NASA Astrophysics Data System (ADS)
Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.
2016-09-01
A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.
Digital Microwave System Design Guide.
1984-02-01
traffic analysis is a continuous effort, setting parameters for subsequent stages of expansion after the system design is finished. 2.1.3 Quality of...operational structure of the user for whom he is providing service. 2.2.3 Quality of Service. In digital communications, the basic performance parameter ...the basic interpretation of system performance is measured in terms of a single parameter , throughput. Throughput can be defined as the number of
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1042.205 - Application requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...'s specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1039.205 - What must I include in my application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1039.205 - What must I include in my application?
Code of Federal Regulations, 2010 CFR
2010-07-01
... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1039.205 - What must I include in my application?
Code of Federal Regulations, 2013 CFR
2013-07-01
... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1039.205 - What must I include in my application?
Code of Federal Regulations, 2012 CFR
2012-07-01
... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
40 CFR 1039.205 - What must I include in my application?
Code of Federal Regulations, 2011 CFR
2011-07-01
... engine family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel... or modulate the same parameter. Describe whether the strategies interact in a comparative or additive...
Prediction of plasma properties in mercury ion thrusters
NASA Technical Reports Server (NTRS)
Longhurst, G. R.
1978-01-01
A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.
40 CFR 1054.205 - What must I include in my application?
Code of Federal Regulations, 2012 CFR
2012-07-01
... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...
40 CFR 1054.205 - What must I include in my application?
Code of Federal Regulations, 2011 CFR
2011-07-01
... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...
40 CFR 1054.205 - What must I include in my application?
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...
40 CFR 1054.205 - What must I include in my application?
Code of Federal Regulations, 2013 CFR
2013-07-01
... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...
40 CFR 1054.205 - What must I include in my application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... emission family's specifications and other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, all-season gasoline... emission control systems operate. Describe the evaporative emission controls and show how your design will...
PV systems photoelectric parameters determining for field conditions and real operation conditions
NASA Astrophysics Data System (ADS)
Shepovalova, Olga V.
2018-05-01
In this work, research experience and reference documentation have been generalized related to PV systems photoelectric parameters (PV array output parameters) determining. The basic method has been presented that makes it possible to determine photoelectric parameters with the state-of-the-art reliability and repeatability. This method provides an effective tool for PV systems comparison and evaluation of PV system parameters that the end-user will have in the course of its real operation for compliance with those stipulated in reference documentation. The method takes in consideration all parameters that may possibly affect photoelectric performance and that are supported by sufficiently valid procedures for their values testing. Test conditions, requirements for equipment subject to tests and test preparations have been established and the test procedure for fully equipped PV system in field tests and in real operation conditions has been described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otobe, Y.; Chikamatsu, M.
1988-03-08
A method of controlling the fuel supply to an internal combustion engine is described, wherein a quantity of fuel for supply to the engine is determined by correcting a basic value of the quantity of fuel determined as a function of at least one operating parameter of the engine by correction values dependent upon operating conditions of the engine and the determined quantity of fuel is supplied to the engine. The method comprises the steps of: (1) detecting a value of at least one predetermined operating parameter of the engine; (2) manually adjusting a single voltage creating means to setmore » an output voltage therefrom to such a desired value as to compensate for deviation of the air/fuel ratio of a mixture supplied to the engine due to variations in operating characteristics of engines between different production lots or aging changes; (3) determining a value of the predetermined one correction value corresponding to the set desired value of output voltage of the single voltage creating means, and then modifying the thus determined value in response to the detected value of the predetermined at least one operating parameter of the engine during engine operation; and (4) correcting the basic value of the quantity of fuel by the value of the predetermined one correction value having the thus modified value, and the other correction values.« less
40 CFR 1037.205 - What must I include in my application?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the application (including the test procedures, test parameters, and test fuels) to show you meet the... basic parameters of the vehicle's design and emission controls. List the fuel type on which your vehicles are designed to operate (for example, ultra low-sulfur diesel fuel). (b) Explain how the emission...
40 CFR 1037.205 - What must I include in my application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the application (including the test procedures, test parameters, and test fuels) to show you meet the... basic parameters of the vehicle's design and emission controls. List the fuel type on which your vehicles are designed to operate (for example, ultra low-sulfur diesel fuel). (b) Explain how the emission...
Low Shrinkage Cement Concrete Intended for Airfield Pavements
NASA Astrophysics Data System (ADS)
Małgorzata, Linek
2017-10-01
The work concerns the issue of hardened concrete parameters improvement intended for airfield pavements. Factors which have direct or indirect influence on rheological deformation size were of particular interest. The aim of lab testing was to select concrete mixture ratio which would make hardened concrete less susceptible to influence of basic operating factors. Analyses included two research groups. External and internal factors were selected. They influence parameters of hardened cement concrete by increasing rheological deformations. Research referred to innovative cement concrete intended for airfield pavements. Due to construction operation, the research considered the influence of weather conditions and forced thermal loads intensifying concrete stress. Fresh concrete mixture parameters were tested and basic parameters of hardened concrete were defined (density, absorbability, compression strength, tensile strength). Influence of the following factors on rheological deformation value was also analysed. Based on obtained test results, it has been discovered that innovative concrete, made on the basis of modifier, which changes internal structure of concrete composite, has definitely lower values of rheological deformation. Observed changes of microstructure, in connection with reduced deformation values allowed to reach the conclusion regarding advantageous characteristic features of the newly designed cement concrete. Applying such concrete for airfield construction may contribute to extension of its operation without malfunction and the increase of its general service life.
E-FAST-Exposure and Fate Assessment Screening Tool Version 2014
E-FAST estimates potential exposures to the general population and surface water concentrations based on releases from industrial operations and basic physical-chemical properties and fate parameters of the substance
NASA Technical Reports Server (NTRS)
Egebrecht, R. A.; Thorbjornsen, A. R.
1967-01-01
Digital computer programs determine steady-state performance characteristics of active and passive linear circuits. The ac analysis program solves the basic circuit parameters. The compiler program solves these circuit parameters and in addition provides a more versatile program by allowing the user to perform mathematical and logical operations.
ERIC Educational Resources Information Center
Klopping, Paul H.
The basic operation of the gravity thickener is described in this lesson, focusing on the theory of operation, components found in a typical thickener, and the parameters which must be understood in optimizing the opeation of the thickener. Attention is given to mathematics concepts which are used in controlling hydraulic loading, detention time,…
Theoretic aspects of the identification of the parameters in the optimal control model
NASA Technical Reports Server (NTRS)
Vanwijk, R. A.; Kok, J. J.
1977-01-01
The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2005)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
Tracer-Test Planning Using the Efficient Hydrologic Tracer-Test Design (Ehtd) Program (2003)
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test ...
NASA Astrophysics Data System (ADS)
Kim, A. A.; Klochkov, D. V.; Konyaev, M. A.; Mihaylenko, A. S.
2017-11-01
The article considers the problem of control and verification of the laser ceilometers basic performance parameters and describes an alternative method based on the use of multi-length fiber optic delay line, simulating atmospheric track. The results of the described experiment demonstrate the great potential of this method for inspection and verification procedures of laser ceilometers.
NASA Technical Reports Server (NTRS)
1978-01-01
A unified framework for comparing intercity passenger and freight transportation systems is presented. Composite measures for cost, service/demand, energy, and environmental impact were determined. A set of 14 basic measures were articulated to form the foundation for computing the composite measures. A parameter dependency diagram, constructed to explicitly interrelate the composite and basic measures is discussed. Ground rules and methodology for developing the values of the basic measures are provided and the use of the framework with existing cost and service data is illustrated for various freight systems.
Comparative investigation on magnetic capture selectivity between single wires and a real matrix
NASA Astrophysics Data System (ADS)
Ren, Peng; Chen, Luzheng; Liu, Wenbo; Shao, Yanhai; Zeng, Jianwu
2018-03-01
High gradient magnetic separation (HGMS) achieves the effective separation to fine weakly magnetic minerals through a magnetic matrix. In practice, the matrix is made of numerous magnetic wires, so that an insight into the magnetic capture characteristics of single wires to magnetic minerals would provide a basic foundation for the optimum design and choice of real matrix. The magnetic capture selectivity of cylindrical and rectangular single wires in concentrating ilmenite minerals were investigated through a cyclic pulsating HGMS separator with its key operating parameters (magnetic induction, feed velocity and pulsating frequency) varied, and their capture selectivity characteristics were parallelly compared with that of a real 3.0 mm cylindrical matrix. It was found that the cylindrical single wires have superior capture selectivity to the rectangular one; and, the single wires and the real matrix have basically the same capture trend with changes in the key operating parameters, but the single wires have a much higher capture selectivity than that of real matrix.
Parameter optimization for transitions between memory states in small arrays of Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezac, Jacob D.; Imam, Neena; Braiman, Yehuda
Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. Here in this article we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilizedmore » for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10–100 ps and access energies on the order of 10 -19–5×10 -18 J. Numerical simulations are validated with approximate analytical results.« less
Elements affecting runway traction
NASA Technical Reports Server (NTRS)
Horne, W. B.
1974-01-01
The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.
A Study of Al-Mn Transition Edge Sensor Engineering for Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, E. M.; et al.
2013-11-10
The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.
Saleh, B
2016-09-01
The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters.
Engine monitoring display study
NASA Technical Reports Server (NTRS)
Hornsby, Mary E.
1992-01-01
The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.
40 CFR 1042.840 - Application requirements for remanufactured engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel). List each distinguishable... and the range of values for maximum engine power resulting from production tolerances, as described in...
40 CFR 1042.840 - Application requirements for remanufactured engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... other basic parameters of the engine's design and emission controls. List the fuel type on which your engines are designed to operate (for example, ultra low-sulfur diesel fuel). List each distinguishable... and the range of values for maximum engine power resulting from production tolerances, as described in...
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowl...
Analysis of Fixed Duty Cycle Hysteretic Flyback Converter for Firing Set Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Thomas Michael
2017-05-01
This paper analyzes several performance aspects of the fixed-duty-cycle, hysteretic flyback converter topology typically used in firing sets. Topologies with and without active pulse-by-pulse current limiting are considered, and closed-form expressions in terms of basic operating parameters are derived.
Journal: Efficient Hydrologic Tracer-Test Design for Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri
Tracer-Test Planning Using the Efficient Hydrologic Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be
EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to
The HelCat dual-source plasma device.
Lynn, Alan G; Gilmore, Mark; Watts, Christopher; Herrea, Janis; Kelly, Ralph; Will, Steve; Xie, Shuangwei; Yan, Lincan; Zhang, Yue
2009-10-01
The HelCat (Helicon-Cathode) device has been constructed to support a broad range of basic plasma science experiments relevant to the areas of solar physics, laboratory astrophysics, plasma nonlinear dynamics, and turbulence. These research topics require a relatively large plasma source capable of operating over a broad region of parameter space with a plasma duration up to at least several milliseconds. To achieve these parameters a novel dual-source system was developed utilizing both helicon and thermionic cathode sources. Plasma parameters of n(e) approximately 0.5-50 x 10(18) m(-3) and T(e) approximately 3-12 eV allow access to a wide range of collisionalities important to the research. The HelCat device and initial characterization of plasma behavior during dual-source operation are described.
Survey of beam instrumentation used in SLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecklund, S.D.
A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs.
NASA Astrophysics Data System (ADS)
Butov, Vladimir; Timchenko, Sergey; Ushakov, Ivan; Golovkov, Nikita; Poberezhnikov, Andrey
2018-03-01
Single gas centrifuge (GC) is generally used for the separation of binary mixtures of isotopes. Processes taking place within the centrifuge are complex and non-linear. Their characteristics can change over time with long-term operation due to wear of the main structural elements of the GC construction. The paper is devoted to the determination of basic operation parameters of the centrifuge with the help of neural networks. We have developed a method for determining the parameters of the industrial GC operation by processing statistical data. In this work, we have constructed a neural network that is capable of determining the main hydraulic and separation characteristics of the gas centrifuge, depending on the geometric dimensions of the gas centrifuge, load value, and rotor speed.
A model of individualized canonical microcircuits supporting cognitive operations
Peterson, Andre D. H.; Haueisen, Jens; Knösche, Thomas R.
2017-01-01
Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations. PMID:29200435
Advanced interactive display formats for terminal area traffic control
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.
1995-01-01
The basic design considerations for perspective Air Traffic Control displays are described. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. The MVPS system is based on indirect manipulation of the viewing parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of screen. This arrangement has been chosen, in order to preserve the correspondence between the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer generated scene. Current, ongoing efforts deal with the development of automated viewing parameter setting schemes. These schemes employ an optimization strategy, aimed at identifying the best possible vantage point, from which the Air Traffic Control scene can be viewed, for a given traffic situation.
[THE ALTERNATIVE MODEL IN TRAINING FOR OPERATION MANAGEMENT ON LUMBAR SPINE].
Zakondyrin, D E
2015-01-01
The authors proposed to use a lumbar part of calf carcass as a new biological model for training of basic practical skills in order to perform the neurosurgical operative interventions on the spine. The proximity of anatomico-surgical parameters of given model and human cavader lumbar spine was estimated. The study proved the possibility of use of lumbar part of calf carcass for training techniques of transpedicular fixation and microdiskectomy in lumbar part.
NASA Technical Reports Server (NTRS)
Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.
1971-01-01
High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.
40 CFR 1037.205 - What must I include in my application?
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuel-system components you will install on any production vehicle. Identify the part number of each... basic parameters of the vehicle's design and emission controls. List the fuel type on which your vehicles are designed to operate (for example, ultra low-sulfur diesel fuel). (b) Explain how the emission...
Effluent Monitoring Procedures: Basic Parameters for Municipal Effluents. Staff Guide.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Water Programs.
This is one of several short-term courses developed to assist in the training of waste water treatment plant operational personnel in the tests, measurements, and report preparation required for compliance with their NPDES Permits. This Staff Guide provides step-by-step guidelines on course planning, development and implementation involving…
Self-Monitoring Procedures: Basic Parameters for Municipal Effluents. Student Reference Manual.
ERIC Educational Resources Information Center
Environmental Protection Agency, Washington, DC. Office of Water Programs.
This is one of several short-term courses developed to assist in the training of waste water treatment plant operational personnel in the tests, measurements, and report preparation required for compliance with their NPDES Permits. The Student Reference Manual provides step-by-step procedures for laboratory application of equipment operating…
First Report on Non-Thermal Plasma Reactor Scaling Criteria and Optimization Models
1998-01-13
decomposition chemistry of nitric oxide and two representative VOCs, trichloroethylene and carbon tetrachloride, and the connection between the basic plasma ... chemistry , the target species properties, and the reactor operating parameters. System architecture, that is how NTP reactors can be combined or ganged to achieve higher capacity, will also be briefly discussed.
Measurement of control system response using an analog operational circuit
NASA Technical Reports Server (NTRS)
Lalli, V. R.
1978-01-01
Ten basic steps are established for an analog method that measures control system response parameters. An example shows how these steps were used on a speed control portion of an auxiliary power unit. The equations and calculations necessary to describe this subsystem are given. The mechanization schematic and simulation diagram for obtaining the measured response parameters of the control system using an analog circuit are explained. Methods for investigating the various effects of the control parameters are described. It is concluded that the optimum system should be underdamped enough to be slightly oscillatory during transients.
Device Management and Flow Optimization on Left Ventricular Assist Device Support.
Tchoukina, Inna; Smallfield, Melissa C; Shah, Keyur B
2018-07-01
The authors discuss principles of continuous flow left ventricular assist device (LVAD) operation, basic differences between the axial and centrifugal flow designs and hemodynamic performance, normal LVAD physiology, and device interaction with the heart. Systematic interpretation of LVAD parameters and recognition of abnormal patterns of flow and pulsatility on the device interrogation are necessary for clinical assessment of the patient. Optimization of pump flow using LVAD parameters and echocardiographic and hemodynamics guidance are reviewed. Copyright © 2018 Elsevier Inc. All rights reserved.
Basic design considerations for free-electron lasers driven by electron beams from RF accelerators
NASA Astrophysics Data System (ADS)
Gover, A.; Freund, H.; Granatstein, V. L.; McAdoo, J. H.; Tang, C.-M.
A design procedure and design criteria are derived for free-electron lasers driven by electron beams from RF accelerators. The procedure and criteria permit an estimate of the oscillation-buildup time and the laser output power of various FEL schemes: with waveguide resonator or open resonator, with initial seed-radiation injection or with spontaneous-emission radiation source, with a linear wiggler or with a helical wiggler. Expressions are derived for computing the various FEL parameters, allowing for the design and optimization of the FEL operational characteristics under ideal conditions or with nonideal design parameters that may be limited by technological or practical constraints. The design procedure enables one to derive engineering curves and scaling laws for the FEL operating parameters. This can be done most conveniently with a computer program based on flowcharts given in the appendices.
Kubáň, Pavel; Boček, Petr
2014-04-11
This contribution describes properties and utilization of free liquid membranes (FLMs) in micro-electromembrane extraction (μ-EME) of analytes from samples with complex matrices. An FLM was formed as a plug of a selected organic solvent, 1-ethyl-2-nitrobenezene (ENB) or 2-nitrophenyloctyl ether, in a narrow bore polymeric tubing and was sandwiched between a plug of aqueous donor and aqueous acceptor solution. The FLM acted as a phase interface that enabled selective transfer of analytes from donor into acceptor solution. Acceptor solution after μ-EME was analysed by capillary electrophoresis (CE). Fundamental characteristics of FLMs were depicted and discussed by presenting experimental data on their performance for various basic operational parameters, such as composition and volume of donor/acceptor solution, applied extraction voltage, thickness of FLM and extraction time. Positively charged basic drugs (nortriptyline, haloperidol and loperamide) and their solutions in water, urine and blood serum served as model samples. It was shown that FLMs may offer fast, efficient and selective pretreatment of crude biological samples providing that basic operational parameters of μ-EME are set properly. At optimised conditions, basic drugs in 1.5μL of a biological sample were transferred across 1.5μL of FLM (ENB) into 1.5μL of acceptor solution in about 5min at an extraction voltage of 100V. Repeatability values of μ-EMEs and CE-UV analyses of the three basic drugs were better than 7.7% for peak areas, recoveries ranged between 19 and 52% and linear relationship was obtained for analytical signal vs. concentration in 1-50mgL(-1) range (r(2) better than 0.996). Limits of detection, defined as 3×S/N, were below 1mgL(-1) for all examined matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
Automation of surface observations program
NASA Technical Reports Server (NTRS)
Short, Steve E.
1988-01-01
At present, surface weather observing methods are still largely manual and labor intensive. Through the nationwide implementation of Automated Surface Observing Systems (ASOS), this situation can be improved. Two ASOS capability levels are planned. The first is a basic-level system which will automatically observe the weather parameters essential for aviation operations and will operate either with or without supplemental contributions by an observer. The second is a more fully automated, stand-alone system which will observe and report the full range of weather parameters and will operate primarily in the unattended mode. Approximately 250 systems are planned by the end of the decade. When deployed, these systems will generate the standard hourly and special long-line transmitted weather observations, as well as provide continuous weather information direct to airport users. Specific ASOS configurations will vary depending upon whether the operation is unattended, minimally attended, or fully attended. The major functions of ASOS are data collection, data processing, product distribution, and system control. The program phases of development, demonstration, production system acquisition, and operational implementation are described.
MASTOS: Mammography Simulation Tool for design Optimization Studies.
Spyrou, G; Panayiotakis, G; Tzanakos, G
2000-01-01
Mammography is a high quality imaging technique for the detection of breast lesions, which requires dedicated equipment and optimum operation. The design parameters of a mammography unit have to be decided and evaluated before the construction of such a high cost of apparatus. The optimum operational parameters also must be defined well before the real breast examination. MASTOS is a software package, based on Monte Carlo methods, that is designed to be used as a simulation tool in mammography. The input consists of the parameters that have to be specified when using a mammography unit, and also the parameters specifying the shape and composition of the breast phantom. In addition, the input may specify parameters needed in the design of a new mammographic apparatus. The main output of the simulation is a mammographic image and calculations of various factors that describe the image quality. The Monte Carlo simulation code is PC-based and is driven by an outer shell of a graphical user interface. The entire software package is a simulation tool for mammography and can be applied in basic research and/or in training in the fields of medical physics and biomedical engineering as well as in the performance evaluation of new designs of mammography units and in the determination of optimum standards for the operational parameters of a mammography unit.
Covariant n/sup 2/-plet mass formulas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, A.
Using a generalized internal symmetry group analogous to the Lorentz group, we have constructed a covariant n/sup 2/-plet mass operator. This operator is built as a scalar matrix in the (n;n*) representation, and its SU(n) breaking parameters are identified as intrinsic boost ones. Its basic properties are: covariance, Hermiticity, positivity, charge conjugation, quark contents, and a self-consistent n/sup 2/-1, 1 mixing. The GMO and the Okubo formulas are obtained by considering two different limits of the same generalized mass formula.
Assessing performance of feedlot operations using epidemiology.
Corbin, Marilyn J; Griffin, Dee
2006-03-01
The progressive feedlot veterinarian must be well versed not only in individual production animal medicine, but also in population-based medicine. Feedlot health programs must be goal oriented, and evaluation of these goals is accomplished through diligent use of record systems and analytic evaluation of these record systems. Basic feedlot monitoring parameters include health and economic parameters in addition to the use of bench marking parameters between and among feed yards. When these parameters have significant changes, steps should be initiated to begin field investigations. Feedlot epidemiology uses several novel applications such as partial budgeting, risk assessment, and packing plant audits to provide scientifically sound and economically feasible solutions for the feeding industry.
Rotary wave-ejector enhanced pulse detonation engine
NASA Astrophysics Data System (ADS)
Nalim, M. R.; Izzy, Z. A.; Akbari, P.
2012-01-01
The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.
Thermionic reactor power conditioner design for nuclear electric propulsion.
NASA Technical Reports Server (NTRS)
Jacobsen, A. S.; Tasca, D. M.
1971-01-01
Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.
The cost of noise reduction for departure and arrival operations of commercial tilt rotor aircraft
NASA Technical Reports Server (NTRS)
Faulkner, H. B.; Swan, W. M.
1976-01-01
The relationship between direct operating cost (DOC) and noise annoyance due to a departure and an arrival operation was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles ranged across the spectrum of possible noise levels from completely unconstrained to the quietest vehicles that could be designed within the study ground rules. Optimization parameters were varied to find the minimum DOC. This basic variation was then extended to different aircraft sizes and technology time frames.
NASA Astrophysics Data System (ADS)
Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei
2017-03-01
A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.
Flocculation of Turbid Water Using Polyferric-Based Composite Coagulant
NASA Astrophysics Data System (ADS)
Tan, K. H.; Lai, S. H.
2017-06-01
The flocculation of turbid water using polyferric chloride-polydimethyldiallylammonium chloride (PFC-PDMDAAC) has been studied. Effect of preparation parameters basicity ratio (B ratio) of PFC and PDMDAAC/PFC ratio and operating parameters pH and dosage were investigated. PFC-PDMDAAC displayed maximum turbidity removal of 94.8% at 4.0mg/L when B=0.5 and PDMDAAC/PFC ratio = 7%. The best turbidity removal efficiencies by PFC-PDMDAAC were 84.7% at pH 7.5. These results reveal that PFC-PDMDAAC is efficient for flocculation of turbid water.
Advanced interactive display formats for terminal area traffic control
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.
1996-01-01
This report describes the basic design considerations for perspective air traffic control displays. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. Two distinct modes of MVPS operations are considered, both of which utilize manipulation pointers imbedded in the three-dimensional scene: (1) direct manipulation of the viewing parameters -- in this mode the manipulation pointers act like the control-input device, through which the viewing parameter changes are made. Part of the parameters are rate controlled, and part of them position controlled. This mode is intended for making fast, iterative small changes in the parameters. (2) Indirect manipulation of the viewing parameters -- this mode is intended primarily for introducing large, predetermined changes in the parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of the screen. This arrangement has been chosen in order to preserve the correspondence between the spatial lay-outs of the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer-generated scene. The proposed, continued research efforts will deal with the development of automated viewing parameter setting schemes. These schemes employ an optimization strategy, aimed at identifying the best possible vantage point, from which the air traffic control scene can be viewed for a given traffic situation. They determine whether a change in viewing parameter setting is required and determine the dynamic path along which the change to the new viewing parameter setting should take place.
Integrated design course of applied optics focusing on operating and maintaining abilities
NASA Astrophysics Data System (ADS)
Xu, Zhongjie; Ning, Yu; Jiang, Tian; Cheng, Xiangai
2017-08-01
The abilities of operating and maintaining optical instruments are crucial in modern society. Besides the basic knowledge in optics, the optics courses in the National University of Defense Technology also focus on the training on handling typical optical equipment. As the link between classroom courses on applied optics and the field trips, the integrated design course of applied optics aims to give the students a better understanding on several instantly used optical equipment, such as hand-held telescope and periscope, etc. The basic concepts of optical system design are also emphasized as well. The course is arranged rightly after the classroom course of applied optics and composed of experimental and design tasks. The experimental tasks include the measurements of aberrations and major parameters of a primitive telescope, while in the design parts, the students are asked to design a Keplerian telescope. The whole course gives a deepened understandings on the concepts, assembling, and operating of telescopes. The students are also encouraged to extend their interests on other typical optical instruments.
Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin
2017-01-01
This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Modelling Parameters Characterizing Selected Water Supply Systems in Lower Silesia Province
NASA Astrophysics Data System (ADS)
Nowogoński, Ireneusz; Ogiołda, Ewa
2017-12-01
The work presents issues of modelling water supply systems in the context of basic parameters characterizing their operation. In addition to typical parameters, such as water pressure and flow rate, assessing the age of the water is important, as a parameter of assessing the quality of the distributed medium. The analysis was based on two facilities, including one with a diverse spectrum of consumers, including residential housing and industry. The carried out simulations indicate the possibility of the occurrence of water quality degradation as a result of excessively long periods of storage in the water supply network. Also important is the influence of the irregularity of water use, especially in the case of supplying various kinds of consumers (in the analysed case - mining companies).
Representation of natural numbers in quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, Paul
2001-03-01
This paper represents one approach to making explicit some of the assumptions and conditions implied in the widespread representation of numbers by composite quantum systems. Any nonempty set and associated operations is a set of natural numbers or a model of arithmetic if the set and operations satisfy the axioms of number theory or arithmetic. This paper is limited to k-ary representations of length L and to the axioms for arithmetic modulo k{sup L}. A model of the axioms is described based on an abstract L-fold tensor product Hilbert space H{sup arith}. Unitary maps of this space onto a physicalmore » parameter based product space H{sup phy} are then described. Each of these maps makes states in H{sup phy}, and the induced operators, a model of the axioms. Consequences of the existence of many of these maps are discussed along with the dependence of Grover's and Shor's algorithms on these maps. The importance of the main physical requirement, that the basic arithmetic operations are efficiently implementable, is discussed. This condition states that there exist physically realizable Hamiltonians that can implement the basic arithmetic operations and that the space-time and thermodynamic resources required are polynomial in L.« less
Operations analysis (study 2.1): Shuttle upper stage software requirements
NASA Technical Reports Server (NTRS)
Wolfe, R. R.
1974-01-01
An investigation of software costs related to space shuttle upper stage operations with emphasis on the additional costs attributable to space servicing was conducted. The questions and problem areas include the following: (1) the key parameters involved with software costs; (2) historical data for extrapolation of future costs; (3) elements of the basic software development effort that are applicable to servicing functions; (4) effect of multiple servicing on complexity of the operation; and (5) are recurring software costs significant. The results address these questions and provide a foundation for estimating software costs based on the costs of similar programs and a series of empirical factors.
Helicopter gust response characteristics including unsteady aerodynamic stall effects
NASA Technical Reports Server (NTRS)
Arcidiacono, P. J.; Bergquist, R. R.; Alexander, W. T., Jr.
1974-01-01
The results of an analytical study to evaluate the general response characteristics of a helicopter subjected to various types of discrete gust encounters are presented. The analysis employed was a nonlinear coupled, multi-blade rotorfuselage analysis including the effects of blade flexibility and unsteady aerodynamic stall. Only the controls-fixed response of the basic aircraft without any aircraft stability augmentation was considered. A discussion of the basic differences between gust sensitivity of fixed and rotary wing aircraft is presented. The effects of several rotor configuration and aircraft operating parameters on initial gust-induced load factor and blade vibratory stress and pushrod loads are discussed.
Comparative Study of Light Sources for Household
NASA Astrophysics Data System (ADS)
Pawlak, Andrzej; Zalesińska, Małgorzata
2017-03-01
The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.
NASA Astrophysics Data System (ADS)
Goldbery, R.; Tehori, O.
SEDPAK provides a comprehensive software package for operation of a settling tube and sand analyzer (2-0.063 mm) and includes data-processing programs for statistical and graphic output of results. The programs are menu-driven and written in APPLESOFT BASIC, conforming with APPLE 3.3 DOS. Data storage and retrieval from disc is an important feature of SEDPAK. Additional features of SEDPAK include condensation of raw settling data via standard size-calibration curves to yield statistical grain-size parameters, plots of grain-size frequency distributions and cumulative log/probability curves. The program also has a module for processing of grain-size frequency data from sieved samples. An addition feature of SEDPAK is the option for automatic data processing and graphic output of a sequential or nonsequential array of samples on one side of a disc.
TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview
NASA Astrophysics Data System (ADS)
Bradley, J. W.; Welzel, T.
2009-05-01
This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced literature and also hopefully as an inspiration for future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jing-Jy; Flood, Paul E.; LePoire, David
In this report, the results generated by RESRAD-RDD version 2.01 are compared with those produced by RESRAD-RDD version 1.7 for different scenarios with different sets of input parameters. RESRAD-RDD version 1.7 is spreadsheet-driven, performing calculations with Microsoft Excel spreadsheets. RESRAD-RDD version 2.01 revamped version 1.7 by using command-driven programs designed with Visual Basic.NET to direct calculations with data saved in Microsoft Access database, and re-facing the graphical user interface (GUI) to provide more flexibility and choices in guideline derivation. Because version 1.7 and version 2.01 perform the same calculations, the comparison of their results serves as verification of both versions.more » The verification covered calculation results for 11 radionuclides included in both versions: Am-241, Cf-252, Cm-244, Co-60, Cs-137, Ir-192, Po-210, Pu-238, Pu-239, Ra-226, and Sr-90. At first, all nuclidespecific data used in both versions were compared to ensure that they are identical. Then generic operational guidelines and measurement-based radiation doses or stay times associated with a specific operational guideline group were calculated with both versions using different sets of input parameters, and the results obtained with the same set of input parameters were compared. A total of 12 sets of input parameters were used for the verification, and the comparison was performed for each operational guideline group, from A to G, sequentially. The verification shows that RESRAD-RDD version 1.7 and RESRAD-RDD version 2.01 generate almost identical results; the slight differences could be attributed to differences in numerical precision with Microsoft Excel and Visual Basic.NET. RESRAD-RDD version 2.01 allows the selection of different units for use in reporting calculation results. The results of SI units were obtained and compared with the base results (in traditional units) used for comparison with version 1.7. The comparison shows that RESRAD-RDD version 2.01 correctly reports calculation results in the unit specified in the GUI.« less
NASA Astrophysics Data System (ADS)
Khachay, OA; Khachay, OYu
2018-03-01
It is shown that the dynamic process of mining can be controlled using the catastrophe theory. The control parameters can be values of blasting energy and locations of explosions relative to an area under study or operation. The kinematic and dynamic parameters of the deformation waves, as well as the structural features of rock mass through which these waves pass act as internal parameters. The use of the analysis methods for short-term and medium-term forecast of rock mass condition with the control parameters only is insufficient in the presence of sharp heterogeneity. However, the joint use of qualitative recommendations of the catastrophe theory and spatial–temporal data of changes in the internal parameters of rock mass will allow accident prevention in the course of mining.
NASA Technical Reports Server (NTRS)
Cukor, P. M.; Chapman, R. A.
1978-01-01
The uncertainties and associated costs involved in selecting and designing a particulate control device to meet California's air emission regulations are considered. The basic operating principles of electrostatic precipitators and fabric filters are discussed, and design parameters are identified. The size and resulting cost of the control device as a function of design parameters is illustrated by a case study for an 800 MW coal-fired fired utility boiler burning a typical southwestern subbituminous coal. The cost of selecting an undersized particulate control device is compared with the cost of selecting an oversized device.
NASA Technical Reports Server (NTRS)
Gelder, T. F.; Schmidt, J. F.; Esgar, G. M.
1980-01-01
A hub-to-shroud and a blade-to-blade internal-flow analysis code, both inviscid and basically subsonic, were used to calculate the flow parameters within four stator-blade rows. The produced ratios of maximum suction-surface velocity to trailing-edge velocity correlated well in the midspan region, with the measured total-parameters over the minimum-loss to near stall operating range for all stators and speeds studied. The potential benefits of a blade designed with the aid of these flow analysis codes are illustrated by a proposed redesign of one of the four stators studied. An overall efficiency improvement of 1.6 points above the peak measured for that stator is predicted for the redesign.
NASA Technical Reports Server (NTRS)
1978-01-01
The possible degradation of optical samples exposed to the effluent gases and particulate matter emanating from the payload of the space transportation system during orbital operations may be determined by measuring two optical parameters for five samples exposed to this environment, namely transmittance and diffuse reflectance. Any changes detected in these parameters as a function of time during the mission are then attributable to surface contamination or to increased material absorption. These basic functions are attained in the optical effects module by virtue of the following subsystems which are described: module enclosure; light source with collimator and modulator; sample wheel with holders and rotary drive; photomultipliers for radiation detection; processing and sequencing electronic circuitry; and power conditioning interfaces. The functions of these subsystems are reviewed and specified.
Single flux pulses affecting the ensemble of superconducting qubits
NASA Astrophysics Data System (ADS)
Denisenko, M. V.; Klenov, N. V.; Satanin, A. M.
2018-02-01
The present study is devoted to development of a technique for numerical simulation of the wave function dynamics the single Josephson qubits and arrays of noninteracting qubits controlled by ultra-short pulses. We wish to demonstrate the feasibility of a new principle of basic logical operations on the picosecond timescale. The influence of the unipolar pulse ("fluxon") form on the evolution of the state during the execution of the quantum one-qubit operations - "NOT", "READ" and " √{N O T } " - is investigated in the presence of decoherence. In the array of non interacting qubits, the question of the influence of the spread of their energy parameters (tunnel constants) is studied. It is shown that a single unipolar pulse can control a huge array of artificial atoms with 10% spread of geometric parameters in the array.
1992-08-01
operations and feports, III )"NeforDvis, Highway uteI24, Arigt’on VA r ?0.3 anto the Offfice of Management and Bludgeti. Paflerwork Reduction Project (0704.0...variables jaw*" 50P* (S/ M1 / ir5 (IMMw / M1 / a 0,06.-O 001 324 Table 4 Coniectured Statistical Attributes of Parameters Selected for the Error
COST FUNCTION STUDIES FOR POWER REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heestand, J.; Wos, L.T.
1961-11-01
A function to evaluate the cost of electricity produced by a nuclear power reactor was developed. The basic equation, revenue = capital charges + profit + operating expenses, was expanded in terms of various cost parameters to enable analysis of multiregion nuclear reactors with uranium and/or plutonium for fuel. A corresponding IBM 704 computer program, which will compute either the price of electricity or the value of plutonium, is presented in detail. (auth)
The space shuttle payload planning working groups. Volume 7: Earth observations
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of the Earth Observations working group of the space shuttle payload planning activity are presented. The objectives of the Earth Observation experiments are: (1) establishment of quantitative relationships between observable parameters and geophysical variables, (2) development, test, calibration, and evaluation of eventual flight instruments in experimental space flight missions, (3) demonstration of the operational utility of specific observation concepts or techniques as information inputs needed for taking actions, and (4) deployment of prototype and follow-on operational Earth Observation systems. The basic payload capability, mission duration, launch sites, inclinations, and payload limitations are defined.
