Sample records for basic particle characterization

  1. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.

    PubMed

    Machemer, Steven D

    2004-01-15

    Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.

  2. Modeling the surface and interior structure of comet nuclei using a multidisciplinary approach

    NASA Technical Reports Server (NTRS)

    Odell, C. R.; Dakoulas, Panos C.; Pharr, George M.

    1991-01-01

    The goal was to investigate the structural properties of the surface of comet nucleus and how the surface should change with time under effect of solar radiation. The basic model that was adopted was that the nucleus is an aggregate of frosty particles loosely bound together, so that it is essentially a soil. The nucleus must mostly be composed of dust particles. The observed mass ratios of dust to gas in the coma is never much greater than unity, but this ratio is probably a much lower limit than that of the nucleus because it is vastly easier to remove the gaseous component by sublimation than by carrying off the dust. Therefore the described models assumed that the particles in the soil were frost covered grains of submicron basic size, closely resembling the interstellar grains. The surface properties of such a nucleus under the effects of heating and cooling as the nucleus approaches and recedes from the Sun generally characterized.

  3. On the Chemical Characterization of Organic Matter in Rain at Mexico City.

    NASA Astrophysics Data System (ADS)

    Montero-Martinez, G.; Andraca-Ayala, G. L.; Hernández-Nagay, D. P.; Mendoza-Trejo, A.; Rivera-Arellano, J.; Rosado-Abon, A.; Roy, P. D.

    2016-12-01

    The chemical composition of the aerosol plays a central role in atmospheric processes and has influence on the hydrological cycle. Clouds form through the nucleation of water vapor on certain atmospheric aerosol particles, called cloud condensation nuclei (CCN). Also, precipitating particles scavenge some other aerosol particles on their way to the surface. Atmospheric particles are a mixture of organic and inorganic materials, both soluble and insoluble in water. Aerosol chemical characterization indicates a larger variety of compounds in urban areas respect to other regions. Thus, chemical composition of rainwater may represent an important aspect for estimating atmospheric air pollution. It has been recognized that organic species present in aerosol particles are important in the formation of cloud droplets. Therefore, the information about the organic compounds in precipitation samples may be helpful to understand their effects on the formation of clouds and rain, as well as their sources. Organic acids are ubiquitous components of aerosols and have been identified in precipitation water. In this work, preliminary results of the content of soluble organic (neutral and acidic) matter in rainwater samples collected in Mexico City during 2015 will be presented. The organic compounds content was performed by using an ionic chromatographic methodology with gradient elution; so the total amount was evaluated as the sum of four fractions: neutral/basic, mono-, bi-, and poly-acid compounds. The outcomes suggest that most of the amount of organic substances soluble in water is contained by the neutral/basic and mono-acid fractions. Regarding the total amount of water soluble organic compounds, the rain samples collected in Mexico City are in agreement with some others reported for large urban areas.

  4. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the acceleratorsmore » are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.« less

  5. Functional magnetic porous silica for T 1-T 2 dual-modal magnetic resonance imaging and pH-responsive drug delivery of basic drugs

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhang, Run; Guo, Yi; Zhang, Cheng; Zhao, Wei; Xu, Zhiping; Whittaker, Andrew K.

    2016-12-01

    A smart magnetic-targeting drug carrier γ-Fe2O3@p-silica comprising a γ-Fe2O3 core and porous shell has been prepared and characterized. The particles have a uniform size of about 60 nm, and a porous shell of thickness 3 nm. Abundant hydroxyl groups and a large surface area enabled the γ-Fe2O3@p-silica to be readily loaded with a large payload of the basic model drug rhodamine B (RB) (up to 73 mg g-1). Cytotoxicity assays of the γ-Fe2O3@p-silica particles indicated that the particles were biocompatible and suitable for carrying drugs. It was found that the RB was released rapidly at pH 5.5 but at pH 7.4 the rate and extent of release was greatly attenuated. The particles therefore demonstrate an excellent pH-triggered drug release. In addition, the γ-Fe2O3@p-silica particles could be tracked by magnetic resonance imaging (MRI). A clear dose-dependent contrast enhancement in both T 1-weighted and T 2-weighted MR images indicated the potential of the γ-Fe2O3@p-silica particles to act as dual-mode T 1 and T 2 MRI contrast agents.

  6. Investigations on composites reinforced with HEA particles

    NASA Astrophysics Data System (ADS)

    Carcea, I.; Chelariu, R.; Asavei, L.; Cimpoeşu, N.; Florea, R. M.

    2017-08-01

    This work reports the results of investigations on the fortification with high entropy alloys particles of aluminium matrix composite materials. The properties of these materials processed by Vortex techniques primarily depend on the matrix and the volume fraction of the constituent phase. The mechanical properties, toughening mechanisms and potential applications are briefly reviewed. Traditional methods were used for the basic characterization of the composite. The microstructure of the composites were investigated by optical and scanning electron microscopy (OM, SEM). SEM analysis was performed in order to observe the microstructural evolution as a function of the HEA particles content and to identify some reasons of the presence of porosity or any irregularities within the metal matrix.

  7. Sedimentation field-flow fractionation for characterization of citric acid-modified Hβ zeolite particles: Effect of particle dispersion and carrier composition.

    PubMed

    Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho

    2015-11-27

    In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations

    NASA Astrophysics Data System (ADS)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2014-12-01

    The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.

  9. Spheroidization by Plasma Processing and Characterization of Stainless Steel Powder for 3D Printing

    NASA Astrophysics Data System (ADS)

    Ji, Lina; Wang, Changzhen; Wu, Wenjie; Tan, Chao; Wang, Guoyu; Duan, Xuan-Ming

    2017-10-01

    Stainless steel 316L (SS 316L) powder was spheroidized by plasma processing to improve its suitability for powder 3D printing. The obtained spheroidized (sphero) powder was characterized in terms of its crystalline phases, elemental composition, morphology, particle size and distribution, light absorption, and flow properties. The elemental composition of the sphero powder met the Chinese standard for SS 316L except for its Si content. The volume fraction of ferrite increased after plasma processing. Furthermore, plasma processing was shown to not only reduce the mean size of the particles in the size range of 10 to 100 μm but also generate particles in the size range of 0.1 to 10 μm. The smaller particles filled the voids among larger particles, increasing the powder density. The light absorption was also increased owing to enhanced internal reflection. Although the basic flow energy decreased after plasma processing, the flow function (FF) value was smaller for the sphero powder, indicating a lower flowability of the sphero powder. However, the density of SS 316L pieces printed with commercial and sphero powders was 98.76 pct and 98.16 pct of the SS 316L bulk density, respectively, indicating the suitability of the sphero powder for 3D printing despite an FF below 10.

  10. A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy.

    PubMed

    Liu, Fangchao; Dong, Chaoqing; Ren, Jicun

    2018-03-15

    Colloidal gold nanospheres (GNSs) have become important nanomaterials in biomedical applications due to their special optical properties, good chemical stability, and biocompatibility. However, measuring the diffusion coefficients or concentration distribution of GNSs within live cells accurately without any extra fluorescent labeling in situ has still not been resolved. In this work, a single particle method is developed to study the concentration distribution of folic acid-modified GNSs (FA-GNSs) internalized via folate receptors, and investigates their diffusion dynamics within live cells using single particle fluorescence correlation spectroscopy (FCS). We optimized the experimental conditions and verified the feasibility of 30 nm GNSs without extra fluorescence labeling being used for single particle detection inside live cells. Then, the FCS characterization strategy was used to measure the concentration and diffusion coefficient distributions of GNSs inside live cells and the obtained results were basically in agreement with those obtained by TEM. The results demonstrate that our strategy is characterized as an in situ, nondestructive, rapid and dynamic method for the assay of live cells, and it may be widely used in the further design of GNP-based drug delivery and therapeutics.

