POMC Neurons: From Birth to Death
Toda, Chitoku; Santoro, Anna; Kim, Jung Dae
2017-01-01
The hypothalamus is an evolutionarily conserved brain structure that regulates an organism’s basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation. PMID:28192062
Baslow, Morris H
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.
Baslow, Morris H.
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525
Tirone, Felice; Farioli-Vecchioli, Stefano; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca
2013-01-01
Within the hippocampal circuitry, the basic function of the dentate gyrus is to transform the memory input coming from the enthorinal cortex into sparse and categorized outputs to CA3, in this way separating related memory information. New neurons generated in the dentate gyrus during adulthood appear to facilitate this process, allowing a better separation between closely spaced memories (pattern separation). The evidence underlying this model has been gathered essentially by ablating the newly adult-generated neurons. This approach, however, does not allow monitoring of the integration of new neurons into memory circuits and is likely to set in motion compensatory circuits, possibly leading to an underestimation of the role of new neurons. Here we review the background of the basic function of the hippocampus and of the known properties of new adult-generated neurons. In this context, we analyze the cognitive performance in mouse models generated by us and others, with modified expression of the genes Btg2 (PC3/Tis21), Btg1, Pten, BMP4, etc., where new neurons underwent a change in their differentiation rate or a partial decrease of their proliferation or survival rate rather than ablation. The effects of these modifications are equal or greater than full ablation, suggesting that the architecture of circuits, as it unfolds from the interaction between existing and new neurons, can have a greater functional impact than the sheer number of new neurons. We propose a model which attempts to measure and correlate the set of cellular changes in the process of neurogenesis with the memory function. PMID:23734097
Ito, Tetsufumi; Oliver, Douglas L.
2012-01-01
The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671
Han, Fang; Wang, Zhijie; Fan, Hong
2017-01-01
This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760
Modeling functional neuroanatomy for an anatomy information system.
Niggemann, Jörg M; Gebert, Andreas; Schulz, Stefan
2008-01-01
Existing neuroanatomical ontologies, databases and information systems, such as the Foundational Model of Anatomy (FMA), represent outgoing connections from brain structures, but cannot represent the "internal wiring" of structures and as such, cannot distinguish between different independent connections from the same structure. Thus, a fundamental aspect of Neuroanatomy, the functional pathways and functional systems of the brain such as the pupillary light reflex system, is not adequately represented. This article identifies underlying anatomical objects which are the source of independent connections (collections of neurons) and uses these as basic building blocks to construct a model of functional neuroanatomy and its functional pathways. The basic representational elements of the model are unnamed groups of neurons or groups of neuron segments. These groups, their relations to each other, and the relations to the objects of macroscopic anatomy are defined. The resulting model can be incorporated into the FMA. The capabilities of the presented model are compared to the FMA and the Brain Architecture Management System (BAMS). Internal wiring as well as functional pathways can correctly be represented and tracked. This model bridges the gap between representations of single neurons and their parts on the one hand and representations of spatial brain structures and areas on the other hand. It is capable of drawing correct inferences on pathways in a nervous system. The object and relation definitions are related to the Open Biomedical Ontology effort and its relation ontology, so that this model can be further developed into an ontology of neuronal functional systems.
Modeling Functional Neuroanatomy for an Anatomy Information System
Niggemann, Jörg M.; Gebert, Andreas; Schulz, Stefan
2008-01-01
Objective Existing neuroanatomical ontologies, databases and information systems, such as the Foundational Model of Anatomy (FMA), represent outgoing connections from brain structures, but cannot represent the “internal wiring” of structures and as such, cannot distinguish between different independent connections from the same structure. Thus, a fundamental aspect of Neuroanatomy, the functional pathways and functional systems of the brain such as the pupillary light reflex system, is not adequately represented. This article identifies underlying anatomical objects which are the source of independent connections (collections of neurons) and uses these as basic building blocks to construct a model of functional neuroanatomy and its functional pathways. Design The basic representational elements of the model are unnamed groups of neurons or groups of neuron segments. These groups, their relations to each other, and the relations to the objects of macroscopic anatomy are defined. The resulting model can be incorporated into the FMA. Measurements The capabilities of the presented model are compared to the FMA and the Brain Architecture Management System (BAMS). Results Internal wiring as well as functional pathways can correctly be represented and tracked. Conclusion This model bridges the gap between representations of single neurons and their parts on the one hand and representations of spatial brain structures and areas on the other hand. It is capable of drawing correct inferences on pathways in a nervous system. The object and relation definitions are related to the Open Biomedical Ontology effort and its relation ontology, so that this model can be further developed into an ontology of neuronal functional systems. PMID:18579841
Dal Maschio, Marco; Donovan, Joseph C; Helmbrecht, Thomas O; Baier, Herwig
2017-05-17
We introduce a flexible method for high-resolution interrogation of circuit function, which combines simultaneous 3D two-photon stimulation of multiple targeted neurons, volumetric functional imaging, and quantitative behavioral tracking. This integrated approach was applied to dissect how an ensemble of premotor neurons in the larval zebrafish brain drives a basic motor program, the bending of the tail. We developed an iterative photostimulation strategy to identify minimal subsets of channelrhodopsin (ChR2)-expressing neurons that are sufficient to initiate tail movements. At the same time, the induced network activity was recorded by multiplane GCaMP6 imaging across the brain. From this dataset, we computationally identified activity patterns associated with distinct components of the elicited behavior and characterized the contributions of individual neurons. Using photoactivatable GFP (paGFP), we extended our protocol to visualize single functionally identified neurons and reconstruct their morphologies. Together, this toolkit enables linking behavior to circuit activity with unprecedented resolution. Copyright © 2017 Elsevier Inc. All rights reserved.
Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior.
Ryglewski, Stefanie; Kadas, Dimitrios; Hutchinson, Katie; Schuetzler, Natalie; Vonhoff, Fernando; Duch, Carsten
2014-12-16
Dendrites are highly complex 3D structures that define neuronal morphology and connectivity and are the predominant sites for synaptic input. Defects in dendritic structure are highly consistent correlates of brain diseases. However, the precise consequences of dendritic structure defects for neuronal function and behavioral performance remain unknown. Here we probe dendritic function by using genetic tools to selectively abolish dendrites in identified Drosophila wing motoneurons without affecting other neuronal properties. We find that these motoneuron dendrites are unexpectedly dispensable for synaptic targeting, qualitatively normal neuronal activity patterns during behavior, and basic behavioral performance. However, significant performance deficits in sophisticated motor behaviors, such as flight altitude control and switching between discrete courtship song elements, scale with the degree of dendritic defect. To our knowledge, our observations provide the first direct evidence that complex dendrite architecture is critically required for fine-tuning and adaptability within robust, evolutionarily constrained behavioral programs that are vital for mating success and survival. We speculate that the observed scaling of performance deficits with the degree of structural defect is consistent with gradual increases in intellectual disability during continuously advancing structural deficiencies in progressive neurological disorders.
Structure-function analysis of genetically defined neuronal populations.
Groh, Alexander; Krieger, Patrik
2013-10-01
Morphological and functional classification of individual neurons is a crucial aspect of the characterization of neuronal networks. Systematic structural and functional analysis of individual neurons is now possible using transgenic mice with genetically defined neurons that can be visualized in vivo or in brain slice preparations. Genetically defined neurons are useful for studying a particular class of neurons and also for more comprehensive studies of the neuronal content of a network. Specific subsets of neurons can be identified by fluorescence imaging of enhanced green fluorescent protein (eGFP) or another fluorophore expressed under the control of a cell-type-specific promoter. The advantages of such genetically defined neurons are not only their homogeneity and suitability for systematic descriptions of networks, but also their tremendous potential for cell-type-specific manipulation of neuronal networks in vivo. This article describes a selection of procedures for visualizing and studying the anatomy and physiology of genetically defined neurons in transgenic mice. We provide information about basic equipment, reagents, procedures, and analytical approaches for obtaining three-dimensional (3D) cell morphologies and determining the axonal input and output of genetically defined neurons. We exemplify with genetically labeled cortical neurons, but the procedures are applicable to other brain regions with little or no alterations.
Schultz, Wolfram
2004-04-01
Neurons in a small number of brain structures detect rewards and reward-predicting stimuli and are active during the expectation of predictable food and liquid rewards. These neurons code the reward information according to basic terms of various behavioural theories that seek to explain reward-directed learning, approach behaviour and decision-making. The involved brain structures include groups of dopamine neurons, the striatum including the nucleus accumbens, the orbitofrontal cortex and the amygdala. The reward information is fed to brain structures involved in decision-making and organisation of behaviour, such as the dorsolateral prefrontal cortex and possibly the parietal cortex. The neural coding of basic reward terms derived from formal theories puts the neurophysiological investigation of reward mechanisms on firm conceptual grounds and provides neural correlates for the function of rewards in learning, approach behaviour and decision-making.
Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex.
Lübke, Joachim; Feldmeyer, Dirk
2007-07-01
A basic feature of the neocortex is its organization in functional, vertically oriented columns, recurring modules of signal processing and a system of transcolumnar long-range horizontal connections. These columns, together with their network of neurons, present in all sensory cortices, are the cellular substrate for sensory perception in the brain. Cortical columns contain thousands of neurons and span all cortical layers. They receive input from other cortical areas and subcortical brain regions and in turn their neurons provide output to various areas of the brain. The modular concept presumes that the neuronal network in a cortical column performs basic signal transformations, which are then integrated with the activity in other networks and more extended brain areas. To understand how sensory signals from the periphery are transformed into electrical activity in the neocortex it is essential to elucidate the spatial-temporal dynamics of cortical signal processing and the underlying neuronal 'microcircuits'. In the last decade the 'barrel' field in the rodent somatosensory cortex, which processes sensory information arriving from the mysticial vibrissae, has become a quite attractive model system because here the columnar structure is clearly visible. In the neocortex and in particular the barrel cortex, numerous neuronal connections within or between cortical layers have been studied both at the functional and structural level. Besides similarities, clear differences with respect to both physiology and morphology of synaptic transmission and connectivity were found. It is therefore necessary to investigate each neuronal connection individually, in order to develop a realistic model of neuronal connectivity and organization of a cortical column. This review attempts to summarize recent advances in the study of individual microcircuits and their functional relevance within the framework of a cortical column, with emphasis on excitatory signal flow.
Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro.
Bardy, Cedric; van den Hurk, Mark; Eames, Tameji; Marchand, Cynthia; Hernandez, Ruben V; Kellogg, Mariko; Gorris, Mark; Galet, Ben; Palomares, Vanessa; Brown, Joshua; Bang, Anne G; Mertens, Jerome; Böhnke, Lena; Boyer, Leah; Simon, Suzanne; Gage, Fred H
2015-05-19
Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro.
Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro
Bardy, Cedric; van den Hurk, Mark; Eames, Tameji; Marchand, Cynthia; Hernandez, Ruben V.; Kellogg, Mariko; Gorris, Mark; Galet, Ben; Palomares, Vanessa; Brown, Joshua; Bang, Anne G.; Mertens, Jerome; Böhnke, Lena; Boyer, Leah; Simon, Suzanne; Gage, Fred H.
2015-01-01
Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro. PMID:25870293
The problem of gestalt in neurobiology.
Sokolov, E N
1997-01-01
The question of gestalts is discussed within the framework of its neuronal mechanisms. Two basic hypotheses are considered: 1) that of gestalts as a result of the hierarchical organization of neurons (gnostic units), and 2) that of gestalts as a result of the synchronization of neurons of a given level. Analysis of published data led to the conclusion that gestalts result from vector coding in the hierarchical organization of neurons. High-frequency oscillations in the gamma range (40-200 Hz) are of endogenous origin, and their function is to reinforce the synaptic inputs to those neurons which are involved in the synthesis of a gestalt.
Magnetic skyrmion-based artificial neuron device
NASA Astrophysics Data System (ADS)
Li, Sai; Kang, Wang; Huang, Yangqi; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng
2017-08-01
Neuromorphic computing, inspired by the biological nervous system, has attracted considerable attention. Intensive research has been conducted in this field for developing artificial synapses and neurons, attempting to mimic the behaviors of biological synapses and neurons, which are two basic elements of a human brain. Recently, magnetic skyrmions have been investigated as promising candidates in neuromorphic computing design owing to their topologically protected particle-like behaviors, nanoscale size and low driving current density. In one of our previous studies, a skyrmion-based artificial synapse was proposed, with which both short-term plasticity and long-term potentiation functions have been demonstrated. In this work, we further report on a skyrmion-based artificial neuron by exploiting the tunable current-driven skyrmion motion dynamics, mimicking the leaky-integrate-fire function of a biological neuron. With a simple single-device implementation, this proposed artificial neuron may enable us to build a dense and energy-efficient spiking neuromorphic computing system.
The mirror neuron system in post-stroke rehabilitation
2013-01-01
Different treatments for stroke patients have been proposed; among them the mirror therapy and motion imagery lead to functional recovery by providing a cortical reorganization. Up today the basic concepts of the current literature on mirror neurons and the major findings regarding the use of mirror therapy and motor imagery as potential tools to promote reorganization and functional recovery in post-stroke patients. Bibliographic research was conducted based on publications over the past thirteen years written in English in the databases Scielo, Pubmed/MEDLINE, ISI Web of Knowledge. The studies showed how the interaction among vision, proprioception and motor commands promotes the recruitment of mirror neurons, thus providing cortical reorganization and functional recovery of post-stroke patients. We conclude that the experimental advances on Mirror Neurons will bring new rational therapeutic approaches to post-stroke rehabilitation. PMID:24134862
The mirror neuron system in post-stroke rehabilitation.
Carvalho, Diana; Teixeira, Silmar; Lucas, Marina; Yuan, Ti-Fei; Chaves, Fernanda; Peressutti, Caroline; Machado, Sergio; Bittencourt, Juliana; Menéndez-González, Manuel; Nardi, Antonio Egidio; Velasques, Bruna; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro; Arias-Carrión, Oscar
2013-10-17
Different treatments for stroke patients have been proposed; among them the mirror therapy and motion imagery lead to functional recovery by providing a cortical reorganization. Up today the basic concepts of the current literature on mirror neurons and the major findings regarding the use of mirror therapy and motor imagery as potential tools to promote reorganization and functional recovery in post-stroke patients. Bibliographic research was conducted based on publications over the past thirteen years written in English in the databases Scielo, Pubmed/MEDLINE, ISI Web of Knowledge. The studies showed how the interaction among vision, proprioception and motor commands promotes the recruitment of mirror neurons, thus providing cortical reorganization and functional recovery of post-stroke patients. We conclude that the experimental advances on Mirror Neurons will bring new rational therapeutic approaches to post-stroke rehabilitation.
NEVESIM: event-driven neural simulation framework with a Python interface.
Pecevski, Dejan; Kappel, David; Jonke, Zeno
2014-01-01
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.
NEVESIM: event-driven neural simulation framework with a Python interface
Pecevski, Dejan; Kappel, David; Jonke, Zeno
2014-01-01
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies. PMID:25177291
Toward functional classification of neuronal types.
Sharpee, Tatyana O
2014-09-17
How many types of neurons are there in the brain? This basic neuroscience question remains unsettled despite many decades of research. Classification schemes have been proposed based on anatomical, electrophysiological, or molecular properties. However, different schemes do not always agree with each other. This raises the question of whether one can classify neurons based on their function directly. For example, among sensory neurons, can a classification scheme be devised that is based on their role in encoding sensory stimuli? Here, theoretical arguments are outlined for how this can be achieved using information theory by looking at optimal numbers of cell types and paying attention to two key properties: correlations between inputs and noise in neural responses. This theoretical framework could help to map the hierarchical tree relating different neuronal classes within and across species. Copyright © 2014 Elsevier Inc. All rights reserved.
Rushton, David J.; Mattis, Virginia B.; Svendsen, Clive N.; Allen, Nicholas D.; Kemp, Paul J.
2013-01-01
Optimal use of patient-derived, induced pluripotent stem cells for modeling neuronal diseases is crucially dependent upon the proper physiological maturation of derived neurons. As a strategy to develop defined differentiation protocols that optimize electrophysiological function, we investigated the role of Ca2+ channel regulation by astrocyte conditioned medium in neuronal maturation, using whole-cell patch clamp and Ca2+ imaging. Standard control medium supported basic differentiation of induced pluripotent stem cell-derived neurons, as assayed by the ability to fire simple, single, induced action potentials. In contrast, treatment with astrocyte conditioned medium elicited complex and spontaneous neuronal activity, often with rhythmic and biphasic characteristics. Such augmented spontaneous activity correlated with astrocyte conditioned medium-evoked hyperpolarization and was dependent upon regulated function of L-, N- and R-type Ca2+ channels. The requirement for astrocyte conditioned medium could be substituted by simply supplementing control differentiation medium with high Ca2+ or γ-amino butyric acid (GABA). Importantly, even in the absence of GABA signalling, opening Ca2+ channels directly using Bay K8644 was able to hyperpolarise neurons and enhance excitability, producing fully functional neurons. These data provide mechanistic insight into how secreted astrocyte factors control differentiation and, importantly, suggest that pharmacological modulation of Ca2+ channel function leads to the development of a defined protocol for improved maturation of induced pluripotent stem cell-derived neurons. PMID:24278369
The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration
2013-01-01
Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration. PMID:23829673
Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei
2017-08-04
The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Functional Assays for Neurotoxicity Testing
Neurobehavioral and pathological evaluations of the nervous system are complementary components of basic research and toxicity testing of pharmaceutical and environmental chemicals. While neuropathological assessments provide insight as to cellular changes in neurons, behavioral ...
Functional Assays for Neurotoxicity Testing*
Neurobehavioral and pathological evaluations of the nervous system are complementary components of basic research and toxicity testing of pharmaceutical and environmental chemicals. While neuropathological assessments provide insight as to cellular changes in neurons, behavioral ...
Model of the songbird nucleus HVC as a network of central pattern generators
Abarbanel, Henry D. I.
2016-01-01
We propose a functional architecture of the adult songbird nucleus HVC in which the core element is a “functional syllable unit” (FSU). In this model, HVC is organized into FSUs, each of which provides the basis for the production of one syllable in vocalization. Within each FSU, the inhibitory neuron population takes one of two operational states: 1) simultaneous firing wherein all inhibitory neurons fire simultaneously, and 2) competitive firing of the inhibitory neurons. Switching between these basic modes of activity is accomplished via changes in the synaptic strengths among the inhibitory neurons. The inhibitory neurons connect to excitatory projection neurons such that during state 1 the activity of projection neurons is suppressed, while during state 2 patterns of sequential firing of projection neurons can occur. The latter state is stabilized by feedback from the projection to the inhibitory neurons. Song composition for specific species is distinguished by the manner in which different FSUs are functionally connected to each other. Ours is a computational model built with biophysically based neurons. We illustrate that many observations of HVC activity are explained by the dynamics of the proposed population of FSUs, and we identify aspects of the model that are currently testable experimentally. In addition, and standing apart from the core features of an FSU, we propose that the transition between modes may be governed by the biophysical mechanism of neuromodulation. PMID:27535375
High-Dimensional Brain: A Tool for Encoding and Rapid Learning of Memories by Single Neurons.
Tyukin, Ivan; Gorban, Alexander N; Calvo, Carlos; Makarova, Julia; Makarov, Valeri A
2018-03-19
Codifying memories is one of the fundamental problems of modern Neuroscience. The functional mechanisms behind this phenomenon remain largely unknown. Experimental evidence suggests that some of the memory functions are performed by stratified brain structures such as the hippocampus. In this particular case, single neurons in the CA1 region receive a highly multidimensional input from the CA3 area, which is a hub for information processing. We thus assess the implication of the abundance of neuronal signalling routes converging onto single cells on the information processing. We show that single neurons can selectively detect and learn arbitrary information items, given that they operate in high dimensions. The argument is based on stochastic separation theorems and the concentration of measure phenomena. We demonstrate that a simple enough functional neuronal model is capable of explaining: (i) the extreme selectivity of single neurons to the information content, (ii) simultaneous separation of several uncorrelated stimuli or informational items from a large set, and (iii) dynamic learning of new items by associating them with already "known" ones. These results constitute a basis for organization of complex memories in ensembles of single neurons. Moreover, they show that no a priori assumptions on the structural organization of neuronal ensembles are necessary for explaining basic concepts of static and dynamic memories.
Uemura, Takeshi; Mori, Takuma; Kurihara, Taiga; Kawase, Shiori; Koike, Rie; Satoga, Michiru; Cao, Xueshan; Li, Xue; Yanagawa, Toru; Sakurai, Takayuki; Shindo, Takayuki; Tabuchi, Katsuhiko
2016-01-01
Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous β-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-β-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons. PMID:27782168
Uemura, Takeshi; Mori, Takuma; Kurihara, Taiga; Kawase, Shiori; Koike, Rie; Satoga, Michiru; Cao, Xueshan; Li, Xue; Yanagawa, Toru; Sakurai, Takayuki; Shindo, Takayuki; Tabuchi, Katsuhiko
2016-10-26
Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous β-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-β-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons.
Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang
2015-12-01
Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.
A hidden Markov model approach to neuron firing patterns.
Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G
1996-11-01
Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing.
Distribution and function of voltage-gated sodium channels in the nervous system.
Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie
2017-11-02
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
The Amniote Oculomotor Complex.
Company, Verónica; Moreno-Bravo, Juan Antonio; Perez-Balaguer, Ariadna; Puelles, Eduardo
2018-04-16
The oculomotor (OM) complex is a combination of somatic and parasympatethic neurons. The correct development and wiring of this cranial pair is essential to perform basic functions: eyeball and eyelid movements, pupillary constriction, and lens accommodation. The improper formation or function of this nucleus leads pathologies such as strabismus. We describe the OM organization and function in different vertebrate brains, including chick, mouse, and human. The morphological localization is detailed, as well as the spatial relation with the trochlear nucleus in order to adjust some misleading anatomical topographic descriptions. We detailed the signaling processes needed for the specification of the OM neurons. The transcriptional programs driven the specification and differentiation of these neurons are partially determined. We summarized recent genetic studies that have led to the identification of guidance mechanisms involved in the migration, axon pathfinding, and targeting of the OM neurons. Finally, we overviewed the pathology associated to genetic malformations in the OM development and related clinical alterations. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Neuronal Reward and Decision Signals: From Theories to Data
Schultz, Wolfram
2015-01-01
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. PMID:26109341
Network inference from functional experimental data (Conference Presentation)
NASA Astrophysics Data System (ADS)
Desrosiers, Patrick; Labrecque, Simon; Tremblay, Maxime; Bélanger, Mathieu; De Dorlodot, Bertrand; Côté, Daniel C.
2016-03-01
Functional connectivity maps of neuronal networks are critical tools to understand how neurons form circuits, how information is encoded and processed by neurons, how memory is shaped, and how these basic processes are altered under pathological conditions. Current light microscopy allows to observe calcium or electrical activity of thousands of neurons simultaneously, yet assessing comprehensive connectivity maps directly from such data remains a non-trivial analytical task. There exist simple statistical methods, such as cross-correlation and Granger causality, but they only detect linear interactions between neurons. Other more involved inference methods inspired by information theory, such as mutual information and transfer entropy, identify more accurately connections between neurons but also require more computational resources. We carried out a comparative study of common connectivity inference methods. The relative accuracy and computational cost of each method was determined via simulated fluorescence traces generated with realistic computational models of interacting neurons in networks of different topologies (clustered or non-clustered) and sizes (10-1000 neurons). To bridge the computational and experimental works, we observed the intracellular calcium activity of live hippocampal neuronal cultures infected with the fluorescent calcium marker GCaMP6f. The spontaneous activity of the networks, consisting of 50-100 neurons per field of view, was recorded from 20 to 50 Hz on a microscope controlled by a homemade software. We implemented all connectivity inference methods in the software, which rapidly loads calcium fluorescence movies, segments the images, extracts the fluorescence traces, and assesses the functional connections (with strengths and directions) between each pair of neurons. We used this software to assess, in real time, the functional connectivity from real calcium imaging data in basal conditions, under plasticity protocols, and epileptic conditions.
Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster.
Charlu, Sandhya; Wisotsky, Zev; Medina, Adriana; Dahanukar, Anupama
2013-01-01
Drosophila melanogaster can taste various compounds and separate them into few basic categories such as sweet, bitter and salt taste. Here we investigate mechanisms underlying acid detection in Drosophila and report that the fly displays strong taste aversion to common carboxylic acids. We find that acid tastants act by the activation of a subset of bitter neurons and inhibition of sweet neurons. Bitter neurons begin to respond at pH 5 and show an increase in spike frequency as the extracellular pH drops, which does not rely on previously identified chemoreceptors. Notably, sweet neuron activity depends on the balance of sugar and acid tastant concentrations. This is independent of bitter neuron firing, and allows the fly to avoid acid-laced food sources even in the absence of functional bitter neurons. The two mechanisms may allow the fly to better evaluate the risk of ingesting acidic foods and modulate its feeding decisions accordingly.
A hidden Markov model approach to neuron firing patterns.
Camproux, A C; Saunier, F; Chouvet, G; Thalabard, J C; Thomas, G
1996-01-01
Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuropharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity. Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional insights into the mechanisms of neuron firing. Images FIGURE 3 PMID:8913581
Masoudi, Neda; Tavazoie, Saeed; Glenwinkel, Lori; Ryu, Leesun; Kim, Kyuhyung
2018-01-01
Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor–encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be reflective of an ancestral function of an “ur-” bHLH gene. PMID:29672507
A distance constrained synaptic plasticity model of C. elegans neuronal network
NASA Astrophysics Data System (ADS)
Badhwar, Rahul; Bagler, Ganesh
2017-03-01
Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.
Emergence of binocular functional properties in a monocular neural circuit
Ramdya, Pavan; Engert, Florian
2010-01-01
Sensory circuits frequently integrate converging inputs while maintaining precise functional relationships between them. For example, in mammals with stereopsis, neurons at the first stages of binocular visual processing show a close alignment of receptive-field properties for each eye. Still, basic questions about the global wiring mechanisms that enable this functional alignment remain unanswered, including whether the addition of a second retinal input to an otherwise monocular neural circuit is sufficient for the emergence of these binocular properties. We addressed this question by inducing a de novo binocular retinal projection to the larval zebrafish optic tectum and examining recipient neuronal populations using in vivo two-photon calcium imaging. Notably, neurons in rewired tecta were predominantly binocular and showed matching direction selectivity for each eye. We found that a model based on local inhibitory circuitry that computes direction selectivity using the topographic structure of both retinal inputs can account for the emergence of this binocular feature. PMID:19160507
Artimovich, Elena; Jackson, Russell K; Kilander, Michaela B C; Lin, Yu-Chih; Nestor, Michael W
2017-10-16
Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.
[Neurobiological foundations underlying normal and disturbed sexuality].
Krüger, T H C; Kneer, J
2017-05-01
Sexual functions are regulated by hormonal and neurochemical factors as well as neuronal networks. An understanding of these basic principles is necessary for the diagnostics, counselling and treatment of sexual problems. Description of essential mechanisms of sexual function on a neurochemical and neuronal level. Literature search, selection and discussion of relevant studies. Analogous to the dual control model there are primary inhibitory (e. g. serotonin) and excitatory neurotransmitter systems (e.g. sex steroids and dopamine). Moreover, neuronal structures have been identified that are responsible for processing sexual stimuli. These networks are altered in subjects with sexual disorders or by pharmacological treatment, e. g. antiandrogens and selective serotonin reuptake inhibitors (SSRI) CONCLUSION: Knowledge of the neurobiology of sexuality forms the foundations for the treatment of sexual dysfunctions in psychiatry and other disciplines.
Cajal and the Conceptual Weakness of Neural Sciences
Delgado-García, José M.
2015-01-01
The experimental and conceptual contributions of Santiago Ramón y Cajal remain almost as fresh and valuable as when his original proposals were published more than a century ago—a rare example, contrasting with other related sciences. His basic concepts on the neuron as the main building block of the central nervous system, the dynamic polarization principle as a way to understand how neurons deal with ongoing active processes, and brain local structural arrangements as a result of the functional specialization of selected neural circuits are concepts still surviving in present research papers dealing with brain function during the performance of cognitive and/or behavioral activities. What is more, the central dogma of the Neuroscience of today, i.e., brain plasticity as the morpho-functional substrate of memory and learning processes, was already proposed and documented with notable insights by Ramón y Cajal. From this background, I will try to discuss in this chapter which new functional and structural concepts have been introduced in contemporary Neuroscience and how we will be able to construct a set of basic principles underlying brain functions for the twenty-first century. PMID:26483644
Jadi, Monika P; Behabadi, Bardia F; Poleg-Polsky, Alon; Schiller, Jackie; Mel, Bartlett W
2014-05-01
In pursuit of the goal to understand and eventually reproduce the diverse functions of the brain, a key challenge lies in reverse engineering the peculiar biology-based "technology" that underlies the brain's remarkable ability to process and store information. The basic building block of the nervous system is the nerve cell, or "neuron," yet after more than 100 years of neurophysiological study and 60 years of modeling, the information processing functions of individual neurons, and the parameters that allow them to engage in so many different types of computation (sensory, motor, mnemonic, executive, etc.) remain poorly understood. In this paper, we review both historical and recent findings that have led to our current understanding of the analog spatial processing capabilities of dendrites, the major input structures of neurons, with a focus on the principal cell type of the neocortex and hippocampus, the pyramidal neuron (PN). We encapsulate our current understanding of PN dendritic integration in an abstract layered model whose spatially sensitive branch-subunits compute multidimensional sigmoidal functions. Unlike the 1-D sigmoids found in conventional neural network models, multidimensional sigmoids allow the cell to implement a rich spectrum of nonlinear modulation effects directly within their dendritic trees.
Viswanathan, Pooja; Nieder, Andreas
2017-09-13
The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1. SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.
Functional regeneration of the ex-vivo reconstructed mesocorticolimbic dopaminergic system.
Dossi, Elena; Heine, Claudia; Servettini, Ilenio; Gullo, Francesca; Sygnecka, Katja; Franke, Heike; Illes, Peter; Wanke, Enzo
2013-12-01
CNS reparative-medicine therapeutic strategies need answers on the putative recapitulation of the basic rules leading to mammalian CNS development. To achieve this aim, we focus on the regeneration of functional connections in the mesocorticolimbic dopaminergic system. We used organotypic slice cocultures of ventral tegmental area/substantia nigra (VTA/SN) and prefrontal cortex (PFC) on a multielectrode array (MEA) platform to record spikes and local field potentials. The spontaneously growing synaptically based bidirectional bursting activity was followed from 2 to 28 days in vitro (DIV). A statistical analysis of excitatory and inhibitory neurons properties of the physiological firing activity demonstrated a remarkable, exponentially increasing maturation with a time constant of about 5-7 DIV. Immunohistochemistry demonstrated that the ratio of excitatory/inhibitory neurons (3:1) was in line with the functional results obtained. Exemplary pharmacology suggested that GABAA receptors were able to exert phasic and tonic inhibition typical of an adulthood network. Moreover, dopamine D2 receptor inactivation was equally inhibitory both on the spontaneous neuronal activity recorded by MEA and on patch-clamp electrophysiology in PFC pyramidal neurons. These results demonstrate that axon growth cones reach synaptic targets up to full functionality and that organotypic cocultures of the VTA/SN-PFC perfectly model their newly born dopaminergic, glutamatergic and GABAergic neuronal circuitries.
Static and dynamic views of visual cortical organization.
Casagrande, Vivien A; Xu, Xiangmin; Sáry, Gyula
2002-01-01
Without the aid of modern techniques Cajal speculated that cells in the visual cortex were connected in circuits. From Cajal's time until fairly recently, the flow of information within the cells and circuits of visual cortex has been described as progressing from input to output, from sensation to action. In this chapter we argue that a paradigm shift in our concept of the visual cortical neuron is under way. The most important change in our view concerns the neuron's functional role. Visual cortical neurons do not have static functional signatures but instead function dynamically depending on the ongoing activity of the networks to which they belong. These networks are not merely top-down or bottom-up unidirectional transmission lines, but rather represent machinery that uses recurrent information and is dynamic and highly adaptable. With the advancement of technology for analyzing the conversations of multiple neurons at many levels in the visual system and higher resolution imaging, we predict that the paradigm shift will progress to the point where neurons are no longer viewed as independent processing units but as members of subsets of networks where their role is mapped in space-time coordinates in relationship to the other neuronal members. This view moves us far from Cajal's original views of the neuron. Nevertheless, we believe that understanding the basic morphology and wiring of networks will continue to contribute to our overall understanding of the visual cortex.
Pheromone detection by mammalian vomeronasal neurons.
Zufall, Frank; Kelliher, Kevin R; Leinders-Zufall, Trese
2002-08-01
The vomeronasal organ (VNO) of mammals plays an essential role in the perception of chemical stimuli of social nature including pheromone-like signals but direct evidence for the transduction of pheromones by vomeronasal sensory neurons has been lacking. The recent development of electrophysiological and optical imaging methods using confocal microscopy has enabled researchers to systematically analyze sensory responses in large populations of mouse vomeronasal neurons. These experiments revealed that vomeronasal neurons are surprisingly sensitive and highly discriminative detectors of volatile, urinary metabolites that have pheromonal activity in recipient mice. Functional mapping studies of pheromone receptor activation have uncovered the basic principles of sensory processing by vomeronasal neurons and revealed striking differences in the neural mechanisms by which chemosensory information is detected by receptor neurons in the VNO and the main olfactory epithelium. These advances offer the opportunity to decipher the logic of mammalian pheromonal communication. Copyright 2002 Wiley-Liss, Inc.
Can simple rules control development of a pioneer vertebrate neuronal network generating behavior?
Roberts, Alan; Conte, Deborah; Hull, Mike; Merrison-Hort, Robert; al Azad, Abul Kalam; Buhl, Edgar; Borisyuk, Roman; Soffe, Stephen R
2014-01-08
How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.
Honegger, Thibault; Thielen, Moritz I; Feizi, Soheil; Sanjana, Neville E; Voldman, Joel
2016-06-22
The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry.
NASA Astrophysics Data System (ADS)
Honegger, Thibault; Thielen, Moritz I.; Feizi, Soheil; Sanjana, Neville E.; Voldman, Joel
2016-06-01
The central nervous system is a dense, layered, 3D interconnected network of populations of neurons, and thus recapitulating that complexity for in vitro CNS models requires methods that can create defined topologically-complex neuronal networks. Several three-dimensional patterning approaches have been developed but none have demonstrated the ability to control the connections between populations of neurons. Here we report a method using AC electrokinetic forces that can guide, accelerate, slow down and push up neurites in un-modified collagen scaffolds. We present a means to create in vitro neural networks of arbitrary complexity by using such forces to create 3D intersections of primary neuronal populations that are plated in a 2D plane. We report for the first time in vitro basic brain motifs that have been previously observed in vivo and show that their functional network is highly decorrelated to their structure. This platform can provide building blocks to reproduce in vitro the complexity of neural circuits and provide a minimalistic environment to study the structure-function relationship of the brain circuitry.
Kato, Hideyuki; Ikeguchi, Tohru
2016-01-01
Specific memory might be stored in a subnetwork consisting of a small population of neurons. To select neurons involved in memory formation, neural competition might be essential. In this paper, we show that excitable neurons are competitive and organize into two assemblies in a recurrent network with spike timing-dependent synaptic plasticity (STDP) and axonal conduction delays. Neural competition is established by the cooperation of spontaneously induced neural oscillation, axonal conduction delays, and STDP. We also suggest that the competition mechanism in this paper is one of the basic functions required to organize memory-storing subnetworks into fine-scale cortical networks. PMID:26840529
Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin.
Gao, Xiao-Bing
2012-01-01
The hypothalamus is a critical brain structure regulating physiological functions essential to the survival of individuals and species. One of the striking characteristics of this brain region is the abundance of nerve cells (neurons) expressing a great numbers of neurotransmitters and neuromodulators, among which are hormones released into the blood stream through brain neuroendocrinological routes. The neurons in the lateral hypothalamus take part in intra- and extrahypothalamic circuits controlling basic physiological functions essential for the well being of animal bodies (such as cardiovascular function, respiratory function, immune responses, etc.), animal behaviors required for the maintenance of the survival of individuals (food foraging, flight, fight, etc.) and species (reproductive function), and higher brain functions (learning and memory, mental state, etc.). Hypocretin (also called orexin) comprises of two neuropeptides exclusively synthesized by neurons in the perifornical/lateral hypothalamus. Although hypocretin/orexin was initially found to enhance food intake, it is now clear that the functions mediated by hypocretin/orexin are well beyond what were originally proposed. Specifically, hypocretin/orexin is a crucial promoter of wakefulness; deficiency in the hypocretin/orexin system leads to diseases and disorders such as narcolepsy. It is clear that neurons synthesizing hypocretin/orexin are consistently under regulation originating from various parts of the brain and that the status of activity in hypocretin/orexin neurons is closely related with the nutritional and behavioral state of animals. Therefore, the demand to make adaptive changes in hypocretin/orexin neurons to accommodate the changes in the external environment and behavioral state of animals is expected. The latest developments in the studies of plasticity in hypocretin/orexin neurons under the challenges from environmental and behavioral factors have dramatically shaped the understanding of the roles of hypocretin/orexin neurons in the maintenance of the survival of animals. More importantly, the studies of plasticity in hypocretin/orexin neurons as the consequence of physiological, behavioral, and environmental challenges may shed new insight on the understanding and treatment of sleep disorders (such as insomnia). Copyright © 2012 Elsevier Inc. All rights reserved.
Alterations of cortical GABA neurons and network oscillations in schizophrenia.
Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A
2010-08-01
The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.
Kaiser, Andrea; Gräber, Nikolas; Schläger, Laura; Ritze, Yvonne; Scholz, Henrike
2016-01-01
Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling—the serotonin transporter–in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior. PMID:27936023
Xu, Li; He, Jianzheng; Kaiser, Andrea; Gräber, Nikolas; Schläger, Laura; Ritze, Yvonne; Scholz, Henrike
2016-01-01
Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling-the serotonin transporter-in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior.
DeepNeuron: an open deep learning toolbox for neuron tracing.
Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui
2018-06-06
Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.
Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.
Rees, Christopher L; Wheeler, Diek W; Hamilton, David J; White, Charise M; Komendantov, Alexander O; Ascoli, Giorgio A
2016-01-01
We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122 neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested, two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations at the computationally crucial level of neuron types.
Sengupta, Abhronil; Shim, Yong; Roy, Kaushik
2016-12-01
Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by ∼ 100× in comparison to a corresponding digital/analog CMOS neuron implementation.
JADI, MONIKA P.; BEHABADI, BARDIA F.; POLEG-POLSKY, ALON; SCHILLER, JACKIE; MEL, BARTLETT W.
2014-01-01
In pursuit of the goal to understand and eventually reproduce the diverse functions of the brain, a key challenge lies in reverse engineering the peculiar biology-based “technology” that underlies the brain’s remarkable ability to process and store information. The basic building block of the nervous system is the nerve cell, or “neuron,” yet after more than 100 years of neurophysiological study and 60 years of modeling, the information processing functions of individual neurons, and the parameters that allow them to engage in so many different types of computation (sensory, motor, mnemonic, executive, etc.) remain poorly understood. In this paper, we review both historical and recent findings that have led to our current understanding of the analog spatial processing capabilities of dendrites, the major input structures of neurons, with a focus on the principal cell type of the neocortex and hippocampus, the pyramidal neuron (PN). We encapsulate our current understanding of PN dendritic integration in an abstract layered model whose spatially sensitive branch-subunits compute multidimensional sigmoidal functions. Unlike the 1-D sigmoids found in conventional neural network models, multidimensional sigmoids allow the cell to implement a rich spectrum of nonlinear modulation effects directly within their dendritic trees. PMID:25554708
Ruigrok, Tom J. H.; Teune, Thea M.
2014-01-01
The organization of the cerebellum is characterized by a number of longitudinally organized connection patterns that consist of matching olivo-cortico-nuclear zones. These entities, referred to as modules, have been suggested to act as functional units. The various parts of the cerebellar nuclei (CN) constitute the output of these modules. We have studied to what extent divergent and convergent patterns in the output of the modules to four, functionally distinct brain areas can be recognized. Two retrograde tracers were injected in various combinations of the following nuclei: the red nucleus (RN), as a main premotor nucleus; the prerubral area, as a main supplier of afferents to the inferior olive (IO); the nucleus reticularis tegmenti pontis (NRTP), as a main source of cerebellar mossy fibers; and the IO, as the source of climbing fibers. For all six potential combinations three cases were examined. All nine cases with combinations that involved the IO did not, or hardly, resulted in double labeled neurons. In contrast, all other combinations resulted in at least 10% and up to 67% of double labeled neurons in cerebellar nuclear areas where both tracers were found. These results show that the cerebellar nuclear neurons that terminate within the studied areas represent basically two intermingled populations of projection cells. One population corresponds to the small nucleo-olivary neurons whereas the other consists of medium- to large-sized neurons which are likely to distribute their axons to several other areas. Despite some consistent differences between the output patterns of individual modules we propose that modular cerebellar output to premotor areas such as the RN provides simultaneous feedback to both the mossy fiber and the climbing fiber system and acts in concert with a designated GABAergic nucleo-olivary circuit. These features seem to form a basic characteristic of cerebellar operation. PMID:24600356
Numerical Analysis of Modeling Based on Improved Elman Neural Network
Jie, Shao
2014-01-01
A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance. PMID:25054172
Rapid Neocortical Dynamics: Cellular and Network Mechanisms
Haider, Bilal; McCormick, David A.
2011-01-01
The highly interconnected local and large-scale networks of the neocortical sheet rapidly and dynamically modulate their functional connectivity according to behavioral demands. This basic operating principle of the neocortex is mediated by the continuously changing flow of excitatory and inhibitory synaptic barrages that not only control participation of neurons in networks but also define the networks themselves. The rapid control of neuronal responsiveness via synaptic bombardment is a fundamental property of cortical dynamics that may provide the basis of diverse behaviors, including sensory perception, motor integration, working memory, and attention. PMID:19409263
Repression by PRDM13 is critical for generating precision in neuronal identity
Kollipara, Rahul K; Ma, Zhenzhong; Borromeo, Mark D; Chang, Joshua C
2017-01-01
The mechanisms that activate some genes while silencing others are critical to ensure precision in lineage specification as multipotent progenitors become restricted in cell fate. During neurodevelopment, these mechanisms are required to generate the diversity of neuronal subtypes found in the nervous system. Here we report interactions between basic helix-loop-helix (bHLH) transcriptional activators and the transcriptional repressor PRDM13 that are critical for specifying dorsal spinal cord neurons. PRDM13 inhibits gene expression programs for excitatory neuronal lineages in the dorsal neural tube. Strikingly, PRDM13 also ensures a battery of ventral neural tube specification genes such as Olig1, Olig2 and Prdm12 are excluded dorsally. PRDM13 does this via recruitment to chromatin by multiple neural bHLH factors to restrict gene expression in specific neuronal lineages. Together these findings highlight the function of PRDM13 in repressing the activity of bHLH transcriptional activators that together are required to achieve precise neuronal specification during mouse development. PMID:28850031
Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris
2015-11-01
Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network and potentially contributes to development of improved therapy for neurological disorders such as Parkinson's disease.
Artificial synapse network on inorganic proton conductor for neuromorphic systems.
Zhu, Li Qiang; Wan, Chang Jin; Guo, Li Qiang; Shi, Yi; Wan, Qing
2014-01-01
The basic units in our brain are neurons, and each neuron has more than 1,000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore, the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse network. Here in-plane lateral-coupled oxide-based artificial synapse network coupled by proton neurotransmitters are self-assembled on glass substrates at room-temperature. A strong lateral modulation is observed due to the proton-related electrical-double-layer effect. Short-term plasticity behaviours, including paired-pulse facilitation, dynamic filtering and spatiotemporally correlated signal processing are mimicked. Such laterally coupled oxide-based protonic/electronic hybrid artificial synapse network proposed here is interesting for building future neuromorphic systems.
Delineating the regulation of energy homeostasis using hypothalamic cell models.
Wellhauser, Leigh; Gojska, Nicole M; Belsham, Denise D
2015-01-01
Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function. Copyright © 2014 Elsevier Inc. All rights reserved.
Formation of compact myelin is required for maturation of the axonal cytoskeleton
NASA Technical Reports Server (NTRS)
Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.
1999-01-01
Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.
How does the motor relearning program improve neurological function of brain ischemia monkeys?☆
Yin, Yong; Gu, Zhen; Pan, Lei; Gan, Lu; Qin, Dongdong; Yang, Bo; Guo, Jin; Hu, Xintian; Wang, Tinghua; Feng, Zhongtang
2013-01-01
The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factor- and basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia. PMID:25206440
Cell-assembly coding in several memory processes.
Sakurai, Y
1998-01-01
The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.
PrP(C) signalling in neurons: from basics to clinical challenges.
