modeling Modeling of surfaceSurface-atmosphere Iinteractions and Cclimate change. Education is performed in two branches: Climate Researcher and Forecaster. Education of Meteorologist in Hungary - according to the Bologna Process - has three stages: BSc, MSc and PhD, and students graduating at each stage get the respective degree. The three year long BSc course in Meteorology can be chosen by undergraduate students in the fields of Geosciences, Environmental Sciences and Physics. Fundamentals in Mathematics (Calculus), (General and Theoretical) Physics and Informatics are emphasized during their elementary education. The two year long MSc course - in which about 15 to 25 students are admitted each year - can be studied only at the Eötvös Loránd University in our country. Our aim is to give a basic education in all fields of Meteorology: Climatology, Atmospheric Physics, Atmospheric Chemistry, Dynamic and Synoptic Meteorology, Numerical Weather Prediction, Modeling of Surface-atmosphere Interactions and Climate change. Education is performed in two branches: Climate Researcher and Forecaster. Numerical modeling became a common tool in the daily practice of weather experts forecasters due to the i) increasing user demands for weather data by the costumers, ii) the growth in computer resources, iii) numerical weather prediction systems available for integration on affordable, off the shelf computers and iv) available input data (from ECMWF or NCEP) for model integrations. Beside learning the theoretical basis, since the last year. Students in their MSc or BSc Thesis Research or in Student's Research ProjectsStudent's Research Projects h have the opportunity to run numerical models and to analyze the outputs for different purposes including wind energy estimation, simulation of the dynamics of a polar low, and subtropical cyclones, analysis of the isentropic potential vorticity field, examination of coupled atmospheric dispersion models, etc. A special course in the application of numerical modeling has been held (is being announced for the upcoming semester) (is being announced for the upcoming semester) for our students in order to improve their skills on this field. Several numerical model (NRIPR ETA and WRF) systems have been adapted in the University and integrated WRF have been tested and used for the geographical region of the Carpathian Basin (NRIPR, ETA and WRF). Recently ALADIN/CHAPEAU the academic version of the ARPEGE ALADIN cy33t1 meso-scale numerical weather prediction model system (which is the operational forecasting tool of our National Weather Service) has been installed at our Institute. ALADIN is the operational forecasting model of the Hungarian Meteorological Service and developed in the framework of the international ALADIN co-operation. Our main objectives are i) the analysis of different typical weather situations, ii) fine tuning of parameterization schemes and the iii) comparison of the ALADIN/CHAPEAU and WRF model outputs based on case studies. The necessary hardware and software innovations has have been done. In the presentation the computer resources needed for the integration of both WRF and ALADIN/CHAPEAU models will be briefly described. The software developments performed for the evaluation and comparison of the different modeling systems will be demonstrated. The main objectives of the education program on the practical numerical weather modeling will be introduced, as well as its detailed thematics and the structure of the labs.
Atmospheric Science Data Center
2018-06-13
... web portal at https://power.larc.nasa.gov with improved solar and meteorology data and greatly enhanced capabilities to facilitate ... Agroclimatology communities. The surface solar energy parameters have been customized and validated from NASA/GEWEX Surface ...
Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc
2014-09-15
Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.
Attempting to physically explain space-time correlation of extremes
NASA Astrophysics Data System (ADS)
Bernardara, Pietro; Gailhard, Joel
2010-05-01
Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.
Innovations in Basic Flight Training for the Indonesian Air Force
1990-12-01
microeconomic theory that could approximate the optimum mix of training hours between an aircraft and simulator, and therefore improve cost effectiveness...The microeconomic theory being used is normally employed when showing production with two variable inputs. An example of variable inputs would be labor...NAS Corpus Christi, Texas, Aerodynamics of the T-34C, 1989. 26. Naval Air Training Command, NAS Corpus Christi, Texas, Meteorological Theory Workbook
NASA Astrophysics Data System (ADS)
Piliczewski, B.
2003-04-01
The Golden Software Surfer has been used in IMGW Maritime Branch for more than ten years. This tool provides ActiveX Automation objects, which allow scripts to control practically every feature of Surfer. These objects can be accessed from any Automation-enabled environment, such as Visual Basic or Excel. Several applications based on Surfer has been developed in IMGW. The first example is an on-line oceanographic service, which presents forecasts of the water temperature, sea level and currents originating from the HIROMB model and is automatically updated every day. Surfer was also utilised in MERMAID, an international project supported by EC under the 5th Framework Programme. The main aim of this project was to create a prototype of the Internet-based data brokerage system, which would enable to search, extract, buy and download datasets containing meteorological or oceanographic data. During the project IMGW developed an online application, called Mermaid Viewer, which enables communication with the data broker and automatic visualisation of the downloaded data using Surfer. Both the above mentioned applications were developed in Visual Basic. Currently it is considered to adopt Surfer for the monitoring service, which provides access to the data collected in the monitoring of the Baltic Sea environment.
Construction of a Distributed-network Digital Watershed Management System with B/S Techniques
NASA Astrophysics Data System (ADS)
Zhang, W. C.; Liu, Y. M.; Fang, J.
2017-07-01
Integrated watershed assessment tools for supporting land management and hydrologic research are becoming established tools in both basic and applied research. The core of these tools are mainly spatially distributed hydrologic models as they can provide a mechanism for investigating interactions among climate, topography, vegetation, and soil. However, the extensive data requirements and the difficult task of building input parameter files for driving these distributed models, have long been an obstacle to the timely and cost-effective use of such complex models by watershed managers and policy-makers. Recently, a web based geographic information system (GIS) tool to facilitate this process has been developed for a large watersheds of Jinghe and Weihe catchments located in the loess plateau of the Huanghe River basin in north-western China. A web-based GIS provides the framework within which spatially distributed data are collected and used to prepare model input files of these two watersheds and evaluate model results as well as to provide the various clients for watershed information inquiring, visualizing and assessment analysis. This Web-based Automated Geospatial Watershed Assessment GIS (WAGWA-GIS) tool uses widely available standardized spatial datasets that can be obtained via the internet oracle databank designed with association of Map Guide platform to develop input parameter files for online simulation at different spatial and temporal scales with Xing’anjiang and TOPMODEL that integrated with web-based digital watershed. WAGWA-GIS automates the process of transforming both digital data including remote sensing data, DEM, Land use/cover, soil digital maps and meteorological and hydrological station geo-location digital maps and text files containing meteorological and hydrological data obtained from stations of the watershed into hydrological models for online simulation and geo-spatial analysis and provides a visualization tool to help the user interpret results. The utility of WAGWA-GIS in jointing hydrologic and ecological investigations has been demonstrated on such diverse landscapes as Jinhe and Weihe watersheds, and will be extended to be utilized in the other watersheds in China step by step in coming years
Dew and hoarfrost frequency, formation efficiency and chemistry in Wroclaw, Poland
NASA Astrophysics Data System (ADS)
Gałek, G.; Sobik, M.; Błaś, M.; Polkowska, Ż.; Cichała-Kamrowska, K.; Wałaszek, K.
2015-01-01
This article presents the results of a research study concerning a comparison of frequency, formation efficiency and basic physico-chemical properties of dew and hoarfrost in urban conditions. Longer than two-year series of measurements was carried out from 1 February 2008 to 10 March 2010 in Wroclaw, Poland. Sampling of atmospheric deposits was made by means of insulated plain passive radiative condensers, which allowed to collect 222 dew and 96 hoarfrost samples. The results indicate that the frequency of dew days was about threefold greater than hoarfrost days. The formation efficiency of both types of deposits was almost the same, and reached a mean value of about 100 mL·m- 2 per day. The conducted analysis of several meteorological parameters showed that dew and hoarfrost, despite seasonal weather changes, were formed in very similar meteorological conditions. Only water vapor pressure values were in average twice higher in the case of dew and the impact of this parameter on dew and hoarfrost formation efficiency seems to be more complex than expected. The role of night duration in counterbalancing of smaller amount of available moisture in hoarfrost days is not clear. The investigation showed also, that there was an expected clear positive dependence of dew and hoarfrost formation efficiency on relative humidity, and not so evident in the case of temperature inversion, and wind velocity. The physico-chemical analysis indicated that the pH of dew was only slightly lower than the hoarfrost ones, regardless of the deposit formation intensity. Simultaneously, the lower pH values were much more frequent in the case of dew, which resulted from more effective absorption of anthropogenic NO3- and SO42 - ions. For both types of deposits, the average pH was low (4.5-4.8) in relation to majority of studies reported in literature. In spite of seasonal changes of pollutant concentration, various weather conditions and different mechanisms of pollutant absorption of dew and hoarfrost were characterized with almost identical, relatively low contamination - electric conductivity: 42 μS·cm- 1. The dominant ions were: Ca2 +, SO42 -, NO3-, as well as Cl- (hoarfrost only), all of them predominantly of anthropogenic origin.
Meteorological risks are drivers of environmental innovation in agro-ecosystem management
NASA Astrophysics Data System (ADS)
Gobin, Anne; Van de Vijver, Hans; Vanwindekens, Frédéric; de Frutos Cachorro, Julia; Verspecht, Ann; Planchon, Viviane; Buyse, Jeroen
2017-04-01
Agricultural crop production is to a great extent determined by weather conditions. The research hypothesis is that meteorological risks act as drivers of environmental innovation in agro-ecosystem management. The methodology comprised five major parts: the hazard, its impact on different agro-ecosystems, vulnerability, risk management and risk communication. Generalized Extreme Value (GEV) theory was used to model annual maxima of meteorological variables based on a location-, scale- and shape-parameter that determine the center of the distribution, the deviation of the location-parameter and the upper tail decay, respectively. Spatial interpolation of GEV-derived return levels resulted in spatial temperature extremes, precipitation deficits and wet periods. The temporal overlap between extreme weather conditions and sensitive periods in the agro-ecosystem was realised using a bio-physically based modelling framework that couples phenology, a soil water balance and crop growth. 20-year return values for drought and waterlogging during different crop stages were related to arable yields. The method helped quantify agricultural production risks and rate both weather and crop-based agricultural insurance. The spatial extent of vulnerability is developed on different layers of geo-information to include meteorology, soil-landscapes, crop cover and management. Vulnerability of agroecosystems was mapped based on rules set by experts' knowledge and implemented by Fuzzy Inference System modelling and Geographical Information System tools. The approach was applied for cropland vulnerability to heavy rain and grassland vulnerability to drought. The level of vulnerability and resilience of an agro-ecosystem was also determined by risk management which differed across sectors and farm types. A calibrated agro-economic model demonstrated a marked influence of climate adapted land allocation and crop management on individual utility. The "chain of risk" approach allowed for investigating the hypothesis that meteorological risks act as drivers for agricultural innovation. Risk types were quantified in terms of probability and distribution, and further distinguished according to production type. Examples of strategies and options were provided at field, farm and policy level using different modelling methods.
NASA Astrophysics Data System (ADS)
Markovic, M. Z.; Hayden, K. L.; Murphy, J. G.; Makar, P. A.; Ellis, R. A.; Chang, R. Y.-W.; Slowik, J. G.; Mihele, C.; Brook, J.
2011-04-01
The Border Air Quality and Meteorology Study (BAQS-Met) was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1), with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS) onboard the National Research Council (NRC) of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3- at the ground site (observed mean (Mobs) = 0.50 μg m-3; modelled mean (Mmod) = 0.58 μg m-3; root mean square error (RSME) = 1.27 μg m-3) was better than aloft (Mobs = 0.32 μg m-3; Mmod = 0.09 μg m-3; RSME = 0.48 μg m-3). Possible reasons for discrepancies include errors in (i) emission inventories, (ii) atmospheric chemistry, (iii) predicted meteorological parameters, or (iv) gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g) + pNH4+ - 2 · pSO42-) are responsible for the poor agreement between modelled and measured values.
NASA Astrophysics Data System (ADS)
Markovic, M. Z.; Hayden, K. L.; Murphy, J. G.; Makar, P. A.; Ellis, R. A.; Chang, R. Y.-W.; Slowik, J. G.; Mihele, C.; Brook, J.
2010-10-01
The Border Air Quality and Meteorology Study (BAQS-Met) was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on regional air quality in Southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1), with a specific emphasis on nitrate. We evaluate the ability of AURAMS, the Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS) onboard the National Research Council (NRC) of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3- at the ground site (observed mean (M_obs) = 0.50 μg m-3; modelled mean (M_mod) = 0.58 μg m-3; root mean square error (RSME) = 1.27 μg m-3) was better than aloft (M_obs = 0.32 μg m-3; M_mod = 0.09 μg m-3; RSME = 0.48 μg m-3). Possible reasons for discrepancies include errors in (i) emission inventories, (ii) atmospheric chemistry, (iii) predicted meteorological parameters, or (iv) gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g) + NH4+ - SO42-) are responsible for the poor agreement between modelled and measured values.
Gao, Jinghong; Chen, Xiaojun; Woodward, Alistair; Liu, Xiaobo; Wu, Haixia; Lu, Yaogui; Li, Liping; Liu, Qiyong
2016-01-01
Few studies examined the associations of meteorological factors with road traffic injuries (RTIs). The purpose of the present study was to quantify the contributions of meteorological factors to RTI cases treated at a tertiary level hospital in Shantou city, China. A time-series diagram was employed to illustrate the time trends and seasonal variation of RTIs, and correlation analysis and multiple linear regression analysis were conducted to investigate the relationships between meteorological parameters and RTIs. RTIs followed a seasonal pattern as more cases occurred during summer and winter months. RTIs are positively correlated with temperature and sunshine duration, while negatively associated with wind speed. Temperature, sunshine hour and wind speed were included in the final linear model with regression coefficients of 0.65 (t = 2.36, P = 0.019), 2.23 (t = 2.72, P = 0.007) and −27.66 (t = −5.67, P < 0.001), respectively, accounting for 19.93% of the total variation of RTI cases. The findings can help us better understand the associations between meteorological factors and RTIs, and with potential contributions to the development and implementation of regional level evidence-based weather-responsive traffic management system in the future. PMID:27853316
NASA Astrophysics Data System (ADS)
Khajehei, S.; Madadgar, S.; Moradkhani, H.
2014-12-01
The reliability and accuracy of hydrological predictions are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model parameters and model structure. To reduce the total uncertainty in hydrological applications, one approach is to reduce the uncertainty in meteorological forcing by using the statistical methods based on the conditional probability density functions (pdf). However, one of the requirements for current methods is to assume the Gaussian distribution for the marginal distribution of the observed and modeled meteorology. Here we propose a Bayesian approach based on Copula functions to develop the conditional distribution of precipitation forecast needed in deriving a hydrologic model for a sub-basin in the Columbia River Basin. Copula functions are introduced as an alternative approach in capturing the uncertainties related to meteorological forcing. Copulas are multivariate joint distribution of univariate marginal distributions, which are capable to model the joint behavior of variables with any level of correlation and dependency. The method is applied to the monthly forecast of CPC with 0.25x0.25 degree resolution to reproduce the PRISM dataset over 1970-2000. Results are compared with Ensemble Pre-Processor approach as a common procedure used by National Weather Service River forecast centers in reproducing observed climatology during a ten-year verification period (2000-2010).
Impact of meteorology on air quality modeling over the Po valley in northern Italy
NASA Astrophysics Data System (ADS)
Pernigotti, D.; Georgieva, E.; Thunis, P.; Bessagnet, B.
2012-05-01
A series of sensitivity tests has been performed using both a mesoscale meteorological model (MM5) and a chemical transport model (CHIMERE) to better understand the reasons why all models underestimate particulate matter concentrations in the Po valley in winter. Different options are explored to nudge meteorological observations from regulatory networks into MM5 in order to improve model performances, especially during the low wind speed regimes frequently present in this area. The sensitivity of the CHIMERE modeled particulate matter concentrations to these different meteorological inputs are then evaluated for the January 2005 time period. A further analysis of the CHIMERE model results revealed the need of improving the parametrization of the in-cloud scavenging and vertical diffusivity schemes; such modifications are relevant especially when the model is applied under mist, fog and low stratus conditions, which frequently occur in the Po valley during winter. The sensitivity of modeled particulate matter concentrations to turbulence parameters, wind, temperature and cloud liquid water content in one of the most polluted and complex areas in Europe is finally discussed.
NASA Astrophysics Data System (ADS)
Baek, K. T.; Lee, S.; Kang, M.; Lee, G.
2016-12-01
Traffic accidents due to adverse weather such as fog, heavy rainfall, flooding and road surface freezing have been increasing in Korea. To reduce damages caused by the severe weather on the road, a forecast service of combined real-time road-wise weather and the traffic situation is required. Conventional stationary meteorological observations in sparse location system are limited to observe the detailed road environment. For this reason, a mobile meteorological observation platform has been coupled in Weather Information Service Engine (WISE) which is the prototype of urban-scale high resolution weather prediction system in Seoul metropolitan area of Korea in early August 2016. The instruments onboard are designed to measure 15 meteorological parameters; pressure, temperature, relative humidity, precipitation, up/down net radiation, up/down longwave radiation, up/down shortwave radiation, road surface condition, friction coefficient, water depth, wind direction and speed. The observations from mobile platform show a distinctive advantage of data collection in need for road conditions and inputs for the numerical forecast model. In this study, we introduce and examine the feasibility of mobile observations in urban weather prediction and applications.
Department of Defense meteorological and environmental inputs to aviation systems
NASA Technical Reports Server (NTRS)
Try, P. D.
1983-01-01
Recommendations based on need, cost, and achievement of flight safety are offered, and the re-evaluation of weather parameters needed for safe landing operations that lead to reliable and consistent automated observation capabilities are considered.
Seasonal patterns of gastrointestinal illness and streamflow along the Ohio River
Waterborne gastrointestinal (GI) illnesses demonstrate seasonal increases associated with water quality and meteorological characteristics. However, few studies have been conducted on the association of hydrological parameters, such as streamflow, and seasonality of GI illnesses....
NASA Technical Reports Server (NTRS)
Poosti, Sassaneh; Akopyan, Sirvard; Sakurai, Regina; Yun, Hyejung; Saha, Pranjit; Strickland, Irina; Croft, Kevin; Smith, Weldon; Hoffman, Rodney; Koffend, John;
2006-01-01
TES Level 2 Subsystem is a set of computer programs that performs functions complementary to those of the program summarized in the immediately preceding article. TES Level-2 data pertain to retrieved species (or temperature) profiles, and errors thereof. Geolocation, quality, and other data (e.g., surface characteristics for nadir observations) are also included. The subsystem processes gridded meteorological information and extracts parameters that can be interpolated to the appropriate latitude, longitude, and pressure level based on the date and time. Radiances are simulated using the aforementioned meteorological information for initial guesses, and spectroscopic-parameter tables are generated. At each step of the retrieval, a nonlinear-least-squares- solving routine is run over multiple iterations, retrieving a subset of atmospheric constituents, and error analysis is performed. Scientific TES Level-2 data products are written in a format known as Hierarchical Data Format Earth Observing System 5 (HDF-EOS 5) for public distribution.
NASA Astrophysics Data System (ADS)
Putri, R. J. A.; Setyawan, T.
2017-01-01
In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)
Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhiguo; Shen, Chunyan; Li, Luming
2018-03-01
Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.
[The evaluation of the thermal environment of man (author's transl)].
Sönning, W; Jendritzky, G
1979-10-01
Many problems in bioclimatology require an accurate knowledge of the variations of all meteorological parameters which influence the thermal environment of man (i.g. short- and long-wave radiation, air temperature, wind velocity and air humidity). In addition to that a method for determining this thermal environment by a biometeorological index has to consider thermophysiologically relevant factors so as activity level and thermal resistance of the clothing. By means of the comfort equation (Fanger, 1970) it is possible, for any activity level and clothing to calculate all combinations of meteorological parameters, which will create optimal thermal comfort. The parametrization of the fluxes of short- and long-wave radiation permits to applicate this equation to outdoor conditions (Jendritzky, Sönning and Swantes, 1977). Examples for calculating some given conditions (i.g. street in the city, cross-country kinesitherapy, special land-use areas within a city) are demonstrated.
Dependence of cerebral-cortex activation in women on environmental factors
NASA Astrophysics Data System (ADS)
Pavlov, K. I.; Mukhin, V. N.; Kamenskaya, V. G.; Klimenko, V. M.
2016-12-01
The investigation of female physiological reactions to different meteorological conditions and space weather is relevant, since there are little experimental findings in this field. The purpose of this work is to determine how the level of cerebral-cortex activity in women depends on the meteorological and cosmophysical parameters of weather and space processes. We studied electroencephalograms (EEGs) recorded at rest in the sitting position and with eyes closed. We performed four series of measurements of brain bioelectrical activity from February to June 2013. We found that the level of cortical activity recorded by EEG changed significantly during these 6 months. Significant differences were detected between the cortical activity and the parameters of weather and space processes; namely, an increase in the air temperature and a decrease in the wind speed and cosmic-ray energy result in a decrease in the activity rate of the right occipital lobe.
NASA Astrophysics Data System (ADS)
Bruffaerts, Nicolas; De Smedt, Tom; Delcloo, Andy; Simons, Koen; Hoebeke, Lucie; Verstraeten, Caroline; Van Nieuwenhuyse, An; Packeu, Ann; Hendrickx, Marijke
2018-03-01
A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.
[Influence of weather in the incidence of acute myocardial infarction in Galicia (Spain)].
Fernández-García, José Manuel; Dosil Díaz, Olga; Taboada Hidalgo, Juan José; Fernández, José Ramón; Sánchez-Santos, Luis
2015-08-07
To assess the interactions between weather and the impact of each individual meteorological parameters in the incidence of acute myocardial infarctions (AMI) in Galicia. Retrospective study analyzing the number of AMI diagnosed and transferred to the hospital by the Emergencies Sanitary System of Galicia between 2002 and 2009. We included patients with clinical and ECG findings of AMI. The correlation between 10-minute meteorological variables (temperature, humidity, pressure, accumulated rainfall and wind speed) recorded by MeteoGalicia and the incidence of AMI was assessed. A total of 4,717 AMI were registered (72.8% men, 27.2% women). No seasonal variations were found. No significant correlations were detected with regard to average daily temperature (P=.683) or wind speed (P=.895). Correlation between atmospheric pressure and incidence of AMI was significant (P<.005), as well as with the daily relative humidity average (P=.005). Our study showed a statistical significant association with atmospheric pressure and with the daily relative humidity average. Since the local conditions of weather are widely variable, future studies should establish the relationship between weather patterns (including combinations of meteorological parameters), rather than seasonal variations, and the incidence of AMI. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Bruffaerts, Nicolas; De Smedt, Tom; Delcloo, Andy; Simons, Koen; Hoebeke, Lucie; Verstraeten, Caroline; Van Nieuwenhuyse, An; Packeu, Ann; Hendrickx, Marijke
2018-03-01
A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.
Ristow, Oliver; Koerdt, Steffen; Stelzner, Ruben; Stelzner, Matthias; Johannes, Christoph; Ristow, Melanie; Hohlweg-Majert, Bettina; Pautke, Christoph
2015-02-11
Anecdotal reports assert a relationship between weather and lunar activity and the odontogenic abscess (OA) incidence, but this relationship has not been validated. Therefore, the present study investigated the relationship between oral pain caused by OA and a variety of meteorological parameters and cyclic lunar activity. The records of all dental emergency patients treated at the AllDent Zahnzentrum Emergency Unit in Munich, Germany during 2012 were retrospectively reviewed. Patients with oral pain who were diagnosed with OA and treated surgically (n = 1211) were included in the analysis. The OA incidence was correlated to daily meteorological data, biosynoptic weather analysis, and cyclic lunar activity. There was no seasonal variation in the OA incidence. None of the meteorological parameters, lunar phase, or biosynoptic weather class were significantly correlated with the OA incidence, except the mean barometric pressure, which was weakly correlated (rho = -0.204). The OA incidence showed a decreasing trend as barometric pressure increased (p < 0.001). On multiple linear regression, the barometric pressure accounted for approximately 4% of the OA incidence. There is no evidence supporting a correlation between the incidence of odontogenic abscess and the weather and lunar activities.
Diffuse solar radiation and associated meteorological parameters in India
NASA Astrophysics Data System (ADS)
Bhattacharya, A. B.; Kar, S. K.; Bhattacharya, R.
1996-10-01
Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->
NASA Astrophysics Data System (ADS)
Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang
2017-05-01
This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.
Atmospheric mold spore counts in relation to meteorological parameters
NASA Astrophysics Data System (ADS)
Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.
Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.
The analysis of distribution of meteorological over China in astronomical site selection
NASA Astrophysics Data System (ADS)
Zhang, Cai-yun; Weng, Ning-quan
2014-02-01
The distribution of parameters such as sunshine hours, precipitation, and visibility were obtained by analyzing the meteorological data in 906 stations of China during 1981~2012. And the month and annual variations of the parameters in some typical stations were discussed. The results show that: (1) the distribution of clear days is similar to that of sunshine hours, the values of which decrease from north to south and from west to east. The distributions of cloud, precipitation and vapor pressure are opposite. (2) The northwest areas in China have the characteristic such as low precipitation and vapor pressure, small cloud clever, and good visibility, which are the general conditions of astronomical site selection. (3) The parameters have obvious month variation. There are large precipitation, long sunshine hours and strong radiation in the mid months of one year, which are opposite in beginning and ending of one year. (4) In the selected stations, the value of vapor pressure decreases year by year, and the optical depth is similar or invariable. All the above results provided for astronomical site selection.