  11. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Polansky, Stepan

    2016-07-01

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  12. Stress Wave Interactions with Tunnels Buried in Well-Characterized Jointed Media.

    DTIC Science & Technology

    1980-06-01

    27 14 Particle Velocity and Principal Stress Fields at 62 jisec for the Elastic- Plastic Media Model (Case 1, 0.8 kbar...is used; the basic formulation is similar to the HEMP code (Ref. 3) . Tn numerical solutions and material properties are luscriben in Section 3. 3...media is 16A rock simulant. The elastic- plastic properties are modeled with the following parameters: Bulk Modulus K = .131 Mbar Shear Modulus G

  13. Assembly of Ultra-Dense Nanowire-Based Computing Systems

    DTIC Science & Technology

    2006-06-30

    34* characterized basic device element properties and statistics "* demonstrated product of sums (POS) validating assembled 2-bit adder structures " Demonstrated...linear region (Vds= 10 mV) from the peak g = 3 jiS at IVg -VTI= 0.13 V using the charge control model, representsmore than a factor of 10 improvement over...disrupted by ionizing particles or thermal fluctuation. Further, when working with such small charges, it is statistically possible that logic

  14. Microscale Particulate Classifiers (MiPAC) Being Developed

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.

    2001-01-01

    The NASA Glenn Research Center is developing microscale sensors to characterize atmospheric-borne particulates. The devices are fabricated using MEMS (microelectromechanical systems) technologies. These technologies are derived from those originally developed in support of the semiconductor processing industry. The resulting microsensors can characterize a wide range of particles and are, therefore, suitable to a broad range of applications. This project is supported under a collaborative program called the Glennan Microsystems Initiative. The initiative comprises members of NASA Glenn Research Center, various university affiliates from the State of Ohio, and a number of participating industrial partners. Funding is jointly provided by NASA, the State of Ohio, and industrial members. The work described here is a collaborative arrangement between researchers at Glenn, the University of Minnesota, The National Institute of Standards and Technology (NIST), and the Cleveland State University. Actual device fabrication is conducted at Glenn and at the laboratories of Case Western Reserve University. Case Western is also located in Cleveland, Ohio, and is a participating member of the initiative. The principal investigator for this project is Paul S. Greenberg of Glenn. Two basic types of devices are being developed, and target different ranges of particle sizes. The first class of devices, which is used to measure nanoparticles (i.e., particles in the range of 0.002 to 1 mm), is based on the technique of Electrical Mobility Classification. This technique also affords the valuable ability of measuring the electrical charge state of the particles. Such information is important in the understanding of agglomeration mechanisms and is useful in the development of methods for particle repulsion. The second type of device being developed, which utilizes optical scattering, is suitable for particles larger than 1 mm. This technique also provides information on particle shape and composition. Applications for these sensors include fundamental planetary climatology, monitoring and filtration in spacecraft, human habitation modules and related systems, characterization of particulate emissions from propulsion and power systems, and as early warning sensors for both space-based and ter-restrial fire detection. These devices are also suitable for characterizing biological compounds such as allergens, infectious agents, and biotoxic agents.

  15. TiO2@TDI@DMAPA: an amine-modified nanoparticle, tailored to act as an economic basic heterogeneous nanocatalyst

    NASA Astrophysics Data System (ADS)

    Esfahanian, Farzane; Amoozadeh, Ali; Bitaraf, Mehrnoosh

    2018-06-01

    This study has represented an easy and inexpensive method for the synthesis of a new basic nanocatalyst. In this regard, 3-dimethylaminopropylamine (DMAPA), an economic, industrial, and readily obtainable basic compound, has been grafted onto nano-titania particles by the use of 2,4-toluene diisocyanate (TDI) as a bi-functional, inexpensive, and highly reactive linker. The prepared catalyst has been characterized using the spectroscopic FT-IR method, XRD, FE-SEM, EDX, and back titration. Furthermore, it was identified as an effective catalyst in the preparation of DHPM derivatives and pyranopyrazoles which results in high purity and high yields of products. Response surface methodology (RSM) based on a central composite design (CCD) was employed to reach the optimal conditions. The catalyst can be readily separated and recycled up to six times. [Figure not available: see fulltext.

  16. Mathematical analysis of frontal affinity chromatography in particle and membrane configurations.

    PubMed

    Tejeda-Mansir, A; Montesinos, R M; Guzmán, R

    2001-10-30

    The scaleup and optimization of large-scale affinity-chromatographic operations in the recovery, separation and purification of biochemical components is of major industrial importance. The development of mathematical models to describe affinity-chromatographic processes, and the use of these models in computer programs to predict column performance is an engineering approach that can help to attain these bioprocess engineering tasks successfully. Most affinity-chromatographic separations are operated in the frontal mode, using fixed-bed columns. Purely diffusive and perfusion particles and membrane-based affinity chromatography are among the main commercially available technologies for these separations. For a particular application, a basic understanding of the main similarities and differences between particle and membrane frontal affinity chromatography and how these characteristics are reflected in the transport models is of fundamental relevance. This review presents the basic theoretical considerations used in the development of particle and membrane affinity chromatography models that can be applied in the design and operation of large-scale affinity separations in fixed-bed columns. A transport model for column affinity chromatography that considers column dispersion, particle internal convection, external film resistance, finite kinetic rate, plus macropore and micropore resistances is analyzed as a framework for exploring further the mathematical analysis. Such models provide a general realistic description of almost all practical systems. Specific mathematical models that take into account geometric considerations and transport effects have been developed for both particle and membrane affinity chromatography systems. Some of the most common simplified models, based on linear driving-force (LDF) and equilibrium assumptions, are emphasized. Analytical solutions of the corresponding simplified dimensionless affinity models are presented. Particular methods for estimating the parameters that characterize the mass-transfer and adsorption mechanisms in affinity systems are described.

  17. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    PubMed

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-09-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  18. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    PubMed Central

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM), a Fast Mobility Particle Sizer (FMPSTM), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  19. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at themore » altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.« less

  20. Basic problems and new potentials in monitoring sediment transport using Japanese pipe type geophone

    NASA Astrophysics Data System (ADS)

    Sakajo, Saiichi

    2016-04-01

    The authors have conducted a lot of series of monitoring of sediment transport by pipe type geophone in a model hydrological channel with various gradients and water discharge, using the various size of particles from 2 to 21 mm in the diameter. In the case of casting soils particle by particle into the water channel, 1,000 test cases were conducted. In the case of casting all soils at a breath into the water channel, 100 test cases were conducted. The all test results were totally analyzed by the conventional method, with visible judgement by video pictures. Then several important basic problems were found in estimating the volume and particle distributions by the conventional method, which was not found in the past similar studies. It was because the past studies did not consider the types of collisions between sediment particle and pipe. Based on these experiments, the authors have firstly implemented this idea into the old formula to estimate the amount of sediment transport. In the formula, two factors of 1) the rate of sensing in a single collision and 2) the rate of collided particles to a cast all soil particles were concretely considered. The parameters of these factors could be determined from the experimental results and it was found that the obtained formula could estimate grain size distribution. In this paper, they explain the prototype formula to estimate a set of volume and distribution of sediment transport. Another finding in this study is to propose a single collision as a river index to recognize its characteristics of sediment transport. This result could characterize the risk ranking of sediment transport in the rivers and mudflow in the mountainous rivers. Furthermore, in this paper the authors explain how the preciseness of the pipe geophone to sense the smaller sediment particles shall be improved, which has never been able to be sensed.