Hirsch, Théo Z; Hernandez-Rapp, Julia; Martin-Lannerée, Séverine; Launay, Jean-Marie; Mouillet-Richard, Sophie
2014-09-01
The cellular prion protein PrP(C) was identified over twenty-five years ago as the normal counterpart of the scrapie prion protein PrP(Sc), itself the main if not the sole component of the infectious agent at the root of Transmissible Spongiform Encephalopathies (TSEs). PrP(C) is a ubiquitous cell surface protein, abundantly expressed in neurons, which constitute the targets of PrP(Sc)-mediated toxicity. Converging evidence have highlighted that neuronal, GPI-anchored PrP(C) is absolutely required for prion-induced neuropathogenesis, which warrants investigating into the normal function exerted by PrP(C) in a neuronal context. It is now well-established that PrP(C) can serve as a cell signalling molecule, able to mobilize transduction cascades in response to interactions with partners. This function endows PrP(C) with the capacity to participate in multiple neuronal processes, ranging from survival to synaptic plasticity. A diverse array of data have allowed to shed light on how this function is corrupted by PrP(Sc). Recently, amyloid Aβ oligomers, whose accumulation is associated with Alzheimer's disease (AD), were shown to similarly instigate toxic events by deviating PrP(C)-mediated signalling. Here, we provide an overview of the various signal transduction cascades ascribed to PrP(C) in neurons, summarize how their subversion by PrP(Sc) or Aβ oligomers contributes to TSE or AD neuropathogenesis and discuss the ensuing clinical implications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Structural and synaptic plasticity in stress-related disorders
Christoffel, Daniel J.; Golden, Sam A.; Russo, Scott J.
2011-01-01
Stress can have a lasting impact on the structure and function of brain circuitry that results in long-lasting changes in the behavior of an organism. Synaptic plasticity is the mechanism by which information is stored and maintained within individual synapses, neurons, and neuronal circuits to guide the behavior of an organism. Although these mechanisms allow the organism to adapt to its constantly evolving environment, not all of these adaptations are beneficial. Under prolonged bouts of physical or psychological stress, these mechanisms become dysregulated, and the connectivity between brain regions becomes unbalanced, resulting in pathological behaviors. In this review, we highlight the effects of stress on the structure and function of neurons within the mesocorticolimbic brain systems known to regulate mood and motivation. We then discuss the implications of these spine adaptations on neuronal activity and pathological behaviors implicated in mood disorders. Finally, we end by discussing recent brain imaging studies in human depression within the context of these basic findings to provide insight into the underlying mechanisms leading to neural dysfunction in depression. PMID:21967517
Development of Gonadotropin-Releasing Hormone-Secreting Neurons from Human Pluripotent Stem Cells.
Lund, Carina; Pulli, Kristiina; Yellapragada, Venkatram; Giacobini, Paolo; Lundin, Karolina; Vuoristo, Sanna; Tuuri, Timo; Noisa, Parinya; Raivio, Taneli
2016-08-09
Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
The neuron classification problem
Bota, Mihail; Swanson, Larry W.
2007-01-01
A systematic account of neuron cell types is a basic prerequisite for determining the vertebrate nervous system global wiring diagram. With comprehensive lineage and phylogenetic information unavailable, a general ontology based on structure-function taxonomy is proposed and implemented in a knowledge management system, and a prototype analysis of select regions (including retina, cerebellum, and hypothalamus) presented. The supporting Brain Architecture Knowledge Management System (BAMS) Neuron ontology is online and its user interface allows queries about terms and their definitions, classification criteria based on the original literature and “Petilla Convention” guidelines, hierarchies, and relations—with annotations documenting each ontology entry. Combined with three BAMS modules for neural regions, connections between regions and neuron types, and molecules, the Neuron ontology provides a general framework for physical descriptions and computational modeling of neural systems. The knowledge management system interacts with other web resources, is accessible in both XML and RDF/OWL, is extendible to the whole body, and awaits large-scale data population requiring community participation for timely implementation. PMID:17582506
Ray, Radharaman; Zhang, Peng; Ray, Prabhati
2011-08-01
The passion in the scientific endeavors of Marshall Warren Nirenberg had been his quest for knowledge regarding the storage, retrieval, and processing of information in the cell. After deciphering the genetic code for which he shared the Nobel Prize in Physiology and Medicine in 1968, Nirenberg devoted his attention to unraveling the mysteries in the most complex cellular organization in the body, i.e., the nervous system, especially those governing neuronal development, plasticity, and synaptogenesis. During the tenure of the primary author (RR) as a postdoctoral Staff Fellow in the Nirenberg laboratory in the late seventies to early eighties, he had the opportunity of working on projects related to what Nirenberg used to broadly define as the "synaptic code." The major aspects of these projects dealt with the functional macromolecules relevant to neuronal growth, organization, lineage, selectivity, stabilization, synaptogenesis, and functions such as neuroexocytosis. This author's emphasis was particularly on voltage-gated calcium channels that regulate stimulus-induced neurotransmitter release. One central as well as crucial theme in these studies was the fact that the neurons had to be mature and differentiated in order to study these entities (Science 222: 794-799, 1983; Cold Spring Harb Symp Quant Biol 48: 707-715, 1983). In this communication, we illustrate how did this basic knowledge, i.e., cell maturation-dependent properties being essential for neuronal functions, led to a successful experimental design and demonstration of the validity of the targeted neurologic therapeutic delivery approach based on recombinant botulinum toxin serotype A (BoNT/A) heavy chain (rHC) serving as a neuron-specific targeting molecule (BMC Pharmacol 9: 12, 2009).
Vadakkan, Kunjumon I.
2011-01-01
The internal sensation of memory, which is available only to the owner of an individual nervous system, is difficult to analyze for its basic elements of operation. We hypothesize that associative learning induces the formation of functional LINK between the postsynapses. During memory retrieval, the activation of either postsynapse re-activates the functional LINK evoking a semblance of sensory activity arriving at its opposite postsynapse, nature of which defines the basic unit of internal sensation – namely, the semblion. In neuronal networks that undergo continuous oscillatory activity at certain levels of their organization re-activation of functional LINKs is expected to induce semblions, enabling the system to continuously learn, self-organize, and demonstrate instantiation, features that can be utilized for developing artificial intelligence (AI). This paper also explains suitability of the inter-postsynaptic functional LINKs to meet the expectations of Minsky’s K-lines, basic elements of a memory theory generated to develop AI and methods to replicate semblances outside the nervous system. PMID:21845180
The application of the multi-alternative approach in active neural network models
NASA Astrophysics Data System (ADS)
Podvalny, S.; Vasiljev, E.
2017-02-01
The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.
Three-dimensional micro-electrode array for recording dissociated neuronal cultures.
Musick, Katherine; Khatami, David; Wheeler, Bruce C
2009-07-21
This work demonstrates the design, fabrication, packaging, characterization, and functionality of an electrically and fluidically active three-dimensional micro-electrode array (3D MEA) for use with neuronal cell cultures. The successful function of the device implies that this basic concept-construction of a 3D array with a layered approach-can be utilized as the basis for a new family of neural electrode arrays. The 3D MEA prototype consists of a stack of individually patterned thin films that form a cell chamber conducive to maintaining and recording the electrical activity of a long-term three-dimensional network of rat cortical neurons. Silicon electrode layers contain a polymer grid for neural branching, growth, and network formation. Along the walls of these electrode layers lie exposed gold electrodes which permit recording and stimulation of the neuronal electrical activity. Silicone elastomer micro-fluidic layers provide a means for loading dissociated neurons into the structure and serve as the artificial vasculature for nutrient supply and aeration. The fluidic layers also serve as insulation for the micro-electrodes. Cells have been shown to survive in the 3D MEA for up to 28 days, with spontaneous and evoked electrical recordings performed in that time. The micro-fluidic capability was demonstrated by flowing in the drug tetrotodoxin to influence the activity of the culture.
Cracking the barcode of fullerene-like cortical microcolumns.
Tozzi, Arturo; Peters, James F; Ori, Ottorino
2017-03-22
Artificial neural systems and nervous graph theoretical analysis rely upon the stance that the neural code is embodied in logic circuits, e.g., spatio-temporal sequences of ON/OFF spiking neurons. Nevertheless, this assumption does not fully explain complex brain functions. Here we show how nervous activity, other than logic circuits, could instead depend on topological transformations and symmetry constraints occurring at the micro-level of the cortical microcolumn, i.e., the embryological, anatomical and functional basic unit of the brain. Tubular microcolumns can be flattened in fullerene-like two-dimensional lattices, equipped with about 80 nodes standing for pyramidal neurons where neural computations take place. We show how the countless possible combinations of activated neurons embedded in the lattice resemble a barcode. Despite the fact that further experimental verification is required in order to validate our claim, different assemblies of firing neurons might have the appearance of diverse codes, each one responsible for a single mental activity. A two-dimensional fullerene-like lattice, grounded on simple topological changes standing for pyramidal neurons' activation, not just displays analogies with the real microcolumn's microcircuitry and the neural connectome, but also the potential for the manufacture of plastic, robust and fast artificial networks in robotic forms of full-fledged neural systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia
2014-12-18
Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.
Venkatesh, Katari; Sen, Dwaipayan
2017-01-01
Cell repair/replacing strategies for neurodegenerative diseases such as Parkinson's disease depend on well-characterized dopaminergic neuronal candidates that are healthy and show promising effect on the rejuvenation of degenerated area of the brain. Therefore, it is imperative to develop innovative therapeutic strategies that replace damaged neurons with new/functional dopaminergic neurons. Although several research groups have reported the generation of neural precursors/neurons from human/ mouse embryonic stem cells and mesenchymal stem cells, the latter is considered to be an attractive therapeutic candidate because of its high capacity for self-renewable, no adverse effect to allogeneic versus autologous transplants, high ethical acceptance and no teratoma formation. Therefore, mesenchymal stem cells can be considered as an ideal source for replacing lost cells in degenerative diseases like Parkinson's. Hence, the use of these cells in the differentiation of dopaminergic neurons becomes significant and thrives as a therapeutic approach to treat Parkinson's disease. Here we highlight the basic biology of mesenchymal stem cells, their differentiation potential into dopaminergic neurons and potential use in the clinics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Optical Imaging and Control of Neurons
NASA Astrophysics Data System (ADS)
Song, Yoon-Kyu
Although remarkable progress has been made in our understanding of the function, organization, and development of the brain by various approaches of modern science and technology, how the brain performs its marvelous function remains unsolved or incompletely understood. This is mainly attributed to the insufficient capability of currently available research tools and conceptual frameworks to deal with enormous complexity of the brain. Hence, in the last couple of decades, a significant effort has been made to crack the complexity of brain by utilizing research tools from diverse scientific areas. The research tools include the optical neurotechnology which incorporates the exquisite characteristics of optics, such as multi-parallel access and non-invasiveness, in sensing and stimulating the excitable membrane of a neuron, the basic functional unit of the brain. This chapter is aimed to serve as a short introduction to the optical neurotechnology for those who wish to use optical techniques as one of their brain research tools.
Establishment of a Long-Term Chick Forebrain Neuronal Culture on a Microelectrode Array Platform
Kuang, Serena Y.; Huang, Ting; Wang, Zhonghai; Lin, Yongliang; Kindy, Mark; Xi, Tingfei; Gao, Bruce Z.
2016-01-01
The biosensor system formed by culturing primary animal neurons on a microelectrode array (MEA) platform is drawing an increasing research interest for its power as a rapid, sensitive, functional neurotoxicity assessment, as well as for many other electrophysiological related research purposes. In this paper, we established a long-term chick forebrain neuron culture (C-FBN-C) on MEAs with a more than 5 month long lifespan and up to 5 month long stability in morphology and physiological function; characterized the C-FBN-C morphologically, functionally, and developmentally; partially compared its functional features with rodent counterpart; and discussed its pros and cons as a novel biosensor system in comparison to rodent counterpart and human induced pluripotent stem cells (hiPSCs). Our results show that C-FBN-C on MEA platform 1) can be used as a biosensor of its own type in a wide spectrum of basic biomedical research; 2) is of value in comparative physiology in cross-species studies; and 3) may have potential to be used as an alternative, cost-effective approach to rodent counterpart within shared common functional domains (such as specific types of ligand-gated ion channel receptors and subtypes expressed in the cortical tissues of both species) in large-scale environmental neurotoxicant screening that would otherwise require millions of animals. PMID:26989485
Neuron-glia metabolic coupling and plasticity.
Magistretti, Pierre J
2006-06-01
The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.
Gambino, Giuditta; Allegra, Mario; Sardo, Pierangelo; Attanzio, Alessandro; Tesoriere, Luisa; Livrea, Maria A.; Ferraro, Giuseppe; Carletti, Fabio
2018-01-01
Several studies have recently investigated the role of nutraceuticals in complex pathophysiological processes such as oxidative damages, inflammatory conditions and excitotoxicity. In this regard, the effects of nutraceuticals on basic functions of neuronal cells, such as excitability, are still poorly investigated. For this reason, the possible modulation of neuronal excitability by phytochemicals (PhC) could represent an interesting field of research given that excitotoxicity phenomena are involved in neurodegenerative alterations leading, for example, to Alzheimer’s disease. The present study was focused on indicaxanthin from Opuntia ficus indica, a bioactive betalain pigment, with a proven antioxidant and anti-inflammatory potential, previously found to cross blood-brain barrier (BBB) and to modulate the bioelectric activity of hippocampal neurons. On this basis, we aimed at detecting the specific brain areas where indicaxanthin localizes after oral administration at dietary-achievable amounts and highlighting eventual local effects on the excitability of single neuronal units. HPLC analysis of brain tissue 1 h after ingestion of 2 μmol/kg indicaxanthin indicated that the phytochemical accumulates in cortex, hippocampus, diencephalon, brainstem and cerebellum, but not in the striato-pallidal complex. Then, electrophysiological recordings, applying the microiontophoretic technique, were carried out with different amounts of indicaxanthin (0.34, 0.17, 0.085 ng/neuron) to assess whether indicaxanthin influenced the neuronal firing rate. The data showed that the bioelectric activity of neurons belonging to different brain areas was modulated after local injection of indicaxanthin, mainly with dose-related responses. A predominating inhibitory effect was observed, suggesting a possible novel beneficial effect of indicaxanthin in reducing cell excitability. These findings can constitute a new rationale for exploring biological mechanisms through which PhC could modulate neuronal function with a relapse on complex cognitive brain process and related neurodegenerative conditions. PMID:29867444
Cumulative lesioning of respiratory interneurons disrupts and precludes motor rhythms in vitro
Hayes, John A.; Wang, Xueying; Del Negro, Christopher A.
2012-01-01
How brain functions degenerate in the face of progressive cell loss is an important issue that pertains to neurodegenerative diseases and basic properties of neural networks. We developed an automated system that uses two-photon microscopy to detect rhythmic neurons from calcium activity, and then individually laser ablates the targets while monitoring network function in real time. We applied this system to the mammalian respiratory oscillator located in the pre-Bötzinger Complex (preBötC) of the ventral medulla, which spontaneously generates breathing-related motor activity in vitro. Here, we show that cumulatively deleting preBötC neurons progressively decreases respiratory frequency and the amplitude of motor output. On average, the deletion of 120 ± 45 neurons stopped spontaneous respiratory rhythm, and our data suggest ≈82% of the rhythm-generating neurons remain unlesioned. Cumulative ablations in other medullary respiratory regions did not affect frequency but diminished the amplitude of motor output to a lesser degree. These results suggest that the preBötC can sustain insults that destroy no more than ≈18% of its constituent interneurons, which may have implications for the onset of respiratory pathologies in disease states. PMID:22566628
Xu, Jin-Chong; Fan, Jing; Wang, Xueqing; Eacker, Stephen M.; Kam, Tae-In; Chen, Li; Yin, Xiling; Zhu, Juehua; Chi, Zhikai; Jiang, Haisong; Chen, Rong; Dawson, Ted M.; Dawson, Valina L.
2017-01-01
Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells (ESCs) or inducible pluripotent stem cells (iPSCs) that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid (RA) to FOXG1 neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuron cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and the poly (ADP-ribose) polymerase (PARP)-dependent cell death, a cell death pathway designated parthanatos to separate it from apoptosis, necroptosis and other forms of cell death. Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons. PMID:27053772
Generation of induced neurons by direct reprogramming in the mammalian cochlea.
Nishimura, K; Weichert, R M; Liu, W; Davis, R L; Dabdoub, A
2014-09-05
Primary auditory neurons (ANs) in the mammalian cochlea play a critical role in hearing as they transmit auditory information in the form of electrical signals from mechanosensory cochlear hair cells in the inner ear to the brainstem. Their progressive degeneration is associated with disease conditions, excessive noise exposure and aging. Replacement of ANs, which lack the ability to regenerate spontaneously, would have a significant impact on research and advancement in cochlear implants in addition to the amelioration of hearing impairment. The aim of this study was to induce a neuronal phenotype in endogenous non-neural cells in the cochlea, which is the essential organ of hearing. Overexpression of a neurogenic basic helix-loop-helix transcription factor, Ascl1, in the cochlear non-sensory epithelial cells induced neurons at high efficiency at embryonic, postnatal and juvenile stages. Moreover, induced neurons showed typical properties of neuron morphology, gene expression and electrophysiology. Our data indicate that Ascl1 alone or Ascl1 and NeuroD1 is sufficient to reprogram cochlear non-sensory epithelial cells into functional neurons. Generation of neurons from non-neural cells in the cochlea is an important step for the regeneration of ANs in the mature mammalian cochlea. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Single neuron modeling and data assimilation in BNST neurons
NASA Astrophysics Data System (ADS)
Farsian, Reza
Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.
Induction of motor neuron differentiation by transduction of Olig2 protein.
Mie, Masayasu; Kaneko, Mami; Henmi, Fumiaki; Kobatake, Eiry
2012-10-26
Olig2 protein, a member of the basic helix-loop-helix transcription factor family, was introduced into the mouse embryonic carcinoma cell line P19 for induction of motor neuron differentiation. We show that Olig2 protein has the ability to permeate the cell membrane without the addition of a protein transduction domain (PTD), similar to other basic helix-loop-helix transcription factors such as MyoD and NeuroD2. Motor neuron differentiation was evaluated for the elongation of neurites and the expression of choline acetyltransferase (ChAT) mRNA, a differentiation marker of motor neurons. By addition of Olig2 protein, motor neuron differentiation was induced in P19 cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Ferguson, Ross; Subramanian, Vasanta
2016-01-01
Neuroblastoma cell lines such as SH-SY5Y have been used for modelling neurodegenerative diseases and for studying basic mechanisms in neuroscience. Since neuroblastoma cells proliferate and generally do not express markers of mature or functional neurons, we exploited a co-culture system with the stromal cell line PA6 to better induce differentiation to a more physiologically relevant status. We found that co-culture of the neuroblastoma cell lines in the presence of neural inducers such retinoic acid was able to generate a high proportion of quiescent neurons with very long neurites expressing differentiation markers. The co-culture system additionally cuts short the time taken to produce a more mature phenotype. We also show the application of this system to study proteins implicated in motor neuron disease. PMID:27391595
Ferguson, Ross; Subramanian, Vasanta
2016-01-01
Neuroblastoma cell lines such as SH-SY5Y have been used for modelling neurodegenerative diseases and for studying basic mechanisms in neuroscience. Since neuroblastoma cells proliferate and generally do not express markers of mature or functional neurons, we exploited a co-culture system with the stromal cell line PA6 to better induce differentiation to a more physiologically relevant status. We found that co-culture of the neuroblastoma cell lines in the presence of neural inducers such retinoic acid was able to generate a high proportion of quiescent neurons with very long neurites expressing differentiation markers. The co-culture system additionally cuts short the time taken to produce a more mature phenotype. We also show the application of this system to study proteins implicated in motor neuron disease.
Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes
NASA Astrophysics Data System (ADS)
He, Yinke; Sun, Jia; Qian, Chuan; Kong, Ling-An; Gou, Guangyang; Li, Hongjian
2017-04-01
In human brain, a large number of neurons are connected via synapses. Simulation of the synaptic behaviors using electronic devices is the most important step for neuromorphic systems. In this paper, proton conducting gelatin electrolyte-gated oxide field-effect transistors (FETs) were used for emulating synaptic functions, in which the gate electrode is regarded as pre-synaptic neuron and the channel layer as the post-synaptic neuron. In analogy to the biological synapse, a potential spike can be applied at the gate electrode and trigger ionic motion in the gelatin electrolyte, which in turn generates excitatory post-synaptic current (EPSC) in the channel layer. Basic synaptic behaviors including spike time-dependent EPSC, paired-pulse facilitation (PPF), self-adaptation, and frequency-dependent synaptic transmission were successfully mimicked. Such ionic/electronic hybrid devices are beneficial for synaptic electronics and brain-inspired neuromorphic systems.
[Origin of cortical interneurons: basic concepts and clinical implications].
Marín, O
Introduction and development. GABAergic interneurons play a prominent role in the function of the cerebral cortex, since they allow the synchronization of pyramidal neurons and greatly influence their differentiation and maturation during development. Until recently it has been thought that cortical interneurons and pyramidal neurons originate from progenitor cells located in the dorsal region of the telencephalon, the pallium. Recent studies, however, have demonstrated that a large number of cortical GABAergic neurons arise from progenitors located in the subpallium the region of the telencephalon that gives rise to the basal ganglia, and that they arise in the cerebral cortex after a long tangential migration. Aims. In this review I have summarized our current knowledge of the factors that control the specification of cortical interneurons, as well as the mechanisms that direct their migration to the cortex.
Learning-related human brain activations reflecting individual finances.
Tobler, Philippe N; Fletcher, Paul C; Bullmore, Edward T; Schultz, Wolfram
2007-04-05
A basic tenet of microeconomics suggests that the subjective value of financial gains decreases with increasing assets of individuals ("marginal utility"). Using concepts from learning theory and microeconomics, we assessed the capacity of financial rewards to elicit behavioral and neuronal changes during reward-predictive learning in participants with different financial backgrounds. Behavioral learning speed during both acquisition and extinction correlated negatively with the assets of the participants, irrespective of education and age. Correspondingly, response changes in midbrain and striatum measured with functional magnetic resonance imaging were slower during both acquisition and extinction with increasing assets and income of the participants. By contrast, asymptotic magnitudes of behavioral and neuronal responses after learning were unrelated to personal finances. The inverse relationship of behavioral and neuronal learning speed with personal finances is compatible with the general concept of decreasing marginal utility with increasing wealth.
Compartmentalized Platforms for Neuro-pharmacological Research
Jadhav, Amol D.; Wei, Li; Shi, Peng
2016-01-01
Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology. PMID:26813122
Bach2 is involved in neuronal differentiation of N1E-115 neuroblastoma cells.
Shim, Ki Shuk; Rosner, Margit; Freilinger, Angelika; Lubec, Gert; Hengstschläger, Markus
2006-07-15
Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could represent a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.
Biology of GDNF and its receptors - Relevance for disorders of the central nervous system.
Ibáñez, Carlos F; Andressoo, Jaan-Olle
2017-01-01
A targeted effort to identify novel neurotrophic factors for midbrain dopaminergic neurons resulted in the isolation of GDNF (glial cell line-derived neurotrophic factor) from the supernatant of a rat glial cell line in 1993. Over two decades and 1200 papers later, the GDNF ligand family and their different receptor systems are now recognized as one of the major neurotrophic networks in the nervous system, important for the development, maintenance and function of a variety of neurons and glial cells. The many ways in which the four members of the GDNF ligand family can signal and function allow these factors to take part in the control of multiple types of processes, from neuronal survival to axon guidance and synapse formation in the developing nervous system, to synaptic function and regenerative responses in the adult. In this review, we will briefly summarize basic aspects of GDNF signaling mechanisms and receptor systems and then review our current knowledge of the physiology of GDNF activities in the central nervous system, with an eye to its relevance for neurodegenerative and neuropsychiatric diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Engram formation in psychiatric disorders.
Gebicke-Haerter, Peter J
2014-01-01
Environmental factors substantially influence beginning and progression of mental illness, reinforcing or reducing the consequences of genetic vulnerability. Often initiated by early traumatic events, "engrams" or memories are formed that may give rise to a slow and subtle progression of psychiatric disorders. The large delay between beginning and time of onset (diagnosis) may be explained by efficient compensatory mechanisms observed in brain metabolism that use optional pathways in highly redundant molecular interactions. To this end, research has to deal with mechanisms of learning and long-term memory formation, which involves (a) epigenetic changes, (b) altered neuronal activities, and (c) changes in neuron-glia communication. On the epigenetic level, apparently DNA-methylations are more stable than histone modifications, although both closely interact. Neuronal activities basically deliver digital information, which clearly can serve as basis for memory formation (LTP). However, research in this respect has long time neglected the importance of glia. They are more actively involved in the control of neuronal activities than thought before. They can both reinforce and inhibit neuronal activities by transducing neuronal information from frequency-encoded to amplitude and frequency-modulated calcium wave patterns spreading in the glial syncytium by use of gap junctions. In this way, they serve integrative functions. In conclusion, we are dealing with two concepts of encoding information that mutually control each other and synergize: a digital (neuronal) and a wave-like (glial) computing, forming neuron-glia functional units with inbuilt feedback loops to maintain balance of excitation and inhibition. To better understand mental illness, we have to gain more insight into the dynamics of adverse environmental impact on those cellular and molecular systems. This report summarizes existing knowledge and draws some outline about further research in molecular psychiatry.
Engram formation in psychiatric disorders
Gebicke-Haerter, Peter J.
2014-01-01
Environmental factors substantially influence beginning and progression of mental illness, reinforcing or reducing the consequences of genetic vulnerability. Often initiated by early traumatic events, “engrams” or memories are formed that may give rise to a slow and subtle progression of psychiatric disorders. The large delay between beginning and time of onset (diagnosis) may be explained by efficient compensatory mechanisms observed in brain metabolism that use optional pathways in highly redundant molecular interactions. To this end, research has to deal with mechanisms of learning and long-term memory formation, which involves (a) epigenetic changes, (b) altered neuronal activities, and (c) changes in neuron-glia communication. On the epigenetic level, apparently DNA-methylations are more stable than histone modifications, although both closely interact. Neuronal activities basically deliver digital information, which clearly can serve as basis for memory formation (LTP). However, research in this respect has long time neglected the importance of glia. They are more actively involved in the control of neuronal activities than thought before. They can both reinforce and inhibit neuronal activities by transducing neuronal information from frequency-encoded to amplitude and frequency-modulated calcium wave patterns spreading in the glial syncytium by use of gap junctions. In this way, they serve integrative functions. In conclusion, we are dealing with two concepts of encoding information that mutually control each other and synergize: a digital (neuronal) and a wave-like (glial) computing, forming neuron-glia functional units with inbuilt feedback loops to maintain balance of excitation and inhibition. To better understand mental illness, we have to gain more insight into the dynamics of adverse environmental impact on those cellular and molecular systems. This report summarizes existing knowledge and draws some outline about further research in molecular psychiatry. PMID:24904262
NASA Astrophysics Data System (ADS)
Vidybida, Alexander; Shchur, Olha
We consider a class of spiking neuronal models, defined by a set of conditions typical for basic threshold-type models, such as the leaky integrate-and-fire or the binding neuron model and also for some artificial neurons. A neuron is fed with a Poisson process. Each output impulse is applied to the neuron itself after a finite delay Δ. This impulse acts as being delivered through a fast Cl-type inhibitory synapse. We derive a general relation which allows calculating exactly the probability density function (pdf) p(t) of output interspike intervals of a neuron with feedback based on known pdf p0(t) for the same neuron without feedback and on the properties of the feedback line (the Δ value). Similar relations between corresponding moments are derived. Furthermore, we prove that the initial segment of pdf p0(t) for a neuron with a fixed threshold level is the same for any neuron satisfying the imposed conditions and is completely determined by the input stream. For the Poisson input stream, we calculate that initial segment exactly and, based on it, obtain exactly the initial segment of pdf p(t) for a neuron with feedback. That is the initial segment of p(t) is model-independent as well. The obtained expressions are checked by means of Monte Carlo simulation. The course of p(t) has a pronounced peculiarity, which makes it impossible to approximate p(t) by Poisson or another simple stochastic process.
Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial
Huang, Ting; Wang, Zhonghai; Wei, Lina; Kindy, Mark; Zheng, Yufeng; Xi, Tingfei; Gao, Bruce Z.
2016-01-01
Magnesium (Mg)-based biomaterials have shown great potential in clinical applications. However, the cytotoxic effects of excessive Mg2+ and the corrosion products from Mg-based biomaterials, particularly their effects on neurons, have been little studied. Although viability tests are most commonly used, a functional evaluation is critically needed. Here, both methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to test the effect of Mg2+ and Mg-extract solution on neuronal viability. Microelectrode arrays (MEAs), which provide long-term, real-time recording of extracellular electrophysiological signals of in vitro neuronal networks, were used to test for toxic effects. The minimum effective concentrations (ECmin) of Mg2+ from the MTT and LDH assays were 3 mmol/L and 100 mmol/L, respectively, while the ECmin obtained from the MEA assay was 0.1 mmol/L. MEA data revealed significant loss of neuronal network activity when the culture was exposed to 25% Mg-extract solution, a concentration that did not affect neuronal viability. For evaluating the biocompatibility of Mg-based biomaterials with neurons, MEA electrophysiological testing is a more precise method than basic cell-viability testing. PMID:27110081
Microelectrode Array-evaluation of Neurotoxic Effects of Magnesium as an Implantable Biomaterial.
Huang, Ting; Wang, Zhonghai; Wei, Lina; Kindy, Mark; Zheng, Yufeng; Xi, Tingfei; Gao, Bruce Z
2016-01-01
Magnesium (Mg)-based biomaterials have shown great potential in clinical applications. However, the cytotoxic effects of excessive Mg 2+ and the corrosion products from Mg-based biomaterials, particularly their effects on neurons, have been little studied. Although viability tests are most commonly used, a functional evaluation is critically needed. Here, both methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays were used to test the effect of Mg 2+ and Mg-extract solution on neuronal viability. Microelectrode arrays (MEAs), which provide long-term, real-time recording of extracellular electrophysiological signals of in vitro neuronal networks, were used to test for toxic effects. The minimum effective concentrations (EC min ) of Mg 2+ from the MTT and LDH assays were 3 mmol/L and 100 mmol/L, respectively, while the EC min obtained from the MEA assay was 0.1 mmol/L. MEA data revealed significant loss of neuronal network activity when the culture was exposed to 25% Mg-extract solution, a concentration that did not affect neuronal viability. For evaluating the biocompatibility of Mg-based biomaterials with neurons, MEA electrophysiological testing is a more precise method than basic cell-viability testing.
A dangerous method? The use of induced pluripotent stem cells as a model for schizophrenia.
Jacobs, Benjamin Meir
2015-10-01
Schizophrenia is a devastating and prevalent psychiatric illness. Progress in understanding the basic pathophysiological processes underlying this disorder has been hindered by the lack of appropriate models. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to generate live neurons in vitro from somatic tissue of schizophrenia patients. Despite its several limitations, this revolutionary technology has already helped to advance our understanding of schizophrenia. The phenotypic insights garnered with iPSC models of schizophrenia include transcriptional dysregulation, oxidative stress synaptic dysregulation, and neurodevelopmental abnormalities. Potential pitfalls of this work include the possibility of introducing random genetic mutations during the reprogramming process, the inadequacy of using neurons from other patients as controls, the inability to capture the complex environmental contribution to schizophrenia pathogenesis, the difficulty in modelling neurodevelopment, and the difficulty in modelling the interaction of multiple neuronal and non-neuronal cell types. However, with the increasing sophistication of available reprogramming techniques, co-culture technology, and gene correction strategies, iPSC-derived neurons will continue to elucidate how neuronal function is disrupted in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
Sequential EMT-MET induces neuronal conversion through Sox2
He, Songwei; Chen, Jinlong; Zhang, Yixin; Zhang, Mengdan; Yang, Xiao; Li, Yuan; Sun, Hao; Lin, Lilong; Fan, Ke; Liang, Lining; Feng, Chengqian; Wang, Fuhui; Zhang, Xiao; Guo, Yiping; Pei, Duanqing; Zheng, Hui
2017-01-01
Direct neuronal conversion can be achieved with combinations of small-molecule compounds and growth factors. Here, by studying the first or induction phase of the neuronal conversion induced by defined 5C medium, we show that the Sox2-mediated switch from early epithelial–mesenchymal transition (EMT) to late mesenchymal–epithelial transition (MET) within a high proliferation context is essential and sufficient for the conversion from mouse embryonic fibroblasts (MEFs) to TuJ+ cells. At the early stage, insulin and basic fibroblast growth factor (bFGF)-induced cell proliferation, early EMT, the up-regulation of Stat3 and Sox2, and the subsequent activation of neuron projection. Up-regulated Sox2 then induced MET and directed cells towards a neuronal fate at the late stage. Inhibiting either stage of this sequential EMT-MET impaired the conversion. In addition, Sox2 could replace sequential EMT-MET to induce a similar conversion within a high proliferation context, and its functions were confirmed with other neuronal conversion protocols and MEFs reprogramming. Therefore, the critical roles of the sequential EMT-MET were implicated in direct cell fate conversion in addition to reprogramming, embryonic development and cancer progression. PMID:28580167
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shim, Ki Shuk; Department of Neonatology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna; Rosner, Margit
Bach1 and Bach2 are evolutionarily related members of the BTB-basic region leucine zipper transcription factor family. We found that Bach2 downregulates cell proliferation of N1E-115 cells and negatively affects their potential to differentiate. Nuclear localization of the cyclin-dependent kinase inhibitor p21 is known to arrest cell cycle progression, and cytoplasmic p21 has been shown to promote neuronal differentiation of N1E-115 cells. We found that ectopic Bach2 causes upregulation of p21 expression in the nucleus and in the cytoplasm in undifferentiated N1E-115 cells. In differentiated cells, Bach2 specifically triggers upregulation of cytoplasmic p21. Our data suggest that Bach2 expression could representmore » a switch during the process of neuronal differentiation. Bach2 is not expressed in neuronal precursor cells. It would have negative effects on proliferation and differentiation of these cells. In differentiated neuronal cells Bach2 expression is upregulated, which could allow Bach2 to function as a gatekeeper of the differentiated status.« less
Calcium signal communication in the central nervous system.
Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc
2004-02-01
The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.
Are memory traces localized or distributed?
Thompson, R F
1991-01-01
Evidence supports the view that "memory traces" are formed in the hippocampus and in the cerebellum in classical conditioning of discrete behavioral responses (e.g. eyeblink conditioning). In the hippocampus, learning results in long-lasting increases in excitability of pyramidal neurons that appear to be localized to these neurons (i.e. changes in membrane properties and receptor function). However, these learning-altered pyramidal neurons are distributed widely throughout CA3 and CA1. Although it plays a key role in certain aspects of classical conditioning, the hippocampus is not necessary for learning and memory of the basic conditioned responses. The cerebellum and its associated brain stem circuitry, on the other hand, does appear to be essential (necessary and sufficient) for learning and memory of the conditioned response. Evidence to date is most consistent with a localized trace in the interpositus nucleus and multiple localized traces in cerebellar cortex, each involving relatively large ensembles of neurons. Perhaps "procedural" memory traces are relatively localized and "declarative" traces more widely distributed.
NASA Astrophysics Data System (ADS)
Huang, Haiping
2017-03-01
To understand the collective spiking activity in neuronal populations, it is essential to reveal basic circuit variables responsible for these emergent functional states. Here, I develop a mean field theory for the population coupling recently proposed in the studies of the visual cortex of mouse and monkey, relating the individual neuron activity to the population activity, and extend the original form to the second order, relating neuron-pair’s activity to the population activity, to explain the high order correlations observed in the neural data. I test the computational framework on the salamander retinal data and the cortical spiking data of behaving rats. For the retinal data, the original form of population coupling and its advanced form can explain a significant fraction of two-cell correlations and three-cell correlations, respectively. For the cortical data, the performance becomes much better, and the second order population coupling reveals non-local effects in local cortical circuits.
Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu
2014-01-01
In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them. PMID:24567704
Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu
2014-01-01
In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.
Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.
Kazantsev, V B; Asatryan, S Yu
2011-09-01
Bistability is one of the important features of nonlinear dynamical systems. In neurodynamics, bistability has been found in basic Hodgkin-Huxley equations describing the cell membrane dynamics. When the neuron is clamped near its threshold, the stable rest potential may coexist with the stable limit cycle describing periodic spiking. However, this effect is often neglected in network computations where the neurons are typically reduced to threshold firing units (e.g., integrate-and-fire models). We found that the bistability may induce spike communication by inhibitory coupled neurons in the spiking network. The communication is realized in the form of episodic discharges with synchronous (correlated) spikes during the episodes. A spiking phase map is constructed to describe the synchronization and to estimate basic spike phase locking modes.
Adil, Maroof M.; Rodrigues, Gonçalo M. C.; Kulkarni, Rishikesh U.; Rao, Antara T.; Chernavsky, Nicole E.; Miller, Evan W.; Schaffer, David V.
2017-01-01
Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson’s Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior). Importantly, mDA neurons generated in 3D exhibited a 30-fold increase in viability upon implantation into rat striatum compared to neurons generated on 2D, consistent with the elevated expression of survival markers FOXA2 and EN1 in 3D. A defined, scalable, and resource-efficient cell culture platform can thus rapidly generate high quality differentiated cells, both neurons and potentially other cell types, with strong potential to accelerate both basic and translational research. PMID:28091566
Activity of striatal neurons reflects social action and own reward.
Báez-Mendoza, Raymundo; Harris, Christopher J; Schultz, Wolfram
2013-10-08
Social interactions provide agents with the opportunity to earn higher benefits than when acting alone and contribute to evolutionary stable strategies. A basic requirement for engaging in beneficial social interactions is to recognize the actor whose movement results in reward. Despite the recent interest in the neural basis of social interactions, the neurophysiological mechanisms identifying the actor in social reward situations are unknown. A brain structure well suited for exploring this issue is the striatum, which plays a role in movement, reward, and goal-directed behavior. In humans, the striatum is involved in social processes related to reward inequity, donations to charity, and observational learning. We studied the neurophysiology of social action for reward in rhesus monkeys performing a reward-giving task. The behavioral data showed that the animals distinguished between their own and the conspecific's reward and knew which individual acted. Striatal neurons coded primarily own reward but rarely other's reward. Importantly, the activations occurred preferentially, and in approximately similar fractions, when either the own or the conspecific's action was followed by own reward. Other striatal neurons showed social action coding without reward. Some of the social action coding disappeared when the conspecific's role was simulated by a computer, confirming a social rather than observational relationship. These findings demonstrate a role of striatal neurons in identifying the social actor and own reward in a social setting. These processes may provide basic building blocks underlying the brain's function in social interactions.
Shaping Neuronal Network Activity by Presynaptic Mechanisms
Ashery, Uri
2015-01-01
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048
Ortiz-Matamoros, Abril; Salcedo-Tello, Pamela; Avila-Muñoz, Evangelina; Zepeda, Angélica; Arias, Clorinda
2013-01-01
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity. PMID:24403870
Ortiz-Matamoros, Abril; Salcedo-Tello, Pamela; Avila-Muñoz, Evangelina; Zepeda, Angélica; Arias, Clorinda
2013-09-01
It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity.
Energy-efficient neural information processing in individual neurons and neuronal networks.
Yu, Lianchun; Yu, Yuguo
2017-11-01
Brains are composed of networks of an enormous number of neurons interconnected with synapses. Neural information is carried by the electrical signals within neurons and the chemical signals among neurons. Generating these electrical and chemical signals is metabolically expensive. The fundamental issue raised here is whether brains have evolved efficient ways of developing an energy-efficient neural code from the molecular level to the circuit level. Here, we summarize the factors and biophysical mechanisms that could contribute to the energy-efficient neural code for processing input signals. The factors range from ion channel kinetics, body temperature, axonal propagation of action potentials, low-probability release of synaptic neurotransmitters, optimal input and noise, the size of neurons and neuronal clusters, excitation/inhibition balance, coding strategy, cortical wiring, and the organization of functional connectivity. Both experimental and computational evidence suggests that neural systems may use these factors to maximize the efficiency of energy consumption in processing neural signals. Studies indicate that efficient energy utilization may be universal in neuronal systems as an evolutionary consequence of the pressure of limited energy. As a result, neuronal connections may be wired in a highly economical manner to lower energy costs and space. Individual neurons within a network may encode independent stimulus components to allow a minimal number of neurons to represent whole stimulus characteristics efficiently. This basic principle may fundamentally change our view of how billions of neurons organize themselves into complex circuits to operate and generate the most powerful intelligent cognition in nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Human cerebral cortex Cajal-Retzius neuron: development, structure and function. A Golgi study.
Marín-Padilla, Miguel
2015-01-01
The development, morphology and possible functional activity of the Cajal-Retzius cell of the developing human cerebral cortex are explored herein. The C-RC, of extracortical origin, is the essential neuron of the neocortex first lamina. It receives inputs from afferent fibers that reach the first lamina early in development. Although the origin and function of these original afferent fibers remain unknown, their target is the first lamina sole neuron: the C-RC. This neuron orchestrates the arrival, size and stratification of all pyramidal neurons (of ependymal origin) of the neocortex gray matter. Its axonic terminals spread radially and horizontally throughout the entirety of the first lamina establishing contacts with the dendritic terminals of all gray matter pyramidal cells regardless of size, location and/or eventual functional roles. While the neuron axonic terminals spread radially and horizontally throughout the first lamina, the neuronal' body undergoes progressive developmental dilution and locating any of them in the adult brain become quite difficult. The neuron bodies are probably retained in the older regions of the neocortex while their axonic collaterals will spread throughout its more recent ones and eventually will extend to great majority of the cortical surface. The neocortex first lamina evolution and composition and that of the C-RC are intertwined and mutually interdependent. It is not possible to understand the C-RC evolving morphology without understanding that of the first lamina. The first lamina composition and its structural and functional organizations obtained with different staining methods may be utterly different. These differences have added unnecessary confusion about its nature. The essential emptiness observed in hematoxylin and eosin preparations (most commonly used) contrast sharply with the concentration of dendrites (the cortex' largest) obtained using special (MAP-2) stain for dendrites. Only Golgi preparations demonstrate the numerous dendritic and axonic terminals that compose the first lamina basic structure. High power microscopic views of Golgi preparations demonstrate the intimate anatomical and functional interrelationships among dendritic and axonic terminals as well as synaptic contacts between them. The C-RC' essential morphology does not changes but it is progressively modified by the first lamina increase in thickness and in number of terminal dendrites and their subsequent maturation. This neuron variable morphologic appearance has been the source of controversy. Its morphology depends on the first lamina thickness that may be quite variable among different mammals. In rodents (most commonly used experimental mammal), the first lamina thickness, number and horizontal expansion of dendrites is but a fraction of those in humans. This differences are reflected in the C-RC' morphology among mammals (including humans) and should not be thought as representing new types of neurons.
Self-organization in Balanced State Networks by STDP and Homeostatic Plasticity
Effenberger, Felix; Jost, Jürgen; Levina, Anna
2015-01-01
Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network. PMID:26335425
Sallés, Laia; Gironès, Xavier; Lafuente, José Vicente
2015-01-06
The basic characteristics of Penfield homunculus (somatotopy and unique representation) have been questioned. The existence of a defined anatomo-functional organization within different segments of the same region is controversial. The presence of multiple motor representations in the primary motor area and in the parietal lobe interconnected by parieto-frontal circuits, which are widely overlapped, form a complex organization. Both features support the recovery of functions after brain injury. Regarding the movement organization, it is possible to yield a relevant impact through the understanding of actions and intentions of others, which is mediated by the activation of mirror-neuron systems. The implementation of cognitive functions (observation, image of the action and imitation) from the acute treatment phase allows the activation of motor representations without having to perform the action and it plays an important role in learning motor patterns. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks
NASA Astrophysics Data System (ADS)
Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy
2014-06-01
Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.
Oligodendroglia: metabolic supporters of axons.
Morrison, Brett M; Lee, Youngjin; Rothstein, Jeffrey D
2013-12-01
Axons are specialized extensions of neurons that are critical for the organization of the nervous system. To maintain function in axons that often extend some distance from the cell body, specialized mechanisms of energy delivery are likely to be necessary. Over the past decade, greater understanding of human demyelinating diseases and the development of animal models have suggested that oligodendroglia are critical for maintaining the function of axons. In this review, we discuss evidence for the vulnerability of neurons to energy deprivation, the importance of oligodendrocytes for axon function and survival, and recent data suggesting that transfer of energy metabolites from oligodendroglia to axons through monocarboxylate transporter 1 (MCT1) may be critical for the survival of axons. This pathway has important implications both for the basic biology of the nervous system and for human neurological disease. New insights into the role of oligodendroglial biology provide an exciting opportunity for revisions in nervous system biology, understanding myelin-based disorders, and therapeutics development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Otolith-Canal Convergence in Vestibular Nuclei Neurons
NASA Technical Reports Server (NTRS)
Dickman, J. David
1996-01-01
During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.
Is realistic neuronal modeling realistic?