Quantum Computing Architectural Design
NASA Astrophysics Data System (ADS)
West, Jacob; Simms, Geoffrey; Gyure, Mark
2006-03-01
Large scale quantum computers will invariably require scalable architectures in addition to high fidelity gate operations. Quantum computing architectural design (QCAD) addresses the problems of actually implementing fault-tolerant algorithms given physical and architectural constraints beyond those of basic gate-level fidelity. Here we introduce a unified framework for QCAD that enables the scientist to study the impact of varying error correction schemes, architectural parameters including layout and scheduling, and physical operations native to a given architecture. Our software package, aptly named QCAD, provides compilation, manipulation/transformation, multi-paradigm simulation, and visualization tools. We demonstrate various features of the QCAD software package through several examples.
Basic elements of light water reactor fuel rod design. [FUELROD code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, J.; Eckart, R.
1981-06-01
Basic design techniques and equations are presented to allow students to understand and perform preliminary fuel design for normal reactor conditions. Each of the important design considerations is presented and discussed in detail. These include the interaction between fuel pellets and cladding and the changes in fuel and cladding that occur during the operating lifetime of the fuel. A simple, student-oriented, fuel rod design computer program, called FUELROD, is described. The FUELROD program models the in-pile pellet cladding interaction and allows a realistic exploration of the effect of various design parameters. By use of FUELROD, the student can gain anmore » appreciation of the fuel rod design process. 34 refs.« less
Microdose analysis of ion strikes on SRAM cells
NASA Astrophysics Data System (ADS)
Scheick, L.
2003-12-01
A method of measuring the effect from exposure to highly localized ionizing radiation on microstructures is described. The voltage at which a commercial SRAM cell cannot hold a programmed state changes with microdose. The microdose distribution across the array, in addition to the analysis of the occurrence of anomalous shifts in operating bias due to rare, large energy-deposition events is studied. The effect of multiple hits on a SRAM cell is presented. A general theory on multiple hits from which basic device parameters can be extracted is presented. SPICE, as well as analysis of basic device physics, is used to analyze the damage to individual transistors and the response of a SRAM cell.
Stability analysis of automobile driver steering control
NASA Technical Reports Server (NTRS)
Allen, R. W.
1981-01-01
In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.
Quantum Walks on the Line with Phase Parameters
NASA Astrophysics Data System (ADS)
Villagra, Marcos; Nakanishi, Masaki; Yamashita, Shigeru; Nakashima, Yasuhiko
In this paper, a study on discrete-time coined quantum walks on the line is presented. Clear mathematical foundations are still lacking for this quantum walk model. As a step toward this objective, the following question is being addressed: Given a graph, what is the probability that a quantum walk arrives at a given vertex after some number of steps? This is a very natural question, and for random walks it can be answered by several different combinatorial arguments. For quantum walks this is a highly non-trivial task. Furthermore, this was only achieved before for one specific coin operator (Hadamard operator) for walks on the line. Even considering only walks on lines, generalizing these computations to a general SU(2) coin operator is a complex task. The main contribution is a closed-form formula for the amplitudes of the state of the walk (which includes the question above) for a general symmetric SU(2) operator for walks on the line. To this end, a coin operator with parameters that alters the phase of the state of the walk is defined. Then, closed-form solutions are computed by means of Fourier analysis and asymptotic approximation methods. We also present some basic properties of the walk which can be deducted using weak convergence theorems for quantum walks. In particular, the support of the induced probability distribution of the walk is calculated. Then, it is shown how changing the parameters in the coin operator affects the resulting probability distribution.
NASA Astrophysics Data System (ADS)
Wright, Robyn; Thornberg, Steven M.
SEDIDAT is a series of compiled IBM-BASIC (version 2.0) programs that direct the collection, statistical calculation, and graphic presentation of particle settling velocity and equivalent spherical diameter for samples analyzed using the settling tube technique. The programs follow a menu-driven format that is understood easily by students and scientists with little previous computer experience. Settling velocity is measured directly (cm,sec) and also converted into Chi units. Equivalent spherical diameter (reported in Phi units) is calculated using a modified Gibbs equation for different particle densities. Input parameters, such as water temperature, settling distance, particle density, run time, and Phi;Chi interval are changed easily at operator discretion. Optional output to a dot-matrix printer includes a summary of moment and graphic statistical parameters, a tabulation of individual and cumulative weight percents, a listing of major distribution modes, and cumulative and histogram plots of a raw time, settling velocity. Chi and Phi data.
[Assessment of prophylaxis and treatment of blood loss in patients with pre-eclampsia].
Timokhova, S Iu; Golubtsov, V V; Zabolotskikh, I B
2014-01-01
To improve treatment results of women with massive obstetrical blood loss. Subjects and methods: 96 female patients with average and heavy degree preeclampsia worsened massive blood developing were involved into the investigation. The women were divided into two groups: main (n=55) (basic) - it's patients were treated with complex of offered wiays control (n=41) - it's patients were evaluated retrospectively. During the investigation the parameters of hemostasis system and periphery blood values were performed as dynamic evaluations, acidity-basic state and water-electrolyte balance parameters, medical history were monitored. As a result of the investigation it was found out that these offered actions complex application about reducing massive obstetric blood accelerates restoration of clinic, bio-chemical paramnleters during the early post-operating period The application of the offered methods has reduced both inltraoperative blood loss in women with preeclamsia and use of blood components and the time spent on the hemostasis system correction for all the women of the base group.
Programmer's manual for MMLE3, a general FORTRAN program for maximum likelihood parameter estimation
NASA Technical Reports Server (NTRS)
Maine, R. E.
1981-01-01
The MMLE3 is a maximum likelihood parameter estimation program capable of handling general bilinear dynamic equations of arbitrary order with measurement noise and/or state noise (process noise). The basic MMLE3 program is quite general and, therefore, applicable to a wide variety of problems. The basic program can interact with a set of user written problem specific routines to simplify the use of the program on specific systems. A set of user routines for the aircraft stability and control derivative estimation problem is provided with the program. The implementation of the program on specific computer systems is discussed. The structure of the program is diagrammed, and the function and operation of individual routines is described. Complete listings and reference maps of the routines are included on microfiche as a supplement. Four test cases are discussed; listings of the input cards and program output for the test cases are included on microfiche as a supplement.
Realization of station for testing asynchronous three-phase motors
NASA Astrophysics Data System (ADS)
Wróbel, A.; Surma, W.
2016-08-01
Nowadays, you cannot imagine the construction and operation of machines without the use of electric motors [13-15]. The proposed position is designed to allow testing of asynchronous three-phase motors. The position consists of a tested engine and the engine running as a load, both engines combined with a mechanical clutch [2]. The value of the load is recorded by measuring shaft created with Strain Gauge Bridge. This concept will allow to study the basic parameters of the engines, visualization motor parameters both vector and scalar controlled, during varying load drive system. In addition, registration during the variable physical parameters of the working electric motor, controlled by a frequency converter or controlled by a contactor will be possible. Position is designed as a teaching and research position to characterize the engines. It will be also possible selection of inverter parameters.
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.
2016-08-01
The use of potent power units in thermal and nuclear power plants in order to regulate the loads results in intense wear of power generating equipment and reduction in cost efficiency of their operation. We review the methodology of a quantitative assessment of the lifespan and wear of steam-turbine power units and estimate the effect of various operation regimes upon their efficiency. To assess the power units' equipment wear, we suggest using the concept of a turbine's equivalent lifespan. We give calculation formulae and an example of calculation of the lifespan of a steam-turbine power unit for supercritical parameters of steam for different options of its loading. The equivalent lifespan exceeds the turbine's assigned lifespan only provided daily shutdown of the power unit during the night off-peak time. We obtained the engineering and economical indices of the power unit operation for different loading regulation options in daily and weekly diagrams. We proved the change in the prime cost of electric power depending on the operation regimes and annual daily number of unloading (non-use) of the power unit's installed capacity. According to the calculation results, the prime cost of electric power for the assumed initial data varies from 11.3 cents/(kW h) in the basic regime of power unit operation (with an equivalent operation time of 166700 hours) to 15.5 cents/(kW h) in the regime with night and holiday shutdowns. The reduction of using the installed capacity of power unit at varying regimes from 3.5 to 11.9 hours per day can increase the prime cost of energy from 4.2 to 37.4%. Furthermore, repair and maintenance costs grow by 4.5% and by 3 times, respectively, in comparison with the basic regime. These results indicate the need to create special maneuverable equipment for working in the varying section of the electric load diagram.
Flapping response characteristics of hingeless rotor blades by a gereralized harmonic balance method
NASA Technical Reports Server (NTRS)
Peters, D. A.; Ormiston, R. A.
1975-01-01
Linearized equations of motion for the flapping response of flexible rotor blades in forward flight are derived in terms of generalized coordinates. The equations are solved using a matrix form of the method of linear harmonic balance, yielding response derivatives for each harmonic of the blade deformations and of the hub forces and moments. Numerical results and approximate closed-form expressions for rotor derivatives are used to illustrate the relationships between rotor parameters, modeling assumptions, and rotor response characteristics. Finally, basic hingeless rotor response derivatives are presented in tabular and graphical form for a wide range of configuration parameters and operating conditions.
Ground Vehicle System Integration (GVSI) and Design Optimization Model.
1996-07-30
number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will
Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process
NASA Astrophysics Data System (ADS)
Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong
2017-02-01
The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity ( R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.
An approximation theory for the identification of linear thermoelastic systems
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Su, Chien-Hua Frank
1990-01-01
An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.
Optimal estimation and scheduling in aquifer management using the rapid feedback control method
NASA Astrophysics Data System (ADS)
Ghorbanidehno, Hojat; Kokkinaki, Amalia; Kitanidis, Peter K.; Darve, Eric
2017-12-01
Management of water resources systems often involves a large number of parameters, as in the case of large, spatially heterogeneous aquifers, and a large number of "noisy" observations, as in the case of pressure observation in wells. Optimizing the operation of such systems requires both searching among many possible solutions and utilizing new information as it becomes available. However, the computational cost of this task increases rapidly with the size of the problem to the extent that textbook optimization methods are practically impossible to apply. In this paper, we present a new computationally efficient technique as a practical alternative for optimally operating large-scale dynamical systems. The proposed method, which we term Rapid Feedback Controller (RFC), provides a practical approach for combined monitoring, parameter estimation, uncertainty quantification, and optimal control for linear and nonlinear systems with a quadratic cost function. For illustration, we consider the case of a weakly nonlinear uncertain dynamical system with a quadratic objective function, specifically a two-dimensional heterogeneous aquifer management problem. To validate our method, we compare our results with the linear quadratic Gaussian (LQG) method, which is the basic approach for feedback control. We show that the computational cost of the RFC scales only linearly with the number of unknowns, a great improvement compared to the basic LQG control with a computational cost that scales quadratically. We demonstrate that the RFC method can obtain the optimal control values at a greatly reduced computational cost compared to the conventional LQG algorithm with small and controllable losses in the accuracy of the state and parameter estimation.
Original and creative stereoscopic film making
NASA Astrophysics Data System (ADS)
Criado, Enrique
2008-02-01
The stereoscopic cinema has become, once again, a hot topic in the film production. For filmmakers to be successful in this field, a technical background in the principles of binocular perception and how our brain interprets the incoming data from our eyes, are fundamental. It is also paramount for a stereoscopic production to adhere certain rules for comfort and safety. There is an immense variety of options in the art of standard "flat" photography, and the possibilities only can be multiply with the stereo. The stereoscopic imaging has its own unique areas for subjective, original and creative control that allow an incredible range of possible combinations by working inside the standards, and in some cases on the boundaries of the basic stereo rules. The stereoscopic imaging can be approached in a "flat" manner, like channeling sound through an audio equalizer with all the bands at the same level. It can provide a realistic perception, which in many cases can be sufficient, thanks to the rock-solid viewing inherent to the stereoscopic image, but there are many more possibilities. This document describes some of the basic operating parameters and concepts for stereoscopic imaging, but it also offers ideas for a creative process based on the variation and combination of these basic parameters, which can lead into a truly innovative and original viewing experience.
Daneshvar, N; Oladegaragoze, A; Djafarzadeh, N
2006-02-28
Electrocoagulation (EC) is one of the most effective techniques to remove color and organic pollutants from wastewater, which reduces the sludge generation. In this paper, electrocoagulation has been used for the removal of color from solutions containing C. I. Basic Red 46 (BR46) and C. I. Basic Blue 3 (BB3). These dyes are used in the wool and blanket factories for fiber dyeing. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration and solution conductivity were studied in an attempt to reach higher removal efficiency. The findings in this study shows that an increase in the current density up to 60-80 A m(-2) enhanced the color removal efficiency, the electrolysis time was 5 min and the range of pH was determined between 5.5 and 8.5 for two mentioned dye solutions. It was found that for, the initial concentration of dye in solutions should not be higher than 80 mg l(-1) in order to achieve a high color removal percentage. The optimum conductivity was found to be 8 mS cm(-1), which was adjusted using proper amount of NaCl with the dye concentration of 50 mg l(-1). Electrical energy consumption in the above conditions for the decolorization of the dye solutions containing BR46 and BB3 were 4.70 kWh(kgdye removed)(-1) and 7.57 kWh(kgdye removed)(-1), respectively. Also, during the EC process under the optimized conditions, the COD decreased by more than 75% and 99% in dye solutions containing BB3 and BR46, respectively.
Experimental Demonstration of xor Operation in Graphene Magnetologic Gates at Room Temperature
NASA Astrophysics Data System (ADS)
Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Žutić, Igor; Krivorotov, Ilya; Sham, L. J.; Kawakami, Roland K.
2016-04-01
We report the experimental demonstration of a magnetologic gate built on graphene at room temperature. This magnetologic gate consists of three ferromagnetic electrodes contacting a single-layer graphene spin channel and relies on spin injection and spin transport in the graphene. We utilize electrical bias tuning of spin injection to balance the inputs and achieve "exclusive or" (xor) logic operation. Furthermore, a simulation of the device performance shows that substantial improvement towards spintronic applications can be achieved by optimizing the device parameters such as the device dimensions. This advance holds promise as a basic building block for spin-based information processing.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.
Solar stills for agricultural purposes
NASA Technical Reports Server (NTRS)
Selcuk, M. K.; Tran, V. V.
1975-01-01
Basic concepts of using desalinated water for agricultural purposes are outlined. A mathematical model describing heat and mass transfer in a system combining a solar still with a greenhouse, its solution, and test results of a small-scale unit built at the Middle East Technical University, Ankara, Turkey, are discussed. The unit was employed to demonstrate the technical feasibility of the system. Further development and modifications are necessary for larger-scale operations. The basis of an optimization study which is underway at the Brace Research Institute of McGill University in Montreal, Canada, aimed at finding the best combination of design and operation parameters is also presented.
Computer program for calculation of oxygen uptake
NASA Technical Reports Server (NTRS)
Castle, B. L.; Castle, G.; Greenleaf, J. E.
1979-01-01
A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.
Design considerations of a thermally stabilized continuous flow electrophoresis chamber 2
NASA Technical Reports Server (NTRS)
Jandebeur, T. S.
1982-01-01
The basic adjustable parameters of a Beckman Continouous Particle Electrophoresis (CPE) Apparatus are investigated to determine the optimum conditions for ground based operation for comparison with space experiments. The possible application of electrically insulated copper/aluminum chamber walls is evaluated as a means to thermally stabilize or equilibrate lateral temperature gradients which exist on the walls of conventional plastic chambers and which distort the rectilinear base flow of buffer through the chamber, significantly affecting sample resolution.
Waterworks Operator Training Manual.
ERIC Educational Resources Information Center
Missouri Univ., Columbia. Instructional Materials Lab.
Sixteen self-study waterworks operators training modules are provided. Module titles are the following: basic mathematics, basic chemistry, analysis procedures, microbiology, basic electricity, hydraulics, chlorination, plant operation, surface water, ground water, pumps, cross connections, distribution systems, safety, public relations, and…
Universal MOSFET parameter analyzer
NASA Astrophysics Data System (ADS)
Klekachev, A. V.; Kuznetsov, S. N.; Pikulev, V. B.; Gurtov, V. A.
2006-05-01
MOSFET analyzer is developed to extract most important parameters of transistors. Instead of routine DC transfer and output characteristics, analyzer provides an evaluation of interface states density by applying charge pumping technique. There are two features that outperform the analyzer among similar products of other vendors. It is compact (100 × 80 × 50 mm 3 in dimensions) and lightweight (< 200 gram) instrument with ultra low power supply (< 2.5 W). The analyzer operates under control of IBM PC by means of USB interface that simultaneously provides power supply. Owing to the USB-compatible microcontroller as the basic element, designed analyzer offers cost-effective solution for diverse applications. The enclosed software runs under Windows 98/2000/XP operating systems, it has convenient graphical interface simplifying measurements for untrained user. Operational characteristics of analyzer are as follows: gate and drain output voltage within limits of +/-10V measuring current range of 1pA ÷ 10 mA; lowest limit of interface states density characterization of ~10 9 cm -2 • eV -1. The instrument was designed on the base of component parts from CYPRESS and ANALOG DEVICES (USA).
Program for computer aided reliability estimation
NASA Technical Reports Server (NTRS)
Mathur, F. P. (Inventor)
1972-01-01
A computer program for estimating the reliability of self-repair and fault-tolerant systems with respect to selected system and mission parameters is presented. The computer program is capable of operation in an interactive conversational mode as well as in a batch mode and is characterized by maintenance of several general equations representative of basic redundancy schemes in an equation repository. Selected reliability functions applicable to any mathematical model formulated with the general equations, used singly or in combination with each other, are separately stored. One or more system and/or mission parameters may be designated as a variable. Data in the form of values for selected reliability functions is generated in a tabular or graphic format for each formulated model.
NASA Astrophysics Data System (ADS)
Zhang, Zhizheng; Wang, Tianze
2008-07-01
In this paper, we first give several operator identities involving the bivariate Rogers-Szegö polynomials. By applying the technique of parameter augmentation to the multiple q-binomial theorems given by Milne [S.C. Milne, Balanced summation theorems for U(n) basic hypergeometric series, AdvE Math. 131 (1997) 93-187], we obtain several new multiple q-series identities involving the bivariate Rogers-Szegö polynomials. These include multiple extensions of Mehler's formula and Rogers's formula. Our U(n+1) generalizations are quite natural as they are also a direct and immediate consequence of their (often classical) known one-variable cases and Milne's fundamental theorem for An or U(n+1) basic hypergeometric series in Theorem 1E49 of [S.C. Milne, An elementary proof of the Macdonald identities for , Adv. Math. 57 (1985) 34-70], as rewritten in Lemma 7.3 on p. 163 of [S.C. Milne, Balanced summation theorems for U(n) basic hypergeometric series, Adv. Math. 131 (1997) 93-187] or Corollary 4.4 on pp. 768-769 of [S.C. Milne, M. Schlosser, A new An extension of Ramanujan's summation with applications to multilateral An series, Rocky Mountain J. Math. 32 (2002) 759-792].
Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin
2018-07-01
Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.
Improving traffic signal management and operations : a basic service model.
DOT National Transportation Integrated Search
2009-12-01
This report provides a guide for achieving a basic service model for traffic signal management and : operations. The basic service model is based on simply stated and defensible operational objectives : that consider the staffing level, expertise and...
NASA Astrophysics Data System (ADS)
Glushak, P. A.; Markiv, B. B.; Tokarchuk, M. V.
2018-01-01
We present a generalization of Zubarev's nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev's nonequilibrium statistical operator method in the framework of Renyi statistics.
Evaluation of airfield pavement evenness
NASA Astrophysics Data System (ADS)
Pietruszewski, Paweł; Poświata, Adam; Wesołowski, Mariusz
2018-05-01
The evenness of airfield pavements is one of the basic operating parameters, which characterize them. The evenness determines not only comfort of traffic along an airfield pavement, but also influences the size of dynamic effect on the pavement, hence, the safety of air operations. In addition, the evenness condition changing as a result of dynamic loads, adverse weather conditions or inappropriate airfield pavement construction technology, lead to deviations from the desired condition in the form of longitudinal and transverse unevenness. As a result, systematic and correct performance of tests is a very significant and required factor impacting the improvement of traffic safety on airfield pavements. If the data obtained through the measurements are not sufficiently reliable, they may consequently lead to making incorrect decisions, which can ultimately impact the safety of air operations.
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extenstion. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined.
Introduction to wind energy systems
NASA Astrophysics Data System (ADS)
Wagner, H.-J.
2017-07-01
This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.
Introduction to wind energy systems
NASA Astrophysics Data System (ADS)
Wagner, H.-J.
2015-08-01
This article presents the basic concepts of wind energy and deals with the physics and mechanics of operation. It describes the conversion of wind energy into rotation of turbine, and the critical parameters governing the efficiency of this conversion. After that it presents an overview of various parts and components of windmills. The connection to the electrical grid, the world status of wind energy use for electricity production, the cost situation and research and development needs are further aspects which will be considered.
Instrumental biosensors: new perspectives for the analysis of biomolecular interactions.
Nice, E C; Catimel, B
1999-04-01
The use of instrumental biosensors in basic research to measure biomolecular interactions in real time is increasing exponentially. Applications include protein-protein, protein-peptide, DNA-protein, DNA-DNA, and lipid-protein interactions. Such techniques have been applied to, for example, antibody-antigen, receptor-ligand, signal transduction, and nuclear receptor studies. This review outlines the principles of two of the most commonly used instruments and highlights specific operating parameters that will assist in optimising experimental design, data generation, and analysis.
High density circuit technology, part 3
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
Dry processing - both etching and deposition - and present/future trends in semiconductor technology are discussed. In addition to a description of the basic apparatus, terminology, advantages, glow discharge phenomena, gas-surface chemistries, and key operational parameters for both dry etching and plasma deposition processes, a comprehensive survey of dry processing equipment (via vendor listing) is also included. The following topics are also discussed: fine-line photolithography, low-temperature processing, packaging for dense VLSI die, the role of integrated optics, and VLSI and technology innovations.
Environment parameters and basic functions for floating-point computation
NASA Technical Reports Server (NTRS)
Brown, W. S.; Feldman, S. I.
1978-01-01
A language-independent proposal for environment parameters and basic functions for floating-point computation is presented. Basic functions are proposed to analyze, synthesize, and scale floating-point numbers. The model provides a small set of parameters and a small set of axioms along with sharp measures of roundoff error. The parameters and functions can be used to write portable and robust codes that deal intimately with the floating-point representation. Subject to underflow and overflow constraints, a number can be scaled by a power of the floating-point radix inexpensively and without loss of precision. A specific representation for FORTRAN is included.
Impact of Machine Virtualization on Timing Precision for Performance-critical Tasks
NASA Astrophysics Data System (ADS)
Karpov, Kirill; Fedotova, Irina; Siemens, Eduard
2017-07-01
In this paper we present a measurement study to characterize the impact of hardware virtualization on basic software timing, as well as on precise sleep operations of an operating system. We investigated how timer hardware is shared among heavily CPU-, I/O- and Network-bound tasks on a virtual machine as well as on the host machine. VMware ESXi and QEMU/KVM have been chosen as commonly used examples of hypervisor- and host-based models. Based on statistical parameters of retrieved distributions, our results provide a very good estimation of timing behavior. It is essential for real-time and performance-critical applications such as image processing or real-time control.
Sonocrystallization and Its Application in Food and Bioprocessing
NASA Astrophysics Data System (ADS)
Gogate, Parag R.; Pandit, Aniruddha B.
The chapter aims at understanding in detail, the application of ultrasound for intensification of crystallization operation and covers different aspects such as basic mechanism of expected intensification, reactor designs and overview of existing literature related to food and bioprocess industry applications with an objective of presenting optimum guidelines for maximizing the efficacy of using ultrasound. A case study of lactose recovery from whey has also been discussed in details so as to give quantitative information about the effects of ultrasound in different stages of the crystallization operation and guidelines for optimization of different geometric and operating parameters. Overall it appears that use of ultrasound can significantly improve the crystallization operation by significant reduction in the processing time with generation of better quality crystals and also the recent developments in the design of large scale sonochemical reactors have enhanced the possibility of the application in actual commercial practice.
Operations analysis (study 2.1): Program manual and users guide for the LOVES computer code
NASA Technical Reports Server (NTRS)
Wray, S. T., Jr.
1975-01-01
Information is provided necessary to use the LOVES Computer Program in its existing state, or to modify the program to include studies not properly handled by the basic model. The Users Guide defines the basic elements assembled together to form the model for servicing satellites in orbit. As the program is a simulation, the method of attack is to disassemble the problem into a sequence of events, each occurring instantaneously and each creating one or more other events in the future. The main driving force of the simulation is the deterministic launch schedule of satellites and the subsequent failure of the various modules which make up the satellites. The LOVES Computer Program uses a random number generator to simulate the failure of module elements and therefore operates over a long span of time typically 10 to 15 years. The sequence of events is varied by making several runs in succession with different random numbers resulting in a Monte Carlo technique to determine statistical parameters of minimum value, average value, and maximum value.
Subthreshold SPICE Model Optimization
NASA Astrophysics Data System (ADS)
Lum, Gregory; Au, Henry; Neff, Joseph; Bozeman, Eric; Kamin, Nick; Shimabukuro, Randy
2011-04-01
The first step in integrated circuit design is the simulation of said design in software to verify proper functionally and design requirements. Properties of the process are provided by fabrication foundries in the form of SPICE models. These SPICE models contain the electrical data and physical properties of the basic circuit elements. A limitation of these models is that the data collected by the foundry only accurately model the saturation region. This is fine for most users, but when operating devices in the subthreshold region they are inadequate for accurate simulation results. This is why optimizing the current SPICE models to characterize the subthreshold region is so important. In order to accurately simulate this region of operation, MOSFETs of varying widths and lengths are fabricated and the electrical test data is collected. From the data collected the parameters of the model files are optimized through parameter extraction rather than curve fitting. With the completed optimized models the circuit designer is able to simulate circuit designs for the sub threshold region accurately.
NASA Astrophysics Data System (ADS)
Belyaev, N.; Krasnopevtsev, D.; Smirnov, N.
2018-01-01
The ATLAS Transition Radiation Tracker (TRT) contains more than 350000 large straw tubes and it is the outermost of the three subsystems of the ATLAS Inner Detector (ID). The TRT contributes substantially to the ATLAS ID resolution for the tracks of high-energy particles, providing excellent particle identification capabilities and electron-pion separation. Basic performance parameters of the TRT related to its tracking function are described in this paper. The data used in this study were collected during the first period of the Large Hadron Collider (LHC) operation in 2012 with a proton collision energy of 8 TeV. The tracking performance of the TRT has been studied in the case of operating with a Xe-based gas mixture and as a function of the straw occupancy. Special attention was paid to investigation of tracking parameters inside hadronic jets. The experimental data and simulation are in reasonable agreement, even within the dense cores of the most energetic jets.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Application of oil spill model to marine pollution and risk control problems
NASA Astrophysics Data System (ADS)
Aseev, Nikita; Agoshkov, Valery; Sheloput, Tatyana
2017-04-01
Oil transportation by sea induces challenging problems of environmental control. Millions of tonnes of oil are yearly released during routine ship operations, not to mention vast spills due to different accidents (e.g. tanker collisions, grounding, etc.). Oil pollution is dangerous to marine organisms such as plants, fish and mammals, leading to widespread damage to our planet. In turn, fishery and travel agencies can lose money and clients, and ship operators are obliged to pay huge penalties for environmental pollution. In this work we present the method of accessing oil pollution of marine environment using recently developed oil spill model. The model describes basic processes of the oil slick evolution: oil transport due to currents, drift under the action of wind, spreading on the surface, evaporation, emulsification and dispersion. Such parameters as slick location, mass, density of oil, water content, viscosity and density of "water-in-oil" emulsion can be calculated. We demonstrate how to apply the model to damage calculation problems using a concept of average damage to particular marine area. We also formulate the problem of oil spill risk control, when some accident parameters are not known, but their probability distribution is given. We propose a new algorithm to solve such problems and show results of our model simulations. The work can be interesting to broad environmental, physics and mathematics community. The work is supported by Russian Foundation for Basic Research grant 16-31-00510.
A pictorial review of reconstructive foot and ankle surgery: hallux abductovalgus
Meyr, Andrew J; Singh, Salil; Chen, Oliver; Ali, Sayed
2015-01-01
This pictorial review focuses on basic procedures performed within the field of podiatric surgery, specifically for the hallux abductovalgus or “bunion” deformity. Our goal is to define objective radiographic parameters that surgeons utilize to initially define deformity, lead to procedure selection and judge post-operative outcomes. We hope that radiologists will employ this information to improve their assessment of post-operative radiographs following reconstructive foot surgeries. First, relevant radiographic measurements are defined and their role in procedure selection explained. Second, the specific surgical procedures of the distal metatarsal, metatarsal shaft, metatarsal base, and phalangeal osteotomies are described in detail. Additional explanations of arthrodesis of the first metatarsal-phalangeal and metatarsal-cuneiform joints are also provided. Finally, specific plain film radiographic findings that judge post-operative outcomes for each procedure are detailed. PMID:26622935
A high-performance constant-temperature hot-wire anemometer
NASA Technical Reports Server (NTRS)
Watmuff, Jonathan H.
1994-01-01
A high-performance constant-temperature hot-wire anemometer has been designed based on a system theory analysis that can be extended to arbitrary order. A motivating factor behind the design was to achieve the highest possible frequency response while ensuring overall system stability. Based on these considerations, the design of the circuit and the selection of components is discussed in depth. Basic operating instructions are included in an operator's guide. The analysis is used to identify operating modes, observed in all anemometers, that are misleading in the sense that the operator can be deceived by interpreting an erroneous frequency response. Unlike other anemometers, this instrument provides front panel access to all the circuit parameters which affect system stability and frequency response. Instructions are given on how to identify and avoid these rather subtle and undesirable operating modes by appropriate adjustment of the controls. Details, such as fabrication drawings and a parts list, are provided to enable others to construct the instrument.
Dissipative and nonunitary solutions of operator commutation relations
NASA Astrophysics Data System (ADS)
Makarov, K. A.; Tsekanovskii, E.
2016-01-01
We study the (generalized) semi-Weyl commutation relations UgAU* g = g(A) on Dom(A), where A is a densely defined operator and G ∋ g ↦ Ug is a unitary representation of the subgroup G of the affine group G, the group of affine orientation-preserving transformations of the real axis. If A is a symmetric operator, then the group G induces an action/flow on the operator unit ball of contracting transformations from Ker(A* - iI) to Ker(A* + iI). We establish several fixed-point theorems for this flow. In the case of one-parameter continuous subgroups of linear transformations, self-adjoint (maximal dissipative) operators associated with the fixed points of the flow yield solutions of the (restricted) generalized Weyl commutation relations. We show that in the dissipative setting, the restricted Weyl relations admit a variety of representations that are not unitarily equivalent. For deficiency indices (1, 1), the basic results can be strengthened and set in a separate case.
NASA Astrophysics Data System (ADS)
Koptev, V. Yu
2017-02-01
The work represents the results of studying basic interconnected criteria of separate equipment units of the transport network machines fleet, depending on production and mining factors to improve the transport systems management. Justifying the selection of a control system necessitates employing new methodologies and models, augmented with stability and transport flow criteria, accounting for mining work development dynamics on mining sites. A necessary condition is the accounting of technical and operating parameters related to vehicle operation. Modern open pit mining dispatching systems must include such kinds of the information database. An algorithm forming a machine fleet is presented based on multi-variation task solution in connection with defining reasonable operating features of a machine working as a part of a complex. Proposals cited in the work may apply to mining machines (drilling equipment, excavators) and construction equipment (bulldozers, cranes, pile-drivers), city transport and other types of production activities using machine fleet.
van den Borne, Bart H P; Graber, Hans U; Voelk, Verena; Sartori, Carlotta; Steiner, Adrian; Haerdi-Landerer, M Christina; Bodmer, Michèle
2017-01-01
Staphylococcus aureus is a common mastitis causing pathogen of dairy cattle. Several S. aureus genotypes exist, of which genotype B (GTB) is highly prevalent in Swiss dairy herds. Dairy farming in mountainous regions of Switzerland is characterised by the movement of dairy cattle to communal pasture-based operations at higher altitudes. Cows from different herds of origin share pastures and milking equipment for a period of 2 to 3 months during summer. The aim of this longitudinal observational study was to quantify transmission of S. aureus GTB in communal dairy operations. Cows (n=551) belonging to 7 communal operations were sampled at the beginning and end of the communal period. Transmission parameter β was estimated using a Susceptible-Infectious-Susceptible (SIS) model. The basic reproduction ratio R 0 was subsequently derived using previously published information about the duration of infection. Mean transmission parameter β was estimated to be 0.0232 (95% CI: 0.0197-0.0274). R 0 was 2.6 (95% CI: 2.2-3.0), indicating that S. aureus GTB is capable of causing major outbreaks in Swiss communal dairy operations. This study emphasized the contagious behaviour of S. aureus GTB. Mastitis management in communal dairy operations should be optimized to reduce S. aureus GTB transmission between cows and back to their herds of origin. Copyright © 2016 Elsevier B.V. All rights reserved.
An Extension of the Partial Credit Model with an Application to the Measurement of Change.
ERIC Educational Resources Information Center
Fischer, Gerhard H.; Ponocny, Ivo
1994-01-01
An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, J.K.; Smith, C.L.
The steps involved to incorporate parameter uncertainty into the Nuclear Regulatory Commission (NRC) accident sequence precursor (ASP) models is covered in this paper. Three different uncertainty distributions (i.e., lognormal, beta, gamma) were evaluated to Determine the most appropriate distribution. From the evaluation, it was Determined that the lognormal distribution will be used for the ASP models uncertainty parameters. Selection of the uncertainty parameters for the basic events is also discussed. This paper covers the process of determining uncertainty parameters for the supercomponent basic events (i.e., basic events that are comprised of more than one component which can have more thanmore » one failure mode) that are utilized in the ASP models. Once this is completed, the ASP model is ready to be utilized to propagate parameter uncertainty for event assessments.« less
Kundhal, Pavi S; Grantcharov, Teodor P
2009-03-01
This study was conducted to validate the role of virtual reality computer simulation as an objective method for assessing laparoscopic technical skills. The authors aimed to investigate whether performance in the operating room, assessed using a modified Objective Structured Assessment of Technical Skill (OSATS), correlated with the performance parameters registered by a virtual reality laparoscopic trainer (LapSim). The study enrolled 10 surgical residents (3 females) with a median of 5.5 years (range, 2-6 years) since graduation who had similar limited experience in laparoscopic surgery (median, 5; range, 1-16 laparoscopic cholecystectomies). All the participants performed three repetitions of seven basic skills tasks on the LapSim laparoscopic trainer and one laparoscopic cholecystectomy in the operating room. The operating room procedure was video recorded and blindly assessed by two independent observers using a modified OSATS rating scale. Assessment in the operating room was based on three parameters: time used, error score, and economy of motion score. During the tasks on the LapSim, time, error (tissue damage and millimeters of tissue damage [tasks 2-6], error score [incomplete target areas, badly placed clips, and dropped clips [task 7]), and economy of movement parameters (path length and angular path) were registered. The correlation between time, economy, and error parameters during the simulated tasks and the operating room procedure was statistically assessed using Spearman's test. Significant correlations were demonstrated between the time used to complete the operating room procedure and time used for task 7 (r (s) = 0.74; p = 0.015). The error score demonstrated during the laparoscopic cholecystectomy correlated well with the tissue damage in three of the seven tasks (p < 0.05), the millimeters of tissue damage during two of the tasks, and the error score in task 7 (r (s) = 0.67; p = 0.034). Furthermore, statistically significant correlations were observed between the economy of motion score from the operative procedure and LapSim's economy parameters (path length and angular path in six of the tasks) (p < 0.05). The current study demonstrated significant correlations between operative performance in the operating room (assessed using a well-validated rating scale) and psychomotor performance in virtual environment assessed by a computer simulator. This provides strong evidence for the validity of the simulator system as an objective tool for assessing laparoscopic skills. Virtual reality simulation can be used in practice to assess technical skills relevant for minimally invasive surgery.
Highway Maintenance Equipment Operator: Basic Core. Training Materials.