Trace Gas/Aerosol Interactions and GMI Modeling Support
NASA Technical Reports Server (NTRS)
Penner, Joyce E.; Liu, Xiaohong; Das, Bigyani; Bergmann, Dan; Rodriquez, Jose M.; Strahan, Susan; Wang, Minghuai; Feng, Yan
2005-01-01
Current global aerosol models use different physical and chemical schemes and parameters, different meteorological fields, and often different emission sources. Since the physical and chemical parameterization schemes are often tuned to obtain results that are consistent with observations, it is difficult to assess the true uncertainty due to meteorology alone. Under the framework of the NASA global modeling initiative (GMI), the differences and uncertainties in aerosol simulations (for sulfate, organic carbon, black carbon, dust and sea salt) solely due to different meteorological fields are analyzed and quantified. Three meteorological datasets available from the NASA DAO GCM, the GISS-II' GCM, and the NASA finite volume GCM (FVGCM) are used to drive the same aerosol model. The global sulfate and mineral dust burdens with FVGCM fields are 40% and 20% less than those with DAO and GISS fields, respectively due to its heavier rainfall. Meanwhile, the sea salt burden predicted with FVGCM fields is 56% and 43% higher than those with DAO and GISS, respectively, due to its stronger convection especially over the Southern Hemispheric Ocean. Sulfate concentrations at the surface in the Northern Hemisphere extratropics and in the middle to upper troposphere differ by more than a factor of 3 between the three meteorological datasets. The agreement between model calculated and observed aerosol concentrations in the industrial regions (e.g., North America and Europe) is quite similar for all three meteorological datasets. Away from the source regions, however, the comparisons with observations differ greatly for DAO, FVGCM and GISS, and the performance of the model using different datasets varies largely depending on sites and species. Global annual average aerosol optical depth at 550 nm is 0.120-0.131 for the three meteorological datasets.
Problem of the elimination of the refractional effects in Doppler positioning.
NASA Astrophysics Data System (ADS)
Gougoutoudis, I.
The influence of the tropospheric refraction on the Doppler positioning is discussed. It is found that the differences of coordinates resulting from the use of standard atmospheric parameters instead of real ones could amount to 0.60 m for single point positioning and 0.20 m for multilocation. The necessity of registration of the real meteorologic parameters at the Doppler station is confirmed.
Interannual variation, decadal trend, and future change in ozone outflow from East Asia
NASA Astrophysics Data System (ADS)
Zhu, Jia; Liao, Hong; Mao, Yuhao; Yang, Yang; Jiang, Hui
2017-03-01
We examine the past and future changes in the O3 outflow from East Asia using a global 3-D chemical transport model, GEOS-Chem. The simulations of Asian O3 outflow for 1986-2006 are driven by the assimilated GEOS-4 meteorological fields, and those for 2000-2050 are driven by the meteorological fields archived by the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM) 3 under the IPCC SRES A1B scenario. The evaluation of the model results against measurements shows that the GEOS-Chem model captures the seasonal cycles and interannual variations of tropospheric O3 concentrations fairly well with high correlation coefficients of 0.82-0.93 at four ground-based sites and 0.55-0.88 at two ozonesonde sites where observations are available. The increasing trends in surface-layer O3 concentrations in East Asia over the past 2 decades are captured by the model, although the modeled O3 trends have low biases. Sensitivity studies are conducted to examine the respective impacts of meteorological parameters and emissions on the variations in the outflow flux of O3. When both meteorological parameters and anthropogenic emissions varied from 1986-2006, the simulated Asian O3 outflow fluxes exhibited a statistically insignificant decadal trend; however, they showed large interannual variations (IAVs) with seasonal values of 4-9 % for the absolute percent departure from the mean (APDM) and an annual APDM value of 3.3 %. The sensitivity simulations indicated that the large IAVs in O3 outflow fluxes were mainly caused by variations in the meteorological conditions. The variations in meteorological parameters drove the IAVs in O3 outflow fluxes by altering the O3 concentrations over East Asia and by altering the zonal winds; the latter was identified to be the key factor, since the O3 outflow was highly correlated with zonal winds from 1986-2006. The simulations of the 2000-2050 changes show that the annual outflow flux of O3 will increase by 2.0, 7.9, and 12.2 % owing to climate change alone, emissions change alone, and changes in both climate and emissions, respectively. Therefore, climate change will aggravate the effects of the increases in anthropogenic emissions on future changes in the Asian O3 outflow. Future climate change is predicted to greatly increase the Asian O3 outflow in the spring and summer seasons as a result of the projected increases in zonal winds. The findings from the present study help us to understand the variations in tropospheric O3 in the downwind regions of East Asia on different timescales and have important implications for long-term air quality planning in the regions downwind of China, such as Japan and the US.
Analysis of Critical Earth Observation Priorities for Societal Benefit
NASA Astrophysics Data System (ADS)
Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.
2011-12-01
To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel moisture content, burn scars, and meteorological parameters. Impacts to public health and livelihoods due to food insecurity, algal blooms, and air pollution can be addressed through NRT monitoring of specific events utilizing land cover, atmospheric composition, water quality, and meteorological observations. More broadly, the assessment of water availability for drinking and agriculture and the development of floods and storms rely on continuous feeds of NRT meteorological and atmospheric composition observations. Overall, this multi-disciplinary study of user needs for NRT data and products can inform the design and operation of NRT data systems. Follow-on work for this study will also be presented, focusing on the availability of current and future satellite measurements (including NRT) of the 30 most critical Earth observation priorities, as well as a detailed analysis of users' needs for precipitation data. The results of this study summarize the priorities for critical Earth observations utilized globally for societal benefit.
The determination of the most applicable PWV model for Turkey
NASA Astrophysics Data System (ADS)
Deniz, Ilke; Gurbuz, Gokhan; Mekik, Cetin
2016-07-01
Water vapor is a key component for modelling atmosphere and climate studies. Moreover, long-term water vapor changes can be an independent source for detecting climate changes. Since Global Navigation Satellite Systems (GNSS) use microwaves passing through the atmosphere, atmospheric effects are modeled with high accuracy. Tropospheric effects on GNSS signals are estimated with total zenith delay parameter (ZTD) which is the sum of hydrostatic (ZHD) and wet zenith delay (ZWD). The first component can be obtained from meteorological observations with high accuracy; the second component, however, can be computed by subtracting ZHD from ZTD (ZWD=ZTD-ZHD). Afterwards, the weighted mean temperature (Tm) or the conversion factor (Q) is used for the conversion between the precipitable water vapor (PWV) and ZWD. The parameters Tm and Q are derived from the analysis of radiosonde stations' profile observations. Numerous Q and Tm models have been developed for each radiosonde station, radiosonde station group, countries and global fields such as Bevis Tm model and Emardson and Derks' Q models. So, PWV models (Tm and Q models) applied for Turkey have been developed using a year of radiosonde data (2011) from 8 radiosonde stations. In this study the models developed are tested by comparing PWVGNSS computed applying Tm and Q models to the ZTD estimates derived by Bernese and GAMIT/GLOBK software at GNSS stations established at Istanbul and Ankara with those from the collocated radiosonde stations (PWVRS) from October 2013 to December 2014 with the data obtained from a project (no 112Y350) supported by the Scientific and Technological Research Council of Turkey (TUBITAK). The comparison results show that PWVGNSS and PWVRS are in high correlation (86 % for Ankara and 90% for Istanbul). Thus, the most applicable model for Turkey and the accuracy of GNSS meteorology are investigated. In addition, Tm model was applied to the ZTD estimates of 20 TUSAGA-Active (CORS-TR) stations in the 38.0°-42.0° northern latitudes and 28.0°-34.0° eastern longitudes of Turkey and PWV were computed. ZTD estimates of these stations were computed using Bernese GNSS Software v5.0 during the period from June 2013 to June 2014. Preceding the PWV estimation, meteorological parameters for these stations (temperature, pressure and humidity) are derived by applying spherical harmonics modelling and interpolation to the above-mentioned meteorological parameters measured by meteorological stations surrounding TUSAGA-Active stations. Results of spherical harmonics modelling and interpolation yield the precision of ±1.74 K in temperature, ±0.95 hPa in pressure and ±14.88 % in humidity. Also, the PWV of TUSAGA-Active stations selected were estimated.
NASA Astrophysics Data System (ADS)
Schneider, Alexandra; Schuh, Angela; Maetzel, Friedrich-Karl; Rückerl, Regina; Breitner, Susanne; Peters, Annette
2008-07-01
Given the accumulating evidence that people with underlying heart disease are a particularly vulnerable group for triggers like changing meteorological parameters, the objective of this longitudinal study was to analyze the influence of weather parameters on blood pressure, arrhythmia and ischemia in cardiovascular patients. A panel study with repeated measurements was conducted in a rehabilitation clinic in Timmendorfer Strand (Baltic Sea, Germany) with 872 cardiovascular patients. Heart rate, blood pressure and electrocardiography changes were measured during repeated bicycle ergometries. Generalized Estimating Equations were used for regression analyses of immediate, delayed and cumulative influences of the daily measured meteorological data. For men, a decrease in air temperature and in water vapor pressure doubled the risk of ST-segment depression during ergometry [odds ratio (OR) for 1 day delay: 1.88 (1.24; 2.83) for air temperature] with a delay of 1-2 days. For women, an increase of their heart rate before the start of the ergometry [same day: 4.36 beats/min (0.99; 7.74) for air temperature] and a 2- to 3-fold higher risk for ventricular ectopic beats [1 day delay: OR 2.43 (1.17; 5.05) for air temperature] was observed with an increase in temperature and water vapor pressure in almost all analyzed time-windows. The study indicates that meteorological parameters can induce changes in heart function which may lead to adverse cardiovascular events especially in susceptible, diseased individuals. The observed effect on ST-segment depression could be a link between the association of weather changes and cardiovascular morbidity and mortality.
Heidari, Hamidreza; Golbabaei, Farideh; Shamsipour, Aliakbar; Rahimi Forushani, Abbas; Gaeini, Abbasali
2016-01-01
Heat stress evaluation and timely notification, especially using meteorological data is an important issue attracted attention in recent years. Therefore, this study aimed at answering the following research questions: 1) can enthalpy as a common environmental parameter reported by meteorological agencies be applied accurately for evaluation of thermal condition of outdoor settings, and 2) if so, what is it's the best criterion to detect areas in stress or stress-free situations, separately. Nine climatic regions were selected throughout Iran covering a wide variety of climatic conditions like those, which exist around the world. Three types of parameters including measured (ta, RH, Pa and WBGT), estimated (metabolic rate and cloth thermal insulation), and calculated parameters (enthalpy and effective WBGT) were recorded for 1452 different situations. Enthalpy as a new indicator in this research was compared to WBGT in selected regions. Altogether, a good consistency was obtained between enthalpy and WBGT in selected regions (Kappa value: 0.815). Based on the good ROC curve obtained using MedCal software, the criterion of the values more than 74.24 for the new index was determined to explain heat stress situation for outdoor environments. Because of simplicity in measurement, applicability of the indicator for weather agencies, the consistency observed between enthalpy and a valid as well as accurate index (WBGT), sensor requirements which take only a few seconds to reach equilibrium and so on, enthalpy indicator can be introduced and applied as a good substitute for WBGT for outdoor settings.
Dominguez-Rodriguez, A; Juarez-Prera, R A; Rodríguez, S; Abreu-Gonzalez, P; Avanzas, P
2016-05-01
Evaluate whether the meterological parameters affecting revenues in patients with ST-segment and non-ST-segment elevation ACS. A prospective cohort study was carried out. Coronary Care Unit of Hospital Universitario de Canarias We studies a total of 307 consecutive patients with a diagnosis of ST-segment and non-ST-segment elevation ACS. We analyze the average concentrations of particulate smaller than 10 and 2.5μm diameter, particulate black carbon, the concentrations of gaseous pollutants and meteorological parameters (wind speed, temperature, relative humidity and atmospheric pressure) that were exposed patients from one day up to 7 days prior to admission. None. Demographic, clinical, atmospheric particles, concentrations of gaseous pollutants and meterological parameters. A total of 138 (45%) patients were classified as ST-segment and 169 (55%) as non-ST-segment elevation ACS. No statistically significant differences in exposure to atmospheric particles in both groups. Regarding meteorological data, we did not find statistically significant differences, except for higher atmospheric pressure in ST-segment elevation ACS (999.6±2.6 vs. 998.8±2.5 mbar, P=.008). Multivariate analysis showed that atmospheric pressure was significant predictor of ST-segment elevation ACS presentation (OR: 1.14, 95% CI: 1.04-1.24, P=.004). In the patients who suffer ACS, the presence of higher number of atmospheric pressure during the week before the event increase the risk that the ST-segment elevation ACS. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Morin, Cory
2015-01-01
Dengue fever (DF) is caused by a virus transmitted between humans and Aedes genus mosquitoes through blood feeding. In recent decades incidence of the disease has drastically increased in the tropical Americas, culminating with the Pan American outbreak in 2010 which resulted in 1.7 million reported cases. In Puerto Rico dengue is endemic, however, there is significant inter-annual, intraannual, and spatial variability in case loads. Variability in climate and the environment, herd immunity and virus genetics, and demographic characteristics may all contribute to differing patterns of transmission both spatially and temporally. Knowledge of climate influences on dengue incidence could facilitate development of early warning systems allowing public health workers to implement appropriate transmission intervention strategies. In this study, we simulate dengue incidence in several municipalities in Puerto Rico using population and meteorological data derived from ground based stations and remote sensing instruments. This data was used to drive a process based model of vector population development and virus transmission. Model parameter values for container composition, vector characteristics, and incubation period were chosen by employing a Monte Carlo approach. Multiple simulations were performed for each municipality and the results were compared with reported dengue cases. The best performing simulations were retained and their parameter values and meteorological input were compared between years and municipalities. Parameter values varied by municipality and year illustrating the complexity and sensitivity of the disease system. Local characteristics including the natural and built environment impact transmission dynamics and produce varying responses to meteorological conditions.
Improvement of fog predictability in a coupled system of PAFOG and WRF
NASA Astrophysics Data System (ADS)
Kim, Wonheung; Yum, Seong Soo; Kim, Chang Ki
2017-04-01
Fog is difficult to predict because of the multi-scale nature of its formation mechanism: not only the synoptic conditions but also the local meteorological conditions crucially influence fog formation. Coarse vertical resolution and parameterization errors in fog prediction models are also critical reasons for low predictability. In this study, we use a coupled model system of a 3D mesoscale model (WRF) and a single column model with a fine vertical resolution (PAFOG, PArameterized FOG) to simulate fogs formed over the southern coastal region of the Korean Peninsula, where National Center for Intensive Observation of Severe Weather (NCIO) is located. NCIO is unique in that it has a 300 m meteorological tower built at the location to measure basic meteorological variables (temperature, dew point temperature and winds) at eleven different altitudes, and comprehensive atmospheric physics measurements are made with the various remote sensing instruments such as visibility meter, cloud radar, wind profiler, microwave radiometer, and ceilometer. These measurement data are used as input data to the model system and for evaluating the results. Particularly the data for initial and external forcings, which are tightly connected to the predictability of coupled model system, are derived from the tower measurement. This study aims at finding out the most important factors that influence fog predictability of the coupled system for NCIO. Nudging of meteorological tower data and soil moisture variability are found to be critically influencing fog predictability. Detailed results will be discussed at the conference.
Murray, Louis C.
2009-01-01
Water-use data collected between 1992 and 2006 at eight municipal water-supply utilities in east-central and northeast Florida were analyzed to identify seasonal trends in use and to quantify monthly variations. Regression analyses were applied to identify significant correlations between water use and selected meteorological parameters and drought indices. Selected parameters and indices include precipitation (P), air temperature (T), potential evapotranspiration (PET), available water (P-PET), monthly changes in these parameters (Delta P, Delta T, Delta PET, Delta(P-PET), the Palmer Drought Severity Index (PDSI), and the Standardized Precipitation Index (SPI). Selected utilities include the City of Daytona Beach (Daytona), the City of Eustis (Eustis), Gainesville Regional Utilities (GRU), Jacksonville Electric Authority (JEA), Orange County Utilities (OCU), Orlando Utilities Commission (OUC), Seminole County Utilities (SCU), and the City of St. Augustine (St. Augustine). Water-use rates at these utilities in 2006 ranged from about 3.2 million gallons per day at Eustis to about 131 million gallons per day at JEA. Total water-use rates increased at all utilities throughout the 15-year period of record, ranging from about 4 percent at Daytona to greater than 200 percent at OCU and SCU. Metered rates, however, decreased at six of the eight utilities, ranging from about 2 percent at OCU and OUC to about 17 percent at Eustis. Decreases in metered rates occurred because the number of metered connections increased at a greater rate than did total water use, suggesting that factors other than just population growth may play important roles in water-use dynamics. Given the absence of a concurrent trend in precipitation, these decreases can likely be attributed to changes in non-climatic factors such as water-use type, usage of reclaimed water, water-use restrictions, demographics, and so forth. When averaged for the eight utilities, metered water-use rates depict a clear seasonal pattern in which rates were lowest in the winter and greatest in the late spring. Averaged water-use rates ranged from about 9 percent below the 15-year daily mean in January to about 11 percent above the daily mean in May. Water-use rates were found to be statistically correlated to meteorological parameters and drought indices, and to be influenced by system memory. Metered rates (in gallons per day per active metered connection) were consistently found to be influenced by P, T, PET, and P-PET and changes in these parameters that occurred in prior months. In the single-variant analyses, best correlations were obtained by fitting polynomial functions to plots of metered rates versus moving-averaged values of selected parameters (R2 values greater than 0.50 at three of eight sites). Overall, metered water-use rates were best correlated with the 3- to 4-month moving average of Delta T or Delta PET (R2 values up to 0.66), whereas the full suite of meteorological parameters was best correlated with metered rates at Daytona and least correlated with rates at St. Augustine. Similarly, metered rates were substantially better correlated with moving-averaged values of precipitation (significant at all eight sites) than with single (current) monthly values (significant at only three sites). Total and metered water-use rates were positively correlated with T, PET, Delta P, Delta T, and Delta PET, and negatively correlated with P, P-PET, Delta (P-PET), PDSI, and SPI. The drought indices were better correlated with total water-use rates than with metered rates, whereas metered rates were better correlated with meteorological parameters. Multivariant analyses produced fits of the data that explained a greater degree of the variance in metered rates than did the single-variant analyses. Adjusted R2 values for the 'best' models ranged from 0.79 at JEA to 0.29 at St. Augustine and exceeded 0.60 at five of eight sites. The amount of available water (P-PET) was the si
NASA Astrophysics Data System (ADS)
Yáñez, Marco A.; Baettig, Ricardo; Cornejo, Jorge; Zamudio, Francisco; Guajardo, Jorge; Fica, Rodrigo
2017-07-01
Air pollution is one of the major global environmental problems affecting human health and life quality. Many cities of Chile are heavily polluted with PM2.5 and PM10, mainly in the cold season, and there is little understanding of how the variation in particle matter differs between cities and how this is affected by the meteorological conditions. The objective of this study was to assess the effect of meteorological variables on respirable particulate matter (PM) of the main cities in the central-south valley of Chile during the cold season (May to August) between 2014 and 2016. We used hourly PM2.5 and PMcoarse (PM10- PM2.5) information along with wind speed, temperature and relative humidity, and other variables derived from meteorological parameters. Generalized additive models (GAMs) were fitted for each of the eight cities selected, covering a latitudinal range of 929 km, from Santiago to Osorno. Great variation in PM was found between cities during the cold months, and that variation exhibited a marked latitudinal pattern. Overall, the more northerly cities tended to be less polluted in PM2.5 and more polluted in PMcoarse than the more southerly cities, and vice versa. The results show that other derived variables from meteorology were better related with PM than the use of traditional daily means. The main variables selected with regard to PM2.5 content were mean wind speed and minimum temperature (negative relationship). Otherwise, the main variables selected with regard to PMcoarse content were mean wind speed (negative), and the daily range in temperature (positive). Variables derived from relative humidity contributed differently to the models, having a higher effect on PMcoarse than PM2.5, and exhibiting both negative and positive effects. For the different cities the deviance explained by the GAMs ranged from 37.6 to 79.1% for PM2.5 and from 18.5 to 63.7% for PMcoarse. The percentage of deviance explained by the models for PM2.5 exhibited a latitudinal pattern, which was not observed in PMcoarse. This highlights the greater predictability of PM2.5 according to meteorological parameters in the cities to the south. Southern cities located spatially close to one another had similar patterns in both the selected variables for the models and the trends. The meteorological factor influencing the cities had a major impact on PM concentrations. The findings of this study may aid understanding of PM variation across the country, in the way of improving forecasting models.
NASA Astrophysics Data System (ADS)
Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin
2018-01-01
The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.
Schemel, Laurence E.
2002-01-01
Meteorological data were collected during 1998-2001 at the Port of Redwood City, California, to support hydrologic studies in South San Francisco Bay. The measured meteorological variables were air temperature, atmospheric pressure, quantum flux (insolation), and four parameters of wind speed and direction: scalar mean horizontal wind speed, (vector) resultant horizontal wind speed, resultant wind direction, and standard deviation of the wind direction. Hourly mean values based on measurements at five-minute intervals were logged at the site. Daily mean values were computed for temperature, infolation, pressure, and scalar wind speed. Daily mean values for 1998-2001 are described in this report, and a short record of hourly mean values is compared to data from another near-by station. Data (hourly and daily mean) from the entire period of record (starting in April 1992) and reports describing data prior to 1998 are provided.
The Atmospheric Boundary Layer
ERIC Educational Resources Information Center
Tennekes, Hendrik
1974-01-01
Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)
Evaluation of Planetary Boundary Layer Scheme Sensitivities for the Purpose of Parameter Estimation
Meteorological model errors caused by imperfect parameterizations generally cannot be overcome simply by optimizing initial and boundary conditions. However, advanced data assimilation methods are capable of extracting significant information about parameterization behavior from ...
Russian Meteorological and Geophysical Rockets of New Generation
NASA Astrophysics Data System (ADS)
Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.
2015-09-01
To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute and an ejection charge, but does not include additional propellant. Time to apogee is 151 seconds. Launch weight is 67 kg. Payload is 54 mm dia. x 400 mm long with max payload weight 2-3 kg. Initial acceleration (vertical): 200g's (up). GPS/GLONASS position system with be used for tracking the payload. 30 channel telemetry system will provide data transition. Temperature, pressure, wind, electron density will be measured during the ascent (from 60 km) and descent lags as a basic atmospheric parameters. Portable rocket system MERA can be widely used in the frame of international collaboration. The main technical specifications of MERA and MN-300 are described and results of test flights are presented.
NASA Astrophysics Data System (ADS)
Lanorte, R.; Lasaponara, R.; De Santis, F.; Aromando, A.; Nole, G.
2012-04-01
Daily estimates of fire danger using multitemporal satellite MODIS data: the experience of FIRE-SAT in the Basilicata Region (Italy) A. Lanorte, F. De Santis , A. Aromando, G. Nolè, R. Lasaponara, CNR-IMAA, Potenza, Italy In the recent years the Basilicata Region (Southern Italy) has been characterized by an increasing incidence of fire disturbance which also tends to affect protected (Regional and national parks) and natural vegetated areas. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger/risk monitoring based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data were used. The spectral capability and daily availability makes MODIS products especially suitable for estimating the variations of fuel characteristics. This work presents new significant results obtained in the context of FIRE-SAT project. In order to obtain a dynamical indicator of fire susceptibility based on multitemporal MODIS satellite data, up-datable in short-time periods (daily), we used the spatial/temporal variations of following parameters: (1) Relative Greenness Index (2) Live and dead fuel moisture content (3) Temperature In particular, the dead fuel moisture content is a key factor in fire ignition. Dead fuel moisture dynamics are significantly faster than those observed for live fuel. Dead fine vegetation exhibits moisture and density values dependent on rapid atmospheric changes and strictly linked to local meteorological conditions. For this reason, commonly, the estimation of dead fuel moisture content is based on meteorological variables. In this study we propose to use MODIS data to estimate meteorological data (specifically Relative Humidity) at an adequate spatial and temporal resolution. The assessment of dead fuel moisture content plays a decisive role in determining a fire dynamic danger index in combination with other factors. This greatly improves the reliability of fire danger maps obtained on the basis of a integrated approach of the dynamic factors mentioned above and the static factors (fuel physical properties, morphological parameters and social-historical factors). The validation of the fire danger indices was carried out by the use of statistics of occurred forest fires. The validation results show satisfactory agreement with the fire danger map taking into account that . fire events are indirect indicator of fire danger; indeed, many factor influence fire ignition and spread such as human pressure, fire-fighting conditions, wind, etc.. Therefore, in this study we have defined and used several fire statistic data useful for the validation of the fire danger maps in order to create the basic elements for the design of a validation protocol.
The classification of wind shears from the point of view of aerodynamics and flight mechanics
NASA Technical Reports Server (NTRS)
Seidler, Fritz; Hensel, Gunter
1987-01-01
A study of international statistical data shows that in about three quarters of all serious accidents which occurred with jet propelled airliners wind shear was either one of the main causes of the accident or represented a major contributory cause. Wind shear related problems are examined. The necessity of a use of different concepts, definitions, and divisions is explained, and the concepts and definitions required for the division of wind and wind shear into different categories is discussed. A description of the context between meteorological and aerodynamics-flight mechanics concepts, definitions, and divisions is also provided. Attention is given to wind and wind components, general characteristics of wind shear and the meteorological terms, the basic types of wind shear for aerodynamics-flight mechanics investigations, special types of wind shear for aerodynamics-flight mechanics investigations, and possibilities regarding a change of the wind component.
NASA GISS Surface Temperature (GISTEMP) Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, G.; Ruedy, R.; Persin, A
The NASA GISS Surface Temperature (GISTEMP) analysis provides a measure of the changing global surface temperature with monthly resolution for the period since 1880, when a reasonably global distribution of meteorological stations was established. The input data that the GISTEMP Team use for the analysis, collected by many national meteorological services around the world, are the adjusted data of the Global Historical Climatology Network (GHCN) Vs. 3 (this represents a change from prior use of unadjusted Vs. 2 data) (Peterson and Vose, 1997 and 1998), United States Historical Climatology Network (USHCN) data, and SCAR (Scientific Committee on Antarctic Research) datamore » from Antarctic stations. Documentation of the basic analysis method is provided by Hansen et al. (1999), with several modifications described by Hansen et al. (2001). The GISS analysis is updated monthly, however CDIAC's presentation of the data here is updated annually.« less
Virtually-Enhanced Fluid Laboratories for Teaching Meteorology
NASA Astrophysics Data System (ADS)
Marshall, J.; Illari, L.