Almog, Mara
2016-01-01
Scientific models are abstractions that aim to explain natural phenomena. A successful model shows how a complex phenomenon arises from relatively simple principles while preserving major physical or biological rules and predicting novel experiments. A model should not be a facsimile of reality; it is an aid for understanding it. Contrary to this basic premise, with the 21st century has come a surge in computational efforts to model biological processes in great detail. Here we discuss the oxymoronic, realistic modeling of single neurons. This rapidly advancing field is driven by the discovery that some neurons don't merely sum their inputs and fire if the sum exceeds some threshold. Thus researchers have asked what are the computational abilities of single neurons and attempted to give answers using realistic models. We briefly review the state of the art of compartmental modeling highlighting recent progress and intrinsic flaws. We then attempt to address two fundamental questions. Practically, can we realistically model single neurons? Philosophically, should we realistically model single neurons? We use layer 5 neocortical pyramidal neurons as a test case to examine these issues. We subject three publically available models of layer 5 pyramidal neurons to three simple computational challenges. Based on their performance and a partial survey of published models, we conclude that current compartmental models are ad hoc, unrealistic models functioning poorly once they are stretched beyond the specific problems for which they were designed. We then attempt to plot possible paths for generating realistic single neuron models. PMID:27535372
Ultraweak photon emission in the brain.
Salari, V; Valian, H; Bassereh, H; Bókkon, I; Barkhordari, A
2015-09-01
Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance.
Low Temperature Performance of High-Speed Neural Network Circuits
NASA Technical Reports Server (NTRS)
Duong, T.; Tran, M.; Daud, T.; Thakoor, A.
1995-01-01
Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.
Role of a Ubiquitously Expressed Receptor in the Vertebrate Olfactory System
DeMaria, Shannon; Berke, Allison P.; Van Name, Eric; Heravian, Anisa; Ferreira, Todd
2013-01-01
Odorant cues are recognized by receptors expressed on olfactory sensory neurons, the primary sensory neurons of the olfactory epithelium. Odorant receptors typically obey the “one receptor, one neuron” rule, in which the receptive field of the olfactory neuron is determined by the singular odorant receptor that it expresses. Odor-evoked receptor activity across the population of olfactory neurons is then interpreted by the brain to identify the molecular nature of the odorant stimulus. In the present study, we characterized the properties of a C family G-protein-coupled receptor that, unlike most other odorant receptors, is expressed in a large population of microvillous sensory neurons in the zebrafish olfactory epithelium and the mouse vomeronasal organ. We found that this receptor, OlfCc1 in zebrafish and its murine ortholog Vmn2r1, is a calcium-dependent, low-sensitivity receptor specific for the hydrophobic amino acids isoleucine, leucine, and valine. Loss-of-function experiments in zebrafish embryos demonstrate that OlfCc1 is required for olfactory responses to a diverse mixture of polar, nonpolar, acidic, and basic amino acids. OlfCc1 was also found to promote localization of other OlfC receptor family members to the plasma membrane in heterologous cells. Together, these results suggest that the broadly expressed OlfCc1 is required for amino acid detection by the olfactory system and suggest that it plays a role in the function and/or intracellular trafficking of other olfactory and vomeronasal receptors with which it is coexpressed. PMID:24048853
Kwiat, Moria; Elnathan, Roey; Pevzner, Alexander; Peretz, Asher; Barak, Boaz; Peretz, Hagit; Ducobni, Tamir; Stein, Daniel; Mittelman, Leonid; Ashery, Uri; Patolsky, Fernando
2012-07-25
The use of artificial, prepatterned neuronal networks in vitro is a promising approach for studying the development and dynamics of small neural systems in order to understand the basic functionality of neurons and later on of the brain. The present work presents a high fidelity and robust procedure for controlling neuronal growth on substrates such as silicon wafers and glass, enabling us to obtain mature and durable neural networks of individual cells at designed geometries. It offers several advantages compared to other related techniques that have been reported in recent years mainly because of its high yield and reproducibility. The procedure is based on surface chemistry that allows the formation of functional, tailormade neural architectures with a micrometer high-resolution partition, that has the ability to promote or repel cells attachment. The main achievements of this work are deemed to be the creation of a large scale neuronal network at low density down to individual cells, that develop intact typical neurites and synapses without any glia-supportive cells straight from the plating stage and with a relatively long term survival rate, up to 4 weeks. An important application of this method is its use on 3D nanopillars and 3D nanowire-device arrays, enabling not only the cell bodies, but also their neurites to be positioned directly on electrical devices and grow with registration to the recording elements underneath.
Residual effects of ecstasy (3,4-methylenedioxymethamphetamine) on low level visual processes.
Murray, Elizabeth; Bruno, Raimondo; Brown, John
2012-03-01
'Ecstasy' (3,4-methylenedioxymethamphetamine) induces impaired functioning in the serotonergic system, including the occipital lobe. This study employed the 'tilt aftereffect' paradigm to operationalise the function of orientation-selective neurons among ecstasy consumers and controls as a means of investigating the role of reduced serotonin on visual orientation processing. The magnitude of the tilt aftereffect reflects the extent of lateral inhibition between orientation-selective neurons and is elicited to both 'real' contours, processed in visual cortex area V1, and illusory contours, processed in V2. The magnitude of tilt aftereffect to both contour types was examined among 19 ecstasy users (6 ecstasy only; 13 ecstasy-plus-cannabis users) and 23 matched controls (9 cannabis-only users; 14 drug-naive). Ecstasy users had a significantly greater tilt magnitude than non-users for real contours (Hedge's g = 0.63) but not for illusory contours (g = 0.20). These findings provide support for literature suggesting that residual effects of ecstasy (and reduced serotonin) impairs lateral inhibition between orientation-selective neurons in V1, which however suggests that ecstasy may not substantially affect this process in V2. Multiple studies have now demonstrated ecstasy-related deficits on basic visual functions, including orientation and motion processing. Such low-level effects may contribute to the impact of ecstasy use on neuropsychological tests of visuospatial function. Copyright © 2012 John Wiley & Sons, Ltd.
Functional magnetic resonance imaging: basic principles and application in the neurosciences.
Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C
2018-03-12
Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Edwards, Darin; Stancescu, Maria; Molnar, Peter; Hickman, James J
2013-08-21
In this study, we demonstrate the directed formation of small circuits of electrically active, synaptically connected neurons derived from the hippocampus of adult rats through the use of engineered chemically modified culture surfaces that orient the polarity of the neuronal processes. Although synaptogenesis, synaptic communication, synaptic plasticity, and brain disease pathophysiology can be studied using brain slice or dissociated embryonic neuronal culture systems, the complex elements found in neuronal synapses makes specific studies difficult in these random cultures. The study of synaptic transmission in mature adult neurons and factors affecting synaptic transmission are generally studied in organotypic cultures, in brain slices, or in vivo. However, engineered neuronal networks would allow these studies to be performed instead on simple functional neuronal circuits derived from adult brain tissue. Photolithographic patterned self-assembled monolayers (SAMs) were used to create the two-cell "bidirectional polarity" circuit patterns. This pattern consisted of a cell permissive SAM, N-1[3-(trimethoxysilyl)propyl] diethylenetriamine (DETA), and was composed of two 25 μm somal adhesion sites connected with 5 μm lines acting as surface cues for guided axonal and dendritic regeneration. Surrounding the DETA pattern was a background of a non-cell-permissive poly(ethylene glycol) (PEG) SAM. Adult hippocampal neurons were first cultured on coverslips coated with DETA monolayers and were later passaged onto the PEG-DETA bidirectional polarity patterns in serum-free medium. These neurons followed surface cues, attaching and regenerating only along the DETA substrate to form small engineered neuronal circuits. These circuits were stable for more than 21 days in vitro (DIV), during which synaptic connectivity was evaluated using basic electrophysiological methods.
Liu, Huaxiang; Liu, Zhen; Xu, Xiaobo; Yang, Xiangdong; Wang, Huaijing; Li, Zhengzhong
2010-03-01
Both galanin and neuropeptide Y (NPY) are expressed in superior cervical ganglion (SCG) neurons. Following nerve transection or axotomy galanin is strongly upregulated and NPY is downregulated in SCG neurons because target-derived nerve growth factor (NGF) content decreased. It is not known whether or to what extent NGF affects both galanin and NPY expression in primary cultured SCG neurons. In the present study we examine whether exogenous NGF affects expression of neuropeptides for galanin and NPY in primary cultured SCG neurons. In addition, we explore whether mRNAs for galanin and NPY are affected by administration of exogenous NGF in SCG cultures. The significance of expression of galanin and NPY and their mRNAs was revealed by performing experiments without and with administration of exogenous NGF. Galanin and its mRNA expression was attenuated by administration of exogenous NGF in SCG cultures. The enhancement of NPY and its mRNA expression by administration of exogenous NGF in SCG cultures was dose-dependent. The physiological or pathophysiological mechanisms of the alterations of galanin and NPY expression affected by NGF in primary cultured SCG neurons are still unknown. The present data provide basic knowledge about the expression of galanin and NPY in primary cultured SCG neurons of rats, which may further improve our understanding of the functional significance of galanin and NPY expression affected by NGF.
Network synchronization in hippocampal neurons.
Penn, Yaron; Segal, Menahem; Moses, Elisha
2016-03-22
Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron's tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network's activity and dynamics, contributing to our understanding of developing neural circuits.
The Anticonvulsant Effects of Ketogenic Diet on Epileptic Seizures and Potential Mechanisms.
Zhang, Yifan; Xu, Jingwei; Zhang, Kun; Yang, Wei; Li, Bingjin
2018-01-01
Epilepsy is a syndrome of brain dysfunction induced by the aberrant excitability of certain neurons. Despite advances in surgical technique and anti-epileptic drug in recent years, recurrent epileptic seizures remain intractable and lead to a serious morbidity in the world. The ketogenic diet refers to a high-fat, low-carbohydrate and adequate-protein diet. Currently, its beneficial effects on epileptic seizure reduction have been well established. However, the detailed mechanisms underlying the anti-epileptic effects of ketogenic diet are still poorly understood. In this article, the possible roles of ketogenic diet on epilepsy were discussed. Data was obtained from the websites including Web of Science, Medline, Pubmed, Scopus, based on these keywords: "Ketogenic diet" and "epilepsy". As shown in both clinical and basic studies, the therapeutic effects of ketogenic diet might involve neuronal metabolism, neurotransmitter function, neuronal membrane potential and neuron protection against ROS. In this review, we systematically reviewed the effects and possible mechanisms of ketogenic diet on epilepsy, which may optimize the therapeutic strategies against epilepsy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The von Economo neurons in fronto-insular and anterior cingulate cortex
Allman, John M.; Tetreault, Nicole A.; Hakeem, Atiya Y.; Manaye, Kebreten F.; Semendeferi, Katerina; Erwin, Joseph M.; Park, Soyoung; Goubert, Virginie; Hof, Patrick R.
2011-01-01
The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993
Translational neuropharmacology: the use of human isolated gastrointestinal tissues.
Sanger, G J; Broad, J; Kung, V; Knowles, C H
2013-01-01
Translational sciences increasingly emphasize the measurement of functions in native human tissues. However, such studies must confront variations in patient age, gender, genetic background and disease. Here, these are discussed with reference to neuromuscular and neurosecretory functions of the human gastrointestinal (GI) tract. Tissues are obtained after informed consent, in collaboration with surgeons (surgical techniques help minimize variables) and pathologists. Given the difficulties of directly recording from human myenteric neurones (embedded between muscle layers), enteric motor nerve functions are studied by measuring muscle contractions/relaxations evoked by electrical stimulation of intrinsic nerves; responses are regionally dependent, often involving cholinergic and nitrergic phenotypes. Enteric sensory functions can be studied by evoking the peristaltic reflex, involving enteric sensory and motor nerves, but this has rarely been achieved. As submucosal neurones are more accessible (after removing the mucosa), direct neuronal recordings are possible. Neurosecretory functions are studied by measuring changes in short-circuit current across the mucosa. For all experiments, basic questions must be addressed. Because tissues are from patients, what are the controls and the influence of disease? How long does it take before function fully recovers? What is the impact of age- and gender-related differences? What is the optimal sample size? Addressing these and other questions minimizes variability and raises the scientific credibility of human tissue research. Such studies also reduce animal use. Further, the many differences between animal and human GI functions also means that human tissue research must question the ethical validity of using strains of animals with unproved translational significance. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
NASA Astrophysics Data System (ADS)
Swinnen, S. P.; Alaerts, K.
2015-03-01
The review paper by D'Ausilio and coauthors [3] is very timely and addresses one of the long-standing issues with respect to the coding features of mirror neurons. Through the history of mirror neuron research, there has been some controversy with respect to the level of granularity of the mirror neuron system, as studied in animal and human systems. While some researchers have suggested that abstract (high level) features of movement are coded, others have claimed evidence for more muscle specific (low level) coding properties (for an example, see [1,2]). D'Ausilio et al. [3] take a strong position in their review, suggesting a convergence between basic mechanisms of movement control and the mirror neuron system. Their suggestion is inspired by Bernstein's influential work on the so-called degrees of freedom problem. Even though a goal can in principle be reached in an infinite number of ways, consistent and stereotypical patterns of kinematics and muscle activation are often observed [4]. This has led to the notion of movement synergies as the basic building blocks for movement control. Even though it is essentially possible to contract isolated muscles or even motor units, Bernstein suggested that control of complex movement relies on movement synergies or coordinative structures, referring to a group of muscles that behave as a functional unit. This reduces the computational demands of the central nervous system considerably by assigning more responsibility to the lower levels of the movement control system. Bernstein's approach has inspired the dynamical systems perspective that has focused on a better understanding of complex biological systems such as interlimb coordination in humans [8]. For example, the upper limbs behave as a coordinative structure whereby simultaneous activation of the homologous muscle groups constitutes the default or preferred coordination mode that has to be defied when alternative patterns of coordination need to be performed or learned [8,10]. Additional support for such larger building blocks or basic postures in the upper limbs has also been provided by electrical stimulation of motor cortical areas in nonhuman primates [6]. The important inference made by D'Ausilio et al. [3] is that research inspired by the mirror neuron system, such as noninvasive brain stimulation using TMS, should go beyond the registration of motor evoked potentials in single muscles and instead monitor activity in multiple muscles to reveal the operation of these motor synergies. We fully agree that this is an important methodological recommendation for future work because previous TMS research paradigms may have constrained our view on granularity of the mirror neuron system.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Yatskovsky, Victor I.; Ogorodnik, K. V.; Lischenko, Sergey
2002-07-01
The perspective of neural networks equivalental models (EM) base on vector-matrix procedure with basic operations of continuous and neuro-fuzzy logic (equivalence, absolute difference) are shown. Capacity on base EMs exceeded the amount of neurons in 2.5 times. This is larger than others neural networks paradigms. Amount neurons of this neural networks on base EMs may be 10 - 20 thousands. The base operations in EMs are normalized equivalency operations. The family of new operations equivalency and non-equivalency of neuro-fuzzy logic's, which we have elaborated on the based of such generalized operations of fuzzy-logic's as fuzzy negation, t-norm and s-norm are shown. Generalized rules of construction of new functions (operations) equivalency which uses relations of t-norm and s-norm to fuzzy negation are proposed. Among these elements the following should be underlined: (1) the element which fulfills the operation of limited difference; (2) the element which algebraic product (intensifier with controlled coefficient of transmission or multiplier of analog signals); (3) the element which fulfills a sample summarizing (uniting) of signals (including the one during normalizing). Synthesized structures which realize on the basic of these elements the whole spectrum of required operations: t-norm, s-norm and new operations equivalency are shown. These realization on the basic of new multifunctional optoelectronical BISPIN- devices (MOEBD) represent the circuit with constant and pulse optical input signals. They are modeling the operation of limited difference. These circuits realize frequency- dynamic neuron models and neural networks. Experimental results of these MOEBD and equivalency circuits, which fulfill the limited difference operation are discussed. For effective realization of neural networks on the basic of EMs as it is shown in report, picture elements are required as main nodes to implement element operations equivalence ('non-equivalence') of neuro-fuzzy logic's.
Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics
NASA Technical Reports Server (NTRS)
Srivastava, Deepak
2003-01-01
This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,
The human cerebellum: a review of physiologic neuroanatomy.
Roostaei, Tina; Nazeri, Arash; Sahraian, Mohammad Ali; Minagar, Alireza
2014-11-01
The cerebellum resides in the posterior cranial fossa dorsal to the brainstem and has diverse connections to the cerebrum, brain stem, and spinal cord. It is anatomically and physiologically divided into distinct functional compartments and is composed of highly regular arrays of neuronal units, each sharing the same basic cerebellar microcircuitry. Its circuitry is critically involved in motor control and motor learning, and its role in nonmotor cognitive and affective functions is becoming increasingly recognized. This article describes the cerebellar gross and histologic neuroanatomy in relation to its function, and the relevance of cerebellar circuitry and firing patterns to motor learning. Copyright © 2014 Elsevier Inc. All rights reserved.
How Neurons Work: An Analogy & Demonstration Using a Sparkler & a Frying Pan
ERIC Educational Resources Information Center
Griff, Edwin R.
2006-01-01
Information in the nervous system is conveyed by impulses called action potentials: large, transient electrochemical changes in a neuron's membrane. Though action potentials are a basic feature of neurons, teachers often have trouble explaining this neurophysiological concept, and students have difficulty understanding it. While easy-to-understand…
Fréal, Amélie; Fassier, Coralie; Le Bras, Barbara; Bullier, Erika; De Gois, Stéphanie; Hazan, Jamilé; Hoogenraad, Casper C; Couraud, François
2016-04-20
The axon initial segment (AIS) is required for generating action potentials and maintaining neuronal polarity. Significant progress has been made in deciphering the basic building blocks composing the AIS, but the underlying mechanisms required for AIS formation remains unclear. The scaffolding protein ankyrin-G is the master-organizer of the AIS. Microtubules and their interactors, particularly end-binding proteins (EBs), have emerged as potential key players in AIS formation. Here, we show that the longest isoform of ankyrin-G (480AnkG) selectively associates with EBs via its specific tail domain and that this interaction is crucial for AIS formation and neuronal polarity in cultured rodent hippocampal neurons. EBs are essential for 480AnkG localization and stabilization at the AIS, whereas 480AnkG is required for the specific accumulation of EBs in the proximal axon. Our findings thus provide a conceptual framework for understanding how the cooperative relationship between 480AnkG and EBs induces the assembly of microtubule-AIS structures in the proximal axon. Neuronal polarity is crucial for the proper function of neurons. The assembly of the axon initial segment (AIS), which is the hallmark of early neuronal polarization, relies on the longest 480 kDa ankyrin-G isoform. The microtubule cytoskeleton and its interacting proteins were suggested to be early key players in the process of AIS formation. In this study, we show that the crosstalk between 480 kDa ankyrin-G and the microtubule plus-end tracking proteins, EBs, at the proximal axon is decisive for AIS assembly and neuronal polarity. Our work thus provides insight into the functional mechanisms used by 480 kDa ankyrin-G to drive the AIS formation and thereby to establish neuronal polarity. Copyright © 2016 the authors 0270-6474/16/364421-13$15.00/0.
Spatiotemporal Coding of Individual Chemicals by the Gustatory System
Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui
2015-01-01
Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. SIGNIFICANCE STATEMENT Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. PMID:26338341
Spatiotemporal Coding of Individual Chemicals by the Gustatory System.
Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui; Stopfer, Mark
2015-09-02
Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. Copyright © 2015 the authors 0270-6474/15/3512309-13$15.00/0.
Lu, Siyuan; Madhukar, Anupam
2013-02-01
Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.
Bader, Benjamin M; Steder, Anne; Klein, Anders Bue; Frølund, Bente; Schroeder, Olaf H U; Jensen, Anders A
2017-01-01
The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels of various GABAAR subunits were investigated by western blotting and RT-qPCR. In the MEA recordings, the pan-GABAAR agonist muscimol and the GABABR agonist baclofen were observed to mediate phenotypically distinct changes in cortical network activity. Selective augmentation of αβγ GABAAR signaling by diazepam and of δ-containing GABAAR (δ-GABAAR) signaling by DS1 produced pronounced changes in the majority of the activity parameters, both drugs mediating similar patterns of activity changes as muscimol. The apparent importance of δ-GABAAR signaling for network activity was largely corroborated by the effects induced by the functionally selective δ-GABAAR agonists THIP and Thio-THIP, whereas the δ-GABAAR selective potentiator DS2 only mediated modest effects on network activity, even when co-applied with low THIP concentrations. Interestingly, diazepam exhibited dramatically right-shifted concentration-response relationships at many of the activity parameters when co-applied with a trace concentration of DS1 compared to when applied alone. In contrast, the potencies and efficacies displayed by DS1 at the networks were not substantially altered by the concomitant presence of diazepam. In conclusion, the holistic nature of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons.
Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin
2015-01-01
Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt) preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding. PMID:26083350
Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit
2017-03-01
Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. Copyright © 2017 the American Physiological Society.
Dauth, Stephanie; Maoz, Ben M.; Sheehy, Sean P.; Hemphill, Matthew A.; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M.; Budnik, Bogdan
2017-01-01
Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. PMID:28031399
Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M
2013-12-01
In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.
Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan
2014-01-01
Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808
Translating birdsong: songbirds as a model for basic and applied medical research.
Brainard, Michael S; Doupe, Allison J
2013-07-08
Songbirds, long of interest to basic neuroscience, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning and, more specifically, resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production but that has strong similarities to mammalian brain pathways. The combination of highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both in normal states and in disease. Here we highlight (a) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and (b) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair.
Translating Birdsong: Songbirds as a model for basic and applied medical research
2014-01-01
Songbirds, long of interest to basic neuroscientists, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning, and more specifically resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production, but that has strong similarities to mammalian brain pathways. The combination of a highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both normally and in disease. Here we highlight 1) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and 2) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair. PMID:23750515
GaAs Optoelectronic Integrated-Circuit Neurons
NASA Technical Reports Server (NTRS)
Lin, Steven H.; Kim, Jae H.; Psaltis, Demetri
1992-01-01
Monolithic GaAs optoelectronic integrated circuits developed for use as artificial neurons. Neural-network computer contains planar arrays of optoelectronic neurons, and variable synaptic connections between neurons effected by diffraction of light from volume hologram in photorefractive material. Basic principles of neural-network computers explained more fully in "Optoelectronic Integrated Circuits For Neural Networks" (NPO-17652). In present circuits, devices replaced by metal/semiconductor field effect transistors (MESFET's), which consume less power.
Thirst Driving and Suppressing Signals Encoded by Distinct Neural Populations in the Brain
Oka, Yuki; Ye, Mingyu; Zuker, Charles S.
2014-01-01
Thirst is the basic instinct to drink water. Previously, it was shown that neurons in several circumventricular organs (CVO) of the hypothalamus are activated by thirst-inducing conditions 1. Here, we identify two distinct, genetically-separable neural populations in the subfornical organ (SFO) that trigger or suppress thirst. We show that optogenetic activation of SFO excitatory neurons, marked by the expression of the transcription factor ETV-1, evokes intense drinking behavior, and does so even in fully water-satiated animals. The light-induced response is highly specific for water, immediate, and strictly locked to the laser stimulus. In contrast, activation of a second population of SFO neurons, marked by expression of the vesicular GABA transporter VGAT, drastically suppressed drinking, even in water-craving thirsty animals. These results reveal an innate brain circuit that can turn on and off an animal’s water-drinking behavior, and likely functions as a center for thirst control in the mammalian brain. PMID:25624099
Action potential properties are gravity dependent
NASA Astrophysics Data System (ADS)
Meissner, Klaus; Hanke, Wolfgang
2005-06-01
The functional properties of neuronal tissue critically depend on cellular composition and intercellular comunication. A basic principle of such communication found in various types of neurons is the generation of action potentials (APs). These APs depend on the presence of voltage gated ion channels and propagate along cellular processes (e.g. axons) towards target neurons or other cells. It has already been shown that the properties of ion channels depend on gravity. To discover whether the properties of APs also depend on gravity, we examined the propagation of APs in earthworms (invertebrates) and isolated nerve fibres (i.e. bundles of axons) from earthworms under conditions of micro- and macro-gravity. In a second set of experiments we could verify our results on rat axons (vertebrates). Our experiments carried out during two parabolic flight campaigns revealed that microgravity slows AP propagation velocity and macrogravity accelerates the transmission of action potentials. The relevance for live-science related questions is considerable, taking into account that altered gravity conditions might affect AP velocity in man during space flight missions.
Neural networks within multi-core optic fibers
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-01-01
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911
Emergent selectivity for task-relevant stimuli in higher-order auditory cortex
Atiani, Serin; David, Stephen V.; Elgueda, Diego; Locastro, Michael; Radtke-Schuller, Susanne; Shamma, Shihab A.; Fritz, Jonathan B.
2014-01-01
A variety of attention-related effects have been demonstrated in primary auditory cortex (A1). However, an understanding of the functional role of higher auditory cortical areas in guiding attention to acoustic stimuli has been elusive. We recorded from neurons in two tonotopic cortical belt areas in the dorsal posterior ectosylvian gyrus (dPEG) of ferrets trained on a simple auditory discrimination task. Neurons in dPEG showed similar basic auditory tuning properties to A1, but during behavior we observed marked differences between these areas. In the belt areas, changes in neuronal firing rate and response dynamics greatly enhanced responses to target stimuli relative to distractors, allowing for greater attentional selection during active listening. Consistent with existing anatomical evidence, the pattern of sensory tuning and behavioral modulation in auditory belt cortex links the spectro-temporal representation of the whole acoustic scene in A1 to a more abstracted representation of task-relevant stimuli observed in frontal cortex. PMID:24742467
Neural networks within multi-core optic fibers.
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-07-07
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.
Ernsberger, Uwe
2015-01-01
With the establishment of the 'neuron theory' at the turn of the twentieth century, this remarkably powerful term was introduced to name a breathtaking diversity of cells unified by a characteristic structural compartmentalization and unique information processing and propagating features. At the beginning of the twenty-first century, developmental, stem cell and reprogramming studies converged to suggest a common mechanism involved in the generation of possibly all vertebrate, and at least a significant number of invertebrate, neurons. Sox and, in particular, SoxB and SoxC proteins as well as basic helix-loop-helix proteins play major roles, even though their precise contributions to progenitor programming, proliferation and differentiation are not fully resolved. In addition to neuronal development, these transcription factors also regulate sensory receptor and endocrine cell development, thus specifying a range of cells with regulatory and communicative functions. To what extent microRNAs contribute to the diversification of these cell types is an upcoming question. Understanding the transcriptional and post-transcriptional regulation of genes coding for cell type-specific cytoskeletal and motor proteins as well as synaptic and ion channel proteins, which mark differences but also similarities between the three communicator cell types, will provide a key to the comprehension of their diversification and the signature of 'generic neuronal' differentiation. Apart from the general scientific significance of a putative universal core instruction for neuronal development, the impact of this line of research for cell replacement therapy and brain tumor treatment will be of considerable interest.
Dziedzic, Barbara; Prevot, Vincent; Lomniczi, Alejandro; Jung, Heike; Cornea, Anda; Ojeda, Sergio R
2003-02-01
Hypothalamic astroglial erbB tyrosine kinase receptors are required for the timely initiation of mammalian puberty. Ligand-dependent activation of these receptors sets in motion a glia-to-neuron signaling pathway that prompts the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development, from hypothalamic neuroendocrine neurons. The neuronal systems that may regulate this growth factor-mediated back signaling to neuroendocrine neurons have not been identified. Here we demonstrate that hypothalamic astrocytes contain metabotropic receptors of the metabotropic glutamate receptor 5 subtype and the AMPA receptor subunits glutamate receptor 2 (GluR2) and GluR3. As in excitatory synapses, these receptors are in physical association with their respective interacting/clustering proteins Homer and PICK1. In addition, they are associated with erbB-1 and erbB-4 receptors. Concomitant activation of astroglial metabotropic and AMPA receptors results in the recruitment of erbB tyrosine kinase receptors and their respective ligands to the glial cell membrane, transactivation of erbB receptors via a mechanism requiring metalloproteinase activity, and increased erbB receptor gene expression. By facilitating erbB-dependent signaling and promoting erbB receptor gene expression in astrocytes, a neuron-to-glia glutamatergic pathway may represent a basic cell-cell communication mechanism used by the neuroendocrine brain to coordinate the facilitatory transsynaptic and astroglial input to LHRH neurons during sexual development.
RipleyGUI: software for analyzing spatial patterns in 3D cell distributions
Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik
2013-01-01
The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544
Mangia, Silvia; Giove, Federico; Tkáč, Ivan; Logothetis, Nikos K.; Henry, Pierre-Gilles; Olman, Cheryl A.; Maraviglia, Bruno; Di Salle, Francesco; Uğurbil, Kâmil
2009-01-01
Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the non-invasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal micro-circuitry which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by 1H MRS, 13C MRS and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission, will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI. PMID:19002199
Pouso, Paula; Radmilovich, Milka; Silva, Ana
2017-04-01
Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grasping actions and social interaction: neural bases and anatomical circuitry in the monkey
Rozzi, Stefano; Coudé, Gino
2015-01-01
The study of the neural mechanisms underlying grasping actions showed that cognitive functions are deeply embedded in motor organization. In the first part of this review, we describe the anatomical structure of the motor cortex in the monkey and the cortical and sub-cortical connections of the different motor areas. In the second part, we review the neurophysiological literature showing that motor neurons are not only involved in movement execution, but also in the transformation of object physical features into motor programs appropriate to grasp them (through visuo-motor transformations). We also discuss evidence indicating that motor neurons can encode the goal of motor acts and the intention behind action execution. Then, we describe one of the mechanisms—the mirror mechanism—considered to be at the basis of action understanding and intention reading, and describe the anatomo-functional pathways through which information about the social context can reach the areas containing mirror neurons. Finally, we briefly show that a clear similarity exists between monkey and human in the organization of the motor and mirror systems. Based on monkey and human literature, we conclude that the mirror mechanism relies on a more extended network than previously thought, and possibly subserves basic social functions. We propose that this mechanism is also involved in preparing appropriate complementary response to observed actions, allowing two individuals to become attuned and cooperate in joint actions. PMID:26236258
Potential involvement of kinesin-1 in the regulation of subcellular localization of Girdin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muramatsu, Aya; Enomoto, Atsushi, E-mail: enomoto@iar.nagoya-u.ac.jp; Kato, Takuya
Girdin is an actin-binding protein that has multiple functions in postnatal neural development and cancer progression. We previously showed that Girdin is a regulator of migration for neuroblasts born from neural stem cells in the subventricular zone (SVZ) and the dentate gyrus of the hippocampus in the postnatal brain. Despite a growing list of Girdin-interacting proteins, the mechanism of Girdin-mediated migration has not been fully elucidated. Girdin interacts with Disrupted-In-Schizophrenia 1 and partitioning-defective 3, both of which have been shown to interact with the kinesin microtubule motor proteins. Based on this, we have identified that Girdin also interacts with kinesin-1,more » a member of neuronal kinesin proteins. Although a direct interaction of Girdin and kinesin-1 has not been determined, it is of interest to find that Girdin loss-of-function mutant mice with the mutation of a basic amino acid residue-rich region (Basic mut mice) exhibit limited interaction with kinesin-1. Furthermore, expression of a kinesin-1 mutant with motor defects, leads to Girdin mislocalization. Finally, consistent with previous studies on the role of kinesin proteins in trafficking a cell–cell adhesion molecule N-cadherin, Basic mut mice showed an aberrant expression pattern of N-cadherin in migrating SVZ neuroblasts. These findings suggest a potential role of Girdin/kinesin-1 interaction in the regulation of neuroblast migration in the postnatal brain. - Highlights: • Girdin is a regulator of migration for neuroblasts in the postnatal brain. • Girdin interacts with kinesin-1, a member of neuronal kinesin proteins. • Girdin mutant mice showed an aberrant expression of N-cadherin in neuroblasts.« less
The response of L5 pyramidal neurons of the PFC to magnetic stimulation from a micro-coil.
Lee, Seung Woo; Fried, Shelley I
2014-01-01
Magnetic stimulation of the nervous system, e.g. transcranial magnetic stimulation (TMS), has been used both to unravel basic structure and function of the nervous system as well as to treat neurological diseases, i.e. clinical depression. Despite progress in both areas, ongoing advancements have been limited by a lack of understanding of the mechanism by which magnetic stimulation alters neural activity. Here, we report responses of cortical neurons to magnetic stimulation arising from a sub-millimeter coil. Cell attached patch clamp was used to record neural activity of layer 5/6 pyramidal neurons of the prefrontal cortex (PFC) in the in vitro mouse brain slice preparation. The fields arising from the small coil were quite different from those arising during clinical TMS but nevertheless allowed the responses of cortical neurons to magnetic stimulation to be probed. For example, the focal nature of induced fields allowed the sensitivity of different regions within targeted pyramidal neurons, e.g. apical dendrite, soma and axon hillock, to be compared. We found that PFC pyramidal neurons were not sensitive to single pulses of stimulation regardless of coil location. However, regions of the apical dendrite and proximal axon were both sensitive to repetitive stimulation as long as the orientation of the induced electric field was aligned with the long axis of the neuron. These results suggest that neurons of the PFC are sensitive to weak magnetic fields and further, that this type of approach may be useful for unraveling some of the mechanisms underlying TMS.
Low- and high-threshold primary afferent inputs to spinal lamina III antenna-type neurons.
Fernandes, Elisabete C; Santos, Ines C; Kokai, Eva; Luz, Liliana L; Szucs, Peter; Safronov, Boris V
2018-06-21
and non-nociceptive sensory information. Antenna-type neurons with cell bodies located in lamina III and large dendritic trees extending from the superficial lamina I to deep lamina IV are best shaped for the integration of a wide variety of inputs arising from primary afferent fibers and intrinsic spinal circuitries. While the somatodendritic morphology, the hallmark of antenna neurons, has been well studied, little is still known about the axon structure and basic physiological properties of these cells. Here we did whole-cell recordings in a rat (P9-P12) spinal cord preparation with attached dorsal roots to examine the axon course, intrinsic firing properties and primary afferent inputs of antenna cells. Nine antenna cells were identified from a large sample of biocytin-filled lamina III neurons (n = 46). Axon of antenna cells showed intensive branching in laminae III-IV and, in half of the cases, issued dorsally directed collaterals reaching lamina I. Antenna cells exhibited tonic and rhythmic firing patterns; single spikes were followed by hyper- or depolarization. The neurons received monosynaptic inputs from the low-threshold Aβ afferents, Aδ afferents as well as from the high-threshold Aδ and C afferents. When selectively activated, C-fiber-driven mono- and polysynaptic EPSPs were sufficiently strong to evoke firing in the neurons. Thus, lamina III antenna neurons integrate low-threshold and nociceptive high-threshold primary afferent inputs, and can function as wide-dynamic-range neurons able to directly connect deep dorsal horn with the major nociceptive projection area lamina I.
Translational neuropharmacology: the use of human isolated gastrointestinal tissues
Sanger, GJ; Broad, J; Kung, V; Knowles, CH
2013-01-01
Translational sciences increasingly emphasize the measurement of functions in native human tissues. However, such studies must confront variations in patient age, gender, genetic background and disease. Here, these are discussed with reference to neuromuscular and neurosecretory functions of the human gastrointestinal (GI) tract. Tissues are obtained after informed consent, in collaboration with surgeons (surgical techniques help minimize variables) and pathologists. Given the difficulties of directly recording from human myenteric neurones (embedded between muscle layers), enteric motor nerve functions are studied by measuring muscle contractions/relaxations evoked by electrical stimulation of intrinsic nerves; responses are regionally dependent, often involving cholinergic and nitrergic phenotypes. Enteric sensory functions can be studied by evoking the peristaltic reflex, involving enteric sensory and motor nerves, but this has rarely been achieved. As submucosal neurones are more accessible (after removing the mucosa), direct neuronal recordings are possible. Neurosecretory functions are studied by measuring changes in short-circuit current across the mucosa. For all experiments, basic questions must be addressed. Because tissues are from patients, what are the controls and the influence of disease? How long does it take before function fully recovers? What is the impact of age- and gender-related differences? What is the optimal sample size? Addressing these and other questions minimizes variability and raises the scientific credibility of human tissue research. Such studies also reduce animal use. Further, the many differences between animal and human GI functions also means that human tissue research must question the ethical validity of using strains of animals with unproved translational significance. Linked Article BJP published a themed issue on Translational Neuropharmacology in 2011. To view the articles in this themed issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:22946540
Emerging Role of Sensory Perception in Aging and Metabolism.
Riera, Celine E; Dillin, Andrew
2016-05-01
Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.
Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference.
Siegelmann, Hava T; Holzman, Lars E
2010-09-01
One of the brain's most basic functions is integrating sensory data from diverse sources. This ability causes us to question whether the neural system is computationally capable of intelligently integrating data, not only when sources have known, fixed relative dependencies but also when it must determine such relative weightings based on dynamic conditions, and then use these learned weightings to accurately infer information about the world. We suggest that the brain is, in fact, fully capable of computing this parallel task in a single network and describe a neural inspired circuit with this property. Our implementation suggests the possibility that evidence learning requires a more complex organization of the network than was previously assumed, where neurons have different specialties, whose emergence brings the desired adaptivity seen in human online inference.
The evolutionary origin of the vertebrate basal ganglia and its role in action selection.
Grillner, Sten; Robertson, Brita; Stephenson-Jones, Marcus
2013-11-15
The group of nuclei within the basal ganglia of the forebrain is central to the control of movement. We present data showing that the structure and function of the basal ganglia have been conserved throughout vertebrate evolution over some 560 million years. The interaction between the different nuclei within the basal ganglia is conserved as well as the cellular and synaptic properties and transmitters. We consider the role of the conserved basal ganglia circuitry for basic patterns of motor behaviour controlled via brainstem circuits. The output of the basal ganglia consists of tonically active GABAergic neurones, which target brainstem motor centres responsible for different patterns of behaviour, such as eye and locomotor movements, posture, and feeding. A prerequisite for activating or releasing a motor programme is that this GABAergic inhibition is temporarily reduced. This can be achieved through activation of GABAergic projection neurons from striatum, the input level of the basal ganglia, given an appropriate synaptic drive from cortex, thalamus and the dopamine system. The tonic inhibition of the motor centres at rest most likely serves to prevent the different motor programmes from becoming active when not intended. Striatal projection neurones are subdivided into one group with dopamine 1 receptors that provides increased excitability of the direct pathway that can initiate movements, while inhibitory dopamine 2 receptors are expressed on neurones that instead inhibit movements and are part of the 'indirect loop' in mammals as well as lamprey. We review the evidence showing that all basic features of the basal ganglia have been conserved throughout vertebrate phylogeny, and discuss these findings in relation to the role of the basal ganglia in selection of behaviour.
The basic nonuniformity of the cerebral cortex
Herculano-Houzel, Suzana; Collins, Christine E.; Wong, Peiyan; Kaas, Jon H.; Lent, Roberto
2008-01-01
Evolutionary changes in the size of the cerebral cortex, a columnar structure, often occur through the addition or subtraction of columnar modules with the same number of neurons underneath a unit area of cortical surface. This view is based on the work of Rockel et al. [Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244], who found a steady number of approximately 110 neurons underneath a surface area of 750 μm2 (147,000 underneath 1 mm2) of the cerebral cortex of five species from different mammalian orders. These results have since been either corroborated or disputed by different groups. Here, we show that the number of neurons underneath 1 mm2 of the cerebral cortical surface of nine primate species and the closely related Tupaia sp. is not constant and varies by three times across species. We found that cortical thickness is not inversely proportional to neuronal density across species and that total cortical surface area increases more slowly than, rather than linearly with, the number of neurons underneath it. The number of neurons beneath a unit area of cortical surface varies linearly with neuronal density, a parameter that is neither related to cortical size nor total number of neurons. Our finding of a variable number of neurons underneath a unit area of the cerebral cortex across primate species indicates that models of cortical organization cannot assume that cortical columns in different primates consist of invariant numbers of neurons. PMID:18689685
The basic nonuniformity of the cerebral cortex.
Herculano-Houzel, Suzana; Collins, Christine E; Wong, Peiyan; Kaas, Jon H; Lent, Roberto
2008-08-26
Evolutionary changes in the size of the cerebral cortex, a columnar structure, often occur through the addition or subtraction of columnar modules with the same number of neurons underneath a unit area of cortical surface. This view is based on the work of Rockel et al. [Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221-244], who found a steady number of approximately 110 neurons underneath a surface area of 750 microm(2) (147,000 underneath 1 mm(2)) of the cerebral cortex of five species from different mammalian orders. These results have since been either corroborated or disputed by different groups. Here, we show that the number of neurons underneath 1 mm(2) of the cerebral cortical surface of nine primate species and the closely related Tupaia sp. is not constant and varies by three times across species. We found that cortical thickness is not inversely proportional to neuronal density across species and that total cortical surface area increases more slowly than, rather than linearly with, the number of neurons underneath it. The number of neurons beneath a unit area of cortical surface varies linearly with neuronal density, a parameter that is neither related to cortical size nor total number of neurons. Our finding of a variable number of neurons underneath a unit area of the cerebral cortex across primate species indicates that models of cortical organization cannot assume that cortical columns in different primates consist of invariant numbers of neurons.
Microglia-Neuron Communication in Epilepsy.
Eyo, Ukpong B; Murugan, Madhuvika; Wu, Long-Jun
2017-01-01
Epilepsy has remained a significant social concern and financial burden globally. Current therapeutic strategies are based primarily on neurocentric mechanisms that have not proven successful in at least a third of patients, raising the need for novel alternative and complementary approaches. Recent evidence implicates glial cells and neuroinflammation in the pathogenesis of epilepsy with the promise of targeting these cells to complement existing strategies. Specifically, microglial involvement, as a major inflammatory cell in the epileptic brain, has been poorly studied. In this review, we highlight microglial reaction to experimental seizures, discuss microglial control of neuronal activities, and propose the functions of microglia during acute epileptic phenotypes, delayed neurodegeneration, and aberrant neurogenesis. Future research that would help fill in the current gaps in our knowledge includes epilepsy-induced alterations in basic microglial functions, neuro-microglial interactions during chronic epilepsy, and microglial contribution to developmental seizures. Studying the role of microglia in epilepsy could inform therapies to better alleviate the disease. GLIA 2016;65:5-18. © 2016 Wiley Periodicals, Inc.
Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing
NASA Astrophysics Data System (ADS)
Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang
2015-04-01
The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.
A Simple Picaxe Microcontroller Pulse Source for Juxtacellular Neuronal Labelling.
Verberne, Anthony J M
2016-10-19
Juxtacellular neuronal labelling is a method which allows neurophysiologists to fill physiologically-identified neurons with small positively-charged marker molecules. Labelled neurons are identified by histochemical processing of brain sections along with immunohistochemical identification of neuropeptides, neurotransmitters, neurotransmitter transporters or biosynthetic enzymes. A microcontroller-based pulser circuit and associated BASIC software script is described for incorporation into the design of a commercially-available intracellular electrometer for use in juxtacellular neuronal labelling. Printed circuit board construction has been used for reliability and reproducibility. The current design obviates the need for a separate digital pulse source and simplifies the juxtacellular neuronal labelling procedure.
Urraca, Nora; Memon, Rawaha; El-Iyachi, Ikbale; Goorha, Sarita; Valdez, Colleen; Tran, Quynh T.; Scroggs, Reese; Miranda-Carboni, Gustavo A.; Donaldson, Martin; Bridges, Dave; Reiter, Lawrence T.