ERIC Educational Resources Information Center
Perky, Sandra Dutreau; And Others
This basic core curriculum is part of a three-part series of instructional guides designed for use in teaching a course in highway maintenance equipment operation. Addressed in the individual units of the curriculum, after an orientation unit, are safety; basic math; basic hand tools; procedures for loading. lashing, and unloading equipment;…
Mokhtari Azar, Akbar; Ghadirpour Jelogir, Ali; Nabi Bidhendi, Gholam Reza; Zaredar, Narges
2011-04-01
No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are usable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.
Satellite Power Systems (SPS) concept definition study. Volume 6: In-depth element investigation
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
The fabrication parameters of GaAs MESFET solid-state amplifiers considering a power added conversion efficiency of at least 80% and power gains of at least 10dB were determined. Operating frequency was 2.45 GHz although 914 MHz was also considered. Basic circuit to be considered was either Class C or Class E amplification. Two modeling programs were utilized. The results of several computer calculations considering differing loads, temperatures, and efficiencies are presented. Parametric data in both tabular and plotted form are presented.
Second central extension in Galilean covariant field theory
NASA Astrophysics Data System (ADS)
Hagen, C. R.
2002-07-01
The possibility of a connection between the second central extension of the planar Galilei group and the spin variable is considered. This idea is explored within the framework of local Galilean covariant field theory for free fields of arbitrary spin. It is shown that such systems generally display only a trivial realization of the second central extension. While it is possible to realize any desired value of the extension parameter by suitable redefinition of the boost operator, such an approach has no necessary connection to the spin of the basic underlying field.
General introduction and recovery factors
Verma, Mahendra K.
2017-07-17
IntroductionThe U.S. Geological Survey (USGS) compared methods for estimating an incremental recovery factor (RF) for the carbon dioxide enhanced oil recovery (CO2-EOR) process involving the injection of CO2 into oil reservoirs. This chapter first provides some basic information on the RF, including its dependence on various reservoir and operational parameters, and then discusses the three development phases of oil recovery—primary, secondary, and tertiary (EOR). It ends with a brief discussion of the three approaches for estimating recovery factors, which are detailed in subsequent chapters.
NASA Astrophysics Data System (ADS)
Arkadyev, B. A.
2015-10-01
Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.
Utah Department of Transportation traffic operation center operator training.
DOT National Transportation Integrated Search
2010-11-01
This paper is a summary of work performed by the Utah Traffic Lab (UTL) to develop training programs for the Utah Department of Transportation (UDOT) Traffic Operations Center (TOC) operators at both the basic and advanced levels. The basic training ...
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extension. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined. Previously announced in STAR as N84-13222
International Docking Standard (IDSS) Interface Definition Document (IDD) . E; Revision
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Cryan, Scott P.
2016-01-01
This International Docking System Standard (IDSS) Interface Definition Document (IDD) is the result of a collaboration by the International Space Station membership to establish a standard docking interface to enable on-orbit crew rescue operations and joint collaborative endeavors utilizing different spacecraft. This IDSS IDD details the physical geometric mating interface and design loads requirements. The physical geometric interface requirements must be strictly followed to ensure physical spacecraft mating compatibility. This includes both defined components and areas that are void of components. The IDD also identifies common design parameters as identified in section 3.0, e.g., docking initial conditions and vehicle mass properties. This information represents a recommended set of design values enveloping a broad set of design reference missions and conditions, which if accommodated in the docking system design, increases the probability of successful docking between different spacecraft. This IDD does not address operational procedures or off-nominal situations, nor does it dictate implementation or design features behind the mating interface. It is the responsibility of the spacecraft developer to perform all hardware verification and validation, and to perform final docking analyses to ensure the needed docking performance and to develop the final certification loads for their application. While there are many other critical requirements needed in the development of a docking system such as fault tolerance, reliability, and environments (e.g. vibration, etc.), it is not the intent of the IDSS IDD to mandate all of these requirements; these requirements must be addressed as part of the specific developer's unique program, spacecraft and mission needs. This approach allows designers the flexibility to design and build docking mechanisms to their unique program needs and requirements. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.
Ye, Jun
2016-01-01
An interval neutrosophic set (INS) is a subclass of a neutrosophic set and a generalization of an interval-valued intuitionistic fuzzy set, and then the characteristics of INS are independently described by the interval numbers of its truth-membership, indeterminacy-membership, and falsity-membership degrees. However, the exponential parameters (weights) of all the existing exponential operational laws of INSs and the corresponding exponential aggregation operators are crisp values in interval neutrosophic decision making problems. As a supplement, this paper firstly introduces new exponential operational laws of INSs, where the bases are crisp values or interval numbers and the exponents are interval neutrosophic numbers (INNs), which are basic elements in INSs. Then, we propose an interval neutrosophic weighted exponential aggregation (INWEA) operator and a dual interval neutrosophic weighted exponential aggregation (DINWEA) operator based on these exponential operational laws and introduce comparative methods based on cosine measure functions for INNs and dual INNs. Further, we develop decision-making methods based on the INWEA and DINWEA operators. Finally, a practical example on the selecting problem of global suppliers is provided to illustrate the applicability and rationality of the proposed methods.
Basic mechanisms governing solar-cell efficiency
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.; Sah, C. T.
1976-01-01
The efficiency of a solar cell depends on the material parameters appearing in the set of differential equations that describe the transport, recombination, and generation of electrons and holes. This paper describes the many basic mechanisms occurring in semiconductors that can control these material parameters.
First operation and effect of a new tandem-type ion source based on electron cyclotron resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Yushi, E-mail: kato@eei.eng.osaka-u.ac.jp; Kimura, Daiju; Yano, Keisuke
A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandemmore » type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.« less
Westenbroek, Stephen M.; Doherty, John; Walker, John F.; Kelson, Victor A.; Hunt, Randall J.; Cera, Timothy B.
2012-01-01
The TSPROC (Time Series PROCessor) computer software uses a simple scripting language to process and analyze time series. It was developed primarily to assist in the calibration of environmental models. The software is designed to perform calculations on time-series data commonly associated with surface-water models, including calculation of flow volumes, transformation by means of basic arithmetic operations, and generation of seasonal and annual statistics and hydrologic indices. TSPROC can also be used to generate some of the key input files required to perform parameter optimization by means of the PEST (Parameter ESTimation) computer software. Through the use of TSPROC, the objective function for use in the model-calibration process can be focused on specific components of a hydrograph.
Effect of at-the-source noise reduction on performance and weights of a tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Gibs, J.; Stepniewski, W. Z.; Spencer, R.
1975-01-01
Reduction of far-field acoustic signature through modification of basic design parameters (tip speed, number of blades, disc loading and rotor blade area) was examined, using a tilt-rotor flight research aircraft as a baseline configuration. Of those design parameters, tip speed appeared as the most important. Next, preliminary design of two aircraft was performed, postulating the following reduction of noise level from that of the baseline machine, at 500 feet from the spot of OGE hover. In one aircraft, the PNL was lowered by 10 PNdB and in the other, OASPL decreased by 10 dB. The resulting weight and performance penalties were examined. Then, PNL and EPNL aspects of terminal operation were compared for the baseline and quieter aircraft.
Developing a weather observation routine during ICARUS
NASA Astrophysics Data System (ADS)
Mei, F.; Hubbe, J. M.; de Boer, G.; Lawrence, D.; Shupe, M.; Ivey, M.; Dexheimer, D.; Schmid, B.
2016-12-01
Starting in 2014, the Atmospheric Radiation Measurement (ARM) program began a major reconfiguration to more tightly link measurements and atmospheric models. As part of this the reconfiguration, ARM's North Slope of Alaska (NSA) site is being upgraded to include additional observations to support modeling and process studies. The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) have been launched in 2016. This internal initiative at Oliktok Point, Alaska focus on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The main purpose of ICARUS is to collect spatial data about surface radiation, heat fluxes, and vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind). Based on the data collected during ICARUS, we will develop the operation routines for each atmospheric state measurement, and then optimize the operation schedule to maximize the data collection capacity. The statistical representation of important atmospheric state parameters will be discussed.
Using a software-defined computer in teaching the basics of computer architecture and operation
NASA Astrophysics Data System (ADS)
Kosowska, Julia; Mazur, Grzegorz
2017-08-01
The paper describes the concept and implementation of SDC_One software-defined computer designed for experimental and didactic purposes. Equipped with extensive hardware monitoring mechanisms, the device enables the students to monitor the computer's operation on bus transfer cycle or instruction cycle basis, providing the practical illustration of basic aspects of computer's operation. In the paper, we describe the hardware monitoring capabilities of SDC_One and some scenarios of using it in teaching the basics of computer architecture and microprocessor operation.
ERIC Educational Resources Information Center
Davis, Brent
2015-01-01
For centuries, the basic operations of school mathematics have been identified as addition, subtraction, multiplication, and division. Notably, these operations are "basic," not because they are foundational to mathematics knowledge, but because they were vital to a newly industrialized and market-driven economy several hundred years…
Study of thermo-fluidic behavior of micro-droplet in inkjet-based micro manufacturing processes
NASA Astrophysics Data System (ADS)
Das, Raju; Mahapatra, Abhijit; Ball, Amit Kumar; Roy, Shibendu Shekhar; Murmu, Naresh Chandra
2017-06-01
Inkjet printing technology, a maskless, non-contact patterning operation, which has been a revelation in the field of micro and nano manufacturing for its use in the selective deposition of desired materials. It is becoming an exciting alternative technology such as lithography to print functional material on to a substrate. Selective deposition of functional materials on desired substrates is a basic requirement in many of the printing based micro and nano manufacturing operations like the fabrication of microelectronic devices, solar cell, Light-emitting Diode (LED) research fields like pharmaceutical industries for drug discovery purposes and in biotechnology to make DNA microarrays. In this paper, an attempt has been made to design and develop an indigenous Electrohydrodynamic Inkjet printing system for micro fabrication and to study the interrelationships between various thermos-fluidic parameters of the ink material in the printing process. The effect of printing process parameters on printing performance characteristics has also been studied. And the applicability of the process has also been experimentally demonstrated. The experimentally found results were quite satisfactory and accordance to its applicability.
Carbon-free hydrogen production from low rank coal
NASA Astrophysics Data System (ADS)
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
Transmission Line Jobs and Economic Development Impact (JEDI) Model User Reference Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, M.; Keyser, D.
The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are freely available, user-friendly tools that estimate the potential economic impacts of constructing and operating power generation projects for a range of conventional and renewable energy technologies. The Transmission Line JEDI model can be used to field questions about the economic impacts of transmission lines in a given state, region, or local community. This Transmission Line JEDI User Reference Guide was developed to provide basic instruction on operating the model and understanding the results. This guide also provides information on the model's underlying methodology,more » as well as the parameters and references used to develop the cost data contained in the model.« less
VISSR Atmospheric Sounder (VAS) Research Review
NASA Technical Reports Server (NTRS)
Greaves, J. R. (Editor)
1983-01-01
The VAS, an experimental instrument flown onboard Geostationary Operational Environmental Satellite (GOES), is capable of achieving mutlispectral imagery of atmospheric temperature, water vapor, and cloudiness patterns over short time intervals. In addition, this instrument provides an atmospheric sounding capability from geosynchronous orbit. The VAS demonstration is an effort for evaluating the VAS instrument's performance, and for demonstrating the capabilities of a VAS prototype system to provide useful geosynchronous satellite data for supporting weather forecasts and atmospheric research. The demonstration evaluates the performance of the VAS Instruments on GOES-4-5, and -6, develops research oriented and prototype/operational VAS data processing systems, determines the accuracy of certain basic and derived meteorological parameters that can be obtained from the VAS instrument, and assesses the utility of VAS derived information in analyzing severe weather situations.
Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.; Augustine, C.; Goldberg, M.
2012-09-01
The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide alsomore » provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.« less
NASA Astrophysics Data System (ADS)
Freidberg, Jeffrey; Dogra, Akshunna; Redman, William; Cerfon, Antoine
2016-10-01
The development of high field, high temperature superconductors is thought to be a game changer for the development of fusion power based on the tokamak concept. We test the validity of this assertion for pilot plant scale reactors (Q 10) for two different but related missions: pulsed operation and steady-state operation. Specifically, we derive a set of analytic criteria that determines the basic design parameters of a given fusion reactor mission. As expected there are far more constraints than degrees of freedom in any given design application. However, by defining the mission of the reactor under consideration, we have been able to determine the subset of constraints that drive the design, and calculate the values for the key parameters characterizing the tokamak. Our conclusions are as follows: 1) for pulsed reactors, high field leads to more compact designs and thus cheaper reactors - high B is the way to go; 2) steady-state reactors with H-mode like transport are large, even with high fields. The steady-state constraint is hard to satisfy in compact designs - high B helps but is not enough; 3) I-mode like transport, when combined with high fields, yields relatively compact steady-state reactors - why is there not more research on this favorable transport regime?
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Desjardins, M.; Shenk, W. E.
1979-01-01
Simultaneous Geosynchronous Operational Environmental Satellite (GOES) 1 km resolution visible image pairs can provide quantitative three dimensional measurements of clouds. These data have great potential for severe storms research and as a basic parameter measurement source for other areas of meteorology (e.g. climate). These stereo cloud height measurements are not subject to the errors and ambiguities caused by unknown cloud emissivity and temperature profiles that are associated with infrared techniques. This effort describes the display and measurement of stereo data using digital processing techniques.
Fundamentals of satellite navigation
NASA Astrophysics Data System (ADS)
Stiller, A. H.
The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.
Artifactual ECG changes induced by electrocautery in a patient with coronary artery disease.
Naik, B Naveen; Luthra, Ankur; Dwivedi, Ashish; Jafra, Anudeep
Continuous monitoring of 5-lead electrocardiogram is a basic standard of care (included under standard ASA monitor) in the operating room and electrocautery interference is a common phenomenon. Clinical signs, along with monitored waveforms from other simultaneously monitored parameters may provide us clues to differentiate artifacts from true changes on the electrocardiogram. An improved understanding of the artifacts generated by electrocautery and their identifying characteristics is important to avoid misinterpretation, misdiagnosis, and hence mismanagement. This case report highlights the artifacts in electrocardiogram induced by electrocautery. Copyright © 2017 Elsevier Inc. All rights reserved.
Laser beam machining of polycrystalline diamond for cutting tool manufacturing
NASA Astrophysics Data System (ADS)
Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold
2017-10-01
The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.
Integrated Spatial Modeling using Geoinformatics: A Prerequisite for Natural Resources Management
NASA Astrophysics Data System (ADS)
Katpatal, Y. B.
2014-12-01
Every natural system calls for complete visualization for its holistic and sustainable development. Many a times, especially in developing countries, the approaches deviate from this basic paradigm and results in ineffective management of the natural resources. This becomes more relevant in these countries which are witnessing heavy exodus of the rural population to urban areas increasing the pressures on the basic commodities. Spatial technologies which provide the opportunity to enhance the knowledge visualization of the policy makers and administrators which facilitates technical and scientific management of the resources. Increasing population has created negative impacts on the per capita availability of several resources, which has been well accepted in the statistical records of several developing countries. For instance, the per capita availability of water in India has decreased substantially in last decade and groundwater depletion is on the rise. There is hence a need of tool which helps in restoring the resource through visualization and evaluation temporally. Geological parameters play an important role in operation of several natural systems and earth sciences parameters may not be ignored. Spatial technologies enables application of 2D as well as 3D modeling taking into account variety of natural parameters related to diverse areas. The paper presents case studies where spatial technology has helped in not only understanding the natural systems but also providing solutions, especially in Indian context. The case studies relate to Groundwater Management, Watershed and Basin Management, Groundwater recharge, Environment sustainability using spatial technology. Key Words: Spatial model, Groundwater, Hydrogeology, Geoinformatics, Sustainable Development.
Regression to fuzziness method for estimation of remaining useful life in power plant components
NASA Astrophysics Data System (ADS)
Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.
2014-10-01
Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.
Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing
NASA Astrophysics Data System (ADS)
Datta, D.
2010-10-01
Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.
A PC-based single-ADC multi-parameter data acquisition system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodring, M.; Kegel, G.H.R.; Egan, J.J.
1995-10-01
A personal computer (PC) based mult parameter data acquisition system using the Microsoft Window operating environment has been designed and constructed. An IBI AT compatible personal computer with an Intel 486DX5 microprocessor was combined with a National Instruments ATIDIO 32 digital I/O card, a single Canberra 8713 ADC with 13-bit resolution and a modified Canberra 8223 8-input analog multiplexer to acquil data from experiments carried out at the UML Van de Graa accelerator. The accelerator data acquisition (ADAC) computer environment was programmed in Microsoft Visual BASIC for use i Windows. ADAC allows event-mode data acquisition with up to eight parametersmore » (modifiable to 64) and the simultaneous display parameters during acquisition. Additional features of ADAC include replay of event-mode data and graphical analysis/display of data. TV ADAC environment is easy to upgrade or expand, inexpensive 1 implement, and is specifically designed to meet the needs of nuclei spectroscopy.« less
Determination of quality parameters from statistical analysis of routine TLD dosimetry data.
German, U; Weinstein, M; Pelled, O
2006-01-01
Following the as low as reasonably achievable (ALARA) practice, there is a need to measure very low doses, of the same order of magnitude as the natural background, and the limits of detection of the dosimetry systems. The different contributions of the background signals to the total zero dose reading of thermoluminescence dosemeter (TLD) cards were analysed by using the common basic definitions of statistical indicators: the critical level (L(C)), the detection limit (L(D)) and the determination limit (L(Q)). These key statistical parameters for the system operated at NRC-Negev were quantified, based on the history of readings of the calibration cards in use. The electronic noise seems to play a minor role, but the reading of the Teflon coating (without the presence of a TLD crystal) gave a significant contribution.
NASA Astrophysics Data System (ADS)
Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.
2014-12-01
Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.
Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.
Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo
2008-08-01
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.
Module Cluster: TTP-001.00 (GSC) Reinforcement Principles for Classroom Use.
ERIC Educational Resources Information Center
Brent, George
The purpose of this module cluster is to enable students to define the basic operant terms, to state the basic operant principles, to read operant measurement charts, and to use operant principles in elementary classrooms with both social and academic behaviors. It is intended for use by teacher education students with the cooperation of an…
Comparison of three control methods for an autonomous vehicle
NASA Astrophysics Data System (ADS)
Deshpande, Anup; Mathur, Kovid; Hall, Ernest
2010-01-01
The desirability and challenge of developing a completely autonomous vehicle and the rising need for more efficient use of energy by automobiles motivate this research- a study for an optimum solution to computer control of energy efficient vehicles. The purpose of this paper is to compare three control methods - mechanical, hydraulic and electric that have been used to convert an experimental all terrain vehicle to drive by wire which would eventually act as a test bed for conducting research on various technologies for autonomous operation. Computer control of basic operations in a vehicle namely steering, braking and speed control have been implemented and will be described in this paper. The output from a 3 axis motion controller is used for this purpose. The motion controller is interfaced with a software program using WSDK (Windows Servo Design Kit) as an intermediate tuning layer for tuning and parameter settings in autonomous operation. The software program is developed in C++. The voltage signal sent to the motion controller can be varied through the control program for desired results in controlling the steering motor, activating the hydraulic brakes and varying the vehicle's speed. The vehicle has been tested for its basic functionality which includes testing of street legal operations and also a 1000 mile test while running in a hybrid mode. The vehicle has also been tested for control when it is interfaced with devices such as a keyboard, joystick and sensors under full autonomous operation. The vehicle is currently being tested in various safety studies and is being used as a test bed for experiments in control courses and research studies. The significance of this research is in providing a greater understanding of conventional driving controls and the possibility of improving automobile safety by removing human error in control of a motor vehicle.
1986-07-01
COMPUTER-AIDED OPERATION MANAGEMENT SYSTEM ................. 29 Functions of an Off-Line Computer-Aided Operation Management System Applications of...System Comparisons 85 DISTRIBUTION 5V J. • 0. FIGURES Number Page 1 Hardware Components 21 2 Basic Functions of a Computer-Aided Operation Management System...Plant Visits 26 4 Computer-Aided Operation Management Systems Reviewed for Analysis of Basic Functions 29 5 Progress of Software System Installation and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi
2014-12-15
Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed betweenmore » Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity increases monotonously with increasing WO{sub 3} content. • Interaction parameter decreases monotonously with increasing WO{sub 3} content. • Glasses with high WO{sub 3}contents is regarded as a floppy network system.« less
Natural language generation of surgical procedures.
Wagner, J C; Rogers, J E; Baud, R H; Scherrer, J R
1999-01-01
A number of compositional Medical Concept Representation systems are being developed. Although these provide for a detailed conceptual representation of the underlying information, they have to be translated back to natural language for used by end-users and applications. The GALEN programme has been developing one such representation and we report here on a tool developed to generate natural language phrases from the GALEN conceptual representations. This tool can be adapted to different source modelling schemes and to different destination languages or sublanguages of a domain. It is based on a multilingual approach to natural language generation, realised through a clean separation of the domain model from the linguistic model and their link by well defined structures. Specific knowledge structures and operations have been developed for bridging between the modelling 'style' of the conceptual representation and natural language. Using the example of the scheme developed for modelling surgical operative procedures within the GALEN-IN-USE project, we show how the generator is adapted to such a scheme. The basic characteristics of the surgical procedures scheme are presented together with the basic principles of the generation tool. Using worked examples, we discuss the transformation operations which change the initial source representation into a form which can more directly be translated to a given natural language. In particular, the linguistic knowledge which has to be introduced--such as definitions of concepts and relationships is described. We explain the overall generator strategy and how particular transformation operations are triggered by language-dependent and conceptual parameters. Results are shown for generated French phrases corresponding to surgical procedures from the urology domain.
49 CFR 212.223 - Operating practices compliance inspector.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (1) A basic knowledge of railroad operations, duties of railroad employees and general railroad safety as it relates to the protection of railroad employees; (2) A basic knowledge of railroad rules and...) of this section; and (4) Specialized knowledge of the requirements of the Federal operating practices...
Composting. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.
ERIC Educational Resources Information Center
Arasmith, E. E.
Composting is a lesson developed for a sludge treatment and disposal course. The lesson discusses the basic theory of composting and the basic operation, in a step-by-step sequence, of the two typical composting procedures: windrow and forced air static pile. The lesson then covers basic monitoring and operational procedures. The instructor's…
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming
NASA Astrophysics Data System (ADS)
Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali
2018-03-01
Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.
1987-01-01
The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.
Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less
Model of Pressure Distribution in Vortex Flow Controls
NASA Astrophysics Data System (ADS)
Mielczarek, Szymon; Sawicki, Jerzy M.
2015-06-01
Vortex valves belong to the category of hydrodynamic flow controls. They are important and theoretically interesting devices, so complex from hydraulic point of view, that probably for this reason none rational concept of their operation has been proposed so far. In consequence, functioning of vortex valves is described by CFD-methods (computer-aided simulation of technical objects) or by means of simple empirical relations (using discharge coefficient or hydraulic loss coefficient). Such rational model of the considered device is proposed in the paper. It has a simple algebraic form, but is well grounded physically. The basic quantitative relationship, which describes the valve operation, i.e. dependence between the flow discharge and the circumferential pressure head, caused by the rotation, has been verified empirically. Conformity between calculated and measured parameters of the device allows for acceptation of the proposed concept.
Fu, Shangxi; Liu, Xiao; Zhou, Li; Zhou, Meisheng; Wang, Liming
2017-08-01
The purpose of this study was to estimate the effects of surgical laparoscopic operation course on laparoscopic operation skills after the simulated training for medical students with relatively objective results via data gained before and after the practice course of laparoscopic simulator of the resident standardized trainees. Experiment 1: 20 resident standardized trainees with no experience in laparoscopic surgery were included in the inexperienced group and finished simulated cholecystectomy according to simulator videos. Simulator data was collected (total operation time, path length, average speed of instrument movement, movement efficiency, number of perforations, the time cautery is applied without appropriate contact with adhesions, number of serious complications). Ten attending doctors were included in the experienced group and conducted the operation of simulated cholecystectomy directly. Data was collected with simulator. Data of two groups was compared. Experiment 2: Participants in inexperienced group were assigned to basic group (receiving 8 items of basic operation training) and special group (receiving 8 items of basic operation training and 4 items of specialized training), and 10 persons for each group. They received training course designed by us respectively. After training level had reached the expected target, simulated cholecystectomy was performed, and data was collected. Experimental data between basic group and special group was compared and then data between special group and experienced group was compared. Results of experiment 1 showed that there is significant difference between data in inexperienced group in which participants operated simulated cholecystectomy only according to instructors' teaching and operation video and data in experienced group. Result of experiment 2 suggested that, total operation time, number of perforations, number of serious complications, number of non-cauterized bleeding and the time cautery is applied without appropriate contact with adhesions in special group were all superior to those in basic group. There was no statistical difference on other data between special group and basic group. Comparing special group with experienced group, data of total operation time and the time cautery is applied without appropriate contact with adhesions in experienced group was superior to that in special group. There was no statistical difference on other data between special group and experienced group. Laparoscopic simulators are effective for surgical skills training. Basic courses could mainly improve operator's hand-eye coordination and perception of sense of the insertion depth for instruments. Specialized training courses could not only improve operator's familiarity with surgeries, but also reduce operation time and risk, and improve safety.
NASA Astrophysics Data System (ADS)
Jagadale, Basavaraj N.; Udupa, Jayaram K.; Tong, Yubing; Wu, Caiyun; McDonough, Joseph; Torigian, Drew A.; Campbell, Robert M.
2018-02-01
General surgeons, orthopedists, and pulmonologists individually treat patients with thoracic insufficiency syndrome (TIS). The benefits of growth-sparing procedures such as Vertical Expandable Prosthetic Titanium Rib (VEPTR)insertionfor treating patients with TIS have been demonstrated. However, at present there is no objective assessment metricto examine different thoracic structural components individually as to their roles in the syndrome, in contributing to dynamics and function, and in influencing treatment outcome. Using thoracic dynamic MRI (dMRI), we have been developing a methodology to overcome this problem. In this paper, we extend this methodology from our previous structural analysis approaches to examining lung tissue properties. We process the T2-weighted dMRI images through a series of steps involving 4D image construction of the acquired dMRI images, intensity non-uniformity correction and standardization of the 4D image, lung segmentation, and estimation of the parameters describing lung tissue intensity distributions in the 4D image. Based on pre- and post-operative dMRI data sets from 25 TIS patients (predominantly neuromuscular and congenital conditions), we demonstrate how lung tissue can be characterized by the estimated distribution parameters. Our results show that standardized T2-weighted image intensity values decrease from the pre- to post-operative condition, likely reflecting improved lung aeration post-operatively. In both pre- and post-operative conditions, the intensity values decrease also from end-expiration to end-inspiration, supporting the basic premise of our results.
Seibert, J Anthony
2004-09-01
The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.
Bansal, Virinder Kumar; Panwar, Rajesh; Misra, Mahesh C; Bhattacharjee, Hemanga K; Jindal, Vikas; Loli, Athiko; Goswami, Amit; Krishna, Asuri; Tamang, Tseten
2012-04-01
The best training method in laparoscopic surgery has not been defined. We evaluated the efficacy of laparoscopic skills acquisition in a short-term focused program. Two hundred fifty-six participants undergoing training on a phantom model were divided into 2 groups. Group 1 had no exposure and group 2 had performed a few laparoscopic surgeries. Acquisition of laparoscopic skills was assessed by operation time and the modified Global Operative Assessment of Laparoscopic Skills (GOALS) scale. A questionnaire was sent to the participants after 3 to 6 months for assessment of impact of training. There was a statistically significant improvement in the assessed parameters and in the mean score of all 5 domains of GOALS. The participants in group 2 performed better than those in group 1 in the first case. The difference between both the groups disappeared after the training. Participants who responded to the questionnaire felt that training helped them in improving their performance in the operation theater.
Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation
NASA Astrophysics Data System (ADS)
Gogate, Parag R.; Pandit, Aniruddha B.
Hydrodynamic Cavitation, which was and is still looked upon as an unavoidable nuisance in the flow systems, can be a serious contender as an alternative to acoustic cavitation for harnessing the spectacular effects of cavitation in physical and chemical processing. The present chapter covers the basics of hydrodynamic cavitation including the considerations for the bubble dynamics analysis, reactor designs and recommendations for optimum operating parameters. An overview of applications in different areas of physical, chemical and biological processing on scales ranging from few grams to several hundred kilograms has also been presented. Since hydrodynamic cavitation was initially proposed as an alternative to acoustic cavitation, it is necessary to compare the efficacy of both these modes of cavitations for a variety of applications and hence comparisons have been discussed either on the basis of energy efficiency or based on the scale of operation. Overall it appears that hydrodynamic cavitation results in conditions similar to those generated using acoustic cavitation but at comparatively much larger scale of operation and with better energy efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.
Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... civilian employees deployed in support of a contingency operation, to elect Basic insurance, Option A... after the operations of the Senate Restaurants are contracted to be performed by a private business... for Basic insurance coverage and is deployed in support of a contingency operation as defined by...
Job-Oriented Basic Skills (JOBS) Program for the Acoustic Sensor Operations Strand.
ERIC Educational Resources Information Center
U'Ren, Paula Kabance; Baker, Meryl S.
An effort was undertaken to develop a job-oriented basic skills curriculum appropriate for the acoustic sensor operations area, which includes members of four ratings: ocean systems technician, aviation antisubmarine warfare operator, sonar technician (surface), and sonar technician (submarine). Analysis of the job duties of the four ratings…
ERIC Educational Resources Information Center
South Dakota Dept. of Environmental Protection, Pierre.
Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…
Low-cost USB interface for operant research using Arduino and Visual Basic.
Escobar, Rogelio; Pérez-Herrera, Carlos A
2015-03-01
This note describes the design of a low-cost interface using Arduino microcontroller boards and Visual Basic programming for operant conditioning research. The board executes one program in Arduino programming language that polls the state of the inputs and generates outputs in an operant chamber. This program communicates through a USB port with another program written in Visual Basic 2010 Express Edition running on a laptop, desktop, netbook computer, or even a tablet equipped with Windows operating system. The Visual Basic program controls schedules of reinforcement and records real-time data. A single Arduino board can be used to control a total of 52 inputs/output lines, and multiple Arduino boards can be used to control multiple operant chambers. An external power supply and a series of micro relays are required to control 28-V DC devices commonly used in operant chambers. Instructions for downloading and using the programs to generate simple and concurrent schedules of reinforcement are provided. Testing suggests that the interface is reliable, accurate, and could serve as an inexpensive alternative to commercial equipment. © Society for the Experimental Analysis of Behavior.
MM wave SAR sensor design: Concept for an airborne low level reconnaissance system
NASA Astrophysics Data System (ADS)
Boesswetter, C.
1986-07-01
The basic system design considerations for a high resolution SAR system operating at 35 GHz or 94 GHz are given. First it is shown that only the focussed SAR concept in the side looking configuration matches the requirements and constraints. After definition of illumination geometry and airborne modes the fundamental SAR parameters in range and azimuth direction are derived. A review of the performance parameters of some critical mm wave components (coherent pulsed transmitters, front ends, antennas) establish the basis for further analysis. The power and contrast budget in the processed SAR image shows the feasibility of a 35/94 GHz SAR sensor design. The discussion of the resulting system parameters points out that this unusual system design implies both benefits and new risk areas. One of the benefits besides the compactness of sensor hardware turns out to be the short synthetic aperture length simplifying the design of the digital SAR processor, preferably operating in real time. A possible architecture based on current state-of-the-art correlator hardware is shown. One of the potential risk areas in achieving high resolution SAR imagery in the mm wave frequency band is motion compensation. However, it is shown that the short range and short synthetic aperture lengths ease the problem so that correction of motion induced phase errors and thus focussed synthetic aperture processing should be possible.
NASA Technical Reports Server (NTRS)
Li, Z. K.
1985-01-01
A specialized program was developed for flow cytometric list-mode data using an heirarchical tree method for identifying and enumerating individual subpopulations, the method of principal components for a two-dimensional display of 6-parameter data array, and a standard sorting algorithm for characterizing subpopulations. The program was tested against a published data set subjected to cluster analysis and experimental data sets from controlled flow cytometry experiments using a Coulter Electronics EPICS V Cell Sorter. A version of the program in compiled BASIC is usable on a 16-bit microcomputer with the MS-DOS operating system. It is specialized for 6 parameters and up to 20,000 cells. Its two-dimensional display of Euclidean distances reveals clusters clearly, as does its 1-dimensional display. The identified subpopulations can, in suitable experiments, be related to functional subpopulations of cells.
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.
1986-01-01
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.
An intelligent identification algorithm for the monoclonal picking instrument
NASA Astrophysics Data System (ADS)
Yan, Hua; Zhang, Rongfu; Yuan, Xujun; Wang, Qun
2017-11-01
The traditional colony selection is mainly operated by manual mode, which takes on low efficiency and strong subjectivity. Therefore, it is important to develop an automatic monoclonal-picking instrument. The critical stage of the automatic monoclonal-picking and intelligent optimal selection is intelligent identification algorithm. An auto-screening algorithm based on Support Vector Machine (SVM) is proposed in this paper, which uses the supervised learning method, which combined with the colony morphological characteristics to classify the colony accurately. Furthermore, through the basic morphological features of the colony, system can figure out a series of morphological parameters step by step. Through the establishment of maximal margin classifier, and based on the analysis of the growth trend of the colony, the selection of the monoclonal colony was carried out. The experimental results showed that the auto-screening algorithm could screen out the regular colony from the other, which meets the requirement of various parameters.
Methodology for the systems engineering process. Volume 2: Technical parameters
NASA Technical Reports Server (NTRS)
Nelson, J. H.
1972-01-01
A scheme based on starting the logic networks from the development and mission factors that are of primary concern in an aerospace system is described. This approach required identifying the primary states (design, design verification, premission, mission, postmission), identifying the attributes within each state (performance capability, survival, evaluation, operation, etc), and then developing the generic relationships of variables for each branch. To illustrate this concept, a system was used that involved a launch vehicle and payload for an earth orbit mission. Examination showed that this example was sufficient to illustrate the concept. A more complicated mission would follow the same basic approach, but would have more extensive sets of generic trees and more correlation points between branches. It has been shown that in each system state (production, test, and use), a logic could be developed to order and classify the parameters involved in the translation from general requirements to specific requirements for system elements.
Kuprijanov, A; Gnoth, S; Simutis, R; Lübbert, A
2009-02-01
Design and experimental validation of advanced pO(2) controllers for fermentation processes operated in the fed-batch mode are described. In most situations, the presented controllers are able to keep the pO(2) in fermentations for recombinant protein productions exactly on the desired value. The controllers are based on the gain-scheduling approach to parameter-adaptive proportional-integral controllers. In order to cope with the most often appearing distortions, the basic gain-scheduling feedback controller was complemented with a feedforward control component. This feedforward/feedback controller significantly improved pO(2) control. By means of numerical simulations, the controller behavior was tested and its parameters were determined. Validation runs were performed with three Escherichia coli strains producing different recombinant proteins. It is finally shown that the new controller leads to significant improvements in the signal-to-noise ratio of other key process variables and, thus, to a higher process quality.
NASA Technical Reports Server (NTRS)
Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)
1982-01-01
Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.
Basic Operating Mode | Materials Science | NREL
indium diselenide thin film, showing elemental maps of copper (left) and indium (right). CuInSe2 thin film. Cu and In elemental maps obtained by EDS. In its basic operating mode, scanning electron
Debecker, Damien P; Gaigneaux, Eric M; Busca, Guido
2009-01-01
Basic catalysis! The basic properties of hydrotalcites (see picture) make them attractive for numerous catalytic applications. Probing the basicity of the catalysts is crucial to understand the base-catalysed processes and to optimise the catalyst preparation. Various parameters can be employed to tune the basic properties of hydrotalcite-based catalysts towards the basicity demanded by each target chemical reaction.Hydrotalcites offer unique basic properties that make them very attractive for catalytic applications. It is of primary interest to make use of accurate tools for probing the basicity of hydrotalcite-based catalysts for the purpose of 1) fundamental understanding of base-catalysed processes with hydrotalcites and 2) optimisation of the catalytic performance achieved in reactions of industrial interest. Techniques based on probe molecules, titration techniques and test reactions along with physicochemical characterisation are overviewed in the first part of this review. The aim is to provide the tools for understanding how series of parameters involved in the preparation of hydrotalcite-based catalytic materials can be employed to control and adapt the basic properties of the catalyst towards the basicity demanded by each target chemical reaction. An overview of recent and significant achievements in that perspective is presented in the second part of the paper.