2015-12-01
The Weather in a Tank (WIAT) project aims to offer instructors a repertoire of rotating tank experiments, and a curriculum in fluid dynamics, to better assist students in learning how to move between phenomena in the real world and basic principles of rotating fluid dynamics which play a central role in determining the climate of the planet. Despite the increasing use of laboratory experiments in teaching meteorology, however, we are aware that many teachers and students do not have access to suitable apparatus and so cannot benefit from them. Here we describe a 'virtually-enhanced' laboratory that we hope could be very effective in getting across a flavor of the experiments and bring them to a wider audience. In the pedagogical spirit of WIAT we focus on how simple underlying principles, illustrated through laboratory experiments, shape the observed structure of the large-scale atmospheric circulation.
Building resilience to weather-related hazards through better preparedness
NASA Astrophysics Data System (ADS)
Keller, Julia; Golding, Brian; Johnston, David; Ruti, Paolo
2017-04-01
Recent developments in weather forecasting have transformed our ability to predict weather-related hazards, while mobile communication is radically changing the way that people receive information. At the same time, vulnerability to weather-related hazards is growing through urban expansion, population growth and climate change. This talk will address issues facing the science community in responding to the Sendai Framework objective to "substantially increase the availability of and access to multi-hazard early warning systems" in the context of weather-related hazards. It will also provide an overview of activities and approaches developed in the World Meteorological Organisation's High Impact Weather (HIWeather) project. HIWeather has identified and is promoting research in key multi-disciplinary gaps in our knowledge, including in basic meteorology, risk prediction, communication and decision making, that affect our ability to provide effective warnings. The results will be pulled together in demonstration projects that will both showcase leading edge capability and build developing country capacity.
Meteorological Conditions for Functioning Automobile Transport in Moscow Region
NASA Astrophysics Data System (ADS)
Shiryaeva, Alexandra
2017-04-01
The purpose of this study is to investigate weather and climate conditions of functioning automobile transport in Moscow region. For this, statistics on the daily number of accidents in the City of Moscow in 2013-2014 were studied and compared with the weather conditions. Various weather phenomena and meteorological parameters that affect the increase and decrease in the number of accidents in warm and cold seasons were identified; the extent of this influence was assessed. Moreover, an analysis of the distribution and change of the frequency of occurrence of these phenomena and meteorological parameters in 1961-2010 in Moscow region was conducted. In the cold season, there are much more weather events influencing the growth in the number of accidents than in the warm season. Fallout of more than 2 cm of snow per date, the reduction in meteorological visibility, drizzle and snow storms lead to an increase of accident rate by 5-15%. In the warm season, when thunderstorms and heavy rainfall there is a decrease in accidents; increase in the number of accidents happens in hot weather (maximum air temperatures over +30 °C). In the period 1991-2010 compared to 1961-1990 in the Moscow oblast the sustained cold period and amount of precipitation under negative air temperature has reduced; a decrease in the number of days with reduced visibility range and the offset of the date of the fallout of the first snow aside winter months is observed, which is favorable for automobile transport. At the same time, there is an increase in the number of days with transitions of air temperature through 0 °C, and the number of hot days, which negatively affects the functioning automobile transport.
NASA Astrophysics Data System (ADS)
Lungu, Mihai; Lungu, Antoanetta; Stefu, Nicoleta; Neculae, Adrian; Strambeanu, Nicolae
2017-01-01
Air pollution is known to have many adverse effects, among which those on human health are considered the most important. Healthy people of all ages can be adversely affected by high levels of air pollutants. Nanoparticles can be considered among the most harmful of all pollutants as they can penetrate straight into the lungs and blood stream. Their role in the aging process has also recently been revealed. In Romania, practically in all important urban areas (Bucureşti, Iaşi, Timişoara, Braşov, Baia Mare, etc.) the daily limit values for airborne particulate matter are exceeded, so more efforts in controlling air quality are required, along with more research and policies with positive impact on reducing the pollutants concentration in air. The approaches that have been developed to assess the air quality and health impacts of pollution sources are based on analytical methods such as source apportionment, factor analyses, and the measurement of source-relevant indicator compounds. The goal of the present study is to offer preliminary but relevant information on the particulate matter distribution in the city of Timisoara, Romania. Measurements of inhalable coarse and fine particles in two areas of the city, the most affected by industrial particulate emissions, were performed in days with various meteorological conditions. Meteorological parameters for the specific measurement days were recorded (wind speed and direction, humidity, temperature, pressure, etc.) and the influence of these parameters on the particulate matter dispersion was studied. The results show that the meteorological conditions cause differences between airborne particulate matter distributions in different days in the same zones. Measurements were made in northern and southern areas of the city of Timisoara because previous results have shown high levels of airborne particulate matter in these areas.
Aircraft type influence on contrail properties
NASA Astrophysics Data System (ADS)
Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.
2013-05-01
The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI-1)2/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.
Aircraft type influence on contrail properties
NASA Astrophysics Data System (ADS)
Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.
2013-12-01
The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ at 550 nm (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and, in addition, the Contrail and Cirrus Prediction (CoCiP) model to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. CoCiP model results suggest that the aircraft dependence of climate-relevant contrail properties persists during contrail lifetime, adding importance to aircraft-dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with the fuel flow rate, as confirmed by observations. For higher relative humidity with respect to ice (RHI), the analytical relationship suggests a non-linear increase in the form (RHI-12/3. Summarized, our combined results could help to more accurately assess the climate impact from aviation using an aircraft-dependent contrail parameterization.
CIELO-A GIS integrated model for climatic and water balance simulation in islands environments
NASA Astrophysics Data System (ADS)
Azevedo, E. B.; Pereira, L. S.
2003-04-01
The model CIELO (acronym for "Clima Insular à Escala Local") is a physically based model that simulates the climatic variables in an island using data from a single synoptic reference meteorological station. The reference station "knows" its position in the orographic and dynamic regime context. The domain of computation is a GIS raster grid parameterised with a digital elevation model (DEM). The grid is oriented following the direction of the air masses circulation through a specific algorithm named rotational terrain model (RTM). The model consists of two main sub-models. One, relative to the advective component simulation, assumes the Foehn effect to reproduce the dynamic and thermodynamic processes occurring when an air mass moves through the island orographic obstacle. This makes possible to simulate the air temperature, air humidity, cloudiness and precipitation as influenced by the orography along the air displacement. The second concerns the radiative component as affected by the clouds of orographic origin and by the shadow produced by the relief. The initial state parameters are computed starting from the reference meteorological station across the DEM transept until the sea level at the windward side. Then, starting from the sea level, the model computes the local scale meteorological parameters according to the direction of the air displacement, which is adjusted with the RTM. The air pressure, temperature and humidity are directly calculated for each cell in the computational grid, while several algorithms are used to compute the cloudiness, net radiation, evapotranspiration, and precipitation. The model presented in this paper has been calibrated and validated using data from some meteorological stations and a larger number of rainfall stations located at various elevations in the Azores Islands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim
2014-01-01
To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less
NASA Astrophysics Data System (ADS)
Padhee, S. K.; Nikam, B. R.; Aggarwal, S. P.; Garg, V.
2014-11-01
Drought is an extreme condition due to moisture deficiency and has adverse effect on society. Agricultural drought occurs when restraining soil moisture produces serious crop stress and affects the crop productivity. The soil moisture regime of rain-fed agriculture and irrigated agriculture behaves differently on both temporal and spatial scale, which means the impact of meteorologically and/or hydrological induced agriculture drought will be different in rain-fed and irrigated areas. However, there is a lack of agricultural drought assessment system in Indian conditions, which considers irrigated and rain-fed agriculture spheres as separate entities. On the other hand recent advancements in the field of earth observation through different satellite based remote sensing have provided researchers a continuous monitoring of soil moisture, land surface temperature and vegetation indices at global scale, which can aid in agricultural drought assessment/monitoring. Keeping this in mind, the present study has been envisaged with the objective to develop agricultural drought assessment and prediction technique by spatially and temporally assimilating effective drought index (EDI) with remote sensing derived parameters. The proposed technique takes in to account the difference in response of rain-fed and irrigated agricultural system towards agricultural drought in the Bundelkhand region (The study area). The key idea was to achieve the goal by utilizing the integrated scenarios from meteorological observations and soil moisture distribution. EDI condition maps were prepared from daily precipitation data recorded by Indian Meteorological Department (IMD), distributed within the study area. With the aid of frequent MODIS products viz. vegetation indices (VIs), and land surface temperature (LST), the coarse resolution soil moisture product from European Space Agency (ESA) were downscaled using linking model based on Triangle method to a finer resolution soil moisture product. EDI and spatially downscaled soil moisture products were later used with MODIS 16 days NDVI product as key elements to assess and predict agricultural drought in irrigated and rain-fed agricultural systems in Bundelkhand region of India. Meteorological drought, soil moisture deficiency and NDVI degradation were inhabited for each and every pixel of the image in GIS environment, for agricultural impact assessment at a 16 day temporal scale for Rabi seasons (October-April) between years 2000 to 2009. Based on the statistical analysis, good correlations were found among the parameters EDI and soil moisture anomaly; NDVI anomaly and soil moisture anomaly lagged to 16 days and these results were exploited for the development of a linear prediction model. The predictive capability of the developed model was validated on the basis of spatial distribution of predicted NDVI which was compared with MODIS NDVI product in the beginning of preceding Rabi season (Oct-Dec of 2010).The predictions of the model were based on future meteorological data (year 2010) and were found to be yielding good results. The developed model have good predictive capability based on future meteorological data (rainfall data) availability, which enhances its utility in analyzing future Agricultural conditions if meteorological data is available.
NASA Astrophysics Data System (ADS)
Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.
2016-12-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total runoff. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Analysis and Assessment of Tidal Flood Potential at Different Locations in the East Coast of India
NASA Astrophysics Data System (ADS)
Bhagawati, Chirantan; Shaileshbhai Patel, Ramkrushnbhai; Pandey, Suchita; Chakraborty, Arun; Jayanarayanan, Kuttippurath
2016-04-01
Sea water inundation has always remained a major problem for human civilization in coastal regions. Increase in the frequency of severe to very severe cyclones in Bay of Bengal has made the Eastern Coast of India highly vulnerable for sea water inundation. Tidal effect has a significant contribution to coastal inundation. Wood (1976) proposed a Combined Astronomical Meteorological Index (CAMI) to quantify the risk of tidal flooding due to astronomical tides as well as meteorological parameters. This study deals with the analysis of major tidal components and the changes in sea level as observed from the tidal gauge records of Visakhapatnam, Chennai and Ennore situated in the East Coast of India. The study envisages to analyse (1) tidal characteristics observed at different stations by using Harmonic analysis, (2) to synthesise the missing tidal information using Artificial Neural Network (ANN) and wavelet analyses, (3) to quantify the diurnal as well as seasonal trends in sea level, and (4) to assess the tidal flooding potential at the sites by using the CAMI under different meteorological conditions. The harmonic analysis of Visakhapatnam, Chennai and Ennore shows that Principal Lunar Semidiurnal (M2) is dominant tidal constituent in all three stations. The Form Number (FN) obtained for Visakhapatnam (17.69N 83.27E), Chennai (13.08N 80.29E) and Ennore (13.25N 80.33E) are 0.14, 0.29 and 0.33 respectively. FN of these stations indicates semidiurnal nature of tide in Visakhapatnam and mixed tide in Chennai and Ennore. The monthly fluctuations of sea level in Visakhapatnam from January to July 2014 show that the sea level tends to decrease at a rate of 0.2 m from January to March and then it starts to rise upto May with a similar rate. The network prediction finds high correlation (R=0.9684) between the observed and the target values of ANN. Finally, we also assess the coastal vulnaberility by tidal flooding at the time of perigean spring tide based on the sea level trend and the astronomical parameters combined with various meteorological parameters and conditions during extreme weather events.
NASA Astrophysics Data System (ADS)
Lin, J.
2011-12-01
Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry, surface air quality and climatic forcing. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, which can be estimated inversely from satellite remote sensing of the vertical column densities (VCDs) of nitrogen dioxide (NO2) in the troposphere. Based on VCDs of NO2 retrieved from OMI, a novel approach is developed in this study to separate anthropogenic emissions of NOx from natural sources over East China for 2006. It exploits the fact that anthropogenic and natural emissions vary with seasons with distinctive patterns. The global chemical transport model (CTM) GEOS-Chem is used to establish the relationship between VCDs of NO2 and emissions of NOx for individual sources. Derived soil emissions are compared to results from a newly developed bottom-up approach. Effects of uncertainties in model meteorology and chemistry over China, an important source of errors in the emission inversion, are evaluated systematically for the first time. Meteorological measurements from space and the ground are used to analyze errors in meteorological parameters driving the CTM.
Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei
2015-02-01
It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.
The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air
NASA Astrophysics Data System (ADS)
Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka
2011-03-01
Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004-2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.
Environment parameters and basic functions for floating-point computation
NASA Technical Reports Server (NTRS)
Brown, W. S.; Feldman, S. I.
1978-01-01
A language-independent proposal for environment parameters and basic functions for floating-point computation is presented. Basic functions are proposed to analyze, synthesize, and scale floating-point numbers. The model provides a small set of parameters and a small set of axioms along with sharp measures of roundoff error. The parameters and functions can be used to write portable and robust codes that deal intimately with the floating-point representation. Subject to underflow and overflow constraints, a number can be scaled by a power of the floating-point radix inexpensively and without loss of precision. A specific representation for FORTRAN is included.
NASA Astrophysics Data System (ADS)
Amil, N.; Latif, M. T.; Khan, M. F.; Mohamad, M.
2015-09-01
This study attempts to investigate the fine particulate matter (PM2.5) variability in the Klang Valley urban-industrial environment. In total, 94 daily PM2.5 samples were collected during a one-year campaign from August 2011 to July 2012, covering all four seasons. The samples were analysed for various inorganic components and black carbon. The chemical compositions were statistically analysed and the aerosol pattern was characterised using descriptive analysis, correlation matrices, enrichment factors (EF), stoichiometric analysis and chemical mass closure (CMC). For source apportionment purposes, a combination of positive matrix factorisation (PMF) and multi-linear regression (MLR) was employed. Further, meteorological-gaseous parameters were incorporated into each analysis for improved assessment. The results showed that PM2.5 mass averaged at 28 ± 18 μg m-3, 2.8 fold higher than the World Health Organisation (WHO) annual guideline. On a daily basis, the PM2.5 mass ranged between 6 and 118 μg m-3 with 43 % exceedance of the daily WHO guideline. The North-East monsoon (NE) was the only season with < 50 % sample exceedance of the daily WHO guideline. On an annual scale, PM2.5 mass correlated positively with temperature (T) and wind speed (WS) but negatively with relative humidity (RH). With the exception of NOx, the gases analysed (CO, NO2, NO and SO2) were found to significantly influence the PM2.5 mass. Seasonal variability unexpectedly showed that rainfall, WS and wind direction (WD) did not significantly correlate with PM2.5 mass. Further analysis on the PM2.5 / PM10, PM2.5 / TSP and PM10 / TSP ratios reveal that meteorological parameters only greatly influenced the coarse particles (PM > 2.5μm) and less so the fine particles at the site. Chemical composition showed that both primary and secondary pollutants of PM2.5 are equally important, albeit with seasonal variability. The CMC components identified were: black carbon (BC) > secondary inorganic aerosols (SIA) > dust > trace elements (TE) > sea salt > K+. The EF analysis distinguished two groups of trace elements: those with anthropogenic sources (Pb, Se, Zn, Cd, As, Bi, Ba, Cu, Rb, V and Ni) and those with a crustal source (Sr, Mn, Co and Li). The five identified factors resulting from PMF 5.0 were: (1) combustion of engine oil; (2) mineral dust; (3) mixed SIA and biomass burning; (4) mixed traffic and industrial; and (5) sea salt. Each of these sources had an annual mean contribution of 17, 14, 42, 10 and 17 %, respectively. The dominance of each identified source largely varied with changing season and a few factors were in agreement with the CMC, EF and stoichiometric analysis, accordingly. In relation to meteorological-gaseous parameters, PM2.5 sources were influenced by different parameters during different seasons. In addition, two air pollution episodes (HAZE) revealed the influence of local and/or regional sources. Overall, our study clearly suggests that the chemical constituents and sources of PM2.5 were greatly influenced and characterised by meteorological and gaseous parameters which largely vary with season.
WaveNet: A Web-Based Metocean Data Access, Processing, and Analysis Tool. Part 3 - CDIP Database
2014-06-01
and Analysis Tool; Part 3 – CDIP Database by Zeki Demirbilek, Lihwa Lin, and Derek Wilson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) describes coupling of the Coastal Data Information Program ( CDIP ) database to WaveNet, the first module of MetOcnDat (Meteorological...provides a step-by-step procedure to access, process, and analyze wave and wind data from the CDIP database. BACKGROUND: WaveNet addresses a basic
Vertical profiles of wind and temperature by remote acoustical sounding
NASA Technical Reports Server (NTRS)
Fox, H. L.
1969-01-01
An acoustical method was investigated for obtaining meteorological soundings based on the refraction due to the vertical variation of wind and temperature. The method has the potential of yielding horizontally averaged measurements of the vertical variation of wind and temperature up to heights of a few kilometers; the averaging takes place over a radius of 10 to 15 km. An outline of the basic concepts and some of the results obtained with the method are presented.
How is rainfall interception in urban area affected by meteorological parameters?
NASA Astrophysics Data System (ADS)
Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca
2017-04-01
Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The amount of rainfall reaching the ground depends on various meteorological and vegetation parameters. Rainfall, throughfall and stemflow have been measured in the city of Ljubljana, Slovenia since the beginning of 2014. Manual and automatic measurements are performed regularly under Betula pendula and Pinus nigra trees in urban area. In 2014, there were detected 178 rainfall events with total amount of 1672.1 mm. In average B. pendula intercepted 44% of rainfall and P. nigra intercepted 72% of rainfall. In 2015 we have detected 117 events with 1047.4 mm of rainfall, of which 37% was intercepted by B. pendula and 60% by P. nigra. The effect of various meteorological parameters on the rainfall interception was analysed in the study. The parameters included in the analysis were rainfall rate, rainfall duration, drop size distribution (average drop velocity and diameter), average wind speed, and average temperature. The results demonstrate decreasing rainfall interception with longer rainfall duration and higher rainfall intensity although the impact of the latter one is not statistically significant. In the case of very fast or very slow rainfall drops, the interception is higher than for the mean rain drop velocity values. In the case of P. nigra the impact of the rain drop diameter on interception is similar to the one of rain drop velocity while for B. pendula increasing of drop diameter also increases the interception. As expected, interception is higher for warmer events. This trend is more evident for P. nigra than for B. pendula. Furthermore, the amount of intercepted rainfall also increases with wind although it could be relatively high in case of very low wind speeds.
NASA Technical Reports Server (NTRS)
Takallu, M. A.; Wong, D. T.; Uenking, M. D.
2002-01-01
An experimental investigation was conducted to study the effectiveness of modern flight displays in general aviation cockpits for mitigating Low Visibility Loss of Control and the Controlled Flight Into Terrain accidents. A total of 18 General Aviation (GA) pilots with private pilot, single engine land rating, with no additional instrument training beyond private pilot license requirements, were recruited to evaluate three different display concepts in a fixed-based flight simulator at the NASA Langley Research Center's General Aviation Work Station. Evaluation pilots were asked to continue flight from Visual Meteorological Conditions (VMC) into Instrument Meteorological Conditions (IMC) while performing a series of 4 basic precision maneuvers. During the experiment, relevant pilot/vehicle performance variables, pilot control inputs and physiological data were recorded. Human factors questionnaires and interviews were administered after each scenario. Qualitative and quantitative data have been analyzed and the results are presented here. Pilot performance deviations from the established target values (errors) were computed and compared with the FAA Practical Test Standards. Results of the quantitative data indicate that evaluation pilots committed substantially fewer errors when using the Synthetic Vision Systems (SVS) displays than when they were using conventional instruments. Results of the qualitative data indicate that evaluation pilots perceived themselves to have a much higher level of situation awareness while using the SVS display concept.
NASA Technical Reports Server (NTRS)
Smith, D. R.; Leslie, F. W.
1984-01-01
The Purdue Regional Objective Analysis of the Mesoscale (PROAM) is a successive correction type scheme for the analysis of surface meteorological data. The scheme is subjected to a series of experiments to evaluate its performance under a variety of analysis conditions. The tests include use of a known analytic temperature distribution to quantify error bounds for the scheme. Similar experiments were conducted using actual atmospheric data. Results indicate that the multiple pass technique increases the accuracy of the analysis. Furthermore, the tests suggest appropriate values for the analysis parameters in resolving disturbances for the data set used in this investigation.
OXIDIZED NITROGEN DEPOSITION IN THE EASTERN UNITED STATES
Air quality and selected meteorological parameters have been monitored at rural sites in the United States (US) by EPA's Clean Air Status and Trends Network, (CASTNet) sites. The National Atmospheric Deposition Program (NADP) monitors wet deposition of numerous ions in precip...
Tracking radar studies of bird migration
NASA Technical Reports Server (NTRS)
Williams, T. C.; Williams, J. M.; Teal, J. M.; Kanwisher, J. W.
1972-01-01
The application of tracking radar for determining the flight paths of migratory birds is discussed. The effects produced by various meteorological parameters are described. Samples of radar scope presentations obtained during tracking studies are presented. The characteristics of the radars and their limitations are examined.
NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal
Atmospheric Science Data Center
2018-03-16
NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal ... current POWER home page. The new POWER will include improved solar and meteorological data with all parameters available on a 0.5-degree ...
Chen, Ho-Wen; Tsai, Ching-Tsan; She, Chin-Wen; Lin, Yo-Chen; Chiang, Chow-Feng
2010-11-01
Air pollution data around a monitored site are normally difficult to analyze due to highly inter-related meteorological and topographical factors on top of many complicated atmospheric chemical interactions occurred in local and regional wind fields. The challenge prompts this study to develop a comprehensive data-mining algorithm of cluster analysis followed by meteorological and interspecies correlations to mitigate the inherent data complexity and dissimilarity. This study investigated the background features of acidic and basic air pollutants around a high-tech industrial park in Taiwan. Monthly samplings were taken at 10 sites around the park in a year. The temporal distribution plots show a baseline with two characteristic groups of high and low peaks. Hierarchical cluster analysis confirms that high peaks were primarily associated with low speed south wind in summer for all the chemical species, except for F(-), Cl(-), NH(3) and HF. Crosschecking with the topographical map identifies several major external sources in south and southwest. Further meteorological correlation suggests that HCl is highly positively associated with humidity, while Cl(-) is highly negatively associated with temperature, both for most stations. Interestingly, HNO(3) is highly negatively associated with wind speed for most stations and the hotspot was found in summer and around the foothill of Da-Tu Mountain in the northwest, a stagnant pocket on the study site. However, F(-) is highly positively associated with wind speed at downwind stations to the prevailing north wind in winter, indicating an internal source from the north. The presence of NH(4)(+) stimulates the formation of NO(3)(-), SO(4)(-2) (R=0.7), and HNO(3), H(2)SO(4), NH(3) (R=0.3-0.4). As H(2)SO(4) could be elevated to a level as high as 40% of the regulated standard, species interactions may be a dominate mechanism responsible for the substantial increase in summer from external sources. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burkhart, John F.; Decker, Sven; Filhol, Simon; Hulth, John; Nesje, Atle; Schuler, Thomas V.; Sobolowski, Stefan; Tallaksen, Lena M.
2017-04-01
The Finse Alpine Research Station provides convenient access to the Hardangervidda mountain plateau in Southern Norway (60 deg N, 1222 m asl). The station is located above the tree-line in vicinity to the west-eastern mountain water divide and is easily accessible by train from Bergen and Oslo. The station itself offers housing and basic laboratory facilities and has been used for ecological monitoring. Over the past years, studies on small-scale snow distribution and ground temperature have been performed and accompanied by a suite of meteorological measurements. Supported by strategic investments by the University of Oslo and ongoing research projects, these activities are currently expanded and the site is developed towards a mountain field laboratory for studies on Land-Atmosphere Interaction in Cold Environments, facilitated by the LATICE project (www.mn.uio.no/latice). Additional synergy comes from close collaborations with a range of institutions that perform operational monitoring close to Finse, including long-term time series of meteorological data and global radiation. Through our activities, this infrastructure has been complemented by a permanent tower for continuous Eddy-Covariance measurements along with associated gas fluxes. A second, mobile covariance system is in preparation and will become operational in 2017. In addition, a wireless sensor network is set up to grasp the spatial distributions of basic meteorological variables, snow depth and glacier mass balance on the nearby Hardangerjøkulen ice cap. While the research focus so far was on small scale processes (snow redistribution), this is now being expanded to cover hydrological processes on the catchment and regional scale. To this end, two discharge stations have been installed to gauge discharge from two contrasting catchments (glacier dominated and non-glacierized). In this presentation, we provide an overview over existing and planned infrastructure, field campaigns and research activities, accompanied by available data, the result of some preliminary analysis and discuss opportunities for future collaboration.
NASA Astrophysics Data System (ADS)
Andrade, Fatima; Orsini, Celso; Maenhaut, Willy
Stacked filter units were used to collect atmospheric particles in separate coarse and fine fractions at the Sao Paulo University Campus during the winter of 1989. The samples were analysed by particle-induced X-ray emission (PIXE) and the data were subjected to an absolute principal component analysis (APCA). Five sources were identified for the fine particles: industrial emissions, which accounted for 13% of the fine mass; emissions from residual oil and diesel, explaining 41%; resuspended soil dust, with 28%; and emissions of Cu and of Mg, together with 18%. For the coarse particles, four sources were identified: soil dust, accounting for 59% of the coarse mass; industrial emissions, with 19%; oil burning, with 8%; and sea salt aerosol, with 14% of the coarse mass. A data set with various meteorological parameters was also subjected to APCA, and a correlation analysis was performed between the meteorological "absolute principal component scores" (APCS) and the APCS from the fine and coarse particle data sets. The soil dust sources for the fine and coarse aerosol were highly correlated with each other and were anticorrelated with the sea breeze component. The industrial components in the fine and coarse size fractions were also highly positively correlated. Furthermore, the industrial component was related with the northeasterly wind direction and, to a lesser extent, with the sea breeze component.