  1. Physical Immobilization Liposomes in Uniform Zwitterionic Microgel Particles Fabricated in Microcapillary Device

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Seon; Byun, Aram; Kim, Jin Woong

    2014-03-01

    Lipid molecules have both hydrophilic and hydrophobic properties. Since their packing parameter ranges from 0.5 to 1, they self-assemble to form a vesicle structure, liposome. Thanks to the vesicle structure, liposome is able to encapsulate both hydrophilic and hydrophobic active ingredients, thus widening its applicability to pharmaceutical, cosmetic, and food industry. However, its vesicular structure is readily transferred to micelle in the presence of amphiphilic additives with low packing parameters. Therefore, it is critical to developing a technique to overcome this drawback. This study introduces a microfluidic approach to physically immobilize liposome in microgel particles. For this, we generate a uniform liposome-in-oil-in-water emulsion in a capillary-based microfluidic device. Basically, we observe how the flows in micro-channels affect generation of embryo emulsion drops. Then, the uniform emulsion is solidified by using photo-polymerization. Finally, we characterize the particle morphology, membrane fluidity, and mesh property, encapsulation efficiency and releasing.

  2. Impact of microparticle formulation approaches on drug burst release: a level A IVIVC.

    PubMed

    Ishak, Rania A H; Mortada, Nahed D; Zaki, Noha M; El-Shamy, Abd El-Hamid A; Awad, Gehanne A S

    2014-01-01

    To study the effect of poly(d,l-lactic-co-glycolic acid) (PLGA) microparticles (MPs) preparation techniques on particle physical characterization with special emphasis on burst drug release. A basic drug clozapine was used in combination with acid-terminated PLGA. Two approaches for MP preparation were compared; the in situ forming microparticle (ISM) and the emulsion-solvent evaporation (ESE) methods using an experimental design. The MPs obtained were compared according to their physical characterization, burst release and T80%. An in vivo pharmacokinetic study with in vitro-in vivo correlation (IVIVC) was also performed for the selected formula. Both methods were able to sustain drug release for three weeks. ISM produced more porous particles and was not effective as ESE for controlling burst release. A good IVIVC (R(2) = 0.9755) was attained when injecting the selected formula into rats. MPs prepared with ESE showed a minimum burst release and a level A IVIVC was obtained when administered to rats.

  3. Soft errors in commercial off-the-shelf static random access memories

    NASA Astrophysics Data System (ADS)

    Dilillo, L.; Tsiligiannis, G.; Gupta, V.; Bosser, A.; Saigne, F.; Wrobel, F.

    2017-01-01

    This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the response of irradiated stacked layer devices and on the use of characterized SRAM devices as particle detectors.

  4. Inhalers and nebulizers: basic principles and preliminary measurements

    NASA Astrophysics Data System (ADS)

    Misik, Ondrej; Lizal, Frantisek; Asl, Vahid Farhikhteh; Belka, Miloslav; Jedelsky, Jan; Elcner, Jakub; Jicha, Miroslav

    2018-06-01

    Inhalers are hand-held devices which are used for administration of therapeutic aerosols via inhalation. Nebulizers are larger devices serving for home and hospital care using inhaled medication. This contribution describes the basic principles of dispersion of aerosol particles used in various types of inhalers and nebulizers, and lists the basic physical mechanisms contributing to the deposition of inhaled particles in the human airways. The second part of this article presents experimental setup, methodology and preliminary results of particle size distributions produced by several selected inhalers and nebulizers.

  5. Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena

    NASA Astrophysics Data System (ADS)

    Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory

    2012-02-01

    Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.

  6. Ultrastructural and cytochemical aspects of Schistosoma mansoni cercaria.

    PubMed

    Cavalcanti, M G S; Araújo, H R C; Paiva, M H S; Silva, G M; Barbosa, C C G S; Silva, L F; Brayner, F A; Alves, L C

    2009-04-01

    An alternative to identify the critical processes necessary to the parasite establishment of the host is to focus on the evolutionary stage responsible for the primary invasion, i.e. the infection structure. The objective of this study was to ultrastructurally characterize Schistosoma mansoni cercariae, using cytochemical techniques. In order to identify basic proteins, techniques such as ethanolic phosphotungstic acid (EPTA) and ammoniacal silver staining were used. Calcium sites location was achieved using the Hepler technique and to evidence anionic groups, we used cationic ferritin particles and enzyme treatment with trypsin Vibrio cholerae, chondroitinase and neuraminidase. The EPTA technique highlighted the presence of basic tegument proteins, nucleus and nucleolus from subtegumental cells, inclusion bodies and preacetabular glands. After using ammoniacal silver, we observed a strong staining in all infective larvae, particularly in the nuclei of muscle cells, circular muscle tissue and preacetabular glands. Calcium site locations were shown to be uniform, thereby limiting the inner spaces of the larvae, especially muscle cells. Samples treated with cationized ferritin particles presented strong staining at the cuticular level. Neuraminidase treatment did not alter the stained shape of such particles on the trematode surface. However, trypsin or chondroitinase treatment resulted in absence of staining on the larval surface. This information on the biochemical composition of the infecting S. mansoni larvae provides data for a better understanding of the biology of this parasite and background on the intriguing parasite-host relationship.

  7. Efficiency of Brownian heat engines.

    PubMed

    Derényi, I; Astumian, R D

    1999-06-01

    We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify and compare the three basic setups characterized by the type of the connection between the Brownian particle and the two heat reservoirs: (i) simultaneous, (ii) alternating in time, and (iii) position dependent. We make a clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the former is always irreversible and it is only the third setup where the latter is reversible when the engine works quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower than that of a Carnot cycle.

  8. Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.

    PubMed

    Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P

    2012-03-01

    The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Polyelectrolyte scaling laws for microgel yielding near jamming.

    PubMed

    Bhattacharjee, Tapomoy; Kabb, Christopher P; O'Bryan, Christopher S; Urueña, Juan M; Sumerlin, Brent S; Sawyer, W Gregory; Angelini, Thomas E

    2018-02-28

    Micro-scale hydrogel particles, known as microgels, are used in industry to control the rheology of numerous different products, and are also used in experimental research to study the origins of jamming and glassy behavior in soft-sphere model systems. At the macro-scale, the rheological behaviour of densely packed microgels has been thoroughly characterized; at the particle-scale, careful investigations of jamming, yielding, and glassy-dynamics have been performed through experiment, theory, and simulation. However, at low packing fractions near jamming, the connection between microgel yielding phenomena and the physics of their constituent polymer chains has not been made. Here we investigate whether basic polymer physics scaling laws predict macroscopic yielding behaviours in packed microgels. We measure the yield stress and cross-over shear-rate in several different anionic microgel systems prepared at packing fractions just above the jamming transition, and show that our data can be predicted from classic polyelectrolyte physics scaling laws. We find that diffusive relaxations of microgel deformation during particle re-arrangements can predict the shear-rate at which microgels yield, and the elastic stress associated with these particle deformations predict the yield stress.