NASA Technical Reports Server (NTRS)
Suit, W. T.; Batterson, J. G.
1986-01-01
The aerodynamics of the basic F-106B were determined at selected points in the flight envelope. The test aircraft and flight procedures were presented. Aircraft instrumentation and the data system were discussed. The parameter extraction procedure was presented along with a discussion of the test flight results. The results were used to predict the aircraft motions for maneuvers that were not used to determine the vehicle aerodynamics. The control inputs used to maneuver the aircraft to get data for the determination of the aerodynamic parameters were discussed in the flight test procedures. The results from the current flight tests were compared with the results from wind tunnel test of the basic F-106B.
The role of respiratory measures to assess mental load in pilot selection.
Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Van den Bergh, Omer
2016-06-01
While cardiovascular measures have a long tradition of being used to determine operator load, responsiveness of the respiratory system to mental load has rarely been investigated. In this study, we assessed basic and variability measures of respiration rate (RR), partial pressure of end-tidal carbon dioxide (petCO2) as well as performance measures in 63 male pilot candidates during completion of a complex cognitive task and subsequent recovery. Mental load was associated with an increase in RR and a decrease in respiratory variability. A significant decrease was also found for petCO2. RR and respiratory variability showed partial and complete effects of recovery, respectively, whereas petCO2 did not return to baseline level. Overall, a good performance was related to a stronger reactivity in RR. Our findings suggest that respiratory parameters would be a useful supplement to common measures for the assessment of mental load in pilot selection. Practitioner Summary: Respiratory measures are a promising yet poorly investigated approach to monitor operator load. For pilot selection, we assessed respiration in response to multitasking in 63 candidates. Task-related changes as well as covariation with performance strongly support the consideration of respiratory parameters when evaluating reactivity to mental load.
Liese, Eric; Zitney, Stephen E.
2017-06-26
A multi-stage centrifugal compressor model is presented with emphasis on analyzing use of an exit flow coefficient vs. an inlet flow coefficient performance parameter to predict off-design conditions in the critical region of a supercritical carbon dioxide (CO 2) power cycle. A description of the performance parameters is given along with their implementation in a design model (number of stages, basic sizing, etc.) and a dynamic model (for use in transient studies). A design case is shown for two compressors, a bypass compressor and a main compressor, as defined in a process simulation of a 10 megawatt (MW) supercritical COmore » 2 recompression Brayton cycle. Simulation results are presented for a simple open cycle and closed cycle process with changes to the inlet temperature of the main compressor which operates near the CO 2 critical point. Results showed some difference in results using the exit vs. inlet flow coefficient correction, however, it was not significant for the range of conditions examined. Here, this paper also serves as a reference for future works, including a full process simulation of the 10 MW recompression Brayton cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liese, Eric; Zitney, Stephen E.
A multi-stage centrifugal compressor model is presented with emphasis on analyzing use of an exit flow coefficient vs. an inlet flow coefficient performance parameter to predict off-design conditions in the critical region of a supercritical carbon dioxide (CO 2) power cycle. A description of the performance parameters is given along with their implementation in a design model (number of stages, basic sizing, etc.) and a dynamic model (for use in transient studies). A design case is shown for two compressors, a bypass compressor and a main compressor, as defined in a process simulation of a 10 megawatt (MW) supercritical COmore » 2 recompression Brayton cycle. Simulation results are presented for a simple open cycle and closed cycle process with changes to the inlet temperature of the main compressor which operates near the CO 2 critical point. Results showed some difference in results using the exit vs. inlet flow coefficient correction, however, it was not significant for the range of conditions examined. Here, this paper also serves as a reference for future works, including a full process simulation of the 10 MW recompression Brayton cycle.« less
Micromachined Integrated Quantum Circuit Containing a Superconducting Qubit
NASA Astrophysics Data System (ADS)
Brecht, T.; Chu, Y.; Axline, C.; Pfaff, W.; Blumoff, J. Z.; Chou, K.; Krayzman, L.; Frunzio, L.; Schoelkopf, R. J.
2017-04-01
We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave-integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric-field picture and a circuit model, and obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage-cavity lifetime of 34.3 μ s , corresponding to a quality factor of 2 ×106 at single-photon energies. The transmon coherence times are T1=6.4 μ s , and T2echo=11.7 μ s . We measure qubit-cavity dispersive coupling with a rate χq μ/2 π =-1.17 MHz , constituting a Jaynes-Cummings system with an interaction strength g /2 π =49 MHz . With these parameters we are able to demonstrate circuit-QED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs.
Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment
NASA Technical Reports Server (NTRS)
Porter, J. W.; Bowell, J. R.; Price, G. E.
1981-01-01
The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated.
Space Weather Forecasting at IZMIRAN
NASA Astrophysics Data System (ADS)
Gaidash, S. P.; Belov, A. V.; Abunina, M. A.; Abunin, A. A.
2017-12-01
Since 1998, the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (IZMIRAN) has had an operating heliogeophysical service—the Center for Space Weather Forecasts. This center transfers the results of basic research in solar-terrestrial physics into daily forecasting of various space weather parameters for various lead times. The forecasts are promptly available to interested consumers. This article describes the center and the main types of forecasts it provides: solar and geomagnetic activity, magnetospheric electron fluxes, and probabilities of proton increases. The challenges associated with the forecasting of effects of coronal mass ejections and coronal holes are discussed. Verification data are provided for the center's forecasts.
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.
System of radiographic control or an imaging system for personal radiographic inspection
NASA Astrophysics Data System (ADS)
Babichev, E. A.; Baru, S. E.; Neustroev, V. A.; Leonov, V. V.; Porosev, V. V.; Savinov, G. A.; Ukraintsev, Yu. G.
2004-06-01
The security system of personal radiographic inspection for detection of explosive materials and plastic weapons was developed in BINP recently. Basic system parameters are: maximum scanning height— 2000 mm, image width— 800 mm, number of detector channels—768, channel size— 1.05×1 mm, charge collecting time for one line—2, 5 ms, scanning speed— 40 cm/s, maximum scanning time— 5 s, radiation dose per one inspection <5 μSv. The detector is a multichannel ionization Xe chamber. The image of inspected person will appear on the display just after scanning. The pilot sample of this system was put into operation in March, 2003.b
Economic optimization of the energy transport component of a large distributed solar power plant
NASA Technical Reports Server (NTRS)
Turner, R. H.
1976-01-01
A solar thermal power plant with a field of collectors, each locally heating some transport fluid, requires a pipe network system for eventual delivery of energy power generation equipment. For a given collector distribution and pipe network geometry, a technique is herein developed which manipulates basic cost information and physical data in order to design an energy transport system consistent with minimized cost constrained by a calculated technical performance. For a given transport fluid and collector conditions, the method determines the network pipe diameter and pipe thickness distribution and also insulation thickness distribution associated with minimum system cost; these relative distributions are unique. Transport losses, including pump work and heat leak, are calculated operating expenses and impact the total system cost. The minimum cost system is readily selected. The technique is demonstrated on six candidate transport fluids to emphasize which parameters dominate the system cost and to provide basic decision data. Three different power plant output sizes are evaluated in each case to determine severity of diseconomy of scale.
NASA Astrophysics Data System (ADS)
Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao
2018-05-01
Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.
Stefanidis, Dimitrios; Hope, William W; Korndorffer, James R; Markley, Sarah; Scott, Daniel J
2010-04-01
Laparoscopic suturing is an advanced skill that is difficult to acquire. Simulator-based skills curricula have been developed that have been shown to transfer to the operating room. Currently available skills curricula need to be optimized. We hypothesized that mastering basic laparoscopic skills first would shorten the learning curve of a more complex laparoscopic task and reduce resource requirements for the Fundamentals of Laparoscopic Surgery suturing curriculum. Medical students (n = 20) with no previous simulator experience were enrolled in an IRB-approved protocol, pretested on the Fundamentals of Laparoscopic Surgery suturing model, and randomized into 2 groups. Group I (n = 10) trained (unsupervised) until proficiency levels were achieved on 5 basic tasks; Group II (n = 10) received no basic training. Both groups then trained (supervised) on the Fundamentals of Laparoscopic Surgery suturing model until previously reported proficiency levels were achieved. Two weeks later, they were retested to evaluate their retention scores, training parameters, instruction requirements, and cost between groups using t-test. Baseline characteristics and performance were similar for both groups, and 9 of 10 subjects in each group achieved the proficiency levels. The initial performance on the simulator was better for Group I after basic skills training, and their suturing learning curve was shorter compared with Group II. In addition, Group I required less active instruction. Overall time required to finish the curriculum was similar for both groups; but the Group I training strategy cost less, with a savings of $148 per trainee. Teaching novices basic laparoscopic skills before a more complex laparoscopic task produces substantial cost savings. Additional studies are needed to assess the impact of such integrated curricula on ultimate educational benefit. Copyright (c) 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Meeting Basic Needs Is Not beyond Our Reach.
ERIC Educational Resources Information Center
Haq, Mahbub ul
1978-01-01
Reviews the status of the continuing debate on the concept of "basic needs" in development policy for the world's poorest countries, reprinted from a World Bank report. Discusses "core" basic needs (food and nutrition, drinking water, basic health, shelter, and basic education) and possible operational policies. (MF)
ERIC Educational Resources Information Center
Boiteau, Denise; Stansfield, David
This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative…
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
NASA Astrophysics Data System (ADS)
Eimori, Takahisa; Anami, Kenji; Yoshimatsu, Norifumi; Hasebe, Tetsuya; Murakami, Kazuaki
2014-01-01
A comprehensive design optimization methodology using intuitive nondimensional parameters of inversion-level and saturation-level is proposed, especially for ultralow-power, low-voltage, and high-performance analog circuits with mixed strong, moderate, and weak inversion metal-oxide-semiconductor transistor (MOST) operations. This methodology is based on the synthesized charge-based MOST model composed of Enz-Krummenacher-Vittoz (EKV) basic concepts and advanced-compact-model (ACM) physics-based equations. The key concept of this methodology is that all circuit and system characteristics are described as some multivariate functions of inversion-level parameters, where the inversion level is used as an independent variable representative of each MOST. The analog circuit design starts from the first step of inversion-level design using universal characteristics expressed by circuit currents and inversion-level parameters without process-dependent parameters, followed by the second step of foundry-process-dependent design and the last step of verification using saturation-level criteria. This methodology also paves the way to an intuitive and comprehensive design approach for many kinds of analog circuit specifications by optimization using inversion-level log-scale diagrams and saturation-level criteria. In this paper, we introduce an example of our design methodology for a two-stage Miller amplifier.
Martens, Jürgen
2005-01-01
The hygienic performance of biowaste composting plants to ensure the quality of compost is of high importance. Existing compost quality assurance systems reflect this importance through intensive testing of hygienic parameters. In many countries, compost quality assurance systems are under construction and it is necessary to check and to optimize the methods to state the hygienic performance of composting plants. A set of indicator methods to evaluate the hygienic performance of normal operating biowaste composting plants was developed. The indicator methods were developed by investigating temperature measurements from indirect process tests from 23 composting plants belonging to 11 design types of the Hygiene Design Type Testing System of the German Compost Quality Association (BGK e.V.). The presented indicator methods are the grade of hygienization, the basic curve shape, and the hygienic risk area. The temperature courses of single plants are not distributed normally, but they were grouped by cluster analysis in normal distributed subgroups. That was a precondition to develop the mentioned indicator methods. For each plant the grade of hygienization was calculated through transformation into the standard normal distribution. It shows the part in percent of the entire data set which meet the legal temperature requirements. The hygienization grade differs widely within the design types and falls below 50% for about one fourth of the plants. The subgroups are divided visually into basic curve shapes which stand for different process courses. For each plant the composition of the entire data set out of the various basic curve shapes can be used as an indicator for the basic process conditions. Some basic curve shapes indicate abnormal process courses which can be emended through process optimization. A hygienic risk area concept using the 90% range of variation of the normal temperature courses was introduced. Comparing the design type range of variation with the legal temperature defaults showed hygienic risk areas over the temperature courses which could be minimized through process optimization. The hygienic risk area of four design types shows a suboptimal hygienic performance.
A Cognitive Approach to the Education of Retarded Children
ERIC Educational Resources Information Center
Haywood, H. Carl
1977-01-01
Moderately mentally retarded children can acquire the necessary basic mental operations through a proper progression of mediated learning experiences; once the basic mental operations have been acquired, complex learning can occur because the necessary cognitive tools are present. (JD)
The Family Support Group (FSG) Leaders’ Handbook
2000-04-01
family guide. Fort Hood, TX: Author. Granovsky , N. (1998). Family Support Group leader basic handbook (Operation READY). Alexandria, VA: U. S...Readiness and Financial Planning " (22.3 minutes). Granovsky , N. (1998). Family Support Group Leader Basic Handbook (Operation READY). Alexandria
Solution of basic operational problems of water-development works at the Votkinsk hydroproject
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deev, A. P.; Borisevich, L. A.; Fisenko, V. F.
2012-11-15
Basic operational problems of water-development works at the Votkinsk HPP are examined. Measures for restoration of normal safety conditions for the water-development works at the HPP, which had been taken during service, are presented.
Gesture Recognition for Educational Games: Magic Touch Math
NASA Astrophysics Data System (ADS)
Kye, Neo Wen; Mustapha, Aida; Azah Samsudin, Noor
2017-08-01
Children nowadays are having problem learning and understanding basic mathematical operations because they are not interested in studying or learning mathematics. This project proposes an educational game called Magic Touch Math that focuses on basic mathematical operations targeted to children between the age of three to five years old using gesture recognition to interact with the game. Magic Touch Math was developed in accordance to the Game Development Life Cycle (GDLC) methodology. The prototype developed has helped children to learn basic mathematical operations via intuitive gestures. It is hoped that the application is able to get the children motivated and interested in mathematics.
2006-06-01
research will cover an overview of business process engineering (BPR) and operation management . The focus will be on the basic process of BPR, inventory...management and improvement of the process of business operation management to appropriately provide a basic model for the Indonesian Air Force in...discuss the operation management aspects of inventory management and process improvement, including Economic Order Quantity, Material Requirement
A new scenario-based approach to damage detection using operational modal parameter estimates
NASA Astrophysics Data System (ADS)
Hansen, J. B.; Brincker, R.; López-Aenlle, M.; Overgaard, C. F.; Kloborg, K.
2017-09-01
In this paper a vibration-based damage localization and quantification method, based on natural frequencies and mode shapes, is presented. The proposed technique is inspired by a damage assessment methodology based solely on the sensitivity of mass-normalized experimental determined mode shapes. The present method differs by being based on modal data extracted by means of Operational Modal Analysis (OMA) combined with a reasonable Finite Element (FE) representation of the test structure and implemented in a scenario-based framework. Besides a review of the basic methodology this paper addresses fundamental theoretical as well as practical considerations which are crucial to the applicability of a given vibration-based damage assessment configuration. Lastly, the technique is demonstrated on an experimental test case using automated OMA. Both the numerical study as well as the experimental test case presented in this paper are restricted to perturbations concerning mass change.
Grounds, Miranda D.; Radley, Hannah G.; Lynch, Gordon S.; Nagaraju, Kanneboyina; De Luca, Annamaria
2008-01-01
This review discusses various issues to consider when developing standard operating procedures for pre-clinical studies in the mdx mouse model of Duchenne muscular dystrophy (DMD). The review describes and evaluates a wide range of techniques used to measure parameters of muscle pathology in mdx mice and identifies some basic techniques that might comprise standardised approaches for evaluation. While the central aim is to provide a basis for the development of standardised procedures to evaluate efficacy of a drug or a therapeutic strategy, a further aim is to gain insight into pathophysiological mechanisms in order to identify other therapeutic targets. The desired outcome is to enable easier and more rigorous comparison of pre-clinical data from different laboratories around the world, in order to accelerate identification of the best pre-clinical therapies in the mdx mouse that will fast-track translation into effective clinical treatments for DMD. PMID:18499465
NASA Astrophysics Data System (ADS)
Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li
2017-02-01
The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.
The LapSim virtual reality simulator: promising but not yet proven.
Fairhurst, Katherine; Strickland, Andrew; Maddern, Guy
2011-02-01
The acquisition of technical skills using surgical simulators is an area of active research and rapidly evolving technology. The LapSim is a virtual reality simulator that currently allows practice of basic laparoscopic skills and some procedures. To date, no reviews have been published with reference to a single virtual reality simulator. A PubMed search was performed using the keyword "LapSim," with further papers identified from the citations of original search articles. Use of the LapSim to develop surgical skills has yielded overall results, although inconsistencies exist. Data regarding the transferability of learned skills to the operative environment are encouraging as is the validation work, particularly the use of a combination of measured parameters to produce an overall comparative performance score. Although the LapSim currently does not have any proven significant advantages over video trainers in terms of basic skills instruction and although the results of validation studies are variable, the potential for such technology to have a huge impact on surgical training is apparent. Work to determine standardized learning curves and proficiency criteria for different levels of trainees is incomplete. Moreover, defining which performance parameters measured by the LapSim accurately determine laparoscopic skill is complex. Further technological advances will undoubtedly improve the efficacy of the LapSim, and the results of large multicenter trials are anticipated.
[Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].
Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li
2017-06-25
Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.
Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data
NASA Technical Reports Server (NTRS)
Hess, R. A.
1986-01-01
A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.
NASA Astrophysics Data System (ADS)
Jiang, Wen; Wei, Boya
2018-02-01
The theory of intuitionistic fuzzy sets (IFS) is widely used for dealing with vagueness and the Dempster-Shafer (D-S) evidence theory has a widespread use in multiple criteria decision-making problems under uncertain situation. However, there are many methods to aggregate intuitionistic fuzzy numbers (IFNs), but the aggregation operator to fuse basic probability assignment (BPA) is rare. Power average (P-A) operator, as a powerful operator, is useful and important in information fusion. Motivated by the idea of P-A power, in this paper, a new operator based on the IFS and D-S evidence theory is proposed, which is named as intuitionistic fuzzy evidential power average (IFEPA) aggregation operator. First, an IFN is converted into a BPA, and the uncertainty is measured in D-S evidence theory. Second, the difference between BPAs is measured by Jousselme distance and a satisfying support function is proposed to get the support degree between each other effectively. Then the IFEPA operator is used for aggregating the original IFN and make a more reasonable decision. The proposed method is objective and reasonable because it is completely driven by data once some parameters are required. At the same time, it is novel and interesting. Finally, an application of developed models to the 'One Belt, One road' investment decision-making problems is presented to illustrate the effectiveness and feasibility of the proposed operator.
Washington State water quality temperature standards as related to reactor operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballowe, J.W.
1968-08-14
The purpose of this report is to provide a basic working tool for determining the relationship between the allowable temperature increase within the Columbia River reach at the Hanford Site and the actual temperature increase as associated with various reactor operating modes. This basic tool can be utilized for day-to-day operating purposes or for the achievement of historical information.
Bagal, Manisha V; Gogate, Parag R
2014-01-01
Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.
Very-large-area CCD image sensors: concept and cost-effective research
NASA Astrophysics Data System (ADS)
Bogaart, E. W.; Peters, I. M.; Kleimann, A. C.; Manoury, E. J. P.; Klaassens, W.; de Laat, W. T. F. M.; Draijer, C.; Frost, R.; Bosiers, J. T.
2009-01-01
A new-generation full-frame 36x48 mm2 48Mp CCD image sensor with vertical anti-blooming for professional digital still camera applications is developed by means of the so-called building block concept. The 48Mp devices are formed by stitching 1kx1k building blocks with 6.0 µm pixel pitch in 6x8 (hxv) format. This concept allows us to design four large-area (48Mp) and sixty-two basic (1Mp) devices per 6" wafer. The basic image sensor is relatively small in order to obtain data from many devices. Evaluation of the basic parameters such as the image pixel and on-chip amplifier provides us statistical data using a limited number of wafers. Whereas the large-area devices are evaluated for aspects typical to large-sensor operation and performance, such as the charge transport efficiency. Combined with the usability of multi-layer reticles, the sensor development is cost effective for prototyping. Optimisation of the sensor design and technology has resulted in a pixel charge capacity of 58 ke- and significantly reduced readout noise (12 electrons at 25 MHz pixel rate, after CDS). Hence, a dynamic range of 73 dB is obtained. Microlens and stack optimisation resulted in an excellent angular response that meets with the wide-angle photography demands.
NASA Astrophysics Data System (ADS)
Chapman, B. E.
2017-10-01
MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority, which is enhanced by programmable power supplies (PPS) to maximize inductive capability. The existing PPS enables access to very low plasma current, down to Ip =0.02 MA. This greatly expands the Lundquist number range S =104 -108 and allows nonlinear, 3D MHD computation using NIMROD and DEBS with dimensionless parameters that overlap those of MST plasmas. A new, second PPS will allow simultaneous PPS control of the Bp and Bt circuits. The PPS also enables MST tokamak operation, thus far focused on disruptions and RMP suppression of runaway electrons. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement RFP plasmas. Measured fluctuations have TEM properties including a density-gradient threshold larger than for tokamak plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Exploration of basic plasma science frontiers in MST RFP and tokamak plasmas is proposed as part of WiPPL, a basic science user facility. Work supported by USDoE.
Radiation Parameters of High Dose Rate Iridium -192 Sources
NASA Astrophysics Data System (ADS)
Podgorsak, Matthew B.
A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.
2015-01-01
Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.
Characteristics of dioxin emissions from a Waelz plant with acid and basic kiln mode.
Hung, Pao Chen; Chi, Kai Hsien; Chen, Mei Lien; Chang, Moo Been
2012-01-30
The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in the flue gas of a Waelz plant operated in acid and basic modes, respectively. To abate (PCDD/F) and other pollutants, the plant operates with a post-treatment of flue gases by activated carbon injection and subsequent filtration. Relatively high PCDD/F discharge by fly ashes is found with acid kiln mode of the Waelz process. Therefore, basic kiln mode of the Waelz process is investigated and compared in this plant. With the adsorbent injection rate of 7 kg/h (95 mg/Nm(3)), the PCDD/F concentration in stack gas was measured as 0.123 ng I-TEQ/Nm(3) in the basic operating mode. The added Ca(OH)(2) reacted with metal catalysts and HCl((g)) in the flue gas and thus effectively suppressed the formation of PCDD/Fs. PCDD/F concentrations in fly ashes sampled from the dust settling chamber, cyclone, primary filter and secondary filter in basic kiln mode were significantly lower than that in acid kiln mode. Total PCDD/F emission on the basis of treating one kg of electric arc furnace dust in the basic operation mode was 269 ng I-TEQ/kg EAF-dust treated which was significantly lower than that in acid mode (640 ng I-TEQ/kg EAF-dust treated). Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Douglas; Solom, Matthew
This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solom, Matthew; Ross, Kyle; Cardoni, Jeffrey N.
This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.
The Concept and Control Capabilities of Universal Electric Vehicle Prototype using LabView Software
NASA Astrophysics Data System (ADS)
Skowronek, Hubert; Waszczuk, Kamil; Kowalski, Maciej; Karolczak, Paweł; Baral, Bivek
2016-10-01
The concept of drive control prototype electric car designed in assumptions for sales in the markets of developing countries, mainly in South Asia has been presented in the article. The basic requirements for this type of vehicles and the possibility of rapid prototyping onboard equipment for the purpose of preliminary tests have been presented. The control system was composed of a PC and measurement card myRIO and has two operating modes. In the first of them can simulate changes of each components parameters and checking of program proper functioning. In the second mode, instead of the simulation it is possible to control the real object.
From diffusion pumps to cryopumps: The conversion of GSFC's space environment simulator
NASA Technical Reports Server (NTRS)
Cary, Ron
1992-01-01
The SES (Space Environmental Simulator), largest of the Thermal Vacuum Facilities at The Goddard Space Flight Center, recently was converted from an oil diffusion pumped chamber to a Cryopumped chamber. This modification was driven by requirements of flight projects. The basic requirement was to retain or enhance the operational parameters of the chamber such as pumping speed, ultimate vacuum, pump down time, and thermal system performance. To accomplish this task, seventeen diffusion pumps were removed and replaced with eight 1.2 meter (48 inch) diameter cryopumps and one 0.5 meter (20 inch) turbomolecular pump. The conversion was accomplished with a combination of subcontracting and in-house efforts to maximize the efficiency of implementation.
Microgravity computing codes. User's guide
NASA Astrophysics Data System (ADS)
1982-01-01
Codes used in microgravity experiments to compute fluid parameters and to obtain data graphically are introduced. The computer programs are stored on two diskettes, compatible with the floppy disk drives of the Apple 2. Two versions of both disks are available (DOS-2 and DOS-3). The codes are written in BASIC and are structured as interactive programs. Interaction takes place through the keyboard of any Apple 2-48K standard system with single floppy disk drive. The programs are protected against wrong commands given by the operator. The programs are described step by step in the same order as the instructions displayed on the monitor. Most of these instructions are shown, with samples of computation and of graphics.
An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry
NASA Astrophysics Data System (ADS)
Zubair, M.; Rahman, Khalil Ur; Hassan, Mehmood Ul
2013-12-01
The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants.
Hou, Yi-You
2017-09-01
This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.
Program manual for ASTOP, an Arbitrary space trajectory optimization program
NASA Technical Reports Server (NTRS)
Horsewood, J. L.
1974-01-01
The ASTOP program (an Arbitrary Space Trajectory Optimization Program) designed to generate optimum low-thrust trajectories in an N-body field while satisfying selected hardware and operational constraints is presented. The trajectory is divided into a number of segments or arcs over which the control is held constant. This constant control over each arc is optimized using a parameter optimization scheme based on gradient techniques. A modified Encke formulation of the equations of motion is employed. The program provides a wide range of constraint, end conditions, and performance index options. The basic approach is conducive to future expansion of features such as the incorporation of new constraints and the addition of new end conditions.
NASA Astrophysics Data System (ADS)
Hirota, Osamu; Ohhata, Kenichi; Honda, Makoto; Akutsu, Shigeto; Doi, Yoshifumi; Harasawa, Katsuyoshi; Yamashita, Kiichi
2009-08-01
The security issue for the next generation optical network which realizes Cloud Computing System Service with data center" is urgent problem. In such a network, the encryption by physical layer which provide super security and small delay should be employed. It must provide, however, very high speed encryption because the basic link is operated at 2.5 Gbit/sec or 10 Gbit/sec. The quantum stream cipher by Yuen-2000 protocol (Y-00) is a completely new type random cipher so called Gauss-Yuen random cipher, which can break the Shannon limit for the symmetric key cipher. We develop such a cipher which has good balance of the security, speed and cost performance. In SPIE conference on quantum communication and quantum imaging V, we reported a demonstration of 2.5 Gbit/sec system for the commercial link and proposed how to improve it to 10 Gbit/sec. This paper reports a demonstration of the Y-00 cipher system which works at 10 Gbit/sec. A transmission test in a laboratory is tried to get the basic data on what parameters are important to operate in the real commercial networks. In addition, we give some theoretical results on the security. It is clarified that the necessary condition to break the Shannon limit requires indeed the quantum phenomenon, and that the full information theoretically secure system is available in the satellite link application.
Jin, Hao; Huang, Hai; Dong, Wei; Sun, Jian; Liu, Anding; Deng, Meihong; Dirsch, Olaf; Dahmen, Uta
2012-08-01
As repeatedly operating rat liver transplantation (LTx) until animals survive is inefficient in respect to time and use of living animals, we developed a new training concept. METHODS AND CONCEPTS: Training was divided into four phases: pretraining-phase, basic-microsurgical-training phase, advanced-microsurgical-training phases, and expert-microsurgical-training phase. Two "productivity-phases" were introduced right after the basic- and advanced-microsurgical-training phases, respectively, to allow the trainee to accumulate experience and to be scientifically productive before proceeding to a more complex procedure. PDCA cycles and quality criteria were employed to control the learning-process and the surgical quality. Predefined quality criteria included survival rate, intraoperative, postoperative, and histologic parameters. Three trainees participated in the LTx training and achieved their first survival record within 4-10 operations. All of them completely mastered the LTx in fewer procedures (31, 60 and 26 procedures) as reported elsewhere, and the more complex arterialized or partial LTx were mastered by trainee A and B in additional 9 and 13 procedures, respectively. Fast progress was possible due to a high number of training in the 2 Productivity-phases. The stepwise and PDCA-based training program increased the efficiency of LTx training, whereas the constant application and development of predefined quality criteria guaranteed the quality of microsurgery. Copyright © 2012 Elsevier Inc. All rights reserved.
Skylab hardware report operational bioinstrumentation system
NASA Technical Reports Server (NTRS)
Luczkowski, S.
1977-01-01
The Skylab Operational Bioinstrumentation System is a personal, individually adjustable biomedical system designed to monitor the basic physiological functions of each suited crewman during specified periods of a manned space mission. The basic physiological functions of this system include electrocardiogram, respiration by impedance pneumogram, body temperature, cardiotachometer, and subject identification. The Operational Bioinstrumentation System was scheduled to monitor each crewman during launch, extravehicular activities, suited intravehicular experiments, and undocking and return.
Basic Mathematics Operations--A Math Practice Booklet.
ERIC Educational Resources Information Center
Herr, Nicholas K.
Intended for use in vocational high schools, the workbook is designed to help the student understand and develop skill in performing the four basic arithmetical operations: addition, subtraction, multiplication, and division. Also stressed is the correct reading and writing of numbers. The booklet consists of explanatory text, arithmetic problems,…
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
Fluid Power Systems Maintenance and Operation. Instructor's Guide.
ERIC Educational Resources Information Center
Paule, Bob A.
Written to complement the Fluid Power/Basic Hydraulic and Basic Pneumatics guides, this curriculum guide contains materials for a seven-unit course in fluid power systems maintenance and operation. Units, which consist of one to eight lessons, cover these topics: preventive maintenance, repair machine malfunctions, overhaul/recondition hydraulic…
Basic principles of variable speed drives
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1973-01-01
An understanding of the principles which govern variable speed drive operation is discussed for successful drive application. The fundamental factors of torque, speed ratio, and power as they relate to drive selection are discussed. The basic types of variable speed drives, their operating characteristics and their applications are also presented.
Pal, Parimal; Thakura, Ritwik; Chakrabortty, Sankha
2016-05-01
A user-friendly, menu-driven simulation software tool has been developed for the first time to optimize and analyze the system performance of an advanced continuous membrane-integrated pharmaceutical wastewater treatment plant. The software allows pre-analysis and manipulation of input data which helps in optimization and shows the software performance visually on a graphical platform. Moreover, the software helps the user to "visualize" the effects of the operating parameters through its model-predicted output profiles. The software is based on a dynamic mathematical model, developed for a systematically integrated forward osmosis-nanofiltration process for removal of toxic organic compounds from pharmaceutical wastewater. The model-predicted values have been observed to corroborate well with the extensive experimental investigations which were found to be consistent under varying operating conditions like operating pressure, operating flow rate, and draw solute concentration. Low values of the relative error (RE = 0.09) and high values of Willmott-d-index (d will = 0.981) reflected a high degree of accuracy and reliability of the software. This software is likely to be a very efficient tool for system design or simulation of an advanced membrane-integrated treatment plant for hazardous wastewater.
Large space structures fabrication experiment. [on-orbit fabrication of graphite/thermoplastic beams
NASA Technical Reports Server (NTRS)
1978-01-01
The fabrication machine used for the rolltrusion and on-orbit forming of graphite thermoplastic (CTP) strip material into structural sections is described. The basic process was analytically developed parallel with, and integrated into the conceptual design of, a flight experiment machine for producing a continuous triangular cross section truss. The machine and its associated ancillary equipment are mounted on a Space Lab pallet. Power, thermal control, and instrumentation connections are made during ground installation. Observation, monitoring, caution and warning, and control panels and displays are installed at the payload specialist station in the orbiter. The machine is primed before flight by initiation of beam forming, to include attachment of the first set of cross members and anchoring of the diagonal cords. Control of the experiment will be from the orbiter mission specialist station. Normal operation is by automatic processing control software. Machine operating data are displayed and recorded on the ground. Data is processed and formatted to show progress of the major experiment parameters including stable operation, physical symmetry, joint integrity, and structural properties.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration
2013-10-01
A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.
Ficken, James H.; Scott, Carl T.
1988-01-01
This manual describes the U.S. Geological Survey Minimonitor Water Quality Data Measuring and Recording System. Instructions for calibrating, servicing, maintaining, and operating the system are provided. The Survey Minimonitor is a battery-powered , multiparameter water quality monitoring instrument designed for field use. A watertight can containing signal conditioners is connected with cable and waterproof connectors to various water quality sensors. Data are recorded on a punched paper-tape recorder. An external battery is required. The operation and maintenance of various sensors and signal conditioners are discussed, for temperature, specific conductance, dissolved oxygen, and pH. Calibration instructions are provided for each parameter, along with maintenance instructions. Sections of the report explain how to connect the Minimonitor to measure direct-current voltages, such as signal outputs from other instruments. Instructions for connecting a satellite data-collection platform or a solid-state data recorder to the Minimonitor are given also. Basic information is given for servicing the Minimonitor and trouble-shooting some of its electronic components. The use of test boxes to test sensors, isolate component problems, and verify calibration values is discussed. (USGS)
Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Song, Tae-Won; Choi, Kyoung-Hwan; Kim, Ji-Rae; Yi, Jung S.
2011-05-01
Proton exchange membrane fuel cells (PEMFCs) have been considered for combined heat and power (CHP) applications, but cost reduction has remained an issue for commercialization. Among various types of PEMFC, the high-temperature (HT) PEMFC is gaining more attention due to the simplicity of the system, that will make the total system cost lower. A pumpless cooling concept is introduced to reduce the number of components of a HT PEMFC system even further and also decrease the parasitic power required for operating the system. In this concept, water is used as the coolant, and the buoyancy force caused by the density difference between vapour and liquid when operated above boiling temperate is utilized to circulate the coolant between the stack and the cooling device. In this study, the basic parameters required to design the cooling device are discussed, and the stable operation of the HT PEMFC stack in both the steady-state and during transient periods is demonstrated. It found that the pumpless cooling method provides more uniform temperature distribution within the stack, regardless of the direction of coolant flow.
NASA Astrophysics Data System (ADS)
Ma, Junhai; Yang, Wenhui; Lou, Wandong
This paper establishes an oligopolistic game model under the carbon emission reduction constraint and investigates its complex characteristics like bifurcation and chaos. Two oligopolistic manufacturers comprise three mixed game models, aiming to explore the variation in the status of operating system as per the upgrading of benchmark reward-penalty mechanism. Firstly, we set up these basic models that are respectively distinguished with carbon emission quantity and study these models using different game methods. Then, we concentrate on one typical game model to further study the dynamic complexity of variations in the system status, through 2D bifurcation diagrams and 4D parameter adjustment features based on the bounded rationality scheme for price, and the adaptive scheme for carbon emission. The results show that the carbon emission constraint has significant influence on the status variation of two-oligopolistic game operating systems no matter whether it is stable or chaotic. Besides, the new carbon emission regulation meets government supervision target and achieves the goal of being environment friendly by motivating the system to operate with lower carbon emission.
NASA Astrophysics Data System (ADS)
Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Pratt, Cameron T.; Froning, Cynthia S.; Green, James C.; Penton, Steven V.; Savage, Blair D.
2017-05-01
We present basic data and modeling for a survey of the cool, photoionized circumgalactic medium (CGM) of low-redshift galaxies using far-UV QSO absorption-line probes. This survey consists of “targeted” and “serendipitous” CGM subsamples, originally described in Stocke et al. (Paper I). The targeted subsample probes low-luminosity, late-type galaxies at z< 0.02 with small impact parameters (< ρ > =71 kpc), and the serendipitous subsample probes higher luminosity galaxies at z≲ 0.2 with larger impact parameters (< ρ > =222 kpc). Hubble Space Telescope and FUSE UV spectroscopy of the absorbers and basic data for the associated galaxies, derived from ground-based imaging and spectroscopy, are presented. We find broad agreement with the COS-Halos results, but our sample shows no evidence for changing ionization parameter or hydrogen density with distance from the CGM host galaxy, probably because the COS-Halos survey probes the CGM at smaller impact parameters. We find at least two passive galaxies with H I and metal-line absorption, confirming the intriguing COS-Halos result that galaxies sometimes have cool gas halos despite no on-going star formation. Using a new methodology for fitting H I absorption complexes, we confirm the CGM cool gas mass of Paper I, but this value is significantly smaller than that found by the COS-Halos survey. We trace much of this difference to the specific values of the low-z metagalactic ionization rate assumed. After accounting for this difference, a best-value for the CGM cool gas mass is found by combining the results of both surveys to obtain {log}(M/{M}⊙ )=10.5+/- 0.3, or ˜30% of the total baryon reservoir of an L≥slant {L}* , star-forming galaxy. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Production scheduling with discrete and renewable additional resources
NASA Astrophysics Data System (ADS)
Kalinowski, K.; Grabowik, C.; Paprocka, I.; Kempa, W.