NASA Astrophysics Data System (ADS)
Zhong, L.; Ma, Y.; Ma, W.; Zou, M.; Hu, Y.
2016-12-01
Actual evapotranspiration (ETa) is an important component of the water cycle in the Tibetan Plateau. It is controlled by many hydrological and meteorological factors. Therefore, it is of great significance to estimate ETa accurately and continuously. It is also drawing much attention of scientific community to understand land surface parameters and land-atmosphere water exchange processes in small watershed-scale areas. Based on in-situ meteorological data in the Nagqu river basin and surrounding regions, the main meteorological factors affecting the evaporation process were quantitatively analyzed and the point-scale ETa estimation models in the study area were successfully built. On the other hand, multi-source satellite data (such as SPOT, MODIS, FY-2C) were used to derive the surface characteristics in the river basin. A time series processing technique was applied to remove cloud cover and reconstruct data series. Then improved land surface albedo, improved downward shortwave radiation flux and reconstructed normalized difference vegetation index (NDVI) were coupled into the topographical enhanced surface energy balance system to estimate ETa. The model-estimated results were compared with those ETa values determined by combinatory method. The results indicated that the model-estimated ETa agreed well with in-situ measurements with correlation coefficient, mean bias error and root mean square error of 0.836, 0.087 and 0.140 mm/h respectively.
Shashar, Sagi; Yitshak-Sade, Maayan; Sonkin, Roman; Novack, Victor; Jaffe, Eli
2018-06-01
Published annual estimates report a global burden of 2.5 million snakebite cases and >100,000 deaths. In Israel, envenomations are the third most frequent cause of poisonings that are of moderate to major clinical severity. Most studies focus on the clinical descriptions of snakebites in tropical climates, and we sought to investigate the association between snakebite frequency and meteorological parameters. We sought to investigate the seasonality of snakebites and evaluate the association between increasingly common heat waves and other meteorological parameters and snakebite frequency in a semiarid nontropical climate. We obtained data for all medical evacuations (2008-2015) because of snakebites in Israel. Climate data included daily 24-hour average temperature (°C) and relative humidity (%). We used a time-stratified case crossover method, in which a conditional logistic regression was applied to estimate the association, and we also stratified our analysis by season and by region. We identified 1234 snakebite cases over 8 years, of which most (74.2%) occurred in hot seasons and between 6 pm and 9 pm. The risk of snakebite was positively associated with temperature >23°C (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.01-1.53) and inversely with humidity >40% (OR 0.74, 95% CI 0.57-0.97). We also found an association with heat waves both in cold (OR 1.62, 95% CI 1.01-2.60) and hot seasons (OR 1.50, 95% CI 1.18-1.92). In a semiarid nontropical climate, we observed an association between an increase in the number of snakebite cases and higher temperatures and lower humidity. Moreover, heat waves increased the frequency of snakebites in both cold and hot seasons. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)
NASA Astrophysics Data System (ADS)
Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed
2013-03-01
Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.
Airborne fungal spores of Alternaria, meteorological parameters and predicting variables
NASA Astrophysics Data System (ADS)
Filali Ben Sidel, Farah; Bouziane, Hassan; del Mar Trigo, Maria; El Haskouri, Fatima; Bardei, Fadoua; Redouane, Abdelbari; Kadiri, Mohamed; Riadi, Hassane; Kazzaz, Mohamed
2015-03-01
Alternaria is frequently found as airborne fungal spores and is recognized as an important cause of respiratory allergies. The aerobiological monitoring of fungal spores was performed using a Burkard volumetric spore traps. To establish predicting variables for daily and weakly spore counts, a stepwise multiple regression between spore concentrations and independent variables (meteorological parameters and lagged values from the series of spore concentrations: previous day or week concentration (Alt t - 1) and mean concentration of the same day or week in other years ( C mean)) was made with data obtained during 2009-2011. Alternaria conidia are present throughout the year in the atmosphere of Tetouan, although they show important seasonal fluctuations. The highest levels of Alternaria spores were recorded during the spring and summer or autumn. Alternaria showed maximum daily values in April, May or October depending on year. When the spore variables of Alternaria, namely C mean and Alt t - 1, and meteorological parameters were included in the equation, the resulting R 2 satisfactorily predict future concentrations for 55.5 to 81.6 % during the main spore season and the pre-peak 2. In the predictive model using weekly values, the adjusted R 2 varied from 0.655 to 0.676. The Wilcoxon test was used to compare the results from the expected values and the pre-peak spore data or weekly values for 2012, indicating that there were no significant differences between series compared. This test showed the C mean, Alt t - 1, frequency of the wind third quadrant, maximum wind speed and minimum relative humidity as the most efficient independent variables to forecast the overall trend of this spore in the air.
Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco).
Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed
2013-03-01
Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m(3). Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.
Monitoring of fluvial transport in small upland catchments - methods and preliminary results
NASA Astrophysics Data System (ADS)
Janicki, Grzegorz; Rodzik, Jan; Chabudziński, Łukasz; Franczak, Łukasz; Siłuch, Marcin; Stępniewski, Krzysztof; Dyer, Jamie L.; Kołodziej, Grzegorz; Maciejewska, Ewa
2014-06-01
In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order
A Simple Model of Cirrus Horizontal Inhomogeneity and Cloud Fraction
NASA Technical Reports Server (NTRS)
Smith, Samantha A.; DelGenio, Anthony D.
1998-01-01
A simple model of horizontal inhomogeneity and cloud fraction in cirrus clouds has been formulated on the basis that all internal horizontal inhomogeneity in the ice mixing ratio is due to variations in the cloud depth, which are assumed to be Gaussian. The use of such a model was justified by the observed relationship between the normalized variability of the ice water mixing ratio (and extinction) and the normalized variability of cloud depth. Using radar cloud depth data as input, the model reproduced well the in-cloud ice water mixing ratio histograms obtained from horizontal runs during the FIRE2 cirrus campaign. For totally overcast cases the histograms were almost Gaussian, but changed as cloud fraction decreased to exponential distributions which peaked at the lowest nonzero ice value for cloud fractions below 90%. Cloud fractions predicted by the model were always within 28% of the observed value. The predicted average ice water mixing ratios were within 34% of the observed values. This model could be used in a GCM to produce the ice mixing ratio probability distribution function and to estimate cloud fraction. It only requires basic meteorological parameters, the depth of the saturated layer and the standard deviation of cloud depth as input.
Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhao, Chuanfeng; Dong, Zipeng; Li, Zhanqing; Hu, Shuzhen; Chen, Tianmeng; Tao, Fa; Wang, Yuzhao
2018-04-01
Cloud-base height (CBH) is a basic cloud parameter but has not been measured accurately, especially under polluted conditions due to the interference of aerosol. Taking advantage of a comprehensive field experiment in northern China in which a variety of advanced cloud probing instruments were operated, different methods of detecting CBH are assessed. The Micro-Pulse Lidar (MPL) and the Vaisala ceilometer (CL51) provided two types of backscattered profiles. The latter has been employed widely as a standard means of measuring CBH using the manufacturer's operational algorithm to generate standard CBH products (CL51 MAN) whose quality is rigorously assessed here, in comparison with a research algorithm that we developed named value distribution equalization (VDE) algorithm. It was applied to both the profiles of lidar backscattering data from the two instruments. The VDE algorithm is found to produce more accurate estimates of CBH for both instruments and can cope with heavy aerosol loading conditions well. By contrast, CL51 MAN overestimates CBH by 400 m and misses many low level clouds under such conditions. These findings are important given that CL51 has been adopted operationally by many meteorological stations in China.
Generating Accurate Urban Area Maps from Nighttime Satellite (DMSP/OLS) Data
NASA Technical Reports Server (NTRS)
Imhoff, Marc; Lawrence, William; Elvidge, Christopher
2000-01-01
There has been an increasing interest by the international research community to use the nighttime acquired "city-lights" data sets collected by the US Defense Meteorological Satellite Program's Operational Linescan system to study issues relative to urbanization. Many researchers are interested in using these data to estimate human demographic parameters over large areas and then characterize the interactions between urban development , natural ecosystems, and other aspects of the human enterprise. Many of these attempts rely on an ability to accurately identify urbanized area. However, beyond the simple determination of the loci of human activity, using these data to generate accurate estimates of urbanized area can be problematic. Sensor blooming and registration error can cause large overestimates of urban land based on a simple measure of lit area from the raw data. We discuss these issues, show results of an attempt to do a historical urban growth model in Egypt, and then describe a few basic processing techniques that use geo-spatial analysis to threshold the DMSP data to accurately estimate urbanized areas. Algorithm results are shown for the United States and an application to use the data to estimate the impact of urban sprawl on sustainable agriculture in the US and China is described.
NASA Technical Reports Server (NTRS)
Hinton, David A.; Tatnall, Chris R.
1997-01-01
A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul
2011-01-01
City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will potentially affect land cover LSTs across the Center. Moreover, the weather stations will also provide baseline data for developing a better understanding of how localized weather factors, such as extreme rainfall and heat events, affect micrometeorology. These data can also be used to model the interrelationships between LSTs and meteorology on a longer term basis to help evaluate how changes in these parameters can be quantified from satellite data collected in the future. In turn, the overall integration of multi-temporal meteorological information with LULCC, and LST data for MSFC proper and the surrounding Huntsville urbanized area can provide a perspective on how urban land surface types affect the meteorology in the boundary layer and ultimately, the UHI. Additionally, data such as this can be used as a foundation for modeling how climate change will potentially impact local and regional meteorology and conversely, how urban LULCC can or will influence changes on climate over the north Alabama area.
NASA Astrophysics Data System (ADS)
Srivastava, P. K.; Han, D.; Rico-Ramirez, M. A.; Bray, M.; Islam, T.; Petropoulos, G.; Gupta, M.
2015-12-01
Hydro-meteorological variables such as Precipitation and Reference Evapotranspiration (ETo) are the most important variables for discharge prediction. However, it is not always possible to get access to them from ground based measurements, particularly in ungauged catchments. The mesoscale model WRF (Weather Research & Forecasting model) can be used for prediction of hydro-meteorological variables. However, hydro-meteorologists would like to know how well the downscaled global data products are as compared to ground based measurements and whether it is possible to use the downscaled data for ungauged catchments. Even with gauged catchments, most of the stations have only rain and flow gauges installed. Measurements of other weather hydro-meteorological variables such as solar radiation, wind speed, air temperature, and dew point are usually missing and thus complicate the problems. In this study, for downscaling the global datasets, the WRF model is setup over the Brue catchment with three nested domains (D1, D2 and D3) of horizontal grid spacing of 81 km, 27 km and 9 km are used. The hydro-meteorological variables are downscaled using the WRF model from the National Centers for Enviromental Prediction (NCEP) reanalysis datasets and subsequently used for the ETo estimation using the Penman Monteith equation. The analysis of weather variables and precipitation are compared against the ground based datasets, which indicate that the datasets are in agreement with the observed datasets for complete monitoring period as well as during the seasons except precipitation whose performance is poorer in comparison to the measured rainfall. After a comparison, the WRF estimated precipitation and ETo are then used as a input parameter in the Probability Distributed Model (PDM) for discharge prediction. The input data and model parameter sensitivity analysis and uncertainty estimation are also taken into account for the PDM calibration and prediction following the Generalised Likelihood Uncertainty Estimation (GLUE) approach. The overall analysis suggests that the uncertainty estimates in predicted discharge using WRF downscaled ETo have comparable performance to ground based observed datasets and hence is promising for discharge prediction in the absence of ground based measurements.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte
2012-01-01
The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of the promising aspects and challenges encountered in utilizing objective tracking and GLM proxy data, as well as recent results that demonstrate the value added information gained by combining the lightning jump concept with traditional meteorological measurements.
Boehnke, Denise; Gebhardt, Reiner; Petney, Trevor; Norra, Stefan
2017-11-06
Ecological field research on the influence of meteorological parameters on a forest inhabiting species is confronted with the complex relations between measured data and the real conditions the species is exposed to. This study highlights this complexity for the example of Ixodes ricinus. This species lives mainly in forest habitats near the ground, but field research on impacts of meteorological conditions on population dynamics is often based on data from nearby official weather stations or occasional in situ measurements. In addition, studies use very different data approaches to analyze comparable research questions. This study is an extensive examination of the methodology used to analyze the impact of meteorological parameters on Ixodes ricinus and proposes a methodological approach that tackles the underlying complexity. Our specifically developed measurement concept was implemented at 25 forest study sites across Baden-Württemberg, Germany. Meteorological weather stations recorded data in situ and continuously between summer 2012 and autumn 2015, including relative humidity measures in the litter layer and different heights above it (50 cm, 2 m). Hourly averages of relative humidity were calculated and compared with data from the nearest official weather station. Data measured directly in the forest can differ dramatically from conditions recorded at official weather stations. In general, data indicate a remarkable relative humidity decrease from inside to outside the forest and from ground to atmosphere. Relative humidity measured in the litter layer were, on average, 24% higher than the official data and were much more balanced, especially in summer. The results illustrate the need for, and benefit of, continuous in situ measurements to grasp the complex relative humidity conditions in forests. Data from official weather stations do not accurately represent actual humidity conditions in forest stands and the explanatory power of short period and fragmentary in situ measurements is extremely limited. However, it is still an open question to what kind of meteorological data are necessary to answer specific questions in tick research. The comparison of research findings was hindered by the variety of information provided, which is why we propose details for future reporting.
Performance evaluation of the national early warning system for shallow landslides in Norway
NASA Astrophysics Data System (ADS)
Dahl, Mads-Peter; Piciullo, Luca; Devoli, Graziella; Colleuille, Hervé; Calvello, Michele
2017-04-01
As a consequence of the increased number of rainfall-and snowmelt-induced landslides (debris flows, debris slides, debris avalanches and slush flows) occurring in Norway, a national landslide early warning system (EWS) has been developed for monitoring and forecasting the hydro-meteorological conditions potentially necessary of triggering slope failures. The system, operational since 2013, is managed by the Norwegian Water Resources and Energy Directorate (NVE) and has been designed in cooperation with the Norwegian Public Road Administration (SVV), the Norwegian National Rail Administration (JBV) and the Norwegian Meteorological Institute (MET). Decision-making in the EWS is based upon hazard threshold levels, hydro-meteorological and real-time landslide observations as well as landslide inventory and susceptibility maps. Hazard threshold levels have been obtained through statistical analyses of historical landslides and modelled hydro-meteorological parameters. Daily hydro-meteorological conditions such as rainfall, snowmelt, runoff, soil saturation, groundwater level and frost depth have been derived from a distributed version of the hydrological HBV-model. Two different landslide susceptibility maps are used as supportive data in deciding daily warning levels. Daily alerts are issued throughout the country considering variable warning zones. Warnings are issued once per day for the following 3 days with an update possibility later during the day according to the information gathered by the monitoring variables. The performance of the EWS has been evaluated applying the EDuMaP method. In particular, the performance of warnings issued in Western Norway, in the period 2013-2014 has been evaluated using two different landslide datasets. The best performance is obtained for the smallest and more accurate dataset. Different performance results may be observed as a function of changing the landslide density criterion, Lden(k), (i.e., thresholds considered to differentiate among classes of landslide events) used as an input parameter within the EDuMaP method. To investigate this issue, a parametric analysis has been conducted; the results of the analysis show clear differences among computed performances when absolute or relative landslide density criteria are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Recognizing a need for a coordinated approach to resolve energy problems, certain members of the Organization for Economic Cooperation and Development (OECD) met in September 1974 and agreed to develop an International Energy Program. The International Energy Agency (IEA) was established within the OECD to administer, monitor and execute this International Energy Program. In July 1975, Solar Heating and Cooling was selected as one of the sixteen technology fields for multilateral cooperation. Five project areas, called tasks, were identified for cooperative activities within the IEA Program to Develop and Test Solar Heating and Cooling Systems. The objective of one taskmore » was to obtain improved basic resource information for the design and operation of solar heating and cooling systems through a better understanding of the required insolation (solar radiation) and related weather data, and through improved techniques for measurement and evaluation of such data. At the February 1976 initial experts meeting in Norrkoeping, Sweden, the participants developed the objective statement into two subtasks. (1) an insolation handbook; and (2) a portable meteorological instrument package. This handbook is the product of the first subtask. The objective of this handbook is to provide a basis for a dialogue between solar scientists and meteorologists. Introducing the solar scientist to solar radiation and related meteorological data enables him to better express his scientific and engineering needs to the meteorologist; and introducing the meteorologist to the special solar radiation and meteorological data applications of the solar scientist enables him to better meet the needs of the solar energy community.« less
Drought Dynamics and Food Security in Ukraine
NASA Astrophysics Data System (ADS)
Kussul, N. M.; Kogan, F.; Adamenko, T. I.; Skakun, S. V.; Kravchenko, O. M.; Kryvobok, O. A.; Shelestov, A. Y.; Kolotii, A. V.; Kussul, O. M.; Lavrenyuk, A. M.
2012-12-01
In recent years food security became a problem of great importance at global, national and regional scale. Ukraine is one of the most developed agriculture countries and one of the biggest crop producers in the world. According to the 2011 statistics provided by the USDA FAS, Ukraine was the 8th largest exporter and 10th largest producer of wheat in the world. Therefore, identifying current and projecting future trends in climate and agriculture parameters is a key element in providing support to policy makers in food security. This paper combines remote sensing, meteorological, and modeling data to investigate dynamics of extreme events, such as droughts, and its impact on agriculture production in Ukraine. Two main problems have been considered in the study: investigation of drought dynamics in Ukraine and its impact on crop production; and investigation of crop growth models for yield and production forecasting and its comparison with empirical models that use as a predictor satellite-derived parameters and meteorological observations. Large-scale weather disasters in Ukraine such as drought were assessed using vegetation health index (VHI) derived from satellite data. The method is based on estimation of green canopy stress/no stress from indices, characterizing moisture and thermal conditions of vegetation canopy. These conditions are derived from the reflectance/emission in the red, near infrared and infrared parts of solar spectrum measured by the AVHRR flown on the NOAA afternoon polar-orbiting satellites since 1981. Droughts were categorized into exceptional, extreme, severe and moderate. Drought area (DA, in % from total Ukrainian area) was calculated for each category. It was found that maximum DA over past 20 years was 10% for exceptional droughts, 20% for extreme droughts, 50% for severe droughts, and 80% for moderate droughts. Also, it was shown that in general the drought intensity and area did not increase considerably over past 10 years. Analysis of interrelation between DA of different categories at oblast level with agriculture production will be discussed as well. A comparative study was carried out to assess three approaches to forecast winter wheat yield in Ukraine at oblast level: (i) empirical regression-based model that uses as a predictor 16-day NDVI composites derived from MODIS at the 250 m resolution, (ii) empirical regression-based model that uses as predictors meteorological parameters, and (iii) adapted for Ukraine Crop Growth Monitoring System (CGMS) that is based on WOFOST crop growth simulation model and meteorological parameters. These three approaches were calibrated for 2000-2009 and 2000-2010 data, and compared while performing forecasts on independent data for 2010 and 2011. For 2010, the best results in terms of root mean square error (RMSE, by oblast, deviation of predicted values from official statistics) were achieved using CGMS models: 0.3 t/ha. For NDVI and meteorological models RMSE values were 0.79 and 0.77 t/ha, respectively. When forecasting winter wheat yield for 2011, the following RMSE values were obtained: 0.58 t/ha for CGMS, 0.56 t/ha for meteorological model, and 0.62 t/ha for NDVI. In this case performance of all three approaches was relatively the same. Acknowledgements. This work was supported by the U.S. CRDF Grant "Analysis of climate change & food security based on remote sensing & in situ data sets" (UKB2-2972-KV-09).
Does temperature nudging overwhelm aerosol radiative effects in regional integrated climate models?
For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated met...
A Comparison of Modeled Pollutant Profiles With MOZAIC Aircraft Measurements
In this study, we use measurements performed under the MOZAIC program to evaluate vertical profiles of meteorological parameters, CO, and ozone that were simulated for the year 2006 with several versions of the WRF/CMAQ modeling system. Model updates, including WRF nudging strate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiter, R.; Kanter, H. J.; Sladkovic, R.
The balance of the tropospheric ozone is studied with regard to sources and sinks. The influx of stratospheric ozone through stratospheric intrusions and photochemical production under pure air conditions is discussed. The 4-year measuring series (1977-1980) of the ozone concentration measured at 3 different levels are evaluated, the influence of meteorological parameters is examined. The time variation of the ozone layer between 1000 and 3000 m ASL is investigated as a function of different ozone sources. First results show that stratospheric ozone arriving at the troposphere penetrates only in a few rare cases to the ground layer below 1500 mmore » ASL. Most of the time, the variation of ozone concentration in this layer is determined by photochemical processes which are, in turn, controlled by meteorological parameters. The upper boundary of the photochemically active layer is found at about 500 m above ground. Variability of the concentration of stratospheric aerosol and its optical properties after the volcanic eruptions in the year 1980 are discussed on the basis on lidar backscattering measurements.« less
The extreme heat wave in Athens in July 1987 from the point of view of human biometeorology
NASA Astrophysics Data System (ADS)
Matzarakis, Andreas; Mayer, Helmut
At the end of July 1987 a heat wave came over Greece and had as a consequence an increase in the mortality to double the normal values. Predicted mean vote ( PMV), physiologically equivalent temperature ( PET), and for comparison discomfort index ( DI) as thermal indices as well as core temperature, mean skin temperature, and skin wetness as body parameters are calculated for that period based on meteorological data of the Meteorological Institute of the National Observatory in the centre of Athens and of the suburban station New Philadelphia of the Hellenic National Weather Service. The results for the thermal indices and the body parameters indicate a very high thermal stress on people. In addition, the air quality stress index ( AQSI) has been used for characterizing air quality conditions in Athens during the heat wave. The results Combined with the thermal effects of the heat wave the stress on humans due to environmental conditions has been very injurious to health.
NASA Astrophysics Data System (ADS)
Rodríguez-Rincón, J. P.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.
2015-07-01
This investigation aims to study the propagation of meteorological uncertainty within a cascade modelling approach to flood prediction. The methodology was comprised of a numerical weather prediction (NWP) model, a distributed rainfall-runoff model and a 2-D hydrodynamic model. The uncertainty evaluation was carried out at the meteorological and hydrological levels of the model chain, which enabled the investigation of how errors that originated in the rainfall prediction interact at a catchment level and propagate to an estimated inundation area and depth. For this, a hindcast scenario is utilised removing non-behavioural ensemble members at each stage, based on the fit with observed data. At the hydrodynamic level, an uncertainty assessment was not incorporated; instead, the model was setup following guidelines for the best possible representation of the case study. The selected extreme event corresponds to a flood that took place in the southeast of Mexico during November 2009, for which field data (e.g. rain gauges; discharge) and satellite imagery were available. Uncertainty in the meteorological model was estimated by means of a multi-physics ensemble technique, which is designed to represent errors from our limited knowledge of the processes generating precipitation. In the hydrological model, a multi-response validation was implemented through the definition of six sets of plausible parameters from past flood events. Precipitation fields from the meteorological model were employed as input in a distributed hydrological model, and resulting flood hydrographs were used as forcing conditions in the 2-D hydrodynamic model. The evolution of skill within the model cascade shows a complex aggregation of errors between models, suggesting that in valley-filling events hydro-meteorological uncertainty has a larger effect on inundation depths than that observed in estimated flood inundation extents.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood
2006-01-01
The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.
Wang, Miaomiao; Li, Bofeng
2016-01-01
An empirical tropospheric delay model, together with a mapping function, is commonly used to correct the tropospheric errors in global navigation satellite system (GNSS) processing. As is well-known, the accuracy of tropospheric delay models relies mainly on the correction efficiency for tropospheric wet delays. In this paper, we evaluate the accuracy of three tropospheric delay models, together with five mapping functions in wet delays calculation. The evaluations are conducted by comparing their slant wet delays with those measured by water vapor radiometer based on its satellite-tracking function (collected data with large liquid water path is removed). For all 15 combinations of three tropospheric models and five mapping functions, their accuracies as a function of elevation are statistically analyzed by using nine-day data in two scenarios, with and without meteorological data. The results show that (1) no matter with or without meteorological data, there is no practical difference between mapping functions, i.e., Chao, Ifadis, Vienna Mapping Function 1 (VMF1), Niell Mapping Function (NMF), and MTT Mapping Function (MTT); (2) without meteorological data, the UNB3 is much better than Saastamoinen and Hopfield models, while the Saastamoinen model performed slightly better than the Hopfield model; (3) with meteorological data, the accuracies of all three tropospheric delay models are improved to be comparable, especially for lower elevations. In addition, the kinematic precise point positioning where no parameter is set up for tropospheric delay modification is conducted to further evaluate the performance of tropospheric delay models in positioning accuracy. It is shown that the UNB3 model is best and can achieve about 10 cm accuracy for the N and E coordinate component while 20 cm accuracy for the U coordinate component no matter the meteorological data is available or not. This accuracy can be obtained by the Saastamoinen model only when meteorological data is available, and degraded to 46 cm for the U component if the meteorological data is not available. PMID:26848662
Atmospheric and Space Sciences: Ionospheres and Plasma Environments
NASA Astrophysics Data System (ADS)
Yiǧit, Erdal
2018-01-01
The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.
Development of a Greek solar map based on solar model estimations
NASA Astrophysics Data System (ADS)
Kambezidis, H. D.; Psiloglou, B. E.; Kavadias, K. A.; Paliatsos, A. G.; Bartzokas, A.