2015-01-01
A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSC) are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSC that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSC. We immortalized control DPSC using human telomerase reverse transcriptase (hTERT) and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSC share morphological and electrophysiological properties with non-immortalized DPSC. We also show that differentiation of DPSC into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NSRF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSC can be obtained from teeth stored for ≥72hrs, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSC for the study of disease. PMID:26599327
Urraca, Nora; Memon, Rawaha; El-Iyachi, Ikbale; Goorha, Sarita; Valdez, Colleen; Tran, Quynh T; Scroggs, Reese; Miranda-Carboni, Gustavo A; Donaldson, Martin; Bridges, Dave; Reiter, Lawrence T
2015-11-01
A major challenge to the study and treatment of neurogenetic syndromes is accessing live neurons for study from affected individuals. Although several sources of stem cells are currently available, acquiring these involve invasive procedures, may be difficult or expensive to generate and are limited in number. Dental pulp stem cells (DPSCs) are multipotent stem cells that reside deep the pulp of shed teeth. To investigate the characteristics of DPSCs that make them a valuable resource for translational research, we performed a set of viability, senescence, immortalization and gene expression studies on control DPSC and derived neurons. We investigated the basic transport conditions and maximum passage number for primary DPSCs. We immortalized control DPSCs using human telomerase reverse transcriptase (hTERT) and evaluated neuronal differentiation potential and global gene expression changes by RNA-seq. We show that neurons from immortalized DPSCs share morphological and electrophysiological properties with non-immortalized DPSCs. We also show that differentiation of DPSCs into neurons significantly alters gene expression for 1305 transcripts. Here we show that these changes in gene expression are concurrent with changes in protein levels of the transcriptional repressor REST/NRSF, which is known to be involved in neuronal differentiation. Immortalization significantly altered the expression of 183 genes after neuronal differentiation, 94 of which also changed during differentiation. Our studies indicate that viable DPSCs can be obtained from teeth stored for ≥72 h, these can then be immortalized and still produce functional neurons for in vitro studies, but that constitutive hTERT immortalization is not be the best approach for long term use of patient derived DPSCs for the study of disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Uto, A; Dux, E; Hossmann, K A
1994-12-01
Glutamate neurotoxicity was studied in primary neuronal cultures prepared from rat cerebral cortex and hippocampal CA1 sector. Neurons were cultivated with 5% native horse serum and then exposed to 0.1 or 1.0 mM glutamate for 5 min. Subsequently, neurons were allowed to recover for 24 hours either in the presence or in the absence of 5% native horse serum. In the absence of serum, neurons showed morphological signs of degeneration and exhibited marked loss of vitality as tested by vital staining and release of lactate dehydrogenase (LDH). In contrast, when neurons were cultivated in the presence of serum, no degenerative changes were seen and the neurons survived. Heat inactivated serum did not prevent neuronal death but addition of basic fibroblast growth factor (bFGF) or transforming growth factor-beta 1 (TGF-beta 1) had the same protective effect as native serum. Measurements of intracellular calcium activity ([Ca2+]i) with the indicator dye fura-2 revealed a sharp increase during glutamate exposure. In the absence of serum, [Ca2+]i returned to near control within 5 min but it secondarily increased after 1 hour to almost the same level as during glutamate exposure. This delayed increase was more pronounced in CA1 than in cortical neurons, it correlated linearly with the initial rise during glutamate exposure, and it was greatly reduced in the presence of serum. These observations suggest that glutamate neurotoxicity in vitro is a function of the delayed and not of the primary rise of intracellular calcium activity, and that trophic factors prevent neurotoxicity by attenuating this delayed response.
A neural-network-based approach to the double traveling salesman problem.
Plebe, Alessio; Anile, Angelo Marcello
2002-02-01
The double traveling salesman problem is a variation of the basic traveling salesman problem where targets can be reached by two salespersons operating in parallel. The real problem addressed by this work concerns the optimization of the harvest sequence for the two independent arms of a fruit-harvesting robot. This application poses further constraints, like a collision-avoidance function. The proposed solution is based on a self-organizing map structure, initialized with as many artificial neurons as the number of targets to be reached. One of the key components of the process is the combination of competitive relaxation with a mechanism for deleting and creating artificial neurons. Moreover, in the competitive relaxation process, information about the trajectory connecting the neurons is combined with the distance of neurons from the target. This strategy prevents tangles in the trajectory and collisions between the two tours. Results of tests indicate that the proposed approach is efficient and reliable for harvest sequence planning. Moreover, the enhancements added to the pure self-organizing map concept are of wider importance, as proved by a traveling salesman problem version of the program, simplified from the double version for comparison.
Molecular Mechanisms of Neuroplasticity: An Expanding Universe.
Gulyaeva, N V
2017-03-01
Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.
Mahé, Sylvain; Braud, Raphaël; Gaussier, Philippe; Quoy, Mathias; Pitti, Alexandre
2015-02-01
The so-called self-other correspondence problem in imitation demands to find the transformation that maps the motor dynamics of one partner to our own. This requires a general purpose sensorimotor mechanism that transforms an external fixation-point (partner's shoulder) reference frame to one's own body-centered reference frame. We propose that the mechanism of gain-modulation observed in parietal neurons may generally serve these types of transformations by binding the sensory signals across the modalities with radial basis functions (tensor products) on the one hand and by permitting the learning of contextual reference frames on the other hand. In a shoulder-elbow robotic experiment, gain-field neurons (GF) intertwine the visuo-motor variables so that their amplitude depends on them all. In situations of modification of the body-centered reference frame, the error detected in the visuo-motor mapping can serve then to learn the transformation between the robot's current sensorimotor space and the new one. These situations occur for instance when we turn the head on its axis (visual transformation), when we use a tool (body modification), or when we interact with a partner (embodied simulation). Our results defend the idea that the biologically-inspired mechanism of gain modulation found in parietal neurons can serve as a basic structure for achieving nonlinear mapping in spatial tasks as well as in cooperative and social functions. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Anatomically Constrained Model for Path Integration in the Bee Brain.
Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley
2017-10-23
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A; Zuker, Charles S; Ryba, Nicholas J P
2017-08-17
In mammals, taste buds typically contain 50-100 tightly packed taste-receptor cells (TRCs), representing all five basic qualities: sweet, sour, bitter, salty and umami. Notably, mature taste cells have life spans of only 5-20 days and, consequently, are constantly replenished by differentiation of taste stem cells. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (that is, ensuring that a labelled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, and so on), we examined how new connections are specified to retain fidelity of signal transmission. Here we show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (SEMA3A and SEMA7A). We demonstrate that targeted expression of SEMA3A or SEMA7A in different classes of TRCs produces peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered mice with bitter neurons that now responded to sweet tastants, sweet neurons that responded to bitter or sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labelled-line sensory circuit preserves signalling integrity despite rapid and stochastic turnover of receptor cells.
Lee, Hojoon; Macpherson, Lindsey J.; Parada, Camilo A.; Zuker, Charles S.; Ryba, Nicholas J.P.
2018-01-01
In mammals, taste buds typically contain 50-100 tightly packed taste receptor cells (TRCs) representing all five basic qualities: sweet, sour, bitter, salty and umami1,2. Notably, mature taste cells have life spans of only 5-20 days, and consequently, are constantly replenished by differentiation of taste stem cells3. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (i.e. ensuring that a labeled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, etc.), we examined how new connections are specified to retain fidelity of signal transmission. Our results show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (Sema3A and Sema7A)4-6. Here, we demonstrate that targeted expression of Sema3A or Sema7A in different classes of TRCs produce peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered animals whereby bitter neurons now respond to sweet tastants, sweet neurons respond to bitter, or with sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labeled-line sensory circuit preserves signaling integrity despite rapid and stochastic turnover of receptor cells. PMID:28792937
The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function
Apostolopoulou, Anthi A.; Widmann, Annekathrin; Pfitzenmaier, Johanna E.; Maiolo, Elena M.; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G.; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F.; Thum, Andreas S.
2012-01-01
The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed. PMID:23082175
The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.
Huser, Annina; Rohwedder, Astrid; Apostolopoulou, Anthi A; Widmann, Annekathrin; Pfitzenmaier, Johanna E; Maiolo, Elena M; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F; Thum, Andreas S
2012-01-01
The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.
A Simple Picaxe Microcontroller Pulse Source for Juxtacellular Neuronal Labelling †
Verberne, Anthony J. M.
2016-01-01
Juxtacellular neuronal labelling is a method which allows neurophysiologists to fill physiologically-identified neurons with small positively-charged marker molecules. Labelled neurons are identified by histochemical processing of brain sections along with immunohistochemical identification of neuropeptides, neurotransmitters, neurotransmitter transporters or biosynthetic enzymes. A microcontroller-based pulser circuit and associated BASIC software script is described for incorporation into the design of a commercially-available intracellular electrometer for use in juxtacellular neuronal labelling. Printed circuit board construction has been used for reliability and reproducibility. The current design obviates the need for a separate digital pulse source and simplifies the juxtacellular neuronal labelling procedure. PMID:28952589
Mirror neuron system: basic findings and clinical applications.
Iacoboni, Marco; Mazziotta, John C
2007-09-01
In primates, ventral premotor and rostral inferior parietal neurons fire during the execution of hand and mouth actions. Some cells (called mirror neurons) also fire when hand and mouth actions are just observed. Mirror neurons provide a simple neural mechanism for understanding the actions of others. In humans, posterior inferior frontal and rostral inferior parietal areas have mirror properties. These human areas are relevant to imitative learning and social behavior. Indeed, the socially isolating condition of autism is associated with a deficit in mirror neuron areas. Strategies inspired by mirror neuron research recently have been used in the treatment of autism and in motor rehabilitation after stroke.
Coates, Kaylynn E; Majot, Adam T; Zhang, Xiaonan; Michael, Cole T; Spitzer, Stacy L; Gaudry, Quentin; Dacks, Andrew M
2017-08-02
Modulatory neurons project widely throughout the brain, dynamically altering network processing based on an animal's physiological state. The connectivity of individual modulatory neurons can be complex, as they often receive input from a variety of sources and are diverse in their physiology, structure, and gene expression profiles. To establish basic principles about the connectivity of individual modulatory neurons, we examined a pair of identified neurons, the "contralaterally projecting, serotonin-immunoreactive deutocerebral neurons" (CSDns), within the olfactory system of Drosophila Specifically, we determined the neuronal classes providing synaptic input to the CSDns within the antennal lobe (AL), an olfactory network targeted by the CSDns, and the degree to which CSDn active zones are uniformly distributed across the AL. Using anatomical techniques, we found that the CSDns received glomerulus-specific input from olfactory receptor neurons (ORNs) and projection neurons (PNs), and networkwide input from local interneurons (LNs). Furthermore, we quantified the number of CSDn active zones in each glomerulus and found that CSDn output is not uniform, but rather heterogeneous, across glomeruli and stereotyped from animal to animal. Finally, we demonstrate that the CSDns synapse broadly onto LNs and PNs throughout the AL but do not synapse upon ORNs. Our results demonstrate that modulatory neurons do not necessarily provide purely top-down input but rather receive neuron class-specific input from the networks that they target, and that even a two cell modulatory network has highly heterogeneous, yet stereotyped, pattern of connectivity. SIGNIFICANCE STATEMENT Modulatory neurons often project broadly throughout the brain to alter processing based on physiological state. However, the connectivity of individual modulatory neurons to their target networks is not well understood, as modulatory neuron populations are heterogeneous in their physiology, morphology, and gene expression. In this study, we use a pair of identified serotonergic neurons within the Drosophila olfactory system as a model to establish a framework for modulatory neuron connectivity. We demonstrate that individual modulatory neurons can integrate neuron class-specific input from their target network, which is often nonreciprocal. Additionally, modulatory neuron output can be stereotyped, yet nonuniform, across network regions. Our results provide new insight into the synaptic relationships that underlie network function of modulatory neurons. Copyright © 2017 the authors 0270-6474/17/377318-14$15.00/0.
Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model
Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki
2013-01-01
Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628
Lawton, Graham R.; Ranaivo, Hantamalala Ralay; Chico, Laura K.; Ji, Haitao; Xue, Fengtian; Martásek, Pavel; Roman, Linda J.; Watterson, D. Martin; Silverman, Richard B.
2009-01-01
Overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) has been linked to several neurodegenerative diseases. We have recently designed potent and isoform selective inhibitors of nNOS, but the lead compound contains several basic functional groups. A large number of charges and hydrogen bond donors can impede the ability of molecules to cross the blood brain barrier and thereby limit the effectiveness of potential neurological therapeutics. Replacement of secondary amines in our lead compound with neutral ether and amide groups was made to increase bioavailability and to determine if the potency and selectivity of the inhibitor would be impacted. An ether analogue has been identified that retains a similar potency and selectivity to that of the lead compound, and shows increased ability to penetrate the blood brain barrier. PMID:19268602
Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect.
Griffith, Leslie C
2012-08-01
Drosophila melanogaster has historically been the premier model system for understanding the molecular and genetic bases of complex behaviors. In the last decade technical advances, in the form of new genetic tools and electrophysiological and optical methods, have allowed investigators to begin to dissect the neuronal circuits that generate behavior in the adult. The blossoming of circuit analysis in this organism has also reinforced our appreciation of the inadequacy of wiring diagrams for specifying complex behavior. Neuromodulation and neuronal plasticity act to reconfigure circuits on both short and long time scales. These processes act on the connectome, providing context by integrating external and internal cues that are relevant for behavioral choices. New approaches in the fly are providing insight into these basic principles of circuit function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.
Parkins, C W; Colombo, J
1987-12-31
Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.
IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG).
Hari, Riitta; Baillet, Sylvain; Barnes, Gareth; Burgess, Richard; Forss, Nina; Gross, Joachim; Hämäläinen, Matti; Jensen, Ole; Kakigi, Ryusuke; Mauguière, François; Nakasato, Nobukatzu; Puce, Aina; Romani, Gian-Luca; Schnitzler, Alfons; Taulu, Samu
2018-04-17
Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Consciousness, endogenous generation of goals and homeostasis
NASA Astrophysics Data System (ADS)
Tsitolovsky, Lev E.
2015-08-01
Behaviour can be both unpredictable and goal directed, as animals act in correspondence with their motivation. Motivation arises when neurons in specific brain areas leave the state of homeostatic equilibrium and are injured. The basic goal of organisms and living cells is to maintain their life and their functional state is optimal if it does not lead to physiological damage. This can somehow be sensed by neurons and the occurrence of damage elicits homeostatic protection to recover excitability and the ability to produces spikes. It can be argued that the neuron's activity is guided on the scale of "damage-protection" and it behaves as an object possessing minimum awareness. The approach of death increases cellular efforts to operate. Thus, homeostasis may evidently produce both maintenance of life and will. The question is - how does homeostasis reach the optimum? We have no possibility of determining how the cell evaluates its own states, e.g. as "too little free energy" or in terms of "threat" to life. In any case, the approach of death increases cellular efforts to operate. For the outside observer, this is reminiscent of intentional action and a manifestation of will.
Introduction to Concepts in Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
NASA Astrophysics Data System (ADS)
Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.
2018-05-01
The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.
Ritter, K. Elaine; Southard-Smith, E. Michelle
2017-01-01
Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as a candidate for future studies of neurally mediated bladder control. PMID:28111539
Soares, David; Goldrick, Isabelle; Lemon, Roger N.; Kraskov, Alexander; Greensmith, Linda
2017-01-01
Abstract There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration “thin” spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin‐positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32‐postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. PMID:28213922
Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi
2014-01-01
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265
The physiological basics of the olfactory neuro-epithelium.
Watelet, J B; Katotomichelakis, M; Eloy, P; Danielidis, V
2009-01-01
All living organisms can detect and identify chemical substances in their environment. The olfactory epithelium is covered by a mucus layer which is essential for the function of the olfactory neurons that are directly connected to the brain through the cribriform plate. However, little is known about the composition of this mucus in humans and its significance for the diagnosis of olfactory disorders. The olfactory epithelium consists of four primary cell types, including the olfactory receptor cells essential for odour transduction. This review examines the anatomical, histological and physiological fundamentals of olfactory mucosa. Particular attention is paid to the biochemical environment of the olfactory mucosa that regulates both peri-receptor events and several protective functions.
Visual dot interaction with short-term memory.
Etindele Sosso, Faustin Armel
2017-06-01
Many neurodegenerative diseases have a memory component. Brain structures related to memory are affected by environmental stimuli, and it is difficult to dissociate effects of all behavior of neurons. Here, visual cortex of mice was stimulated with gratings and dot, and an observation of neuronal activity before and after was made. Bandwidth, firing rate and orientation selectivity index were evaluated. A primary communication between primary visual cortex and short-term memory appeared to show an interesting path to train cognitive circuitry and investigate the basics mechanisms of the neuronal learning. The findings also suggested the interplay between primary visual cortex and short-term plasticity. The properties inside a visual target shape the perception and affect the basic encoding. Using visual cortex, it may be possible to train the memory and improve the recovery of people with cognitive disabilities or memory deficit.
Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate.
San Martín, Alejandro; Ceballo, Sebastián; Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L Felipe
2014-01-01
Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function.
Spin switches for compact implementation of neuron and synapse
NASA Astrophysics Data System (ADS)
Quang Diep, Vinh; Sutton, Brian; Behin-Aein, Behtash; Datta, Supriyo
2014-06-01
Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltages that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.
Imaging Mitochondrial Flux in Single Cells with a FRET Sensor for Pyruvate
Baeza-Lehnert, Felipe; Lerchundi, Rodrigo; Valdebenito, Rocío; Contreras-Baeza, Yasna; Alegría, Karin; Barros, L. Felipe
2014-01-01
Mitochondrial flux is currently accessible at low resolution. Here we introduce a genetically-encoded FRET sensor for pyruvate, and methods for quantitative measurement of pyruvate transport, pyruvate production and mitochondrial pyruvate consumption in intact individual cells at high temporal resolution. In HEK293 cells, neurons and astrocytes, mitochondrial pyruvate uptake was saturated at physiological levels, showing that the metabolic rate is determined by intrinsic properties of the organelle and not by substrate availability. The potential of the sensor was further demonstrated in neurons, where mitochondrial flux was found to rise by 300% within seconds of a calcium transient triggered by a short theta burst, while glucose levels remained unaltered. In contrast, astrocytic mitochondria were insensitive to a similar calcium transient elicited by extracellular ATP. We expect the improved resolution provided by the pyruvate sensor will be of practical interest for basic and applied researchers interested in mitochondrial function. PMID:24465702
Amygdala Lesions Reduce Cataplexy in Orexin KO mice
Burgess, C.R.; Oishi, Y.; Mochizuki, T.; Peever, J.H.; Scammell, T.E.
2013-01-01
Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of REM sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal grey, lateral pontine tegmentum, locus coeruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knockout mice, a model of narcolepsy. These lesions did not alter basic sleep/wake behavior, but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia. PMID:23739970
Amygdala lesions reduce cataplexy in orexin knock-out mice.
Burgess, Christian R; Oishi, Yo; Mochizuki, Takatoshi; Peever, John H; Scammell, Thomas E
2013-06-05
Narcolepsy is characterized by excessive sleepiness and cataplexy, sudden episodes of muscle weakness during waking that are thought to be an intrusion of rapid eye movement sleep muscle atonia into wakefulness. One of the most striking aspects of cataplexy is that it is often triggered by strong, generally positive emotions, but little is known about the neural pathways through which positive emotions trigger muscle atonia. We hypothesized that the amygdala is functionally important for cataplexy because the amygdala has a role in processing emotional stimuli and it contains neurons that are active during cataplexy. Using anterograde and retrograde tracing in mice, we found that GABAergic neurons in the central nucleus of the amygdala heavily innervate neurons that maintain waking muscle tone such as those in the ventrolateral periaqueductal gray, lateral pontine tegmentum, locus ceruleus, and dorsal raphe. We then found that bilateral, excitotoxic lesions of the amygdala markedly reduced cataplexy in orexin knock-out mice, a model of narcolepsy. These lesions did not alter basic sleep-wake behavior but substantially reduced the triggering of cataplexy. Lesions also reduced the cataplexy events triggered by conditions associated with high arousal and positive emotions (i.e., wheel running and chocolate). These observations demonstrate that the amygdala is a functionally important part of the circuitry underlying cataplexy and suggest that increased amygdala activity in response to emotional stimuli could directly trigger cataplexy by inhibiting brainstem regions that suppress muscle atonia.
Technological integration and hyperconnectivity: Tools for promoting extreme human lifespans
NASA Astrophysics Data System (ADS)
Kyriazis, Marios
2015-07-01
Artificial, neurobiological, and social networks are three distinct complex adaptive systems (CAS), each containing discrete processing units (nodes, neurons, and humans respectively). Despite the apparent differences, these three networks are bound by common underlying principles which describe the behaviour of the system in terms of the connections of its components, and its emergent properties. The longevity (long-term retention and functionality) of the components of each of these systems is also defined by common principles. Here, I will examine some properties of the longevity and function of the components of artificial and neurobiological systems, and generalise these to the longevity and function of the components of social CAS. In other words, I will show that principles governing the long-term functionality of computer nodes and of neurons, may be extrapolated to the study of the long-term functionality of humans (or more precisely, of the noemes, an abstract combination of existence and digital fame). The study of these phenomena can provide useful insights regarding practical ways that can be used in order to maximize human longevity. The basic law governing these behaviours is the Law of Requisite Usefulness, which states that the length of retention of an agent within a CAS is proportional to the contribution of the agent to the overall adaptability of the system. Key Words: Complex Adaptive Systems, Hyper-connectivity, Human Longevity, Adaptability and Evolution, Noeme
Neuroimmune regulation of neurophysiology in the cerebellum.
Gruol, Donna L
2013-06-01
Recent studies have established the existence of an innate immune system in the central nervous system (CNS) and implicated a critical role for this system in both normal and pathological processes. Astrocytes and microglia, normal components of the CNS, are the primary cell types that comprise the innate immune system of the CNS. Basic to their role during normal and adverse conditions is the production of neuroimmune factors such as cytokines and chemokines, which are signaling molecules that initiate or coordinate downstream cellular actions. During adverse conditions, cytokines and chemokines function in defensive and repair. However, if expression of these factors becomes dysregulated, abnormal CNS function can result. Both neurons and glial cells of the CNS express receptors for cytokines and chemokines, but the biological consequence of receptor activation has yet to be fully resolved. Our studies show that neuroadaptive changes are produced in primary cultures of rat cerebellar cells chronically treated with the cytokine interleukin-6 (IL-6) and in the cerebellum of transgenic mice that chronically express elevated levels of IL-6 in the CNS. In the cerebellum in culture and in vivo, the neuroadaptive changes included alterations in the level of expression of proteins involved in gene expression, signal transduction, and synaptic transmission. Associated with these changes were alterations in neuronal function. A comparison of results from the cultured cerebellar cells and cerebellum of the transgenic mice indicated that the effects of IL-6 can vary across neuronal types. However, alterations in mechanisms involved in Ca(2+) homeostasis were observed in all cell types studied. These results indicate that modifications in cerebellar function are likely to occur in disorders associated with elevated levels of IL-6 in the cerebellum.
Mezache, Louisa; Mikhail, Madison; Garofalo, Michela; Nuovo, Gerard J
2015-10-01
The cause for the neurofibrillary tangles and plaques in Alzheimer disease likely relates to an abnormal accumulation of their key components, which include β-amyloid and hyperphosphorylated tau protein. We segregated Alzheimer brain sections from people with end-stage disease into those with abundant hyperphosphorylated tau protein and those without and compared each to normal brains for global microRNA patterns. A significant reduced expression of several microRNAs, including miR-512, was evident in the Alzheimer brain sections with abundant hyperphosphorylated tau. Immunohistochemistry documented that 2 known targets of microRNA-512, cFLIP and MCL1, were significantly over expressed and each colocalized to neurons with the abnormal tau protein. Analysis for apoptosis including activated caspase-3, increased caspase-4 and caspase-8, apoptosis initiating factor, APAF-1 activity, and the TUNEL assay was negative in the areas where neurons showed hyperphosphorylated tau. MCM2 expression, a marker of neuroprogenitor cells, was significantly reduced in the Alzheimer sections that contained the hyperphosphorylated tau. These results suggest that a basic defect in Alzheimer disease may be the reduced microRNA-driven increased expression of proteins that may alter the apoptotic/antiapoptotic balance of neurons. This, in turn, could lead to the accumulation of key Alzheimer proteins such as hyperphosphorylated tau that ultimately prevent normal neuronal function and lead to disease symptomatology.
Transcranial magnetic stimulation changes response selectivity of neurons in the visual cortex
Kim, Taekjun; Allen, Elena A.; Pasley, Brian N.; Freeman, Ralph D.
2015-01-01
Background Transcranial magnetic stimulation (TMS) is used to selectively alter neuronal activity of specific regions in the cerebral cortex. TMS is reported to induce either transient disruption or enhancement of different neural functions. However, its effects on tuning properties of sensory neurons have not been studied quantitatively. Objective/Hypothesis Here, we use specific TMS application parameters to determine how they may alter tuning characteristics (orientation, spatial frequency, and contrast sensitivity) of single neurons in the cat’s visual cortex. Methods Single unit spikes were recorded with tungsten microelectrodes from the visual cortex of anesthetized and paralyzed cats (12 males). Repetitive TMS (4Hz, 4sec) was delivered with a 70mm figure-8 coil. We quantified basic tuning parameters of individual neurons for each pre- and post-TMS condition. The statistical significance of changes for each tuning parameter between the two conditions was evaluated with a Wilcoxon signed-rank test. Results We generally find long-lasting suppression which persists well beyond the stimulation period. Pre- and post-TMS orientation tuning curves show constant peak values. However, strong suppression at non-preferred orientations tends to narrow the widths of tuning curves. Spatial frequency tuning exhibits an asymmetric change in overall shape, which results in an emphasis on higher frequencies. Contrast tuning curves show nonlinear changes consistent with a gain control mechanism. Conclusions These findings suggest that TMS causes extended interruption of the balance between sub-cortical and intra-cortical inputs. PMID:25862599
NASA Technical Reports Server (NTRS)
Perrone, John A.; Stone, Leland S.
1997-01-01
We have previously proposed a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. The model detectors were designed to extract self-translation (heading), self-rotation, as well as the scene layout (relative distances) ahead of a moving observer, and are arranged in cortical-like heading maps to perform this function. Heading estimation from optic flow has been postulated by some to be implemented within the medial superior temporal (MST) area. Others have questioned whether MST neurons can fulfill this role because some of their receptive-field properties appear inconsistent with a role in heading estimation. To resolve this issue, we systematically compared MST single-unit responses with the outputs of model detectors under matched stimulus conditions. We found that the basic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support heading estimation and that the template model provides an explicit set of testable hypotheses which can guide future exploration of MST and adjacent areas within the primate superior temporal sulcus.
Lien, Anthony D.; Scanziani, Massimo
2011-01-01
Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948
Firnhaber, Christopher; Hammarlund, Marc
2013-11-01
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.
van Wijk, Nick; Broersen, Laus M; de Wilde, Martijn C; Hageman, Robert J J; Groenendijk, Martine; Sijben, John W C; Kamphuis, Patrick J G H
2014-01-01
Synapse loss and synaptic dysfunction are pathological processes already involved in the early stages of Alzheimer's disease (AD). Synapses consist principally of neuronal membranes, and the neuronal and synaptic losses observed in AD have been linked to the degeneration and altered composition and structure of these membranes. Consequently, synapse loss and membrane-related pathology provide viable targets for intervention in AD. The specific nutrient combination Fortasyn Connect (FC) is designed to ameliorate synapse loss and synaptic dysfunction in AD by addressing distinct nutritional needs believed to be present in these patients. This nutrient combination comprises uridine, docosahexaenoic acid, eicosapentaenoic acid, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium, and is present in Souvenaid, a medical food intended for use in early AD. It has been hypothesized that FC counteracts synaptic loss and reduces membrane-related pathology in AD by providing nutritional precursors and cofactors that act together to support neuronal membrane formation and function. Preclinical studies formed the basis of this hypothesis which is being validated in a broad clinical study program investigating the potential of this nutrient combination in AD. Memory dysfunction is one key early manifestation in AD and is associated with synapse loss. The clinical studies to date show that the FC-containing medical food improves memory function and preserves functional brain network organization in mild AD compared with controls, supporting the hypothesis that this intervention counteracts synaptic dysfunction. This review provides a comprehensive overview of basic scientific studies that led to the creation of FC and of its effects in various preclinical models.
Fadool, D. A.; Wachowiak, M.; Brann, J. H.
2011-01-01
Summary The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, −54.5±2.7 mV, N=11; input resistance, 6.7±1.4GΩ, N=25; capacitance, 4.2±0.3 pF, N=22; means ± S.E.M.). The voltage-gated K+ current inactivation rate was significantly slower in VN neurons from males than in those from females, and K+ currents in males were less sensitive (greater Ki) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of −60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2–3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine-or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals. PMID:11815645
Fadool, D A; Wachowiak, M; Brann, J H
2001-12-01
The electrophysiological basis of chemical communication in the specialized olfactory division of the vomeronasal (VN) organ is poorly understood. In total, 198 patch-clamp recordings were made from 42 animals (Sternotherus odoratus, the stinkpot/musk turtle) to study the electrically and chemically activated properties of VN neurons. The introduction of tetramethylrhodamine-conjugated dextran into the VN orifice permitted good visualization of the vomeronasal neural epithelium prior to dissociating it into single neurons. Basic electrical properties of the neurons were measured (resting potential, -54.5 +/- 2.7 mV, N=11; input resistance, 6.7 +/- 1.4 G Omega, N=25; capacitance, 4.2 +/- 0.3 pF, N=22; means +/- S.E.M.). The voltage-gated K(+) current inactivation rate was significantly slower in VN neurons from males than in those from females, and K(+) currents in males were less sensitive (greater K(i)) to tetraethylammonium. Vomeronasal neurons were held at a holding potential of -60 mV and tested for their response to five natural chemicals, female urine, male urine, female musk, male musk and catfish extract. Of the 90 VN neurons tested, 33 (34 %) responded to at least one of the five compounds. The peak amplitude of chemically evoked currents ranged from 4 to 180 pA, with two-thirds of responses less than 25 pA. Urine-evoked currents were of either polarity, whereas musk and catfish extract always elicited only inward currents. Urine applied to neurons harvested from female animals evoked currents that were 2-3 times larger than those elicited from male neurons. Musk-evoked inward currents were three times the magnitude of urine- or catfish-extract-evoked inward currents. The calculated breadth of responsiveness for neurons presented with this array of five chemicals indicated that the mean response spectrum of the VN neurons is narrow (H metric 0.11). This patch-clamp study indicates that VN neurons exhibit sexual dimorphism in function and specificity in response to complex natural chemicals.iol
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697
Periodic activation function and a modified learning algorithm for the multivalued neuron.
Aizenberg, Igor
2010-12-01
In this paper, we consider a new periodic activation function for the multivalued neuron (MVN). The MVN is a neuron with complex-valued weights and inputs/output, which are located on the unit circle. Although the MVN outperforms many other neurons and MVN-based neural networks have shown their high potential, the MVN still has a limited capability of learning highly nonlinear functions. A periodic activation function, which is introduced in this paper, makes it possible to learn nonlinearly separable problems and non-threshold multiple-valued functions using a single multivalued neuron. We call this neuron a multivalued neuron with a periodic activation function (MVN-P). The MVN-Ps functionality is much higher than that of the regular MVN. The MVN-P is more efficient in solving various classification problems. A learning algorithm based on the error-correction rule for the MVN-P is also presented. It is shown that a single MVN-P can easily learn and solve those benchmark classification problems that were considered unsolvable using a single neuron. It is also shown that a universal binary neuron, which can learn nonlinearly separable Boolean functions, and a regular MVN are particular cases of the MVN-P.
Mabe, Abigail M; Hoover, Donald B
2011-07-05
Cardiac autonomic neuropathy is a frequent complication of diabetes and often presents as impaired cholinergic regulation of heart rate. Some have assumed that diabetics have degeneration of cardiac cholinergic nerves, but basic knowledge on this topic is lacking. Accordingly, our goal was to evaluate the structure and function of cardiac cholinergic neurons and nerves in C57BL/6 mice with streptozotocin-induced diabetes. Electrocardiograms were obtained weekly from conscious control and diabetic mice for 16 weeks. Resting heart rate decreased in diabetic mice, but intrinsic heart rate was unchanged. Power spectral analysis of electrocardiograms revealed decreased high frequency and increased low frequency power in diabetic mice, suggesting a relative reduction of parasympathetic tone. Negative chronotropic responses to right vagal nerve stimulation were blunted in 16-week diabetic mice, but postjunctional sensitivity of isolated atria to muscarinic agonists was unchanged. Immunohistochemical analysis of hearts from diabetic and control mice showed no difference in abundance of cholinergic neurons, but cholinergic nerve density was increased at the sinoatrial node of diabetic mice (16 weeks: 14.9±1.2% area for diabetics versus 8.9±0.8% area for control, P<0.01). We conclude that disruption of cholinergic function in diabetic mice cannot be attributed to a loss of cardiac cholinergic neurons and nerve fibers or altered cholinergic sensitivity of the atria. Instead, decreased responses to vagal stimulation might be caused by a defect of preganglionic cholinergic neurons and/or ganglionic neurotransmission. The increased density of cholinergic nerves observed at the sinoatrial node of diabetic mice might be a compensatory response. Copyright © 2011 Elsevier B.V. All rights reserved.
Dallas, Mark L; Atkinson, Lucy; Milligan, Carol J; Morris, Neil P; Lewis, David I; Deuchars, Susan A; Deuchars, Jim
2005-01-01
The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 ± 1.4 ms) and high firing frequencies (68.9 ± 5.3 Hz), both sensitive to application of TEA (0.5 mm) and 4-aminopyridine (4-AP; 30 μm). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K+ current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects. PMID:15528247
Timmer, Marco; Cesnulevicius, Konstantin; Winkler, Christian; Kolb, Julia; Lipokatic-Takacs, Esther; Jungnickel, Julia; Grothe, Claudia
2007-01-17
Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.
Cystic Fibrosis and the Nervous System.
Reznikov, Leah R
2017-05-01
Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Comparative functional expression of nAChR subtypes in rodent DRG neurons.
Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W
2013-01-01
We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.
Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting
2015-08-01
This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Computational Phenotyping in Psychiatry: A Worked Example
2016-01-01
Abstract Computational psychiatry is a rapidly emerging field that uses model-based quantities to infer the behavioral and neuronal abnormalities that underlie psychopathology. If successful, this approach promises key insights into (pathological) brain function as well as a more mechanistic and quantitative approach to psychiatric nosology—structuring therapeutic interventions and predicting response and relapse. The basic procedure in computational psychiatry is to build a computational model that formalizes a behavioral or neuronal process. Measured behavioral (or neuronal) responses are then used to infer the model parameters of a single subject or a group of subjects. Here, we provide an illustrative overview over this process, starting from the modeling of choice behavior in a specific task, simulating data, and then inverting that model to estimate group effects. Finally, we illustrate cross-validation to assess whether between-subject variables (e.g., diagnosis) can be recovered successfully. Our worked example uses a simple two-step maze task and a model of choice behavior based on (active) inference and Markov decision processes. The procedural steps and routines we illustrate are not restricted to a specific field of research or particular computational model but can, in principle, be applied in many domains of computational psychiatry. PMID:27517087
Maguire, Mandy J; Abel, Alyson D
2013-10-01
EEG is a primary method for studying temporally precise neuronal processes across the lifespan. Most of this work focuses on event related potentials (ERPs); however, using time-locked time frequency analysis to decompose the EEG signal can identify and distinguish multiple changes in brain oscillations underlying cognition (Bastiaansen et al., 2010). Further this measure is thought to reflect changes in inter-neuronal communication more directly than ERPs (Nunez and Srinivasan, 2006). Although time frequency has elucidated cognitive processes in adults, applying it to cognitive development is still rare. Here, we review the basics of neuronal oscillations, some of what they reveal about adult cognitive function, and what little is known relating to children. We focus on language because it develops early and engages complex cortical networks. Additionally, because time frequency analysis of the EEG related to adult language comprehension has been incredibly informative, using similar methods with children will shed new light on current theories of language development and increase our understanding of how neural processes change over the lifespan. Our goal is to emphasize the power of this methodology and encourage its use throughout developmental cognitive neuroscience. Copyright © 2013 Elsevier Ltd. All rights reserved.
Computational Phenotyping in Psychiatry: A Worked Example.
Schwartenbeck, Philipp; Friston, Karl
2016-01-01
Computational psychiatry is a rapidly emerging field that uses model-based quantities to infer the behavioral and neuronal abnormalities that underlie psychopathology. If successful, this approach promises key insights into (pathological) brain function as well as a more mechanistic and quantitative approach to psychiatric nosology-structuring therapeutic interventions and predicting response and relapse. The basic procedure in computational psychiatry is to build a computational model that formalizes a behavioral or neuronal process. Measured behavioral (or neuronal) responses are then used to infer the model parameters of a single subject or a group of subjects. Here, we provide an illustrative overview over this process, starting from the modeling of choice behavior in a specific task, simulating data, and then inverting that model to estimate group effects. Finally, we illustrate cross-validation to assess whether between-subject variables (e.g., diagnosis) can be recovered successfully. Our worked example uses a simple two-step maze task and a model of choice behavior based on (active) inference and Markov decision processes. The procedural steps and routines we illustrate are not restricted to a specific field of research or particular computational model but can, in principle, be applied in many domains of computational psychiatry.
Coding and decoding with dendrites.
Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota
2014-02-01
Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perez-Alcazar, Marta; Culley, Georgia; Lyckenvik, Tim; Mobarrez, Kristoffer; Bjorefeldt, Andreas; Wasling, Pontus; Seth, Henrik; Asztely, Frederik; Harrer, Andrea; Iglseder, Bernhard; Aigner, Ludwig; Hanse, Eric; Illes, Sebastian
2016-01-01
For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling. PMID:26973467
The Role of Noise in Brain Function
NASA Astrophysics Data System (ADS)
Roy, S.; Llinás, R.
2012-12-01
Noise plays a fundamental role in all living organisms from the earliest prokaryotes to advanced mammalian forms, such as ourselves. In the context of living organisms, the term 'noise' usually refers to the variance amongst measurements obtained from repeated identical experimental conditions, or from output signals from these systems. It is noteworthy that both these conditions are universally characterized by the presence of background fluctuations. In non-biological systems, such as electronics or in communications sciences, where the aim is to send error-free messages, noise was generally regarded as a problem. The discovery of Stochastic Resonances (SR) in non-linear dynamics brought a shift of perception where noise, rather than representing a problem, became fundamental to system function, especially so in biology. The question now is: to what extent is biological function dependent on random noise. Indeed, it seems feasible that noise also plays an important role in neuronal communication and oscillatory synchronization. Given this approach, it follows that determining Fisher information content could be relevant in neuronal communication. It also seems possible that the principle of least time, and that of the sum over histories, could be important basic principles in understanding the coherence dynamics responsible for action and perception. Ultimately, external noise cancellation combined with intrinsic noise signal embedding and, the use of the principle of least time may be considered an essential step in the organization of central nervous system (CNS) function.
Takahashi, Toshio
2013-06-01
Peptides are known to play important developmental and physiological roles in signaling. The rich diversity of peptides, with functions as diverse as intercellular communication, neurotransmission and signaling that spatially and temporally controls axis formation and cell differentiation, hints at the wealth of information passed between interacting cells. Little is known about peptides that control developmental processes such as cell differentiation and pattern formation in metazoans. The cnidarian Hydra is one of the most basic metazoans and is a key model system for study of the peptides involved in these processes. We developed a novel peptidomic approach for the isolation and identification of functional peptide signaling molecules from Hydra (the Hydra Peptide Project). Over the course of this project, a wide variety of novel neuropeptides were identified. Most of these peptides act directly on muscle cells and their functions include induction of contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. Moreover, epitheliopeptides that are produced by epithelial cells were originally identified in Hydra. Some of these epitheliopeptides exhibit morphogen-like activities, whereas others are involved in regulating neuron differentiation, possibly through neuron-epithelial cell interactions. We also describe below our high-throughput reverse-phase nano-flow LCMALDI- TOF-MS/MS approach, which has proved a powerful tool for the discovery of novel peptide signaling molecules in Hydra.
Some new food for thought: the role of vitamin D in the mental health of older adults.
Cherniack, E Paul; Troen, Bruce R; Florez, Hermes J; Roos, Bernard A; Levis, Silvina
2009-02-01
Vitamin D, a multipurpose steroid hormone vital to health, has been increasingly implicated in the pathology of cognition and mental illness. Hypovitaminosis D is prevalent among older adults, and several studies suggest an association between hypovitaminosis D and basic and executive cognitive functions, depression, bipolar disorder, and schizophrenia. Vitamin D activates receptors on neurons in regions implicated in the regulation of behavior, stimulates neurotrophin release, and protects the brain by buffering antioxidant and anti-inflammatory defenses against vascular injury and improving metabolic and cardiovascular function. Although additional studies are needed to examine the impact of supplementation on cognition and mood disorders, given the known health benefits of vitamin D, we recommend greater supplementation in older adults.
Resting state brain networks and their implications in neurodegenerative disease
NASA Astrophysics Data System (ADS)
Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong
2012-10-01
Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.
Neurotrophins, growth-factor-regulated genes and the control of energy balance.
Salton, Stephen R J
2003-03-01
Neurotrophic growth factors are proteins that control neuronal differentiation and survival, and consequently play important roles in the developing and adult stages of the nervous system. Study of the genes that are regulated by these growth factors has provided insight into the proteins that are critical to the maturation of the nervous system, suggesting that select neurotrophins may play a role in the control of body homeostasis by the brain and peripheral nervous system. Our understanding of the mechanisms of action of neurotrophic growth factors has increased through experimental manipulation of cultured neurons and neuronal cell lines. In particular, the PC12 pheochromocytoma cell line, which displays many properties of adrenal chromaffin cells and undergoes differentiation into sympathetic neuron-like cells when treated with nerve growth factor, has been extensively investigated to identify components of neurotrophin signaling pathways as well as the genes that they regulate. VGF was one of the first neurotrophin-regulated clones identified in NGF-treated PC12 cells. Subsequent studies indicate that the vgf gene is regulated in vivo in the nervous system by neurotrophins, by electrical activity, in response to injury or seizure, and by feeding and the circadian clock. The vgf gene encodes a polypeptide rich in paired basic amino acids; this polypeptide is differentially processed in neuronal and neuroendocrine cells and is released via the regulated secretory pathway. Generation and analysis of knockout mice that fail to synthesize VGF indicate that this protein plays a critical, non-redundant role in the regulation of energy homeostasis, providing a possible link between neurotrophin function in the nervous system and the peripheral control of feeding and metabolic activity. Future experiments should clarify the sites and mechanisms of action of this neurotrophin-regulated neuronal and neuroendocrine protein.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-03-15
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-01-01
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms. PMID:16410285
A Critical Assessment of Research on Neurotransmitters in Alzheimer's Disease.
Reddy, P Hemachandra
2017-01-01
The purpose of this mini-forum, "Neurotransmitters and Alzheimer's Disease", is to critically assess the current status of neurotransmitters in Alzheimer's disease. Neurotransmitters are essential neurochemicals that maintain synaptic and cognitive functions in mammals, including humans, by sending signals across pre- to post-synaptic neurons. Authorities in the fields of synapses and neurotransmitters of Alzheimer's disease summarize the current status of basic biology of synapses and neurotransmitters, and also update the current status of clinical trials of neurotransmitters in Alzheimer's disease. This article discusses the prevalence, economic impact, and stages of Alzheimer's dementia in humans.
The Impact of Ultrasound on Developing Brain Neurons. Science Briefs
ERIC Educational Resources Information Center
National Scientific Council on the Developing Child, 2007
2007-01-01
"Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This brief reports on the study. This Brief summarizes the findings and implications of "Prenatal Exposure to Ultrasound Waves Impacts Neuronal Migration in Mice" (E. S. B. C. Ang, Jr.; V. Gluncic; A. Duque; M. E. Schafer; and P.…
Cadherins and Their Partners in the Nematode Worm Caenorhabditis elegans
Hardin, Jeff; Lynch, Allison; Loveless, Timothy; Pettitt, Jonathan
2018-01-01
The extreme simplicity of Caenorhabditis elegans makes it an ideal system to study the basic principles of cadherin function at the level of single cells within the physiologically relevant context of a developing animal. The genetic tractability of C. elegans also means that components of cadherin complexes can be identified through genetic modifier screens, allowing a comprehensive in vivo characterization of the macromolecular assemblies involved in cadherin function during tissue formation and maintenance in C. elegans. This work shows that a single cadherin system, the classical cadherin–catenin complex, is essential for diverse morphogenetic events during embryogenesis through its interactions with a range of mostly conserved proteins that act to modulate its function. The role of other members of the cadherin family in C. elegans, including members of the Fat-like, Flamingo/CELSR and calsyntenin families is less well characterized, but they have clear roles in neuronal development and function. PMID:23481198
Kim, Hak Yeong; Seo, Kain; Jeon, Hong Jin; Lee, Unjoo; Lee, Hyosang
2017-01-01
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies. PMID:28835022
Boulanger-Weill, Jonathan; Candat, Virginie; Jouary, Adrien; Romano, Sebastián A; Pérez-Schuster, Verónica; Sumbre, Germán
2017-06-19
From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons. We observed that the maturation of newborn neurons is a 4-day process. Initially, newborn neurons showed undeveloped dendritic arbors, no neurotransmitter identity, and were unresponsive to visual stimulation, although they displayed spontaneous calcium transients. Later on, newborn-labeled neurons began to respond to visual stimuli but in a very variable manner. At the end of the maturation period, newborn-labeled neurons exhibited visual tuning curves (spatial receptive fields and direction selectivity) and spontaneous correlated activity with neighboring functionally mature neurons. At this developmental stage, newborn-labeled neurons presented complex dendritic arbors and neurotransmitter identity (excitatory or inhibitory). Removal of retinal inputs significantly perturbed the integration of newborn neurons into the functionally mature tectal network. Our results provide a comprehensive description of the maturation of newborn neurons during development and shed light on potential mechanisms underlying their integration into a functionally mature neuronal circuit. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
The impact of the glial spatial buffering on the K(+) Nernst potential.
Noori, H R
2011-09-01
Astrocytes play a critical role in CNS metabolism, regulation of volume and ion homeostasis of the interstitial space. Of special relevance is their clearance of K(+) that is released by active neurons into the extracellular space. Mathematical analysis of a modified Nernst equation for the electrochemical equilibrium of neuronal plasma membranes, suggests that K(+) uptake by glial cells is not only relevant during neuronal activity but also has a non-neglectable impact on the basic electrical membrane properties, specifically the resting membrane potential, of neurons and might be clinically valuable as a factor in the genetics and epigenetics of the epilepsy and tuberous sclerosis complex.
Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail; Huerta, Ramón; Bazhenov, Maxim; Kozlov, Alexander K.; Abarbanel, Henry D. I.
1998-11-01
We investigate the ability of oscillating neural circuits to switch between different states of oscillation in two basic neural circuits. We model two quite distinct small neural circuits. The first circuit is based on invertebrate central pattern generator (CPG) studies [A. I. Selverston and M. Moulins, The Crustacean Stomatogastric System (Springer-Verlag, Berlin, 1987)] and is composed of two neurons coupled via both gap junction and inhibitory synapses. The second consists of coupled pairs of interconnected thalamocortical relay and thalamic reticular neurons with both inhibitory and excitatory synaptic coupling. The latter is an elementary unit of the thalamic networks passing sensory information to the cerebral cortex [M. Steriade, D. A. McCormick, and T. J. Sejnowski, Science 262, 679 (1993)]. Both circuits have contradictory coupling between symmetric parts. The thalamocortical model has excitatory and inhibitory connections and the CPG has reciprocal inhibitory and electrical coupling. We describe the dynamics of the individual neurons in these circuits by conductance based ordinary differential equations of Hodgkin-Huxley type [J. Physiol. (London) 117, 500 (1952)]. Both model circuits exhibit bistability and hysteresis in a wide region of coupling strengths. The two main modes of behavior are in-phase and out-of-phase oscillations of the symmetric parts of the network. We investigate the response of these circuits, while they are operating in bistable regimes, to externally imposed excitatory spike trains with varying interspike timing and small amplitude pulses. These are meant to represent spike trains received by the basic circuits from sensory neurons. Circuits operating in a bistable region are sensitive to the frequency of these excitatory inputs. Frequency variations lead to changes from in-phase to out-of-phase coordination or vice versa. The signaling information contained in a spike train driving the network can place the circuit into one or another state depending on the interspike interval and this happens within a few spikes. These states are maintained by the basic circuit after the input signal is ended. When a new signal of the correct frequency enters the circuit, it can be switched to another state with the same ease.
The CCDC55 couples cannabinoid receptor CNR1 to a putative DISC1 schizophrenia pathway.
Xie, J; Gizatullin, R; Vukojevic, V; Leopardi, R
2015-12-03
Our previous study suggested that the coiled coil domain-containing 55 gene (CCDC55), also named as NSRP1 (nuclear speckle splicing regulatory protein 1 (NSRP1)), was encompassed in a haplotype block spanning over the serotonin transporter (5-HTT) gene in patients with schizophrenia (SCZ). However, the neurobiological function of CCDC55 gene remains unknown. This study aims to uncover the potential role of CCDC55 in SCZ-associated molecular pathways. Using molecular cloning, sequencing and immune blotting to identify basic properties, yeast two-hybrid screening and glutathione S-transferase (GST) pull-down assay to test protein-protein interaction, and confocal laser scanning microscopy (CSLM) to show intracellular interaction of proteins. (i) CCDC55 is expressed as a nuclear protein in human neuronal cells; (ii) Protein-protein interaction analyses showed CCDC55 physically interacted with Ran binding protein 9 (RanBP9) and disrupted in schizophrenia 1 (DISC1); (iii) CCDC55 and RanBP9 co-localized in the nucleus of human neuronal cells; (iv) CCDC55 also interacted with the cannabinoid receptor 1 (CNR1), and with the brain cannabinoid receptor-interacting protein 1a (CNRIP1a); (v) CNR1 activation in differentiated human neuronal cells resulted in an altered RanBP9 localization. CCDC55 may be involved in a functional bridging between the CNR1 activation and the DISC1/RanBP9-associated pathways. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Kida, S; Kato, T
2015-01-01
Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.
Spatial attention improves the quality of population codes in human visual cortex.
Saproo, Sameer; Serences, John T
2010-08-01
Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.
Lorenz, Robert C; Gleich, Tobias; Buchert, Ralph; Schlagenhauf, Florian; Kühn, Simone; Gallinat, Jürgen
2015-10-01
Response inhibition is a basic mechanism in cognitive control and dysfunctional in major psychiatric disorders. The neuronal mechanisms are in part driven by dopamine in the striatum. Animal data suggest a regulatory role of glutamate on the level of the striatum. We used a trimodal imaging procedure of the human striatum including F18-DOPA positron emission tomography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging of a stop signal task. We investigated dopamine synthesis capacity and glutamate concentration in vivo and their relation to functional properties of response inhibition. A mediation analysis revealed a significant positive association between dopamine synthesis capacity and inhibition-related neural activity in the caudate nucleus. This relationship was significantly mediated by striatal glutamate concentration. Furthermore, stop signal reaction time was inversely related to striatal activity during inhibition. The data show, for the first time in humans, an interaction between dopamine, glutamate, and the neural signature of response inhibition in the striatum. This finding stresses the importance of the dopamine-glutamate interaction for behavior and may facilitate the understanding of psychiatric disorders characterized by impaired response inhibition. © 2015 Wiley Periodicals, Inc.
Streit, Wolfgang J; Xue, Qing-Shan; Tischer, Jasmin; Bechmann, Ingo
2014-09-26
This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer's disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial pathology and its significance during aging and in the pathogenesis of Alzheimer dementia (AD). The identification of dystrophic (senescent) microglia has created an ostensible conflict with prior work claiming a role for activated microglia and neuroinflammation during normal aging and in AD, and this has raised a basic question: does the brain's immune system become hyperactive (inflamed) or does it become weakened (senescent) in elderly and demented people, and what is the impact on neuronal function and cognition? Here we strive to reconcile these seemingly contradictory notions by arguing that both low-grade neuroinflammation and microglial senescence are the result of aging-associated free radical injury. Both processes are damaging for microglia as they synergistically exhaust this essential cell population to the point where the brain's immune system is effete and unable to support neuronal function.
New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian.
Kanska, Justyna; Frank, Uri
2013-07-15
Nanos is a pan-metazoan germline marker, important for germ cell development and maintenance. In flies, Nanos also acts in posterior and neural development, but these functions have not been demonstrated experimentally in other animals. Using the cnidarian Hydractinia we have uncovered novel roles for Nanos in neural cell fate determination. Ectopic expression of Nanos2 increased the numbers of embryonic stinging cell progenitors, but decreased the numbers of neurons. Downregulation of Nanos2 had the opposite effect. Furthermore, Nanos2 blocked maturation of committed, post-mitotic nematoblasts. Hence, Nanos2 acts as a switch between two differentiation pathways, increasing the numbers of nematoblasts at the expense of neuroblasts, but preventing nematocyte maturation. Nanos2 ectopic expression also caused patterning defects, but these were not associated with deregulation of Wnt signaling, showing that the basic anterior-posterior polarity remained intact, and suggesting that numerical imbalance between nematocytes and neurons might have caused these defects, affecting axial patterning only indirectly. We propose that the functions of Nanos in germ cells and in neural development are evolutionarily conserved, but its role in posterior patterning is an insect or arthropod innovation.
Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons
Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen
2013-01-01
Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337
Prolactin receptor in regulation of neuronal excitability and channels
Patil, Mayur J; Henry, Michael A; Akopian, Armen N
2014-01-01
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL. PMID:24758841
[The ontogeny of the mirror neuron system].
Myowa-Yamakoshi, Masako
2014-06-01
Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.
Roybon, Laurent; Mastracci, Teresa L; Li, Joyce; Stott, Simon R W; Leiter, Andrew B; Sussel, Lori; Brundin, Patrik; Li, Jia-Yi
2015-01-01
Production of olfactory bulb neurons occurs continuously in the rodent brain. Little is known, however, about cellular diversity in the glutamatergic neuron subpopulation. In the central nervous system, the basic helix-loop-helix transcription factor NeuroD1 (ND1) is commonly associated with glutamatergic neuron development. In this study, we utilized ND1 to identify the different subpopulations of olfactory bulb glutamategic neurons and their progenitors, both in the embryo and postnatally. Using knock-in mice, transgenic mice and retroviral transgene delivery, we demonstrate the existence of several different populations of glutamatergic olfactory bulb neurons, the progenitors of which are ND1+ and ND1- lineage-restricted, and are temporally and regionally separated. We show that the first olfactory bulb glutamatergic neurons produced - the mitral cells - can be divided into molecularly diverse subpopulations. Our findings illustrate the complexity of neuronal diversity in the olfactory bulb and that seemingly homogenous neuronal populations can consist of multiple subpopulations with unique molecular signatures of transcription factors and expressing neuronal subtype-specific markers.
Contour Curvature As an Invariant Code for Objects in Visual Area V4
Pasupathy, Anitha
2016-01-01
Size-invariant object recognition—the ability to recognize objects across transformations of scale—is a fundamental feature of biological and artificial vision. To investigate its basis in the primate cerebral cortex, we measured single neuron responses to stimuli of varying size in visual area V4, a cornerstone of the object-processing pathway, in rhesus monkeys (Macaca mulatta). Leveraging two competing models for how neuronal selectivity for the bounding contours of objects may depend on stimulus size, we show that most V4 neurons (∼70%) encode objects in a size-invariant manner, consistent with selectivity for a size-independent parameter of boundary form: for these neurons, “normalized” curvature, rather than “absolute” curvature, provided a better account of responses. Our results demonstrate the suitability of contour curvature as a basis for size-invariant object representation in the visual cortex, and posit V4 as a foundation for behaviorally relevant object codes. SIGNIFICANCE STATEMENT Size-invariant object recognition is a bedrock for many perceptual and cognitive functions. Despite growing neurophysiological evidence for invariant object representations in the primate cortex, we still lack a basic understanding of the encoding rules that govern them. Classic work in the field of visual shape theory has long postulated that a representation of objects based on information about their bounding contours is well suited to mediate such an invariant code. In this study, we provide the first empirical support for this hypothesis, and its instantiation in single neurons of visual area V4. PMID:27194333
Optimal physiological structure of small neurons to guarantee stable information processing
NASA Astrophysics Data System (ADS)
Zeng, S. Y.; Zhang, Z. Z.; Wei, D. Q.; Luo, X. S.; Tang, W. Y.; Zeng, S. W.; Wang, R. F.
2013-02-01
Spike is the basic element for neuronal information processing and the spontaneous spiking frequency should be less than 1 Hz for stable information processing. If the neuronal membrane area is small, the frequency of neuronal spontaneous spiking caused by ion channel noise may be high. Therefore, it is important to suppress the deleterious spontaneous spiking of the small neurons. We find by simulation of stochastic neurons with Hodgkin-Huxley-type channels that the leakage system is critical and extremely efficient to suppress the spontaneous spiking and guarantee stable information processing of the small neurons. However, within the physiological limit the potassium system cannot do so. The suppression effect of the leakage system is super-exponential, but that of the potassium system is quasi-linear. With the minor physiological cost and the minimal consumption of metabolic energy, a slightly lower reversal potential and a relatively larger conductance of the leakage system give the optimal physiological structure to suppress the deleterious spontaneous spiking and guarantee stable information processing of small neurons, dendrites and axons.
Montgomery, Erwin B.; He, Huang
2016-01-01
The efficacy of Deep Brain Stimulation (DBS) for an expanding array of neurological and psychiatric disorders demonstrates directly that DBS affects the basic electroneurophysiological mechanisms of the brain. The increasing array of active electrode configurations, stimulation currents, pulse widths, frequencies, and pulse patterns provides valuable tools to probe electroneurophysiological mechanisms. The extension of basic electroneurophysiological and anatomical concepts using sophisticated computational modeling and simulation has provided relatively straightforward explanations of all the DBS parameters except frequency. This article summarizes current thought about frequency and relevant observations. Current methodological and conceptual errors are critically examined in the hope that future work will not replicate these errors. One possible alternative theory is presented to provide a contrast to many current theories. DBS, conceptually, is a noisy discrete oscillator interacting with the basal ganglia–thalamic–cortical system of multiple re-entrant, discrete oscillators. Implications for positive and negative resonance, stochastic resonance and coherence, noisy synchronization, and holographic memory (related to movement generation) are presented. The time course of DBS neuronal responses demonstrates evolution of the DBS response consistent with the dynamics of re-entrant mechanisms. Finally, computational modeling demonstrates identical dynamics as seen by neuronal activities recorded from human and nonhuman primates, illustrating the differences of discrete from continuous harmonic oscillators and the power of conceptualizing the nervous system as composed on interacting discrete nonlinear oscillators. PMID:27548234
Theoretical Limitations on Functional Imaging Resolution in Auditory Cortex
Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.
2010-01-01
Functional imaging can reveal detailed organizational structure in cerebral cortical areas, but neuronal response features and local neural interconnectivity can influence the resulting images, possibly limiting the inferences that can be drawn about neural function. Discerning the fundamental principles of organizational structure in the auditory cortex of multiple species has been somewhat challenging historically both with functional imaging and with electrophysiology. A possible limitation affecting any methodology using pooled neuronal measures may be the relative distribution of response selectivity throughout the population of auditory cortex neurons. One neuronal response type inherited from the cochlea, for example, exhibits a receptive field that increases in size (i.e., decreases in selectivity) at higher stimulus intensities. Even though these neurons appear to represent a minority of auditory cortex neurons, they are likely to contribute disproportionately to the activity detected in functional images, especially if intense sounds are used for stimulation. To evaluate the potential influence of neuronal subpopulations upon functional images of primary auditory cortex, a model array representing cortical neurons was probed with virtual imaging experiments under various assumptions about the local circuit organization. As expected, different neuronal subpopulations were activated preferentially under different stimulus conditions. In fact, stimulus protocols that can preferentially excite selective neurons, resulting in a relatively sparse activation map, have the potential to improve the effective resolution of functional auditory cortical images. These experimental results also make predictions about auditory cortex organization that can be tested with refined functional imaging experiments. PMID:20079343
Fukushima, Kazuyuki; Miura, Yuji; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi
2016-01-01
Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development. © 2015 Society for Laboratory Automation and Screening.
THE NISSL SUBSTANCE OF LIVING AND FIXED SPINAL GANGLION CELLS
Deitch, Arline D.; Moses, Montrose J.
1957-01-01
Living chick spinal ganglion neurons grown for 19 to 25 days in vitro were photographed with a color-translating ultraviolet microscope (UV-91) at 265, 287, and 310 mµ. This instrument was unique in permitting rapid accumulation of ultraviolet information with minimal damage to the cell. In the photographs taken at 265 mµ of the living neurons, discrete ultraviolet-absorbing cytoplasmic masses were observed which were found to be virtually unchanged in appearance after formalin fixation. These were identical with the Nissl bodies of the same cells seen after staining with basic dyes. The correlation of ultraviolet absorption, ribonuclease extraction, and staining experiments with acid and basic dyes confirmed the ribonucleoprotein nature of these Nissl bodies in the living and fixed cells. No change in distribution or concentration of ultraviolet-absorbing substance was observed in the first 12 ultraviolet photographs of a neuron, and it is concluded that the cells had not been subjected to significant ultraviolet damage during the period of photography. On the basis of these observations, as well as previous findings with phase contrast microscopy, it is concluded that Nissl bodies preexist in the living neuron as discrete aggregates containing high concentrations of nucleoprotein. PMID:13438929
Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R
2012-01-11
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.
Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function
Spencer, William C.; Deneris, Evan S.
2017-01-01
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons. PMID:28769770
Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.
Spencer, William C; Deneris, Evan S
2017-01-01
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons.
The sleep-wake-cycle: basic mechanisms.
Jones, B E
1989-11-01
The physiologic characteristics of the sleep-wake states have been well defined and some of the chemical and neuron systems that participate in the cyclic generation and maintenance of these states have been identified. The actual dynamic process by which these systems interact to generate the basic sleep-wake cycle, however, remains a mystery.
Recent advances in basic neurosciences and brain disease: from synapses to behavior
Bi, Guo-Qiang; Bolshakov, Vadim; Bu, Guojun; Cahill, Catherine M; Chen, Zhou-Feng; Collingridge, Graham L; Cooper, Robin L; Coorssen, Jens R; El-Husseini, Alaa; Galhardo, Vasco; Gan, Wen-Biao; Gu, Jianguo; Inoue, Kazuhide; Isaac, John; Iwata, Koichi; Jia, Zhengping; Kaang, Bong-Kiun; Kawamata, Mikito; Kida, Satoshi; Klann, Eric; Kohno, Tatsuro; Li, Min; Li, Xiao-Jiang; MacDonald, John F; Nader, Karim; Nguyen, Peter V; Oh, Uhtaek; Ren, Ke; Roder, John C; Salter, Michael W; Song, Weihong; Sugita, Shuzo; Tang, Shao-Jun; Tao, Yuanxiang; Wang, Yu Tian; Woo, Newton; Woodin, Melanie A; Yan, Zhen; Yoshimura, Megumu; Xu, Ming; Xu, Zao C; Zhang, Xia; Zhen, Mei; Zhuo, Min
2006-01-01
Understanding basic neuronal mechanisms hold the hope for future treatment of brain disease. The 1st international conference on synapse, memory, drug addiction and pain was held in beautiful downtown Toronto, Canada on August 21–23, 2006. Unlike other traditional conferences, this new meeting focused on three major aims: (1) to promote new and cutting edge research in neuroscience; (2) to encourage international information exchange and scientific collaborations; and (3) to provide a platform for active scientists to discuss new findings. Up to 64 investigators presented their recent discoveries, from basic synaptic mechanisms to genes related to human brain disease. This meeting was in part sponsored by Molecular Pain, together with University of Toronto (Faculty of Medicine, Department of Physiology as well as Center for the Study of Pain). Our goal for this meeting is to promote future active scientific collaborations and improve human health through fundamental basic neuroscience researches. The second international meeting on Neurons and Brain Disease will be held in Toronto (August 29–31, 2007). PMID:17196111
Binzen, U; Greffrath, W; Hennessy, S; Bausen, M; Saaler-Reinhardt, S; Treede, R-D
2006-10-13
Potassium channels contribute to basic neuronal excitability and modulation. Here, we examined expression patterns of the voltage-gated potassium channel Kv1.4, the nociceptive transduction channels TRPV1 and TRPV2 as well as the putative anti-nociceptive cannabinoid receptor CB1 by immunofluorescence double-labelings in sections of rat dorsal root ganglia (DRGs). Kv1.4, TRPV1 and CB1 were each detected in about one third of neurons (35.7+/-0.5%, 29.4+/-1.1% and 36.4+/-0.5%, respectively, mean diameter 19.1+/-0.3 microm). TRPV2 was present in 4.4+/-0.4% of all neurons that were significantly larger in diameter (27.4+/-0.7 microm; P < 0.001). Antibody double-labeling revealed that the majority of Kv1.4-positive neurons co-expressed TRPV1 (73.9+/-1.5%) whereas none expressed TRPV2. The largest overlap was found with CB1 (93.1+/-0.1%). CB1 expression resembled that seen for Kv1.4 since the majority of neurons expressing CB1-protein also expressed TRPV1 (69.4+/-6.5%) but not TRPV2 (0.6+/-0.3%). When CB1-mRNA was detected using in situ hybridizations an additional subset of larger neurons was labeled including 82.4+/-17.7% of the TRPV2 expressing neurons. However, co-localization of Kv1.4 with CB1-mRNA (92%, mean diameter: 18.5 microm) was essentially the same as with CB1-protein. The almost complete overlap of CB1 and Kv1.4 in nociceptive DRG neurons suggests a functional synergistic action between Kv1.4 and CB1. The potassium channel may have two important roles in nociception. As the molecular basis of A-type current it could be involved in the control of repetitive discharges at peripheral terminals and as a downstream signal transduction site of CB1 in the control of presynaptic transmitter release at central terminals.
Spin switches for compact implementation of neuron and synapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quang Diep, Vinh, E-mail: vdiep@purdue.edu; Sutton, Brian; Datta, Supriyo
2014-06-02
Nanomagnets driven by spin currents provide a natural implementation for a neuron and a synapse: currents allow convenient summation of multiple inputs, while the magnet provides the threshold function. The objective of this paper is to explore the possibility of a hardware neural network implementation using a spin switch (SS) as its basic building block. SS is a recently proposed device based on established technology with a transistor-like gain and input-output isolation. This allows neural networks to be constructed with purely passive interconnections without intervening clocks or amplifiers. The weights for the neural network are conveniently adjusted through analog voltagesmore » that can be stored in a non-volatile manner in an underlying CMOS layer using a floating gate low dropout voltage regulator. The operation of a multi-layer SS neural network designed for character recognition is demonstrated using a standard simulation model based on coupled Landau-Lifshitz-Gilbert equations, one for each magnet in the network.« less
Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying
2017-11-08
Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.
Aguilar-Arredondo, Andrea; Arias, Clorinda; Zepeda, Angélica
2015-01-01
Hippocampal neurogenesis occurs in the adult brain in various species, including humans. A compelling question that arose when neurogenesis was accepted to occur in the adult dentate gyrus (DG) is whether new neurons become functionally relevant over time, which is key for interpreting their potential contributions to synaptic circuitry. The functional state of adult-born neurons has been evaluated using various methodological approaches, which have, in turn, yielded seemingly conflicting results regarding the timing of maturation and functional integration. Here, we review the contributions of different methodological approaches to addressing the maturation process of adult-born neurons and their functional state, discussing the contributions and limitations of each method. We aim to provide a framework for interpreting results based on the approaches currently used in neuroscience for evaluating functional integration. As shown by the experimental evidence, adult-born neurons are prone to respond from early stages, even when they are not yet fully integrated into circuits. The ongoing integration process for the newborn neurons is characterised by different features. However, they may contribute differently to the network depending on their maturation stage. When combined, the strategies used to date convey a comprehensive view of the functional development of newly born neurons while providing a framework for approaching the critical time at which new neurons become functionally integrated and influence brain function.
Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett
2017-06-15
There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Trubiani, Oriana; Guarnieri, Simone; Diomede, Francesca; Mariggiò, Maria A; Merciaro, Ilaria; Morabito, Caterina; Cavalcanti, Marcos F X B; Cocco, Lucio; Ramazzotti, Giulia
2016-11-01
Stem cells isolated from human adult tissue niche represent a promising source for neural differentiation. Human Periodontal Ligament Stem Cells (hPDLSCs) originating from the neural crest are particularly suitable for induction of neural commitment. In this study, under xeno-free culture conditions, in undifferentiated hPDLSCs and in hPDLSCs induced to neuronal differentiation by basic Fibroblast Growth Factor, the level of some neural markers have been analyzed. The hPDLSCs spontaneously express Nestin, a neural progenitor marker. In these cells, the neurogenic process induced to rearrange the cytoskeleton, form neurospheres and express higher levels of Nestin and Tyrosine Hydroxylase, indicating neural induction. Protein Kinase C (PKC) is highly expressed in neural tissue and has a key role in neuronal functions. In particular the Ca(2+) and diacylglycerol-dependent activation of PKCα isozyme is involved in the regulation of neuronal differentiation. Another main component of the pathways controlling neuronal differentiation is the Growth Associated Protein-43 (GAP-43), whose activity is strictly regulated by PKC. The aim of this study is to investigate the role of PKCα/GAP-43 nuclear signal transduction pathway during neuronal commitment of hPDLSCs. During hPDLSCs neurogenic commitment the levels of p-PKC and p-GAP-43 increased both in cytoplasmic and nuclear compartment. PKCα nuclear translocation induced GAP-43 movement to the cytoplasm, where it is known to regulate growth cone dynamics and neuronal differentiation. Moreover, the degree of cytosolic Ca(2+) mobilization appeared to be more pronounced in differentiated hPDLSCs than in undifferentiated cells. This study provides evidences of a new PKCα/GAP-43 nuclear signalling pathway that controls neuronal differentiation in hPDLSCs, leading the way to a potential use of these cells in cell-based therapy in neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Burdo, Joseph R
2013-01-01
Since 2009 at Boston College, we have been offering a Research in Neuroscience course using cultured neurons in an in vitro model of stroke. The students work in groups to learn how to perform sterile animal cell culture and run several basic bioassays to assess cell viability. They are then tasked with analyzing the scientific literature in an attempt to identify and predict the intracellular pathways involved in neuronal death, and identify dietary antioxidant compounds that may provide protection based on their known effects in other cells. After each group constructs a hypothesis pertaining to the potential neuroprotection, we purchase one compound per group and the students test their hypotheses using a commonly performed viability assay. The groups generate quantitative data and perform basic statistics on that data to analyze it for statistical significance. Finally, the groups compile their data and other elements of their research experience into a poster for our departmental research celebration at the end of the spring semester.
Burdo, Joseph R.
2013-01-01
Since 2009 at Boston College, we have been offering a Research in Neuroscience course using cultured neurons in an in vitro model of stroke. The students work in groups to learn how to perform sterile animal cell culture and run several basic bioassays to assess cell viability. They are then tasked with analyzing the scientific literature in an attempt to identify and predict the intracellular pathways involved in neuronal death, and identify dietary antioxidant compounds that may provide protection based on their known effects in other cells. After each group constructs a hypothesis pertaining to the potential neuroprotection, we purchase one compound per group and the students test their hypotheses using a commonly performed viability assay. The groups generate quantitative data and perform basic statistics on that data to analyze it for statistical significance. Finally, the groups compile their data and other elements of their research experience into a poster for our departmental research celebration at the end of the spring semester. PMID:23805059
Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg
2016-08-15
The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks.
Eles, James R; Vazquez, Alberto L; Kozai, Takashi D Y; Cui, X Tracy
2018-08-01
Implantable electrode devices enable long-term electrophysiological recordings for brain-machine interfaces and basic neuroscience research. Implantation of these devices, however, leads to neuronal damage and progressive neural degeneration that can lead to device failure. The present study uses in vivo two-photon microscopy to study the calcium activity and morphology of neurons before, during, and one month after electrode implantation to determine how implantation trauma injures neurons. We show that implantation leads to prolonged, elevated calcium levels in neurons within 150 μm of the electrode interface. These neurons show signs of mechanical distortion and mechanoporation after implantation, suggesting that calcium influx is related to mechanical trauma. Further, calcium-laden neurites develop signs of axonal injury at 1-3 h post-insert. Over the first month after implantation, physiological neuronal calcium activity increases, suggesting that neurons may be recovering. By defining the mechanisms of neuron damage after electrode implantation, our results suggest new directions for therapies to improve electrode longevity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Arbitrary nonlinearity is sufficient to represent all functions by neural networks - A theorem
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.
1991-01-01
It is proved that if we have neurons implementing arbitrary linear functions and a neuron implementing one (arbitrary but smooth) nonlinear function g(x), then for every continuous function f(x sub 1,..., x sub m) of arbitrarily many variables, and for arbitrary e above 0, we can construct a network that consists of g-neurons and linear neurons, and computes f with precision e.
Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions
VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.
2011-01-01
Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273
Transgenic mouse models enabling photolabeling of individual neurons in vivo.
Peter, Manuel; Bathellier, Brice; Fontinha, Bruno; Pliota, Pinelopi; Haubensak, Wulf; Rumpel, Simon
2013-01-01
One of the biggest tasks in neuroscience is to explain activity patterns of individual neurons during behavior by their cellular characteristics and their connectivity within the neuronal network. To greatly facilitate linking in vivo experiments with a more detailed molecular or physiological analysis in vitro, we have generated and characterized genetically modified mice expressing photoactivatable GFP (PA-GFP) that allow conditional photolabeling of individual neurons. Repeated photolabeling at the soma reveals basic morphological features due to diffusion of activated PA-GFP into the dendrites. Neurons photolabeled in vivo can be re-identified in acute brain slices and targeted for electrophysiological recordings. We demonstrate the advantages of PA-GFP expressing mice by the correlation of in vivo firing rates of individual neurons with their expression levels of the immediate early gene c-fos. Generally, the mouse models described in this study enable the combination of various analytical approaches to characterize living cells, also beyond the neurosciences.
Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain
Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.
2014-01-01
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349
Optogenetic stimulation of myelination (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, In Hong; Lee, Hae Ung; Thakor, Nitish V.
2016-03-01
Myelination is governed by axon-glia interaction which is modulated by neural activity. Currently, the effects of subcellular activation of neurons which induce neural activity upon myelination are not well understood. To identify if subcellular neuronal stimulation can enhance myelination, we developed a novel system for focal stimulation of neural activity with optogenetic in a compartmentalized microfluidic platform. In our systems, stimulation for neurons in restricted subcellular parts, such as cell bodies and axons promoted oligodendrocyte differentiation and the myelination of axons the just as much as whole cell activation of neurons did. The number of premature O4 positive oligodendrocytes was reduced and the numbers of mature and myelin basic protein-positive oligodendrocytes was increased both by subcellular optogenetic stimulation.
A self-resetting spiking phase-change neuron
NASA Astrophysics Data System (ADS)
Cobley, R. A.; Hayat, H.; Wright, C. D.
2018-05-01
Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.
A self-resetting spiking phase-change neuron.
Cobley, R A; Hayat, H; Wright, C D
2018-05-11
Neuromorphic, or brain-inspired, computing applications of phase-change devices have to date concentrated primarily on the implementation of phase-change synapses. However, the so-called accumulation mode of operation inherent in phase-change materials and devices can also be used to mimic the integrative properties of a biological neuron. Here we demonstrate, using physical modelling of nanoscale devices and SPICE modelling of associated circuits, that a single phase-change memory cell integrated into a comparator type circuit can deliver a basic hardware mimic of an integrate-and-fire spiking neuron with self-resetting capabilities. Such phase-change neurons, in combination with phase-change synapses, can potentially open a new route for the realisation of all-phase-change neuromorphic computing.
Mirror neurons: from origin to function.
Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia
2014-04-01
This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.
Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E
2017-09-01
A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.
Questioning the cerebellar doctrine.
Galliano, Elisa; De Zeeuw, Chris I
2014-01-01
The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine. © 2014 Elsevier B.V. All rights reserved.
Comment on "Local impermeant anions establish the neuronal chloride concentration".
Voipio, Juha; Boron, Walter F; Jones, Stephen W; Hopfer, Ulrich; Payne, John A; Kaila, Kai
2014-09-05
Glykys et al. (Reports, 7 February 2014, p. 670) conclude that, rather than ion transporters, "local impermeant anions establish the neuronal chloride concentration" and thereby determine "the magnitude and direction of GABAAR currents at individual synapses." If this were possible, perpetual ion-motion machines could be constructed. The authors' conclusions conflict with basic thermodynamic principles. Copyright © 2014, American Association for the Advancement of Science.
Life and death of neurons in the aging brain
NASA Technical Reports Server (NTRS)
Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)
1997-01-01
Neurodegenerative disorders are characterized by extensive neuron death that leads to functional decline, but the neurobiological correlates of functional decline in normal aging are less well defined. For decades, it has been a commonly held notion that widespread neuron death in the neocortex and hippocampus is an inevitable concomitant of brain aging, but recent quantitative studies suggest that neuron death is restricted in normal aging and unlikely to account for age-related impairment of neocortical and hippocampal functions. In this article, the qualitative and quantitative differences between aging and Alzheimer's disease with respect to neuron loss are discussed, and age-related changes in functional and biochemical attributes of hippocampal circuits that might mediate functional decline in the absence of neuron death are explored. When these data are viewed comprehensively, it appears that the primary neurobiological substrates for functional impairment in aging differ in important ways from those in neurodegenerative disorders such as Alzheimer's disease.
Nakagawa, Julia M; Donkels, Catharina; Fauser, Susanne; Schulze-Bonhage, Andreas; Prinz, Marco; Zentner, Josef; Haas, Carola A
2017-04-01
Focal cortical dysplasia (FCD) is a major cause of pharmacoresistant focal epilepsy. Little is known about the pathomechanisms underlying the characteristic cytoarchitectural abnormalities associated with FCD. In the present study, a broad panel of markers identifying layer-specific neuron subpopulations was applied to characterize dyslamination and structural alterations in FCD with balloon cells (FCD 2b). Pan-neuronal neuronal nuclei (NeuN) and layer-specific protein expression (Reelin, Calbindin, Calretinin, SMI32 (nonphosphorylated neurofilament H), Parvalbumin, transducin-like enhancer protein 4 (TLE4), and Vimentin) was studied by immunohistochemistry on paraffin sections of FCD2b cases (n = 22) and was compared to two control groups with (n = 7) or without epilepsy (n = 4 postmortem cases). Total and layer-specific neuron densities were systematically quantified by cell counting considering age at surgery and brain region. We show that in FCD2b total neuron densities across all six cortical layers were not significantly different from controls. In addition, we present evidence that a basic laminar arrangement of layer-specific neuron subtypes was preserved despite the severe disturbance of cortical structure. SMI32-positive pyramidal neurons showed no significant difference in total numbers, but a reduction in layers III and V. The densities of supragranular Calbindin- and Calretinin-positive interneurons in layers II and III were not different from controls, whereas Parvalbumin-expressing interneurons, primarily located in layer IV, were significantly reduced in numbers when compared to control cases without epilepsy. In layer VI, the density of TLE4-positive projection neurons was significantly increased. Altogether, these data show that changes in cellular composition mainly affect deep cortical layers in FCD2b. The application of a broad panel of markers defining layer-specific neuronal subpopulations revealed that in FCD2b neuronal diversity and a basic laminar arrangement are maintained despite the severe disturbance of cytoarchitecture. Moreover, it showed that Parvalbumin-positive, inhibitory interneurons are highly vulnerable in contrast to other interneuron subtypes, possibly related to the epileptic condition. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Weber's law implies neural discharge more regular than a Poisson process.
Kang, Jing; Wu, Jianhua; Smerieri, Anteo; Feng, Jianfeng
2010-03-01
Weber's law is one of the basic laws in psychophysics, but the link between this psychophysical behavior and the neuronal response has not yet been established. In this paper, we carried out an analysis on the spike train statistics when Weber's law holds, and found that the efferent spike train of a single neuron is less variable than a Poisson process. For population neurons, Weber's law is satisfied only when the population size is small (< 10 neurons). However, if the population neurons share a weak correlation in their discharges and individual neuronal spike train is more regular than a Poisson process, Weber's law is true without any restriction on the population size. Biased competition attractor network also demonstrates that the coefficient of variation of interspike interval in the winning pool should be less than one for the validity of Weber's law. Our work links Weber's law with neural firing property quantitatively, shedding light on the relation between psychophysical behavior and neuronal responses.
Maricich, Stephen M.; Xia, Anping; Mathes, Erin L.; Wang, Vincent Y.; Oghalai, John S.; Fritzsch, Bernd; Zoghbi, Huda Y.
2009-01-01
Atoh1 is a basic helix-loop-helix transcription factor necessary for the specification of inner ear hair cells and central auditory system neurons derived from the rhombic lip. We used the Cre-loxP system and two Cre-driver lines (Egr2Cre and Hoxb1Cre) to delete Atoh1 from different regions of the cochlear nucleus (CN) and accessory auditory nuclei (AAN). Adult Atoh1-conditional knockout mice (Atoh1CKO) are behaviorally deaf, have diminished auditory brainstem evoked responses and disrupted CN and AAN morphology and connectivity. In addition, Egr2; Atoh1CKO mice lose spiral ganglion neurons in the cochlea and AAN neurons during the first 3 days of life, revealing a novel critical period in the development of these neurons. These new mouse models of predominantly central deafness illuminate the importance of the CN for support of a subset of peripheral and central auditory neurons. PMID:19741118
Exosome-associated release, uptake, and neurotoxicity of HIV-1 Tat protein.
Rahimian, Pejman; He, Johnny J
2016-12-01
HIV-1 Tat is an indispensible transactivator for HIV gene transcription and replication. It has been shown to exit cells as a free protein and enter neighboring cells or interact with surface receptors of neighboring cells to regulate gene expression and cell function. In this study, we report, for the first time, exosome-associated Tat release and uptake. Using a HIV-1 LTR-driven luciferase reporter-based cell assay and Western blotting or in combination with exosome inhibitor, OptiPrep gradient fractionation, and exosome depletion, we demonstrated significant presence of HIV-1 Tat in exosomes derived from Tat-expressing primary astrocytes, Tat-transfected U373.MG and 293T, and HIV-infected MT4. We further showed that exosome-associated Tat from Tat-expressing astrocytes was capable of causing neurite shortening and neuron death, further supporting that this new form of extracellular Tat is biologically active. Lastly, we constructed a Tat mutant deleted of its basic domain and determined the role of the basic domain in Tat trafficking into exosomes. Basic domain-deleted Tat exhibited no apparent effects on Tat trafficking into exosomes, while maintained its dominant-negative function in Tat-mediated LTR transactivation. Taken together, these results show a significant fraction of Tat is secreted and present in the form of exosomes and may contribute to the stability of extracellular Tat and broaden the spectrum of its target cells.
[What is an emotion? An introduction to the study of emotions].
Derouesné, Christian
2011-03-01
Human emotions are hypothetic constructs based on psychological and physiological data. According to the psychoevolutionnist theories, all emotions derive from a set of discrete basic emotions, common to human and animals, genetically determined. Basic emotions are thus considered as physiological processes based on specific neuronal circuits. On the contrary, for appraisal and social theories, emotions are psychological processes resulting from the cognitive appraisal of the stimulus-event for the well-being and objectives of the subject, and are of social origin. They develop during life, especially in childhood, from interactions between the individual and his environement. According to the appraisal or constructivist theories, no sharp distinction is to be made between emotions and other manifestations of the affective life. Emotions require the global functioning of the brain, even if more specialized regions are involved. They play a fundamental role in the development of the child's psychological and social life. They mediate the subject's response to the stimulus-event, allowing more appropriate reactions than fixed instinctive ones. Nevertheless, the adaptative function of every emotion or their every component can be questioned. Emotional disturbances are major consequences of psychiatric or neurological disorders. The link between the results of neuropsychological studies of emotions based on the recognition of emotional facal expression according to the basic emotion theory, and the emotional disturbances experienced in daily life is highly questionable on account of the high complexity of human affective life.
Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation.
Krotov, Volodymyr; Tokhtamysh, Anastasia; Kopach, Olga; Dromaretsky, Andrew; Sheremet, Yevhenii; Belan, Pavel; Voitenko, Nana
2017-01-01
Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent). The tissue preparation has been also probed using Ca 2+ imaging with fluorescent Ca 2+ dyes (membrane-impermeable or -permeable) to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.
Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H
2014-01-28
ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.
Maximization of Learning Speed in the Motor Cortex Due to Neuronal Redundancy
Takiyama, Ken; Okada, Masato
2012-01-01
Many redundancies play functional roles in motor control and motor learning. For example, kinematic and muscle redundancies contribute to stabilizing posture and impedance control, respectively. Another redundancy is the number of neurons themselves; there are overwhelmingly more neurons than muscles, and many combinations of neural activation can generate identical muscle activity. The functional roles of this neuronal redundancy remains unknown. Analysis of a redundant neural network model makes it possible to investigate these functional roles while varying the number of model neurons and holding constant the number of output units. Our analysis reveals that learning speed reaches its maximum value if and only if the model includes sufficient neuronal redundancy. This analytical result does not depend on whether the distribution of the preferred direction is uniform or a skewed bimodal, both of which have been reported in neurophysiological studies. Neuronal redundancy maximizes learning speed, even if the neural network model includes recurrent connections, a nonlinear activation function, or nonlinear muscle units. Furthermore, our results do not rely on the shape of the generalization function. The results of this study suggest that one of the functional roles of neuronal redundancy is to maximize learning speed. PMID:22253586
Smith, Katharine R.; Kopeikina, Katherine J.; Fawcett-Patel, Jessica M.; Leaderbrand, Katherine; Gao, Ruoqi; Schürmann, Britta; Myczek, Kristoffer; Radulovic, Jelena; Swanson, Geoffrey T.; Penzes, Peter
2014-01-01
Summary Recent evidence implicates glutamatergic synapses as key pathogenic sites in psychiatric disorders. Common and rare variants in the ANK3 gene, encoding ankyrin-G, have been associated with bipolar disorder, schizophrenia, and autism. Here we demonstrate that ankyrin-G is integral to AMPAR-mediated synaptic transmission and maintenance of spine morphology. Using super-resolution microscopy we find that ankyrin-G forms distinct nanodomain structures within the spine head and neck. At these sites, it modulates mushroom spine structure and function, likely as a perisynaptic scaffold and barrier within the spine neck. Neuronal activity promotes ankyrin-G accumulation in distinct spine subdomains, where it differentially regulates NMDA receptor-dependent plasticity. These data implicate subsynaptic nanodomains containing a major psychiatric risk molecule, ankyrin-G, as having location-specific functions, and opens directions for basic and translational investigation of psychiatric risk molecules. PMID:25374361
Cannabinoids and atherosclerosis.
Fisar, Zdenek
2009-01-01
The endocannabinoids are a family of lipid neurotransmitters that engage the same membrane receptors targeted by tetrahydrocannabinol and that mediate retrograde signal from postsynaptic neurons to presynaptic ones. Discovery of endogenous cannabinoids and studies of the physiological functions of the cannabinoid system in the brain and body are producing a number of important findings about the role of membrane lipids and fatty acids. The role of lipid membranes in the cannabinoid system follows from the fact that the source and supply of endogenous cannabinoids are derived from arachidonic acid. The study of molecules which influence the cannabinoid system in the brain and body is crucial in search of medical preparations with the therapeutic effects of the phytocannabinoids without the negative effects on cognitive function attributed to cannabis. Basic information about function and role of the endocannabinoid system is summarized in the paper; possible therapeutic action of cannabinoids, effects on atherosclerosis specially, is described at the close.
Signals and circuits in the purkinje neuron.
Abrams, Zéev R; Zhang, Xiang
2011-01-01
Purkinje neurons (PN) in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from electrical engineering, particularly signal processing and digital/analog circuits. By viewing the PN as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today's integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the PN and define three unique frequency ranges associated with the cells' output. Comparing the PN to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the PN can act as a multivibrator circuit.
The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.
Wilson, J A
1979-01-01
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.
Intrinsically active and pacemaker neurons in pluripotent stem cell-derived neuronal populations.
Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig
2014-03-11
Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks.
Molecular and cellular organization of taste neurons in adult Drosophila pharynx
Chen, Yu-Chieh (David); Dahanukar, Anupama
2017-01-01
SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040
Antunes, Gabriela; Faria da Silva, Samuel F; Simoes de Souza, Fabio M
2018-06-01
Mirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm. Our simulation results demonstrated that STDP is sufficient for the rise of mirror neuron function between the pairs of neocortical neurons. This is a proof of concept that pairs of neocortical neurons associating sensory inputs to motor outputs could operate like mirror neurons. In addition, we used the mirror neuron model to investigate whether channelopathies associated with autism spectrum disorder could impair the modeled mirror function. Our simulation results showed that impaired hyperpolarization-activated cationic currents (Ih) affected the mirror function between the pairs of neocortical neurons coupled by STDP.
Intrinsically Active and Pacemaker Neurons in Pluripotent Stem Cell-Derived Neuronal Populations
Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig
2014-01-01
Summary Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks. PMID:24672755
Kono, Sho; Kushida, Takatoshi; Hirano-Iwata, Ayumi; Niwano, Michio; Tanii, Takashi
2016-01-01
Excitatory and inhibitory neurons have distinct roles in cortical dynamics. Here we present a novel method for identifying inhibitory GABAergic neurons from non-GABAergic neurons, which are mostly excitatory glutamatergic neurons, in primary cortical cultures. This was achieved using an asymmetrically designed micropattern that directs an axonal process to the longest pathway. In the current work, we first modified the micropattern geometry to improve cell viability and then studied the axon length from 2 to 7 days in vitro (DIV). The cell types of neurons were evaluated retrospectively based on immunoreactivity against GAD67, a marker for inhibitory GABAergic neurons. We found that axons of non-GABAergic neurons grow significantly longer than those of GABAergic neurons in the early stages of development. The optimal threshold for identifying GABAergic and non-GABAergic neurons was evaluated to be 110 μm at 6 DIV. The method does not require any fluorescence labelling and can be carried out on live cells. The accuracy of identification was 98.2%. We confirmed that the high accuracy was due to the use of a micropattern, which standardized the development of cultured neurons. The method promises to be beneficial both for engineering neuronal networks in vitro and for basic cellular neuroscience research. PMID:27513933
Qi, Yuchen; Zhang, Xin-Jun; Renier, Nicolas; Wu, Zhuhao; Atkin, Talia; Sun, Ziyi; Ozair, M. Zeeshan; Tchieu, Jason; Zimmer, Bastian; Fattahi, Faranak; Ganat, Yosif; Azevedo, Ricardo; Zeltner, Nadja; Brivanlou, Ali H.; Karayiorgou, Maria; Gogos, Joseph; Tomishima, Mark; Tessier-Lavigne, Marc; Shi, Song-Hai; Studer, Lorenz
2017-01-01
Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders. PMID:28112759
Calculation of precise firing statistics in a neural network model
NASA Astrophysics Data System (ADS)
Cho, Myoung Won
2017-08-01
A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.
Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula
2017-08-02
Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social interactions, contributing to their isolation. Here, a mouse model of FXS was used to investigate the auditory brainstem where basic sound information is first processed. Loss of the Fragile X mental retardation protein leads to excessive excitatory compared with inhibitory inputs in neurons extracting information about sound levels. Functionally, this elevated excitation results in increased firing rates, and abnormal coding of frequency and binaural sound localization cues. Imbalanced early-stage sound level processing could partially explain the auditory processing deficits in FXS. Copyright © 2017 the authors 0270-6474/17/377403-17$15.00/0.
Pape, Hans-Christian; Pare, Denis
2009-01-01
The last ten years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate to the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled to the fact that the underlying circuitry is evolutionarily well conserved makes it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances, came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses. PMID:20393190
Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma
Kasim, Mumtaz; Heß, Vicky; Scholz, Holger; Persson, Pontus B.; Fähling, Michael
2016-01-01
Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy. PMID:28066180
Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.
Rau, Florian; Clemens, Jan; Naumov, Victor; Hennig, R Matthias; Schreiber, Susanne
2015-11-01
In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.
The functional architectures of addition and subtraction: Network discovery using fMRI and DCM.
Yang, Yang; Zhong, Ning; Friston, Karl; Imamura, Kazuyuki; Lu, Shengfu; Li, Mi; Zhou, Haiyan; Wang, Haiyuan; Li, Kuncheng; Hu, Bin
2017-06-01
The neuronal mechanisms underlying arithmetic calculations are not well understood but the differences between mental addition and subtraction could be particularly revealing. Using fMRI and dynamic causal modeling (DCM), this study aimed to identify the distinct neuronal architectures engaged by the cognitive processes of simple addition and subtraction. Our results revealed significantly greater activation during subtraction in regions along the dorsal pathway, including the left inferior frontal gyrus (IFG), middle portion of dorsolateral prefrontal cortex (mDLPFC), and supplementary motor area (SMA), compared with addition. Subsequent analysis of the underlying changes in connectivity - with DCM - revealed a common circuit processing basic (numeric) attributes and the retrieval of arithmetic facts. However, DCM showed that addition was more likely to engage (numeric) retrieval-based circuits in the left hemisphere, while subtraction tended to draw on (magnitude) processing in bilateral parietal cortex, especially the right intraparietal sulcus (IPS). Our findings endorse previous hypotheses about the differences in strategic implementation, dominant hemisphere, and the neuronal circuits underlying addition and subtraction. Moreover, for simple arithmetic, our connectivity results suggest that subtraction calls on more complex processing than addition: auxiliary phonological, visual, and motor processes, for representing numbers, were engaged by subtraction, relative to addition. Hum Brain Mapp 38:3210-3225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg
2016-01-01
The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks. DOI: http://dx.doi.org/10.7554/eLife.15719.001 PMID:27525488
When apperceptive agnosia is explained by a deficit of primary visual processing.
Serino, Andrea; Cecere, Roberto; Dundon, Neil; Bertini, Caterina; Sanchez-Castaneda, Cristina; Làdavas, Elisabetta
2014-03-01
Visual agnosia is a deficit in shape perception, affecting figure, object, face and letter recognition. Agnosia is usually attributed to lesions to high-order modules of the visual system, which combine visual cues to represent the shape of objects. However, most of previously reported agnosia cases presented visual field (VF) defects and poor primary visual processing. The present case-study aims to verify whether form agnosia could be explained by a deficit in basic visual functions, rather that by a deficit in high-order shape recognition. Patient SDV suffered a bilateral lesion of the occipital cortex due to anoxia. When tested, he could navigate, interact with others, and was autonomous in daily life activities. However, he could not recognize objects from drawings and figures, read or recognize familiar faces. He was able to recognize objects by touch and people from their voice. Assessments of visual functions showed blindness at the centre of the VF, up to almost 5°, bilaterally, with better stimulus detection in the periphery. Colour and motion perception was preserved. Psychophysical experiments showed that SDV's visual recognition deficits were not explained by poor spatial acuity or by the crowding effect. Rather a severe deficit in line orientation processing might be a key mechanism explaining SDV's agnosia. Line orientation processing is a basic function of primary visual cortex neurons, necessary for detecting "edges" of visual stimuli to build up a "primal sketch" for object recognition. We propose, therefore, that some forms of visual agnosia may be explained by deficits in basic visual functions due to widespread lesions of the primary visual areas, affecting primary levels of visual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Congruent and Opposite Neurons as Partners in Multisensory Integration and Segregation
NASA Astrophysics Data System (ADS)
Zhang, Wen-Hao; Wong, K. Y. Michael; Wang, He; Wu, Si
Experiments revealed that where visual and vestibular cues are integrated to infer heading direction in the brain, there are two types of neurons with roughly the same number. Respectively, congruent and opposite cells respond similarly and oppositely to visual and vestibular cues. Congruent neurons are known to be responsible for cue integration, but the computational role of opposite neurons remains largely unknown. We propose that opposite neurons may serve to encode the disparity information between cues necessary for multisensory segregation. We build a computational model composed of two reciprocally coupled modules, each consisting of groups of congruent and opposite neurons. Our model reproduces the characteristics of congruent and opposite neurons, and demonstrates that in each module, congruent and opposite neurons can jointly achieve optimal multisensory information integration and segregation. This study sheds light on our understanding of how the brain implements optimal multisensory integration and segregation concurrently in a distributed manner. This work is supported by the Research Grants Council of Hong Kong (N _HKUST606/12, 605813, and 16322616) and National Basic Research Program of China (2014CB846101) and the Natural Science Foundation of China (31261160495).
Dopamine neurons share common response function for reward prediction error
Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige
2016-01-01
Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803
Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.
2011-01-01
SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257
Mirror neurons and imitation: a computationally guided review.
Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael
2006-04-01
Neurophysiology reveals the properties of individual mirror neurons in the macaque while brain imaging reveals the presence of 'mirror systems' (not individual neurons) in the human. Current conceptual models attribute high level functions such as action understanding, imitation, and language to mirror neurons. However, only the first of these three functions is well-developed in monkeys. We thus distinguish current opinions (conceptual models) on mirror neuron function from more detailed computational models. We assess the strengths and weaknesses of current computational models in addressing the data and speculations on mirror neurons (macaque) and mirror systems (human). In particular, our mirror neuron system (MNS), mental state inference (MSI) and modular selection and identification for control (MOSAIC) models are analyzed in more detail. Conceptual models often overlook the computational requirements for posited functions, while too many computational models adopt the erroneous hypothesis that mirror neurons are interchangeable with imitation ability. Our meta-analysis underlines the gap between conceptual and computational models and points out the research effort required from both sides to reduce this gap.
Ramachandran, Kapil V.; Margolis, Seth S.
2017-01-01
In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It remains unclear how proteasomes can acutely regulate such processes, as this is inconsistent with their canonical role in proteostasis. Here, we made the discovery of a mammalian nervous system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is tightly associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of this membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked extracellular peptide production and attenuated neuronal activity-induced calcium signaling. Moreover, membrane proteasome-derived peptides are sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes primarily function to maintain proteostasis, and highlight a form of neuronal communication through a membrane proteasome complex. PMID:28287632
Sanchez, Karla R; Mersha, Mahlet D; Dhillon, Harbinder S; Temburni, Murali K
2018-04-26
Bis-phenols, such as bis-phenol A (BPA) and bis-phenol-S (BPS), are polymerizing agents widely used in the production of plastics and numerous everyday products. They are classified as endocrine disrupting compounds (EDC) with estradiol-like properties. Long-term exposure to EDCs, even at low doses, has been linked with various health defects including cancer, behavioral disorders, and infertility, with greater vulnerability during early developmental periods. To study the effects of BPA on the development of neuronal function, we used an in vitro neuronal network derived from the early chick embryonic brain as a model. We found that exposure to BPA affected the development of network activity, specifically spiking activity and synchronization. A change in network activity is the crucial link between the molecular target of a drug or compound and its effect on behavioral outcome. Multi-electrode arrays are increasingly becoming useful tools to study the effects of drugs on network activity in vitro. There are several systems available in the market and, although there are variations in the number of electrodes, the type and quality of the electrode array and the analysis software, the basic underlying principles, and the data obtained is the same across the different systems. Although currently limited to analysis of two-dimensional in vitro cultures, these MEA systems are being improved to enable in vivo network activity in brain slices. Here, we provide a detailed protocol for embryonic exposure and recording neuronal network activity and synchrony, along with representative results.
Zhu, Jun-De; Wang, Jun-Jie; Zhang, Xian-Hu; Yu, Yan; Kang, Zhao-Sheng
2018-04-01
Panax ginseng is a slow-growing perennial plant. Panax ginseng extract has numerous biological activities, including antitumor, anti-inflammatory and antistress activities. Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment. In this study, we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion, a well-known model of vascular dementia. The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract. Morris water maze and balance beam tests were used to evaluate memory deficits and motor function, respectively. Protein quantity was used to evaluate cholinergic neurons. Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells. Western blot assay was used to evaluate protein levels of vascular endothelial growth factor, basic fibroblast growth factor, Bcl-2 and Bax. Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and bFGF protein expression in the hippocampal CA3 area. Furthermore, Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells, and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression. The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine, a commonly used drug for the treatment of vascular dementia. These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion, and therefore might have therapeutic potential for preventing and treating the disease.
Wallace, Sean W; Singhvi, Aakanksha; Liang, Yupu; Lu, Yun; Shaham, Shai
2016-04-19
Sensory neurons are an animal's gateway to the world, and their receptive endings, the sites of sensory signal transduction, are often associated with glia. Although glia are known to promote sensory-neuron functions, the molecular bases of these interactions are poorly explored. Here, we describe a post-developmental glial role for the PROS-1/Prospero/PROX1 homeodomain protein in sensory-neuron function in C. elegans. Using glia expression profiling, we demonstrate that, unlike previously characterized cell fate roles, PROS-1 functions post-embryonically to control sense-organ glia-specific secretome expression. PROS-1 functions cell autonomously to regulate glial secretion and membrane structure, and non-cell autonomously to control the shape and function of the receptive endings of sensory neurons. Known glial genes controlling sensory-neuron function are PROS-1 targets, and we identify additional PROS-1-dependent genes required for neuron attributes. Drosophila Prospero and vertebrate PROX1 are expressed in post-mitotic sense-organ glia and astrocytes, suggesting conserved roles for this class of transcription factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kjeldsen, Henrik D.; Kaiser, Marcus; Whittington, Miles A.
2015-01-01
Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. PMID:26026581
Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A
2015-09-30
Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Sonic Hedgehog Expression in Corticofugal Projection Neurons Directs Cortical Microcircuit Formation
Harwell, Corey C.; Parker, Philip R.L.; Gee, Steven M.; Okada, Ami; McConnell, Susan K.; Kreitzer, Anatol C.; Kriegstein, Arnold R.
2012-01-01
SUMMARY The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. PMID:22445340
The Role of Glia in Sleep Regulation and Function.
Frank, Marcos G
2018-01-28
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Boyadjieva, Nadka I.; Ortigüela, María; Arjona, Alvaro; Cheng, Xiaodong; Sarkar, Dipak K.
2010-01-01
Background Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of β-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. Methods To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-γ (IFN-γ) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. Results We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-γ in control and fetal alcohol exposed rats. Conclusions These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyper-response and immune deficiency in fetal alcohol exposed subjects. PMID:19320628
Kubanek, Jan; Snyder, Lawrence H.
2017-01-01
Abstract Behavior is guided by previous experience. Good, positive outcomes drive a repetition of a previous behavior or choice, whereas poor or bad outcomes lead to an avoidance. How these basic drives are implemented by the brain has been of primary interest to psychology and neuroscience. We engaged animals in a choice task in which the size of a reward outcome strongly governed the animals' subsequent decision whether to repeat or switch the previous choice. We recorded the discharge activity of neurons implicated in reward-based choice in 2 regions of parietal cortex. We found that the tendency to retain previous choice following a large (small) reward was paralleled by a marked decrease (increase) in the activity of parietal neurons. This neural effect is independent of, and of sign opposite to, value-based modulations reported in parietal cortex previously. This effect shares the same basic properties with signals previously reported in the limbic system that detect the size of the recently obtained reward to mediate proper repeat-switch decisions. We conclude that the size of the obtained reward is a decision variable that guides the decision between retaining a choice or switching, and neurons in parietal cortex strongly respond to this novel decision variable. PMID:26491065
NASA Technical Reports Server (NTRS)
Fritzsch, Bernd
2003-01-01
The molecular and cellular origin of the primary neurons of the inner ear, the vestibular and spiral neurons, is reviewed including how they connect to the specific sensory epithelia and what the molecular nature of their survival is. Primary neurons of the ear depend on a single basic Helix-Loop-Helix (bHLH) protein for their formation, neurogenin 1 (ngn1). An immediate downstream gene is the bHLH gene neuronal differentiation (NeuroD). Targeted null mutations of ngn1 results in absence of primary neuron formation; targeted null mutation of NeuroD results in loss of almost all spiral and many vestibular neurons. NeuroD and a later expressed gene, Brn3a, play a role in pathfinding to and within sensory epithelia. The molecular nature of this pathfinding property is unknown. Reduction of hair cells in ngn1 null mutations suggests a clonal relationship with primary neurons. This relationship may play some role in specifying the identity of hair cells and the primary neurons that connect with them. Primary neuron neurites growth to sensory epithelia is initially independent of trophic factors released from developing sensory epithelia, but becomes rapidly dependent on those factors. Null mutations of specific neurotrophic factors lose distinct primary neuron populations which undergo rapid embryonic cell death.
Bell, Harold J; Inoue, Takuya; Shum, Kelly; Luk, Collin; Syed, Naweed I
2007-06-01
Breathing is an essential homeostatic behavior regulated by central neuronal networks, often called central pattern generators (CPGs). Despite ongoing advances in our understanding of the neural control of breathing, the basic mechanisms by which peripheral input modulates the activities of the central respiratory CPG remain elusive. This lack of fundamental knowledge vis-à-vis the role of peripheral influences in the control of the respiratory CPG is due in large part to the complexity of mammalian respiratory control centres. We have therefore developed a simpler invertebrate model to study the basic cellular and synaptic mechanisms by which a peripheral chemosensory input affects the central respiratory CPG. Here we report on the identification and characterization of peripheral chemoreceptor cells (PCRCs) that relay hypoxia-sensitive chemosensory information to the known respiratory CPG neuron right pedal dorsal 1 in the mollusk Lymnaea stagnalis. Selective perfusion of these PCRCs with hypoxic saline triggered bursting activity in these neurons and when isolated in cell culture these cells also demonstrated hypoxic sensitivity that resulted in membrane depolarization and spiking activity. When cocultured with right pedal dorsal 1, the PCRCs developed synapses that exhibited a form of short-term synaptic plasticity in response to hypoxia. Finally, osphradial denervation in intact animals significantly perturbed respiratory activity compared with their sham counterparts. This study provides evidence for direct synaptic connectivity between a peripheral regulatory element and a central respiratory CPG neuron, revealing a potential locus for hypoxia-induced synaptic plasticity underlying breathing behavior.
Blumenthal, Nils R; Hermanson, Ola; Heimrich, Bernd; Shastri, V Prasad
2014-11-11
Extracellular soluble signals are known to play a critical role in maintaining neuronal function and homeostasis in the CNS. However, the CNS is also composed of extracellular matrix macromolecules and glia support cells, and the contribution of the physical attributes of these components in maintenance and regulation of neuronal function is not well understood. Because these components possess well-defined topography, we theorize a role for topography in neuronal development and we demonstrate that survival and function of hippocampal neurons and differentiation of telencephalic neural stem cells is modulated by nanoroughness. At roughnesses corresponding to that of healthy astrocytes, hippocampal neurons dissociated and survived independent from astrocytes and showed superior functional traits (increased polarity and calcium flux). Furthermore, telencephalic neural stem cells differentiated into neurons even under exogenous signals that favor astrocytic differentiation. The decoupling of neurons from astrocytes seemed to be triggered by changes to astrocyte apical-surface topography in response to nanoroughness. Blocking signaling through mechanosensing cation channels using GsMTx4 negated the ability of neurons to sense the nanoroughness and promoted decoupling of neurons from astrocytes, thus providing direct evidence for the role of nanotopography in neuron-astrocyte interactions. We extrapolate the role of topography to neurodegenerative conditions and show that regions of amyloid plaque buildup in brain tissue of Alzheimer's patients are accompanied by detrimental changes in tissue roughness. These findings suggest a role for astrocyte and ECM-induced topographical changes in neuronal pathologies and provide new insights for developing therapeutic targets and engineering of neural biomaterials.
Functional model of biological neural networks.
Lo, James Ting-Ho
2010-12-01
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.
Aortic Baroreceptors Display Higher Mechanosensitivity than Carotid Baroreceptors.
Lau, Eva On-Chai; Lo, Chun-Yin; Yao, Yifei; Mak, Arthur Fuk-Tat; Jiang, Liwen; Huang, Yu; Yao, Xiaoqiang
2016-01-01
Arterial baroreceptors are mechanical sensors that detect blood pressure changes. It has long been suggested that the two arterial baroreceptors, aortic and carotid baroreceptors, have different pressure sensitivities. However, there is no consensus as to which of the arterial baroreceptors are more sensitive to changes in blood pressure. In the present study, we employed independent methods to compare the pressure sensitivity of the two arterial baroreceptors. Firstly, pressure-activated action potential firing was measured by whole-cell current clamp with a high-speed pressure clamp system in primary cultured baroreceptor neurons. The results show that aortic depressor neurons possessed a higher percentage of mechano-sensitive neurons. Furthermore, aortic baroreceptor neurons show a lower pressure threshold than that of carotid baroreceptor neurons. Secondly, uniaxial stretching of baroreceptor neurons, that mimics the forces exerted on blood vessels, elicited a larger increase in intracellular Ca(2+) rise in aortic baroreceptor neurons than in carotid baroreceptor neurons. Thirdly, the pressure-induced action potential firing in the aortic depressor nerve recorded in vivo was also higher. The present study therefore provides for a basic physiological understanding on the pressure sensitivity of the two baroreceptor neurons and suggests that aortic baroreceptors have a higher pressure sensitivity than carotid baroreceptors.
Tsoi, Shuk C; Aiya, Utsav V; Wasner, Kobi D; Phan, Mimi L; Pytte, Carolyn L; Vicario, David S
2014-01-01
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.
Wasner, Kobi D.; Phan, Mimi L.; Pytte, Carolyn L.; Vicario, David S.
2014-01-01
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals. PMID:25251077
Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman
2015-04-01
Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Cartlidge, Edwin
2017-01-01
Some scientists claim they can control genetically engineered neurons using magnetic fields. Have they and the high-profile journals that published their research failed to understand basic physics? Edwin Cartlidge investigates
Learning spatially coherent properties of the visual world in connectionist networks
NASA Astrophysics Data System (ADS)
Becker, Suzanna; Hinton, Geoffrey E.
1991-10-01
In the unsupervised learning paradigm, a network of neuron-like units is presented with an ensemble of input patterns from a structured environment, such as the visual world, and learns to represent the regularities in that input. The major goal in developing unsupervised learning algorithms is to find objective functions that characterize the quality of the network's representation without explicitly specifying the desired outputs of any of the units. The sort of objective functions considered cause a unit to become tuned to spatially coherent features of visual images (such as texture, depth, shading, and surface orientation), by learning to predict the outputs of other units which have spatially adjacent receptive fields. Simulations show that using an information-theoretic algorithm called IMAX, a network can be trained to represent depth by observing random dot stereograms of surfaces with continuously varying disparities. Once a layer of depth-tuned units has developed, subsequent layers are trained to perform surface interpolation of curved surfaces, by learning to predict the depth of one image region based on depth measurements in surrounding regions. An extension of the basic model allows a population of competing neurons to learn a distributed code for disparity, which naturally gives rise to a representation of discontinuities.
Sex differences in cognitive impairment and Alzheimer's disease.
Li, Rena; Singh, Meharvan
2014-08-01
Studies have shown differences in specific cognitive ability domains and risk of Alzheimer's disease between the men and women at later age. However it is important to know that sex differences in cognitive function during adulthood may have their basis in both organizational effects, i.e., occurring as early as during the neuronal development period, as well as in activational effects, where the influence of the sex steroids influence brain function in adulthood. Further, the rate of cognitive decline with aging is also different between the sexes. Understanding the biology of sex differences in cognitive function will not only provide insight into Alzheimer's disease prevention, but also is integral to the development of personalized, gender-specific medicine. This review draws on epidemiological, translational, clinical, and basic science studies to assess the impact of sex differences in cognitive function from young to old, and examines the effects of sex hormone treatments on Alzheimer's disease in men and women. Copyright © 2014 Elsevier Inc. All rights reserved.
Sex Differences in Cognitive Impairment and Alzheimer’s Disease
Li, Rena; Singh, Meharvan
2014-01-01
Studies have shown differences in specific cognitive ability domains and risk of Alzheimer’s disease between the men and women at later age. However it is important to know that sex differences in cognitive function during adulthood may have their basis in both organizational effects, i.e., occurring as early as during the neuronal development period, as well as in activational effects, where the influence of the sex steroids influence brain function in adulthood. Further, the rate of cognitive decline with aging is also different between the sexes. Understanding the biology of sex differences in cognitive function will not only provide insight into Alzheimer’s disease prevention, but also is integral to the development of personalized, gender-specific medicine. This review draws on epidemiological, translational, clinical, and basic science studies to assess the impact of sex differences in cognitive function from young to old, and examines the effects of sex hormone treatments on Alzheimer’s disease in men and women. PMID:24434111
Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex
de Vivo, Luisa; Nelson, Aaron B.; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara
2016-01-01
Study Objective: The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Methods: Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6–8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Results: Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Conclusions: Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. Citation: de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. SLEEP 2016;39(4):861–874. PMID:26715225
Peptides, serotonin, and breathing: the role of the raphe in the control of respiration.
Pilowsky, Paul M
2014-01-01
Over the last 20 years, it has become clear that many functionally defined autonomic neurons in the brainstem contain many more than one neurotransmitter. Here, the possible role and functions of colocalized neuropeptides in the caudal raphe nuclei of the medulla oblongata are discussed. Caudal raphe neurons provide an extensive input to neurons throughout the brainstem and spinal cord, including respiratory and cardiovascular neurons. It is concluded that one plausible function of colocalized neuropeptides is to maintain the membrane potential of target neurons within a defined window so that they remain able to function at extremes of activity. © 2014 Elsevier B.V. All rights reserved.
A Co-operative Regulation of Neuronal Excitability by UNC-7 Innexin and NCA/NALCN Leak Channel
2011-01-01
Gap junctions mediate the electrical coupling and intercellular communication between neighboring cells. Some gap junction proteins, namely connexins and pannexins in vertebrates, and innexins in invertebrates, may also function as hemichannels. A conserved NCA/Dmα1U/NALCN family cation leak channel regulates the excitability and activity of vertebrate and invertebrate neurons. In the present study, we describe a genetic and functional interaction between the innexin UNC-7 and the cation leak channel NCA in Caenorhabditis elegans neurons. While the loss of the neuronal NCA channel function leads to a reduced evoked postsynaptic current at neuromuscular junctions, a simultaneous loss of the UNC-7 function restores the evoked response. The expression of UNC-7 in neurons reverts the effect of the unc-7 mutation; moreover, the expression of UNC-7 mutant proteins that are predicted to be unable to form gap junctions also reverts this effect, suggesting that UNC-7 innexin regulates neuronal activity, in part, through gap junction-independent functions. We propose that, in addition to gap junction-mediated functions, UNC-7 innexin may also form hemichannels to regulate C. elegans' neuronal activity cooperatively with the NCA family leak channels. PMID:21489288
Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro
2013-10-01
To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.
How to make spinal motor neurons.
Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin
2014-02-01
All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.
Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons
Bradford, Aaron B; McNutt, Patrick M
2015-01-01
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments. PMID:26240679
LTP Induction Modifies Functional Relationship among Hippocampal Neurons
ERIC Educational Resources Information Center
Yun, Sung H.; Lee, Deok S.; Lee, Hyunjung; Baeg, Eun H.; Kim, Yun B.; Jung, Min W.
2007-01-01
To obtain evidence linking long-term potentiation (LTP) and memory, we examined whether LTP induction modifies functional relationship among neurons in the rat hippocampus. In contrast to neurons in low-frequency stimulated or AP5-treated slices, LTP induction altered "functional connectivity," as defined by the degree of synchronous firing, among…
Mind the gap: Neural coding of species identity in birdsong prosody.
Araki, Makoto; Bandi, M M; Yazaki-Sugiyama, Yoko
2016-12-09
Juvenile songbirds learn vocal communication from adult tutors of the same species but not from adults of other species. How species-specific learning emerges from the basic features of song prosody remains unknown. In the zebra finch auditory cortex, we discovered a class of neurons that register the silent temporal gaps between song syllables and are distinct from neurons encoding syllable morphology. Behavioral learning and neuronal coding of temporal gap structure resisted song tutoring from other species: Zebra finches fostered by Bengalese finch parents learned Bengalese finch song morphology transposed onto zebra finch temporal gaps. During the vocal learning period, temporal gap neurons fired selectively to zebra finch song. The innate temporal coding of intersyllable silent gaps suggests a neuronal barcode for conspecific vocal learning and social communication in acoustically diverse environments. Copyright © 2016, American Association for the Advancement of Science.
The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network
Malvaut, Sarah; Saghatelyan, Armen
2016-01-01
The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709
Tornero, Daniel; Tsupykov, Oleg; Granmo, Marcus; Rodriguez, Cristina; Grønning-Hansen, Marita; Thelin, Jonas; Smozhanik, Ekaterina; Laterza, Cecilia; Wattananit, Somsak; Ge, Ruimin; Tatarishvili, Jemal; Grealish, Shane; Brüstle, Oliver; Skibo, Galina; Parmar, Malin; Schouenborg, Jens; Lindvall, Olle; Kokaia, Zaal
2017-03-01
Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The challenge of understanding the brain: where we stand in 2015
Lisman, John
2015-01-01
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections. PMID:25996132
Data mining through simulation.
Lytton, William W; Stewart, Mark
2007-01-01
Data integration is particularly difficult in neuroscience; we must organize vast amounts of data around only a few fragmentary functional hypotheses. It has often been noted that computer simulation, by providing explicit hypotheses for a particular system and bridging across different levels of organization, can provide an organizational focus, which can be leveraged to form substantive hypotheses. Simulations lend meaning to data and can be updated and adapted as further data come in. The use of simulation in this context suggests the need for simulator adjuncts to manage and evaluate data. We have developed a neural query system (NQS) within the NEURON simulator, providing a relational database system, a query function, and basic data-mining tools. NQS is used within the simulation context to manage, verify, and evaluate model parameterizations. More importantly, it is used for data mining of simulation data and comparison with neurophysiology.
Cortical Specializations Underlying Fast Computations
Volgushev, Maxim
2016-01-01
The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988
Functional Convergence of Neurons Generated in the Developing and Adult Hippocampus
Piatti, Verónica C; Morgenstern, Nicolás A; Zhao, Chunmei; van Praag, Henriette; Gage, Fred H; Schinder, Alejandro F
2006-01-01
The dentate gyrus of the hippocampus contains neural progenitor cells (NPCs) that generate neurons throughout life. Developing neurons of the adult hippocampus have been described in depth. However, little is known about their functional properties as they become fully mature dentate granule cells (DGCs). To compare mature DGCs generated during development and adulthood, NPCs were labeled at both time points using retroviruses expressing different fluorescent proteins. Sequential electrophysiological recordings from neighboring neurons of different ages were carried out to quantitatively study their major synaptic inputs: excitatory projections from the entorhinal cortex and inhibitory afferents from local interneurons. Our results show that DGCs generated in the developing and adult hippocampus display a remarkably similar afferent connectivity with regard to both glutamate and GABA, the major neurotransmitters. We also demonstrate that adult-born neurons can fire action potentials in response to an excitatory drive, exhibiting a firing behavior comparable to that of neurons generated during development. We propose that neurons born in the developing and adult hippocampus constitute a functionally homogeneous neuronal population. These observations are critical to understanding the role of adult neurogenesis in hippocampal function. PMID:17121455
Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4.
Wu, J Y; Ribar, T J; Cummings, D E; Burton, K A; McKnight, G S; Means, A R
2000-08-01
Ca2+/calmodulin-dependent protein kinase IV (Camk4; also known as CaMKIV), a multifunctional serine/threonine protein kinase with limited tissue distribution, has been implicated in transcriptional regulation in lymphocytes, neurons and male germ cells. In the mouse testis, however, Camk4 is expressed in spermatids and associated with chromatin and nuclear matrix. Elongating spermatids are not transcriptionally active, raising the possibility that Camk4 has a novel function in male germ cells. To investigate the role of Camk4 in spermatogenesis, we have generated mice with a targeted deletion of the gene Camk4. Male Camk4-/- mice are infertile with impairment of spermiogenesis in late elongating spermatids. The sequential deposition of sperm basic nuclear proteins on chromatin is disrupted, with a specific loss of protamine-2 and prolonged retention of transition protein-2 (Tnp2) in step-15 spermatids. Protamine-2 is phosphorylated by Camk4 in vitro, implicating a connection between Camk4 signalling and the exchange of basic nuclear proteins in mammalian male germ cells. Defects in protamine-2 have been identified in sperm of infertile men, suggesting that our results may have clinical implications for the understanding of human male infertility.
Stepien, Anna E; Tripodi, Marco; Arber, Silvia
2010-11-04
Movement is the behavioral output of neuronal activity in the spinal cord. Motor neurons are grouped into motor neuron pools, the functional units innervating individual muscles. Here we establish an anatomical rabies virus-based connectivity assay in early postnatal mice. We employ it to study the connectivity scheme of premotor neurons, the neuronal cohorts monosynaptically connected to motor neurons, unveiling three aspects of organization. First, motor neuron pools are connected to segmentally widely distributed yet stereotypic interneuron populations, differing for pools innervating functionally distinct muscles. Second, depending on subpopulation identity, interneurons take on local or segmentally distributed positions. Third, cholinergic partition cells involved in the regulation of motor neuron excitability segregate into ipsilaterally and bilaterally projecting populations, the latter exhibiting preferential connections to functionally equivalent motor neuron pools bilaterally. Our study visualizes the widespread yet precise nature of the connectivity matrix for premotor interneurons and reveals exquisite synaptic specificity for bilaterally projecting cholinergic partition cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Luccioli, Stefano; Ben-Jacob, Eshel; Barzilai, Ari; Bonifazi, Paolo; Torcini, Alessandro
2014-01-01
It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity. PMID:25255443
Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z
2017-07-01
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.
Fletcher, Emily V.; Simon, Christian M.; Pagiazitis, John G.; Chalif, Joshua I.; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z.
2017-01-01
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contribution of their synaptic partners to the disease process is largely unknown. Here, we show that in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission we observed a decrease in the motor neuron firing which could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Increasing neuronal activity pharmacologically by chronic exposure in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease. PMID:28504671
α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons.
Froula, Jessica M; Henderson, Benjamin W; Gonzalez, Jose Carlos; Vaden, Jada H; Mclean, John W; Wu, Yumei; Banumurthy, Gokulakrishna; Overstreet-Wadiche, Linda; Herskowitz, Jeremy H; Volpicelli-Daley, Laura A
2018-05-01
Neuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear. To determine if pathologic α-syn causes neuronal defects, we induced endogenous α-syn to form inclusions resembling those found in diseased brains by treating hippocampal neurons with α-syn fibrils. At seven days after adding fibrils, α-syn inclusions are abundant in axons, but there is no cell death at this time point, allowing us to assess for potential alterations in neuronal function that are not caused by neuron death. We found that exposure of neurons to fibrils caused a significant reduction in mushroom spine densities, adding to the growing body of literature showing that altered spine morphology is a major pathologic phenotype in synucleinopathies. The reduction in spine densities occurred only in wild type neurons and not in neurons from α-syn knockout mice, suggesting that the changes in spine morphology result from fibril-induced corruption of endogenously expressed α-syn. Paradoxically, reduced postsynaptic spine density was accompanied by increased frequency of miniature excitatory postsynaptic currents (EPSCs) and presynaptic docked vesicles, suggesting enhanced presynaptic function. Action-potential dependent activity was unchanged, suggesting compensatory mechanisms responding to synaptic defects. Although activity at the level of the synapse was unchanged, neurons exposed to α-syn fibrils, showed reduced frequency and amplitudes of spontaneous Ca 2+ transients. These findings open areas of research to determine the mechanisms that alter neuronal function in brain regions critical for cognition at time points before neuron death.
Responses of primate cortical neurons to unitary and binary taste stimuli.
Miyaoka, Y; Pritchard, T C
1996-01-01
1. The responses of 126 neurons in primary gustatory cortices of two rhesus monkeys were recorded during sapid stimulation of the tongue with 18 taste stimuli. Ten of these stimuli were dissolved in distilled water (DW): 1.0 M sucrose (Suc), 0.1 M and 0.03 M sodium chloride (NaCl), 0.003 M hydrochloric acid (HCl), 0.001 M quinine hydrochloride (QHCl), 0.03 M monosodium glutamate (MSG), 0.03 M polycose, 0.3 M glycine, 0.1 M proline, and 0.1 M malic acid. Seven other stimuli were dissolved in 0.03 M MSG; the last stimulus was a mixture of 1.0 M Suc and 0.03 M NaCl. 2. The average spontaneous rate (2.2 +/- 0.2 spikes/s, mean +/- SE) and response to DW (2.5 +/- 0.2) of these 126 neurons was low but within the range previously reported for neurons in primate taste cortex. Suc was the most effective stimulus for 24.1% of the neurons tested followed by NaCl (15.7%), QHCl (14.8%), HCl (11.1%), MSG (10.2%), and other miscellaneous unitary gustatory stimuli (8.3%). Binary taste mixtures were the most effective stimuli for 15.7% of the sample. The net responses (corrected for DW, in spikes/s) for Suc-best (3.3), NaCl-best (4.3), HCl-best (3.4), QHCl-best (2.3), and MSG-best (4.1) were sluggish, but comparable with that reported previously. 3. The response breadth of the 82 neurons that responded best to either Suc, NaCl, HCl, or QHCl measured with the entropy coefficient indicated a moderate response breadth for these neurons (mean = 0.79; range = 0.30-0.98). According to the response criteria adopted in this experiment (water response +/- 1.96 SD), however, 81 of these 82 neurons (98.1%) responded to only one or two of the four basic taste stimuli. The disparity between the entropy- and criterion-based measures of response derive from the nature of the two statistics. Adjustments that would make the entropy statistic less inclusive and the definition of a response according to statistical criteria less exclusive would increase their concordance. 4. Three multivariate statistics (cluster, principal axis factor, and multidimensional analysis) were used to analyze the data. Cluster analysis enabled us to divide the 82 taste neurons into groups on the basis of response similarity. Each of the four largest groups was dominated by neurons that responded best to one of the four basic taste stimuli: Suc, NaCl, QHCl, and HCl (ranked in descending order); the fifth largest cluster contained neurons that responded best to MSG. Principal axis factor analysis demonstrated that 80.8% of the total variance could be accounted for by three factors. Neurons responding best to Suc, NaCl, and QHCl each were closely associated with one of those three factors, but the loadings of the HCl-best neurons were evenly distributed across all three factors. The communality coefficient of these three factors was > 80% for the Suc-, NaCl-, HCl-, and QHCl-best neurons; the MSG-best neurons, by comparison, had very few high loadings on any of these three factors and a correspondingly low communality coefficient of 40.4%, a difference that was statistically significant from the other four groups. Thus the three factors related to Suc-, NaCl-, HCl-, and QHCl-best neurons are not relevant to MSG-best neurons. We used multidimensional analysis to arrange the neurons that responded best to Suc, NaCl, HCl, QHCl, and MSG into five loosely arranged and partially overlapping clusters. A multidimensional space based on stimulus similarity showed that MSG was as different from the four basic taste stimuli as they were from one another. 5. Mixture suppression, a common observation in human psychophysical experiments, was examined at the neurophysiological level by including binary tastants in the stimulus battery. The average response of 19 Suc-best neurons to 1.0 M Suc (4.1 spikes/s) decreased to near 0 when the solvent was changed from DW to either 0.03 M MSG or 0.03 M NaCl. Similar decrements were observed in NaCl- and MSG-best neurons tested with Suc/NaCl mixtures.
Vijayakrishnan, Niranjana; Phillips, Scott E.; Broadie, Kendal
2010-01-01
Drosophila temperature-sensitive rolling blackout (rbots) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rboS358A mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase-domain is critical for RBO essential function. Likewise, the rboS358A mutant cannot provide any rescue of endocytic blockade in rbots Garland cells, demonstrating that the lipase-domain is indispensable for non-neuronal endocytosis. In contrast, rbots conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rboS358A mutant, showing that the RBO lipase-domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbots and the well-characterized dynamin GTPase conditional shibire (shits1) mutant. In both non-neuronal cells and neuronal synapses, shits1;rbots phenocopies shits1 endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase-domain dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. PMID:21029287
Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J
2012-06-20
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function.
Shimizu, Takeshi; Osanai, Yasuyuki; Ikenaka, Kazuhiro
2018-01-01
In the past, glial cells were considered to be 'glue' cells whose primary role was thought to be merely filling gaps in neural circuits. However, a growing number of reports have indicated the role of glial cells in higher brain function through their interaction with neurons. Myelin was originally thought to be just a sheath structure surrounding neuronal axons, but recently it has been shown that myelin exerts effects on the conduction velocity of neuronal axons even after myelin formation. Therefore, the investigation of glial cell properties and the neuron-glial interactions is important for understanding higher brain function. Moreover, since there are many neurological disorders caused by glial abnormalities, further understanding of glial cell-related diseases and the development of effective therapeutic strategies are warranted. In this review, we focused on oligodendrocyte-neuron interactions, with particular attention on (1) axonal signals underlying oligodendrocyte differentiation and myelination, (2) neuronal activity-dependent myelination and (3) the effects of myelination on higher brain function.
Harwell, Corey C; Parker, Philip R L; Gee, Steven M; Okada, Ami; McConnell, Susan K; Kreitzer, Anatol C; Kriegstein, Arnold R
2012-03-22
The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. Copyright © 2012 Elsevier Inc. All rights reserved.
Barton, Alan J; Valdés, Julio J; Orchard, Robert
2009-01-01
Classical neural networks are composed of neurons whose nature is determined by a certain function (the neuron model), usually pre-specified. In this paper, a type of neural network (NN-GP) is presented in which: (i) each neuron may have its own neuron model in the form of a general function, (ii) any layout (i.e network interconnection) is possible, and (iii) no bias nodes or weights are associated to the connections, neurons or layers. The general functions associated to a neuron are learned by searching a function space. They are not provided a priori, but are rather built as part of an Evolutionary Computation process based on Genetic Programming. The resulting network solutions are evaluated based on a fitness measure, which may, for example, be based on classification or regression errors. Two real-world examples are presented to illustrate the promising behaviour on classification problems via construction of a low-dimensional representation of a high-dimensional parameter space associated to the set of all network solutions.
[Neurotransmission in developmental disorders].
Takeuchi, Yoshihiro
2008-11-01
Attention deficit/hyperactivity disorder (AD/HD) is a heterogeneous developmental disorder with an etiology that is not fully understood. AD/HD has been considered to occur due to a disturbance in cathecholaminergic neurotransmission, with particular emphasis on dopamine. The neurotransmission of dopamine in subcortical regions such as the basal ganglia and limbic areas is synaptic; on the other hand, dopamine neurotransmission in the frontal cortex is quite different, because there are very few dopamine transporters (DAT) in the frontal cortex that allow dopamine to diffuse away from the dopamine synapse ("volume transmission"). It is now clear that noradrenergic neurons play a key regulatory role in dopaminergic function in the frontal cortex. Furthermore, serotonergic neurons exert an inhibitory effect on midbrain dopamine cell bodies, and they have an influence on dopamine release in terminal regions. There is accumulating neurobiological evidence pointing toward a role of the serotonin system in AD/HD. The etiology of autism spectrum disorders (ASD) is still unclear, but information from genetics, neuropathology, brain imaging, and basic neuroscience has provided insights into the understanding of this developmental disorder. In addition to abnormal circuitry in specific limbic and neocortical areas of the cerebral cortex, impairments in brainstem, cerebellar, thalamic, and basal ganglia connections have been reported. Numerous studies have pointed to abnormalities in serotonin and glutamate neurotransmission. Three important aspects involved in the pathophysiology of ASD have been proposed. The first is cell migration, the second is unbalanced excitatory-inhibitory networks, and the third is synapse formation and pruning, the key factors being reelin, neurexin, and neuroligin. Serotonin is considered to play an important role in all of these aspects of the pathophysiology of ASD. Finally, I would like to emphasize that it is crucial in the field of child neurology medical examination and treatment should be based on the basic neuroscience, always taking "neurons" into consideration.
Study on development of active-passive rehabilitation system for upper limbs: Hybrid-PLEMO
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Jin, Y.; Fukushima, K.; Akai, H.; Furusho, J.
2009-02-01
In recent years, many researchers have studied the potential of using robotics technology to assist and quantify the motor functions for neuron-rehabilitation. Some kinds of haptic devices have been developed and evaluated its efficiency with clinical tests, for example, upper limb training for patients with spasticity after stroke. Active-type (motor-driven) haptic devices can realize a lot of varieties of haptics. But they basically require high-cost safety system. On the other hand, passive-type (brake-based) haptic devices have inherent safety. However, the passive robot system has strong limitation on varieties of haptics. There are not sufficient evidences to clarify how the passive/active haptics effect to the rehabilitation of motor skills. In this paper, we developed an active-passive-switchable rehabilitation system with ER clutch/brake device named "Hybrid-PLEMO" in order to address these problems. In this paper, basic structures and haptic control methods of the Hybrid-PLEMO are described.
Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth
Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir
2009-01-01
We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241
Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth
2015-01-01
This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.
Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth
2016-01-01
This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972
Face-infringement space: the frame of reference of the ventral intraparietal area.
McCollum, Gin; Klam, François; Graf, Werner
2012-07-01
Experimental studies have shown that responses of ventral intraparietal area (VIP) neurons specialize in head movements and the environment near the head. VIP neurons respond to visual, auditory, and tactile stimuli, smooth pursuit eye movements, and passive and active movements of the head. This study demonstrates mathematical structure on a higher organizational level created within VIP by the integration of a complete set of variables covering face-infringement. Rather than positing dynamics in an a priori defined coordinate system such as those of physical space, we assemble neuronal receptive fields to find out what space of variables VIP neurons together cover. Section 1 presents a view of neurons as multidimensional mathematical objects. Each VIP neuron occupies or is responsive to a region in a sensorimotor phase space, thus unifying variables relevant to the disparate sensory modalities and movements. Convergence on one neuron joins variables functionally, as space and time are joined in relativistic physics to form a unified spacetime. The space of position and motion together forms a neuronal phase space, bridging neurophysiology and the physics of face-infringement. After a brief review of the experimental literature, the neuronal phase space natural to VIP is sequentially characterized, based on experimental data. Responses of neurons indicate variables that may serve as axes of neural reference frames, and neuronal responses have been so used in this study. The space of sensory and movement variables covered by VIP receptive fields joins visual and auditory space to body-bound sensory modalities: somatosensation and the inertial senses. This joining of allocentric and egocentric modalities is in keeping with the known relationship of the parietal lobe to the sense of self in space and to hemineglect, in both humans and monkeys. Following this inductive step, variables are formalized in terms of the mathematics of graph theory to deduce which combinations are complete as a multidimensional neural structure that provides the organism with a complete set of options regarding objects impacting the face, such as acceptance, pursuit, and avoidance. We consider four basic variable types: position and motion of the face and of an external object. Formalizing the four types of variables allows us to generalize to any sensory system and to determine the necessary and sufficient conditions for a neural center (for example, a cortical region) to provide a face-infringement space. We demonstrate that VIP includes at least one such face-infringement space.
Computational Models for Calcium-Mediated Astrocyte Functions.
Manninen, Tiina; Havela, Riikka; Linne, Marja-Leena
2018-01-01
The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro , but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop the models. Thus, we would like to emphasize that only via reproducible research are we able to build better computational models for astrocytes, which truly advance science. Our study is the first to characterize in detail the biophysical and biochemical mechanisms that have been modeled for astrocytes.
Computational Models for Calcium-Mediated Astrocyte Functions
Manninen, Tiina; Havela, Riikka; Linne, Marja-Leena
2018-01-01
The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro, but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop the models. Thus, we would like to emphasize that only via reproducible research are we able to build better computational models for astrocytes, which truly advance science. Our study is the first to characterize in detail the biophysical and biochemical mechanisms that have been modeled for astrocytes. PMID:29670517
Patel, Tapan P.; Ventre, Scott C.; Geddes-Klein, Donna; Singh, Pallab K.