2015-11-01
In this paper an approach to planning of additional resources when scheduling operations are discussed. The considered resources are assumed to be discrete and renewable. In most research in scheduling domain, the basic and often the only type of regarded resources is a workstation. It can be understood as a machine, a device or even as a separated space on the shop floor. In many cases, during the detailed scheduling of operations the need of using more than one resource, required for its implementation, can be indicated. Resource requirements for an operation may relate to different resources or resources of the same type. Additional resources are most often referred to these human resources, tools or equipment, for which the limited availability in the manufacturing system may have an influence on the execution dates of some operations. In the paper the concept of the division into basic and additional resources and their planning method was shown. A situation in which sets of basic and additional resources are not separable - the same additional resource may be a basic resource for another operation is also considered. Scheduling of operations, including greater amount of resources can cause many difficulties, depending on whether the resource is involved in the entire time of operation, only in the selected part(s) of operation (e.g. as auxiliary staff at setup time) or cyclic - e.g. when an operator supports more than one machine, or supervises the execution of several operations. For this reason the dates and work times of resources participation in the operation can be different. Presented issues are crucial when modelling of production scheduling environment and designing of structures for the purpose of scheduling software development.
Brugger, Katharina; Rubel, Franz
2013-01-01
Bluetongue is an arboviral disease of ruminants causing significant economic losses. Our risk assessment is based on the epidemiological key parameter, the basic reproduction number. It is defined as the number of secondary cases caused by one primary case in a fully susceptible host population, in which values greater than one indicate the possibility, i.e., the risk, for a major disease outbreak. In the course of the Bluetongue virus serotype 8 (BTV-8) outbreak in Europe in 2006 we developed such a risk assessment for the University of Veterinary Medicine Vienna, Austria. Basic reproduction numbers were calculated using a well-known formula for vector-borne diseases considering the population densities of hosts (cattle and small ruminants) and vectors (biting midges of the Culicoides obsoletus spp.) as well as temperature dependent rates. The latter comprise the biting and mortality rate of midges as well as the reciprocal of the extrinsic incubation period. Most important, but generally unknown, is the spatio-temporal distribution of the vector density. Therefore, we established a continuously operating daily monitoring to quantify the seasonal cycle of the vector population by a statistical model. We used cross-correlation maps and Poisson regression to describe vector densities by environmental temperature and precipitation. Our results comprise time series of observed and simulated Culicoides obsoletus spp. counts as well as basic reproduction numbers for the period 2009–2011. For a spatio-temporal risk assessment we projected our results from the location of Vienna to the entire region of Austria. We compiled both daily maps of vector densities and the basic reproduction numbers, respectively. Basic reproduction numbers above one were generally found between June and August except in the mountainous regions of the Alps. The highest values coincide with the locations of confirmed BTV cases. PMID:23560090
Blinov, N N
2000-01-01
Specifications for the main element of a modern X-ray diagnostic device an X-ray feeder are formulated. There is evidence for choosing its parameters. The new rational routine of X-ray study and the layout of a X-ray room are proposed. Information on the up-to-date commercially manufactured basic medium-frequency general-purpose X-ray feeder "URP-30 SCh Amico" is given.
Effect of synthesis parameters on polymethacrylic acid xerogel structures and equilibrium swelling
NASA Astrophysics Data System (ADS)
Panić, V.; Jovanović, J.; Adnadjević, B.; Velicković, S.
2009-09-01
Hydrogels based on crosslinked polymethacrylic acid were synthesized via free-radical polymerization in aqueous solution, using N,N'-methylene bisacrylamide as a crosslinking agent and 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride as an initiator. The influence of the reaction parameters (the neutralization degree of methacrylic acid and the initial monomer concentration) on the equilibrium swelling degree, the swelling kinetic parameters and the basic structural properties of xerogels was investigated. The change of synthesis parameters leads to the change of the basic structural parameters of xerogel, as well as the equilibrium swelling degree and the initial swelling rate of the hydrogels. It is found that there are power form relationships between the equilibrium swelling degree, the initial swelling rate and the structural xerogel’s properties and the change of the neutralization degree of monomer, i.e. the monomer concentration. The examined correlations proved that the crosslinking density is the crucial parameter which determines all the other investigated structural and swelling parameters.
NASA Astrophysics Data System (ADS)
Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling
2017-05-01
To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.
A Fuzzy Model to Interpret Data of Drive Performances from Patients with Sleep Deprivation
Sena, Pasquale; Attianese, Paolo; Carbone, Francesca; Pellegrino, Arcangelo; Pinto, Aldo; Villecco, Francesco
2012-01-01
The search for safe vehicles is increasing with both diffusion of high traffic density over the world and availability of new technologies providing sophisticated tools previously impossible to realize. Design and development of the necessary devices may be based on simulation tests that reduce cost allowing trials in many directions. A proper choice of the arrangement of the drive simulators, as much as of the parameters to be monitored, is of basic importance as they can address the design of devices somehow responsible for the drivers safety or, even their lives. This system setup, consisting of a free car simulator equipped with a monitoring system, collects in a nonintrusive way data of the car lateral position within the road lane and of its first derivative. Based on these measured parameters, the system is able to detect symptoms of drowsiness and sleepiness. The analysis is realized by a fuzzy inferential process that provides an immediate warning signal as soon as drowsiness is detected with a high level of certainty. Enhancement of reliability and minimisation of the false alarm rate are obtained by operating continuous comparison between learned driver typical modalities of operation on the control command of the vehicle the pattern recorded. PMID:22969834
Matero, Sanni; van Den Berg, Frans; Poutiainen, Sami; Rantanen, Jukka; Pajander, Jari
2013-05-01
The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim to achieve a thorough understanding and control over the production process. PAT includes the frames for measurement as well as data analyzes and controlling for in-depth understanding, leading to more consistent and safer drug products with less batch rejections. In the optimal situation, by applying these techniques, destructive end-product testing could be avoided. In this paper the most prominent multivariate data analysis measuring tools within tablet manufacturing and basic research on operations are reviewed. Copyright © 2013 Wiley Periodicals, Inc.
Wilson, Mark; McGrath, John; Vine, Samuel; Brewer, James; Defriend, David; Masters, Richard
2010-10-01
Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed.
McGrath, John; Vine, Samuel; Brewer, James; Defriend, David; Masters, Richard
2010-01-01
Background Surgical simulation is increasingly used to facilitate the adoption of technical skills during surgical training. This study sought to determine if gaze control parameters could differentiate between the visual control of experienced and novice operators performing an eye-hand coordination task on a virtual reality laparoscopic surgical simulator (LAP Mentor™). Typically adopted hand movement metrics reflect only one half of the eye-hand coordination relationship; therefore, little is known about how hand movements are guided and controlled by vision. Methods A total of 14 right-handed surgeons were categorised as being either experienced (having led more than 70 laparoscopic procedures) or novice (having performed fewer than 10 procedures) operators. The eight experienced and six novice surgeons completed the eye-hand coordination task from the LAP Mentor basic skills package while wearing a gaze registration system. A variety of performance, movement, and gaze parameters were recorded and compared between groups. Results The experienced surgeons completed the task significantly more quickly than the novices, but only the economy of movement of the left tool differentiated skill level from the LAP Mentor parameters. Gaze analyses revealed that experienced surgeons spent significantly more time fixating the target locations than novices, who split their time between focusing on the targets and tracking the tools. Conclusion The findings of the study provide support for the utility of assessing strategic gaze behaviour to better understand the way in which surgeons utilise visual information to plan and control tool movements in a virtual reality laparoscopic environment. It is hoped that by better understanding the limitations of the psychomotor system, effective gaze training programs may be developed. PMID:20333405
Systems and methods for optimal power flow on a radial network
Low, Steven H.; Peng, Qiuyu
2018-04-24
Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node and a set of at least one node selected from the group consisting of an ancestor node and at least one child node; wherein send node operating parameters to nodes in the set of at least one node; receive operating parameters from the nodes in the set of at least one node; calculate a plurality of updated node operating parameters using an iterative process to determine the updated node operating parameters using the node operating parameters that describe the operating parameters of the node and the set of at least one node, where the iterative process involves evaluation of a closed form solution; and adjust node operating parameters.
Mission Operations with an Autonomous Agent
NASA Technical Reports Server (NTRS)
Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.
1998-01-01
The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.
An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction
NASA Technical Reports Server (NTRS)
Juang, J. N.; Pappa, R. S.
1985-01-01
A method, called the Eigensystem Realization Algorithm (ERA), is developed for modal parameter identification and model reduction of dynamic systems from test data. A new approach is introduced in conjunction with the singular value decomposition technique to derive the basic formulation of minimum order realization which is an extended version of the Ho-Kalman algorithm. The basic formulation is then transformed into modal space for modal parameter identification. Two accuracy indicators are developed to quantitatively identify the system modes and noise modes. For illustration of the algorithm, examples are shown using simulation data and experimental data for a rectangular grid structure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (Class B telephone companies); Basic area revenue-Account 5001 (Class A telephone companies). 36.212..., REVENUES, EXPENSES, TAXES AND RESERVES FOR TELECOMMUNICATIONS COMPANIES 1 Operating Revenues and Certain... companies); Basic area revenue—Account 5001 (Class A telephone companies). (a) Local private line revenues...
Survey of Basic Education in Eastern Africa. UNESCO/UNICEF Co-Operation Programme.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Nairobi (Kenya). Regional Office of Science and Technology for Africa.
A survey of basic education in 13 Eastern African countries (Madagascar, Burundi, Comores, Ethiopia, Mauritius, Botswana, Kenya, Lesotho, Swaziland, Tanzania, Zambia, Malawi, and Somalia) covers basic education programs and UNICEF's supporting role. Basic education is seen as a concept evolved in the region, involving formal school systems and…
Kansas Vocational Agriculture Education. Basic Core Curriculum Project, Horticulture III.
ERIC Educational Resources Information Center
Albracht, James, Ed.
This secondary horticulture curriculum guide is one of a set of three designated as the basic core of instruction for horticulture programs in Kansas. Units of instruction are presented in eight sections: (1) Human Relations, (2) Business Operations, (3) Greenhouse, (4) Retail Flowershop Operation, (5) Landscape Nursery, (6) Lawn Maintenance, (7)…
Orbital operation study. Volume 3: Basic vehicle summaries
NASA Technical Reports Server (NTRS)
Anderson, N. R.; Gianformaggio, A.
1972-01-01
The vehicle related data developed during the orbital operations study are described. The interfacing activity findings have been realigned into the four basic vehicle systems as follows: (1) earth orbital shuttle (EOS), (2) research and applications module (RAM), (3) space based, ground based, manned and unmanned tugs, and (4) modular space station (MSS).
47 CFR 76.945 - Procedures for Commission review of basic service rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... schedule with the Commission within 30 days, with a copy to the local franchising authority. (b) Basic... cable operator and the local franchising authority. The cable operator may file an opposition within... franchising authority. (d) Filings proposing a rate not within the rate regulation standards of §§ 76.922 and...
12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON ...
12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
del Valle, J C; García Blanco, F; Catalán, J
2015-04-02
The empirical solvent scales for polarizability (SP), dipolarity (SdP), acidity (SA), and basicity (SB) have been successfully used to interpret the solvatochromism of compounds dissolved in organic solvents and their solvent mixtures. Providing that the published solvatochromic parameters for the ionic liquids 1-(1-butyl)-3-methylimidazolium tetrafluoroborate, [BMIM][BF4] and 1-(1-butyl)-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], are excessively widespread, their SP, SdP, SA, and SB values are measured herein at temperatures from 293 to 353 K. Four key points are emphasized herein: (i) the origin of the solvatochromic solvent scales--the gas phase, that is the absence of any medium perturbation--; (ii) the separation of the polarizability and dipolarity effects; (iii) the simplification of the probing process in order to obtain the solvatochromic parameters; and (iv) the SP, SdP, SA, and SB solvent scales can probe the polarizability, dipolarity, acidity, and basicity of ionic liquids as well as of organic solvents and water-organic solvent mixtures. From the multiparameter approach using the four pure solvent scales one can draw the conclusion that (a) the solvent influence of [BMIM][BF4] parallels that of formamide at 293 K, both of them miscible with water; (b) [BMIM][PF6] shows a set of solvatochromic parameters similar to that of chloroacetonitrile, both of them water insoluble; and (c) that the corresponding solvent acidity and basicity of the ionic liquids can be explained to a great extent from the cation species by comparing the empirical parameters of [BMIM](+) with those of the solvent 1-methylimidazole. The insolubility of [BMIM][PF6] in water as compared to [BMIM][BF4] is tentatively connected to some extent to the larger molar volume of the anion [PF6](-), and to the difference in basicity of [PF6](-) and [BF4](-).
Palamarchuk, V A
2013-08-01
The effectiveness of laryngeal reinnervation by anza cervicalis abduction in the treatment of unilateral vocal fold paralysis in thyroid surgery was study. The prospectively examined 11 patients with abduction paralysis of the larynx, which were treated by ipsilateral anastomosis of anza cervicalis main branch to the distal stump of the recurrent laryngeal nerve were performed. The survey was conducted on the pre- and postoperative stages and included videolaryngoscopy, acoustic analysis, and patient self-assessment of voice. Average follow-up was (2.98 +/- 1.04) years. The use of videolaryngoscopy showed significant improvement of the spatial positioning of the vocal folds in the postoperative period and acoustical parameters. Laryngeal reinnervation by anza cervicalis is an effective treatment for laryngeal paralysis related to operations on the thyroid gland and laryngeal function can be improve to almost normal of the spoken voice parameters and the basic functions of the larynx.
Thermodynamic limits to the efficiency of solar energy conversion by quantum devices
NASA Technical Reports Server (NTRS)
Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.
1981-01-01
The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.
Oral tolerance in neonates: from basics to potential prevention of allergic disease.
Verhasselt, V
2010-07-01
Oral tolerance refers to the observation that prior feeding of an antigen induces local and systemic immune tolerance to that antigen. Physiologically, this process is probably of central importance for preventing inflammatory responses to the numerous dietary and microbial antigens present in the gut. Defective oral tolerance can lead to gut inflammatory disease, food allergies, and celiac disease. In the last two cases, the diseases develop early in life, stressing the necessity of understanding how oral tolerance is set up in neonates. This article reviews the parameters that have been outlined in adult animal models as necessary for tolerance induction and assesses whether these factors operate in neonates. In addition, we highlight the factors that are specific for this period of life and discuss how they could have an impact on oral tolerance. We pay particular attention to maternal influence on early oral tolerance induction through breast-feeding and outline the major parameters that could be modified to optimize tolerance induction in early life and possibly prevent allergic diseases.
Forgács, Attila; Balkay, László; Trón, Lajos; Raics, Péter
2014-12-01
Excel2Genie, a simple and user-friendly Microsoft Excel interface, has been developed to the Genie-2000 Spectroscopic Software of Canberra Industries. This Excel application can directly control Canberra Multichannel Analyzer (MCA), process the acquired data and visualize them. Combination of Genie-2000 with Excel2Genie results in remarkably increased flexibility and a possibility to carry out repetitive data acquisitions even with changing parameters and more sophisticated analysis. The developed software package comprises three worksheets: display parameters and results of data acquisition, data analysis and mathematical operations carried out on the measured gamma spectra. At the same time it also allows control of these processes. Excel2Genie is freely available to assist gamma spectrum measurements and data evaluation by the interested Canberra users. With access to the Visual Basic Application (VBA) source code of this application users are enabled to modify the developed interface according to their intentions. Copyright © 2014 Elsevier Ltd. All rights reserved.
BMSW - Fast Solar Wind Monitor - three years in orbit: Status and prospects
NASA Astrophysics Data System (ADS)
Prech, Lubomir; Zastenker, Georgy; Nemecek, Zdenek; Safrankova, Jana; Vaverka, Jakub; Cermak, Ivo; Chesalin, Lev S.; Gavrilova, Elena
Fast Solar Wind Monitor BMSW is an instrument flown as a part of the PLASMA-F complex onboard the Russian Spektr-R radioastronomical spacecraft. The spacecraft was launched on July 18, 2011. During the COSPAR-2014 Assembly meeting, the instrument is supposed to celebrate three successful years in operation. With a set of 6 Faraday’s cups, the instrument has a unique time resolution --- 0.5--1 s for a full energy spectrum (96 energy steps) and 31~ms for basic solar wind plasma parameters directing the instrument to study of fast solar wind discontinuities including interplanetary shocks, a fast variability of proton and alpha particle parameters, and to study of solar wind turbulence up to the ion kinetic scales. The measurement technique, its implementation, and ground data processing are discussed in the contribution. The performance of the instrument design and electronics are presented. We discuss heritage of this instrument utilized in design of future instruments being prepared for the further projects as Luna-Glob.
Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows
NASA Astrophysics Data System (ADS)
Şengül, Taylan; Wang, Shouhong
2018-02-01
The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.
Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Bekele, E. G.; Nicklow, J. W.
2005-12-01
Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.
NASA Astrophysics Data System (ADS)
Dang, Van Tuan; Lafon, Pascal; Labergere, Carl
2017-10-01
In this work, a combination of Proper Orthogonal Decomposition (POD) and Radial Basis Function (RBF) is proposed to build a surrogate model based on the Benchmark Springback 3D bending from the Numisheet2011 congress. The influence of the two design parameters, the geometrical parameter of the die radius and the process parameter of the blank holder force, on the springback of the sheet after a stamping operation is analyzed. The classical Design of Experience (DoE) uses Full Factorial to design the parameter space with sample points as input data for finite element method (FEM) numerical simulation of the sheet metal stamping process. The basic idea is to consider the design parameters as additional dimensions for the solution of the displacement fields. The order of the resultant high-fidelity model is reduced through the use of POD method which performs model space reduction and results in the basis functions of the low order model. Specifically, the snapshot method is used in our work, in which the basis functions is derived from snapshot deviation of the matrix of the final displacements fields of the FEM numerical simulation. The obtained basis functions are then used to determine the POD coefficients and RBF is used for the interpolation of these POD coefficients over the parameter space. Finally, the presented POD-RBF approach which is used for shape optimization can be performed with high accuracy.
14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ...
14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...
13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
47 CFR 76.1618 - Basic tier availability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...
47 CFR 76.1618 - Basic tier availability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...
47 CFR 76.1618 - Basic tier availability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...
47 CFR 76.1618 - Basic tier availability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...
47 CFR 76.1618 - Basic tier availability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Basic tier availability. 76.1618 Section 76.1618 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Notices § 76.1618 Basic tier availability. A cable operator...
An evidence-based virtual reality training program for novice laparoscopic surgeons.
Aggarwal, Rajesh; Grantcharov, Teodor P; Eriksen, Jens R; Blirup, Dorthe; Kristiansen, Viggo B; Funch-Jensen, Peter; Darzi, Ara
2006-08-01
To develop an evidence-based virtual reality laparoscopic training curriculum for novice laparoscopic surgeons to achieve a proficient level of skill prior to participating in live cases. Technical skills for laparoscopic surgery must be acquired within a competency-based curriculum that begins in the surgical skills laboratory. Implementation of this program necessitates the definition of the validity, learning curves and proficiency criteria on the training tool. The study recruited 40 surgeons, classified into experienced (performed >100 laparoscopic cholecystectomies) or novice groups (<10 laparoscopic cholecystectomies). Ten novices and 10 experienced surgeons were tested on basic tasks, and 11 novices and 9 experienced surgeons on a procedural module for dissection of Calot triangle. Performance of the 2 groups was assessed using time, error, and economy of movement parameters. All basic tasks demonstrated construct validity (Mann-Whitney U test, P < 0.05), and learning curves for novices plateaued at a median of 7 repetitions (Friedman's test, P < 0.05). Expert surgeons demonstrated a learning rate at a median of 2 repetitions (P < 0.05). Performance on the dissection module demonstrated significant differences between experts and novices (P < 0.002); learning curves for novice subjects plateaued at the fourth repetition (P < 0.05). Expert benchmark criteria were defined for validated parameters on each task. A competency-based training curriculum for novice laparoscopic surgeons has been defined. This can serve to ensure that junior trainees have acquired prerequisite levels of skill prior to entering the operating room, and put them directly into practice.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Yatskovsky, Victor I.; Ogorodnik, K. V.; Lischenko, Sergey
2002-07-01
The perspective of neural networks equivalental models (EM) base on vector-matrix procedure with basic operations of continuous and neuro-fuzzy logic (equivalence, absolute difference) are shown. Capacity on base EMs exceeded the amount of neurons in 2.5 times. This is larger than others neural networks paradigms. Amount neurons of this neural networks on base EMs may be 10 - 20 thousands. The base operations in EMs are normalized equivalency operations. The family of new operations equivalency and non-equivalency of neuro-fuzzy logic's, which we have elaborated on the based of such generalized operations of fuzzy-logic's as fuzzy negation, t-norm and s-norm are shown. Generalized rules of construction of new functions (operations) equivalency which uses relations of t-norm and s-norm to fuzzy negation are proposed. Among these elements the following should be underlined: (1) the element which fulfills the operation of limited difference; (2) the element which algebraic product (intensifier with controlled coefficient of transmission or multiplier of analog signals); (3) the element which fulfills a sample summarizing (uniting) of signals (including the one during normalizing). Synthesized structures which realize on the basic of these elements the whole spectrum of required operations: t-norm, s-norm and new operations equivalency are shown. These realization on the basic of new multifunctional optoelectronical BISPIN- devices (MOEBD) represent the circuit with constant and pulse optical input signals. They are modeling the operation of limited difference. These circuits realize frequency- dynamic neuron models and neural networks. Experimental results of these MOEBD and equivalency circuits, which fulfill the limited difference operation are discussed. For effective realization of neural networks on the basic of EMs as it is shown in report, picture elements are required as main nodes to implement element operations equivalence ('non-equivalence') of neuro-fuzzy logic's.
Plant Demands Require Reliable Instrumentation.
ERIC Educational Resources Information Center
McClain, Terry L.; Goswami, Santosh R.
1979-01-01
Listed are available control parameters including basic definitions and concepts and methods of measurement. The application of these parameters to the control of water and wastewater treatment plants is also outlined. (CS)
Basic Characteristics and Particularities of Nongovernment Education in China
ERIC Educational Resources Information Center
Daguang, Wu
2009-01-01
Running schools on the basis of nonpublic investment has been a basic characteristic of nongovernment or non-public-sector operated education in China since the advent of reform and opening up. This is not merely an unavoidable choice for school operators who have no other alternative; it is an inevitable option at a given period in the…
PLATO User's Memo, Number Two: Basic Bit Operations. Second Edition.
ERIC Educational Resources Information Center
Avner, Elaine
To help the PLATO computer-based instruction system user achieve the most efficient storage and manipulation of data, this manual begins with a review of the structure of decimal, binary, and octal number systems, and methods for converting from one system to another. The text describes the four basic operations that PLATO employs to manipulate…
The Relationship between Basic Skills and Operational Effectiveness in the British Army
ERIC Educational Resources Information Center
Swain, Jon
2015-01-01
This paper draws on data that formed part of a major three-year longitudinal study (2008-2011), which set out to investigate basic skills (BS) provision and needs in the British army and its relationship to operational effectiveness. Using mixed methods, the findings draw on qualitative data from 60 semi-structured interviews with 26 young…
Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie
2018-06-12
Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.
High-Level Performance Modeling of SAR Systems
NASA Technical Reports Server (NTRS)
Chen, Curtis
2006-01-01
SAUSAGE (Still Another Utility for SAR Analysis that s General and Extensible) is a computer program for modeling (see figure) the performance of synthetic- aperture radar (SAR) or interferometric synthetic-aperture radar (InSAR or IFSAR) systems. The user is assumed to be familiar with the basic principles of SAR imaging and interferometry. Given design parameters (e.g., altitude, power, and bandwidth) that characterize a radar system, the software predicts various performance metrics (e.g., signal-to-noise ratio and resolution). SAUSAGE is intended to be a general software tool for quick, high-level evaluation of radar designs; it is not meant to capture all the subtleties, nuances, and particulars of specific systems. SAUSAGE was written to facilitate the exploration of engineering tradeoffs within the multidimensional space of design parameters. Typically, this space is examined through an iterative process of adjusting the values of the design parameters and examining the effects of the adjustments on the overall performance of the system at each iteration. The software is designed to be modular and extensible to enable consideration of a variety of operating modes and antenna beam patterns, including, for example, strip-map and spotlight SAR acquisitions, polarimetry, burst modes, and squinted geometries.
11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND ...
11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
17. SOUTHEAST VIEW OF THE TAPPING SIDE OF BASIC OXYGEN ...
17. SOUTHEAST VIEW OF THE TAPPING SIDE OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.
Tejeda-Mansir, A; Montesinos, R M; Guzmán, R
2001-10-30
The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.
Prieto, D; Das, T K
2016-03-01
Uncertainty of pandemic influenza viruses continue to cause major preparedness challenges for public health policymakers. Decisions to mitigate influenza outbreaks often involve tradeoff between the social costs of interventions (e.g., school closure) and the cost of uncontrolled spread of the virus. To achieve a balance, policymakers must assess the impact of mitigation strategies once an outbreak begins and the virus characteristics are known. Agent-based (AB) simulation is a useful tool for building highly granular disease spread models incorporating the epidemiological features of the virus as well as the demographic and social behavioral attributes of tens of millions of affected people. Such disease spread models provide excellent basis on which various mitigation strategies can be tested, before they are adopted and implemented by the policymakers. However, to serve as a testbed for the mitigation strategies, the AB simulation models must be operational. A critical requirement for operational AB models is that they are amenable for quick and simple calibration. The calibration process works as follows: the AB model accepts information available from the field and uses those to update its parameters such that some of its outputs in turn replicate the field data. In this paper, we present our epidemiological model based calibration methodology that has a low computational complexity and is easy to interpret. Our model accepts a field estimate of the basic reproduction number, and then uses it to update (calibrate) the infection probabilities in a way that its effect combined with the effects of the given virus epidemiology, demographics, and social behavior results in an infection pattern yielding a similar value of the basic reproduction number. We evaluate the accuracy of the calibration methodology by applying it for an AB simulation model mimicking a regional outbreak in the US. The calibrated model is shown to yield infection patterns closely replicating the input estimates of the basic reproduction number. The calibration method is also tested to replicate an initial infection incidence trend for a H1N1 outbreak like that of 2009.
[Therapeutic bacterial vaccine Immunovac in complex treatment of patients with chronic pyoderma].
Sorokina, E V; Masiukova, S A; Kurbatova, E A; Egorova, N B
2010-01-01
Assessment of therapeutic effect and immunologic parameters during use of Immunovac vaccine for complex treatment of chronic forms of pyoderma. Ninety-five patients with different clinical forms of chronic pyoderma (furunculosis, hydradenitis, chronic ulcerative and ulcerative-vegetans pyoderma, folliculitis, impetigo etc.) were studied. Fifty-nine patients received immunotherapy with Immunovac vaccine together with basic therapy and 36 patients comprised control group treated only with basic therapy. Studied immunologic parameters were as follows: assessment of functional activity of lymphocytes, determination of lymphocyte subpopulations by flow cytometry, total immunoglobulins classes A, G, M by radial immunoduffusion, affinity of antibodies by enzyme immunoassay, levels of IFNalpha and IFNgamma. Use of Immunovac vaccine in complex treatment of patients with chronic forms of pyoderma enhanced clinical effect of basic therapy, which expressed in decrease of severity and frequency of disease relapses irrespective to clinical form and severity of pyoderma. Therapeutic effect during use of Immunovac vaccine amounted 84.7%, whereas in control group it was 41.6% after 12 months of follow-up. Increase of functional activity of neutrophils, subpopulation of lymphocytes with markers CD4+, CD8+, CD72+, affinity of antibodies as well as induced production of IFNalpha and IFNgamma was revealed. Correction of immunologic parameters correlated with positive results of patients treatment. Inclusion of bacterial polycomponent vaccine Immunovac in complex treatment of patients with chronic pyoderma promotes enhancement of therapeutic effect of basic therapy and correction of immunologic parameters.
Rosenholm, Jarl B
2017-09-01
Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Microbial fuel cells as an alternative energy source: current status.
Javed, Muhammad Mohsin; Nisar, Muhammad Azhar; Ahmad, Muhammad Usman; Yasmeen, Nighat; Zahoor, Sana
2018-06-22
Microbial fuel cell (MFC) technology is an emerging area for alternative renewable energy generation and it offers additional opportunities for environmental bioremediation. Recent scientific studies have focused on MFC reactor design as well as reactor operations to increase energy output. The advancement in alternative MFC models and their performance in recent years reflect the interests of scientific community to exploit this technology for wider practical applications and environmental benefit. This is reflected in the diversity of the substrates available for use in MFCs at an economically viable level. This review provides an overview of the commonly used MFC designs and materials along with the basic operating parameters that have been developed in recent years. Still, many limitations and challenges exist for MFC development that needs to be further addressed to make them economically feasible for general use. These include continued improvements in fuel cell design and efficiency as well scale-up with economically practical applications tailored to local needs.
Radiation response and basic dosimetric characterisation of the ‘Magic Plate’
NASA Astrophysics Data System (ADS)
Alrowaili, Z. A.; Lerch, M.; Petasecca, M.; Carolan, M.; Rosenfeld, A.
2017-02-01
Two Dimensional (2D) silicon diode arrays are often implemented in radiation therapy quality assurance (QA) applications due to their advantages such as: real-time operation (compared to the films), large dynamic range and small size (compared to ionization chambers). The Centre for Medical Radiation Physics, University of Wollongong has developed a multifunctional 2D silicon diode array known as the Magic Plate (MP) for real-time applications and is suitable as a transmission detector for photon flunce mapping (MPTM) or for in phantom dose mapping (MPDM). The paper focusses on the characterisation of the MPDM in terms of output factor and square field beam profiling in 6 MV, 10 MV and 18 MV clinical photon fields. We have found excellent agreement with three different ion chambers for all measured parameters with output factors agreeing within 1.2% and field profiles agreeing within 3% and/or 3mm. This work has important implications for the development of the MP when operating in transmission mapping mode.
NASA Astrophysics Data System (ADS)
Leonard, T.; Spence, S.; Early, J.; Filsinger, D.
2013-12-01
Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle - the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters. Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model. Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle. The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.
NASA Astrophysics Data System (ADS)
Wang, Pan; Zhang, Yi; Yan, Dong
2018-05-01
Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.
Design of Low Complexity Model Reference Adaptive Controllers
NASA Technical Reports Server (NTRS)
Hanson, Curt; Schaefer, Jacob; Johnson, Marcus; Nguyen, Nhan
2012-01-01
Flight research experiments have demonstrated that adaptive flight controls can be an effective technology for improving aircraft safety in the event of failures or damage. However, the nonlinear, timevarying nature of adaptive algorithms continues to challenge traditional methods for the verification and validation testing of safety-critical flight control systems. Increasingly complex adaptive control theories and designs are emerging, but only make testing challenges more difficult. A potential first step toward the acceptance of adaptive flight controllers by aircraft manufacturers, operators, and certification authorities is a very simple design that operates as an augmentation to a non-adaptive baseline controller. Three such controllers were developed as part of a National Aeronautics and Space Administration flight research experiment to determine the appropriate level of complexity required to restore acceptable handling qualities to an aircraft that has suffered failures or damage. The controllers consist of the same basic design, but incorporate incrementally-increasing levels of complexity. Derivations of the controllers and their adaptive parameter update laws are presented along with details of the controllers implementations.
Early warning and crop condition assessment research
NASA Technical Reports Server (NTRS)
Boatwright, G. O.; Whitehead, V. S.
1986-01-01
The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.
Diffusion-cooled high-power single-mode waveguide CO2 laser for transmyocardial revascularization
NASA Astrophysics Data System (ADS)
Berishvili, I. I.; Bockeria, L. A.; Egorov, E. N.; Golubev, Vladimir S.; Galushkin, Michail G.; Kheliminsky, A. A.; Panchenko, Vladislav Y.; Roshin, A. P.; Sigaev, I. Y.; Vachromeeva, M. N.; Vasiltsov, Victor V.; Yoshina, V. I.; Zabelin, Alexandre M.; Zelenov, Evgenii V.
1999-01-01
The paper presents the results on investigations and development of multichannel waveguide CO2 laser with diffusion cooling of active medium excited by discharge of audio-frequency alternating current. The description of high-power single-mode CO2 laser with average beam power up to 1 kW is presented. The result of measurement of the laser basic parameters are offered, as well as the outcomes of performances of the laser head with long active zone, operating in waveguide mode. As an example of application of these laser, various capabilities a description of the developed medical system 'Genom' used in the transmyocardial laser revascularization (TMLR) procedure and clinical results of the possibilities of the TMLR in the surgical treatment are presented.
Matrix product states for su(2) invariant quantum spin chains
NASA Astrophysics Data System (ADS)
Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas
2016-08-01
A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.
Preparation of reflective CsI photocathodes with reproducible high quantum efficiency
NASA Astrophysics Data System (ADS)
Maier-Komor, P.; Bauer, B. B.; Friese, J.; Gernhäuser, R.; Kienle, P.; Körner, H. J.; Montermann, G.; Zeitelhack, K.
1995-02-01
CsI as a solid UV-photocathode material has many promising applications in fast gaseous photon detectors. They are proposed in large area Ring Imaging CHerenkov (RICH) devices in forthcoming experiments at various high-energy particle accelerators. A high photon-to-electron conversion efficiency is a basic requirement for the successful operation of these devices. High reproducible quantum efficiencies could be achieved with CsI layers prepared by electron beam evaporation from a water-cooled copper crucible. CsI films were deposited in the thickness range of 30 to 500 μg/cm 2. Absorption coefficients and quantum efficiencies were measured in the wavelength region of 150 nm to 250 nm. The influence of various evaporation parameters on the quantum efficiency were investigated.
Problems experienced and envisioned for dynamical physical systems
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1985-01-01
The use of high performance systems, which is the trend of future space systems, naturally leads to lower margins and a higher sensitivity to parameter variations and, therefore, more problems of dynamical physical systems. To circumvent dynamic problems of these systems, appropriate design, verification analysis, and tests must be planned and conducted. The basic design goal is to define the problem before it occurs. The primary approach for meeting this goal is a good understanding and reviewing of the problems experienced in the past in terms of the system under design. This paper reviews many of the dynamic problems experienced in space systems design and operation, categorizes them as to causes, and envisions future program implications, developing recommendations for analysis and test approaches.
Neutron radiation tolerance of Au-activated silicon
NASA Technical Reports Server (NTRS)
Joyner, W. T.
1987-01-01
Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.
High-power microwave LDMOS transistors for wireless data transmission technologies (Review)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, E. V., E-mail: E.Kouzntsov@tcen.ru; Shemyakin, A. V.
The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceiversmore » for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).« less
48 CFR 970.2201 - Basic labor policies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Basic labor policies. 970.2201 Section 970.2201 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Application of Labor Policies 970.2201 Basic labor policies. ...