  10. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, M.; Department of Physics, University of Chinese Academy of Sciences, Beijing 100049; Qiu, L., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com

    2014-09-07

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a verymore » reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.« less

  11. A new thermally immobilized fluorinated stationary phase for RP-HPLC.

    PubMed

    Maldaner, Liane; Jardim, Isabel C S F

    2010-02-01

    A new fluorinated stationary phase was prepared through thermal immobilization of poly(methyl-3,3,3-trifluoropropylsiloxane) onto 5 microm Kromasil silica particles. The best conditions of immobilization time and temperature were determined through a central composite design and response surface methodologies. Physical-chemical characterization using solid-state (29)Si NMR measurements, infrared spectroscopy and elemental analysis showed that the immobilization process was effective to promote a coating of the support that corresponds to a monolayer of polymer. The stationary phase presents selectivity for positional isomers and good peak shape for basic compounds.

  12. Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit.

    PubMed

    Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg

    2015-08-12

    To study the magnetic dynamics of superparamagnetic nanoparticles, we use scanning probe relaxometry and dephasing of the nitrogen vacancy (NV) center in diamond, characterizing the spin noise of a single 10 nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T1) and dephasing (T2) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

  13. Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit

    NASA Astrophysics Data System (ADS)

    Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg

    2015-08-01

    To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

  14. Suspended particles in wastewater: their optical, sedimentation and acoustical characterization and modeling.

    PubMed

    Pallarès, A; François, P; Pons, M-N; Schmitt, P

    2011-01-01

    Wastewater regulation and treatment is still a major concern in planetary pollution management. Some pollutants, referred to as particulate matter, consist of very small particles just suspended in the water. Various techniques are used for the suspended particles survey. Few of them are able to provide real-time data. The development of new, real time instruments needs the confrontation with real wastewater. Due its instability, the modeling of wastewater in terms of suspended solids was explored. Knowing the description of real wastewater, we tried to produce a synthetic mixture made of basic organic ingredients. A good agreement in terms of turbidity and settling velocity was observed between the artificial wastewater matrix and the real one. The investigation of the individual contribution of the different compounds to the acoustical signal showed a more complex dependence. Thus the modeling of wastewater with reference to turbidity and settling velocity is not sufficient to describe it acoustically. Further studies should lead to a good comparison of the acoustical and turbidity behavior of wastewater.

  15. Characterizing property distributions of polymeric nanogels by size-exclusion chromatography.

    PubMed

    Mourey, Thomas H; Leon, Jeffrey W; Bennett, James R; Bryan, Trevor G; Slater, Lisa A; Balke, Stephen T

    2007-03-30

    Nanogels are highly branched, swellable polymer structures with average diameters between 1 and 100nm. Size-exclusion chromatography (SEC) fractionates materials in this size range, and it is commonly used to measure nanogel molar mass distributions. For many nanogel applications, it may be more important to calculate the particle size distribution from the SEC data than it is to calculate the molar mass distribution. Other useful nanogel property distributions include particle shape, area, and volume, as well as polymer volume fraction per particle. All can be obtained from multi-detector SEC data with proper calibration and data analysis methods. This work develops the basic equations for calculating several of these differential and cumulative property distributions and applies them to SEC data from the analysis of polymeric nanogels. The methods are analogous to those used to calculate the more familiar SEC molar mass distributions. Calibration methods and characteristics of the distributions are discussed, and the effects of detector noise and mismatched concentration and molar mass sensitive detector signals are examined.

  16. Efficient production of ultrapure manganese oxides via electrodeposition.

    PubMed

    Cheney, Marcos A; Joo, Sang Woo; Banerjee, Arghya; Min, Bong-Ki

    2012-08-01

    A new process for the production of electrolytic amorphous nanomanganese oxides (EAMD) with uniform size and morphology is described. EAMD are produced for the first time by cathodic deposition from a basic aqueous solution of potassium permanganate at a constant temperature of 16°C. The synthesized materials are characterized by XRD, SEM, TEM, and HRTEM. The materials produced at 5.0 V at constant temperature are amorphous with homogeneous size and morphology with an average particle size around 20 nm, which appears to be much lesser than the previously reported anodic EAMD. A potentiostatic electrodeposition with much lesser deposition rate (with respect to previously reported anodic depositions) is considered to be the reason behind the very low and homogenous particle size distribution due to the lesser agglomeration of our as-synthesized nanoparticles. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Materials characterization study of conductive flexible second surface mirrors

    NASA Technical Reports Server (NTRS)

    Levadou, F.; Bosma, S. J.; Paillous, A.

    1981-01-01

    The status of prequalification and qualification work on conductive flexible second surface mirrors is described. The basic material is FEP Teflon witn either aluminium or silver vacuum deposited reflectors. The top layer has been made conductive by deposition of layer of a indium oxide. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties, the electrostatic behavior of the materials under simulated substorm environment and electrical conductivity at low temperatures are characterized. The effects of simulated ultra violet and particles irradiation on electrical and thermo-optical properties of the materials are also presented.

  18. Thermodynamic framework for compact q-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Souza, Andre M. C.; Andrade, Roberto F. S.; Nobre, Fernando D.; Curado, Evaldo M. F.

    2018-02-01

    Recent works have associated systems of particles, characterized by short-range repulsive interactions and evolving under overdamped motion, to a nonlinear Fokker-Planck equation within the class of nonextensive statistical mechanics, with a nonlinear diffusion contribution whose exponent is given by ν = 2 - q. The particular case ν = 2 applies to interacting vortices in type-II superconductors, whereas ν > 2 covers systems of particles characterized by short-range power-law interactions, where correlations among particles are taken into account. In the former case, several studies presented a consistent thermodynamic framework based on the definition of an effective temperature θ (presenting experimental values much higher than typical room temperatures T, so that thermal noise could be neglected), conjugated to a generalized entropy sν (with ν = 2). Herein, the whole thermodynamic scheme is revisited and extended to systems of particles interacting repulsively, through short-ranged potentials, described by an entropy sν, with ν > 1, covering the ν = 2 (vortices in type-II superconductors) and ν > 2 (short-range power-law interactions) physical examples. One basic requirement concerns a cutoff in the equilibrium distribution Peq(x) , approached due to a confining external harmonic potential, ϕ(x) = αx2 / 2 (α > 0). The main results achieved are: (a) The definition of an effective temperature θ conjugated to the entropy sν; (b) The construction of a Carnot cycle, whose efficiency is shown to be η = 1 -(θ2 /θ1) , where θ1 and θ2 are the effective temperatures associated with two isothermal transformations, with θ1 >θ2; (c) Thermodynamic potentials, Maxwell relations, and response functions. The present thermodynamic framework, for a system of interacting particles under the above-mentioned conditions, and associated to an entropy sν, with ν > 1, certainly enlarges the possibility of experimental verifications.

  19. Particulate Matter (PM) Basics

    EPA Pesticide Factsheets

    Particle pollution is the term for a mixture of solid particles and liquid droplets found in the air. These include inhalable coarse particles, with diameters between 2.5 micrometers and 10 micrometers, and fine particles, 2.5 micrometers and smaller.

  20. Hyperunified field theory and gravitational gauge-geometry duality

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  1. Deposition of biomass combustion aerosol particles in the human respiratory tract.