2014-01-01
Alterations in the activity of neural circuits are a common consequence of traumatic brain injury (TBI), but the relationship between single-neuron properties and the aggregate network behavior is not well understood. We recently reported that the GluN2B-containing NMDA receptors (NMDARs) are key in mediating mechanical forces during TBI, and that TBI produces a complex change in the functional connectivity of neuronal networks. Here, we evaluated whether cell-to-cell heterogeneity in the connectivity and aggregate contribution of GluN2B receptors to [Ca2+]i before injury influenced the functional rewiring, spontaneous activity, and network plasticity following injury using primary rat cortical dissociated neurons. We found that the functional connectivity of a neuron to its neighbors, combined with the relative influx of calcium through distinct NMDAR subtypes, together contributed to the individual neuronal response to trauma. Specifically, individual neurons whose [Ca2+]i oscillations were largely due to GluN2B NMDAR activation lost many of their functional targets 1 h following injury. In comparison, neurons with large GluN2A contribution or neurons with high functional connectivity both independently protected against injury-induced loss in connectivity. Mechanistically, we found that traumatic injury resulted in increased uncorrelated network activity, an effect linked to reduction of the voltage-sensitive Mg2+ block of GluN2B-containing NMDARs. This uncorrelated activation of GluN2B subtypes after injury significantly limited the potential for network remodeling in response to a plasticity stimulus. Together, our data suggest that two single-cell characteristics, the aggregate contribution of NMDAR subtypes and the number of functional connections, influence network structure following traumatic injury. PMID:24647941
Shining light on neurons--elucidation of neuronal functions by photostimulation.
Eder, Matthias; Zieglgänsberger, Walter; Dodt, Hans-Ulrich
2004-01-01
Many neuronal functions can be elucidated by techniques that allow for a precise stimulation of defined regions of a neuron and its afferents. Photolytic release of neurotransmitters from 'caged' derivates in the vicinity of visualized neurons in living brain slices meets this request. This technique allows the study of the subcellular distribution and properties of functional native neurotransmitter receptors. These are prerequisites for a detailed analysis of the expression and spatial specificity of synaptic plasticity. Photostimulation can further be used to fast map the synaptic connectivity between nearby and, more importantly, distant cells in a neuronal network. Here we give a personal review of some of the technical aspects of photostimulation and recent findings, which illustrate the advantages of this technique.
Sagal, Jonathan; Zhan, Xiping; Xu, Jinchong; Tilghman, Jessica; Karuppagounder, Senthilkumar S; Chen, Li; Dawson, Valina L; Dawson, Ted M; Laterra, John; Ying, Mingyao
2014-08-01
Human pluripotent stem cells (PSCs) are a promising cell resource for various applications in regenerative medicine. Highly efficient approaches that differentiate human PSCs into functional lineage-specific neurons are critical for modeling neurological disorders and testing potential therapies. Proneural transcription factors are crucial drivers of neuron development and hold promise for driving highly efficient neuronal conversion in PSCs. Here, we study the functions of proneural transcription factor Atoh1 in the neuronal differentiation of PSCs. We show that Atoh1 is induced during the neuronal conversion of PSCs and that ectopic Atoh1 expression is sufficient to drive PSCs into neurons with high efficiency. Atoh1 induction, in combination with cell extrinsic factors, differentiates PSCs into functional dopaminergic (DA) neurons with >80% purity. Atoh1-induced DA neurons recapitulate key biochemical and electrophysiological features of midbrain DA neurons, the degeneration of which is responsible for clinical symptoms in Parkinson's disease (PD). Atoh1-induced DA neurons provide a reliable disease model for studying PD pathogenesis, such as neurotoxin-induced neurodegeneration in PD. Overall, our results determine the role of Atoh1 in regulating neuronal differentiation and neuron subtype specification of human PSCs. Our Atoh1-mediated differentiation approach will enable large-scale applications of PD patient-derived midbrain DA neurons in mechanistic studies and drug screening for both familial and sporadic PD. ©AlphaMed Press.
... Strategy Current Research Research Funded by NINDS Basic Neuroscience Clinical Research Translational Research Research at NINDS Focus ... Diversity Resources Jobs at NINDS Director, Division of Neuroscience Director, NIH BRAIN Initiative® Health Scientist Administrator Channels ...
NASA Technical Reports Server (NTRS)
Leigh, R. J.; Brandt, T.
1993-01-01
Conventional views of the vestibulo-ocular reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved--locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (< 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).
Sensory Detection and Responses to Toxic Gases
Bessac, Bret F.; Jordt, Sven-Eric
2010-01-01
The inhalation of reactive gases and vapors can lead to severe damage of the airways and lung, compromising the function of the respiratory system. Exposures to oxidizing, electrophilic, acidic, or basic gases frequently occur in occupational and ambient environments. Corrosive gases and vapors such as chlorine, phosgene, and chloropicrin were used as warfare agents and in terrorist acts. Chemical airway exposures are detected by the olfactory, gustatory, and nociceptive sensory systems that initiate protective physiological and behavioral responses. This review focuses on the role of airway nociceptive sensory neurons in chemical sensing and discusses the recent discovery of neuronal receptors for reactive chemicals. Using physiological, imaging, and genetic approaches, Transient Receptor Potential (TRP) ion channels in sensory neurons were shown to respond to a wide range of noxious chemical stimuli, initiating pain, respiratory depression, cough, glandular secretions, and other protective responses. TRPA1, a TRP ion channel expressed in chemosensory C-fibers, is activated by almost all oxidizing and electrophilic chemicals, including chlorine, acrolein, tear gas agents, and methyl isocyanate, the highly noxious chemical released in the Bhopal disaster. Chemicals likely activate TRPA1 through covalent protein modification. Animal studies using TRPA1 antagonists or TRPA1-deficient mice confirmed the role of TRPA1 in chemically induced respiratory reflexes, pain, and inflammation in vivo. New research shows that sensory neurons are not merely passive sensors of chemical exposures. Sensory channels such as TRPA1 are essential for maintenance of airway inflammation in asthma and may contribute to the progression of airway injury following high-level chemical exposures. PMID:20601631
2011-06-30
Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti Alan J. Grant, Joseph C...Dickens JC (2011) Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti . PLoS...palps. Both sexes of mosquitoes possess basiconic sensilla that contain three neurons; in Aedes aegypti these sensilla number about 35 in females and 21
Detection and clustering of features in aerial images by neuron network-based algorithm
NASA Astrophysics Data System (ADS)
Vozenilek, Vit
2015-12-01
The paper presents the algorithm for detection and clustering of feature in aerial photographs based on artificial neural networks. The presented approach is not focused on the detection of specific topographic features, but on the combination of general features analysis and their use for clustering and backward projection of clusters to aerial image. The basis of the algorithm is a calculation of the total error of the network and a change of weights of the network to minimize the error. A classic bipolar sigmoid was used for the activation function of the neurons and the basic method of backpropagation was used for learning. To verify that a set of features is able to represent the image content from the user's perspective, the web application was compiled (ASP.NET on the Microsoft .NET platform). The main achievements include the knowledge that man-made objects in aerial images can be successfully identified by detection of shapes and anomalies. It was also found that the appropriate combination of comprehensive features that describe the colors and selected shapes of individual areas can be useful for image analysis.
Light-controlled intracellular transport in Caenorhabditis elegans.
Harterink, Martin; van Bergeijk, Petra; Allier, Calixte; de Haan, Bart; van den Heuvel, Sander; Hoogenraad, Casper C; Kapitein, Lukas C
2016-02-22
To establish and maintain their complex morphology and function, neurons and other polarized cells exploit cytoskeletal motor proteins to distribute cargoes to specific compartments. Recent studies in cultured cells have used inducible motor protein recruitment to explore how different motors contribute to polarized transport and to control the subcellular positioning of organelles. Such approaches also seem promising avenues for studying motor activity and organelle positioning within more complex cellular assemblies, but their applicability to multicellular in vivo systems has so far remained unexplored. Here, we report the development of an optogenetic organelle transport strategy in the in vivo model system Caenorhabditis elegans. We demonstrate that movement and pausing of various organelles can be achieved by recruiting the proper cytoskeletal motor protein with light. In neurons, we find that kinesin and dynein exclusively target the axon and dendrite, respectively, revealing the basic principles for polarized transport. In vivo control of motor attachment and organelle distributions will be widely useful in exploring the mechanisms that govern the dynamic morphogenesis of cells and tissues, within the context of a developing animal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Macías, Silvio; Hechavarría, Julio C; Cobo, Ariadna; Mora, Emanuel C
2014-03-01
In the auditory system, tuning to sound level appears in the form of non-monotonic response-level functions that depict the response of a neuron to changing sound levels. Neurons with non-monotonic response-level functions respond best to a particular sound pressure level (defined as "best level" or level evoking the maximum response). We performed a comparative study on the location and basic functional organization of the auditory cortex in the gleaning bat, Macrotus waterhousii, and the aerial-hawking bat, Molossus molossus. Here, we describe the response-level function of cortical units in these two species. In the auditory cortices of M. waterhousii and M. molossus, the characteristic frequency of the units increased from caudal to rostral. In M. waterhousii, there was an even distribution of characteristic frequencies while in M. molossus there was an overrepresentation of frequencies present within echolocation pulses. In both species, most of the units showed best levels in a narrow range, without an evident topography in the amplitopic organization, as described in other species. During flight, bats decrease the intensity of their emitted pulses when they approach a prey item or an obstacle resulting in maintenance of perceived echo intensity. Narrow level tuning likely contributes to the extraction of echo amplitudes facilitating echo-intensity compensation. For aerial-hawking bats, like M. molossus, receiving echoes within the optimal sensitivity range can help the bats to sustain consistent analysis of successive echoes without distortions of perception caused by changes in amplitude. Copyright © 2013 Elsevier B.V. All rights reserved.
Prefrontal Neurons Encode a Solution to the Credit-Assignment Problem
Perge, János A.; Eskandar, Emad N.
2017-01-01
To adapt successfully to our environments, we must use the outcomes of our choices to guide future behavior. Critically, we must be able to correctly assign credit for any particular outcome to the causal features which preceded it. In some cases, the causal features may be immediately evident, whereas in others they may be separated in time or intermingled with irrelevant environmental stimuli, creating a potentially nontrivial credit-assignment problem. We examined the neuronal representation of information relevant for credit assignment in the dorsolateral prefrontal cortex (dlPFC) of two male rhesus macaques performing a task that elicited key aspects of this problem. We found that neurons conveyed the information necessary for credit assignment. Specifically, neuronal activity reflected both the relevant cues and outcomes at the time of feedback and did so in a manner that was stable over time, in contrast to prior reports of representational instability in the dlPFC. Furthermore, these representations were most stable early in learning, when credit assignment was most needed. When the same features were not needed for credit assignment, these neuronal representations were much weaker or absent. These results demonstrate that the activity of dlPFC neurons conforms to the basic requirements of a system that performs credit assignment, and that spiking activity can serve as a stable mechanism that links causes and effects. SIGNIFICANCE STATEMENT Credit assignment is the process by which we infer the causes of our successes and failures. We found that neuronal activity in the dorsolateral prefrontal cortex conveyed the necessary information for performing credit assignment. Importantly, while there are various potential mechanisms to retain a “trace” of the causal events over time, we observed that spiking activity was sufficiently stable to act as the link between causes and effects, in contrast to prior reports that suggested spiking representations were unstable over time. In addition, we observed that this stability varied as a function of learning, such that the neural code was more reliable over time during early learning, when it was most needed. PMID:28634307
Language learning impairments: integrating basic science, technology, and remediation.
Tallal, P; Merzenich, M M; Miller, S; Jenkins, W
1998-11-01
One of the fundamental goals of the modern field of neuroscience is to understand how neuronal activity gives rise to higher cortical function. However, to bridge the gap between neurobiology and behavior, we must understand higher cortical functions at the behavioral level at least as well as we have come to understand neurobiological processes at the cellular and molecular levels. This is certainly the case in the study of speech processing, where critical studies of behavioral dysfunction have provided key insights into the basic neurobiological mechanisms relevant to speech perception and production. Much of this progress derives from a detailed analysis of the sensory, perceptual, cognitive, and motor abilities of children who fail to acquire speech, language, and reading skills normally within the context of otherwise normal development. Current research now shows that a dysfunction in normal phonological processing, which is critical to the development of oral and written language, may derive, at least in part, from difficulties in perceiving and producing basic sensory-motor information in rapid succession--within tens of ms (see Tallal et al. 1993a for a review). There is now substantial evidence supporting the hypothesis that basic temporal integration processes play a fundamental role in establishing neural representations for the units of speech (phonemes), which must be segmented from the (continuous) speech stream and combined to form words, in order for the normal development of oral and written language to proceed. Results from magnetic resonance imaging (MRI) and positron emission tomography (PET) studies, as well as studies of behavioral performance in normal and language impaired children and adults, will be reviewed to support the view that the integration of rapidly changing successive acoustic events plays a primary role in phonological development and disorders. Finally, remediation studies based on this research, coupled with neuroplasticity research, will be presented.
Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.
Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip
2016-01-01
Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.
Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain.
Kim, Yu Shin; Anderson, Michael; Park, Kyoungsook; Zheng, Qin; Agarwal, Amit; Gong, Catherine; Saijilafu; Young, LeAnne; He, Shaoqiu; LaVinka, Pamela Colleen; Zhou, Fengquan; Bergles, Dwight; Hanani, Menachem; Guan, Yun; Spray, David C; Dong, Xinzhong
2016-09-07
Primary sensory neurons in the DRG play an essential role in initiating pain by detecting painful stimuli in the periphery. Tissue injury can sensitize DRG neurons, causing heightened pain sensitivity, often leading to chronic pain. Despite the functional importance, how DRG neurons function at a population level is unclear due to the lack of suitable tools. Here we developed an imaging technique that allowed us to simultaneously monitor the activities of >1,600 neurons/DRG in live mice and discovered a striking neuronal coupling phenomenon that adjacent neurons tend to activate together following tissue injury. This coupled activation occurs among various neurons and is mediated by an injury-induced upregulation of gap junctions in glial cells surrounding DRG neurons. Blocking gap junctions attenuated neuronal coupling and mechanical hyperalgesia. Therefore, neuronal coupling represents a new form of neuronal plasticity in the DRG and contributes to pain hypersensitivity by "hijacking" neighboring neurons through gap junctions. Copyright © 2016 Elsevier Inc. All rights reserved.
Xie, Rou-Gang; Chu, Wen-Guang; Hu, San-Jue; Luo, Ceng
2018-01-01
Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics. PMID:29303989
Yang, Zhilai; Chen, Na; Ge, Rongjing; Qian, Hao; Wang, Jin-Hui
2017-09-22
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.
Qian, Hao; Wang, Jin-Hui
2017-01-01
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits. PMID:29069799
Allison, J D; Bonds, A B
1994-01-01
Intracortical inhibition is believed to enhance the orientation tuning of striate cortical neurons, but the origin of this inhibition is unclear. To examine the possible influence of ascending inhibitory projections from the infragranular layers of striate cortex on the orientation selectivity of neurons in the supragranular layers, we measured the spatiotemporal response properties of 32 supragranular neurons in the cat before, during, and after neural activity in the infragranular layers beneath the recorded cells was inactivated by iontophoretic administration of GABA. During GABA iontophoresis, the orientation tuning bandwidth of 15 (46.9%) supragranular neurons broadened as a result of increases in response amplitude to stimuli oriented about +/- 20 degrees away from the preferred stimulus angle. The mean (+/- SD) baseline orientation tuning bandwidth (half width at half height) of these neurons was 13.08 +/- 2.3 degrees. Their mean tuning bandwidth during inactivation of the infragranular layers increased to 19.59 +/- 2.54 degrees, an increase of 49.7%. The mean percentage increase in orientation tuning bandwidth of the individual neurons was 47.4%. Four neurons exhibited symmetrical changes in their orientation tuning functions, while 11 neurons displayed asymmetrical changes. The change in form of the orientation tuning functions appeared to depend on the relative vertical alignment of the recorded neuron and the infragranular region of inactivation. Neurons located in close vertical register with the inactivated infragranular tissue exhibited symmetric changes in their orientation tuning functions. The neurons exhibiting asymmetric changes in their orientation tuning functions were located just outside the vertical register. Eight of these 11 neurons also demonstrated a mean shift of 6.67 +/- 5.77 degrees in their preferred stimulus orientation. The magnitude of change in the orientation tuning functions increased as the delivery of GABA was prolonged. Responses returned to normal approximately 30 min after the delivery of GABA was discontinued. We conclude that inhibitory projections from neurons within the infragranular layers of striate cortex in cats can enhance the orientation selectivity of supragranular striate cortical neurons.
Iida, Shoko; Shimba, Kenta; Sakai, Koji; Kotani, Kiyoshi; Jimbo, Yasuhiko
2018-06-18
The balance between glutamate-mediated excitation and GABA-mediated inhibition is critical to cortical functioning. However, the contribution of network structure consisting of the both neurons to cortical functioning has not been elucidated. We aimed to evaluate the relationship between the network structure and functional activity patterns in vitro. We used mouse induced pluripotent stem cells (iPSCs) to construct three types of neuronal populations; excitatory-rich (Exc), inhibitory-rich (Inh), and control (Cont). Then, we analyzed the activity patterns of these neuronal populations using microelectrode arrays (MEAs). Inhibitory synaptic densities differed between the three types of iPSC-derived neuronal populations, and the neurons showed spontaneously synchronized bursting activity with functional maturation for one month. Moreover, different firing patterns were observed between the three populations; Exc demonstrated the highest firing rates, including frequent, long, and dominant bursts. In contrast, Inh demonstrated the lowest firing rates and the least dominant bursts. Synchronized bursts were enhanced by disinhibition via GABA A receptor blockade. The present study, using iPSC-derived neurons and MEAs, for the first time show that synchronized bursting of cortical networks in vitro depends on the network structure consisting of excitatory and inhibitory neurons. Copyright © 2018 Elsevier Inc. All rights reserved.
Karak, Somdatta; Jacobs, Julie S; Kittelmann, Maike; Spalthoff, Christian; Katana, Radoslaw; Sivan-Loukianova, Elena; Schon, Michael A; Kernan, Maurice J; Eberl, Daniel F; Göpfert, Martin C
2015-11-26
Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly's ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.
Inverse Stochastic Resonance in Cerebellar Purkinje Cells
Häusser, Michael; Gutkin, Boris S.; Roth, Arnd
2016-01-01
Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. PMID:27541958
Impact of SQUIDs on functional imaging in neuroscience
NASA Astrophysics Data System (ADS)
Della Penna, Stefania; Pizzella, Vittorio; Romani, Gian Luca
2014-04-01
This paper provides an overview on the basic principles and applications of magnetoencephalography (MEG), a technique that requires the use of many SQUIDs and thus represents one of the most important applications of superconducting electronics. Since the development of the first SQUID magnetometers, it was clear that these devices could be used to measure the ultra-low magnetic signals associated with the bioelectric activity of the neurons of the human brain. Forty years on from the first measurement of magnetic alpha rhythm by David Cohen, MEG has become a fundamental tool for the investigation of brain functions. The simple localization of cerebral sources activated by sensory stimulation performed in the early years has been successively expanded to the identification of the sequence of neuronal pool activations, thus decrypting information of the hierarchy underlying cerebral processing. This goal has been achieved thanks to the development of complex instrumentation, namely whole head MEG systems, allowing simultaneous measurement of magnetic fields all over the scalp with an exquisite time resolution. The latest trends in MEG, such as the study of brain networks, i.e. how the brain organizes itself in a coherent and stable way, are discussed. These sound applications together with the latest technological developments aimed at implementing systems able to record MEG signals and magnetic resonance imaging (MRI) of the head with the same set-up pave the way to high performance systems for brain functional investigation in the healthy and the sick population.
Historical perspective of cell transplantation in Parkinson’s disease
Boronat-García, Alejandra; Guerra-Crespo, Magdalena; Drucker-Colín, René
2017-01-01
Cell grafting has been considered a therapeutic approach for Parkinson’s disease (PD) since the 1980s. The classical motor symptoms of PD are caused by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrement in dopamine release in the striatum. Consequently, the therapy of cell-transplantation for PD consists in grafting dopamine-producing cells directly into the brain to reestablish dopamine levels. Different cell sources have been shown to induce functional benefits on both animal models of PD and human patients. However, the observed motor improvements are highly variable between individual subjects, and the sources of this variability are not fully understood. The purpose of this review is to provide a general overview of the pioneering studies done in animal models of PD that established the basis for the first clinical trials in humans, and compare these with the latest findings to identify the most relevant aspects that remain unanswered to date. The main focus of the discussions presented here will be on the mechanisms associated with the survival and functionality of the transplants. These include the role of the dopamine released by the grafts and the capacity of the grafted cells to extend fibers and to integrate into the motor circuit. The complete understanding of these aspects will require extensive research on basic aspects of molecular and cellular physiology, together with neuronal network function, in order to uncover the real potential of cell grafting for treating PD. PMID:28698835
Historical perspective of cell transplantation in Parkinson's disease.
Boronat-García, Alejandra; Guerra-Crespo, Magdalena; Drucker-Colín, René
2017-06-24
Cell grafting has been considered a therapeutic approach for Parkinson's disease (PD) since the 1980s. The classical motor symptoms of PD are caused by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a decrement in dopamine release in the striatum. Consequently, the therapy of cell-transplantation for PD consists in grafting dopamine-producing cells directly into the brain to reestablish dopamine levels. Different cell sources have been shown to induce functional benefits on both animal models of PD and human patients. However, the observed motor improvements are highly variable between individual subjects, and the sources of this variability are not fully understood. The purpose of this review is to provide a general overview of the pioneering studies done in animal models of PD that established the basis for the first clinical trials in humans, and compare these with the latest findings to identify the most relevant aspects that remain unanswered to date. The main focus of the discussions presented here will be on the mechanisms associated with the survival and functionality of the transplants. These include the role of the dopamine released by the grafts and the capacity of the grafted cells to extend fibers and to integrate into the motor circuit. The complete understanding of these aspects will require extensive research on basic aspects of molecular and cellular physiology, together with neuronal network function, in order to uncover the real potential of cell grafting for treating PD.
Vijayakrishnan, Niranjana; Phillips, Scott E; Broadie, Kendal
2010-12-01
Drosophila temperature-sensitive rolling blackout (rbo(ts) ) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rbo(S358A) mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase domain is critical for RBO essential function. Likewise, the rbo(S358A) mutant cannot provide any rescue of endocytic blockade in rbo(ts) Garland cells, showing that the lipase domain is indispensable for non-neuronal endocytosis. In contrast, rbo(ts) conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rbo(S358A) mutant, showing that the RBO lipase domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbo(ts) and the well-characterized dynamin GTPase conditional shibire (shi(ts1)) mutant. In both non-neuronal cells and neuronal synapses, shi(ts1); rbo(ts) phenocopies shi(ts1) endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase domain-dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. © 2010 John Wiley & Sons A/S.
Spinal projection neurons control turning behaviors in zebrafish.
Huang, Kuo-Hua; Ahrens, Misha B; Dunn, Timothy W; Engert, Florian
2013-08-19
Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1-9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Spinal Projection Neurons Control Turning Behaviors in Zebrafish
Huang, Kuo-Hua; Ahrens, Misha B.; Dunn, Timothy W.; Engert, Florian
2013-01-01
Summary Discrete populations of brainstem spinal projection neurons (SPNs) have been shown to exhibit behavior-specific responses during locomotion [1–9], suggesting that separate descending pathways, each dedicated to a specific behavior, control locomotion. In an alternative model, a large variety of motor outputs could be generated from different combinations of a small number of basic motor pathways. We examined this possibility by studying the precise role of ventromedially located hindbrain SPNs (vSPNs) in generating turning behaviors. We found that unilateral laser ablation of vSPNs reduces the tail deflection and cycle period specifically during the first undulation cycle of a swim bout, whereas later tail movements are unaffected. This holds true during phototaxic [10], optomotor [11], dark-flash-induced [12], and spontaneous turns [13], suggesting a universal role of these neurons in controlling turning behaviors. Importantly, we found that the ablation not only abolishes turns but also results in a dramatic increase in the number of forward swims, suggesting that these neurons transform forward swims into turns by introducing turning kinematics into a basic motor pattern of symmetric tail undulations. Finally, we show that vSPN activity is direction specific and graded by turning angle. Together, these results provide a clear example of how a specific motor pattern can be transformed into different behavioral events by the graded activation of a small set of SPNs. PMID:23910662
Multi-Scale Molecular Deconstruction of the Serotonin Neuron System.
Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D; Brust, Rachael D; Hennessy, Morgan L; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N; Dymecki, Susan M
2015-11-18
Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. Copyright © 2015 Elsevier Inc. All rights reserved.
GABAergic neurons in ferret visual cortex participate in functionally specific networks
Wilson, Daniel E.; Smith, Gordon B.; Jacob, Amanda; Walker, Theo; Dimidschstein, Jordane; Fishell, Gord J.; Fitzpatrick, David
2017-01-01
Summary Functional circuits in the visual cortex require the coordinated activity of excitatory and inhibitory neurons. Molecular genetic approaches in the mouse have led to the ‘local nonspecific pooling principle’ of inhibitory connectivity, in which inhibitory neurons are untuned for stimulus features due to the random pooling of local inputs. However, it remains unclear whether this principle generalizes to species with a columnar organization of feature selectivity such as carnivores, primates, and humans. Here we use virally-mediated GABAergic-specific GCaMP6f expression to demonstrate that inhibitory neurons in ferret visual cortex respond robustly and selectively to oriented stimuli. We find that the tuning of inhibitory neurons is inconsistent with the local non-specific pooling of excitatory inputs, and that inhibitory neurons exhibit orientation-specific noise correlations with local and distant excitatory neurons. These findings challenge the generality of the non-specific pooling principle for inhibitory neurons, suggesting different rules for functional excitatory-inhibitory interactions in non-murine species. PMID:28279352
The functional significance of newly born neurons integrated into olfactory bulb circuits.
Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru
2014-01-01
The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.
The functional significance of newly born neurons integrated into olfactory bulb circuits
Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru
2014-01-01
The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons. PMID:24904263
Multi-Scale Molecular Deconstruction of the Serotonin Neuron System
Okaty, Benjamin W.; Freret, Morgan E.; Rood, Benjamin D.; Brust, Rachael D.; Hennessy, Morgan L.; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N.; Dymecki, Susan M.
2016-01-01
Summary Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-Seq to deconstruct the mouse 5HT system at multiple levels of granularity—from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal: principles underlying system organization, novel 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers new subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. PMID:26549332
Nonlinear functional approximation with networks using adaptive neurons
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1992-01-01
A novel mathematical framework for the rapid learning of nonlinear mappings and topological transformations is presented. It is based on allowing the neuron's parameters to adapt as a function of learning. This fully recurrent adaptive neuron model (ANM) has been successfully applied to complex nonlinear function approximation problems such as the highly degenerate inverse kinematics problem in robotics.
Sinisi, M; Fox, M; MacQuillan, A; Quick, T; Korchev, Y; Bountra, C; McCarthy, T; Anand, P
2016-01-01
Background Mycolactone is a polyketide toxin secreted by the mycobacterium Mycobacterium ulcerans, responsible for the extensive hypoalgesic skin lesions characteristic of patients with Buruli ulcer. A recent pre-clinical study proposed that mycolactone may produce analgesia via activation of the angiotensin II type 2 receptor (AT2R). In contrast, AT2R antagonist EMA401 has shown analgesic efficacy in animal models and clinical trials for neuropathic pain. We therefore investigated the morphological and functional effects of mycolactone in cultured human and rat dorsal root ganglia (DRG) neurons and the role of AT2R using EMA401. Primary sensory neurons were prepared from avulsed cervical human DRG and rat DRG; 24 h after plating, neurons were incubated for 24 to 96 h with synthetic mycolactone A/B, followed by immunostaining with antibodies to PGP9.5, Gap43, β tubulin, or Mitotracker dye staining. Acute functional effects were examined by measuring capsaicin responses with calcium imaging in DRG neuronal cultures treated with mycolactone. Results Morphological effects: Mycolactone-treated cultures showed dramatically reduced numbers of surviving neurons and non-neuronal cells, reduced Gap43 and β tubulin expression, degenerating neurites and reduced cell body diameter, compared with controls. Dose-related reduction of neurite length was observed in mycolactone-treated cultures. Mitochondria were distributed throughout the length of neurites and soma of control neurons, but clustered in the neurites and soma of mycolactone-treated neurons. Functional effects: Mycolactone-treated human and rat DRG neurons showed dose-related inhibition of capsaicin responses, which were reversed by calcineurin inhibitor cyclosporine and phosphodiesterase inhibitor 3-isobutyl-1-Methylxanthine, indicating involvement of cAMP/ATP reduction. The morphological and functional effects of mycolactone were not altered by Angiotensin II or AT2R antagonist EMA401. Conclusion Mycolactone induces toxic effects in DRG neurons, leading to impaired nociceptor function, neurite degeneration, and cell death, resembling the cutaneous hypoalgesia and nerve damage in individuals with M. Ulcerans infection. PMID:27325560
The origin and function of mirror neurons: the missing link.
Lingnau, Angelika; Caramazza, Alfonso
2014-04-01
We argue, by analogy to the neural organization of the object recognition system, that demonstration of modulation of mirror neurons by associative learning does not imply absence of genetic adaptation. Innate connectivity defines the types of processes mirror neurons can participate in while allowing for extensive local plasticity. However, the proper function of these neurons remains to be worked out.
Connexin-Mediated Functional and Metabolic Coupling Between Astrocytes and Neurons.
Mayorquin, Lady C; Rodriguez, Andrea V; Sutachan, Jhon-Jairo; Albarracín, Sonia L
2018-01-01
The central nervous system (CNS) requires sophisticated regulation of neuronal activity. This modulation is partly accomplished by non-neuronal cells, characterized by the presence of transmembrane gap junctions (GJs) and hemichannels (HCs). This allows small molecule diffusion to guarantee neuronal synaptic activity and plasticity. Astrocytes are metabolically and functionally coupled to neurons by the uptake, binding and recycling of neurotransmitters. In addition, astrocytes release metabolites, such as glutamate, glutamine, D-serine, adenosine triphosphate (ATP) and lactate, regulating synaptic activity and plasticity by pre- and postsynaptic mechanisms. Uncoupling neuroglial communication leads to alterations in synaptic transmission that can be detrimental to neuronal circuit function and behavior. Therefore, understanding the pathways and mechanisms involved in this intercellular communication is fundamental for the search of new targets that can be used for several neurological disease treatments. This review will focus on molecular mechanisms mediating physiological and pathological coupling between astrocytes and neurons through GJs and HCs.
Bifari, Francesco; Decimo, Ilaria; Pino, Annachiara; Llorens-Bobadilla, Enric; Zhao, Sheng; Lange, Christian; Panuccio, Gabriella; Boeckx, Bram; Thienpont, Bernard; Vinckier, Stefan; Wyns, Sabine; Bouché, Ann; Lambrechts, Diether; Giugliano, Michele; Dewerchin, Mieke; Martin-Villalba, Ana; Carmeliet, Peter
2017-03-02
Whether new neurons are added in the postnatal cerebral cortex is still debated. Here, we report that the meninges of perinatal mice contain a population of neurogenic progenitors formed during embryonic development that migrate to the caudal cortex and differentiate into Satb2 + neurons in cortical layers II-IV. The resulting neurons are electrically functional and integrated into local microcircuits. Single-cell RNA sequencing identified meningeal cells with distinct transcriptome signatures characteristic of (1) neurogenic radial glia-like cells (resembling neural stem cells in the SVZ), (2) neuronal cells, and (3) a cell type with an intermediate phenotype, possibly representing radial glia-like meningeal cells differentiating to neuronal cells. Thus, we have identified a pool of embryonically derived radial glia-like cells present in the meninges that migrate and differentiate into functional neurons in the neonatal cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.
Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko
2016-08-01
Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Mruczek, Ryan E. B.
2012-01-01
The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkeys: inhibitory interneurons and excitatory projection cells. Cells were classified as putative inhibitory or putative excitatory neurons on the basis of their extracellular waveform characteristics (e.g., spike duration). Consistent with previous intracellular recordings in cortical slices, putative inhibitory neurons had higher spontaneous firing rates and higher stimulus-evoked firing rates than putative excitatory neurons. Additionally, putative excitatory neurons were more susceptible to spike waveform adaptation following very short interspike intervals. Finally, we compared two functional properties of each neuron's stimulus-evoked response: stimulus selectivity and response latency. First, putative excitatory neurons showed stronger stimulus selectivity compared with putative inhibitory neurons. Second, putative inhibitory neurons had shorter response latencies compared with putative excitatory neurons. Selectivity differences were maintained and latency differences were enhanced during a visual search task emulating more natural viewing conditions. Our results suggest that short-latency inhibitory responses are likely to sculpt visual processing in excitatory neurons, yielding a sparser visual representation. PMID:22933717
Dorsal and ventral hippocampal adult-born neurons contribute to context fear memory.
Huckleberry, Kylie A; Shue, Francis; Copeland, Taylor; Chitwood, Raymond A; Yin, Weiling; Drew, Michael R
2018-06-02
The hippocampus contains one of the few neurogenic niches within the adult brain-the subgranular zone of the dentate gyrus. The functional significance of adult-born neurons in this region has been characterized using context fear conditioning, a Pavlovian paradigm in which animals learn to associate a location with danger. Ablation or silencing of adult-born neurons impairs both acquisition and recall of contextual fear conditioning, suggesting that these neurons contribute importantly to hippocampal memory. Lesion studies indicate that CFC depends on neural activity in both the dorsal and ventral hippocampus, subregions with unique extrahippocampal connectivity and behavioral functions. Because most studies of adult neurogenesis have relied on methods that permanently ablate neurogenesis throughout the entire hippocampus, little is known about how the function of adult-born neurons varies along the dorsal-ventral axis. Using a Nestin-CreER T2 mouse line to target the optogenetic silencer Archaerhodopsin to adult-born neurons, we compared the contribution of dorsal and ventral adult-born neurons to acquisition, recall, and generalization of CFC. Acquisition of CFC was impaired when either dorsal or ventral adult-born neurons were silenced during training. Silencing dorsal or ventral adult-born neurons during test sessions decreased context-evoked freezing but did not impair freezing in a hippocampus-independent tone-shock freezing paradigm. Silencing adult-born neurons modestly reduced generalization of fear. Our data indicate that adult-born neurons in the dorsal and ventral hippocampus contribute to both memory acquisition and recall. The comparatively large behavioral effects of silencing a small number of adult-born neurons suggest that these neurons make a unique and powerful contribution to hippocampal function.
Broccoli, Vania; Rubio, Alicia; Taverna, Stefano; Yekhlef, Latefa
2015-06-01
The advent of cell reprogramming technologies has widely disclosed the possibility to have direct access to human neurons for experimental and biomedical applications. Human pluripotent stem cells can be instructed in vitro to generate specific neuronal cell types as well as different glial cells. Moreover, new approaches of direct neuronal cell reprogramming can strongly accelerate the generation of different neuronal lineages. However, genetic heterogeneity, reprogramming fidelity, and time in culture of the starting cells can still significantly bias their differentiation efficiency and quality of the neuronal progenies. In addition, reprogrammed human neurons exhibit a very slow pace in gaining a full spectrum of functional properties including physiological levels of membrane excitability, sustained and prolonged action potential firing, mature synaptic currents and synaptic plasticity. This delay poses serious limitations for their significance as biological experimental model and screening platform. We will discuss new approaches of neuronal cell differentiation and reprogramming as well as methods to accelerate the maturation and functional activity of the converted human neurons. © 2015 by the Society for Experimental Biology and Medicine.
Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang
2017-03-21
Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.
Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia
2015-04-01
Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.
Tadesse, Tizeta; Schmidt, Manfred; Walthall, William W.; Tai, Phang C.; Derby, Charles D.
2011-01-01
achaete-scute complex (ASC) genes, which encode basic helix-loop-helix transcription factors, regulate embryonic and adult neurogenesis in many animals. In adult arthropods, including crustaceans, ASC homologs have been identified but rarely functionally characterized. We took advantage of the recently identified crustacean homolog, splash (spiny lobster achaete scute homolog), in the olfactory organ of the Caribbean spiny lobster Panulirus argus to examine its role in adult neurogenesis. We tested the hypothesis that splash is associated with but not restricted to sensory neuron formation in the olfactory organ, the antennular lateral flagellum (LF), of adult spiny lobsters. We demonstrated splash labeling in epithelial cells across LF developmental zones (i.e., proliferation and mature zones), in auxiliary cells surrounding dendrites of olfactory receptor neurons (ORNs), and in immature and mature ORNs, but not in granulocytes or chromatophores. Since ORN proliferation varies with molt stage, we examined splash expression across molt stages and found that molt stage affected splash expression in the ORN mature zone but not in the proliferation zone. In vivo incorporation of bromodeoxyuridine (BrdU) showed no correlation in the cellular pattern of splash expression and BrdU labeling. The intensity of splash labeling was dramatically enhanced in the proliferation zones following LF damage, suggesting enhanced splash expression during repair and/or regeneration. We conclude that splash is not closely associated with the formation of sensory neurons under normal physiological conditions, and we propose that splash is involved in repair and regeneration. We also propose that splash has additional roles other than neurogenesis in adult crustaceans. PMID:21394934
Tadesse, Tizeta; Schmidt, Manfred; Walthall, William W; Tai, Phang C; Derby, Charles D
2011-04-01
achaete-scute complex (ASC) genes, which encode basic helix-loop-helix transcription factors, regulate embryonic and adult neurogenesis in many animals. In adult arthropods, including crustaceans, ASC homologs have been identified but rarely functionally characterized. We took advantage of the recently identified crustacean homolog, splash (spiny lobster achaete scute homolog), in the olfactory organ of the Caribbean spiny lobster Panulirus argus to examine its role in adult neurogenesis. We tested the hypothesis that splash is associated with but not restricted to sensory neuron formation in the olfactory organ, the antennular lateral flagellum (LF), of adult spiny lobsters. We demonstrated splash labeling in epithelial cells across LF developmental zones (i.e., proliferation and mature zones), in auxiliary cells surrounding dendrites of olfactory receptor neurons (ORNs), and in immature and mature ORNs, but not in granulocytes or chromatophores. Since ORN proliferation varies with molt stage, we examined splash expression across molt stages and found that molt stage affected splash expression in the ORN mature zone but not in the proliferation zone. In vivo incorporation of bromodeoxyuridine (BrdU) showed no correlation in the cellular pattern of splash expression and BrdU labeling. The intensity of splash labeling was dramatically enhanced in the proliferation zones following LF damage, suggesting enhanced splash expression during repair and/or regeneration. We conclude that splash is not closely associated with the formation of sensory neurons under normal physiological conditions, and we propose that splash is involved in repair and regeneration. We also propose that splash has additional roles other than neurogenesis in adult crustaceans. 2010 Wiley Periodicals, Inc.
de Vivo, Luisa; Nelson, Aaron B; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara
2016-04-01
The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. © 2016 Associated Professional Sleep Societies, LLC.
Localization of BDNF expression in the developing brain of zebrafish
De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P
2014-01-01
The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. PMID:24588510
Localization of BDNF expression in the developing brain of zebrafish.
De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P
2014-05-01
The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. © 2014 Anatomical Society.
Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.
Kiyatkin, Eugene A; Wakabayashi, Ken T
2015-01-21
Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism.
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.
Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B
2018-06-01
A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.
Phenotypic Checkpoints Regulate Neuronal Development
Ben-Ari, Yehezkel; Spitzer, Nicholas C.
2010-01-01
Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and may constitute presymptomatic signatures of neurological disorders when they go awry. PMID:20864191
Synaptic Circuit Organization of Motor Corticothalamic Neurons
Yamawaki, Naoki
2015-01-01
Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus. PMID:25653383
Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.
Irnaten, M; Neff, R A; Wang, J; Loewy, A D; Mettenleiter, T C; Mendelowitz, D
2001-01-01
A fluorescent transneuronal marker capable of labeling individual neurons in a central network while maintaining their normal physiology would permit functional studies of neurons within entire networks responsible for complex behaviors such as cardiorespiratory reflexes. The Bartha strain of pseudorabies virus (PRV), an attenuated swine alpha herpesvirus, can be used as a transsynaptic marker of neural circuits. Bartha PRV invades neuronal networks in the CNS through peripherally projecting axons, replicates in these parent neurons, and then travels transsynaptically to continue labeling the second- and higher-order neurons in a time-dependent manner. A Bartha PRV mutant that expresses green fluorescent protein (GFP) was used to visualize and record from neurons that determine the vagal motor outflow to the heart. Here we show that Bartha PRV-GFP-labeled neurons retain their normal electrophysiological properties and that the labeled baroreflex pathways that control heart rate are unaltered by the virus. This novel transynaptic virus permits in vitro studies of identified neurons within functionally defined neuronal systems including networks that mediate cardiovascular and respiratory function and interactions. We also demonstrate superior laryngeal motorneurons fire spontaneously and synapse on cardiac vagal neurons in the nucleus ambiguus. This cardiorespiratory pathway provides a neural basis of respiratory sinus arrhythmias.
Three-dimensional neural cultures produce networks that mimic native brain activity.
Bourke, Justin L; Quigley, Anita F; Duchi, Serena; O'Connell, Cathal D; Crook, Jeremy M; Wallace, Gordon G; Cook, Mark J; Kapsa, Robert M I
2018-02-01
Development of brain function is critically dependent on neuronal networks organized through three dimensions. Culture of central nervous system neurons has traditionally been limited to two dimensions, restricting growth patterns and network formation to a single plane. Here, with the use of multichannel extracellular microelectrode arrays, we demonstrate that neurons cultured in a true three-dimensional environment recapitulate native neuronal network formation and produce functional outcomes more akin to in vivo neuronal network activity. Copyright © 2017 John Wiley & Sons, Ltd.
Martin, Alia; Santos, Laurie R
2014-04-01
Cook et al. propose that mirror neurons emerge developmentally through a domain-general associative mechanism. We argue that experience-sensitivity does not rule out an adaptive or genetic argument for mirror neuron function, and that current evidence suggests that mirror neurons are more specialized than the authors' account would predict. We propose that future work integrate behavioral and neurophysiological techniques used with primates to examine the proposed functions of mirror neurons in action understanding.
Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.
2017-01-01
Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520
Saiki, Akiko; Fujiwara‐Tsukamoto, Yoko; Sakai, Yutaka; Isomura, Yoshikazu
2016-01-01
Key points There have been few systematic population‐wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions.In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single‐unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task.The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony.Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions.The strength of spike synchrony between two neurons was statistically independent of the spike rate‐based preferences of the pair for behavioural functions. Abstract Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population‐wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular‐spiking (putatively excitatory) and fast‐spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single‐unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external‐trigger trials) or spontaneously without any cue (internal‐trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular‐spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population‐wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate‐based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large‐scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement. PMID:27488936
Kimura, Rie; Saiki, Akiko; Fujiwara-Tsukamoto, Yoko; Sakai, Yutaka; Isomura, Yoshikazu
2017-01-01
There have been few systematic population-wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions. In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single-unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task. The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony. Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions. The strength of spike synchrony between two neurons was statistically independent of the spike rate-based preferences of the pair for behavioural functions. Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population-wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular-spiking (putatively excitatory) and fast-spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single-unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external-trigger trials) or spontaneously without any cue (internal-trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular-spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population-wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate-based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large-scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Functional Architecture of the Retina: Development and Disease
Hoon, Mrinalini; Okawa, Haruhisa; Santina, Luca Della; Wong, Rachel O.L.
2014-01-01
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina. PMID:24984227
Functional architecture of the retina: development and disease.
Hoon, Mrinalini; Okawa, Haruhisa; Della Santina, Luca; Wong, Rachel O L
2014-09-01
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hafner, Mathias
2008-01-01
Cell biology and molecular imaging technologies have made enormous progress in basic research. However, the transfer of this knowledge to the pharmaceutical drug discovery process, or even therapeutic improvements for disorders such as neuronal diseases, is still in its infancy. This transfer needs scientists who can integrate basic research with…
Shetty, Pavan K; Galeffi, Francesca; Turner, Dennis A.