New Quality Standards of Testing Idlers for Highly Effective Belt Conveyors
NASA Astrophysics Data System (ADS)
Król, Robert; Gladysiewicz, Lech; Kaszuba, Damian; Kisielewski, Waldemar
2017-12-01
The paper presents result of research and analyses carried out into the belt conveyors idlers’ rotational resistance which is one of the key factor indicating the quality of idlers. Moreover, idlers’ rotational resistance is important factor in total resistance to motion of belt conveyor. The evaluation of the technical condition of belt conveyor idlers is carried out in accordance with actual national and international standards which determine the methodology of measurements and acceptable values of measured idlers’ parameters. Requirements defined by the standards, which determine the suitability of idlers to a specific application, despite the development of knowledge on idlers and quality of presently manufactured idlers maintain the same level of parameters values over long periods of time. Nowadays the need to implement new, efficient and economically justified solution for belt conveyor transportation systems characterized by long routes and energy-efficiency is often discussed as one of goals in belt conveyors’ future. One of the basic conditions for achieving this goal is to use only carefully selected idlers with low rotational resistance under the full range of operational loads and high durability. Due to this it is necessary to develop new guidelines for evaluation of the technical condition of belt conveyor idlers in accordance with actual standards and perfecting of existing and development of new methods of idlers testing. The changes in particular should concern updating of values of parameters used for evaluation of the technical condition of belt conveyor idlers in relation to belt conveyors’ operational challenges and growing demands in terms of belt conveyors’ energy efficiency.
Diagnosis of dynamic process over rainband of landfall typhoon
NASA Astrophysics Data System (ADS)
Ran, Ling-Kun; Yang, Wen-Xia; Chu, Yan-Li
2010-07-01
This paper introduces a new physical parameter — thermodynamic shear advection parameter combining the perturbation vertical component of convective vorticity vector with the coupling of horizontal divergence perturbation and vertical gradient of general potential temperature perturbation. For a heavy-rainfall event resulting from the landfall typhoon 'Wipha', the parameter is calculated by using National Centres for Enviromental Prediction/National Centre for Atmospheric Research global final analysis data. The results showed that the parameter corresponds to the observed 6 h accumulative rainband since it is capable of catching hold of the dynamic and thermodynamic disturbance in the lower troposphere over the observed rainband. Before the typhoon landed, the advection of the parameter by basic-state flow and the coupling of general potential temperature perturbation with curl of Coriolis force perturbation are the primary dynamic processes which are responsible for the local change of the parameter. After the typhoon landed, the disturbance is mainly driven by the combination of five primary dynamic processes. The advection of the parameter by basic-state flow was weakened after the typhoon landed.
ERIC Educational Resources Information Center
Raveh, Ira; Koichu, Boris; Peled, Irit; Zaslavsky, Orit
2016-01-01
In this article we present an integrative framework of knowledge for teaching the standard algorithms of the four basic arithmetic operations. The framework is based on a mathematical analysis of the algorithms, a connectionist perspective on teaching mathematics and an analogy with previous frameworks of knowledge for teaching arithmetic…
ERIC Educational Resources Information Center
Anoka-Hennepin Technical Coll., Minneapolis, MN.
This workbook is intended for students taking a course in basic computer numerical control (CNC) operation that was developed during a project to retrain defense industry workers at risk of job loss or dislocation because of conversion of the defense industry. The workbook contains daily training guides for each of the course's 13 sessions. Among…
Initial PET performance evaluation of a preclinical insert for PET/MRI with digital SiPM technology
Schug, David; Lerche, Christoph; Weissler, Bjoern; Gebhardt, Pierre; Goldschmidt, Benjamin; Wehner, Jakob; Dueppenbecker, Peter Michael; Salomon, Andre; Hallen, Patrick; Kiessling, Fabian; Schulz, Volkmar
2016-01-01
Abstract Hyperion-IID is a positron emission tomography (PET) insert which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. To read out the scintillation light of the employed lutetium yttrium orthosilicate crystal arrays with a pitch of 1 mm and 12 mm in height, digital silicon photomultipliers (DPC 3200-22, Philips Digital Photon Counting) (DPC) are used. The basic PET performance in terms of energy resolution, coincidence resolution time (CRT) and sensitivity as a function of the operating parameters, such as the operating temperature, the applied overvoltage, activity and configuration parameters of the DPCs, has been evaluated at system level. The measured energy resolution did not show a large dependency on the selected parameters and is in the range of 12.4%–12.9% for low activity, degrading to ∼13.6% at an activity of ∼100 MBq. The CRT strongly depends on the selected trigger scheme (trig) of the DPCs, and we measured approximately 260 ps, 440 ps, 550 ps and 1300 ps for trig 1–4, respectively. The trues sensitivity for a NEMA NU 4 mouse-sized scatter phantom with a 70 mm long tube of activity was dependent on the operating parameters and was determined to be 0.4%–1.4% at low activity. The random fraction stayed below 5% at activity up to 100 MBq and the scatter fraction was evaluated as ∼6% for an energy window of 411 keV–561 keV and ∼16% for 250 keV–625 keV. Furthermore, we performed imaging experiments using a mouse-sized hot-rod phantom and a large rabbit-sized phantom. In 2D slices of the reconstructed mouse-sized hot-rod phantom (∅ = 28 mm), the rods were distinguishable from each other down to a rod size of 0.8 mm. There was no benefit from the better CRT of trig 1 over trig 3, where in the larger rabbit-sized phantom (∅ = 114 mm) we were able to show a clear improvement in image quality using the time-of-flight information. The findings will allow system architects—aiming at a similar detector design using DPCs—to make predictions about the design requirements and the performance that can be expected. PMID:26987774
Initial PET performance evaluation of a preclinical insert for PET/MRI with digital SiPM technology
NASA Astrophysics Data System (ADS)
Schug, David; Lerche, Christoph; Weissler, Bjoern; Gebhardt, Pierre; Goldschmidt, Benjamin; Wehner, Jakob; Dueppenbecker, Peter Michael; Salomon, Andre; Hallen, Patrick; Kiessling, Fabian; Schulz, Volkmar
2016-04-01
Hyperion-IID is a positron emission tomography (PET) insert which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. To read out the scintillation light of the employed lutetium yttrium orthosilicate crystal arrays with a pitch of 1 mm and 12 mm in height, digital silicon photomultipliers (DPC 3200-22, Philips Digital Photon Counting) (DPC) are used. The basic PET performance in terms of energy resolution, coincidence resolution time (CRT) and sensitivity as a function of the operating parameters, such as the operating temperature, the applied overvoltage, activity and configuration parameters of the DPCs, has been evaluated at system level. The measured energy resolution did not show a large dependency on the selected parameters and is in the range of 12.4%-12.9% for low activity, degrading to ˜13.6% at an activity of ˜100 MBq. The CRT strongly depends on the selected trigger scheme (trig) of the DPCs, and we measured approximately 260 ps, 440 ps, 550 ps and 1300 ps for trig 1-4, respectively. The trues sensitivity for a NEMA NU 4 mouse-sized scatter phantom with a 70 mm long tube of activity was dependent on the operating parameters and was determined to be 0.4%-1.4% at low activity. The random fraction stayed below 5% at activity up to 100 MBq and the scatter fraction was evaluated as ˜6% for an energy window of 411 keV-561 keV and ˜16% for 250 keV-625 keV. Furthermore, we performed imaging experiments using a mouse-sized hot-rod phantom and a large rabbit-sized phantom. In 2D slices of the reconstructed mouse-sized hot-rod phantom (∅ = 28 mm), the rods were distinguishable from each other down to a rod size of 0.8 mm. There was no benefit from the better CRT of trig 1 over trig 3, where in the larger rabbit-sized phantom (∅ = 114 mm) we were able to show a clear improvement in image quality using the time-of-flight information. The findings will allow system architects—aiming at a similar detector design using DPCs—to make predictions about the design requirements and the performance that can be expected.
Zhang, Jin; Zhang, Ai-Min; Zhang, Zong-Mei; Jia, Jin-Lin; Sui, Xin-Xin; Yu, Lu-Rui; Liu, Hai-Tao
2017-10-01
In this study, we aimed to investigate the efficacy of combined orthodontic-periodontic treatment in the treatment of patients with periodontitis and its effects on the levels of inflammatory cytokines. A total of 117 patients with periodontitis were randomly assigned to the basic group (receiving basic periodontic treatment, n = 58) and the combined group (receiving combined orthodontic-periodontic treatment, n = 59). In addition, 52 healthy people without periodontal disease were selected as the normal group. Probing depth, tooth mobility, plaque index, clinical attachment level, and sulcus bleeding index were recorded. ELISA was applied to detect gingival crevicular fluid (GCF) and serum levels of inflammatory cytokines. A 2-year clinical follow-up was conducted. Before treatment, the periodontal parameters (probing depth, tooth mobility, plaque index, clinical attachement level, and sulcus bleeding index) and GCF and serum levels of inflammatory cytokines (high-sensitivity C-reactive protein, interleukin-1β, interleukin-5, interleukin-6, interleukin-8, tumor necrosis factor-α, and prostaglandin E2) in the combined and basic groups were higher than those in the normal group. After 6 and 18 months of treatment, the periodontal parameters and GCF and serum levels of inflammatory cytokines decreased in the combined and basic groups. The periodontal parameters and the GCF and serum levels of inflammatory cytokines in the combined group were significantly lower than those in the basic group after 18 months of treatment. The combined group had a lower recurrence rate compared with the basic group. Combined orthodontic-periodontic treatment had good clinical efficacy in the treatment of periodontitis and could effectively decrease the levels of inflammatory cytokines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Thermo-chemical modelling of a village cookstove for design improvement
NASA Astrophysics Data System (ADS)
Honkalaskar, Vijay H.; Sohoni, Milind; Bhandarkar, Upendra V.
2014-05-01
Cookstove operation comprises three basic processes, namely combustion of firewood, natural air draft due to the buoyancy induced by the temperature difference between the hearth and its surroundings, and heat transfer to the pot, stove body and surrounding atmosphere. Owing to the heterogenous and unsteady burning of solid fuel, there exist nonlinear and dynamic interrelationships among these process parameters. A steady-state analytical model of the cookstove operation is developed for its design improvement by splitting the hearth into three zones to study char combustion, volatile combustion and heat transfer to the pot bottom separately. It comprises a total of seven relations corresponding to a thorough analysis of the three basic processes. A novel method is proposed to model the combustion of wood to mimic the realities closely. Combustion space above the fuel bed is split into 1000 discrete parts to study the combustion of volatiles by considering a set of representative volatile gases. Model results are validated by comparing them with a set of water boiling tests carried on a traditional cookstove in the laboratory. It is found that the major thrust areas to improve the thermal performance are combustion of volatiles and the heat transfer to the pot. It is revealed that the existing design dimensions of the traditional cookstove are close to their optimal values. Addition of twisted-tape inserts in the hearth of the cookstove shows an improvement in the thermal performance due to increase in the heat transfer coefficient to the pot bottom and improved combustion of volatiles.
Optical threshold secret sharing scheme based on basic vector operations and coherence superposition
NASA Astrophysics Data System (ADS)
Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen
2015-04-01
We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.
Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plemmons, DA; Suri, PK; Flannigan, DJ
In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasizemore » how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and application of the technique to solving seemingly intractable materials problems in addition to discovery-based research. Our goal with this Perspective is to bring the capabilities of TIEM to the-attention of materials scientists, chemists, physicists, and engineers in hopes that new,avenues of research emerge and to make clear the large parameter space that is opened by extending TEM, and the ability to readily manipulate electron trajectories and energies, into the ultrafast domain.« less
Flowmeter evaluation for on-orbit operations
NASA Technical Reports Server (NTRS)
Baird, R. S.
1988-01-01
Various flowmetering concepts were flow tested to characterize the relative capabilities and limitations for on-orbit fluid-transfer operations. Performance results and basic operating principles of each flowmetering concept tested are summarized, and basic considerations required to select the best flowmeter(s) for fluid system application are discussed. Concepts tested were clamp-on ultrasonic, area averaging ultrasonic, offset ultrasonic, coriolis mass, vortex shedding, universal venturi tube, turbine, bearingless turbine, turbine/turbine differential-pressure hybrid, dragbody, and dragbody/turbine hybrid flowmeters. Fluid system flowmeter selection considerations discussed are flowmeter performance, fluid operating conditions, systems operating environments, flowmeter packaging, flowmeter maintenance, and flowmeter technology. No one flowmetering concept tested was shown to be best for all on-orbit fluid systems.
NASA Astrophysics Data System (ADS)
Finchenko, V. S.; Ivankov, A. A.; Shmatov, S. I.; Mordvinkin, A. S.
2015-12-01
The article presents the initial data for the ExoMars landing module aerothermodynamic calculations, used calculation methods, the calculation results of aerodynamic characteristics of the landing module shape and structural parameters of thermal protection selected during the conceptual design phase. Also, the test results of the destruction of the thermal protection material and comparison of the basic characteristics of the landing module with a front shield in the form of a cone and a spherical segment are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Fedotov, A.; Gassner, D.
The goal of this note is to set basic parameters for the magnetic shielding of LEReC CS with required design attenuation. We considered physical design of magnetic shielding of LEReC cooling section. The schematic of this design along with the list of its basic parameters is shown. We are planning to use 2 layers of 1 mm thick cylindrical mu-metal shields with μ=11000. The radius of the first layer sitting on top of vacuum chamber is 63.5 mm. The second layer radius is 150 mm. Such shielding guarantees adequate transverse angles of electron beam trajectory in the CS.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What operating parameter monitoring equipment must I install, and what operating parameters must I monitor? 60.2944 Section 60.2944 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Operator...
Principles of control automation of soil compacting machine operating mechanism
NASA Astrophysics Data System (ADS)
Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly
2018-03-01
The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.
Sabia, Gianpaolo; Ferraris, Marco; Spagni, Alessandro
2016-01-01
This study proposes a model-based evaluation of the effect of different operating conditions with and without pre-denitrification treatment and applying three different solids retention times on the fouling mechanisms involved in membrane bioreactors (MBRs). A total of 11 fouling models obtained from literature were used to fit the transmembrane pressure variations measured in a pilot-scale MBR treating real wastewater for more than 1 year. The results showed that all the models represent reasonable descriptions of the fouling processes in the MBR tested. The model-based analysis confirmed that membrane fouling started by pore blocking (complete blocking model) and by a reduction of the pore diameter (standard blocking) while cake filtration became the dominant fouling mechanism over long-term operation. However, the different fouling mechanisms occurred almost simultaneously making it rather difficult to identify each one. The membrane "history" (i.e. age, lifespan, etc.) seems the most important factor affecting the fouling mechanism more than the applied operating conditions. Nonlinear regression of the most complex models (combined models) evaluated in this study sometimes demonstrated unreliable parameter estimates suggesting that the four basic fouling models (complete, standard, intermediate blocking and cake filtration) contain enough details to represent a reasonable description of the main fouling processes occurring in MBRs.
Brandenburg, Marcus; Hahn, Gerd J
2018-06-01
Process industries typically involve complex manufacturing operations and thus require adequate decision support for aggregate production planning (APP). The need for powerful and efficient approaches to solve complex APP problems persists. Problem-specific solution approaches are advantageous compared to standardized approaches that are designed to provide basic decision support for a broad range of planning problems but inadequate to optimize under consideration of specific settings. This in turn calls for methods to compare different approaches regarding their computational performance and solution quality. In this paper, we present a benchmarking problem for APP in the chemical process industry. The presented problem focuses on (i) sustainable operations planning involving multiple alternative production modes/routings with specific production-related carbon emission and the social dimension of varying operating rates and (ii) integrated campaign planning with production mix/volume on the operational level. The mutual trade-offs between economic, environmental and social factors can be considered as externalized factors (production-related carbon emission and overtime working hours) as well as internalized ones (resulting costs). We provide data for all problem parameters in addition to a detailed verbal problem statement. We refer to Hahn and Brandenburg [1] for a first numerical analysis based on and for future research perspectives arising from this benchmarking problem.
ERIC Educational Resources Information Center
Craig, Patricia; Kane, Michael
The Basic Education and Policy Support Activity (BEPS), a new five-year initiative sponsored by United States Agency for International Development's (USAID) Center for Human Capacity Development, is designed to improve the quality, effectiveness, and access to formal and nonformal basic education. BEPS operates through both core funds and buy-ins…
25. LOOKING SOUTH AT THE MAIN CONTROL PANEL FOR BASIC ...
25. LOOKING SOUTH AT THE MAIN CONTROL PANEL FOR BASIC OXYGEN FURNACE No. 1 IN THE BOP SHOP'S No. 1 CONTROL ROOM ON THE OPERATING FLOOR OF THE FURNACE AISLE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
ERIC Educational Resources Information Center
Department of the Interior, Denver, CO. Engineering and Research Center.
Subjects covered in this text are controlling the hydroelectric generator, generator excitation, basic principles of direct current generation, direction of current flow, basic alternating current generator, alternating and direct current voltage outputs, converting alternating current to direct current, review of the basic generator and…
OTF CCSDS Mission Operations Prototype Parameter Service. Phase I: Exit Presentation
NASA Technical Reports Server (NTRS)
Reynolds, Walter F.; Lucord, Steven A.; Stevens, John E.
2009-01-01
This slide presentation reviews the prototype of phase 1 of the parameter service design of the CCSDS mission operations. The project goals are to: (1) Demonstrate the use of Mission Operations standards to implement the Parameter Service (2) Demonstrate interoperability between Houston MCC and a CCSDS Mission Operations compliant mission operations center (3) Utilize Mission Operations Common Architecture. THe parameter service design, interfaces, and structures are described.
MEDUSA: an airborne multispectral oil spill detection and characterization system
NASA Astrophysics Data System (ADS)
Wagner, Peter; Hengstermann, Theo; Zielinski, Oliver
2000-12-01
MEDUSA is a sensor network, consisting of and effectively combining a variety of different remote sensing instruments. Installed in 1998 it is operationally used in a maritime surveillance aircraft maintained by the German Ministry of Transport, Building and Housing. On one hand routine oil pollution monitoring with remote sensing equipment like Side Looking Airborne Radar (SLAR), Infrared/Ultraviolet Line Scanner (IR/UV line scanner), Microwave Radiometer (MWR), Imaging Airborne Laserfluorosensor (IALFS) and Forward Looking Infrared (FLIR) requires a complex network and communication structure to be operated by a single operator. On the other hand the operation of such a variety of sensors on board of one aircraft provides an excellent opportunity to establish new concepts of integrated sensor fusion and data evaluation. In this work a general survey of the German surveillance aircraft instrumentation is given and major features of the sensor package as well as advantages of the design and architecture are presented. Results from routine operation over North and Baltic Sea are shown to illustrate the successful application of MEDUSA in maritime patrol of oil slicks and polluters. Recently the combination of the different sensor results towards one multispectral information has met with increasing interest. Thus new application fields and parameter sets could be derived, like oceanography or river flood management. The basic concepts and first results in the fusion of sensoric information will conclude the paper.
Modeling of traction-coupling properties of wheel propulsor
NASA Astrophysics Data System (ADS)
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.
Kalchofner Guerrero, Karin S; Reichler, Iris M; Schwarz, Andrea; Jud, Rahel S; Hässig, Michael; Bettschart-Wolfensberger, Regula
2014-11-01
To compare post-operative pain in cats after alfaxalone or ketamine- medetomidine anaesthesia for ovariohysterectomy (OHE) and physiologic parameters during and after surgery. Prospective 'blinded' randomized clinical study. Twenty-one healthy cats. Cats were assigned randomly into two groups: Group A, anaesthesia was induced and maintained with alfaxalone [5 mg kg(-1) intravenously (IV) followed by boli (2 mg kg(-1) IV); Group MK, induction with ketamine (5 mg kg(-1) IV) after medetomidine (30 μg kg(-1) intramuscularly (IM)], and maintenance with ketamine (2 mg kg(-1) IV). Meloxicam (0.2 mg kg(-1) IV) was administered after surgery. Basic physiological data were collected. At time T = -2, 0, 0.5, 1, 2, 4, 6, 8, 12, 16, 20, and 24 hours post-operatively pain was assessed by three methods, a composite pain scale (CPS; 0-24 points), a visual analogue scale (VAS 0-100 mm), and a mechanical wound threshold (MWT) device. Butorphanol (0.2 mg kg(-1) IM) was administered if CPS was scored ≥13. Data were analyzed using a general linear model, Kruskal-Wallis analyses, Bonferroni-Dunn test, unpaired t-test and Fisher's exact test as relevant. Significance was set at p < 0.05. VASs were significantly higher at 0.5, 1, 2, 4, and 20 hours in group A; MWT values were significantly higher at 8 and 12 hours in group MK. Post-operative MWT decreased significantly compared to baseline in both groups. There was no difference in CPS at any time point. Five cats required rescue analgesia (four in A; one in MK). Anaesthesia with ketamine-medetomidine was found to provide better post-surgical analgesia than alfaxalone in cats undergoing OHE; however, primary hyperalgesia developed in both groups. Alfaxalone is suitable for induction and maintenance of anaesthesia in cats undergoing OHE, but administration of additional sedative and analgesic drugs is highly recommended. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
DOE Fundamentals Handbook: Mathematics, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less
DOE Fundamentals Handbook: Mathematics, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less
Study for analysis of benefit versus cost of low thrust propulsion system
NASA Technical Reports Server (NTRS)
Hamlyn, K. M.; Robertson, R. I.; Rose, L. J.
1983-01-01
The benefits and costs associated with placing large space systems (LSS) in operational orbits were investigated, and a flexible computer model for analyzing these benefits and costs was developed. A mission model for LSS was identified that included both NASA/Commercial and DOD missions. This model included a total of 68 STS launches for the NASA/Commercial missions and 202 launches for the DOD missions. The mission catalog was of sufficient depth to define the structure type, mass and acceleration limits of each LSS. Conceptual primary propulsion stages (PPS) designs for orbital transfer were developed for three low thrust LO2/LH2 engines baselined for the study. The performance characteristics for each of these PPS was compared to the LSS mission catalog to create a mission capture. The costs involved in placing the LSS in their operational orbits were identified. The two primary costs were that of the PPS and of the STS launch. The cost of the LSS was not included as it is not a function of the PPS performance. The basic relationships and algorithms that could be used to describe the costs were established. The benefit criteria for the mission model were also defined. These included mission capture, reliability, technical risk, development time, and growth potential. Rating guidelines were established for each parameter. For flexibility, each parameter is assigned a weighting factor.
NASA Technical Reports Server (NTRS)
Kucuk, Senol
1988-01-01
Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.
MO and DA on the SWIE Instrument on the Wind Spacecraft
NASA Technical Reports Server (NTRS)
Lazarus, Alan J.
2002-01-01
The construction of the Faraday Cup portion of the SWIE instrument on the Wind spacecraft, participation in Mission Operations, and Data Analysis (MO and DA) of observations of the solar wind has been supported by a sequence of grants. This 'final' Report represents work done on Mission Operations and Data Analysis for the Faraday Cup portion of the SWE. The work reported here was supported under NASA Grant NAG5-7359 (OSP 6701100) from June 1998 to October 2001. It should be noted that this work is continuing under NASA Grant NAG-10915, and therefore this report is 'final' only in the sense that the Grant has changed its number; a future report will cover the entire period of work. We have two types of obligations under these contracts: (1) To provide and assure the validity of "Key Parameters" which describe the basic properties of the solar wind on a daily basis. We have provided our 92 second observations daily via plots and parameters available from our Web site: http://web.mit.edu/space/www/wind/wind.html (2). To carry out scientific studies based on our observations. To document the extent of our research, we are including below a list of publications and presentations related to this project. The observations from Wind have made a major contribution to the study of the solar wind, and have every indication of continuing to do so.
NASA Technical Reports Server (NTRS)
Srinivasan, Supramaniam; Mukerjee, Sanjeev; Parthasarathy, A.; CesarFerreira, A.; Wakizoe, Masanobu; Rho, Yong Woo; Kim, Junbom; Mosdale, Renaut A.; Paetzold, Ronald F.; Lee, James
1994-01-01
The proton exchange membrane fuel cell (PEMFC) is one of the most promising electrochemical power sources for space and electric vehicle applications. The wide spectrum of R&D activities on PEMFC's, carried out in our Center from 1988 to date, is as follows (1) Electrode Kinetic and Electrocatalysis of Oxygen Reduction; (2) Optimization of Structures of Electrodes and of Membrane and Electrode Assemblies; (3) Selection and Evaluation of Advanced Proton Conducting Membranes and of Operating Conditions to Attain High Energy Efficiency; (4) Modeling Analysis of Fuel Cell Performance and of Thermal and Water Management; and (5) Engineering Design and Development of Multicell Stacks. The accomplishments on these tasks may be summarized as follows: (1) A microelectrode technique was developed to determine the electrode kinetic parameters for the fuel cell reactions and mass transport parameters for the H2 and O2 reactants in the proton conducting membrane. (2) High energy efficiencies and high power densities were demonstrated in PEMFCs with low platinum loading electrodes (0.4 mg/cm(exp 2) or less), advanced membranes and optimized structures of membrane and electrode assemblies, as well as operating conditions. (3) The modeling analyses revealed methods to minimize mass transport limitations, particularly with air as the cathodic reactant; and for efficient thermal and water management. (4) Work is in progress to develop multi-kilowatt stacks with the electrodes containing low platinum loadings.
Information modeling system for blast furnace control
NASA Astrophysics Data System (ADS)
Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.
2016-09-01
Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.
FRX-L Research Status and Plans
NASA Astrophysics Data System (ADS)
Wurden, G. A.; Intrator, T. P.; Taccetti, J. M.; Furno, I. G.; Hsu, S. C.; Zhang, S. Y.; Degnan, J. H.; Grabowski, C.; Ruden, E. L.
2003-10-01
Our research plans for FRX-L, the field reversed configuration plasma injector at LANL for magnetized target fusion (MTF), have been planned for the next 4-year period. FRX-L has been successfully operating now for the last two years, although construction for both the machine and diagnostic sets is ongoing. Efforts in FY04 begin with continued improvements in the basic high density FRC parameters, through operation at increased magnetic fields and with the addition of a more effective main bank crowbar to reduce parasitic ringing in the high current main coil circuit. Translation experiments into a "fake" metal liner, perforated with diagnostic access ports, will start after designing and constructing the translation section. Another bank of capacitors will be added to power the additional guide and mirror coils. After demonstrating trapping of the plasma in the aluminum liner, and diagnosing sufficient plasma parameters (density, temperature, lifetime, purity), we will begin preparations for the integrated plasma/liner compression experiment at the Air Force Research Laboratory Shiva-Star machine in FY05. Construction of the new hardware will continue during FY06, and the first fusion-relevant demonstration of compression of plasma by an imploding metal liner is planned for FY07. Our MTF plans also include new initiatives with U of Washington, U of Wisconsin, and the University of New Mexico, in addition to ongoing theory ties to LLNL and GA.
Basic linear algebra subprograms for FORTRAN usage
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.
1977-01-01
A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.
Broux, B; De Clercq, D; Decloedt, A; Ven, S; Vera, L; van Steenkiste, G; Mitchell, K; Schwarzwald, C; van Loon, G
2017-11-01
Atrial fibrillation (AF) is the most common pathological arrhythmia in horses. After successful treatment, recurrence is common. Heart rate monitors are easily applicable in horses and some devices offer basic heart rate variability (HRV) calculations. If HRV can be used to distinguish between AF and sinus rhythm (SR), this could become a monitoring tool for horses at risk for recurrence of AF. The purpose of this study was to assess whether in horses AF (before cardioversion) and SR (after cardioversion) can be differentiated based upon HRV parameters. Cohort study with internal controls. Six HRV parameters were determined in 20 horses, both in AF and in SR, at rest (2- and 5-min and 1- and 4-h recordings) and during exercise (walk and trot, 2-min recordings). Time-domain (standard deviation of the NN intervals, root mean squared successive differences in NN intervals and triangular index), frequency domain (low/high frequency ratio) and nonlinear parameters (standard deviation of the Poincaré plot [SD]1 and SD2) were used. Statistical analysis was done using paired Wilcoxon signed rank tests and receiver operating characteristic curves. HRV was higher during AF compared to SR. Results for the detection of AF were good (area under the receiver operating characteristic curve [AUC] 0.8-1) for most HRV parameters. Root mean squared successive differences in NN intervals and SD1 yielded the best results (AUC 0.9-1). Sensitivity and specificity were high for all parameters at all recordings, but highest during exercise. Although AUCs improved with longer recordings, short recordings were also good (AUC 0.8-1) for the detection of AF. In horses with frequent second degree atrioventricular block, HRV at rest is increased and recordings at walk or trot are recommended. Animals served as their own controls and there was no long-term follow-up to identify AF recurrence. AF (before cardioversion) and SR (after cardioversion) could be distinguished with HRV. This technique has promise as a monitoring tool in horses at risk for AF development. © 2017 EVJ Ltd.
Approaches to Improve the Performances of the Sea Launch System Performances
NASA Astrophysics Data System (ADS)
Tatarevs'kyy, K.
2002-01-01
The paper dwells on the outlines of the techniques of on-line pre-launch analysis on possibility of safe and reliable LV launch off floating launch system, when actual launch conditions (weather, launcher motion parameters) are beyond design limitations. The technique guarantees to follow the take-off LV trajectory limitations (the shock-free launch) and allows the improvement of the operat- ing characteristics of the floating launch systems at the expense of possibility to authorize the launch even if a number of weather and launcher motion parameters restrictions are exceeded. This paper ideas are applied for LV of Zenit-type launches off tilting launch platform, operative within Sea Launch. The importance, novelty and urgency of the approach under consideration is explained by the fact that the application during floating launch systems operation allows the bringing down of the num- ber of weather-conditioned launch abort cases. And this, in its part, increases the trustworthiness of the mission fulfillment on specific spacecraft injection, since, in the long run, the launch abort may cause the crossing of allowable wait threshold and accordingly the mission abort. All previous launch kinds for these LV did not require the development of the special technique of pre-launch analysis on launch possibility, since weather limitations for stationary launcher condi- tions are basically reduced to the wind velocity limitations. This parameter is reliably monitored and is sure to influence the launch dynamics. So the measured wind velocity allows the thorough picture on the possibility of the launch off the ground-based launcher. Since the floating launch systems commit complex and continuous movements under the exposure of the wind and the waves, the number of parameters is increased and, combined differently, they do not always make the issue on shockless launch critical. The proposed technique of the pre-launch analysis of the forthcoming launch dynamics with the consideration of the launch conditions (weather, launcher motion parameters, actual LV and carried SC performance) allow the evaluation of the actual combination of launch environment influence on the possibility of shockless launch. On the basis of the analysis the launch permissibility deci- sion is taken, even if some separate parameters are beyond the design range.
Transfer of control system interface solutions from other domains to the thermal power industry.
Bligård, L-O; Andersson, J; Osvalder, A-L
2012-01-01
In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.
Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhao, Chuanfeng; Dong, Zipeng; Li, Zhanqing; Hu, Shuzhen; Chen, Tianmeng; Tao, Fa; Wang, Yuzhao
2018-04-01
Cloud-base height (CBH) is a basic cloud parameter but has not been measured accurately, especially under polluted conditions due to the interference of aerosol. Taking advantage of a comprehensive field experiment in northern China in which a variety of advanced cloud probing instruments were operated, different methods of detecting CBH are assessed. The Micro-Pulse Lidar (MPL) and the Vaisala ceilometer (CL51) provided two types of backscattered profiles. The latter has been employed widely as a standard means of measuring CBH using the manufacturer's operational algorithm to generate standard CBH products (CL51 MAN) whose quality is rigorously assessed here, in comparison with a research algorithm that we developed named value distribution equalization (VDE) algorithm. It was applied to both the profiles of lidar backscattering data from the two instruments. The VDE algorithm is found to produce more accurate estimates of CBH for both instruments and can cope with heavy aerosol loading conditions well. By contrast, CL51 MAN overestimates CBH by 400 m and misses many low level clouds under such conditions. These findings are important given that CL51 has been adopted operationally by many meteorological stations in China.
Purification of liquid metal systems with sodium coolant from oxygen using getters
NASA Astrophysics Data System (ADS)
Kozlov, F. A.; Konovalov, M. A.; Sorokin, A. P.
2016-05-01
For increasing the safety and economic parameters of nuclear power stations (NPSs) with sodium coolant, it was decided to install all systems contacting radioactive sodium, including purification systems of circuit I, in the reactor vessel. The performance and capacity of cold traps (CTs) (conventional element of coolant purification systems) in these conditions are limited by their volume. It was proposed to use hot traps (HTs) in circuit I for coolant purification from oxygen. It was demonstrated that, at rated parameters of the installation when the temperature of the coolant streamlining the getter (gas absorber) is equal to 550°C, the hot trap can provide the required coolant purity. In shutdown modes at 250-300°C, the performance of the hot trap is reduced by four orders of magnitude. Possible HT operation regimes for shutdown modes and while reaching rated parameters were proposed and analyzed. Basic attention was paid to purification modes at power rise after commissioning and accidental contamination of the coolant when the initial oxygen concentration in it reached 25 mln-1. It was demonstrated that the efficiency of purification systems can be increased using HTs with the getter in the form of a foil or granules. The possibility of implementing the "fast purification" mode in which the coolant is purified simultaneously with passing over from the shutdown mode to the rated parameters was substantiated.
Chapter 8: Demographic characteristics and population modeling
Scott H. Stoleson; Mary J. Whitfield; Mark K. Sogge
2000-01-01
An understanding of the basic demography of a species is necessary to estimate and evaluate population trends. The relative impact of different demographic parameters on growth rates can be assessed through a sensitivity analysis, in which different parameters are altered singly to assess the effect on population growth. Identification of critical parameters can allow...
Parametric analysis of parameters for electrical-load forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael
1997-04-01
Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.
NASA Astrophysics Data System (ADS)
Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.
2016-05-01
The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.
Solar Photovoltaic DC Systems: Basics and Safety: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary
Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.
2017-05-01
GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, James R.; Followill, David S.; Imaging and Radiation Oncology Core-Houston, The University of Texas Health Science Center-Houston, Houston, Texas
Purpose: To compare radiation machine measurement data collected by the Imaging and Radiation Oncology Core at Houston (IROC-H) with institutional treatment planning system (TPS) values, to identify parameters with large differences in agreement; the findings will help institutions focus their efforts to improve the accuracy of their TPS models. Methods and Materials: Between 2000 and 2014, IROC-H visited more than 250 institutions and conducted independent measurements of machine dosimetric data points, including percentage depth dose, output factors, off-axis factors, multileaf collimator small fields, and wedge data. We compared these data with the institutional TPS values for the same points bymore » energy, class, and parameter to identify differences and similarities using criteria involving both the medians and standard deviations for Varian linear accelerators. Distributions of differences between machine measurements and institutional TPS values were generated for basic dosimetric parameters. Results: On average, intensity modulated radiation therapy–style and stereotactic body radiation therapy–style output factors and upper physical wedge output factors were the most problematic. Percentage depth dose, jaw output factors, and enhanced dynamic wedge output factors agreed best between the IROC-H measurements and the TPS values. Although small differences were shown between 2 common TPS systems, neither was superior to the other. Parameter agreement was constant over time from 2000 to 2014. Conclusions: Differences in basic dosimetric parameters between machine measurements and TPS values vary widely depending on the parameter, although agreement does not seem to vary by TPS and has not changed over time. Intensity modulated radiation therapy–style output factors, stereotactic body radiation therapy–style output factors, and upper physical wedge output factors had the largest disagreement and should be carefully modeled to ensure accuracy.« less
NASA Astrophysics Data System (ADS)
Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.
2009-08-01
A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.
Basics of Solar Heating & Hot Water Systems.
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…
20 CFR 638.502 - Job Corps basic education program.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Job Corps basic education program. 638.502 Section 638.502 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.502 Job Corps basic...
The Cost to Industry. Basic Skills and the UK Workforce.
ERIC Educational Resources Information Center
Adult Literacy and Basic Skills Unit, London (England).
In Fall 1992, 400 telephone interviews established levels of basic skills difficulties among the work force as encountered or perceived by employers in the United Kingdom. Costs to employers of poor basic skills and the effect of these on their operation were quantified and described. Respondents were mainly personnel/training managers or…
Basic Skills & the Health Care Industry. Workforce & Workplace Literacy Series. Revised.
ERIC Educational Resources Information Center
BCEL Brief, 1993
1993-01-01
This brief is a combination directory of contact persons and annotated bibliography designed to provide information on developing and implementing basic skills training programs for workers in the health care industry. The first section contains information on 33 contact persons currently operating employee basic skills programs for health care…
Texas Boating Basics: A Course in Better Boating. Fifth Edition.
ERIC Educational Resources Information Center
Texas State Dept. of Parks and Wildlife, Austin.