    PubMed

    Löndahl, Jakob; Pagels, Joakim; Boman, Christoffer; Swietlicki, Erik; Massling, Andreas; Rissler, Jenny; Blomberg, Anders; Bohgard, Mats; Sandström, Thomas

    2008-08-01

    Smoke from biomass combustion has been identified as a major environmental risk factor associated with adverse health effects globally. Deposition of the smoke particles in the lungs is a crucial factor for toxicological effects, but has not previously been studied experimentally. We investigated the size-dependent respiratory-tract deposition of aerosol particles from wood combustion in humans. Two combustion conditions were studied in a wood pellet burner: efficient ("complete") combustion and low-temperature (incomplete) combustion simulating "wood smoke." The size-dependent deposition fraction of 15-to 680-nm particles was measured for 10 healthy subjects with a novel setup. Both aerosols were extensively characterized with regard to chemical and physical particle properties. The deposition was additionally estimated with the ICRP model, modified for the determined aerosol properties, in order to validate the experiments and allow a generalization of the results. The measured total deposited fraction of particles from both efficient combustion and low-temperature combustion was 0.21-0.24 by number, surface, and mass. The deposition behavior can be explained by the size distributions of the particles and by their ability to grow by water uptake in the lungs, where the relative humidity is close to saturation. The experiments were in basic agreement with the model calculations. Our findings illustrate: (1) that particles from biomass combustion obtain a size in the respiratory tract at which the deposition probability is close to its minimum, (2) that particle water absorption has substantial impact on deposition, and (3) that deposition is markedly influenced by individual factors.

  2. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values

    NASA Astrophysics Data System (ADS)

    Iranmanesh, P.; Tabatabai Yazdi, Sh.; Mehran, M.; Saeednia, S.

    2018-03-01

    In this work, well-dispersed nanoparticles of NiFe2O4 with diameters less than 10 nm and good crystallinity and excellent magnetic properties were synthesized via a simple one-step capping agent-free coprecipitation route from metal chlorides. The ammonia was used as the precipitating agent and also the solution basicity controller. The effect of pH value during the coprecipitation process was investigated by details through microstructural, optical and magnetic characterizations of the synthesized particles using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-vis spectroscopy, and vibrating sample magnetometer. The results showed that the particle size, departure from the inverse spinel structure, the band gap value and the magnetization of Ni ferrite samples increase with pH value from 9 to 11 indicating the more pronounced surface effects in the smaller nanoparticles.

  3. NanoParticle Ontology for Cancer Nanotechnology Research

    PubMed Central

    Thomas, Dennis G.; Pappu, Rohit V.; Baker, Nathan A.

    2010-01-01

    Data generated from cancer nanotechnology research are so diverse and large in volume that it is difficult to share and efficiently use them without informatics tools. In particular, ontologies that provide a unifying knowledge framework for annotating the data are required to facilitate the semantic integration, knowledge-based searching, unambiguous interpretation, mining and inferencing of the data using informatics methods. In this paper, we discuss the design and development of NanoParticle Ontology (NPO), which is developed within the framework of the Basic Formal Ontology (BFO), and implemented in the Ontology Web Language (OWL) using well-defined ontology design principles. The NPO was developed to represent knowledge underlying the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. Public releases of the NPO are available through BioPortal website, maintained by the National Center for Biomedical Ontology. Mechanisms for editorial and governance processes are being developed for the maintenance, review, and growth of the NPO. PMID:20211274

  4. Characterization of the Goubau line for testing beam diagnostic instruments

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Stulle, F.; Sung, C. K.; Yoo, K. H.; Seok, J.; Moon, K. J.; Choi, C. U.; Chung, Y.; Kim, G.; Woo, H. J.; Kwon, J.; Lee, I. G.; Choi, E. M.; Chung, M.

    2017-12-01

    One of the main characteristics of the Goubau line is that it supports a low-loss, non-radiated surface wave guided by a dielectric-coated metal wire. The dominant mode of the surface wave along the Goubau line is a TM01 mode, which resembles the pattern of the electromagnetic fields induced in the metallic beam pipe when the charged particle beam passes through it. Therefore, the Goubau line can be used for the preliminary bench test and performance optimization of the beam diagnostic instruments without requiring charged particle beams from the accelerators. In this paper, we discuss the basic properties of the Goubau line for testing beam diagnostic instruments and present the initial test results for button-type beam position monitors (BPMs). The experimental results are consistent with the theoretical estimations, which indicates that Goubau line allows effective testing of beam diagnostic equipment.

  5. Electric-field-induced dielectrophoresis and heterogeneous aggregation in dilute suspensions of positively polarizable particles

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Markarian, Nikolai; Khusid, Boris

    2002-11-01

    We specified the conditions under which a dilute suspension of positively polarizable particles would undergo a heterogeneous aggregation in high-gradient strong AC fields and then examined experimentally and theoretically its kinetics [1]. Experiments were conducted on flowing dilute suspensions of heavy aluminum oxide spheres subjected to a high-gradient AC field (several kV/mm) such that the dielectrophoretic force acting on the particles was arranged in the plane perpendicular to the streamlines of the main flow. To reduce the gravitational settling of the particles, the electric chamber was kept slowly rotating around a horizontal axis. Following the application of a field, the particles were found to move towards both the high-voltage and grounded electrodes and to form arrays of "bristles" along their edges. The process was modeled by computing the motion of a single particle under the action of dielectrophoretic, viscous, and gravitational forces for negligibly small particle Reynolds numbers. The particle polarization required for the calculation of the dielectrophoretic force was measured in low-strength fields (several V/mm). The theoretical predictions for the kinetics of the particle accumulation on the electrodes were found to be in a reasonable agreement with experiment, although the interparticle interactions governed the formation of arrays of bristles. These bristles were formed in a two-step mechanism, which arose from the interplay of the dielectrophoretic force that confined the particles near the electrode edge and the dipolar interactions of nearby particles. The results of our studies provide the basic characteristics needed for the design and optimization of electro-hydrodynamic apparatuses. The work was supported by a NASA grant. The suspension characterization was conducted at the NJIT W.M. Keck Laboratory. 1. Z. Qiu, N. Markarian, B. Khusid, A. Acrivos, J. Apple. Phys., 92(5), 2002.

  6. Synthesis and characterization of Co3O4 prepared from atmospheric pressure acid leach liquors of nickel laterite ores

    NASA Astrophysics Data System (ADS)

    Meng, Long; Guo, Zhan-cheng; Qu, Jing-kui; Qi, Tao; Guo, Qiang; Hou, Gui-hua; Dong, Peng-yu; Xi, Xin-guo

    2018-01-01

    A chemical precipitation-thermal decomposition method was developed to synthesize Co3O4 nanoparticles using cobalt liquor obtained from the atmospheric pressure acid leaching process of nickel laterite ores. The effects of the precursor reaction temperature, the concentration of Co2+, and the calcination temperature on the specific surface area, morphology, and the electrochemical behavior of the obtained Co3O4 particles were investigated. The precursor basic cobaltous carbonate and cobaltosic oxide products were characterized and analyzed by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction, field-emission scanning electron microscopy, specific surface area analysis, and electrochemical analysis. The results indicate that the specific surface area of the Co3O4 particles with a diameter of 30 nm, which were obtained under the optimum conditions of a precursor reaction temperature of 30°C, 0.25 mol/L Co2+, and a calcination temperature of 350°C, was 48.89 m2/g. Electrodes fabricated using Co3O4 nanoparticles exhibited good electrochemical properties, with a specific capacitance of 216.3 F/g at a scan rate of 100 mV/s.