2014-01-01
Prolonged hypoxia leads to irreversible loss of neuronal function and metabolic impairment of nicotinamide adenine dinucleotide recycling (between NAD+ and NADH) immediately after reoxygenation, resulting in NADH hyperoxidation. We test whether addition of nicotinamide (to enhance NAD+ levels) or PARP-1 inhibition (to prevent consumption of NAD+) can be effective in improving either loss of neuronal function or hyperoxidation following severe hypoxic injury in hippocampal slices. After severe, prolonged hypoxia (maintained for 3 min after spreading depression) there was hyperoxidation of NADH following reoxygenation, an increased soluble NAD+/NADH ratio, loss of neuronal field excitatory post-synaptic potential (fEPSP) and decreased ATP content. Nicotinamide incubation (5 mM) 2 hr prior to hypoxia significantly increased total NAD(H) content, improved neuronal recovery, enhanced ATP content, and prevented NADH hyperoxidation. The nicotinamide-induced increase in total soluble NAD(H) was more significant in the cytosolic compartment than within mitochondria. Prolonged incubation with PJ-34 (>1hr) led to enhanced baseline NADH fluorescence prior to hypoxia, as well as improved neuronal recovery, NADH hyperoxidation and ATP content on recovery from severe hypoxia and reoxygenation. In this acute model of severe neuronal dysfunction prolonged incubation with either nicotinamide or PJ-34 prior to hypoxia improved recovery of neuronal function, enhanced NADH reduction and ATP content, but neither treatment restored function when administered during or after prolonged hypoxia and reoxygenation. PMID:24184921
C. elegans STRADalpha and SAD cooperatively regulate neuronal polarity and synaptic organization.
Kim, Joanne S M; Hung, Wesley; Narbonne, Patrick; Roy, Richard; Zhen, Mei
2010-01-01
Neurons are polarized cells with morphologically and functionally distinct axons and dendrites. The SAD kinases are crucial for establishing the axon-dendrite identity across species. Previous studies suggest that a tumour suppressor kinase, LKB1, in the presence of a pseudokinase, STRADalpha, initiates axonal differentiation and growth through activating the SAD kinases in vertebrate neurons. STRADalpha was implicated in the localization, stabilization and activation of LKB1 in various cell culture studies. Its in vivo functions, however, have not been examined. In our present study, we analyzed the neuronal phenotypes of the first loss-of-function mutants for STRADalpha and examined their genetic interactions with LKB1 and SAD in C. elegans. Unexpectedly, only the C. elegans STRADalpha, STRD-1, functions exclusively through the SAD kinase, SAD-1, to regulate neuronal polarity and synaptic organization. Moreover, STRD-1 tightly associates with SAD-1 to coordinate its synaptic localizations. By contrast, the C. elegans LKB1, PAR-4, also functions in an additional genetic pathway independently of SAD-1 and STRD-1 to regulate neuronal polarity. We propose that STRD-1 establishes neuronal polarity and organizes synaptic proteins in a complex with the SAD-1 kinase. Our findings suggest that instead of a single, linear genetic pathway, STRADalpha and LKB1 regulate neuronal development through multiple effectors that are shared in some cellular contexts but distinct in others.
Exposure to bisphenol A affects GABAergic neuron differentiation in neurosphere cultures.
Fukushima, Nobuyuki; Nagao, Tetsuji
2018-06-13
Endocrine-disrupting chemicals (EDCs) influence not only endocrine functions but also neuronal development and functions. In-vivo studies have suggested the relationship of EDC-induced neurobehavioral disorders with dysfunctions of neurotransmitter mechanisms including γ-aminobutyric acid (GABA)ergic mechanisms. However, whether EDCs affect GABAergic neuron differentiation remains unclear. In the present study, we show that a representative EDC, bisphenol A (BPA), affects GABAergic neuron differentiation. Cortical neurospheres prepared from embryonic mice were exposed to BPA for 7 days, and then neuronal differentiation was induced. We found that BPA exposure resulted in a decrease in the ratio of GABAergic neurons to total neurons. However, the same exposure stimulated the differentiation of neurons expressing calbindin, a calcium-binding protein observed in a subpopulation of GABAergic neurons. These findings suggested that BPA might influence the formation of an inhibitory neuronal network in developing cerebral cortex involved in the occurrence of neurobehavioral disorders.
Stucky, Cheryl L.
2012-01-01
Subpopulations of somatosensory neurons are characterized by functional properties and expression of receptor proteins and surface markers. CGRP expression and IB4-binding are commonly used to define peptidergic and non-peptidergic subpopulations. TRPA1 is a polymodal, plasma membrane ion channel that contributes to mechanical and cold hypersensitivity during tissue injury, making it a key target for pain therapeutics. Some studies have shown that TRPA1 is predominantly expressed by peptidergic sensory neurons, but others indicate that TRPA1 is expressed extensively within non-peptidergic, IB4-binding neurons. We used FURA-2 calcium imaging to define the functional distribution of TRPA1 among peptidergic and non-peptidergic adult mouse (C57BL/6J) DRG neurons. Approximately 80% of all small-diameter (<27 µm) neurons from lumbar 1–6 DRGs that responded to TRPA1 agonists allyl isothiocyanate (AITC; 79%) or cinnamaldehyde (84%) were IB4-positive. Retrograde labeling via plantar hind paw injection of WGA-Alexafluor594 showed similarly that most (81%) cutaneous neurons responding to TRPA1 agonists were IB4-positive. Additionally, we cultured DRG neurons from a novel CGRP-GFP mouse where GFP expression is driven by the CGRPα promoter, enabling identification of CGRP-expressing live neurons. Interestingly, 78% of TRPA1-responsive neurons were CGRP-negative. Co-labeling with IB4 revealed that the majority (66%) of TRPA1 agonist responders were IB4-positive but CGRP-negative. Among TRPA1-null DRGs, few small neurons (2–4%) responded to either TRPA1 agonist, indicating that both cinnamaldehyde and AITC specifically target TRPA1. Additionally, few large neurons (≥27 µm diameter) responded to AITC (6%) or cinnamaldehyde (4%), confirming that most large-diameter somata lack functional TRPA1. Comparison of mouse and rat DRGs showed that the majority of TRPA1-responsive neurons in both species were IB4-positive. Together, these data demonstrate that TRPA1 is functionally expressed primarily in the IB4-positive, CGRP-negative subpopulation of small lumbar DRG neurons from rodents. Thus, IB4 binding is a better indicator than neuropeptides for TRPA1 expression. PMID:23133534
Liu, Ping; Chen, Bojun; Wang, Zhao-Wen
2014-01-01
Slo2 channels are prominent K+ channels in mammalian neurons but their physiological functions are not well understood. Here we investigate physiological functions and regulation of the C. elegans homologue SLO-2 in motor neurons through electrophysiological analyses of wild-type and mutant worms. We find that SLO-2 is the primary K+ channel conducting delayed outward current in cholinergic motor neurons, and one of two K+ channels with this function in GABAergic motor neurons. Loss-of-function mutation of slo-2 increases the duration and charge transfer rate of spontaneous postsynaptic current bursts at the neuromuscular junction, which are physiological signals used by motor neurons to control muscle cells, without altering postsynaptic receptor sensitivity. SLO-2 activity in motor neurons depends on Ca2+ entry through EGL-19, an L-type voltage-gated Ca2+ channel (CaV1), but not on other proteins implicated in either Ca2+ entry or intracellular Ca2+ release. Thus, SLO-2 is functionally coupled with CaV1 and regulates neurotransmitter release. PMID:25300429
Thyroid Hormone in the CNS: Contribution of Neuron-Glia Interaction.
Noda, Mami
2018-01-01
The endocrine system and the central nervous system (CNS) are intimately linked. Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and neuroglia and hence for development and function of the CNS. T3 (3,3',5-triiodothyronine), an active form of TH, is important not only for neuronal development but also for differentiation of astrocytes and oligodendrocytes, and for microglial development. In adult brain, T3 affects glial morphology with sex- and age-dependent manner and therefore may affect their function, leading to influence on neuron-glia interaction. T3 is an important signaling factor that affects microglial functions such as migration and phagocytosis via complex mechanisms. Therefore, dysfunction of THs may impair glial function as well as neuronal function and thus disturb the brain, which may cause mental disorders. Investigations on molecular and cellular basis of hyperthyroidism and hypothyroidism will help us to understand changes in neuron-glia interaction and therefore consequent psychiatric symptoms. © 2018 Elsevier Inc. All rights reserved.
Relating the "mirrorness" of mirror neurons to their origins.
Kilner, James M; Friston, Karl J
2014-04-01
Ever since their discovery, mirror neurons have generated much interest and debate. A commonly held view of mirror neuron function is that they transform "visual information into knowledge," thus enabling action understanding and non-verbal social communication between con-specifics (Rizzolatti & Craighero 2004). This functionality is thought to be so important that it has been argued that mirror neurons must be a result of selective pressure.
Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc
2016-05-17
FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease.
Tracy, Tara E; Gan, Li
2018-05-09
The accumulation of pathological tau in the brain is associated with neuronal deterioration and cognitive impairments in tauopathies including Alzheimer's disease. Tau, while primarily localized in the axons of healthy neurons, accumulates in the soma and dendrites of neurons under pathogenic conditions. Tau is found in both presynaptic and postsynaptic compartments of neurons in Alzheimer's disease. New research supports that soluble forms of tau trigger pathophysiology in the brain by altering properties of synaptic and neuronal function at the early stages of disease progression, before neurons die. Here we review the current understanding of how tau-mediated synaptic and neuronal dysfunction contributes to cognitive decline. Delineating the mechanisms by which pathogenic tau alters synapses, dendrites and axons will help lay the foundation for new strategies that can restore neuronal function in tauopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dopamine reward prediction error coding.
Schultz, Wolfram
2016-03-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.
Dopamine reward prediction error coding
Schultz, Wolfram
2016-01-01
Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware. PMID:27069377
Control of Cell Survival in Adult Mammalian Neurogenesis.
Kuhn, H Georg
2015-10-28
The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Cheng, Yu-Che; Huang, Chi-Jung; Lee, Yih-Jing; Tien, Lu-Tai; Ku, Wei-Chi; Chien, Raymond; Lee, Fa-Kung; Chien, Chih-Cheng
2016-01-01
This study presents human placenta-derived multipotent cells (PDMCs) as a source from which functional glutamatergic neurons can be derived. We found that the small heat-shock protein 27 (HSP27) was downregulated during the neuronal differentiation process. The in vivo temporal and spatial profiles of HSP27 expression were determined and showed inverted distributions with neuronal proteins during mouse embryonic development. Overexpression of HSP27 in stem cells led to the arrest of neuronal differentiation; however, the knockdown of HSP27 yielded a substantially enhanced ability of PDMCs to differentiate into neurons. These neurons formed synaptic networks and showed positive staining for multiple neuronal markers. Additionally, cellular phenomena including the absence of apoptosis and rare proliferation in HSP27-silenced PDMCs, combined with molecular events such as cleaved caspase-3 and the loss of stemness with cleaved Nanog, indicated that HSP27 is located upstream of neuronal differentiation and constrains that process. Furthermore, the induced neurons showed increasing intracellular calcium concentrations upon glutamate treatment. These differentiated cells co-expressed the N-methyl-D-aspartate receptor, vesicular glutamate transporter, and synaptosomal-associated protein 25 but did not show expression of tyrosine hydroxylase, choline acetyltransferase or glutamate decarboxylase 67. Therefore, we concluded that HSP27-silenced PDMCs differentiated into neurons possessing the characteristics of functional glutamatergic neurons. PMID:27444754
Chang, Chia-Ling; Trimbuch, Thorsten; Chao, Hsiao-Tuan; Jordan, Julia-Christine; Herman, Melissa A; Rosenmund, Christian
2014-01-15
Neural circuits are composed of mainly glutamatergic and GABAergic neurons, which communicate through synaptic connections. Many factors instruct the formation and function of these synapses; however, it is difficult to dissect the contribution of intrinsic cell programs from that of extrinsic environmental effects in an intact network. Here, we perform paired recordings from two-neuron microculture preparations of mouse hippocampal glutamatergic and GABAergic neurons to investigate how synaptic input and output of these two principal cells develop. In our reduced preparation, we found that glutamatergic neurons showed no change in synaptic output or input regardless of partner neuron cell type or neuronal activity level. In contrast, we found that glutamatergic input caused the GABAergic neuron to modify its output by way of an increase in synapse formation and a decrease in synaptic release efficiency. These findings are consistent with aspects of GABAergic synapse maturation observed in many brain regions. In addition, changes in GABAergic output are cell wide and not target-cell specific. We also found that glutamatergic neuronal activity determined the AMPA receptor properties of synapses on the partner GABAergic neuron. All modifications of GABAergic input and output required activity of the glutamatergic neuron. Because our system has reduced extrinsic factors, the changes we saw in the GABAergic neuron due to glutamatergic input may reflect initiation of maturation programs that underlie the formation and function of in vivo neural circuits.
Auditory cortex of bats and primates: managing species-specific calls for social communication
Kanwal, Jagmeet S.; Rauschecker, Josef P.
2014-01-01
Individuals of many animal species communicate with each other using sounds or “calls” that are made up of basic acoustic patterns and their combinations. We are interested in questions about the processing of communication calls and their representation within the mammalian auditory cortex. Our studies compare in particular two species for which a large body of data has accumulated: the mustached bat and the rhesus monkey. We conclude that the brains of both species share a number of functional and organizational principles, which differ only in the extent to which and how they are implemented. For instance, neurons in both species use “combination-sensitivity” (nonlinear spectral and temporal integration of stimulus components) as a basic mechanism to enable exquisite sensitivity to and selectivity for particular call types. Whereas combination-sensitivity is already found abundantly at the primary auditory cortical and also at subcortical levels in bats, it becomes prevalent only at the level of the lateral belt in the secondary auditory cortex of monkeys. A parallel-hierarchical framework for processing complex sounds up to the level of the auditory cortex in bats and an organization into parallel-hierarchical, cortico-cortical auditory processing streams in monkeys is another common principle. Response specialization of neurons seems to be more pronounced in bats than in monkeys, whereas a functional specialization into “what” and “where” streams in the cerebral cortex is more pronounced in monkeys than in bats. These differences, in part, are due to the increased number and larger size of auditory areas in the parietal and frontal cortex in primates. Accordingly, the computational prowess of neural networks and the functional hierarchy resulting in specializations is established early and accelerated across brain regions in bats. The principles proposed here for the neural “management” of species-specific calls in bats and primates can be tested by studying the details of call processing in additional species. Also, computational modeling in conjunction with coordinated studies in bats and monkeys can help to clarify the fundamental question of perceptual invariance (or “constancy”) in call recognition, which has obvious relevance for understanding speech perception and its disorders in humans. PMID:17485400
Schubert, Frank K.; Hagedorn, Nicolas; Yoshii, Taishi; Helfrich‐Förster, Charlotte
2018-01-01
Abstract Drosophila melanogaster is a long‐standing model organism in the circadian clock research. A major advantage is the relative small number of about 150 neurons, which built the circadian clock in Drosophila. In our recent work, we focused on the neuroanatomical properties of the lateral neurons of the clock network. By applying the multicolor‐labeling technique Flybow we were able to identify the anatomical similarity of the previously described E2 subunit of the evening oscillator of the clock, which is built by the 5th small ventrolateral neuron (5th s‐LNv) and one ITP positive dorsolateral neuron (LNd). These two clock neurons share the same spatial and functional properties. We found both neurons innervating the same brain areas with similar pre‐ and postsynaptic sites in the brain. Here the anatomical findings support their shared function as a main evening oscillator in the clock network like also found in previous studies. A second quite surprising finding addresses the large lateral ventral PDF‐neurons (l‐LNvs). We could show that the four hardly distinguishable l‐LNvs consist of two subgroups with different innervation patterns. While three of the neurons reflect the well‐known branching pattern reproduced by PDF immunohistochemistry, one neuron per brain hemisphere has a distinguished innervation profile and is restricted only to the proximal part of the medulla‐surface. We named this neuron “extra” l‐LNv (l‐LNvx). We suggest the anatomical findings reflect different functional properties of the two l‐LNv subgroups. PMID:29424420
Reed-Geaghan, Erin G; Wright, Margaret C; See, Lauren A; Adelman, Peter C; Lee, Kuan Hsien; Koerber, H Richard; Maricich, Stephen M
2016-04-13
The extent to which the skin instructs peripheral somatosensory neuron maturation is unknown. We studied this question in Merkel cell-neurite complexes, where slowly adapting type I (SAI) neurons innervate skin-derived Merkel cells. Transgenic mice lacking Merkel cells had normal dorsal root ganglion (DRG) neuron numbers, but fewer DRG neurons expressed the SAI markers TrkB, TrkC, and Ret. Merkel cell ablation also decreased downstream TrkB signaling in DRGs, and altered the expression of genes associated with SAI development and function. Skin- and Merkel cell-specific deletion of Bdnf during embryogenesis, but not postnatal Bdnf deletion or Ntf3 deletion, reproduced these results. Furthermore, prototypical SAI electrophysiological signatures were absent from skin regions where Bdnf was deleted in embryonic Merkel cells. We conclude that BDNF produced by Merkel cells during a precise embryonic period guides SAI neuron development, providing the first direct evidence that the skin instructs sensory neuron molecular and functional maturation. Peripheral sensory neurons show incredible phenotypic and functional diversity that is initiated early by cell-autonomous and local environmental factors found within the DRG. However, the contribution of target tissues to subsequent sensory neuron development remains unknown. We show that Merkel cells are required for the molecular and functional maturation of the SAI neurons that innervate them. We also show that this process is controlled by BDNF signaling. These findings provide new insights into the regulation of somatosensory neuron development and reveal a novel way in which Merkel cells participate in mechanosensation. Copyright © 2016 the authors 0270-6474/16/364362-15$15.00/0.
Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex
NASA Astrophysics Data System (ADS)
Ohki, Kenichi; Chung, Sooyoung; Ch'ng, Yeang H.; Kara, Prakash; Reid, R. Clay
2005-02-01
Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100µm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400µm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.
Hereditary spastic paraplegia.
Blackstone, Craig
2018-01-01
The hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurologic disorders with the common feature of prominent lower-extremity spasticity, resulting from a length-dependent axonopathy of corticospinal upper motor neurons. The HSPs exist not only in "pure" forms but also in "complex" forms that are associated with additional neurologic and extraneurologic features. The HSPs are among the most genetically diverse neurologic disorders, with well over 70 distinct genetic loci, for which about 60 mutated genes have already been identified. Numerous studies elucidating the molecular pathogenesis underlying HSPs have highlighted the importance of basic cellular functions - especially membrane trafficking, mitochondrial function, organelle shaping and biogenesis, axon transport, and lipid/cholesterol metabolism - in axon development and maintenance. An encouragingly small number of converging cellular pathogenic themes have been identified for the most common HSPs, and some of these pathways present compelling targets for future therapies. Copyright © 2018 Elsevier B.V. All rights reserved.
GABAA Receptors, Anesthetics and Anticonvulsants in Brain Development
Henschel, Oliver; Gipson, Keith E.; Bordey, Angelique
2008-01-01
GABA, acting via GABAA receptors, is well-accepted as the main inhibitory neurotransmitter of the mature brain, where it dampens neuronal excitability. The receptor's properties have been studied extensively, yielding important information about its structure, pharmacology, and regulation that are summarized in this review. Several GABAergic drugs have been commonly used as anesthetics, sedatives, and anticonvulsants for decades. However, findings that GABA has critical functions in brain development, in particular during the late embryonic and neonatal period, raise worthwhile questions regarding the side effects of GABAergic drugs that may lead to long-term cognitive deficits. Here, we will review some of these drugs in parallel with the control of CNS development that GABA exerts via activation of GABAA receptors. This review aims to provide a basic science and clinical perspective on the function of GABA and related pharmaceuticals acting at GABAA receptors. PMID:18537647
Ning, Xiaojin; Tao, Tao; Shen, Jianhong; Ji, Yuteng; Xie, Lili; Wang, Hongmei; Liu, Ning; Xu, Xide; Sun, Chi; Zhang, Dongmei; Shen, Aiguo; Ke, Kaifu
2017-04-01
Contrary to cell cycle-associated cyclin-dependent kinases, CDK5 is best known for its regulation of signaling processes in regulating mammalian CNS development. Studies of CDK5 have focused on its phosphorylation, although the diversity of CDK5 functions in the brain suggests additional forms of regulation. Here we expanded on the functional roles of CDK5 glycosylation in neurons. We showed that CDK5 was dynamically modified with O-GlcNAc in response to neuronal activity and that glycosylation represses CDK5-dependent apoptosis by impairing its association with p53 pathway. Blocking glycosylation of CDK5 alters cellular function and increases neuronal apoptosis in the cell model of the ICH. Our findings demonstrated a new role for O-glycosylation in neuronal apoptosis and provided a mechanistic understanding of how glycosylation contributes to critical neuronal functions. Moreover, we identified a previously unknown mechanism for the regulation of activity-dependent gene expression, neural development, and apoptosis.
Patil, Sachin; Chan, Christina
2005-08-26
Epidemiological studies suggest that high fat diets significantly increase the risk of Alzheimer's disease (AD). In addition, the AD brain is characterized by high fatty acid content compared to that of healthy subjects. Nevertheless, the basic mechanism relating elevated fatty acids and the pathogenesis of AD remains unclear. The present study examines the role of fatty acids in causing hyperphosphorylation of the tau protein, one of the characteristic signatures of AD pathology. Hyperphosphorylation of tau disrupts the cell cytoskeleton and leads to neuronal degeneration. Here, primary rat cortical neurons and astrocytes were treated with saturated free fatty acids (FFAs), palmitic and stearic acids. There was no change in the levels of phosphorylated tau in rat cortical neurons treated directly with these FFAs. The conditioned media from FFA-treated astrocytes, however, caused hyperphosphorylation of tau in the cortical neurons at AD-specific phospho-epitopes. Co-treatment of neurons with N-acetyl cysteine, an antioxidant, reduced FFA-induced hyperphosphorylation of tau. The present results establish a central role of FFAs in causing hyperphosphorylation of tau through astroglia-mediated oxidative stress.
Basic mathematical rules are encoded by primate prefrontal cortex neurons
Bongard, Sylvia; Nieder, Andreas
2010-01-01
Mathematics is based on highly abstract principles, or rules, of how to structure, process, and evaluate numerical information. If and how mathematical rules can be represented by single neurons, however, has remained elusive. We therefore recorded the activity of individual prefrontal cortex (PFC) neurons in rhesus monkeys required to switch flexibly between “greater than” and “less than” rules. The monkeys performed this task with different numerical quantities and generalized to set sizes that had not been presented previously, indicating that they had learned an abstract mathematical principle. The most prevalent activity recorded from randomly selected PFC neurons reflected the mathematical rules; purely sensory- and memory-related activity was almost absent. These data show that single PFC neurons have the capacity to represent flexible operations on most abstract numerical quantities. Our findings support PFC network models implementing specific “rule-coding” units that control the flow of information between segregated input, memory, and output layers. We speculate that these neuronal circuits in the monkey lateral PFC could readily have been adopted in the course of primate evolution for syntactic processing of numbers in formalized mathematical systems. PMID:20133872
BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.
Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan
2015-10-01
Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.
French, Andrew S.; Meisner, Shannon; Su, Chih-Ying; Torkkeli, Päivi H.
2014-01-01
We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor. PMID:24466044
Mizunami, Makoto; Matsumoto, Yukihisa
2017-01-01
Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of “blocking” and “auto-blocking” phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals. PMID:29311961
Mizunami, Makoto; Matsumoto, Yukihisa
2017-01-01
Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of "blocking" and "auto-blocking" phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals.
Romariz, Alexandre R S; Wagner, Kelvin H
2007-07-20
An optoelectronic implementation of a modified FitzHugh-Nagumo neuron model is proposed, analyzed, and experimentally demonstrated. The setup uses linear optics and linear electronics for implementing an optical wavelength-domain nonlinearity. The system attains instability through a bifurcation mechanism present in a class of neuron models, a fact that is shown analytically. The implementation exhibits basic features of neural dynamics including threshold, production of short pulses (or spikes), and refractoriness.
Parameter Estimation of a Spiking Silicon Neuron
Russell, Alexander; Mazurek, Kevin; Mihalaş, Stefan; Niebur, Ernst; Etienne-Cummings, Ralph
2012-01-01
Spiking neuron models are used in a multitude of tasks ranging from understanding neural behavior at its most basic level to neuroprosthetics. Parameter estimation of a single neuron model, such that the model’s output matches that of a biological neuron is an extremely important task. Hand tuning of parameters to obtain such behaviors is a difficult and time consuming process. This is further complicated when the neuron is instantiated in silicon (an attractive medium in which to implement these models) as fabrication imperfections make the task of parameter configuration more complex. In this paper we show two methods to automate the configuration of a silicon (hardware) neuron’s parameters. First, we show how a Maximum Likelihood method can be applied to a leaky integrate and fire silicon neuron with spike induced currents to fit the neuron’s output to desired spike times. We then show how a distance based method which approximates the negative log likelihood of the lognormal distribution can also be used to tune the neuron’s parameters. We conclude that the distance based method is better suited for parameter configuration of silicon neurons due to its superior optimization speed. PMID:23852978
Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena
2015-10-29
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.
2012-01-01
The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice. PMID:22818293
Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study.
Fabiani, Monica; Gordon, Brian A; Maclin, Edward L; Pearson, Melanie A; Brumback-Peltz, Carrie R; Low, Kathy A; McAuley, Edward; Sutton, Bradley P; Kramer, Arthur F; Gratton, Gabriele
2014-01-15
Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy- and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. Copyright © 2013 Elsevier Inc. All rights reserved.
Chang, Cheng-Kuei; Chou, Willy; Lin, Hung-Jung; Huang, Yi-Ching; Tang, Ling-Yu; Lin, Mao-Tsun; Chang, Ching-Ping
2014-01-01
The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI. PMID:25334068
Lamas, Nuno Jorge; Johnson-Kerner, Bethany; Roybon, Laurent; Kim, Yoon A; Garcia-Diaz, Alejandro; Wichterle, Hynek; Henderson, Christopher E
2014-01-01
Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50) 1-2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.
Lamas, Nuno Jorge; Johnson-Kerner, Bethany; Roybon, Laurent; Kim, Yoon A.; Garcia-Diaz, Alejandro; Wichterle, Hynek; Henderson, Christopher E.
2014-01-01
Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC50 1–2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening. PMID:25337699
Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P
2017-08-01
Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.
Dicer maintains the identity and function of proprioceptive sensory neurons
O’Toole, Sean M.; Ferrer, Monica M.; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R.
2017-01-01
Neuronal cell identity is established during development and must be maintained throughout an animal’s life (Fishell G, Heintz N. Neuron 80: 602–612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899–907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359–373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity. PMID:28003412
Dicer maintains the identity and function of proprioceptive sensory neurons.
O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B
2017-03-01
Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity. Copyright © 2017 the American Physiological Society.
Kubota, Kenta; Seno, Takeshi; Konishi, Yoshiyuki
2013-11-20
Cerebellar granule neuronal cultures have been used to study the molecular mechanisms underlying neuronal functions, including neuronal morphogenesis. However, a limitation of this system is the difficulty to analyze isolated neurons because these are required to be maintained at a high density. Therefore, in the present study, we aimed to develop a simple and cost-effective method for culturing low-density cerebellar granule neurons. Cerebellar granule cells at two different densities (low- and high-density) were co-cultivated in order for the low-density culture to be supported by the paracrine signals from the high-density culture. This method enabled morphology analysis of isolated cerebellar granule neurons without astrocytic feeder cultures or supplements such as B27. Using this method, we investigated the function of a polarity factor. Studies using hippocampal neurons suggested that glycogen synthase kinase-3 (GSK-3) is an essential regulator of neuronal polarity, and inhibition of GSK-3 results in the formation of multiple axons. Pharmacological inhibitors for GSK-3 (6-bromoindirubin-3'-oxime and lithium chloride) did not cause the formation of multiple axons of cerebellar granule neurons but significantly reduced their length. Consistent results were obtained by introducing kinase-dead form of GSK-3 beta (K85A). These results indicated that GSK-3 is not directly involved in the control of neuronal polarity in cerebellar granule neurons. Overall, this study provides a simple method for culturing low-density cerebellar granule neurons and insights in to the neuronal-type dependent function of GSK-3 in neuronal morphogenesis. © 2013 Elsevier B.V. All rights reserved.
Telezhkin, Vsevolod; Thomas, Alison M; Harmer, Stephen C; Tinker, Andrew; Brown, David A
2013-07-01
All Kv7 potassium channels require membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) for their normal function and hence can be physiologically regulated by neurotransmitters and hormones that stimulate phosphoinositide hydrolysis. Recent mutational analysis indicates that a cluster of basic residues in the proximal C-terminus (K354/K358/R360/K362) is crucial for PI(4,5)P2 activation of cardiac Kv7.1 channels. Since this cluster is largely conserved in all Kv7 subunits, we tested whether homologous residues are also required for activation of Kv7.2 (a subunit of neuronal M-channels). We found that the mutation Kv7.2 (R325A) (corresponding to R360 in Kv7.1) reduced Kv7.2 current amplitude by ∼60 % (P < 0.02) without change in voltage sensitivity and reduced the sensitivity of Kv7.2 channels to dioctanoyl-phosphatidylinositol-4,5-bisphosphate by ∼eightfold (P < 0.001). Taking into account previous experiments (Zhang et al., Neuron 37:963-75, 2003) implicating Kv7.2 (H328), and since R325 and H328 are conserved in homologous positions in all other Kv7 channels, we suggest that this proximal C-terminal domain adjacent to the last transmembrane domain that contains R325 and H328 (in Kv7.2) might play a major role in the activation of all members of the Kv7 channel family by PI(4,5)P2.
Uittenbogaard, Martine; Chiaramello, Anne
2006-01-01
The basic helix-loop-helix transcription factor Nex1/Math-2 belongs to the NeuroD subfamily, which plays a critical role during neuronal differentiation and maintenance of the differentiated state. Previously, we demonstrated that Nex1 is a key regulatory component of the nerve growth factor (NGF) pathway. Further supporting this hypothesis, this study shows that Nex1 has survival-inducing properties similar to NGF, as Nex1-overexpressing PC12 cells survive in the absence of trophic factors. We dissected the molecular mechanism by which Nex1 confers neuroprotection upon serum removal and found that constitutive expression of Nex1 maintained the expression of specific G1 phase cyclin-dependent kinase inhibitors and concomitantly induced a dynamic expression profile of key anti-apoptotic regulators. This study provides the first evidence of the underlying mechanism by which a member of the NeuroD-subfamily promotes an active anti-apoptotic program essential to the survival of neurons. Our results suggest that the survival program may be viewed as an integral component of the intrinsic programming of the differ entiated state. PMID:15659228
NASA Astrophysics Data System (ADS)
Nuriya, Mutsuo; Yasui, Masato
2010-03-01
The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.
Beadex Function in the Motor Neurons Is Essential for Female Reproduction in Drosophila melanogaster
Kairamkonda, Subhash; Nongthomba, Upendra
2014-01-01
Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the role of Beadex, a transcription co-activator, in Drosophila female reproduction was assessed by generation of mutant and knock down studies. Null allele of Beadex was generated by transposase induced excision of P-element present within an intron of Beadex gene. The mutant showed highly compromised reproductive abilities as evaluated by reduced fecundity and fertility, abnormal oviposition and more importantly, the failure of sperm release from storage organs. However, no defect was found in the overall ovariole development. Tissue specific, targeted knock down of Beadex indicated that its function in neurons is important for efficient female reproduction, since its neuronal knock down led to compromised female reproductive abilities, similar to Beadex null females. Further, different neuronal class specific knock down studies revealed that Beadex function is required in motor neurons for normal fecundity and fertility of females. Thus, the present study attributes a novel and essential role for Beadex in female reproduction through neurons. PMID:25396431
Sustained synchronized neuronal network activity in a human astrocyte co-culture system
Kuijlaars, Jacobine; Oyelami, Tutu; Diels, Annick; Rohrbacher, Jutta; Versweyveld, Sofie; Meneghello, Giulia; Tuefferd, Marianne; Verstraelen, Peter; Detrez, Jan R.; Verschuuren, Marlies; De Vos, Winnok H.; Meert, Theo; Peeters, Pieter J.; Cik, Miroslav; Nuydens, Rony; Brône, Bert; Verheyen, An
2016-01-01
Impaired neuronal network function is a hallmark of neurodevelopmental and neurodegenerative disorders such as autism, schizophrenia, and Alzheimer’s disease and is typically studied using genetically modified cellular and animal models. Weak predictive capacity and poor translational value of these models urge for better human derived in vitro models. The implementation of human induced pluripotent stem cells (hiPSCs) allows studying pathologies in differentiated disease-relevant and patient-derived neuronal cells. However, the differentiation process and growth conditions of hiPSC-derived neurons are non-trivial. In order to study neuronal network formation and (mal)function in a fully humanized system, we have established an in vitro co-culture model of hiPSC-derived cortical neurons and human primary astrocytes that recapitulates neuronal network synchronization and connectivity within three to four weeks after final plating. Live cell calcium imaging, electrophysiology and high content image analyses revealed an increased maturation of network functionality and synchronicity over time for co-cultures compared to neuronal monocultures. The cells express GABAergic and glutamatergic markers and respond to inhibitors of both neurotransmitter pathways in a functional assay. The combination of this co-culture model with quantitative imaging of network morphofunction is amenable to high throughput screening for lead discovery and drug optimization for neurological diseases. PMID:27819315
Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells.
Abdullah, Rafal H; Yaseen, Nahi Y; Salih, Shahlaa M; Al-Juboory, Ahmad Adnan; Hassan, Ayman; Al-Shammari, Ahmed Majeed
2016-11-01
The differentiation of mesenchymal stem cells (MSC) into acetylcholine secreted motor neuron-like cells, followed by elongation of the cell axon, is a promising treatment for spinal cord injury and motor neuron cell dysfunction in mammals. Differentiation is induced through a pre-induction step using Beta- mercaptoethanol (BME) followed by four days of induction with retinoic acid and sonic hedgehog. This process results in a very efficient differentiation of BM-MSCs into motor neuron-like cells. Immunocytochemistry showed that these treated cells had specific motor neural markers: microtubule associated protein-2 and acetylcholine transferase. The ability of these cells to function as motor neuron cells was assessed by measuring acetylcholine levels in a culture media during differentiation. High-performance liquid chromatography (HPLC) showed that the differentiated cells were functional. Motor neuron axon elongation was then induced by adding different concentrations of a nerve growth factor (NGF) to the differentiation media. Using a collagen matrix to mimic the natural condition of neural cells in a three-dimensional model showed that the MSCs were successfully differentiated into motor neuron-like cells. This process can efficiently differentiate MSCs into functional motor neurons that can be used for autologous nervous system therapy and especially for treating spinal cord injuries. Copyright © 2016 Elsevier B.V. All rights reserved.
Passive dendrites enable single neurons to compute linearly non-separable functions.
Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris
2013-01-01
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions.
Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions
Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris
2013-01-01
Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions. PMID:23468600
Coffee, R. Lane; Tessier, Charles R.; Woodruff, Elvin A.; Broadie, Kendal
2010-01-01
SUMMARY Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity. PMID:20442204
Role of PPARγ in the Differentiation and Function of Neurons
Quintanilla, Rodrigo A.; Utreras, Elias; Cabezas-Opazo, Fabián A.
2014-01-01
Neuronal processes (neurites and axons) have an important role in brain cells communication and, generally, they are damaged in neurodegenerative diseases. Recent evidence has showed that the activation of PPARγ pathway promoted neuronal differentiation and axon polarity. In addition, activation of PPARγ using thiazolidinediones (TZDs) prevented neurodegeneration by reducing neuronal death, improving mitochondrial function, and decreasing neuroinflammation in neuropathic pain. In this review, we will discuss important evidence that supports a possible role of PPARγ in neuronal development, improvement of neuronal health, and pain signaling. Therefore, activation of PPARγ is a potential target with therapeutic applications against neurodegenerative disorders, brain injury, and pain regulation. PMID:25246934
Morton, Russell A; Yanagawa, Yuchio; Valenzuela, C Fernando
2015-01-01
Alterations in the development of the serotonin system can have prolonged effects, including depression and anxiety disorders later in life. Serotonin axonal projections from the dorsal raphe undergo extensive refinement during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy). However, little is known about the functional properties of serotonin and GABA neurons in the dorsal raphe during this critical developmental period. We assessed the functional properties and synaptic connectivity of putative serotoninergic neurons and GABAergic neurons in the dorsal raphe during early [postnatal day (P) P5-P7] and late (P15-P17) stages of the third trimester equivalent period using electrophysiology. Our studies demonstrate that GABAergic neurons are hyperexcitable at P5-P7 relative to P15-P17. Furthermore, putative serotonin neurons exhibit an increase in both excitatory and GABAA receptor-mediated spontaneous postsynaptic currents during this developmental period. Our data suggest that GABAergic neurons and putative serotonin neurons undergo significant electrophysiological changes during neonatal development.
Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator
2017-01-01
Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50–60 Hz “fast trill” song used by males during courtship. We recorded “fictive vocalizations” in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans. PMID:28219984
Bipolar Pathophysiology and Development of Improved Treatments
Bowden, Charles L.
2013-01-01
The purpose of this review is to provide strategies and their rationale which can facilitate scientifically productive investigations into genetic, neuronal, brain functional and clinical aspects of bipolar disorder. The presentation addresses both factors that have impeded and those that have facilitated landmark advances on the pathophysiology and treatment of bipolar disorders. Application of the strategies can provide a scientific platform that may be useful to basic and clinical scientists for the purposes of achieving seminal advances in understanding pathophysiology, including inherited and experience based contributors to disease expression. Current diagnostic criteria omit certain key symptoms, do not include illness course or family history and lack specification of the importance of fundamental symptomatology. Consideration of such factors in inclusion and exclusion criteria, and in assessment instruments in basic and clinical studies, serves to strengthen the capability of a research plan to test key hypotheses regarding moderating and mediating factors of this complex illness. For example, most studies of brain structure and function and of new interventions have selected subjects on the basis of traditional full syndromal criteria. Evidence indicates that additional consideration of principal behavioral domains of bipolar symptomatology, e.g., anxiety, psychosis, impulsivity, elevated psychomotor and cognitive processing speed, rather than strictly depressive or manic syndromes can provide more homogeneous samples for study, and increase the focus of experimental hypotheses. PMID:18582440
Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A
2012-06-01
Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with positive terminals around them. Ghrelin receptors are therefore expressed by subgroups of preganglionic neurons, including those of vasoconstrictor pathways and of pathways controlling gut function, but are absent from some other neurons, including those innervating sweat glands and the secretomotor neurons that supply the submaxillary salivary glands.
Variance in population firing rate as a measure of slow time-scale correlation
Snyder, Adam C.; Morais, Michael J.; Smith, Matthew A.
2013-01-01
Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and cognitive context. Yet while this context fluctuates from moment to moment, correlation must be calculated over multiple trials. This property undermines its utility as a dependent measure for investigations of cognitive processes which fluctuate on a trial-to-trial basis, such as selective attention. A measure of functional connectivity that can be assayed on a moment-to-moment basis is needed to investigate the single-trial dynamics of populations of spiking neurons. Here, we introduce the measure of population variance in normalized firing rate for this goal. We show using mathematical analysis, computer simulations and in vivo data how population variance in normalized firing rate is inversely related to the latent correlation in the population, and how this measure can be used to reliably classify trials from different typical correlation conditions, even when firing rate is held constant. We discuss the potential advantages for using population variance in normalized firing rate as a dependent measure for both basic and applied neuroscience research. PMID:24367326
Cross, Zachariah R.; Kohler, Mark J.; Schlesewsky, Matthias; Gaskell, M. G.; Bornkessel-Schlesewsky, Ina
2018-01-01
We hypothesize a beneficial influence of sleep on the consolidation of the combinatorial mechanisms underlying incremental sentence comprehension. These predictions are grounded in recent work examining the effect of sleep on the consolidation of linguistic information, which demonstrate that sleep-dependent neurophysiological activity consolidates the meaning of novel words and simple grammatical rules. However, the sleep-dependent consolidation of sentence-level combinatorics has not been studied to date. Here, we propose that dissociable aspects of sleep neurophysiology consolidate two different types of combinatory mechanisms in human language: sequence-based (order-sensitive) and dependency-based (order-insensitive) combinatorics. The distinction between the two types of combinatorics is motivated both by cross-linguistic considerations and the neurobiological underpinnings of human language. Unifying this perspective with principles of sleep-dependent memory consolidation, we posit that a function of sleep is to optimize the consolidation of sequence-based knowledge (the when) and the establishment of semantic schemas of unordered items (the what) that underpin cross-linguistic variations in sentence comprehension. This hypothesis builds on the proposal that sleep is involved in the construction of predictive codes, a unified principle of brain function that supports incremental sentence comprehension. Finally, we discuss neurophysiological measures (EEG/MEG) that could be used to test these claims, such as the quantification of neuronal oscillations, which reflect basic mechanisms of information processing in the brain. PMID:29445333
Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging
Plaza-Zabala, Ainhoa; Sierra-Torre, Virginia; Sierra, Amanda
2017-01-01
Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer’s, Parkinson’s, and Huntington’s diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence. PMID:28282924
Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging.
Plaza-Zabala, Ainhoa; Sierra-Torre, Virginia; Sierra, Amanda
2017-03-09
Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.
Oikawa, Takayuki; Nonaka, Takashi; Terada, Makoto; Tamaoka, Akira; Hisanaga, Shin-ichi; Hasegawa, Masato
2016-01-01
α-Synuclein is the major component of Lewy bodies and Lewy neurites in Parkinson disease and dementia with Lewy bodies and of glial cytoplasmic inclusions in multiple system atrophy. It has been suggested that α-synuclein fibrils or intermediate protofibrils in the process of fibril formation may have a toxic effect on neuronal cells. In this study, we investigated the ability of soluble monomeric α-synuclein to promote microtubule assembly and the effects of conformational changes of α-synuclein on Tau-promoted microtubule assembly. In marked contrast to previous findings, monomeric α-synuclein had no effect on microtubule polymerization. However, both α-synuclein fibrils and protofibrils inhibited Tau-promoted microtubule assembly. The inhibitory effect of α-synuclein fibrils was greater than that of the protofibrils. Dot blot overlay assay and spin-down techniques revealed that α-synuclein fibrils bind to Tau and inhibit microtubule assembly by depleting the Tau available for microtubule polymerization. Using various deletion mutants of α-synuclein and Tau, the acidic C-terminal region of α-synuclein and the basic central region of Tau were identified as regions involved in the binding. Furthermore, introduction of α-synuclein fibrils into cultured cells overexpressing Tau protein induced Tau aggregation. These results raise the possibility that α-synuclein fibrils interact with Tau, inhibit its function to stabilize microtubules, and also promote Tau aggregation, leading to dysfunction of neuronal cells. PMID:27226637
Liu, Tianxin; Mahesh, Guruswamy; Houl, Jerry H; Hardin, Paul E
2015-06-03
Circadian pacemaker neurons in the Drosophila brain control daily rhythms in locomotor activity. These pacemaker neurons can be subdivided into early or late groups depending on whether rhythms in period (per) and timeless (tim) expression are initiated at the first instar (L1) larval stage or during metamorphosis, respectively. Because CLOCK-CYCLE (CLK-CYC) heterodimers initiate circadian oscillator function by activating per and tim transcription, a Clk-GFP transgene was used to mark when late pacemaker neurons begin to develop. We were surprised to see that CLK-GFP was already expressed in four of five clusters of late pacemaker neurons during the third instar (L3) larval stage. CLK-GFP is only detected in postmitotic neurons from L3 larvae, suggesting that these four late pacemaker neuron clusters are formed before the L3 larval stage. A GFP-cyc transgene was used to show that CYC, like CLK, is also expressed exclusively in pacemaker neurons from L3 larval brains, demonstrating that CLK-CYC is not sufficient to activate per and tim in late pacemaker neurons at the L3 larval stage. These results suggest that most late pacemaker neurons develop days before novel factors activate circadian oscillator function during metamorphosis. Copyright © 2015 the authors 0270-6474/15/358662-10$15.00/0.
Knowlton, Chris; Meliza, C Daniel; Margoliash, Daniel; Abarbanel, Henry D I
2014-06-01
Estimating the behavior of a network of neurons requires accurate models of the individual neurons along with accurate characterizations of the connections among them. Whereas for a single cell, measurements of the intracellular voltage are technically feasible and sufficient to characterize a useful model of its behavior, making sufficient numbers of simultaneous intracellular measurements to characterize even small networks is infeasible. This paper builds on prior work on single neurons to explore whether knowledge of the time of spiking of neurons in a network, once the nodes (neurons) have been characterized biophysically, can provide enough information to usefully constrain the functional architecture of the network: the existence of synaptic links among neurons and their strength. Using standardized voltage and synaptic gating variable waveforms associated with a spike, we demonstrate that the functional architecture of a small network of model neurons can be established.
Kim, Woo Jae; Jan, Lily Yeh; Jan, Yuh Nung
2013-12-04
A primary function of males for many species involves mating with females for reproduction. Drosophila melanogaster males respond to the presence of other males by prolonging mating duration to increase the chance of passing on their genes. To understand the basis of such complex behaviors, we examine the genetic network and neural circuits that regulate rival-induced Longer-Mating-Duration (LMD). Here, we identify a small subset of clock neurons in the male brain that regulate LMD via neuropeptide signaling. LMD requires the function of pigment-dispersing factor (PDF) in four s-LNv neurons and its receptor PDFR in two LNd neurons per hemisphere, as well as the function of neuropeptide F (NPF) in two neurons within the sexually dimorphic LNd region and its receptor NPFR1 in four s-LNv neurons per hemisphere. Moreover, rival exposure modifies the neuronal activities of a subset of clock neurons involved in neuropeptide signaling for LMD. Copyright © 2013 Elsevier Inc. All rights reserved.