This student manual and teacher's guide on boating provides basic information of boating laws, boat types, and boat operation. Part I includes information on types of boats, boat hulls, and motors. Part II covers what is legally required regarding registration of boats and equipment. Part III discusses basic safety regulations, navigation rules,…
Basic research needed for stimulating the development of behavioral technologies
Mace, F. Charles
1994-01-01
The costs of disconnection between the basic and applied sectors of behavior analysis are reviewed, and some solutions to these problems are proposed. Central to these solutions are collaborations between basic and applied behavioral scientists in programmatic research that addresses the behavioral basis and solution of human behavior problems. This kind of collaboration parallels the deliberate interactions between basic and applied researchers that have proven to be so profitable in other scientific fields, such as medicine. Basic research questions of particular relevance to the development of behavioral technologies are posed in the following areas: response allocation, resistance to change, countercontrol, formation and differentiation/discrimination of stimulus and response classes, analysis of low-rate behavior, and rule-governed behavior. Three interrelated strategies to build connections between the basic and applied analysis of behavior are identified: (a) the development of nonhuman animal models of human behavior problems using operations that parallel plausible human circumstances, (b) replication of the modeled relations with human subjects in the operant laboratory, and (c) tests of the generality of the model with actual human problems in natural settings. PMID:16812734
Moving to continuous facial expression space using the MPEG-4 facial definition parameter (FDP) set
NASA Astrophysics Data System (ADS)
Karpouzis, Kostas; Tsapatsoulis, Nicolas; Kollias, Stefanos D.
2000-06-01
Research in facial expression has concluded that at least six emotions, conveyed by human faces, are universally associated with distinct expressions. Sadness, anger, joy, fear, disgust and surprise are categories of expressions that are recognizable across cultures. In this work we form a relation between the description of the universal expressions and the MPEG-4 Facial Definition Parameter Set (FDP). We also investigate the relation between the movement of basic FDPs and the parameters that describe emotion-related words according to some classical psychological studies. In particular Whissel suggested that emotions are points in a space, which seem to occupy two dimensions: activation and evaluation. We show that some of the MPEG-4 Facial Animation Parameters (FAPs), approximated by the motion of the corresponding FDPs, can be combined by means of a fuzzy rule system to estimate the activation parameter. In this way variations of the six archetypal emotions can be achieved. Moreover, Plutchik concluded that emotion terms are unevenly distributed through the space defined by dimensions like Whissel's; instead they tend to form an approximately circular pattern, called 'emotion wheel,' modeled using an angular measure. The 'emotion wheel' can be defined as a reference for creating intermediate expressions from the universal ones, by interpolating the movement of dominant FDP points between neighboring basic expressions. By exploiting the relation between the movement of the basic FDP point and the activation and angular parameters we can model more emotions than the primary ones and achieve efficient recognition in video sequences.
Ballestros Peña, Sendoa; Lorrio Palomino, Sergio; Ariz Zubiaur, Mónica
2012-11-01
BASICS: A Prehospital Care and Transfer Recording (PCTR) is an out-of-hospital medical recording. This paper was made to assess and compare the level of fulfillment of the basic parameters of the PCTR developed by the Life Support Units with nurses (Life Support Units with Nurse, LSUwN and without nurses (Basic Life Support Units, BLSU) from SAMUR Bilbao in 2010. A descriptive, retrospective and comparative study was performed by analysing a randomized sample of 660 PCTR (precision 3%), aiming to check the fulfillment of the basic data. 98.33% of total recordings were readable. In overall, fulfillment rate was 90.31% (CI 89.24- 97.3 71%) of all basic parameters for LSUwN PCTR and 84.81% (CI 83.56 to 86%) for BLSU. 34.1% of PCTR were completely and correctly fulfilled. The LSUwN scored significantly better (p < 0.000). There were recording failures in "date and time", "address" and "physical examination". There were differences between the recording of clinical and administrative information (88.64% vs 86.72%, p = 0.02). In order to consider a parameter has optimal, it has to reach 100% of fulfillment. If it doesn't, and its score reaches no more than 80%, it should be reviewed. In this case, the results would be considered acceptable, but the administrative items of BLSU records, and allergies in both units should be strengthened. LSUwN has obtained better scores. The need of recording clinical information must be instilled as evidence of quality care.
Al-Radi, Osman O; Harrell, Frank E; Caldarone, Christopher A; McCrindle, Brian W; Jacobs, Jeffrey P; Williams, M Gail; Van Arsdell, Glen S; Williams, William G
2007-04-01
The Aristotle Basic Complexity score and the Risk Adjustment in Congenital Heart Surgery system were developed by consensus to compare outcomes of congenital cardiac surgery. We compared the predictive value of the 2 systems. Of all index congenital cardiac operations at our institution from 1982 to 2004 (n = 13,675), we were able to assign an Aristotle Basic Complexity score, a Risk Adjustment in Congenital Heart Surgery score, and both scores to 13,138 (96%), 11,533 (84%), and 11,438 (84%) operations, respectively. Models of in-hospital mortality and length of stay were generated for Aristotle Basic Complexity and Risk Adjustment in Congenital Heart Surgery using an identical data set in which both Aristotle Basic Complexity and Risk Adjustment in Congenital Heart Surgery scores were assigned. The likelihood ratio test for nested models and paired concordance statistics were used. After adjustment for year of operation, the odds ratios for Aristotle Basic Complexity score 3 versus 6, 9 versus 6, 12 versus 6, and 15 versus 6 were 0.29, 2.22, 7.62, and 26.54 (P < .0001). Similarly, odds ratios for Risk Adjustment in Congenital Heart Surgery categories 1 versus 2, 3 versus 2, 4 versus 2, and 5/6 versus 2 were 0.23, 1.98, 5.80, and 20.71 (P < .0001). Risk Adjustment in Congenital Heart Surgery added significant predictive value over Aristotle Basic Complexity (likelihood ratio chi2 = 162, P < .0001), whereas Aristotle Basic Complexity contributed much less predictive value over Risk Adjustment in Congenital Heart Surgery (likelihood ratio chi2 = 13.4, P = .009). Neither system fully adjusted for the child's age. The Risk Adjustment in Congenital Heart Surgery scores were more concordant with length of stay compared with Aristotle Basic Complexity scores (P < .0001). The predictive value of Risk Adjustment in Congenital Heart Surgery is higher than that of Aristotle Basic Complexity. The use of Aristotle Basic Complexity or Risk Adjustment in Congenital Heart Surgery as risk stratification and trending tools to monitor outcomes over time and to guide risk-adjusted comparisons may be valuable.
Interferometric reflection moire
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Combell, Olivier
1995-06-01
A new reflection moire technique is introduced in this paper. The basic equations that relate the measurement of slopes to the basic geometric and optical parameters of the system are derived. The sensitivity and accuracy of the method are discussed. Examples of application to the study of silicon wafers and electronic chips are given.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties.
Pelletier, Mathew G; Wanjura, John D; Holt, Greg A
2016-11-02
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties
Pelletier, Mathew G.; Wanjura, John D.; Holt, Greg A.
2016-01-01
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor. PMID:27827857
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGoldrick, P.R.; Allison, T.G.
The BASIC2 INTERPRETER was developed to provide a high-level easy-to-use language for performing both control and computational functions in the MCS-80. The package is supplied as two alternative implementations, hardware and software. The ''software'' implementation provides the following capabilities: entry and editing of BASIC programs, device-independent I/O, special functions to allow access from BASIC to any I/O port, formatted printing, special INPUT/OUTPUT-and-proceed statements to allow I/O without interrupting BASIC program execution, full arithmetic expressions, limited string manipulation (10 or fewer characters), shorthand forms for common BASIC keywords, immediate mode BASIC statement execution, and capability of running a BASIC program thatmore » is stored in PROM. The allowed arithmetic operations are addition, subtraction, multiplication, division, and raising a number to a positive integral power. In the second, or ''hardware'', implementation of BASIC2 requiring an Am9511 Arithmetic Processing Unit (APU) interfaced to the 8080 microprocessor, arithmetic operations are performed by the APU. The following additional built-in functions are available in this implementation: square root, sine, cosine, tangent, arcsine, arccosine, arctangent, exponential, logarithm base e, and logarithm base 10. MCS-80,8080-based microcomputers; 8080 Assembly language; Approximately 8K bytes of RAM to store the assembled interpreter, additional user program space, and necessary peripheral devices. The hardware implementation requires an Am9511 Arithmetic Processing Unit and an interface board (reference 2).« less
Gaussian content as a laser beam quality parameter.
Ruschin, Shlomo; Yaakobi, Elad; Shekel, Eyal
2011-08-01
We propose the Gaussian content (GC) as an optional quality parameter for the characterization of laser beams. It is defined as the overlap integral of a given field with an optimally defined Gaussian. The definition is especially suited for applications where coherence properties are targeted. Mathematical definitions and basic calculation procedures are given along with results for basic beam profiles. The coherent combination of an array of laser beams and the optimal coupling between a diode laser and a single-mode fiber are elaborated as application examples. The measurement of the GC and its conservation upon propagation are experimentally confirmed.
Robust Spacecraft Component Detection in Point Clouds.
Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng
2018-03-21
Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.
Robust Spacecraft Component Detection in Point Clouds
Wei, Quanmao; Jiang, Zhiguo
2018-01-01
Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density. PMID:29561828
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What operating parameter monitoring equipment must I install, and what operating parameters must I monitor? 60.3043 Section 60.3043 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission...
Surface acoustic wave resonators
NASA Astrophysics Data System (ADS)
Avitabile, Gianfranco; Roselli, Luca; Atzeni, Carlo; Manes, Gianfranco
1991-10-01
The development of surface acoustic wave (SAW) resonators is reviewed with attention given to the design of a simulation package for CAD-assisted SAW resonator design. Basic design configurations and operation parameters are set forth for the SAW resonators including the phase of the reflection factor, evaluation of the stopband center frequency, stopband width, and the free propagation speed. The use of synchronous designs is shown to reduce device sensitivity to variations in the technological process but generate higher insertion losses. The existence of transverse modes and propagation losses is shown to affect the rejection of spurious modes and the achievement of low insertion losses. Several SAW resonators are designed and fabricated with the CAD process, and the resonators in the VHF-UHF bands perform in a manner predicted by simulated results.
Flying qualities and control system characteristics for superaugmented aircraft
NASA Technical Reports Server (NTRS)
Myers, T. T.; Mcruer, D. T.; Johnston, D. E.
1984-01-01
Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.
1994-01-01
High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.
Visually enhanced CCTV digital surveillance utilizing Intranet and Internet.
Ozaki, Nobuyuki
2002-07-01
This paper describes a solution for integrated plant supervision utilizing closed circuit television (CCTV) digital surveillance. Three basic requirements are first addressed as the platform of the system, with discussion on the suitable video compression. The system configuration is described in blocks. The system provides surveillance functionality: real-time monitoring, and process analysis functionality: a troubleshooting tool. This paper describes the formulation of practical performance design for determining various encoder parameters. It also introduces image processing techniques for enhancing the original CCTV digital image to lessen the burden on operators. Some screenshots are listed for the surveillance functionality. For the process analysis, an image searching filter supported by image processing techniques is explained with screenshots. Multimedia surveillance, which is the merger with process data surveillance, or the SCADA system, is also explained.
Variable-Speed Power-Turbine for the Large Civil Tilt Rotor
NASA Technical Reports Server (NTRS)
Suchezky, Mark; Cruzen, G. Scott
2012-01-01
Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.
A life prediction methodology for encapsulated solar cells
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1978-01-01
This paper presents an approach to the development of a life prediction methodology for encapsulated solar cells which are intended to operate for twenty years or more in a terrestrial environment. Such a methodology, or solar cell life prediction model, requires the development of quantitative intermediate relationships between local environmental stress parameters and the basic chemical mechanisms of encapsulant aging leading to solar cell failures. The use of accelerated/abbreviated testing to develop these intermediate relationships and in revealing failure modes is discussed. Current field and demonstration tests of solar cell arrays and the present laboratory tests to qualify solar module designs provide very little data applicable to predicting the long-term performance of encapsulated solar cells. An approach to enhancing the value of such field tests to provide data for life prediction is described.
Data Processing Courses in High Schools?
ERIC Educational Resources Information Center
Reese, Don
1970-01-01
It is more important for students to have an understanding of basic fundamentals such as English, mathematics, social studies, and basic business understandings than a superficial understanding of data processing equipment and its operation. (Editor)
NASA Astrophysics Data System (ADS)
Goyal, M.; Chakravarty, A.; Atrey, M. D.
2017-02-01
Performance of modern helium refrigeration/ liquefaction systems depends significantly on the effectiveness of heat exchangers. Generally, compact plate fin heat exchangers (PFHE) having very high effectiveness (>0.95) are used in such systems. Apart from basic fluid film resistances, various secondary parameters influence the sizing/ rating of these heat exchangers. In the present paper, sizing calculations are performed, using in-house developed numerical models/ codes, for a set of high effectiveness PFHE for a modified Claude cycle based helium liquefier/ refrigerator operating in the refrigeration mode without liquid nitrogen (LN2) pre-cooling. The combined effects of secondary parameters like axial heat conduction through the heat exchanger metal matrix, parasitic heat in-leak from surroundings and variation in the fluid/ metal properties are taken care of in the sizing calculation. Numerical studies are carried out to predict the off-design performance of the PFHEs in the refrigeration mode with LN2 pre-cooling. Iterative process cycle calculations are also carried out to obtain the inlet/ exit state points of the heat exchangers.
NASA Astrophysics Data System (ADS)
Shtripling, L. O.; Kholkin, E. G.
2018-01-01
The article presents the procedure for determining the basic geometrical setting parameters for the oil-contaminated soils decontamination with reagent encapsulation method. An installation is considered for the operational elimination of the emergency consequences accompanied with oil spills, and the installation is adapted to winter conditions. In the installations exothermic process thermal energy of chemical neutralization of oil-contaminated soils released during the decontamination is used to thaw frozen subsequent portions of oil-contaminated soil. Installation for oil-contaminated soil decontamination as compared with other units has an important advantage, and it is, if necessary (e.g., in winter) in using the heat energy released at each decontamination process stage of oil-contaminated soil, in normal conditions the heat is dispersed into the environment. In addition, the short-term forced carbon dioxide delivery at the decontamination process final stage to a high concentration directly into the installation allows replacing the long process of microcapsule shells formation and hardening that occur in natural conditions in the open air.
Alayed, Mrwan; Deen, M Jamal
2017-09-14
Diffuse optical spectroscopy (DOS) and diffuse optical imaging (DOI) are emerging non-invasive imaging modalities that have wide spread potential applications in many fields, particularly for structural and functional imaging in medicine. In this article, we review time-resolved diffuse optical imaging (TR-DOI) systems using solid-state detectors with a special focus on Single-Photon Avalanche Diodes (SPADs) and Silicon Photomultipliers (SiPMs). These TR-DOI systems can be categorized into two types based on the operation mode of the detector (free-running or time-gated). For the TR-DOI prototypes, the physical concepts, main components, figures-of-merit of detectors, and evaluation parameters are described. The performance of TR-DOI prototypes is evaluated according to the parameters used in common protocols to test DOI systems particularly basic instrumental performance (BIP). In addition, the potential features of SPADs and SiPMs to improve TR-DOI systems and expand their applications in the foreseeable future are discussed. Lastly, research challenges and future developments for TR-DOI are discussed for each component in the prototype separately and also for the entire system.
Mechanism and design of intermittent aeration activated sludge process for nitrogen removal.
Hanhan, Oytun; Insel, Güçlü; Yagci, Nevin Ozgur; Artan, Nazik; Orhon, Derin
2011-01-01
The paper provided a comprehensive evaluation of the mechanism and design of intermittent aeration activated sludge process for nitrogen removal. Based on the specific character of the process the total cycle time, (T(C)), the aerated fraction, (AF), and the cycle time ratio, (CTR) were defined as major design parameters, aside from the sludge age of the system. Their impact on system performance was evaluated by means of process simulation. A rational design procedure was developed on the basis of basic stochiometry and mass balance related to the oxidation and removal of nitrogen under aerobic and anoxic conditions, which enabled selected of operation parameters of optimum performance. The simulation results indicated that the total nitrogen level could be reduced to a minimum level by appropriate manipulation of the aerated fraction and cycle time ratio. They also showed that the effluent total nitrogen could be lowered to around 4.0 mgN/L by adjusting the dissolved oxygen set-point to 0.5 mg/L, a level which promotes simultaneous nitrification and denitrification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liese, Eric; Zitney, Stephen E.
A multi-stage centrifugal compressor model is presented with emphasis on analyzing use of an exit flow coefficient vs. an inlet flow coefficient performance parameter to predict off-design conditions in the critical region of a supercritical carbon dioxide (CO 2) power cycle. A description of the performance parameters is given along with their implementation in a design model (number of stages, basic sizing, etc.) and a dynamic model (for use in transient studies). A design case is shown for two compressors, a bypass compressor and a main compressor, as defined in a process simulation of a 10 megawatt (MW) supercritical COmore » 2 recompression Brayton cycle. Simulation results are presented for a simple open cycle and closed cycle process with changes to the inlet temperature of the main compressor which operates near the CO 2 critical point. Results showed some difference in results using the exit vs. inlet flow coefficient correction, however, it was not significant for the range of conditions examined. Here, this paper also serves as a reference for future works, including a full process simulation of the 10 MW recompression Brayton cycle.« less
Investigation of methods for calculating duration of lightsignal regulation cycle
NASA Astrophysics Data System (ADS)
Dorokhin, S. V.; Novikov, A. N.; Zelikov, V. A.; Strukov, Y. V.; Novikov, I. A.; Shevtsova, A. G.; Likhachev, D. V.
2018-05-01
The research objective is development of a new approach to determining of mode operation of traffic lights taking into consideration advanced characteristics of traffic flow. It will allow one to decrease transport delay significantly while a vehicle on the way and, using signal control, to increase main parameters on the whole, such as fuel consumption, travel time and traffic speed. The research shows that basic approaches, which are applied nowadays to determine main parameters of traffic lights, do not allow one to take into consideration a number of characteristics of traffic flow, so it leads to many challenges that appear as ineffective using of traffic lights. There is critical transport delay at many controlled crossroads so it can lead to emergence of traffic accidents. The research contributes to the knowledge, studying the experience of using these approaches and, on the basis of their improvement and development of new approaches, allowing one to reduce risks to a minimum. The study also provides an opportunity to expand the scope of further research in this area, combining and applying lessons learned.
CBM Resources/reserves classification and evaluation based on PRMS rules
NASA Astrophysics Data System (ADS)
Fa, Guifang; Yuan, Ruie; Wang, Zuoqian; Lan, Jun; Zhao, Jian; Xia, Mingjun; Cai, Dechao; Yi, Yanjing
2018-02-01
This paper introduces a set of definitions and classification requirements for coalbed methane (CBM) resources/reserves, based on Petroleum Resources Management System (PRMS). The basic CBM classification criterions of 1P, 2P, 3P and contingent resources are put forward from the following aspects: ownership, project maturity, drilling requirements, testing requirements, economic requirements, infrastructure and market, timing of production and development, and so on. The volumetric method is used to evaluate the OGIP, with focuses on analyses of key parameters and principles of the parameter selection, such as net thickness, ash and water content, coal rank and composition, coal density, cleat volume and saturation and absorbed gas content etc. A dynamic method is used to assess the reserves and recovery efficiency. Since the differences in rock and fluid properties, displacement mechanism, completion and operating practices and wellbore type resulted in different production curve characteristics, the factors affecting production behavior, the dewatering period, pressure build-up and interference effects were analyzed. The conclusion and results that the paper achieved can be used as important references for reasonable assessment of CBM resources/reserves.
NASA Astrophysics Data System (ADS)
Matusov, Jozef; Gavlas, Stanislav
2016-06-01
One way how is possible to separate the solid particulate pollutants from the flue gas is use the cyclone separators. The cyclone separators are very frequently used separators due to the simplicity of their design and their low operating costs. Separation of pollutants in the form of solids is carried out using three types of forces: inertia force, centrifugal force, gravity force. The main advantage is that cyclone consist of the parts which are resistant to wear and have long life time, e.g. various rotating and sliding parts. Mostly are used as pre-separators, because they have low efficiency in the separation of small particles. Their function is to separate larger particles from the flue gases which are subsequently cleaned in the other device which is capable of removing particles smaller than 1 µm, which is limiting size of particle separation. The article will deal with the issue of calculating the basic dimensions and main parameters of the cyclone separator from flue gas produced during the smelting of secondary aluminum.
Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys
NASA Astrophysics Data System (ADS)
Ahuir-Torres, J. I.; Arenas, M. A.; Perrie, W.; de Damborenea, J.
2018-04-01
Laser texturing can be used for surface modification of metallic alloys in order to improve their properties under service conditions. The generation of textures is determined by the relationship between the laser processing parameters and the physicochemical properties of the alloy to be modified. In the present work the basic mechanism of dimple generation is studied in two alloys of technological interest, titanium alloy Ti6Al4V and aluminium alloy AA2024-T3. Laser treatment was performed using a pulsed solid state Nd: Vanadate (Nd: YVO4) laser with a pulse duration of 10 ps, operating at a wavelength of 1064 nm and 5 kHz repetition rate. Dimpled surface geometries were generated through ultrafast laser ablation while varying pulse energy between 1 μJ and 20 μJ/pulse and with pulse numbers from 10 to 200 pulses per spot. In addition, the generation of Laser Induced Periodic Surface Structures (LIPSS) nanostructures in both alloys, as well as the formation of random nanostructures in the impact zones are discussed.
Tracking Multiple Topics for Finding Interesting Articles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, R K; Cardenas, A F; Buttler, D J
We introduce multiple topic tracking (MTT) for iScore to better recommend news articles for users with multiple interests and to address changes in user interests over time. As an extension of the basic Rocchio algorithm, traditional topic detection and tracking, and single-pass clustering, MTT maintains multiple interest profiles to identify interesting articles for a specific user given user-feedback. Focusing on only interesting topics enables iScore to discard useless profiles to address changes in user interests and to achieve a balance between resource consumption and classification accuracy. iScore is able to achieve higher quality results than traditional methods such as themore » Rocchio algorithm. We identify several operating parameters that work well for MTT. Using the same parameters, we show that MTT alone yields high quality results for recommending interesting articles from several corpora. The inclusion of MTT improves iScore's performance by 25% in recommending news articles from the Yahoo! News RSS feeds and the TREC11 adaptive filter article collection. And through a small user study, we show that iScore can still perform well when only provided with little user feedback.« less
Heated probe diagnostic inside of the gas aggregation nanocluster source
NASA Astrophysics Data System (ADS)
Kolpakova, Anna; Shelemin, Artem; Kousal, Jaroslav; Kudrna, Pavel; Tichy, Milan; Biederman, Hynek; Surface; Plasma Science Team
2016-09-01
Gas aggregation cluster sources (GAS) usually operate outside common working conditions of most magnetrons and the size of nanoparticles created in GAS is below that commonly studied in dusty plasmas. Therefore, experimental data obtained inside the GAS are important for better understanding of process of nanoparticles formation. In order to study the conditions inside the gas aggregation chamber, special ``diagnostic GAS'' has been constructed. It allows simultaneous monitoring (or spatial profiling) by means of optical emission spectroscopy, mass spectrometry and probe diagnostic. Data obtained from Langmuir and heated probes map the plasma parameters in two dimensions - radial and axial. Titanium has been studied as an example of metal for which the reactive gas in the chamber starts nanoparticles production. Three basic situations were investigated: sputtering from clean titanium target in argon, sputtering from partially pre-oxidized target and sputtering with oxygen introduced into the discharge. It was found that during formation of nanoparticles the plasma parameters differ strongly from the situation without nanoparticles. These experimental data will support the efforts of more realistic modeling of the process. Czech Science Foundation 15-00863S.
40 CFR 60.5130 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, sewage...
40 CFR 60.5130 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, sewage...
SPECT System Optimization Against A Discrete Parameter Space
Meng, L. J.; Li, N.
2013-01-01
In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609
47 CFR 76.930 - Initiation of review of basic cable service and equipment rates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Initiation of review of basic cable service and...) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Rate Regulation § 76.930 Initiation of review of basic cable service and equipment rates. A cable operator shall file its schedule of...
Khataee, A R; Vatanpour, V; Amani Ghadim, A R
2009-01-30
This study makes a comparison between UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton (EF) and electrocoagulation (EC) treatment methods to investigate the removal of C.I. Acid Blue 9 (AB9), which was chosen as the model organic contaminant. Results indicated that the decolorization efficiency was in order of Fenton>EC>UV/Nano-TiO(2)>Fenton-like>EF. Desired concentrations of Fe(2+) and H(2)O(2) for the abatement of AB9 in the Fenton-based processes were found to be 10(-4)M and 2 x 10(-3) M, respectively. In the case of UV/Nano-TiO(2) process, we have studied the influence of the basic photocatalytic parameters such as the irradiation time, pH of the solution and amount of TiO(2) nanoparticles on the photocatalytic decolorization efficiency of AB9. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 25 min. Our results also revealed that the most effective decomposition of AB9 was observed with 150 mg/l of TiO(2) nanoparticles in acidic condition. The effect of operational parameters including current density, initial pH and time of electrolysis were studied in electrocoagulation process. The results indicated that for a solution of 20 mg/l AB9, almost 98% color were removed, when the pH was about 6, the time of electrolysis was 8 min and the current density was approximately 25 A/m(2) in electrocoagulation process.
MIL-H-8501B: Application to shipboard terminal operations
NASA Technical Reports Server (NTRS)
Cappetta, A. N.; Johns, J. B.
1993-01-01
The philosophy and structure of the proposed U.S. Military Specification for Handling Qualities Requirements for Military Rotorcraft, MIL-H-8501B, are presented with emphasis on shipboard terminal operations. The impact of current and future naval operational requirements on the selection of appropriate combinations of basic vehicle dynamics and usable cue environments are identified. An example 'walk through' of MIL-H-8501B is conducted from task identification to determination of stability and control requirements. For selected basic vehicle dynamics, criteria as a function of input/response magnitude are presented. Additionally, rotorcraft design development implications are discussed.
Analysis of self-oscillating dc-to-dc converters
NASA Technical Reports Server (NTRS)
Burger, P.
1974-01-01
The basic operational characteristics of dc-to-dc converters are analyzed along with the basic physical characteristics of power converters. A simple class of dc-to-dc power converters are chosen which could satisfy any set of operating requirements, and three different controlling methods in this class are described in detail. Necessary conditions for the stability of these converters are measured through analog computer simulation whose curves are related to other operational characteristics, such as ripple and regulation. Further research is suggested for the solution of absolute stability and efficient physical design of this class of power converters.
Journal of Special Operations Medicine, Volume 6, Edition 1, Winter 2006
2006-01-01
Mark A. Antonacci, MD; Paul L. Link, NC Stress Fracture and Attrition in Basic Underwater Demolition SEAL Trainees Daniel W. Trone, MA; Adriana ...Special Operations Medicine32 Stress Fracture and Attrition in Basic Underwater Demolition SEAL Trainees Daniel W. Trone, MA; Adriana Villaseñor, MPH...effects of physical activity, with a focus on functional decline and injuries in recreational and military populations. Adriana Villaseñor, MPH, is
NASTRAN internal improvements for 1992 release
NASA Technical Reports Server (NTRS)
Chan, Gordon C.
1992-01-01
The 1992 NASTRAN release incorporates a number of improvements transparent to users. The NASTRAN executable was made smaller by 70 pct. for the RISC base Unix machines by linking NASTRAN into a single program, freeing some 33 megabytes of system disc space that can be used by NASTRAN for solving larger problems. Some basic matrix operations, such as forward-backward substitution (FBS), multiply-add (MPYAD), matrix transpose, and fast eigensolution extraction routine (FEER), have been made more efficient by including new methods, new logic, new I/O techniques, and, in some cases, new subroutines. Some of the improvements provide ground work ready for system vectorization. These are finite element basic operations, and are used repeatedly in a finite element program such as NASTRAN. Any improvements on these basic operations can be translated into substantial cost and cpu time savings. NASTRAN is also discussed in various computer platforms.
Model-based estimation of adiabatic flame temperature during coal gasification
NASA Astrophysics Data System (ADS)
Sarigul, Ihsan Mert
Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential effect on adiabatic flame temperature.
This report begins with descriptions of the differences between coastal and ocean acidification, factors contributing to acidification on the US east coast, and basic characteristics of the seawater carbonate system and its parameters. A basic survey of available methods and cha...
Code of Federal Regulations, 2014 CFR
2014-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
40 CFR 62.14595 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste...
Measured Plume Dispersion Parameters Over Water. Volume 1.
1984-09-01
meteorlogical parameters were continuously monitored at various locations. Tracer gas concentrations were measured by a variety of methods at...addition, this step added a header . to the data set containing a variety of averaged meteorlogical quantities. The basic procedure in this step was
Comparison of Basic Science Knowledge Between DO and MD Students.
Davis, Glenn E; Gayer, Gregory G
2017-02-01
With the coming single accreditation system for graduate medical education, medical educators may wonder whether knowledge in basic sciences is equivalent for osteopathic and allopathic medical students. To examine whether medical students' basic science knowledge is the same among osteopathic and allopathic medical students. A dataset of the Touro University College of Osteopathic Medicine-CA student records from the classes of 2013, 2014, and 2015 and the national cohort of National Board of Medical Examiners Comprehensive Basic Science Examination (NBME-CBSE) parameters for MD students were used. Models of the Comprehensive Osteopathic Medical Licensing Examination-USA (COMLEX-USA) Level 1 scores were fit using linear and logistic regression. The models included variables used in both osteopathic and allopathic medical professions to predict COMLEX-USA outcomes, such as Medical College Admission Test biology scores, preclinical grade point average, number of undergraduate science units, and scores on the NBME-CBSE. Regression statistics were studied to compare the effectiveness of models that included or excluded NBME-CBSE scores at predicting COMLEX-USA Level 1 scores. Variance inflation factor was used to investigate multicollinearity. Receiver operating characteristic curves were used to show the effectiveness of NBME-CBSE scores at predicting COMLEX-USA Level 1 pass/fail outcomes. A t test at 99% level was used to compare mean NBME-CBSE scores with the national cohort. A total of 390 student records were analyzed. Scores on the NBME-CBSE were found to be an effective predictor of COMLEX-USA Level 1 scores (P<.001). The pass/fail outcome on COMLEX-USA Level 1 was also well predicted by NBME-CBSE scores (P<.001). No significant difference was found in performance on the NBME-CBSE between osteopathic and allopathic medical students (P=.322). As an examination constructed to assess the basic science knowledge of allopathic medical students, the NBME-CBSE is effective at predicting performance on COMLEX-USA Level 1. In addition, osteopathic medical students performed the same as allopathic medical students on the NBME-CBSE. The results imply that the same basic science knowledge is expected for DO and MD students.
Autonomous, Full-Time Cloud Profiling at Arm Sites with Micro Pulse Lidar
NASA Technical Reports Server (NTRS)
Spinhirne, James D.; Campbell, James R.; Hlavka, Dennis L.; Scott, V. Stanley; Flynn, Connor J.
2000-01-01
Since the early 1990's technology advances permit ground based lidar to operate full time and profile all significant aerosol and cloud structure of the atmosphere up to the limit of signal attenuation. These systems are known as Micro Pulse Lidars (MPL), as referenced by Spinhirne (1993), and were first in operation at DOE Atmospheric Radiation Measurement (ARM) sites. The objective of the ARM program is to improve the predictability of climate change, particularly as it relates to cloud-climate feedback. The fundamental application of the MPL systems is towards the detection of all significant hydrometeor layers, to the limit of signal attenuation. The heating and cooling of the atmosphere are effected by the distribution and characteristics of clouds and aerosol concentration. Aerosol and cloud retrievals in several important areas can only be adequately obtained with active remote sensing by lidar. For cloud cover, the height and related emissivity of thin clouds and the distribution of base height for all clouds are basic parameters for the surface radiation budget, and lidar is essetial for accurate measurements. The ARM MPL observing network represents the first long-term, global lidar study known within the community. MPL systems are now operational at four ARM sites. A six year data set has been obtained at the original Oklahoma site, and there are several years of observations at tropical and artic sites. Observational results include cloud base height distributions and aerosol profiles. These expanding data sets offer a significant new resource for cloud, aerosol and atmospheric radiation analysis. The nature of the data sets, data processing algorithms, derived parameters and application results are presented.
Telfer, Scott; Gibson, Kellie S; Hennessy, Kym; Steultjens, Martijn P; Woodburn, Jim
2012-05-01
To determine, for a number of techniques used to obtain foot shape based around plaster casting, foam box impressions, and 3-dimensional scanning, (1) the effect the technique has on the overall reproducibility of custom foot orthoses (FOs) in terms of inter- and intracaster reliability and (2) the reproducibility of FO design by using computer-aided design (CAD) software in terms of inter- and intra-CAD operator reliability for all these techniques. Cross-sectional study. University laboratory. Convenience sample of individuals (N=22) with noncavus foot types. Not applicable. Parameters of the FO design (length, width at forefoot, width at rearfoot, and peak medial arch height), the forefoot to rearfoot angle of the foot shape, and overall volume match between device designs. For intra- and intercaster reliability of the different methods of obtaining the foot shape, all methods fell below the reproducibility quality threshold for the medial arch height of the device, and volume matching was <80% for all methods. The more experienced CAD operator was able to achieve excellent reliability (intraclass correlation coefficients >0.75) for all variables with the exception of forefoot to rearfoot angle, with overall volume matches of >87% of the devices. None of the techniques for obtaining foot shape met all the criteria for excellent reproducibility, with the peak arch height being particularly variable. Additional variability is added at the CAD stage of the FO design process, although with adequate operator experience good to excellent reproducibility may be achieved at this stage. Taking only basic linear or angular measurement parameters from the device may fail to fully capture the variability in FO design. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection
NASA Astrophysics Data System (ADS)
Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang
2017-07-01
It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the wind turbine (WT) bearing fault detection and its effectiveness is sufficiently verified. Compared with the current popular bearing fault diagnosis techniques, wavelet analysis and spectral kurtosis, our model achieves a higher diagnostic accuracy.
Basic Operational Robotics Instructional System
NASA Technical Reports Server (NTRS)
Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John
2013-01-01
The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.
40 CFR 60.58c - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....57c(d), the owner or operator shall maintain all operating parameter data collected; (xvii) For...) Identification of calendar days for which data on emission rates or operating parameters specified under... operating parameters not measured, reasons for not obtaining the data, and a description of corrective...
Effects of structural error on the estimates of parameters of dynamical systems
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1986-01-01
In this paper, the notion of 'near-equivalence in probability' is introduced for identifying a system in the presence of several error sources. Following some basic definitions, necessary and sufficient conditions for the identifiability of parameters are given. The effects of structural error on the parameter estimates for both the deterministic and stochastic cases are considered.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Coordination with Medicaid, CHIP, the Basic Health....345 Coordination with Medicaid, CHIP, the Basic Health Program, and the Pre-existing Condition..., CHIP, and the BHP, if a BHP is operating in the service area of the Exchange, as are necessary to...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Coordination with Medicaid, CHIP, the Basic Health....345 Coordination with Medicaid, CHIP, the Basic Health Program, and the Pre-existing Condition..., CHIP, and the BHP, if a BHP is operating in the service area of the Exchange, as are necessary to...
[Basic research in traumatology and its contribution to routine operation].
Hausner, T; Redl, H
2017-02-01
Basic research in traumatology supports the clinical outcome of patients in trauma care and tries to find science-based solutions for clinical problems. Furthermore, institutions for basic research in traumatology usually offer training in different skills, such as how to write a scientific paper, or practice in microsurgery or intubation. Two examples of clinically significant research topics are presented.
VLSI architecture for a Reed-Solomon decoder
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor)
1992-01-01
A basic single-chip building block for a Reed-Solomon (RS) decoder system is partitioned into a plurality of sections, the first of which consists of a plurality of syndrome subcells each of which contains identical standard-basis finite-field multipliers that are programmable between 10 and 8 bit operation. A desired number of basic building blocks may be assembled to provide a RS decoder of any syndrome subcell size that is programmable between 10 and 8 bit operation.