  7. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  8. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified according to the major fraction. Thus, many of the particles classified as sulfate may have contained significant mass fractions of carbonaceous or other material. These particles for the most part did not show two physical phases, however. Nonsulfate particles were classified according to the physical and chemical characteristics of each particle, and were grouped into the major nonsulfate particle classes, including C-rich, crustal, metallic, and salts. Our UT and LS sample analyses indicate a maximum for crustal and C-rich particle abundance in the Northern Hemisphere upper troposphere, and a salt particle maximum in the Southern Hemisphere upper troposphere. Metallic particles are clearly more prevalent in the troposphere than in the stratosphere, but interhemispheric differences appear small.

  9. Material properties of viral nanocages explored by atomic force microscopy.

    PubMed

    van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L

    2015-01-01

    Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.

  10. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions

    PubMed Central

    Winter, P. M.; Caruthers, S. D.; Hughes, M. S.; Hu, Grace; Schmieder, A. H.; Wickline, S. A.

    2011-01-01

    Molecular imaging agents are extending the potential of noninvasive medical diagnosis from basic gross anatomical descriptions to complicated phenotypic characterizations based upon the recognition of unique cell-surface biochemical signatures. Although originally the purview of nuclear medicine, “molecular imaging” is now studied in conjunction with all clinically relevant imaging modalities. Of the myriad of particles that have emerged as prospective candidates for clinical translation, perfluorocarbon nanoparticles offer great potential for combining targeted imaging with drug delivery, much like the “magic bullet” envisioned by Paul Ehrlich 100 years ago. Perfluorocarbon nanoparticles, once studied in Phase III clinical trials as blood substitutes, have found new life for molecular imaging and drug delivery. The particles have been adapted for use with all clinically relevant modalities and for targeted drug delivery. In particular, their intravascular constraint due to particle size provides a distinct advantage for angiogenesis imaging and antiangiogenesis therapy. As perfluorocarbon nanoparticles have recently entered Phase I clinical study, this review provides a timely focus on the development of this platform technology and its application for angiogenesis-related pathologies. PMID:20411320

  11. Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions.

    PubMed

    Lin, Gigi L; Pathak, Jai A; Kim, Dong Hyun; Carlson, Marcia; Riguero, Valeria; Kim, Yoen Joo; Buff, Jean S; Fuller, Gerald G

    2016-04-14

    Protein molecules are amphiphilic moieties that spontaneously adsorb at the air/solution (A/S) interface to lower the surface energy. Previous studies have shown that hydrodynamic disruptions to these A/S interfaces can result in the formation of protein aggregates that are of concern to the pharmaceutical industry. Interfacial hydrodynamic stresses encountered by protein therapeutic solutions under typical manufacturing, filling, and shipping conditions will impact protein stability, prompting a need to characterize the contribution of basic fluid kinematics to monoclonal antibody (mAb) destabilization. We demonstrate that dilatational surface deformations are more important to antibody stability when compared to constant-area shear of the A/S interface. We have constructed a dilatational interfacial rheometer that utilizes simultaneous pressure and bubble shape measurements to study the mechanical stability of mAbs under interfacial aging. It has a distinct advantage over methods utilizing the Young-Laplace equation, which incorrectly describes viscoelastic interfaces. We provide visual evidence of particle ejection from dilatated A/S interfaces and spectroscopic data of ejected mAb particles. These rheological studies frame a molecular understanding of the protein-protein interactions at the complex-fluid interface.

  12. Molecular Characterization of the Gas-Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method.

    PubMed

    Tapia, A; Salgado, M S; Martín, María Pilar; Lapuerta, M; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B

    2016-03-15

    Surface functional groups of two different types of combustion aerosols, a conventional diesel (EN 590) and a hydrotreated vegetable oil (HVO) soot, have been investigated using heterogeneous chemistry (i.e., gas-particle surface reactions). A commercial sample of amorphous carbon (Printex XE2-B) was analyzed as a reference substrate. A Knudsen flow reactor was used to carry out the experiments under molecular flow conditions. The selected gases for the titration experiments were: N(CH3)3 for the identification of acidic sites, NH2OH for the presence of carbonyl groups, CF3COOH and HCl for basic sites of different strength, and O3 and NO2 for reducing groups. Reactivity with N(CH3)3 indicates a lower density of acidic functionalities for Printex XE2-B in relation to diesel and HVO soot. Results for NH2OH experiments indicates that commercial amorphous carbon exhibits a lower abundance of available carbonyl groups at the interface compared to the results from diesel and HVO soot, the latter being the one with the largest abundance of carbonyl functions. Reactions with acids indicate the presence of weak basic oxides on the particle surface that preferentially interact with the strong acid CF3COOH. Finally, reactions with O3 and NO2 reveal that diesel and especially HVO have a significantly higher reactivity with both oxidizers compared to that of Printex XE2-B because they have more reducing sites by roughly a factor of 10 and 30, respectively. The kinetics of titration reactions have also been investigated.

  13. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvakumar, D.; Yogamalar, N. R.; Jayavel, R., E-mail: rjvel@annauniv.edu

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in themore » synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.« less

  14. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    NASA Astrophysics Data System (ADS)

    Selvakumar, D.; Thenammai, A. N.; Yogamalar, N. R.; Hemamalini, R.; Jayavel, R.

    2015-06-01

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.

  15. High concentrations of coarse particles emitted from a cattle feeding operation

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-08-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was present in internal mixtures with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences may lead to errors in estimates of aerosol effects on local air quality, visibility, and public health.

  16. Big Bang Day: 5 Particles - 2. The Quark

    ScienceCinema

    None

    2017-12-09

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 2. The Quark "Three Quarks for Master Mark! Sure he hasn't got much of a bark." James Joyce's Finnegans Wake left its mark on modern physics when physicist Murray Gell Mann proposed this name for a group of hypothetical subatomic particles that were revealed in 1960 as the fundamental units of matter. Basic particles it seems are made up of even more basic units called quarks that make up 99.9% of visible material in the universe.. But why do we know so little about them? Quarks have never been seen as free particles but instead, inextricably bound together by the Strong Force that in turn holds the atomic nucleus together. This is the hardest of Nature's fundamental forces to crack, but recent theoretical advances, mean that the properties of the quark are at last being revealed.

  17. Lock and Key Colloids through Polymerization-Induced Buckling of Monodispersed Silicon Oil Droplets

    NASA Astrophysics Data System (ADS)

    Sacanna, Stefano; Irvine, William T. M.; Chaikin, Paul M.; Pine, David J.

    2010-03-01

    Colloidal particles can spontaneously associate into larger structured aggregates when driven by selective and directional interactions. Colloidal organization can be programmed by engineering shapes and interactions of basic building blocks in a manner similar to molecular self-assembly. Examples of successful strategies that allow non-trivial assembly of particles include template-directed patterning, capillary forces and, most commonly, the functionalization of the particle surfaces with ``sticky patches'' of biological or synthetic molecules. The level of complexity of the realizable assemblies, increases when particles with well defined shape anisotropies are used. In particular depletion forces and specific surface treatments in combination with non spherical particles have proven to be powerful tools to self-assembly complex microstructures. We describe a simple, high yield, synthetic pathway to fabricate monodisperse hybrid silica spheres with well defined cavities. Because the particle morphologies are reproducible and tunable with precision, the resulting particles can be used as basic building blocks in the assembly of larger monodisperse clusters. This is demonstrated using depletion to drive the self-assembly.