2016-05-01
The realization of Renewable Energy Sources (RES) for power generation as the only environmentally friendly solution, moved solar systems to the forefront of the energy market in the last decade. The capacity of the solar power doubles almost every two years in many European countries, including Greece. This rise has brought the need for reliable predictions of meteorological data that can easily be utilized for proper RES-site allocation. The absence of solar measurements has, therefore, raised the demand for deploying a suitable model in order to create a solar map. The generation of a solar map for Greece, could provide solid foundations on the prediction of the energy production of a solar power plant that is installed in the area, by providing an estimation of the solar energy acquired at each longitude and latitude of the map. In the present work, the well-known Meteorological Radiation Model (MRM), a broadband solar radiation model, is engaged. This model utilizes common meteorological data, such as air temperature, relative humidity, barometric pressure and sunshine duration, in order to calculate solar radiation through MRM for areas where such data are not available. Hourly values of the above meteorological parameters are acquired from 39 meteorological stations, evenly dispersed around Greece; hourly values of solar radiation are calculated from MRM. Then, by using an integrated spatial interpolation method, a Greek solar energy map is generated, providing annual solar energy values all over Greece.
Analysis of Meteorological Satellite location and data collection system concepts
NASA Technical Reports Server (NTRS)
Wallace, R. G.; Reed, D. L.
1981-01-01
A satellite system that employs a spaceborne RF interferometer to determine the location and velocity of data collection platforms attached to meteorological balloons is proposed. This meteorological advanced location and data collection system (MALDCS) is intended to fly aboard a low polar orbiting satellite. The flight instrument configuration includes antennas supported on long deployable booms. The platform location and velocity estimation errors introduced by the dynamic and thermal behavior of the antenna booms and the effects of the presence of the booms on the performance of the spacecraft's attitude control system, and the control system design considerations critical to stable operations are examined. The physical parameters of the Astromast type of deployable boom were used in the dynamic and thermal boom analysis, and the TIROS N system was assumed for the attitude control analysis. Velocity estimation error versus boom length was determined. There was an optimum, minimum error, antenna separation distance. A description of the proposed MALDCS system and a discussion of ambiguity resolution are included.
Pattern recognition of satellite cloud imagery for improved weather prediction
NASA Technical Reports Server (NTRS)
Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.
1986-01-01
The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.
Regionalization of post-processed ensemble runoff forecasts
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2016-05-01
For many years, meteorological models have been run with perturbated initial conditions or parameters to produce ensemble forecasts that are used as a proxy of the uncertainty of the forecasts. However, the ensembles are usually both biased (the mean is systematically too high or too low, compared with the observed weather), and has dispersion errors (the ensemble variance indicates a too low or too high confidence in the forecast, compared with the observed weather). The ensembles are therefore commonly post-processed to correct for these shortcomings. Here we look at one of these techniques, referred to as Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). Originally, the post-processing parameters were identified as a fixed set of parameters for a region. The application of our work is the European Flood Awareness System (http://www.efas.eu), where a distributed model is run with meteorological ensembles as input. We are therefore dealing with a considerably larger data set than previous analyses. We also want to regionalize the parameters themselves for other locations than the calibration gauges. The post-processing parameters are therefore estimated for each calibration station, but with a spatial penalty for deviations from neighbouring stations, depending on the expected semivariance between the calibration catchment and these stations. The estimated post-processed parameters can then be used for regionalization of the postprocessing parameters also for uncalibrated locations using top-kriging in the rtop-package (Skøien et al., 2006, 2014). We will show results from cross-validation of the methodology and although our interest is mainly in identifying exceedance probabilities for certain return levels, we will also show how the rtop package can be used for creating a set of post-processed ensembles through simulations.
40 CFR 61.24 - Annual reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standards for Radon...) Distances from the points of release to the nearest residence, school, business or office and the nearest... parameters for the computer models (e.g., meteorological data) and the source of these data. (8) Each report...
Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia
Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...
Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...
40 CFR 61.94 - Compliance and reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Compliance and reporting. 61.94 Section 61.94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... parameters for the computer models (e.g., meteorological data) and the source of these data. (8) A brief...
40 CFR 61.94 - Compliance and reporting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Compliance and reporting. 61.94 Section 61.94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... parameters for the computer models (e.g., meteorological data) and the source of these data. (8) A brief...
40 CFR 61.94 - Compliance and reporting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Compliance and reporting. 61.94 Section 61.94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... parameters for the computer models (e.g., meteorological data) and the source of these data. (8) A brief...
40 CFR 61.94 - Compliance and reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Compliance and reporting. 61.94 Section 61.94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... parameters for the computer models (e.g., meteorological data) and the source of these data. (8) A brief...
NASA Astrophysics Data System (ADS)
Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique
2018-05-01
Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.
NASA Astrophysics Data System (ADS)
Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel
2016-12-01
On its way through the atmosphere, radio signals are delayed and affected by bending and attenuation effects relative to a theoretical path in vacuum. In particular, the neutral part of the atmosphere contributes considerably to the error budget of space-geodetic observations. At the same time, space-geodetic techniques become more and more important in the understanding of the Earth's atmosphere, because atmospheric parameters can be linked to the water vapor content in the atmosphere. The tropospheric delay is usually taken into account by applying an adequate model for the hydrostatic component and by additionally estimating zenith wet delays for the highly variable wet component. Sometimes, the Ordinary Least Squares (OLS) approach leads to negative estimates, which would be equivalent to negative water vapor in the atmosphere and does, of course, not reflect meteorological and physical conditions in a plausible way. To cope with this phenomenon, we introduce an Inequality Constrained Least Squares (ICLS) method from the field of convex optimization and use inequality constraints to force the tropospheric parameters to be non-negative allowing for a more realistic tropospheric parameter estimation in a meteorological sense. Because deficiencies in the a priori hydrostatic modeling are almost fully compensated by the tropospheric estimates, the ICLS approach urgently requires suitable a priori hydrostatic delays. In this paper, we briefly describe the ICLS method and validate its impact with regard to station positions.
Volcanic Ash Data Assimilation System for Atmospheric Transport Model
NASA Astrophysics Data System (ADS)
Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.
2017-12-01
The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.
NASA Technical Reports Server (NTRS)
Mccormick, M. P.; Melfi, S. H.; Olsson, L. E.; Tuft, W. L.; Elliott, W. P.; Egami, R.
1972-01-01
The feasibility of using laser radar (lidar) to measure the spatial distribution of aerosols and water vapor in the earth's mixing or boundary layer is shown. From these data the important parameter of actual mixing height was determined, that is, the maximum height to which particulate pollutants actually mix. Data are shown for simultaneous lidar, rawinsonde, and aircraft-mounted condensation nuclei counter and temperature measurements. The synoptic meteorology is also presented. The Williamette Valley, Oregon, was chosen for the measurements because of its unique combination of meteorology, terrain, and pollutant source, along with an ongoing Oregon State University study of the natural ventilation of this valley.
Seasonal ozone levels and control by seasonal meteorology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagnotti, V.
1990-02-01
Meteorological data, particularly 850-MB level temperatures, for Fort Totten, New York (1980) and Atlantic City, New Jersey (1981-1988) were examined for any relationship to seasonal ozone levels. Other radiosonde stations in the Northeast were utilized for 1983 and 1986, years of widely differing ozone levels. Statistics for selected parameters and years are presented. Emphasis is placed on recurring warm temperature regimes in high ozone years. Successive occurrences or episodes of high temperatures characterize seasonally high ozone years. Seasonally persistent high temperatures are related to seasonally chronic high ozone. An example is presented relating the broad-scale climatologically anomalous pattern of highmore » temperatures to anomalous circulation patterns at the 700-MB level.« less
NASA Technical Reports Server (NTRS)
1978-01-01
The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.
An Extension of the Partial Credit Model with an Application to the Measurement of Change.
ERIC Educational Resources Information Center
Fischer, Gerhard H.; Ponocny, Ivo
1994-01-01
An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, J.K.; Smith, C.L.
The steps involved to incorporate parameter uncertainty into the Nuclear Regulatory Commission (NRC) accident sequence precursor (ASP) models is covered in this paper. Three different uncertainty distributions (i.e., lognormal, beta, gamma) were evaluated to Determine the most appropriate distribution. From the evaluation, it was Determined that the lognormal distribution will be used for the ASP models uncertainty parameters. Selection of the uncertainty parameters for the basic events is also discussed. This paper covers the process of determining uncertainty parameters for the supercomponent basic events (i.e., basic events that are comprised of more than one component which can have more thanmore » one failure mode) that are utilized in the ASP models. Once this is completed, the ASP model is ready to be utilized to propagate parameter uncertainty for event assessments.« less
Segers, Kurt; Cytryn, Ephraim; Surquin, Murielle
2012-06-01
This retrospective study aimed to evaluate the incidence of transdermal rivastigmine treatment withdrawal secondary to adverse skin reactions among the patients from our Memory Clinic. In addition, we tested whether climatic conditions might have an influence on skin irritations leading to eventual treatment disruption. We performed a retrospective review of patients from the Brugmann University Hospital Memory Clinic having started transdermal rivastigmine between June 2008 and December 2010. Local meteorological data were provided by the Royal Meteorological Institute of Belgium. A total of 26.9% of the patients experienced adverse skin reactions at the rivastigmine application site, leading to treatment discontinuation in 19.2% of the cases. Rivastigmine cutaneous tolerability was not found to be related to demographic parameters, Mini Mental Status Examination score, or type of dementia. High temperature and low air humidity during the first month of treatment were found to be associated with a higher incidence of skin reactions and secondary treatment disruption. Transdermal rivastigmine induced a higher incidence of cutaneous adverse events than previously reported in a prospective clinical trial. Moreover, it seems that meteorological conditions favoring skin perspiration (high temperature and low air humidity) during the first month of treatment might have an influence on transdermal rivastigmine skin tolerability.
Comportamento stagionale delle calote polari di Marte
NASA Astrophysics Data System (ADS)
di Giovanni, Giovanni
2004-08-01
The rhythms of progression and retraction of the polar ice caps on Mars have been studied to establish possible variations in polar meteorology over the course of the last centuries. The applied theoretical procedure offers a mathematical function that contains some significant physical parameters, for example the length and the beginning of spring and another parameter which depends on temperature. The numerical data for the South Polar Cap during the grand oppositions of the last 130 years has been studied with the suggested theory. Evident correlations emerge between parameters and form of the diagram of cap amplitude versus time.
Finnish Meteorological Institute Doppler Lidar
Ewan OConnor
2015-03-27
This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.
Evaluation and Refinement of the Environment Stress Index (ESI) for Different Climatic Conditions
2002-06-01
generally determined through meteorological parameters that enable one to estimate the influence of several environmental factors on thermal comfort and...pp 1-20 Gun RT, Budd GM (1995) Effects of thermal, personal and behavioral factors on the physiological strain, thermal comfort and productivity of
LARSPEC spectroradiometer-multiband radiometer data formats
NASA Technical Reports Server (NTRS)
Biehl, L. L.
1982-01-01
The data base software system, LARSPEC, is discussed and the data base format for agronomic, meteorological, spectroradiometer, and multiband radiometer data is described. In addition, the contents and formats of each record of data and the wavelength tables are listed and the codes used for some of the parameters are described.
VLBI-based Products - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You terrestrial reference frames and to predict the variable orientation of the Earth in three-dimensional space antennas that define a VLBI-based Terrestrial Reference Frame (TRF) and the Earth Orientation Parameters
OZONE OVER SAN FRANCISCO. MEANS AND PATTERNS DURING POLLUTION EPISODES
Measurements of meteorological parameters were taken at six levels and ozone at four levels between 260m and 473m ASL on the Mt. Sutro T.V. Tower in San Francisco during the summers of 1974 through 1976. Hourly average ozone concentrations within the elevated inversion layer at t...
Reconstitution de données climatiques pour l’Algérie du Nord : application des réseaux neuronaux
NASA Astrophysics Data System (ADS)
Bouaoune, Djahida; Dahmani-Megrerouche, Malika
2010-11-01
In the present context of climate change and preservation of biodiversity, the appreciation of the vulnerability of the natural ecosystems and their capacity of adaptation appears among the main preoccupations to the world level (GIEC, 2007). This assessment of the ecosystems requires the availability of climatic data, what is often made difficult by the weak density or even the absence of meteorological stations notably, to the level of the mountains zones. In order to study the climate-vegetation relationship in North Algeria, we use an automatic interpolation method, the neural network method, for the reconstitution of climatic data of the sampled sites, (1035 phytoecological samples), from the existing meteorological network (269 stations). This method is characterized by a great suppleness of non-linearity and by its capacity for reconstituting information from partial and not well-defined indications such as the case of data provided from meteorological networks. In order to reconstitution of climatic data, we use the explicate variables, longitude, latitude and altitude, the variables to explain being the rainfall and temperatures. To define the best approach, the network calibration has been activated on climatic parameters taken globally or solely, for the whole of study zone, and by geographical sector. The results of the interpolation are expressed through a climatic parameter cartography, released automatically by the MapInfo software. The reliability results obtained by this method can be appreciated by elaboration of errors maps comparing to reference data.
NASA Astrophysics Data System (ADS)
Ragosta, Maria; Caggiano, Rosa; D'Emilio, Mariagrazia; Macchiato, Maria
In this paper, we investigate the relationships among atmospheric concentration of trace elements and some meteorological parameters. In particular, the effects of different meteorological conditions on heavy metal levels are interpreted by means of a multivariate statistical approach. The analysed variables were measured during a monitoring survey that started in 1997, and this survey was carried out in order to evaluate the atmospheric concentrations of heavy metals in the industrial area of Tito Scalo (Basilicata Region, Southern Italy). Here we present and analyse the data set collected from 1997 to 1999. The data set includes daily concentrations of total suspended particulates (TSP), daily concentrations of eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in TSP and daily meteoclimatic data (temperature, rainfall, speed and wind directions). Both the concentration level and the occurrence of peak concentration events are consistent with the characteristics of the study area: abundant small and medium industrial plants in a mountainous and unpolluted zone. Regarding the origin of sources of heavy metals in TSP, the statistical procedure allows us to identify three profiles: SP 1 and SP 2 related to industrial sources and SP 3 related to other sources (natural and/or anthropogenic). In particular, taking into account the effect of different meteorological conditions, we are able to distinguish the contribution of different fractions of the same metal in the detected source profiles.
Regional forecast model for the Olea pollen season in Extremadura (SW Spain).
Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela
2016-10-01
The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.
Regional forecast model for the Olea pollen season in Extremadura (SW Spain)
NASA Astrophysics Data System (ADS)
Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela
2016-10-01
The olive tree ( Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.
Response of winter and spring wheat grain yields to meteorological variation
NASA Technical Reports Server (NTRS)
Feyerherm, A. M.; Kanemasu, E. T.; Paulsen, G. M.
1977-01-01
Mathematical models which quantify the relation of wheat yield to selected weather-related variables are presented. Other sources of variation (amount of applied nitrogen, improved varieties, cultural practices) have been incorporated in the models to explain yield variation both singly and in combination with weather-related variables. Separate models were developed for fall-planted (winter) and spring-planted (spring) wheats. Meteorological variation is observed, basically, by daily measurements of minimum and maximum temperatures, precipitation, and tabled values of solar radiation at the edge of the atmosphere and daylength. Two different soil moisture budgets are suggested to compute simulated values of evapotranspiration; one uses the above-mentioned inputs, the other uses the measured temperatures and precipitation but replaces the tabled values (solar radiation and daylength) by measured solar radiation and satellite-derived multispectral scanner data to estimate leaf area index. Weather-related variables are defined by phenological stages, rather than calendar periods, to make the models more universally applicable.
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick
2009-01-01
Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.
OpenDrift v1.0: a generic framework for trajectory modelling
NASA Astrophysics Data System (ADS)
Dagestad, Knut-Frode; Röhrs, Johannes; Breivik, Øyvind; Ådlandsvik, Bjørn
2018-04-01
OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships) at the Norwegian Meteorological Institute.
NASA Astrophysics Data System (ADS)
Sausen, Tania Maria
The initial activities on space education began right after World War II, in the early 1950s, when USA and USSR started the Space Race. At that time, Space education was only and exclusively available to researchers and technicians working directly in space programs. This new area was restricted only to post-graduate programs (basically master and doctoral degree) or to very specific training programs dedicated for beginners. In South America, at that time there was no kind of activity on space education, simply because there was no activity in space research. In the beginning of the 1970s, Brazil, through INPE, had created masteral and doctoral courses on several space areas such as remote sensing and meteorology. Only in the mid-1980s did Brazil, after a UN request, create its specialisation course on remote sensing dedicated to Latin American professionals. At the same period, the Agustin Codazzi Institute (Bogota, Colombia) began to offer specialisation courses in remote sensing. In South America, educational space programs are currently being created for elementary and high schools and universities, but the author personally estimates that 90% of these educational programs still make use of traditional educational materials — such as books, tutorials, maps and graphics. There is little educational material that uses multimedia resources, advanced computing or communication methods and, basically, these are the materials that are best suited to conduct instructions in remote sensing, GIS, meteorology and astronomy.
Data collection handbook to support modeling the impacts of radioactive material in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; Cheng, J.J.; Jones, L.G.
1993-04-01
A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.
NASA Astrophysics Data System (ADS)
Guerrero-Higueras, Ángel Manuel; López, Laura; Merino, Andrés; Sánchez, José Luis; Matía, Pedro; Lorente, José Manuel; Hermida, Lucía; Nafría, David; Ortiz de Galisteo, José Pablo; Marcos, José Luis; García-Ortega, Eduardo
2013-04-01
The location of Castilla y León within the Iberian Peninsula and its territorial extension make its meteorological risks diverse. The integration of various observation networks, both public and private, in the Observation Network of Castilla y León, allows us to follow the risks in real-time. One of the most frequent risks in the winter season is snow precipitation. In the present paper, we compared WRF numerical model predictions of snowfall for Castilla y León with data from the meteorological observation network and observations from the MSG satellite. Furthermore, frosts were more frequent in the area, to the point that there are parts of the study area with frost during the entire year. Thus, the data from the network allows us to determine the area where frost was registered. Finally, the situations with fog, especially with advective and radiative characteristics, are frequent in the center and south of the plateau, especially in the winter season. Additionally, the Observation Network allows us to know the areas with fog in real-time. The Observation Network is managed using a new platform, developed by Group for Atmospheric Physics, known as MeteoNet, which allows for the prompt extraction of a concrete parameter in a specific location, or, the spatial representation of a parameter determined for the entire study area. Furthermore, the management system developed for the data allows for the total representation of data from the WRF prediction model, with satellite images, observation network, radar data, etc., which is converted into a very useful tool for following risks and validating algorithms in Castilla y León. Acknowledgements The authors would like to thank the Regional Government of Castilla y León for its financial support through the project LE220A11-2.
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.; Tyagi, Bhishma
2016-05-01
In the present study, advanced research WRF (ARW) model is employed to simulate convective thunderstorm episodes over Kharagpur (22°30'N, 87°20'E) region of Gangetic West Bengal, India. High-resolution simulations are conducted using 1 × 1 degree NCEP final analysis meteorological fields for initial and boundary conditions for events. The performance of two non-local [Yonsei University (YSU), Asymmetric Convective Model version 2 (ACM2)] and two local turbulence kinetic energy closures [Mellor-Yamada-Janjic (MYJ), Bougeault-Lacarrere (BouLac)] are evaluated in simulating planetary boundary layer (PBL) parameters and thermodynamic structure of the atmosphere. The model-simulated parameters are validated with available in situ meteorological observations obtained from micro-meteorological tower as well has high-resolution DigiCORA radiosonde ascents during STORM-2007 field experiment at the study location and Doppler Weather Radar (DWR) imageries. It has been found that the PBL structure simulated with the TKE closures MYJ and BouLac are in better agreement with observations than the non-local closures. The model simulations with these schemes also captured the reflectivity, surface pressure patterns such as wake-low, meso-high, pre-squall low and the convective updrafts and downdrafts reasonably well. Qualitative and quantitative comparisons reveal that the MYJ followed by BouLac schemes better simulated various features of the thunderstorm events over Kharagpur region. The better performance of MYJ followed by BouLac is evident in the lesser mean bias, mean absolute error, root mean square error and good correlation coefficient for various surface meteorological variables as well as thermo-dynamical structure of the atmosphere relative to other PBL schemes. The better performance of the TKE closures may be attributed to their higher mixing efficiency, larger convective energy and better simulation of humidity promoting moist convection relative to non-local schemes.
Mapping the Risks of Malaria, Dengue and Influenza Using Satellite Data
NASA Astrophysics Data System (ADS)
Kiang, R. K.; Soebiyanto, R. P.
2012-07-01
It has long been recognized that environment and climate may affect the transmission of infectious diseases. The effects are most obvious for vector-borne infectious diseases, such as malaria and dengue, but less so for airborne and contact diseases, such as seasonal influenza. In this paper, we examined the meteorological and environmental parameters that influence the transmission of malaria, dengue and seasonal influenza. Remotely sensed parameters that provide such parameters were discussed. Both statistical and biologically inspired, processed based models can be used to model the transmission of these diseases utilizing the remotely sensed parameters as input. Examples were given for modelling malaria in Thailand, dengue in Indonesia, and seasonal influenza in Hong Kong.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Takallu, Mohammad A.
2002-01-01
An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a glass display that also included advanced flight symbology, such as a velocity vector. The third concept, referred to as the SVS display, was identical to the EAI except that computer-generated terrain imagery replaced the conventional blue-sky/brown-ground of the EAI. Pilot performance parameters, pilot control inputs and physiological data were recorded for post-test analysis. Situation awareness (SA) and qualitative pilot comments were obtained through questionnaires and free-form interviews administered immediately after the experimental session. Initial pilot performance data were obtained by instructor pilot observations. Physiological data (skin temperature, heart rate, and muscle flexure) were also recorded. Preliminary results indicate that far less errors were committed when using the EAI and SVS displays than when using conventional instruments. The specific data example examined in this report illustrates the benefit from SVS displays to avoid massive loss of SA conditions. All pilots acknowledged the enhanced situation awareness provided by the SVS display concept. Levels of pilot stress appear to be correlated with skin temperature measurements.
NASA Astrophysics Data System (ADS)
Gemitzi, Alexandra; Stefanopoulos, Kyriakos
2011-06-01
SummaryGroundwaters and their dependent ecosystems are affected both by the meteorological conditions as well as from human interventions, mainly in the form of groundwater abstractions for irrigation needs. This work aims at investigating the quantitative effects of meteorological conditions and man intervention on groundwater resources and their dependent ecosystems. Various seasonal Auto-Regressive Integrated Moving Average (ARIMA) models with external predictor variables were used in order to model the influence of meteorological conditions and man intervention on the groundwater level time series. Initially, a seasonal ARIMA model that simulates the abstraction time series using as external predictor variable temperature ( T) was prepared. Thereafter, seasonal ARIMA models were developed in order to simulate groundwater level time series in 8 monitoring locations, using the appropriate predictor variables determined for each individual case. The spatial component was introduced through the use of Geographical Information Systems (GIS). Application of the proposed methodology took place in the Neon Sidirochorion alluvial aquifer (Northern Greece), for which a 7-year long time series (i.e., 2003-2010) of piezometric and groundwater abstraction data exists. According to the developed ARIMA models, three distinct groups of groundwater level time series exist; the first one proves to be dependent only on the meteorological parameters, the second group demonstrates a mixed dependence both on meteorological conditions and on human intervention, whereas the third group shows a clear influence from man intervention. Moreover, there is evidence that groundwater abstraction has affected an important protected ecosystem.
Basic mechanisms governing solar-cell efficiency
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.; Sah, C. T.
1976-01-01
The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.
Web mapping system for complex processing and visualization of environmental geospatial datasets
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor
2016-04-01
Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.
Volatilization of PM2.5 Inorganic Ions in a Filter Pack System with Backup Filter and Denuders
NASA Astrophysics Data System (ADS)
Kim, C.; Choi, Y.; Ghim, Y.
2012-12-01
Concentrations of PM2.5 inorganic ions were measured at the rooftop of the 5-story building on the hill (37.02oN, 127.16oE, 167 m above sea level) in the Global Campus of Hankuk University of Foreign Studies, about 35 km southeast of downtown Seoul, Korea. The measurements were made four times during one-year span between 2011 and 2012 by considering the climate of Korea with distinct seasonal variations: July 29 to August 26 (summer); September 14 to October 13 (fall); November 28 to January 4 (winter); February 14 to May 31 (spring). A filter pack system was composed of PM2.5 cyclone, two annular denuders, Teflon filter, nylon filter, and an annular denuder, in series. Two annular denuders were to remove acidic and basic gases prior to collecting particles on the Teflon filter. Nylon filter and an annular denuder were to back up the Teflon filter by absorbing acidic and basic gases, respectively, which were volatilized from collected particles on the Teflon filter. Samplings were made for 24 hours every day. Extracts from filters and denuders were analyzed by ion chromatography to measure concentrations of anions (SO42-, NO3-, Cl-) and cations (Ca2+, Mg2+, NH4+, Na+, K+). The amounts of ionic species absorbed at the backup nylon filter and denuder were examined in terms of meteorological parameters, the amounts of gases removed in front of the Teflon filter, and the amounts of particulate ions collected on the Teflon filter. Major factors to affect the volatilization from particles collected on the Teflon filter were discussed.
The Wake Vortex Prediction and Monitoring System WSVBS
NASA Astrophysics Data System (ADS)
Gerz, T.; Holzäpfel, F.