Effective Operational Assessment: A Return to the Basics
2010-10-27
white. Second, they concentrated on what should have been measured (an FM 5-0 rule of thumb ), such as the numbers (and names) of remaining insurgents...12 was manageable, vice ―excessive,‖ another rule of thumb . They cut right to the heart of what mattered in determining whether the insurgents...mentioned, FM 5-0 provides three excellent rules of thumb for the basics of operational assessment: ―avoid excessive analyses,‖ ―avoid … overly
Dilber, Daniel; Malcic, Ivan
2010-08-01
The Aristotle basic complexity score and the risk adjustment in congenital cardiac surgery-1 method were developed and used to compare outcomes of congenital cardiac surgery. Both methods were used to compare results of procedures performed on our patients in Croatian cardiosurgical centres and results of procedures were taken abroad. The study population consisted of all patients with congenital cardiac disease born to Croatian residents between 1 October, 2002 and 1 October, 2007 undergoing a cardiovascular operation during this period. Of the 556 operations, the Aristotle basic complexity score could be assigned to 553 operations and the risk adjustment in congenital cardiac surgery-1 method to 536 operations. Procedures were performed in two institutions in Croatia and seven institutions abroad. The average complexity for cardiac procedures performed in Croatia was significantly lower. With both systems, along with the increase in complexity, there is also an increase in mortality before discharge and postoperative length of stay. Only after the adjustment for complexity there are marked differences in mortality and occurrence of postoperative complications. Both, the Aristotle basic complexity score and the risk adjustment in congenital cardiac surgery-1 method were predictive of in-hospital mortality as well as prolonged postoperative length to stay, and can be used as a tool in our country to evaluate a cardiosurgical model and recognise potential problems.
Potential scenarios of concern for high speed rail operations
DOT National Transportation Integrated Search
2011-03-16
Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...
Railroad Classification Yard Technology : An Introductory Analysis of Functions and Operations
DOT National Transportation Integrated Search
1975-05-01
A review of the basic operating characteristics and functions of railroad classification yards is presented. Introductory descriptions of terms, concepts, and problems of railroad operations involving classification yards are included in an attempt t...
Trajectory-based morphological operators: a model for efficient image processing.
Jimeno-Morenilla, Antonio; Pujol, Francisco A; Molina-Carmona, Rafael; Sánchez-Romero, José L; Pujol, Mar
2014-01-01
Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images.
Embedded controller for GEM detector readout system
NASA Astrophysics Data System (ADS)
Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek
2013-10-01
This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.
Analysis of mode-locked and intracavity frequency-doubled Nd:YAG laser
NASA Technical Reports Server (NTRS)
Siegman, A. E.; Heritier, J.-M.
1980-01-01
The paper presents analytical and computer studies of the CW mode-locked and intracavity frequency-doubled Nd:YAG laser which provide new insight into the operation, including the detuning behavior, of this type of laser. Computer solutions show that the steady-state pulse shape for this laser is much closer to a truncated cosine than to a Gaussian; there is little spectral broadening for on-resonance operation; and the chirp is negligible. This leads to a simplified analytical model carried out entirely in the time domain, with atomic linewidth effects ignored. Simple analytical results for on-resonance pulse shape, pulse width, signal intensity, and harmonic conversion efficiency in terms of basic laser parameters are derived from this model. A simplified physical description of the detuning behavior is also developed. Agreement is found with experimental studies showing that the pulsewidth decreases as the modulation frequency is detuned off resonance; the harmonic power output initially increases and then decreases; and the pulse shape develops a sharp-edged asymmetry of opposite sense for opposite signs of detuning.
Continuous-flow electrophoretic separator for biologicals
NASA Technical Reports Server (NTRS)
Mccreight, L. R.; Griffin, R. N.; Locker, R. J.
1976-01-01
In the near absence of gravity, a continuous-flow type of electrophoretic separator can be operated with a much thicker separation chamber than is possible under 1 g conditions. This should permit either better resolution or shorter separation time per unit of sample. An apparatus to perform experiments on sounding rockets is under development and will be described. The electrophoresis cell is 5 mm thick by 5 cm wide with 10 cm long electrodes. It is supplied with buffer, sample, and coolant at about 4 C through the use of a passive refrigerant system. UV sample detection and provision for recovery and cold storage of up to 50 sample fractions are now being added to the basic unit. A wide range of operating conditions are electronically programmable into the unit, even up to a short time before flight, and a further range of some parameters can be achieved by exchanging power supplies and by changing gears in the motor drive units of the pump. The preliminary results of some separation studies on various biological products using a commercially available electrophoretic separator are also presented.
Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum.
Huang, Jun; Zhang, Jianbo; Eikerling, Michael
2018-05-07
Rapid conversion of oxygen into water is crucial to the operation of polymer electrolyte fuel cells and other emerging electrochemical energy technologies. Chemisorbed oxygen species play double-edged roles in this reaction, acting as vital intermediates on one hand and site-blockers on the other. Any attempt to decipher the oxygen reduction reaction (ORR) must first relate the formation of oxygen intermediates to basic electronic and electrostatic properties of the catalytic surface, and then link it to parameters of catalyst activity. An approach that accomplishes this feat will be of great utility for catalyst materials development and predictive model formulation of electrode operation. Here, we present a theoretical framework for the multiple interrelated surface phenomena and processes involved, particularly, by incorporating the double-layer effects. It sheds light on the roles of oxygen intermediates and gives out the Tafel slope and exchange current density as continuous functions of electrode potential. Moreover, it develops the concept of a rate determining term, which should replace the concept of a rate determining step for multielectron reactions, and offers a new perspective on the volcano relation of the ORR.
Tool for Sizing Analysis of the Advanced Life Support System
NASA Technical Reports Server (NTRS)
Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.
2005-01-01
Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.
Recent Progress on Flexible Triboelectric Nanogenerators for SelfPowered Electronics.
Hinchet, Ronan; Seung, Wanchul; Kim, Sang-Woo
2015-07-20
Recently, smart systems have met with large success. At the origin of the internet of things, they are a key driving force for the development of wireless, sustainable, and independent autonomous smart systems. In this context, autonomy is critical, and despite all the progress that has been made in low-power electronics and batteries, energy harvesters are becoming increasingly important. Thus, harvesting mechanical energy is essential, as it is widespread and abundant in our daily life environment. Among harvesters, flexible triboelectric nanogenerators (TENGs) exhibit good performance, and they are easy to integrate, which makes them perfect candidates for many applications and, therefore, crucial to develop. In this review paper, we first introduce the fundamentals of TENGs, including their four basic operation modes. Then, we discuss the different improvement parameters. We review some progress made in terms of performance and integration that have been possible through the understanding of each operation mode and the development of innovative structures. Finally, we present the latest trends, structures, and materials in view of future improvements and applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrasound detection of simulated intra-ocular foreign bodies by minimally trained personnel.
Sargsyan, Ashot E; Dulchavsky, Alexandria G; Adams, James; Melton, Shannon; Hamilton, Douglas R; Dulchavsky, Scott A
2008-01-01
To test the ability of non-expert ultrasound operators of divergent backgrounds to detect the presence, size, location, and composition of foreign bodies in an ocular model. High school students (N = 10) and NASA astronauts (N = 4) completed a brief ultrasound training session which focused on basic ultrasound principles and the detection of foreign bodies. The operators used portable ultrasound devices to detect foreign objects of varying location, size (0.5-2 mm), and material (glass, plastic, metal) in a gelatinous ocular model. Operator findings were compared to known foreign object parameters and ultrasound experts (N = 2) to determine accuracy across and between groups. Ultrasound had high sensitivity (astronauts 85%, students 87%, and experts 100%) and specificity (astronauts 81%, students 83%, and experts 95%) for the detection of foreign bodies. All user groups were able to accurately detect the presence of foreign bodies in this model (astronauts 84%, students 81%, and experts 97%). Astronaut and student sensitivity results for material (64% vs. 48%), size (60% vs. 46%), and position (77% vs. 64%) were not statistically different. Experts' results for material (85%), size (90%), and position (98%) were higher; however, the small sample size precluded statistical conclusions. Ultrasound can be used by operators with varying training to detect the presence, location, and composition of intraocular foreign bodies with high sensitivity, specificity, and accuracy.
Basic Parameters of Metal Behavior under High Rate Forming
1962-03-01
1ii PHOTOGRAPH THIS SHEET II LEVELr• At-ký W •I)-_) -N INVENTORY z DOCUMENT IDENTIFICATION may. 6•t S]/ tp i - 0~o- o’•5,,? 3 ’ \\NAL- TR-/I. -a I .. ~1...TR 111.2/20- 3 BASIC PARAMETERS OF METAL BEHAVIOUR "> UNDER HIGH RATE FORMING L L j Fourth Interim Report to ell- L’,I I U. S. ARMY MATERIALS...RESEARCH AGENCY 1• I iiC::Ur:ui i 1,,i .:1 ’•:, 1 r/ n od I P,101c rolcso. Filing Subjects: I. Explosive forming 2. Dynamic behavior of metals 3 . High rate
Diagnosis of femtosecond plasma filament by channeling microwaves along the filament
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshershby, Mostafa; Ren, Yu; Qin, Jiang
2013-05-20
We introduce a simple, fast, and non-intrusive experimental method to obtain the basic parameters of femtosecond laser-generated plasma filament. The method is based on the channeling of microwaves along both a plasma filament and a well-defined conducting wire. By comparing the detected microwaves that propagate along the plasma filament and a copper wire with known conductivity and spatial dimension, the basic parameters of the plasma filament can be easily obtained. As a result of the possibility of channeling microwave radiation along the plasma filament, we were then able to obtain the plasma density distribution along the filament length.
Characterization of the thrombin generation profile in systemic lupus erythematosus.
Kern, A; Barabás, E; Balog, A; Burcsár, Sz; Kiszelák, M; Vásárhelyi, B
2017-03-01
Systemic lupus erythematosus (SLE) is a multisystemic inflammatory autoimmune disorder. Thrombotic events occur at a higher incidence among SLE patients. The investigation of thrombin generation (TG) with calibrated automated thrombogram (CAT) test as a global hemostasis assay is applicable for the overall functional assessment of the hemostasis. The aim of this study was to characterize the hemostatic alterations observed in SLE by CAT assay. In this study, CAT parameters and basic coagulation parameters of SLE patients (n = 22) and healthy control subjects (n = 34) were compared. CAT area under the curve (i.e., endogenous thrombin potential) was lower than normal in SLE (807 vs. 1,159 nM*min, respectively), whereas other CAT parameters (peak, lag time, time to peak, and velocity index) and the basic coagulation tests were within the normal range. The presence of anti-phospholipid antibodies and the applied therapy was not associated with hemostasis parameters in SLE. We concluded that the reported high risk of thrombosis is not related to TG potential.
BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
LAVH for large uteri by various strategies.
Chang, Wen-Chun; Huang, Su-Cheng; Sheu, Bor-Ching; Torng, Pao-Ling; Hsu, Wen-Chiung; Chen, Szu-Yu; Chang, Daw-Yuan
2008-01-01
To study if there are specific problems in laparoscopically assisted vaginal hysterectomy (LAVH) for a certain weight of bulky uteri and the strategies to overcome such problems. One hundred and eighty-one women with myoma or adenomyosis, weighing 350-1,590 g, underwent LAVH between August 2002 and December 2005. Key surgical strategies were special sites for trocar insertion, uterine artery or adnexal collateral pre-ligation, laparoscopic and transvaginal volume reduction technique. The basic clinical and operative parameters were recorded for analysis. Based on significant differences in the operative time and estimated blood loss, the patients were divided into medium uteri weighing 350-749 g, n=138 (76%), and large uteri weighing > or =750 g, n=43 (24%). There was no significant difference in terms of age, body mass index, preoperative diagnoses, complications and duration of hospital stay among groups. The operative time and estimated blood loss increased with larger uterine size (p<0.001). The operative time (196+/-53, 115-395 min), estimated blood loss (234+/-200, 50-1,000 ml) and frequency of excessive bleeding (14%) or transfusion (5%) were significantly greater, but in acceptable ranges, for those with large uteri. Conversion to laparotomy was required in a patient (2%) with a large uterus, and the overall conversion rate was 0.6%. There was no re-operation or surgical mortality. Using various combinations of special strategies, most experienced gynecologic surgeons can conduct LAVH for most large uteri with minimal rates of complications and conversion to laparotomy.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND... basic tier, and any additional video programming signals a service added to the basic tier by the cable operator. (b) Cable programming service. Cable programming service includes any video programming provided...
40 CFR 60.2635 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation...
40 CFR 60.2070 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation...
The role of ocean climate data in operational Naval oceanography
NASA Technical Reports Server (NTRS)
Chesbrough, Radm G.
1992-01-01
Local application of global-scale models describes the U.S. Navy's basic philosophy for operational oceanography in support of fleet operations. Real-time data, climatologies, coupled air/ocean models, and large scale computers are the essential components of the Navy's system for providing the war fighters with the performance predictions and tactical decision aids they need to operate safely and efficiently. In peacetime, these oceanographic predictions are important for safety of navigation and flight. The paucity and uneven distribution of real-time data mean we have to fall back on climatology to provide the basic data to operate our models. The Navy is both a producer and user of climatologies; it provides observations to the national archives and in turn employs data from these archives to establish data bases. Suggestions for future improvements to ocean climate data are offered.
Personal notes [of D.S. Lewis, 7 September 1956 to 31 December 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, D.S.
1956-09-07
This report is a copy of the personal log of D.S. Lewis of the Irradiation Processing Dept. of Reactor Operations at Hanford and covers the period from 7 September 1956 through 31 December 1959. Data are presented on the following: (1) basic reactor operating data, including daily operating data, outage resumes, injuries and incidents, charging and tube replacement rates, panellit gage (flowmeter) trip failures, and thermocouple failures, and (2) basic reactor information on the water plant, electrical distribution, VSR`s, HCR`s, Ball 3X, Safety circuits, gas system, effluent system, process tube cross-section, and production scheduling.
Applications catalog of pyrotechnically actuated devices/systems
NASA Technical Reports Server (NTRS)
Seeholzer, Thomas L.; Smith, Floyd Z.; Eastwood, Charles W.; Steffes, Paul R.
1995-01-01
A compilation of basic information on pyrotechnically actuated devices/systems used in NASA aerospace and aeronautic applications was formatted into a catalog. The intent is to provide (1) a quick reference digest of the types of operational pyro mechanisms and (2) a source of contacts for further details. Data on these items was furnished by the NASA Centers that developed and/or utilized such devices to perform specific functions on spacecraft, launch vehicles, aircraft, and ground support equipment. Information entries include an item title, user center name, commercial contractor/vendor, identifying part number(s), a basic figure, briefly described purpose and operation, previous usage, and operational limits/requirements.
40 CFR 62.14105 - Requirements for municipal waste combustor operator training and certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator of an affected facility must develop and update on a yearly basis a site-specific operating manual... subpart; (2) A description of basic combustion theory applicable to a municipal waste combustor unit; (3...
SDMProjectBuilder: SWAT Simulation and Calibration for Nutrient Fate and Transport
This tutorial reviews screens, icons, and basic functions for downloading flow, sediment, and nutrient observations for a watershed of interest; how to prepare SWAT-CUP input files for SWAT parameter calibration; and how to perform SWAT parameter calibration with SWAT-CUP. It dem...
Process control systems at Homer City coal preparation plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shell, W.P.
1983-03-01
An important part of process control engineering is the implementation of the basic control system design through commissioning to routine operation. This is a period when basic concepts can be reviewed and improvements either implemented or recorded for application in future systems. The experience of commissioning the process control systems in the Homer City coal cleaning plant are described and discussed. The current level of operating control performance in individual sections and the overall system are also reported and discussed.
2014-05-27
TiN(100) surface (Pt/TiN) could be a promising catalyst for proton exchange membrane fuel cells ( PEM FCs). The adsorption properties of molecules on Pt...under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells , density functional theory, density functional...poisoning on functionalized Pt/TiN surfaces under both acidic and basic operation conditions in PEM FCs. 15. SUBJECT TERMS Catalysis, fuel cells
A Manual Control Test for the Detection and Deterrence of Impaired Drivers
NASA Technical Reports Server (NTRS)
Stein, A. C.; Allen, R. W.; Jex, H. R.
1984-01-01
A brief manual control test and a decision strategy were developed, laboratory tested, and field validated which provide a means for detecting human operator impairment from alcohol or other drugs. The test requires the operator to stabilize progressively unstable controlled element dynamics. Control theory and experimental data verify that the human operator's control ability on this task is constrained by basic cybernetic characteristics, and that task performance is reliably affected by impairment effects on these characteristics. Assessment of human operator control ability is determined by a statistically based decision strategy. The operator is allowed several chances to exceed a preset pass criterion. Procedures are described for setting the pass criterion based on individual ability and a desired unimpaired failure rate. These procedures were field tested with apparatus installed in automobiles that were designed to discourage drunk drivers from operating their vehicles. This test program demonstrated that the control task and detection strategy could be applied in a practical setting to screen human operators for impairment in their basic cybernetic skills.
Tandem accelerators in Romania: Multi-tools for science, education and technology
NASA Astrophysics Data System (ADS)
Burducea, I.; GhiÅ£ǎ, D. G.; Sava, T. B.; Straticiuc, M.
2017-06-01
An educated selection of the main beam parameters - particle type, velocity and intensity, can result in a cutting-edge scalpel to remove tumors, sanitize sewage, act as a nuclear forensics detective, date an artefact, clean up air, improve a microprocessor, transmute nuclear waste, detect a counterfeit or even look into the stars. Nowadays more than particle accelerators operate worldwide in medicine, industry and basic research. For example the proton therapy market is expected to attain 1 billion US per year in 2019 with almost 330 proton therapy rooms, while the annual market for the ion implantation industry already reached 1.5 G in revenue [1,2]. A brief history of the Tandem Accelerators Complex at IFIN-HH [3] emphasizing on their applications and the physics behind the scenes, is also presented [4-6].
Synthetic Jet Flow Field Database for CFD Validation
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome
2004-01-01
An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.
Codimension-Two Bifurcation Analysis in DC Microgrids Under Droop Control
NASA Astrophysics Data System (ADS)
Lenz, Eduardo; Pagano, Daniel J.; Tahim, André P. N.
This paper addresses local and global bifurcations that may appear in electrical power systems, such as DC microgrids, which recently has attracted interest from the electrical engineering society. Most sources in these networks are voltage-type and operate in parallel. In such configuration, the basic technique for stabilizing the bus voltage is the so-called droop control. The main contribution of this work is a codimension-two bifurcation analysis of a small DC microgrid considering the droop control gain and the power processed by the load as bifurcation parameters. The codimension-two bifurcation set leads to practical rules for achieving a robust droop control design. Moreover, the bifurcation analysis also offers a better understanding of the dynamics involved in the problem and how to avoid possible instabilities. Simulation results are presented in order to illustrate the bifurcation analysis.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Quantum localisation on the circle
NASA Astrophysics Data System (ADS)
Fresneda, Rodrigo; Gazeau, Jean Pierre; Noguera, Diego
2018-05-01
Covariant integral quantisation using coherent states for semi-direct product groups is implemented for the motion of a particle on the circle. In this case, the phase space is the cylinder, which is viewed as a left coset of the Euclidean group E(2). Coherent states issued from fiducial vectors are labeled by points in the cylinder and depend also on extra parameters. We carry out the corresponding quantisations of the basic classical observables, particularly the angular momentum and the 2π-periodic discontinuous angle function. We compute their corresponding lower symbols. The quantum localisation on the circle is examined through the properties of the angle operator yielded by our procedure, its spectrum and lower symbol, its commutator with the quantum angular momentum, and the resulting Heisenberg inequality. Comparison with other approaches to the long-standing question of the quantum angle is discussed.
Stellar photometry with the Wide Field/Planetary Camera of the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Holtzman, Jon A.
1990-07-01
Simulations of Wide Field/Planetary Camera (WF/PC) images are analyzed in order to discover the most effective techniques for stellar photometry and to evaluate the accuracy and limitations of these techniques. The capabilities and operation of the WF/PC and the simulations employed in the study are described. The basic techniques of stellar photometry and methods to improve these techniques for the WF/PC are discussed. The correct parameters for star detection, aperture photometry, and point-spread function (PSF) fitting with the DAOPHOT software of Stetson (1987) are determined. Consideration is given to undersampling of the stellar images by the detector; variations in the PSF; and the crowding of the stellar images. It is noted that, with some changes DAOPHOT, is able to generate photometry almost to the level of photon statistics.
NASA Technical Reports Server (NTRS)
Brauer, G. L.; Habeger, A. R.; Stevenson, R.
1974-01-01
The basic equations and models used in a computer program (6D POST) to optimize simulated trajectories with six degrees of freedom were documented. The 6D POST program was conceived as a direct extension of the program POST, which dealt with point masses, and considers the general motion of a rigid body with six degrees of freedom. It may be used to solve a wide variety of atmospheric flight mechanics and orbital transfer problems for powered or unpowered vehicles operating near a rotating oblate planet. Its principal features are: an easy to use NAMELIST type input procedure, an integrated set of Flight Control System (FCS) modules, and a general-purpose discrete parameter targeting and optimization capability. It was written in FORTRAN 4 for the CDC 6000 series computers.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
What Is Elective Surgery? (For Parents)
... or not your insurance will cover the entire cost of the operation, the hospitalization, the prescriptions, and any other associated ... Electronic Health Records Health Insurance Basics Finding Low-Cost Medical ... Like to Have Surgery? Health Care: What Do You Know? Anesthesia Basics ...
Efficient Execution Methods of Pivoting for Bulk Extraction of Entity-Attribute-Value-Modeled Data
Luo, Gang; Frey, Lewis J.
2017-01-01
Entity-attribute-value (EAV) tables are widely used to store data in electronic medical records and clinical study data management systems. Before they can be used by various analytical (e.g., data mining and machine learning) programs, EAV-modeled data usually must be transformed into conventional relational table format through pivot operations. This time-consuming and resource-intensive process is often performed repeatedly on a regular basis, e.g., to provide a daily refresh of the content in a clinical data warehouse. Thus, it would be beneficial to make pivot operations as efficient as possible. In this paper, we present three techniques for improving the efficiency of pivot operations: 1) filtering out EAV tuples related to unneeded clinical parameters early on; 2) supporting pivoting across multiple EAV tables; and 3) conducting multi-query optimization. We demonstrate the effectiveness of our techniques through implementation. We show that our optimized execution method of pivoting using these techniques significantly outperforms the current basic execution method of pivoting. Our techniques can be used to build a data extraction tool to simplify the specification of and improve the efficiency of extracting data from the EAV tables in electronic medical records and clinical study data management systems. PMID:25608318
Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform.
Sista, Ramakrishna S; Eckhardt, Allen E; Srinivasan, Vijay; Pollack, Michael G; Palanki, Srinivas; Pamula, Vamsee K
2008-12-01
A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels. Immunoassays on a digital microfluidic platform require the following basic operations: bead attraction, bead washing, bead retention, and bead resuspension. Several parameters such as magnetic field strength, pull force, position, and buffer composition were studied for effective bead operations. Dilution-based washing of magnetic beads was demonstrated by immobilizing the magnetic beads using a permanent magnet and splitting the excess supernatant using electrowetting. Almost 100% bead retention was achieved after 7776-fold dilution-based washing of the supernatant. Efficient resuspension of magnetic beads was achieved by transporting a droplet with magnetic beads across five electrodes on the platform and exploiting the flow patterns within the droplet to resuspend the beads. All the magnetic-bead droplet operations were integrated together to generate standard curves for sandwich heterogeneous immunoassays on human insulin and interleukin-6 (IL-6) with a total time to result of 7 min for each assay.
NASA Astrophysics Data System (ADS)
Endelt, B.
2017-09-01
Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic work, material properties and lubrication is sensitive to tool temperature. It is generally accepted that forming operations are not stable over time and it is not uncommon to adjust the process parameters during the first half hour production, indicating that process instability is gradually developing over time. Thus, in-process feedback control scheme might not-be necessary to stabilize the process and an alternative approach is to apply an iterative learning algorithm, which can learn from previously produced parts i.e. a self learning system which gradually reduces error based on historical process information. What is proposed in the paper is a simple algorithm which can be applied to a wide range of sheet-metal forming processes. The input to the algorithm is the final flange edge geometry and the basic idea is to reduce the least-square error between the current flange geometry and a reference geometry using a non-linear least square algorithm. The ILC scheme is applied to a square deep-drawing and the Numisheet’08 S-rail benchmark problem, the numerical tests shows that the proposed control scheme is able control and stabilise both processes.
Heterogeneous Immunoassays Using Magnetic beads On a Digital Microfluidic Platform
Sista, Ramakrishna S.; Eckhardt, Allen E.; Srinivasan, Vijay; Pollack, Michael G.; Palanki, Srinivas; Pamula, Vamsee K.
2009-01-01
A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels. Immunoassays on a digital microfluidic platform require the following basic operations: bead attraction, bead washing, bead retention, and bead resuspension. Several parameters such as magnetic field strength, pull force, position, and buffer composition were studied for effective bead operations. Dilution-based washing of magnetic beads was demonstrated by immobilizing the magnetic beads using a permanent magnet and splitting the excess supernatant using electrowetting. Almost 100% bead retention was achieved after 7776 fold dilution-based washing of the supernatant. Efficient resuspension of magnetic beads was achieved by transporting a droplet with magnetic beads across five electrodes on the platform and exploiting the flow patterns within the droplet to resuspend the beads. All the magnetic-bead droplet operations were integrated together to generate standard curves for sandwich heterogeneous immunoassays on Human Insulin and Interleukin-6 (IL-6) with a total time to result of seven minutes for each assay. PMID:19023486
Modeling internal ballistics of gas combustion guns.
Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias
2016-05-01
Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.
Investigation of roughing machining simulation by using visual basic programming in NX CAM system
NASA Astrophysics Data System (ADS)
Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed
2018-03-01
This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.
How could multimedia information about dental implant surgery effects patients' anxiety level?
Kazancioglu, H-O; Dahhan, A-S; Acar, A-H
2017-01-01
To evaluate the effects of different patient education techniques on patients' anxiety levels before and after dental implant surgery. Sixty patients were randomized into three groups; each contained 20 patients; [group 1, basic information given verbally, with details of operation and recovery; group 2 (study group), basic information given verbally with details of operative procedures and recovery, and by watching a movie on single implant surgery]; and a control group [basic information given verbally "but it was devoid of the details of the operative procedures and recovery"]. Anxiety levels were assessed using the Spielberger's State-Trait Anxiety Inventory (STAI) and Modified Dental Anxiety Scale (MDAS). Pain was assessed with a visual analog scale (VAS). The most significant changes were observed in the movie group (P < 0.05). Patients who were more anxious also used more analgesic medication. Linear regression analysis showed that female patients had higher levels of anxiety (P < 0.05). Preoperative multimedia information increases anxiety level.
Currency arbitrage detection using a binary integer programming model
NASA Astrophysics Data System (ADS)
Soon, Wanmei; Ye, Heng-Qing
2011-04-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.
Dada, Esther O; Anderson, Morgan K; Grier, Tyson; Alemany, Joseph A; Jones, Bruce H
2017-11-01
To determine the age- and sex-specific differences of physical fitness performances and Body Mass Index (BMI) in basic training and the operational Army. Cross-sectional Study. This secondary analysis utilizes retrospective surveys of U.S. Army Soldiers in Basic Combat Training (BCT) and operational units to compare physical performances between men and women as measured by the Army Physical Readiness Test (APFT). An ANOVA was used to compare mean differences in APFT results and BMI within sex-specific populations. A post hoc Tukey test identified specific mean differences. Adjusting for age, an ANCOVA was used to compare sex and occupation (infantry and non-infantry) differences in APFT results. Surveyed populations consisted of 2216 BCT Soldiers (1573 men and 643 women) and 5515 Operational Soldiers (4987 men and 528 women). Male and female operational Soldiers had greater muscular performance (79%-125% higher APFT push-ups, 66%-85% higher APFT sit-ups) and cardiorespiratory performance (22%-24% faster APFT 2-mile run times) than BCT Soldiers. Male BCT and operational Soldiers outperform their female counterparts on tests of muscular and cardiorespiratory endurance. Sex differences in physical performances attenuated among female Soldiers in operational units compared to BCT. Among male operational Soldiers, infantry Soldiers exhibited greater cardiorespiratory and muscular performance than non-infantry Soldiers. Higher BMI was associated with higher age groups, except for female BCT Soldiers. Gaps in cardiorespiratory and muscular performances between men and women should be addressed through targeted physical training programs that aim to minimize physiological differences. Published by Elsevier Ltd.
Tensor Algebra Library for NVidia Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry
This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less
NASA Astrophysics Data System (ADS)
Ermilov, A. S.; Zobov, V. E.
2007-12-01
To experimentally realize quantum computations on d-level basic elements (qudits) at d > 2, it is necessary to develop schemes for the technical realization of elementary logical operators. We have found sequences of selective rotation operators that represent the operators of the quantum Fourier transform (Walsh-Hadamard matrices) for d = 3-10. For the prime numbers 3, 5, and 7, the well-known method of linear algebra is applied, whereas, for the factorable numbers 6, 9, and 10, the representation of virtual spins is used (which we previously applied for d = 4, 8). Selective rotations can be realized, for example, by means of pulses of an RF magnetic field for systems of quadrupole nuclei or laser pulses for atoms and ions in traps.
NASA Astrophysics Data System (ADS)
Vereshchagin, Gregory V.; Aksenov, Alexey G.
2017-02-01
Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Aleksandrov, V. A.; Vladimirov, V. V.; Dmitriev, R. D.; Osipov, S. O.
This book takes into consideration domestic and foreign developments related to launch vehicles. General information concerning launch vehicle systems is presented, taking into account details of rocket structure, basic design considerations, and a number of specific Soviet and American launch vehicles. The basic theory of reaction propulsion is discussed, giving attention to physical foundations, the various types of forces acting on a rocket in flight, basic parameters characterizing rocket motion, the effectiveness of various approaches to obtain the desired velocity, and rocket propellants. Basic questions concerning the classification of launch vehicles are considered along with construction and design considerations, aspects of vehicle control, reliability, construction technology, and details of structural design. Attention is also given to details of rocket motor design, the basic systems of the carrier rocket, and questions of carrier rocket development.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Classifying the Basic Parameters of Ultraviolet Copper Bromide Laser
NASA Astrophysics Data System (ADS)
Gocheva-Ilieva, S. G.; Iliev, I. P.; Temelkov, K. A.; Vuchkov, N. K.; Sabotinov, N. V.
2009-10-01
The performance of deep ultraviolet copper bromide lasers is of great importance because of their applications in medicine, microbiology, high-precision processing of new materials, high-resolution laser lithography in microelectronics, high-density optical recording of information, laser-induced fluorescence in plasma and wide-gap semiconductors and more. In this paper we present a statistical study on the classification of 12 basic lasing parameters, by using different agglomerative methods of cluster analysis. The results are based on a big amount of experimental data for UV Cu+ Ne-CuBr laser with wavelengths 248.6 nm, 252.9 nm, 260.0 nm and 270.3 nm, obtained in Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences. The relevant influence of parameters on laser generation is also evaluated. The results are applicable in computer modeling and planning the experiments and further laser development with improved output characteristics.
NASA Astrophysics Data System (ADS)
Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.
2018-03-01
Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.
Chicano Alternative Education.
ERIC Educational Resources Information Center
Galicia, H. Homero; Almaguer, Clementina
Alternative schooling is challenging some basic notions of curriculum, operation, and structure of traditional schools; it is not challenging the basic concept of schooling. Chicano alternative education, an elusive concept, lacks a precise definition. Chicano alternative schools reflect a vast diversity in structure, focus, and goals. The Chicano…
49 CFR 236.1043 - Task analysis and basic requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...
49 CFR 236.1043 - Task analysis and basic requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...
49 CFR 236.1043 - Task analysis and basic requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...
49 CFR 236.1043 - Task analysis and basic requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...
49 CFR 236.1043 - Task analysis and basic requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Positive Train Control Systems § 236.1043 Task analysis and basic requirements. (a) Training structure and... installation, maintenance, repair, modification, inspection, testing, and operating tasks that must be...
Competencies for Articulation: Electronics.
ERIC Educational Resources Information Center
Southeast Community Coll., Lincoln, NE.
Designed to help articulate vocational education student progress from one level of training to another and to employment, this electronics education guide lists competencies for soldering; performing basic operations with test equipment; servicing basic logic circuits; servicing DC power supplies; servicing solid state amplifiers; and servicing…
32 CFR 634.27 - Speed-measuring devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... devices. Speed-measuring devices will be used in traffic control studies and enforcement programs. Signs.... (v) Demonstrate basic skills in checking calibration and operating the specific radar instrument(s). (vi) Demonstrate basic skills in preparing and presenting records and courtroom testimony relating to...
40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Operating Parameter Levels 4 Table 4 to..., Table 4 Table 4 to Subpart OOO of Part 63—Operating Parameter Levels Device Parameters to be monitored... concentration level or reading at outlet of device Maximum organic HAP concentration or reading a 25 to 50 mm...
A Distributed Operating System for BMD Applications.
1982-01-01
Defense) applications executing on distributed hardware with local and shared memories. The objective was to develop real - time operating system functions...make the Basic Real - Time Operating System , and the set of new EPL language primitives that provide BMD application processes with efficient mechanisms
Mathematical correlation of modal-parameter-identification methods via system-realization theory
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Operational Characteristics of an Accelerator Driven Fissile Solution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimpland, Robert Herbert
Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less
Dynamical Analysis of an SEIT Epidemic Model with Application to Ebola Virus Transmission in Guinea.
Li, Zhiming; Teng, Zhidong; Feng, Xiaomei; Li, Yingke; Zhang, Huiguo
2015-01-01
In order to investigate the transmission mechanism of the infectious individual with Ebola virus, we establish an SEIT (susceptible, exposed in the latent period, infectious, and treated/recovery) epidemic model. The basic reproduction number is defined. The mathematical analysis on the existence and stability of the disease-free equilibrium and endemic equilibrium is given. As the applications of the model, we use the recognized infectious and death cases in Guinea to estimate parameters of the model by the least square method. With suitable parameter values, we obtain the estimated value of the basic reproduction number and analyze the sensitivity and uncertainty property by partial rank correlation coefficients.
User's manual for MMLE3, a general FORTRAN program for maximum likelihood parameter estimation
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1980-01-01
A user's manual for the FORTRAN IV computer program MMLE3 is described. It is a maximum likelihood parameter estimation program capable of handling general bilinear dynamic equations of arbitrary order with measurement noise and/or state noise (process noise). The theory and use of the program is described. The basic MMLE3 program is quite general and, therefore, applicable to a wide variety of problems. The basic program can interact with a set of user written problem specific routines to simplify the use of the program on specific systems. A set of user routines for the aircraft stability and control derivative estimation problem is provided with the program.
Brocks, Dion R
2015-07-01
Pharmacokinetics can be a challenging topic to teach due to the complex relationships inherent between physiological parameters, mathematical descriptors and equations, and their combined impact on shaping the blood fluid concentration vs. time curves of drugs. A computer program was developed within Microsoft Excel for Windows, designed to assist in the instruction of basic pharmacokinetics within an entry-to-practice pharmacy class environment. The program is composed of a series of spreadsheets (modules) linked by Visual Basic for Applications, intended to illustrate the relationships between pharmacokinetic and in some cases physiological parameters, doses and dose rates and the drug blood fluid concentration vs. time curves. Each module is accompanied by a simulation user's guide, prompting the user to change specific independent parameters and then observe the impact of the change(s) on the drug concentration vs. time curve and on other dependent parameters. "Slider" (or "scroll") bars can be selected to readily see the effects of repeated changes on the dependencies. Topics covered include one compartment single dose administration (iv bolus, oral, short infusion), intravenous infusion, repeated doses, renal and hepatic clearance, nonlinear elimination, two compartment model, plasma protein binding and the relationship between pharmacokinetics and drug effect. The program has been used in various forms in the classroom over a number of years, with positive ratings generally being received from students for its use in the classroom. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The recent and prospective developments of cooled IR FPAs for double application at Electron NRI
NASA Astrophysics Data System (ADS)
Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.
2003-09-01
The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.