  18. Big Bang Day: 5 Particles - 2. The Quark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-07

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 2. The Quark "Three Quarks for Master Mark! Sure he hasn't got much of a bark." James Joyce's Finnegans Wake left its mark on modern physics when physicist Murray Gell Mann proposed this name for a group of hypothetical subatomic particles that were revealed in 1960 as the fundamental units of matter. Basic particles it seems are made up of even more basic units called quarks that make up 99.9%more » of visible material in the universe.. But why do we know so little about them? Quarks have never been seen as free particles but instead, inextricably bound together by the Strong Force that in turn holds the atomic nucleus together. This is the hardest of Nature's fundamental forces to crack, but recent theoretical advances, mean that the properties of the quark are at last being revealed.« less

  19. Quantification of AAV particle titers by infrared fluorescence scanning of coomassie-stained sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Kohlbrenner, Erik; Henckaerts, Els; Rapti, Kleopatra; Gordon, Ronald E; Linden, R Michael; Hajjar, Roger J; Weber, Thomas

    2012-06-01

    Adeno-associated virus (AAV)-based vectors have gained increasing attention as gene delivery vehicles in basic and preclinical studies as well as in human gene therapy trials. Especially for the latter two-for both safety and therapeutic efficacy reasons-a detailed characterization of all relevant parameters of the vector preparation is essential. Two important parameters that are routinely used to analyze recombinant AAV vectors are (1) the titer of viral particles containing a (recombinant) viral genome and (2) the purity of the vector preparation, most commonly assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. An important, third parameter, the titer of total viral particles, that is, the combined titer of both genome-containing and empty viral capsids, is rarely determined. Here, we describe a simple and inexpensive method that allows the simultaneous assessment of both vector purity and the determination of the total viral particle titer. This method, which was validated by comparison with established methods to determine viral particle titers, is based on the fact that Coomassie Brilliant Blue, when bound to proteins, fluoresces in the infrared spectrum. Viral samples are separated by SDS-PAGE followed by Coomassie Brilliant Blue staining and gel analysis with an infrared laser-scanning device. In combination with a protein standard, our method allows the rapid and accurate determination of viral particle titers simultaneously with the assessment of vector purity.

  20. Ultra Scale-Down Characterization of the Impact of Conditioning Methods for Harvested Cell Broths on Clarification by Continuous Centrifugation—Recovery of Domain Antibodies from rec E. coli

    PubMed Central

    Chatel, Alex; Kumpalume, Peter; Hoare, Mike

    2014-01-01

    The processing of harvested E. coli cell broths is examined where the expressed protein product has been released into the extracellular space. Pre-treatment methods such as freeze–thaw, flocculation, and homogenization are studied. The resultant suspensions are characterized in terms of the particle size distribution, sensitivity to shear stress, rheology and solids volume fraction, and, using ultra scale-down methods, the predicted ability to clarify the material using industrial scale continuous flow centrifugation. A key finding was the potential of flocculation methods both to aid the recovery of the particles and to cause the selective precipitation of soluble contaminants. While the flocculated material is severely affected by process shear stress, the impact on the very fine end of the size distribution is relatively minor and hence the predicted performance was only diminished to a small extent, for example, from 99.9% to 99.7% clarification compared with 95% for autolysate and 65% for homogenate at equivalent centrifugation conditions. The lumped properties as represented by ultra scale-down centrifugation results were correlated with the basic properties affecting sedimentation including particle size distribution, suspension viscosity, and solids volume fraction. Grade efficiency relationships were used to allow for the particle and flow dynamics affecting capture in the centrifuge. The size distribution below a critical diameter dependant on the broth pre-treatment type was shown to be the main determining factor affecting the clarification achieved. Biotechnol. Bioeng. 2014;111: 913–924. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:24284936

  1. Charged particle periodicity in the Saturnian magnetosphere

    NASA Technical Reports Server (NTRS)

    Carbary, J. F.; Krimigis, S. M.

    1982-01-01

    The present investigation is concerned with the first definitive evidence for charged particle modulations near the magnetic rotation period at Saturn. This periodicity is apparent in the ratios (and spectra) of low energy charged particles in the Saturnian magnetosphere. Most of the data presented were taken during the Voyager 2 outbound portion of the Saturn encounter. During this time the spacecraft was at high latitudes (approximately 30 deg) in the southern hemisphere of the Saturnian magnetosphere. The probe's trajectory was approximately along the dawn meridian at an essentially constant local time. The observation that the charged particle modulation is consistent with the Saturn Kilometric Radiation (SKR) period provides a basic input for the resolution of a puzzle which has existed ever since the discovery of the SKR modulation. The charged particle periodicity identified suggests that a basic asymmetry must exist in the Saturnian magnetosphere.