2009-09-01
Design and performance of the Wake Vortex Prediction and Monitoring System WSVBS are described. The WSVBS has been developed to tactically increase airport capacity for approach and landing on closely-spaced parallel runways. It is thought to dynamically adjust aircraft separations dependent on weather conditions and the resulting wake vortex behaviour without compromising safety. The WSVBS consists of components that consider meteorological conditions, aircraft glide path adherence, aircraft parameter combinations representing aircraft weight categories, the resulting wake-vortex behaviour, the surrounding safety areas, wake vortex monitoring, and the integration of the predictions into the arrival manager. The WSVBS has been designed and applied to Frankfurt Airport. However, its components are generic and can well be adjusted to any runway system and or airport location. The prediction horizon is larger than 45 min (as required by air traffic control) and updated every 10 minutes. It predicts the concepts of operations and procedures established by DFS and it further predicts additional temporal separations for in-trail traffic. A specific feature of the WSVBS is the usage of both measured and predicted meteorological quantities as input to wake vortex prediction. In ground proximity where the probability to encounter wake vortices is highest, the wake predictor employs measured environmental parameters that yield superior prediction results. For the less critical part aloft, which can not be monitored completely by instrumentation, the meteorological parameters are taken from dedicated numerical terminal weather predictions. The wake vortex model predicts envelopes for vortex position and strength which implicitly consider the quality of the meteorological input data. This feature is achieved by a training procedure which employs statistics of measured and predicted meteorological parameters and the resulting wake vortex behaviour. The WSVBS combines various conservative elements that presumably lead to a very high overall safety level of the WSVBS. The combination of these conservative measures certainly leads to a very high but currently unknown overall safety. Once the methodology of a comprehensive risk analysis will be established, it is planned to adjust all components to appropriate and consistent confidence levels. The WSVBS has demonstrated its functionality at Frankfurt airport during 66 days in the period from 18/12/06 until 28/02/07. The performance test indicates that (i) the system ran stable - no forecast breakdowns occurred, (ii) aircraft separations could have been reduced in 75% of the time compared to ICAO standards, (iii) reduced separation procedures could have been continuously applied for at least several tens of minutes and up to several hours occasionally, (iv) the predictions were correct as for about 1100 landings observed during 16 days no warnings occurred from the LIDAR. Fast-time simulations reveal that adapted concepts of operation yield significant reductions in delay and/or an increase in capacity to 3% taking into account the real traffic mix and operational constraints in the period of one month. Before the WSVBS can be handed over for final adaptations to become a customized fully operational system some further steps are planned. A risk analysis needs to be pursued to convince all stakeholders of the usefulness and capabilities of the system.
Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest.
Bendix, J; Homeier, J; Cueva, E Ortiz; Emck, P; Breckle, S-W; Richter, M; Beck, E
2006-07-01
Flowering and fruiting as phenological events of 12 tree species in an evergreen tropical mountain rain forest in southern Ecuador were examined over a period of 3-4 years. Leaf shedding of two species was observed for 12 months. Parallel to the phenological recordings, meteorological parameters were monitored in detail and related to the flowering and fruiting activity of the trees. In spite of the perhumid climate of that area, a high degree of intra- and inter-specific synchronisation of phenological traits was apparent. With the exception of one species that flowered more or less continuously, two groups of trees could be observed, one of which flowered during the less humid months (September to October) while the second group started to initiate flowers towards the end of that phase and flowered during the heavy rains (April to July). As reflected by correlation coefficients, the all-time series of meteorological parameters showed a distinct seasonality of 8-12 months, apparently following the quasi-periodic oscillation of precipitation and related cloudiness. As revealed by power spectrum analysis and Markov persistence, rainfall and minimum temperature appear to be the only parameters with a periodicity free of long-term variations. The phenological events of most of the plant species showed a similar periodicity of 8-12 months, which followed the annual oscillation of relatively less and more humid periods and thus was in phase or in counter-phase with the oscillations of the meteorological parameters. Periods of unusual cold or dryness, presumably resulting from underlying longer-term trends or oscillations (such as ENSO), affected the homogeneity of quasi-12-month flowering events, fruit maturation and also the production of germinable seeds. Some species show underlying quasi-2-year-oscillations, for example that synchronise with the development of air temperature; others reveal an underlying decrease or increase in flowering activity over the observation period, influenced for instance by solar irradiance. As Ecuador suffers the highest rate of deforestation in South America, there is an urgent need for indigenous plant material for reforestation. A detailed knowledge of the biology of reproduction in relation to governing external factors (mainly climate) is thus required.
Numerical model of the circulation and dispersion in the east Adriatic coastal waters
NASA Astrophysics Data System (ADS)
Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan
2017-04-01
The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.
NASA Astrophysics Data System (ADS)
Liu, Ruiting; Han, Zhiwei; Wu, Jian; Hu, Yonghong; Li, Jiawei
2017-11-01
In this study, some key geometric and thermal parameters derived from recent field and satellite observations in Beijing were collected and incorporated into WRF-UCM (Weather Research and Forecasting) model instead of previous default ones. A series of sensitivity model simulations were conducted to investigate the influences of these parameters on radiation balance, meteorological variables, turbulence kinetic energy (TKE), as well as planetary boundary layer height (PBLH) in regions around Beijing in summer 2014. Model validation demonstrated that the updated parameters represented urban surface characteristics more realistically and the simulations of meteorological variables were evidently improved to be closer to observations than the default parameters. The increase in building height tended to increase and slightly decrease surface air temperature at 2 m (T2) at night and around noon, respectively, and to reduce wind speed at 10 m (WS10) through a day. The increase in road width led to significant decreases in T2 and WS10 through the whole day, with the maximum changes in early morning and in evening, respectively. Both lower surface albedo and inclusion of anthropogenic heat (AH) resulted in increases in T2 and WS10 over the day, with stronger influence from AH. The vertical extension of the impact of urban surface parameters was mainly confined within 300 m at night and reached as high as 1600 m during daytime. The increase in building height tended to increase TKE and PBLH and the TKE increase was larger at night than during daytime due to enhancements of both mechanical and buoyant productions. The increase in road width generally reduced TKE and PBLH except for a few hours in the afternoon. The lower surface albedo and the presence of AH consistently resulted in increases of TKE and PBLH through both day and night. The increase in building height induced a slight divergence by day and a notable convergence at night, whereas the increase in road width led to a remarkable divergence through the entire day. Both AH and lower surface albedo induced a wind convergence over the day, which tended to strengthen nighttime mountain downslope wind and daytime southerly wind to the south of Beijing, but to weaken daytime upslope wind in mountain areas.
NASA Technical Reports Server (NTRS)
Da Silva, A. M.; Randles, C. A.; Buchard, V.; Darmenov, A.; Colarco, P. R.; Govindaraju, R.
2015-01-01
This document describes the gridded output files produced by the Goddard Earth Observing System version 5 (GEOS-5) Goddard Aerosol Assimilation System (GAAS) from July 2002 through December 2014. The MERRA Aerosol Reanalysis (MERRAero) is produced with the hydrostatic version of the GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), ozone, carbon monoxide and carbon dioxide. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic emission sources. Meteorology is replayed from the MERRA Reanalysis.
222Rn variations in Mystery Cave, Minnesota
Lively, R.S.; Krafthefer, B.C.
1995-01-01
222Rn concentrations and meteorological parameters were measured at 4- h intervals over a 2-y period in Mystery Cave, southeastern Minnesota. Continuous radon monitors and meteorological sensors connected to data loggers were installed at several locations along commercial tour routes. 222Rn concentrations ranged as high as 25 kBq m-3 in summer and 20 kBq m-3 in winter. Average winter concentrations were lower than summer by at least a factor of two. Seasonal radon variations were correlative with outside air temperatures. During the winter, radon concentrations were observed to fluctuate periodically by factors of 20 or more in under 24 h. Both the long- and short-term variations are correlative with temperature- induced mixing of cave air with surface air.
Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Vaughan, William W.
2004-01-01
Aerospace Meteorology provides the identification of that aspect of meteorology that is concerned with the definition and modeling of atmospheric parameters for use in aerospace vehicle development, mission planning and operational capability assessments. One of the principal sources of this information is the NASA-HDBK-1001 "Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development'. This handbook was approved by the NASA Chief Engineer in 2000 as a NASA Preferred Technical Standard . Its technical contents were based on natural environment statistics/models and criteria developed mostly in the early 1990's. A task was approved to completely update the handbook to reflect the current state-of-the-art in the various terrestrial environment climatic areas.
Analysis of atmospheric ozone measurements made from a B-747 airliner during March 1975
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Falconer, P. D.
1976-01-01
Measurements of atmospheric ozone in the upper troposphere and lower stratosphere made during March 1975 as part of the NASA Global Atmospheric Sampling Program are reported and analyzed. The interrelationships between the ozone mixing ratio and geographical and meteorological parameters are examined in several case studies. The ozone data correlate well with the difference between the flight altitude and the height of the tropopause, as obtained from National Meteorological Center gridded data. The distribution of ozone mixing ratios with latitude at an altitude of 11 + or - 0.5 km shows a poleward increase and large variability at latitudes greater than 30 deg N in agreement with published mean ozone levels from the North American ozone sonde network.
Application and Evaluation of MODIS LAI, fPAR, and Albedo Products in the WRFCMAQ System
Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important parameters in the land surface model (LSM) for meteorology and air quality modeling systems such as WRF/CMAQ. LAI and VF control not only leaf to canopy level evapotranspiration flux scaling but al...
Effects of solar activity in the middle atmosphere dynamical regime over Eastern Siberia, USSR
NASA Technical Reports Server (NTRS)
Gaidukov, V. A.; Kazimirovsky, E. S.; Zhovty, E. I.; Chernigovskaya, M. A.
1989-01-01
Lower thermospheric (90 to 120 km) wind data was acquired by ground based spaced-receiver method (HF, LF) near Irkutsk (52 deg N, 104 deg E). There is interrelated solar and meteorological control of lower thermosphere dynamics. Some features of solar control effects on the wind parameters are discussed.
Effects of climate change on aerosol concentrations in Europe
NASA Astrophysics Data System (ADS)
Megaritis, Athanasios G.; Fountoukis, Christos; Pandis, Spyros N.
2013-04-01
High concentrations of particulate matter less than 2.5 μm in size (PM2.5), ozone and other major constituents of air pollution, have adverse effects on human health, visibility and ecosystems (Seinfeld and Pandis, 2006), and are strongly influenced by meteorology. Emissions control policy is currently made assuming that climate will remain constant in the future. However, climate change over the next decades is expected to be significant (IPCC, 2007) and may impact local and regional air quality. Determining the sensitivity of the concentrations of air pollutants to climate change is an important step toward estimating future air quality. In this study we applied PMCAMx (Fountoukis et al., 2011), a three dimensional chemical transport model, over Europe, in order to quantify the individual effects of various meteorological parameters on fine particulate matter (PM2.5) concentrations. A suite of perturbations in various meteorological factors, such as temperature, wind speed, absolute humidity and precipitation were imposed separately on base case conditions to determine the sensitivities of PM2.5 concentrations and composition to these parameters. Different simulation periods (summer, autumn 2008 and winter 2009) are used to examine also the seasonal dependence of the air quality - climate interactions. The results of these sensitivity simulations suggest that there is an important link between changes in meteorology and PM2.5 levels. We quantify through separate sensitivity simulations the processes which are mainly responsible for the final predicted changes in PM2.5 concentration and composition. The predicted PM2.5 response to those meteorology perturbations was found to be quite variable in space and time. These results suggest that, the changes in concentrations caused by changes in climate should be taken into account in long-term air quality planning. References Fountoukis C., Racherla P. N., Denier van der Gon H. A. C., Polymeneas P., Charalampidis P. E., Pilinis C., Wiedensohler A., Dall'Osto M., O'Dowd C., and S. N. Pandis: Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign, Atmos. Chem. Phys., 11, 10331-10347, 2011. Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report: Summary for Policymakers, 2007. Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: From air pollution to climate change, 2nd ed.; John Wiley and Sons, Hoboken, NJ, 2006.
Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign
NASA Technical Reports Server (NTRS)
Jensen, E.; Pfister, L.
2014-01-01
The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, carbon dioxide, methane, nonmethane hydrocarbons, sulfur hexafluoride, chlorofluorocarbons, nitrous oxide), reactive chemical compounds (ozone, bromine, nitrous oxide), meteorological parameters, and radiative fluxes. During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.
EUMETCast: The Meteorological Data Dissemination Service
NASA Astrophysics Data System (ADS)
Gaertner, V. K.; Koenig, M.
2006-05-01
EUMETCast is EUMETSAT's broadcast system for environmental data. It utilises telecommunications satellites and the services of telecommunication providers to distribute data files using Digital Video Broadcast (DVB) standards to a wide audience located within the combined geographical coverage zones of the individual telecommunication satellites used to transmit the data. The telecommunication zones are now covering Europe, Africa, South America and parts of Asia and North America. This service has been established to provide the meteorological communities with satellite data and other meteorological products in near real-time for operational, but also research, education and training purposes. The following EUMETSAT services are currently available via EUMETCast: - Second Generation Meteosat - High Rate SEVIRI Image Data (every 15 minutes) - First Generation Meteosat - Indian Ocean Data Coverage (IODC) (every 30 minutes) - Other Geostationary Data from NOAA (GOES E/W) and JMA (MTSAT), (every 3 hours) - Data Collection and Retransmission (DCP) and Meteorological Data Dissemination (MDD) - Basic Meteorological Data (BMD) (Ku-band Europe only) - Meteorological Products (including some Satellite Application Facility products) - EUMETSAT Advanced Retransmission Service (EARS) (Ku-band Europe only) - DWDSAT (Ku-band Europe only) - VEGETATION data (C-band Africa only) Progressively during 2006 users will find an increasing amount of polar satellite data and products available on EUMETCast. As part of the extension of the EUMETCast Advanced Retransmission Service (EARS), ERS scatterometer data and NOAA satellite AVHRR data have already been introduced in early 2006. The ERS- SCAT demonstration service is a forerunner for the future pilot EARS-ASCAT service and the pilot EARS- AVHRR service will continue to expand during 2006 with the inclusion of data from additional AVHRR stations in the EARS network. The EUMETCast System will be also be used to provide dissemination of EPS (EUMETSAT Polar System) global products in Ku-band, for a European audience. The EUMETCast South America service commenced dissemination trials on 1 January 2006 with the formal start of service on 1 April 2006. The service comprising of MSG SEVIRI High Rate Image data disseminated every 15 minutes, will ensure continuity in the provision of Meteosat data to this region when the first generation Meteosat services from 0o will terminate. EUMETSAT Data Policy principles apply to some of the above services. Access to DWDSAT is in accordance with the data policy of Deutscher Wetterdienst.
Banar, Müfide; Ozkan, Aysun; Kürkçüoğlu, Mine
2006-10-01
The aim of this study is to evaluate extensively the characterization and identification of major pollutant parameters by paying attention to the organic chemical pollution for unregulated dumping site leachate in Eskişehir/Turkey. The study that is first and only one research has been very important data related with before new sanitary landfill site in Eskişehir city. For this purpose, in this study leachate samples were collected in-situ at monthly interval for a period of 8 months. Firstly, thirty three physicochemical parameters were monitored. Secondly, SPME technique was used for identification of organic pollutants. Meteorological data were also recorded for the same sampling period to correlate meteorological data and physicochemical parameters. Mean values are used in the correlation analysis. Correlation is shown only for the relationship between air temperature and NO(3) (-). No correlation has been found between rain and leachate quality parameters since the amount of rain was very low during the sampling period. However, analysis results were generally decreased in winter season when each parameter and each sampling point are examined separately. According to correlation between every parameter, especially solid content and dissolved oxygen concentration of leachate is affecting to other parameters. Also, sodium and potassium are changing proportionally with same parameters (suspended solids, fixed solids, dissolved oxygen) and high correlation between chloride and heavy metal concentration is showing. The results were statistically evaluated by use of SPSS 10.0 program. Second part of the study, the leachate was extracted by Solid Phase Microextraction (SPME) technique and then analyzed. Of the methodologies tested in this study, the best one selected was based on 100 micro m polydimethylsiloxane coated fiber (PDMS), headspace with heating (Delta HS) sampling mode and an extraction time of 15 min. at a temperature of 50 degrees C. Thirty three organic compounds in leachate were identified by GC/MS.
NASA Astrophysics Data System (ADS)
Caballero, Rodrigo
2014-11-01
With the increasing attention paid to climate change, there is ever-growing interest in atmospheric physics and the processes by which the atmosphere affects Earth's energy balance. This self-contained text, written for advanced undergraduate and graduate students in physics or meteorology, assumes no prior knowledge apart from basic mechanics and calculus and contains material for a complete course. Augmented with worked examples, the text considers all aspects of atmospheric physics except dynamics, including moist thermodynamics, cloud microphysics, atmospheric radiation and remote sensing, and will be an invaluable resource for students and researchers.
Evaluation of air quality in a megacity using statistics tools
NASA Astrophysics Data System (ADS)
Ventura, Luciana Maria Baptista; de Oliveira Pinto, Fellipe; Soares, Laiza Molezon; Luna, Aderval Severino; Gioda, Adriana
2018-06-01
Local physical characteristics (e.g., meteorology and topography) associate to particle concentrations are important to evaluate air quality in a region. Meteorology and topography affect air pollutant dispersions. This study used statistics tools (PCA, HCA, Kruskal-Wallis, Mann-Whitney's test and others) to a better understanding of the relationship between fine particulate matter (PM2.5) levels and seasons, meteorological conditions and air basins. To our knowledge, it is one of the few studies performed in Latin America involving all parameters together. PM2.5 samples were collected in six sampling sites with different emission sources (industrial, vehicular, soil dust) in Rio de Janeiro, Brazil. The PM2.5 daily concentrations ranged from 1 to 61 µg m-3, with averages higher than the annual limit (15 µg m-3) for some of the sites. The results of the statistics evaluation showed that PM2.5 concentrations were not influenced by seasonality. Furthermore, air basins defined previously were not confirmed, because some sites presented similar emission sources. Therefore, new redefinitions of air basins need to be done, once they are important to air quality management.
Evaluation of air quality in a megacity using statistics tools
NASA Astrophysics Data System (ADS)
Ventura, Luciana Maria Baptista; de Oliveira Pinto, Fellipe; Soares, Laiza Molezon; Luna, Aderval Severino; Gioda, Adriana
2017-03-01
Local physical characteristics (e.g., meteorology and topography) associate to particle concentrations are important to evaluate air quality in a region. Meteorology and topography affect air pollutant dispersions. This study used statistics tools (PCA, HCA, Kruskal-Wallis, Mann-Whitney's test and others) to a better understanding of the relationship between fine particulate matter (PM2.5) levels and seasons, meteorological conditions and air basins. To our knowledge, it is one of the few studies performed in Latin America involving all parameters together. PM2.5 samples were collected in six sampling sites with different emission sources (industrial, vehicular, soil dust) in Rio de Janeiro, Brazil. The PM2.5 daily concentrations ranged from 1 to 61 µg m-3, with averages higher than the annual limit (15 µg m-3) for some of the sites. The results of the statistics evaluation showed that PM2.5 concentrations were not influenced by seasonality. Furthermore, air basins defined previously were not confirmed, because some sites presented similar emission sources. Therefore, new redefinitions of air basins need to be done, once they are important to air quality management.
Climate Trends and Farmers' Perceptions of Climate Change in Zambia.
Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J
2017-02-01
A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.
Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.; Arimescu, Carmen; Napier, Bruce A.
The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 modelsmore » are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.« less
Digital Microwave System Design Guide.
1984-02-01
traffic analysis is a continuous effort, setting parameters for subsequent stages of expansion after the system design is finished. 2.1.3 Quality of...operational structure of the user for whom he is providing service. 2.2.3 Quality of Service. In digital communications, the basic performance parameter ...the basic interpretation of system performance is measured in terms of a single parameter , throughput. Throughput can be defined as the number of
NASA Astrophysics Data System (ADS)
Luo, X.; Heck, B.; Awange, J. L.
2013-12-01
Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, the GNSS-derived tropospheric zenith total delay (ZTD), comprising zenith dry delay (ZDD) and zenith wet delay (ZWD), is achievable with sub-centimetre accuracy. However, if no representative near-site meteorological information is available, the quality of the ZDD derived from tropospheric models is degraded, leading to inaccurate estimation of the water vapour component ZWD as difference between ZTD and ZDD. On the basis of freely accessible regional surface meteorological data, this paper proposes a height-dependent linear correction model for a priori ZDD. By applying the ordinary least-squares estimation (OLSE), bootstrapping (BOOT), and leave-one-out cross-validation (CROS) methods, the model parameters are estimated and analysed with respect to outlier detection. The model validation is carried out using GNSS stations with near-site meteorological measurements. The results verify the efficiency of the proposed ZDD correction model, showing a significant reduction in the mean bias from several centimetres to about 5 mm. The OLSE method enables a fast computation, while the CROS procedure allows for outlier detection. All the three methods produce consistent results after outlier elimination, which improves the regression quality by about 20% and the model accuracy by up to 30%.
A Meteorological Supersite for Aviation and Cold Weather Applications
NASA Astrophysics Data System (ADS)
Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.
2018-05-01
The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and remote-sensing retrievals. Overall, the results from the five cases are provided and challenges related to observations applicable to aviation meteorology are discussed.
NASA Astrophysics Data System (ADS)
Tseliou, Areti; Tsiros, Ioannis X.; Nikolopoulou, Marialena
2017-07-01
Outdoor urban areas are very important for cities and microclimate is a critical parameter in the design process, contributing to thermal comfort which is important for urban developments. The research presented in this paper is part of extensive field surveys conducted in Athens aimed at investigating people's thermal sensation in a Mediterranean city. Based on 2313 questionnaires and microclimatic data the current work focuses on the relative frequencies of people's evaluation of the thermal along with the sun and wind sensations between two seasons trying to identify the seasonal differences in thermal sensation. The impact of basic meteorological factors on thermal discomfort with respect to season are also examined, as well as the use of the outdoor environment. Results show that psychological adaptation is an important contributing factor influencing perception of the thermal environment between seasons. In addition, the thermal sensation votes during the cool months show that individuals are satisfied to a great extend with the thermal environment whereas the combination of high air temperature, strong solar radiation and weak wind lead to thermal discomfort during summertime. As far as the appropriate urban design in the Mediterranean climate is concerned, priority should be given to the warm months of the year.
NASA Astrophysics Data System (ADS)
Zeng, YuLang; Dong, Liang
2015-01-01
The outdoor thermal environment of a public space is highly relevant to the thermal perception of individuals, thereby affecting the use of space. This study aims to connect thermal human biometeorological conditions and subjective thermal sensation in hot and humid regions and to find its influence on street use. We performed a thermal comfort survey at three locations in a pedestrian precinct of Chengdu, China. Meteorological measurements and questionnaire surveys were used to assess the thermal sensation of respondents. The number of people visiting the streets was counted. Meanwhile, mean radiant temperature ( T mrt) and the physiological equivalent temperature (PET) index were used to evaluate the thermal environment. Analytical results reveal that weather and street design drive the trend of diurnal micrometeorological conditions of the street. With the same geometry and orientation, a street with no trees had wider ranges of meteorological parameters and a longer period of discomfort. The neutral temperature in Chengdu (24.4 °C PET) is similar to that in Taiwan, demonstrating substantial human tolerance to hot conditions in hot and humid regions. Visitors' thermal sensation votes showed the strongest positive relationships with air temperature. Overall comfort level was strongly related to every corresponding meteorological parameter, indicating the complexity of people's comfort in outdoor environments. In major alleys with multiple functions, the number of people in the street decreased as thermal indices increased; T mrt and PET had significant negative correlations with the number of people. This study aids in understanding pedestrian street use in hot and humid regions.
NASA Astrophysics Data System (ADS)
Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin
2016-04-01
Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.
Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei
2017-01-01
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838
A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics
NASA Astrophysics Data System (ADS)
Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.
2016-12-01
A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.
NASA Technical Reports Server (NTRS)
Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang
2017-01-01
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.
Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang
2017-10-18
Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.
Liu, I-Fan; Chang, Shih-Lin; Lo, Li-Wei; Hu, Yu-Feng; Tuan, Ta-Chuan; Kong, Chi-Woon; Wu, Tsu-Juey; Chiang, Chern-En; Chen, Shih-Ann; Lin, Yenn-Jiang
2011-09-01
Some cardiovascular diseases are associated with seasonal or meteorological factors. We tried to identify the relationship between meteorological parameters and the requirement for a permanent pacemaker (PPM) implantation for advanced sinus node dysfunction (SND) and atrioventricular block (AVB). This study enrolled 656 patients (67% male, age = 76 ± 11 years) who underwent a PPM implantation due to SND or AVB from January 2004 to December 2008. Using daily temperature, barometric pressure, humidity, and daylight hour records from Taipei, we evaluated the effect of these meteorological parameters within different time periods on the occurrence of SND and AVB. There were 355 patients in the SND group and 301 in the AVB group. In the AVB group, more patients presented in the spring than in other seasons (P = 0.003). In the SND group, there was no relationship with the seasons (P = 0.137). The proportion of patients with AVB did not depend on the average temperature, barometric pressure, humidity, or daylight hours within 3, 7, and 14 days prior to admission (P = NS). A temperature change of greater than 11°C within 30 days prior to admission was associated with a significantly higher proportion of patients with advanced AVB compared to those with advanced SND (P = 0.009). Extreme change in temperature was the most independent predictor of the development of advanced AVB. The peak occurrence of advanced AVB was in the spring. The occurrence of advanced AVB was associated with extreme temperature changes within 30 days, especially in the spring.
NASA Astrophysics Data System (ADS)
Wiemann, Stefan; Eltner, Anette; Sardemann, Hannes; Spieler, Diana; Singer, Thomas; Thanh Luong, Thi; Janabi, Firas Al; Schütze, Niels; Bernard, Lars; Bernhofer, Christian; Maas, Hans-Gerd
2017-04-01
Flash floods regularly cause severe socio-economic damage worldwide. In parallel, climate change is very likely to increase the number of such events, due to an increasing frequency of extreme precipitation events (EASAC 2013). Whereas recent work primarily addresses the resilience of large catchment areas, the major impact of hydro-meteorological extremes caused by heavy precipitation is on small areas. Those are very difficult to observe and predict, due to sparse monitoring networks and only few means for hydro-meteorological modelling, especially in small catchment areas. The objective of the EXTRUSO project is to identify and implement appropriate means to close this gap by an interdisciplinary approach, combining comprehensive research expertise from meteorology, hydrology, photogrammetry and geoinformatics. The project targets innovative techniques for achieving spatio-temporal densified monitoring and simulations for the analysis, prediction and warning of local hydro-meteorological extreme events. The following four aspects are of particular interest: 1. The monitoring, analysis and combination of relevant hydro-meteorological parameters from various sources, including existing monitoring networks, ground radar, specific low-cost sensors and crowdsourcing. 2. The determination of relevant hydro-morphological parameters from different photogrammetric sensors (e.g. camera, laser scanner) and sensor platforms (e.g. UAV (unmanned aerial vehicle) and UWV (unmanned water vehicle)). 3. The continuous hydro-meteorological modelling of precipitation, soil moisture and water flows by means of conceptual and data-driven modelling. 4. The development of a collaborative, web-based service infrastructure as an information and communication point, especially in the case of an extreme event. There are three major applications for the planned information system: First, the warning of local extreme events for the population in potentially affected areas, second, the support for decision makers and emergency responders in the case of an event and, third, the development of open, interoperable tools for other researchers to be applied and further developed. The test area of the project is the Free State of Saxony (Germany) with a number of small and medium catchment areas. However, the whole system, comprising models, tools and sensor setups, is planned to be transferred and tested in other areas, within and outside Europe, as well. The team working on the project consists of eight researchers, including five PhD students and three postdocs. The EXTRUSO project is funded by the European Social Fund (ESF grant nr. 100270097) with a project duration of three years until June 2019. EASAC (2013): Trends in extreme weather events in Europe: implications for national and European Union adaption strategies. European Academies Science Advisory Council. Policy report 22, November 2013 The EXTRUSO project is funded by the European Social Fund (ESF), grant nr. 100270097
Recent Weather Technologies Delivered to America's Space Program by the Applied Meteorology Unit
NASA Technical Reports Server (NTRS)
Bauman, WIlliam, H., III; Crawford, Winifred
2009-01-01
The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products delivered over the last 18 years that are currently in operational use. Each example will describe the problem to be solved, the solution provided, and the operational benefits of implementing that solution.
Thunderstorm monitoring with VLF network and super dense meteorological observation system
NASA Astrophysics Data System (ADS)
Takahashi, Yukihiro; Sato, Mitsuteru
2015-04-01
It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.
Atmospheric environment for Space Shuttle (STS-11) launch
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Hill, C. K.; Batts, G. W.
1984-01-01
Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.
Phenomenon of statistical instability of the third type systems—complexity
NASA Astrophysics Data System (ADS)
Eskov, V. V.; Gavrilenko, T. V.; Eskov, V. M.; Vokhmina, Yu. V.
2017-11-01
The problem of the existence and special properties of third type systems has been formulated within the new chaos-self-organization theory. In fact, a global problem of the possibility of the existence of steady-state regimes for homeostatic systems has been considered. These systems include not only medical and biological systems, but also the dynamics of meteorological parameters, as well as the ambient parameters of the environment in which humans are located. The new approach has been used to give a new definition for homeostatic systems (complexity).
Air Pollutant Distribution and Mesoscale Circulation Systems During Escompte
NASA Astrophysics Data System (ADS)
Kottmeier, Ch.; Kalthoff, N.; Corsmeier, U.; Robin, D.; Thürauf, J.; Hofherr, T.; Hasel, M.
The distribution of pollutants observed with an Dornier 128 instrumented aircraft and from AIRMARAIX ground stations during one day of the Escompte experiment (June 25, 2001) is analysed in relation to the mesoscale wind systems and vertical mixing from aircraft and radiosonde data. The ESCOMPTE-experiment (http://medias.obs- mip.fr/escompte) was carried out in June and July 2001 in the urban area of Marseille and its rural surroundings to investigate periods with photosmog conditions. The over- all aim is to produce an appropriate high quality 3-D data set which includes emission, meteorological, and chemical data. The data is used for the validation of mesoscale models and for chemical and meteorological process studies. The evolution of pho- tosmog episodes with high ozone concentrations depends on both chemical transfor- mation processes and meteorological conditions. As Marseille is situated between the Mediterranean Sea in the south and mountainous sites in the north, under weak large- scale flow the meteorological conditions are dominated by thermally driven circula- tion systems which strongly influence the horizontal transport of air pollutants. Ad- ditionally, vertically exchange processes like mountain venting and slope winds may contribute in the temporal evolution of the trace gas concentration of the city plume in the atmospheric boundary layer and are particularly studied by the Dornier flight measurements. Therefore the experiment was designed to measure both, the chemi- cal species and meteorological parameters with high resolution in space and time by surface stations, aircraft and vertical profiling systems like radiosondes, sodars and lidars. Results are shown (a) on the evolution of the wind field and the ozone concen- trations during June 25, when an ozone maximum develops about 60 km in the lee site of Marseille and (b) the vertical transport of air pollutants between the boundary layer and the free troposphere.
Palacios, C; Abecia, J A
2015-05-01
A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures (Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR (P < 0.01) and summer inseminations under lower SR values (P < 0.05). Successful inseminations during the summer were performed under significantly lower maximum T (P < 0.01), while winter inseminations resulted in pregnancy when they were carried out under higher maximum (P < 0.05) and minimum Ts (P < 0.01). Up to five meteorological variables presented OR >1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR <1 (SR on AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.
NASA Astrophysics Data System (ADS)
Kim, D. H.; Ahn, M. H.
2014-08-01
The first geostationary Earth observation satellite of Korea - the Communication, Ocean, and Meteorological Satellite (COMS) - was successfully launched on 27 June 2010. After arrival at its operational orbit, the satellite underwent an in-orbit test (IOT) that lasted for about 8 months. During the IOT period, the main payload for the weather application, the meteorological imager, went through successful tests for demonstrating its function and performance, and the test results are introduced here. The radiometric performance of the meteorological imager (MI) is tested by means of signal-to-noise ratio (SNR) for the visible channel, noise-equivalent differential temperature (NEdT) for the infrared channels, and pixel-to-pixel nonuniformity for both the visible and infrared channels. In the case of the visible channel, the SNR of all eight detectors is obtained using the ground-measured parameters with the background signals obtained in orbit. The overall performance shows a value larger than 26 at 5% albedo, exceeding the user requirement of 10 by a significant margin. Also, the relative variability of detector responsivity among the eight visible channels meets the user requirement, showing values within 10% of the user requirement. For the infrared channels, the NEdT of each detector is well within the user requirement and is comparable with or better than the legacy instruments, except for the water vapor channel, which is slightly noisier than the legacy instruments. The variability of detector responsivity of infrared channels is also below the user requirement, within 40% of the requirement, except for the shortwave infrared channel. The improved performance result is partly due to the stable and low detector temperature obtained due to spacecraft design, i.e., by installing a single solar panel on the opposite side of the MI.
heterogeneous mixture distributions for multi-source extreme rainfall
NASA Astrophysics Data System (ADS)
Ouarda, T.; Shin, J.; Lee, T. S.
2013-12-01
Mixture distributions have been used to model hydro-meteorological variables showing mixture distributional characteristics, e.g. bimodality. Homogeneous mixture (HOM) distributions (e.g. Normal-Normal and Gumbel-Gumbel) have been traditionally applied to hydro-meteorological variables. However, there is no reason to restrict the mixture distribution as the combination of one identical type. It might be beneficial to characterize the statistical behavior of hydro-meteorological variables from the application of heterogeneous mixture (HTM) distributions such as Normal-Gamma. In the present work, we focus on assessing the suitability of HTM distributions for the frequency analysis of hydro-meteorological variables. In the present work, in order to estimate the parameters of HTM distributions, the meta-heuristic algorithm (Genetic Algorithm) is employed to maximize the likelihood function. In the present study, a number of distributions are compared, including the Gamma-Extreme value type-one (EV1) HTM distribution, the EV1-EV1 HOM distribution, and EV1 distribution. The proposed distribution models are applied to the annual maximum precipitation data in South Korea. The Akaike Information Criterion (AIC), the root mean squared errors (RMSE) and the log-likelihood are used as measures of goodness-of-fit of the tested distributions. Results indicate that the HTM distribution (Gamma-EV1) presents the best fitness. The HTM distribution shows significant improvement in the estimation of quantiles corresponding to the 20-year return period. It is shown that extreme rainfall in the coastal region of South Korea presents strong heterogeneous mixture distributional characteristics. Results indicate that HTM distributions are a good alternative for the frequency analysis of hydro-meteorological variables when disparate statistical characteristics are presented.
NASA Astrophysics Data System (ADS)
Palacios, C.; Abecia, J. A.
2015-05-01
A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures ( Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR ( P < 0.01) and summer inseminations under lower SR values ( P < 0.05). Successful inseminations during the summer were performed under significantly lower maximum T ( P < 0.01), while winter inseminations resulted in pregnancy when they were carried out under higher maximum ( P < 0.05) and minimum Ts ( P < 0.01). Up to five meteorological variables presented OR >1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR <1 (SR on AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.
NASA Astrophysics Data System (ADS)
Yang, Y.; Wang, J.; Gong, S.; Zhang, X.; Wang, H.; Wang, Y.; Wang, J.; Li, D.; Guo, J.
2015-03-01
Using surface meteorological observation and high resolution emission data, this paper discusses the application of PLAM/h Index (Parameter Linking Air-quality to Meteorological conditions/haze) in the prediction of large-scale low visibility and fog-haze events. Based on the two-dimensional probability density function diagnosis model for emissions, the study extends the diagnosis and prediction of the meteorological pollution index PLAM to the regional visibility fog-haze intensity. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the diagnostic identification ability of the fog-haze weather in North China. The correlation coefficients for four seasons (spring, summer, autumn and winter) between PLAM/h and visibility observation are 0.76, 0.80, 0.96 and 0.86 respectively and all their significance levels exceed 0.001, showing the ability of PLAM/h to predict the seasonal changes and differences of fog-haze weather in the North China region. The high-value correlation zones are respectively located in Jing-Jin-Ji (Beijing, Tianjin, Hebei), Bohai Bay rim and the southern Hebei-northern Henan, indicating that the PLAM/h index has relations with the distribution of frequent heavy fog-haze weather in North China and the distribution of emission high-value zone. Comparatively analyzing the heavy fog-haze events and large-scale fine weather processes in winter and summer, it is found that PLAM/h index 24 h forecast is highly correlated to the visibility observation. Therefore, PLAM/h index has better capability of doing identification, analysis and forecasting.
NASA Astrophysics Data System (ADS)
Yang, Y. Q.; Wang, J. Z.; Gong, S. L.; Zhang, X. Y.; Wang, H.; Wang, Y. Q.; Wang, J.; Li, D.; Guo, J. P.
2016-02-01
Using surface meteorological observation and high-resolution emission data, this paper discusses the application of the PLAM/h index (Parameter Linking Air-quality to Meteorological conditions/haze) in the prediction of large-scale low visibility and fog-haze events. Based on the two-dimensional probability density function diagnosis model for emissions, the study extends the diagnosis and prediction of the meteorological pollution index PLAM to the regional visibility fog-haze intensity. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the diagnostic identification ability of the fog-haze weather in North China. The determination coefficients for four seasons (spring, summer, autumn, and winter) between PLAM/h and visibility observation are 0.76, 0.80, 0.96, and 0.86, respectively, and all of their significance levels exceed 0.001, showing the ability of PLAM/h to predict the seasonal changes and differences of fog-haze weather in the North China region. The high-value correlation zones are located in Jing-Jin-Ji (Beijing, Tianjin, Hebei), Bohai Bay rim, and southern Hebei-northern Henan, indicating that the PLAM/h index is related to the distribution of frequent heavy fog-haze weather in North China and the distribution of emission high-value zone. Through comparative analysis of the heavy fog-haze events and large-scale clear-weather processes in winter and summer, it is found that PLAM/h index 24 h forecast is highly correlated with the visibility observation. Therefore, the PLAM/h index has good capability in identification, analysis, and forecasting.
Wang, Jizhi; Zhang, Xiaoye; Li, Duo; Yang, Yuanqin; Zhong, Junting; Wang, Yaqiang; Che, Haochi; Che, Huizheng; Zhang, Yangmei
2018-07-15
Winter is a season of much concern for aerosol pollution in China, but less concern for pollution in the summertime. There are even less concern and larger uncertainty about interdecadal changes in summer aerosol pollution, relative influence of meteorological conditions, and their links to climate change. Here we try to reveal the relation among interdecadal changes in summer's most important circulation system affecting China (East Asian Summer Monsoon-EASM), an index of meteorological conditions (called PLAM, Parameter Linking Air Quality and Meteorological Elements, which is almost linearly related with aerosol pollution), and aerosol optical depth (AOD) in the middle and lower reaches of the Yangtze River (M-LYR) in central eastern China during summertime since the 1960's. During the weak monsoon years, the aerosol pollution load was heavier in the M-LYR and opposite in the strong monsoon years mainly influenced by EASM and associated maintenance position of the anti-Hadley cell around 115°E. The interdecadal changes in meteorological conditions and their associated aerosol pollution in the context of such climate change have experienced four periods since the 1960's, which were a relatively large decreased period from 1961 to 1980, a large rise between 1980 and 1999, a period of slow rise or maintenance from 1999 to 2006, and a relatively rapid rise between 2006 and 2014. Among later three pollution increased periods, about 51%, 25% and 60% of the aerosol pollution change respectively come from the contribution of worsening weather conditions, which are found to be greatly affected by changes in EASM. Copyright © 2018 Elsevier B.V. All rights reserved.
VLBI-based Products - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home ⺠USNO ⺠Earth Orientation ⺠VLBI-based Products USNO Logo USNO Navigation Earth determine Earth Orientation Parameters (EOP) is Very Long Baseline Interferometry (VLBI). USNO provides both
In this analysis, ambient concentrations and personal exposures to PM2.5, O3, and NO2, air exchange rates, meteorological parameters, and questionnaire survey responses collected during the Detroit Exposure and Aerosol Research Study (DEARS) are used: 1) to evaluate different met...
Pressure Contact Sounding Data for NASA's Atmospheric Variability Experiment (AVE 3)
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Hill, C. K.; Turner, R. E.; Long, K. E.
1975-01-01
The basic rawinsonde data are described at each pressure contact from the surface to sounding termination for the 41 stations participating in the AVE III measurement program that began at 0000 GMT on February 6 and ended at 1200 GMT on February 7, 1975. Soundings were taken at 3-hour intervals during a large period of the experiment from most stations within the United States east of about 105 degrees west longitude. Methods of data processing, change in reduction scheme since the AVE II pilot experiment, and data accuracy are briefly discussed. An example of contact data is presented, and microfiche cards of all the contact data are included in the appendix. The AVE III project was conducted to better understand and establish the extent of applications for meteorological satellite sensor data through correlative ground truth experiments and to provide basic experimental data for use in studies of atmospheric scales of-motion interrelationships.
Gajski, Goran; Gerić, Marko; Oreščanin, Višnja; Garaj-Vrhovac, Vera
2018-02-01
The cytokinesis-block micronucleus cytome (CBMN Cyt) assay was used to evaluate the baseline frequency of cytogenetic damage in peripheral blood lymphocytes of the general population (average age, 38.28 ± 12.83 years) in relation to age, sex, body mass index, seasonal variations (season of sampling, period of sampling and different meteorological parameters) and lifestyle factors (smoking habit, alcohol consumption, exposure to medications and diagnostic radiation, physical activity, and family history of cancer). The background frequency of micronuclei (MNi) for the 200 subjects assayed was 5.06 ± 3.11 per 1000 binucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 1.21 ± 1.46 and of nuclear buds (NBUDs) 3.48 ± 2.14. The background frequency of apoptosis and necrosis was 1.58 ± 1.50 and 1.39 ± 1.56, respectively, while the mean nuclear division index (NDI) was 1.99 ± 0.14. The cut-off value, which corresponds to the 95th percentile of the distribution of 200 individual values, was 11 MNi, 4 NPBs and 7 NBUDs. The study also confirmed an association of the above mentioned parameters with age, sex and several lifestyle factors. Moreover, significant confounders based on our results are also sampling season, sampling period and different meteorological parameters that were dependent on the CBMN Cyt assay parameters. In line with the above mentioned, several factors should be taken into account when it comes to the monitoring of exposed populations using cytogenetic biomarkers. Moreover, the normal and cut-off values obtained in this study present background data for the general population, and can later serve as baseline values for further biomonitoring studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan
2016-04-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Development of an Aircraft Approach and Departure Atmospheric Profile Generation Algorithm
NASA Technical Reports Server (NTRS)
Buck, Bill K.; Velotas, Steven G.; Rutishauser, David K. (Technical Monitor)
2004-01-01
In support of NASA Virtual Airspace Modeling and Simulation (VAMS) project, an effort was initiated to develop and test techniques for extracting meteorological data from landing and departing aircraft, and for building altitude based profiles for key meteorological parameters from these data. The generated atmospheric profiles will be used as inputs to NASA s Aircraft Vortex Spacing System (AVOLSS) Prediction Algorithm (APA) for benefits and trade analysis. A Wake Vortex Advisory System (WakeVAS) is being developed to apply weather and wake prediction and sensing technologies with procedures to reduce current wake separation criteria when safe and appropriate to increase airport operational efficiency. The purpose of this report is to document the initial theory and design of the Aircraft Approach Departure Atmospheric Profile Generation Algorithm.
NASA Technical Reports Server (NTRS)
Salstein, David A.; Kann, Deirdre M.; Miller, Alvin J.; Rosen, Richard D.
1993-01-01
By exchanging angular momentum with the solid portion of the earth, the atmosphere plays a vital role in exciting small but measurable changes in the rotation of our planet. Recognizing this relationship, the International Earth Rotation Service invited the U.S. National Meteorological Center to organize a Sub-bureau for Atmospheric Angular Momentum (SBAAM) for the purpose of collecting, distributing, archiving, and analyzing atmospheric parameters relevant to earth rotation/polar motion. These functions of wind and surface pressure are being computed with data from several of the world's weather services, and they are being widely applied to the research and operations of the geodetic community. The SBAAM began operating formally in October 1989, and this article highlights its development, operations, and significance.
NASA Technical Reports Server (NTRS)
Bjorklund, J. R.
1978-01-01
The cloud-rise preprocessor and multilayer diffusion computer programs were used by NASA in predicting concentrations and dosages downwind from normal and abnormal launches of rocket vehicles. These programs incorporated: (1) the latest data for the heat content and chemistry of rocket exhaust clouds; (2) provision for the automated calculation of surface water pH due to deposition of HCl from precipitation scavenging; (3) provision for automated calculation of concentration and dosage parameters at any level within the vertical grounds for which meteorological inputs have been specified; and (4) provision for execution of multiple cases of meteorological data. Procedures used to automatically calculate wind direction shear in a layer were updated.
Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.
Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo
2008-08-01
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.
NASA Astrophysics Data System (ADS)
Granieri, D.; Avino, R.; Chiodini, G.
2010-01-01
Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux has been measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi
2014-12-15
Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed betweenmore » Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases monotonously with increasing WO{sub 3} content. • Interaction parameter decreases monotonously with increasing WO{sub 3} content. • Glasses with high WO{sub 3}contents is regarded as a floppy network system.« less
Analysis of the Meteorology Associated with the 1998 NASA Glenn Twin Otter Icing Flights
NASA Technical Reports Server (NTRS)
Bernstein, Ben C.
2000-01-01
This document contains a basic analysis of the meteorology associated with the NASA Glenn Twin Otter icing encounters between December 1997 and March 1998. The purpose of this analysis is to provide a meteorological context for the aircraft data collected during these flights. For each case, the following data elements are presented: (1) A brief overview of the Twin Otter encounter, including locations, liquid water contents, temperatures and microphysical makeup of the clouds and precipitation aloft, (2) Upper-air charts, providing hand-analyzed locations of lows, troughs, ridges, saturated/unsaturated air, temperatures, warm/cold advection, and jet streams, (3) Balloon-borne soundings, providing vertical profiles of temperature, moisture and winds, (4) Infrared and visible satellite data, providing cloud locations and cloud top temperature, (5) 3-hourly surface charts, providing hand-analyzed locations of lows, highs, fronts, precipitation (including type) and cloud cover, (6) Hourly, regional radar mosaics, providing fine resolution of the locations of precipitation (including intensity and type), pilot reports of icing (including intensity and type), surface observations of precipitation type and Twin Otter tracks for a one hour window centered on the time of the radar data, and (7) Hourly plots of icing pilot reports, providing the icing intensity, icing type, icing altitudes and aircraft type. Outages occurred in nearly every dataset at some point. All relevant data that was available is presented here. All times are in UTC and all heights are in feet above mean sea level (MSL).
Guided Inquiry for Teacher Enhancement Utilizing Internet-Delivered Geophysical Data
NASA Astrophysics Data System (ADS)
Clark, J.; Weinbeck, R. S.; Geer, I. W.; Moran, J. M.
2002-12-01
The Education Program of the American Meteorological Society (AMS) designed and nationally implemented two distance-learning courses for K-12 teacher enhancement that model scientific inquiry through investigations written that employ Internet-delivered geophysical data. DataStreme Atmosphere, launched in 1996, has introduced almost 6000 teachers nationwide to the basics of meteorology. DataStreme Water in the Earth System (WES), now in its fourth semester offering, employs the global water cycle as a vehicle to explore the flow and transformations of water and energy in the Earth system. By Spring 2003 almost 1000 teachers will have completed DataStreme WES. In both 12-week courses, participants complete two investigations per week and submit their work to a mentor on their Local Implementation Team (LIT) for discussion and evaluation. AMS staff scientists write part of each investigation to a current or archived situation utilizing specially formatted meteorological, hydrological, or oceanographic data. This component of the investigation is posted to the course homepage and has proven to be an exciting and highly motivational aspect of the DataStreme courses. In many cases, teachers learn scientific concepts by investigating a case (e.g., hurricane, flash flood) as it is happening, in near real-time. Participants who successfully complete a DataStreme course agree to serve their schools and school districts as a resource teacher and to offer peer training on the use of Internet-delivered geophysical data to upgrade science in the classroom.
CentNet—A deployable 100-station network for surface exchange research
NASA Astrophysics Data System (ADS)
Oncley, S.; Horst, T. W.; Semmer, S.; Militzer, J.; Maclean, G.; Knudson, K.
2014-12-01
Climate, air quality, atmospheric composition, surface hydrology, and ecological processes are directly affected by the Earth's surface. Complexity of this surface exists at multiple spatial scales, which complicates the understanding of these processes. NCAR/EOL currently provides a facility to the research community to make direct eddy-covariance flux observations to quantify surface-atmosphere interactions. However, just as model resolution has continued to increase, there is a need to increase the spatial density of flux measurements to capture the wide variety of scales that contribute to exchange processes close to the surface. NCAR/EOL now has developed the CentNet facility, that is envisioned to have on the order of 100 surface flux stations deployable for periods of months to years. Each station would measure standard meteorological variables, all components of the surface energy balance (including turbulence fluxes and radiation), atmospheric composition, and other quantities to characterize the surface. Thus, CentNet can support observational research in the biogeosciences, hydrology, urban meteorology, basic meteorology, and turbulence. CentNet has been designed to be adaptable to a wide variety of research problems while keeping operations manageable. Tower infrastructure has been designed to be lightweight, easily deployed, and with a minimal set-up footprint. CentNet uses sensor networks to increase spatial sampling at each station. The data system saves every sample on site to retain flexibility in data analysis. We welcome guidance on development and funding priorities as we build CentNet.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
Data Quality Assurance and Control for AmeriFlux Network at CDIAC, ORNL
NASA Astrophysics Data System (ADS)
Shem, W.; Boden, T.; Krassovski, M.; Yang, B.
2014-12-01
The Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) serves as the long-term data repository for the AmeriFlux network. Datasets currently available include hourly or half-hourly meteorological and flux observations, biological measurement records, and synthesis data products. Currently there is a lack of standardized nomenclature and specifically designed procedures for data quality assurance/control in processing and handling micrometeorological and ecological data at individual flux sites. CDIAC's has bridged this gap by providing efficient and accurate procedures for data quality control and standardization of the results for easier assimilation by the models used in climate science. In this presentation we highlight the procedures we have put in place to scrutinize continuous flux and meteorological data within Ameriflux network. We itemize some basic data quality issues that we have observed over the past years and include some examples of typical data quality issues. Such issues, e.g., incorrect time-stamping, poor calibration or maintenance of instruments, missing or incomplete metadata and others that are commonly over-looked by PI's, invariably impact the time-series observations.
NASA Astrophysics Data System (ADS)
Chernigovskaya, Marina; Kurkin, Vladimir; Orlov, Igor; Oinats, Alexey; Sharkov, Eugenii
2010-05-01
Short-period temporal variations of ionospheric parameters were analyzed to study probabilities of manifestation of strong meteorological disturbances in the Earth's lower atmosphere in variations of upper atmosphere parameters in a zone far removed from a disturbance source. In the analysis, we used data on maximum observed frequencies (MOF) of oblique sounding (OS) signals along Norilsk-Irkutsk, Magadan-Irkutsk, and Khabarovsk-Irkutsk paths in East Siberia and the Far East. These data were obtained during solar minimum at equinoxes (March, September) in 2008-2009. Analyzing effects of wave disturbances in ionospheric parameters, we take into account helio-geomagnetic and meteorological conditions in regions under study to do an effective separation between disturbances associated with magnetospheric-ionospheric coupling and those induced by the influence of the lower atmosphere on the upper one. The frequency analysis we conducted revealed time intervals with higher intensity of short-period oscillations which may have been interpreted as manifestation of large-scale traveling ionospheric disturbances (TIDs) whose sources were internal gravity waves (IGWs) with periods of 1-5 hours. The complex analysis of helio-geomagnetic, ionospheric, and atmospheric data as well as data on tropical cyclones established that the detected TIDs were unrelated to helio-geomagnetic disturbances (2008-2009 exhibited solar minimum and quiet geomagnetic conditions). The analysis of other potential sources of the observed short-period wave disturbances shows that observed TIDs do not always coincide in time with passage of local meteorological fronts through the region of subionospheric points of OS paths and are not associated with passage of solar terminator. An attempt was made to connect a number of detected TIDs with ionospheric responses to tropical cyclones (TC) which were in active phase in the north-west of the Pacific Ocean during the periods considered. A considerable increase in energy of short-period wave disturbances was observed along Khabarovsk-Irkutsk, Magadan-Irkutsk, and Norilsk-Irkutsk paths during the active tropical cyclogenesis in September 2008-2009. Intensity of the observed TIDs decreased as midpoints of OS paths moved westward away from potential IGW sources. Ionospheric responses to wave disturbance propagation from the same IGW sources differ in the OS paths under analysis. This must be associated with different geometry of the OS paths as well as with the fact that the IGW source under consideration changes in intensity and its coordinates (stages and motion paths of tropical cyclones) during TC development. Thus there is an angular dependence between the wave disturbance propagation direction and the line connecting midpoints of the OS paths. Velocities of wave disturbance propagation (~90-170 m/s) were measured from the delay period of TIDs passage in regions of midpoints of spaced-apart OS paths. Short-period TIDs can also be observed at spring equinox in March 2008-2009 under quiet helio-geomagnetic conditions and in the absence of active tropical cyclones in the north-west of the Pacific Ocean, but TIDs energy is much lower than that in autumn. Authors note it was not possible to identify potential IGW sources for some TIDs within the scope of this work. These TIDs may be related to ionospheric responses to seasonal transitions in the upper atmosphere dynamic regime during the equinoxes under study. Further systematic investigations in this area of study are required to store statistics of observations of ionospheric responses to strong meteorological disturbances. The study was supported by the RFBR grant № 09-05-00760.
Ozone time scale decomposition and trend assessment from surface observations
NASA Astrophysics Data System (ADS)
Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi
2017-04-01
Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological effects, has been developed in order to a) investigate if trends are masked by meteorological variability and b) to understand which part of the observed trends is meteorology driven. By correlating short-term variation of ozone, as obtained from the EEMD, with the corresponding short-term variation of relevant meteorological parameters, we subtract the variation of ozone concentrations that is related to the meteorological effects explained by the GAM. We find that higher frequency meteorological correction reduces further the uncertainty in trend estimation by a small factor. In addition, the seasonal variability of ozone as obtained from the EEMD has been studied in more detail for possible changes in its behavior. A shortening of the seasonal cycle was observed, i.e. reduction of maximum and in-crease of minimum concentration per year, while the occurrence of maximum is shifted to earlier times during a year. In summary, we present a sophisticated and consistent approach for detecting and categorizing trends and meteorological influences on ozone concentrations in long-term measurements across Europe.
Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming
NASA Astrophysics Data System (ADS)
Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali
2018-03-01
Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.
1987-01-01
The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.
Kalman filter data assimilation: targeting observations and parameter estimation.
Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex
2014-06-01
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.
Kalman filter data assimilation: Targeting observations and parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellsky, Thomas, E-mail: bellskyt@asu.edu; Kostelich, Eric J.; Mahalov, Alex
2014-06-15
This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly locatedmore » observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.
Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less
NASA Astrophysics Data System (ADS)
Gengembre, Cyril; Zhang, Shouwen; Dieudonné, Elsa; Sokolov, Anton; Augustin, Patrick; Riffault, Véronique; Dusanter, Sébastien; Fourmentin, Marc; Delbarre, Hervé
2016-04-01
Impacts of global climate evolution are quite uncertain at regional and local scales, especially on air pollution. Air quality is associated with local atmospheric dynamics at a time scale shorter than a few weeks, while the climate change time scale is on the order of fifty years. To infer consequences of climate evolution on air pollution, it is necessary to fill the gap between these different scales. Another challenge is to understand the effect of global warming on the frequency of meteorological phenomena that influence air pollution. In this work, we classified meteorological events related to air pollution during a one-year long field campaign in Dunkirk (northern France). Owing to its coastal location under urban and industrial exposures, the Dunkirk agglomeration is an interesting area for studying gaseous and aerosols pollutants and their relationship with weather events such as sea breezes, fogs, storms and fronts. The air quality in the northern region of France is also greatly influenced by highly populated and industrialized cities along the coast of the North Sea, and by London and Paris agglomerations. During a field campaign, we used simultaneously a three-dimensional sonic anemometer and a weather station network, along with a scanning Doppler Lidar system to analyse the vertical structure of the atmosphere. An Aerosol Chemical Speciation Monitor enabled investigating the PM1 behaviour during the studied events. Air contaminants such as NOx (NO and NO2) were also measured by the regional pollution monitoring network ATMO Nord Pas-de-Calais. The events were identified by finding specific criteria from meteorological and turbulent parameters. Over a hundred cases of sea breezes, fog periods, stormy days and atmospheric front passages were investigated. Variations of turbulent parameters (vertical sensible heat flux and momentum flux) give estimations on the transport and the dispersal of pollutants. As the fluxes are weak during fogs, an increase of PM1 concentrations was observed, which causes a deposition of the particles. Due to turbulence and horizontal dilution, PM1 concentrations were weak during storms.
Meteorological risks are drivers of environmental innovation in agro-ecosystem management
NASA Astrophysics Data System (ADS)
Gobin, Anne; Van de Vyver, Hans; Vanwindekens, Frédéric; Planchon, Viviane; Verspecht, Ann; Frutos de Cachorro, Julia; Buysse, Jeroen
2016-04-01
Extreme weather events such as droughts, heat waves and rain storms are projected to increase both in frequency and magnitude with climate change. The research hypothesis of the MERINOVA project is that meteorological risks act as drivers of environmental innovation in agro-ecosystem management which is being tested using a chain of risk approach. The project comprises of five major parts that reflect the chain of risks: the hazard, its impact on different agro-ecosystems, vulnerability, risk management and risk communication. Generalized Extreme Value (GEV) theory was used to model annual maxima of meteorological variables based on a location-, scale- and shape-parameter that determine the center of the distribution, the deviation of the location-parameter and the upper tail decay, respectively. Spatial interpolation of GEV-derived return levels has yielded maps of temperature extremes, precipitation deficits and wet periods. The degree of temporal overlap between extreme weather conditions and sensitive periods in the agro-ecosystem was determined using a bio-physically based modelling framework that couples phenological models, a soil water balance, crop growth and environmental models. 20-year return values for frost, heat stress, drought, waterlogging and field access during different crop stages were related to arable yields. The spatial extent of vulnerability is developed on different layers of spatial information that include inter alia meteorology, soil-landscapes, crop cover and management. The level of vulnerability and resilience of an agro-ecosystem is also determined by risk management. The types of agricultural risk and their relative importance differ across sectors and farm types as elucidated by questionnaires and focus groups. Risk types are distinguished according to production, market, institutional, financial and liability risks. A portfolio of potential strategies was identified at farm, market and policy level. In conclusion, MERINOVA provides for a robust and flexible framework by demonstrating its performance across Belgian agro-ecosystems, and by ensuring its relevance to policy makers and practitioners. A strong expert and end-user network is established to help disseminate and exploit project results to meet user needs.
NASA Astrophysics Data System (ADS)
Myles, L.; Heuer, M. W.
2012-12-01
Atmospheric ammonia (NH3) is a reduced form of reactive nitrogen that is primarily emitted from agricultural activities. NH3 volatilizes from animal waste and fertilized land directly into the atmosphere where it can either react with other gases to form fine particulate matter or deposit on surfaces through air-surface exchange processes. Field measurements in different ecosystems and under various conditions are necessary to improve the understanding of the complex relationships between ambient NH3 and meteorological parameters, such as temperature and relative humidity, which influence volatilization rates and ultimately, ambient concentrations near emission sources. However, the measurement of ambient NH3 is challenging. NH3 is hydroscopic and reactive, and measurement techniques are subject to errors caused by sampling artifacts and other interferences. Recent advancements have led to improved techniques that allow real-time measurement of ambient NH3. A cavity ring-down spectrometer was deployed at a cattle research facility in Knoxville, TN during spring 2012 to measure ambient NH3, and meteorological instrumentation was collocated to measure 3-D winds, temperature, relative humidity, precipitation and other parameters (z = 2 m). The study site was rolling pasture typical of the eastern Tennessee Valley and included two large barns and approximately 30-40 cattle. Daytime ambient NH3 averaged 15-20 ppb most days with lows of approximately 7 ppb at night. Higher concentrations (greater than 50 ppb) seemed to correlate with higher temperatures (greater than 27 C), although the data are not consistent. Several instances of 100 ppb concentrations were measured when temperatures were high and winds were from the direction of the barns. Overall, the study shows that ambient NH3 levels near agricultural emission sources may vary greatly with time and a variety of factors, including meteorological conditions. The data support the need for real-time measurements of NH3 to determine how environmental conditions can affect ambient concentrations and therefore, the amount of NH3 available in the atmosphere to form particulate matter or participate in deposition processes.
Transport of particle pollution into the Maipo Valley: winter 2015 campaign results
NASA Astrophysics Data System (ADS)
Huneeus, Nicolás; Mazzeo, Andrea; Ordóñez, César; Donoso, Nicolás; Gallardo, Laura; Molina, Luisa; Moreno, Valeria; Muñoz, Ricardo; Orfanoz, Andrea; Vizcarra, Aldo
2016-04-01
Each winter, Santiago (33° 27'S, 70° 40'W) the capital of Chile with a population of about 7 million people, experiences episodes with particulate matter (PM) concentrations larger than allowed by Chilean environmental regulations. Transport and residential heating largely dominate emissions prior to and during these episodes. Important impact of black carbon (BC) on the cryosphere has been documented in other parts of the world associated with urban pollution. In order to explore if BC from Santiago has the potential to reach the Andean cryosphere during the aforementioned episodes, a one week-long campaign was conducted in Santiago and the Maipo Valley between 18th and 25th of July 2015 when the air quality conditions of the city reached twice the critical levels (pre-emergency in Chilean regulations). Measurements were carried out at three sites: downtown Santiago, the entrance of the valley (and outskirts of Santiago) and 12 km inside the Maipo Valley. At each of these sites both surface and vertically distributed measurements were conducted. A meteorological station measuring standard meteorological parameters and an E-Sampler measuring PM10 concentrations were installed at each site. In addition, a tethered balloon equipped with a sonde and a mini-aethalometer was used in each site to measure vertical profiles of standard meteorological parameters and BC concentrations, respectively. The tethered balloon was raised every three hours up to a maximum of 1000 meters above ground level, whenever meteorological conditions allowed. In general, the BC concentrations inside the valley, both at the surface and in the vertical, were dominated by emissions within the valley and BC was limited to shallow layers above the ground. However, on both days with critical air quality levels, winds blowing from the city and deeper BC layers were observed inside the valley. Furthermore, during these days observations at the entrance of the valley and those taken inside were coupled, contrary to the other days when they were decoupled. This deeper BC layer and the coupling of observations at the entrance and inside the valley suggest that pollutants are transported into the Maipo Valley and thus could potentially reach the snow and ice covered areas in the Andes.
Seasonal variation in the incidence of preeclampsia and eclampsia in tropical climatic conditions.
Subramaniam, Vidya
2007-10-15
Observational studies have demonstrated various correlations between hypertensive disorders of pregnancy and different weather parameters. We aim to study if a correlation exists between the incidence of eclampsia and pre-eclampsia and various weather parameters in the tropical coastal city of Mumbai which has the distinction of having relatively uniform meteorological variables all throughout the year, except for the monsoon season. We retrospectively analysed data from a large maternity centre in Mumbai, India over a period of 36 months from March 1993 to February 1996, recording the incidence of preeclampsia and eclampsia. Meteorological data was acquired from the regional meteorological centre recording the monthly average temperature, humidity, barometric pressure and rainfall during the study period. Study period was then divided into two climate conditions: monsoon season (June to August) and dry season September to May. The incidence of preeclampsia and eclampsia and the meteorological differences between the two seasons were compared. Over a 36-month period, a total of 29562 deliveries were recorded, of which 1238 patients developed preeclampsia (4.18%) and 34 developed eclampsia (0.11%). The incidence of preeclampsia did not differ between the monsoon and the dry season (4.3% vs. 4.15%, p = 0.5). The incidence of eclampsia was significantly higher in the monsoon (0.2% vs. 0.08%, p = 0.01). The monsoon was significantly cooler (median maximum temperature 30.7 degrees C vs. 32.3 degrees C, p = 0.01), more humid (median relative humidity 85% vs. 70%, p = 0.0008), and received higher rainfall (median 504.9 mm vs. 0.3 mm, p = 0.0002) than the rest of the year. The median barometric pressure (1005 mb) during the monsoon season was significantly lower than the rest of the year (1012 mb, p < 0.0001). In the tropical climate of Mumbai, the incidence of eclampsia is significantly higher in monsoon, when the weather is cooler and humid with a lower barometric pressure than the rest of the year. This effect is not seen with preeclampsia. This strengthens the association of low temperature and high humidity with triggering of eclampsia.
Enviro-HIRLAM Applicability for Black Carbon Studies in Arctic
NASA Astrophysics Data System (ADS)
Nuterman, Roman; Mahura, Alexander; Baklanov, Alexander; Kurganskiy, Alexander; Amstrup, Bjarne; Kaas, Eigil
2015-04-01
One of the main aims of the Nordic CarboNord project ("Impact of black carbon on air quality and climate in Northern Europe and Arctic") is focused on providing new information on distribution and effects of black carbon in Northern Europe and Arctic. It can be done through assessing robustness of model predictions of long-range black carbon distribution and its relation to climate change and forcing. In our study, the online integrated meteorology-chemistry/aerosols model - Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) - is used. This study, at first, is focused on adaptation (model setup, domain for the Northern Hemisphere and Arctic region, emissions, boundary conditions, refining aerosols microphysics and chemistry, cloud-aerosol interaction processes) of Enviro-HIRLAM model and selection of most unfavorable weather and air pollution episodes for the Arctic region. Simulations of interactions between black carbon and meteorological processes in northern conditions for selected episodes will be performed (at DMI's supercomputer HPC CRAY-XT5), and then long-term simulations at regional scale for selected winter vs. summer months. Modelling results will be compared on a diurnal cycle and monthly basis against observations for key meteorological parameters (such as air temperature, wind speed, relative humidity, and precipitation) as well as aerosol concentration. Finally, evaluation of black carbon atmospheric transport, dispersion, and deposition patterns at different spatio-temporal scales; physical-chemical processes and transformations of black carbon containing aerosols; and interactions and effects between black carbon and meteorological processes in Arctic weather conditions will be done.
Synoptic and meteorological drivers of extreme ozone concentrations over Europe
NASA Astrophysics Data System (ADS)
Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim
2016-04-01
The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.
PHOTOCHEMICAL AIR POLLUTION IN THE NORTH OF PORTUGAL: A HIGH TROPOSHERIC OZONE EPISODE
NASA Astrophysics Data System (ADS)
Monteiro, A.; Carvalho, A.; Tchepel, O.; Ferreira, J.; Martins, H.; Miranda, A.; Borrego, C.; Saavedra, S.; Rodríguez, A.; Souto, J. A.
2009-12-01
Very high concentrations of ozone are continuously measured at the monitoring station at Lamas d’Olo, located at the North of Portugal,. A particular high photochemical episode occurred between 11 and 13 of July 2005, registering ozone hourly maximum values above 350 µg.m-3. This ozone-rich episode is investigated in this paper, in order to identify its origin and formation. Besides the analysis of both meteorological and air quality monitoring datasets, a numerical modelling approach, based on MM5-CAMx system, was used to simulate the dispersion and transport (horizontal and vertical) of the photochemical pollutants and its precursors. A cross spectrum analysis of the meteorological and air quality time series was performed, in the frequency domain, to establish the relationships between ozone data measured at Lamas d’Olo with air quality data from neighbourhood stations and meteorological parameters. Results point out different behaviour/contribution between the analysed sites. Moreover, different contributions of the u and v wind component on the ozone concentration fluctuations were found suggesting the presence a mountain breeze circulation and a north synoptic transport. The preliminary modelling results pointed out that the vertical transport of pollutants are responsible for the measured high concentrations, combined with particular meteorological conditions, related to the planetary boundary layer (PBL) development. The pollutants transported and existent at high vertical levels are captured/trapped when the PBL height reaches its daily maximum, and extremely high ozone ground level concentrations are consequently measured.
Design aspects of zeppelin operations from case histories
NASA Technical Reports Server (NTRS)
Maiersperger, W. P.
1975-01-01
Some widely held beliefs concerning the practicability of rigid airships in air carrier operations are discussed. It is shown by a review of past operational experience, and some basic aerostatic theory, their actual record and the reasons for their demise. Problems of atmospheric density and temperature variations, meteorological factors, aerodynamic stability and control, and mooring difficulties are discussed and related to actual case histories. Structural and flight efficiencies are compared to airplane efficiencies for airplanes contemporary with the zeppelin as well as modern designs. The difficulty of supporting new, commercial airship developments on an economic basis is made clear.
[A study on city motor vehicle emission factors by tunnel test].
Wang, B; Zhang, Y; Zhu, C; Yu, K; Chan, L; Chan, Z
2001-03-01
Applying the principle of tunnel test to run a typical across-river tunnel test in Guangzhou city, 48 h-online-monitor data include pollutant concentration, traffic activity and meteorological data were gained. The average motor vehicle emission factors of NOx, CO, SO2, PM10 and HC were calculated using mass balance which are 1.379, 15.404, 0.142, 0.637, 1.857 g/km. vehicle respectively. Based on that, combined emission factors of 8 types of city vehicles were calculated using linear regression. The result basically showed the character and level of motor vehicle emission in Chinese city.
NASA'S second decade in space.
NASA Technical Reports Server (NTRS)
Manganiello, E. J.
1972-01-01
Advances in space science during the last decade are reviewed. The basic scientific goals of NASA's Planetary Program are to increase man's understanding of the origin and evolution of the solar system, the origin and evolution of life, and the earth, through a comparative study of the other planets. Studies of the planets will be continued during the second decade. Aspects of manned space flights are discussed, giving attention to the Skylab workshop, and the Space Shuttle. The applications program is divided into four major areas including meteorology, communications and navigation, geodesy, and earth resources. Areas of aeronautical research are also examined.
An international organization for remote sensing
NASA Technical Reports Server (NTRS)
Helm, Neil R.; Edelson, Burton I.
1991-01-01
A recommendation is presented for the formation of a new commercially oriented international organization to acquire or develop, coordinate or manage, the space and ground segments for a global operational satellite system to furnish the basic data for remote sensing and meteorological, land, and sea resource applications. The growing numbers of remote sensing programs are examined and possible ways of reducing redundant efforts and improving the coordination and distribution of these global efforts are discussed. This proposed remote sensing organization could play an important role in international cooperation and the distribution of scientific, commercial, and public good data.
NASA Technical Reports Server (NTRS)
Goodman, Brian M.; Diak, George R.; Mills, Graham A.
1986-01-01
A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.
Studies of soundings and imagings measurements from geostationary satellites
NASA Technical Reports Server (NTRS)
Suomi, V. E.
1973-01-01
Soundings and imaging measurements from geostationary satellites are presented. The subjects discussed are: (1) meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate study, satellite stability characteristics, and (4) high resolution optics. The use of perturbation technique to obtain the motion of sensors aboard a satellite is described. The most conditions, and measurement errors. Several performance evaluation parameters are proposed.
Oceanographic Research Towers in European Waters
1992-12-01
equipped with an air - conditioner ). Precipitation and fog occurrence are 5 percent and I percent of the time. High humidity is frequent in summer. Water...salinity, temperature; existence of biological systems; air temperature; winds; other weather parameters, etc. "* Accommodation of instruments, support...monitoring network as employed by Rijkwaterstaat. It carries a meteorological station providing information on wind speed and direction, air pressure
Hydrology of Poorly Drained Coastal Watersheds in Eastern North Carolina
Devendra M. Amatya; George M. Chescheir; R. Wayne Skaggs; Glenn P. Fernandez
2002-01-01
A 10,000 ha lower coastal plain land near Plymouth in eastern North Carolina has been intensively monitored since 1996 to measure hydro-meteorological parameters including outflows and quality of water drained from fields and subwatersheds with varying land management practices. This study summarized the data for a six-year period (1996-2001) for a 2950 ha forested, a...
2008-05-01
pyranometer (Kipp/Zonen-CM3). A Campbell CR23X micro-logger recorded the standard meteorological parameters in 1-min averages. 3 Figure 2... Pyranometer Kipp/Zonen CM3 Watts/meter2 Net solar radiation Net radiometer Kipp/Zonen NR-LITE Watts/meter2 Table 4. W07US tower configuration. Tower Number
ERIC Educational Resources Information Center
Nuttonson, M. Y., Ed.
Twelve papers were translated from Russian: Automation of Information Processing Involved in Experimental Studies of Atmospheric Diffusion, Micrometeorological Characteristics of Atmospheric Pollution Conditions, Study of theInfluence of Irregularities of the Earth's Surface on the Air Flow Characteristics in a Wind Tunnel, Use of Parameters of…
Science support for the Earth radiation budget sensor on the Nimbus-7 spacecraft
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.
1982-01-01
Experimental data supporting the Earth radiation budget sensor on the Nimbus 7 Satellite is given. The data deals with the empirical relations between radiative flux, cloudiness, and other meteorological parameters; response of a zonal climate ice sheet model to the orbital perturbations during the quaternary ice ages; and a simple parameterization for ice sheet ablation rate.
ATS-5 millimeter wave propagation measurements
NASA Technical Reports Server (NTRS)
Ippolito, L. J.
1973-01-01
Long term experimental measurements to determine the propagation characteristics of 15 and 32 GHz earth-space links and to evaluate performance characteristics of operational millimeter wave systems are reported. The ATS 5 millimeter wave experimental link experienced attenuation and fading characteristics as a function of rainfall rate and other meteorological parameters. A method of site selection for the lowest attenuation rainfall rate improved reception tremendously.
Direct Temperature Measurements during Netlander Descent on Mars
NASA Astrophysics Data System (ADS)
Colombatti, G.; Angrilli, F.; Ferri, F.; Francesconi, A.; Fulchignoni, M.; Lion Stoppato, P. F.; Saggi, B.
1999-09-01
A new design for a platinum thermoresistance temperature sensor has been developed and tested in Earth's atmosphere and stratosphere. It will be one of the sensors equipping the scientific package ATMIS (Atmospheric and Meteorology Instrument System), which will be devoted to the measurement of the meteorological parameters during both the entry/descent phase and the surface phase, aboard the Netlanders. In particular vertical profiles of temperature, density and pressure will allow the resolution of vertical gradients to investigate the atmospheric structure and dynamics. In view of the future missions to Mars, Netlander represents a unique chance to increase significantly the climate record both in time and in space, doubling the current knowledge of the atmospheric parameters. Furthermore is the only opportunity to conduct direct measurement of temperature and pressure (outside the boundary layer of the airbags used for the landing). The temperature sensor proposed is a platinum thermoresistance, enhancement of HASI TEM (Cassini/Huygens Mission); a substantial improvement of the performances, i.e. a faster dynamic response, has been obtained. Two different prototypes of new design sensor have been built, laboratory test are proceeding and the second one has been already flown aboard a stratospheric balloon.
Engineering description of the ascent/descent bet product
NASA Technical Reports Server (NTRS)
Seacord, A. W., II
1986-01-01
The Ascent/Descent output product is produced in the OPIP routine from three files which constitute its input. One of these, OPIP.IN, contains mission specific parameters. Meteorological data, such as atmospheric wind velocities, temperatures, and density, are obtained from the second file, the Corrected Meteorological Data File (METDATA). The third file is the TRJATTDATA file which contains the time-tagged state vectors that combine trajectory information from the Best Estimate of Trajectory (BET) filter, LBRET5, and Best Estimate of Attitude (BEA) derived from IMU telemetry. Each term in the two output data files (BETDATA and the Navigation Block, or NAVBLK) are defined. The description of the BETDATA file includes an outline of the algorithm used to calculate each term. To facilitate describing the algorithms, a nomenclature is defined. The description of the nomenclature includes a definition of the coordinate systems used. The NAVBLK file contains navigation input parameters. Each term in NAVBLK is defined and its source is listed. The production of NAVBLK requires only two computational algorithms. These two algorithms, which compute the terms DELTA and RSUBO, are described. Finally, the distribution of data in the NAVBLK records is listed.
NASA Astrophysics Data System (ADS)
Caracciolo, C.; Prodi, F.; Battaglia, A.; Porcu', F.
2006-05-01
Drop size distribution is a fundamental property of rainfall for two main reasons: the shape of the distribution reflects the physics of rain formation processes, and it is of basic importance in determining most parameters used in radar-meteorology. Therefore, several authors have proposed in the past different parameterizations for the drop size distribution (DSD). The present work focuses attention on the gamma DSD properties, assumed to be the most suitable for describing the observed DSD and its variability. The data set comprises about 3 years of data (2001-2004) for about 1900 min of rain, collected in Ferrara in the Po Valley (Northern Italy) by a Joss and Waldvogel (JW) disdrometer. A new method of moments to determine the three gamma DSD parameters is developed and tested; this method involves the fourth, fifth and sixth moments of the DSD, which are less sensitive to the underestimation of small drops in the JW disdrometer. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using two classical expressions for the hydrometeor terminal velocity. The 1-min observed spectra of some representative events that occurred in Ferrara are also presented, showing that with sufficient averaging, the distribution for the Ferrara rainfall can be approximately described by a gamma distribution. The discrimination of convective and stratiform precipitation is also an issue of intense interest. Over the past years, several works have aimed to discriminate between these two precipitation categories, on the basis of different instruments and techniques. The knowledge of the three gamma DSD parameters computed with the new method of moments is exploited to identify some characteristic parameters that give quantitative and useful information on the precipitation type and intensity. First, a key parameter derived from the knowledge of two gamma DSD parameters ( m and Λ), the peak (or modal) diameter Dp, defined as m/ Λ, is identified. A theoretical relationship between the m and Λ parameters is successively derived, conducing to a new convective/stratiform discrimination algorithm: in an m- Λ plot the line (1.635 Λ- m) = 1 can be considered as the discriminator; the stratiform events fall in the upper part, the convective ones in the lower. A classical tropical oceanic convective/stratiform discrimination algorithm is also tested, showing that it is not suitable to correctly discriminate the mid-latitude precipitations analyzed here.