  2. Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, S H; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albicocco, P; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amaral Coutinho, Y; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Araujo Ferraz, V; Arce, A T H; Ardell, R E; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beermann, T A; Begalli, M; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Benoit, M; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernardi, G; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Beyer, J; Bianchi, R M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bittrich, C; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bolz, A E; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Briglin, D L; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burch, T J; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Cano Bret, M; Cantero, J; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrá, S; Carrillo-Montoya, G D; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castelijn, R; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Celebi, E; Ceradini, F; Cerda Alberich, L; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, W S; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chiu, Y H; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Christodoulou, V; Chromek-Burckhart, D; Chu, M C; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Creager, R A; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cukierman, A R; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'eramo, L; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daneri, M F; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Daubney, T; Davey, W; David, C; Davidek, T; Davies, M; Davis, D R; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vasconcelos Corga, K; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Prete, T Del; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delporte, C; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Devesa, M R; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Bello, F A; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Díez Cornell, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Dubreuil, A; Duchovni, E; Duckeck, G; Ducourthial, A; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dumitriu, A E; Duncan, A K; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Kosseifi, R El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, M; Errede, S; Escalier, M; Escobar, C; Esposito, B; Estrada Pastor, O; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenton, M J; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, R R M; Flick, T; Flierl, B M; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Förster, F A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Freund, B; Froidevaux, D; Frost, J A; Fukunaga, C; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gee, C N P; Geisen, J; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Geßner, G; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gkountoumis, P; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Gama, R; Goncalves Pinto Firmino Da Costa, J; Gonella, G; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Gottardo, C A; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, C; Gray, H M; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Grummer, A; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Guzik, M P; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havener, L B; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heidegger, K K; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Held, A; Hellman, S; Helsens, C; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Hernández Jiménez, Y; Herr, H; Herten, G; Hertenberger, R; Hervas, L; Herwig, T C; Hesketh, G G; Hessey, N P; Hetherly, J W; Higashino, S; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hils, M; Hinchliffe, I; Hirose, M; Hirschbuehl, D; Hiti, B; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hrdinka, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Isacson, M F; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, P; Jacobs, R M; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jelinskas, A; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, R W L; Jones, S D; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kar, D; Karakostas, K; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kay, E F; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kendrick, J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khodinov, A; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; Kirchmeier, D; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitali, V; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klingl, T; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kourlitis, E; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Krauss, D; Kremer, J A; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kulinich, Y P; Kuna, M; Kunigo, T; Kupco, A; Kupfer, T; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Langenberg, R J; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapertosa, A; Laplace, S; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, G R; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Li, B; Li, H; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, H; Liu, H; Liu, J K K; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo, C Y; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loesle, A; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Lopez Mateos, D; Lopez Paz, I; Solis, A Lopez; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lu, Y J; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A S; Magerl, V; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majersky, O; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchese, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Martensson, M U F; Marti-Garcia, S; Martin, C B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Mc Fadden, N C; Goldrick, G Mc; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McNamara, P C; McPherson, R A; Meehan, S; Megy, T J; Mehlhase, S; Mehta, A; Meideck, T; Meier, K; Meirose, B; Melini, D; Mellado Garcia, B R; Mellenthin, J D; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mkrtchyan, T; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nelson, M E; Nemecek, S; Nemethy, P; Nessi, M; Neubauer, M S; Neumann, M; Newman, P R; Ng, T Y; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nishu, N; Nisius, R; Nitsche, I; Nobe, T; Noguchi, Y; Nomachi, M; Nomidis, I; Nomura, M A; Nooney, T; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'connor, K; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oppen, H; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagan Griso, S; Paganini, M; Paige, F; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasner, J M; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pataraia, S; Pater, J R; Pauly, T; Pearson, B; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, F H; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Podberezko, P; Poettgen, R; Poggi, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Ponomarenko, D; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Poulard, G; Poulsen, T; Poveda, J; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proklova, N; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puri, A; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rangel-Smith, C; Rashid, T; Raspopov, S; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravinovich, I; Rawling, J H; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rettie, S; Reynolds, E; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ripellino, G; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocco, E; Roda, C; Rodina, Y; Rodriguez Bosca, S; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salazar Loyola, J E; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sampsonidou, D; Sánchez, J; Sanchez Martinez, V; Sanchez Pineda, A; Sandaker, H; Sandbach, R L; Sander, C O; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schildgen, L K; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Sciandra, A; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Senkin, S; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Shen, Y; Sherafati, N; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shipsey, I P J; Shirabe, S; Shiyakova, M; Shlomi, J; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sideras Haddad, E; Sidiropoulou, O; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smiesko, J; Smirnov, N; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Søgaard, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Sopczak, A; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spieker, T M; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanitzki, M M; Stapf, B S; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultan, Dms; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Tahirovic, E; Taiblum, N; Takai, H; Takashima, R; Takasugi, E H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teixeira-Dias, P; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Treado, C J; Trefzger, T; Tresoldi, F; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsang, K W; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Turk Cakir, I; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Vadla, K O H; Vaidya, A; Valderanis, C; Valdes Santurio, E; Valente, M; Valentinetti, S; Valero, A; Valéry, L; Valkar, S; Vallier, A; Valls Ferrer, J A; Van Den Wollenberg, W; van der Graaf, H; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varni, C; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, A T; Vermeulen, J C; Vetterli, M C; Viaux Maira, N; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wagner-Kuhr, J; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, Q; Wang, R; Wang, S M; Wang, T; Wang, W; Wang, W; Wang, Z; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, A F; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weirich, M; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Weston, T D; Whalen, K; Whallon, N L; Wharton, A M; White, A S; White, A; White, M J; White, R; Whiteson, D; Whitmore, B W; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winkels, E; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Wong, V W S; Worm, S D; Wosiek, B K; Wotschack, J; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xia, L; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamatani, M; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yigitbasi, E; Yildirim, E; Yorita, K; Yoshihara, K; Young, C; Young, C J S; Yu, J; Yu, J; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanzi, D; Zeitnitz, C; Zemaityte, G; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, P; Zhang, R; Zhang, R; Zhang, X; Zhang, Y; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhou, B; Zhou, C; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zou, R; Zur Nedden, M; Zwalinski, L

    2017-01-01

    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 [Formula: see text] for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb[Formula: see text] of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 [Formula: see text]. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 [Formula: see text] is quantified using a novel, data-driven, method. The method uses the energy loss, [Formula: see text], to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is [Formula: see text] and [Formula: see text] for jet transverse momenta of 200-400 [Formula: see text] and 1400-1600 [Formula: see text], respectively.

  3. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhlig, W. Casey; Heine, Andreas, E-mail: andreas.heine@emi.fraunhofer.de

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signalmore » to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.« less

  4. Detectors (5/5)

    ScienceCinema

    None

    2018-02-01

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  5. Detectors (4/5)

    ScienceCinema

    None

    2018-05-14

    This lecture will serve as an introduction to particle detectors and detection techniques. In the first lecture, a historic overview of particle detector development will be given. In the second lecture, some basic techniques and concepts for particle detection will be discussed. In the third lecture, the interaction of particles with matter, the basis of particle detection, will be presented. The fourth and fifth lectures will discuss different detector types used for particle tracking, energy measurement and particle identification.

  6. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  7. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  8. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  9. Stability and characterization of perphenazine aerosols generated using the capillary aerosol generator.

    PubMed

    Li, Xihao; Blondino, Frank E; Hindle, Michael; Soine, William H; Byron, Peter R

    2005-10-13

    Perphenazine (a potent antiemetic) was aerosolized using capillary aerosol generator to generate respirable condensation aerosols from drug in propylene glycol (PG) solutions, by pumping the liquids through a heated capillary tube. The study characterized the stability of perphenazine during and following aerosol generation. The stability-indicating HPLC method (C-8 column with a mobile phase of 52% 0.01 M pH 3.0 acetate buffer+48% acetonitrile) also enabled the study of perphenazine stability in solution under acidic, basic, oxidizing and photolysing conditions. An LC-MS (ESI+) method was used to characterize the degradation products. Perphenazine was found to be stable in acidic and basic conditions, while perphenazine sulfoxide was the major product formed in dilute peroxide solutions. Two photo-degradation products were formed in PG that were tentatively identified by LC-MS; one of these was synthesized and confirmed to be 2-[4-(3-phenothiazin-10-yl-propyl)-piperazino]-ethanol. Both photolysis products showed that aromatic dechlorination had occurred and one appeared to also result from interaction with the solvent. Within an aerosolization energy window of 84-95 J, fine particle aerosols were generated from perphenazine PG formulations with no significant degradation. Small amounts of degradation products were produced in all samples during aerosolization at elevated (non-optimal) energies. These were largely consistent with those seen to result from oxidation and photolysis in solution, showing that oxidation and dehalogenation appeared to be the main degradation pathways followed when the CAG system was overheated.

  10. Coal Combustion Science quarterly progress report, April--June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  11. A polyvalent harmonic coil testing method for small-aperture magnets

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Buzio, Marco; Golluccio, Giancarlo; Walckiers, Louis

    2012-08-01

    A method to characterize permanent and fast-pulsed iron-dominated magnets with small apertures is presented. The harmonic coil measurement technique is enhanced specifically for small-aperture magnets by (1) in situ calibration, for facing search-coil production inaccuracy, (2) rotating the magnet around its axis, for correcting systematic effects, and (3) measuring magnetic fluxes by stationary coils at different angular positions for measuring fast pulsed magnets. This method allows a quadrupole magnet for particle accelerators to be characterized completely, by assessing multipole field components, magnetic axis position, and field direction. In this paper, initially the metrological problems arising from testing small-aperture magnets are highlighted. Then, the basic ideas of the proposed method and the architecture of the corresponding measurement system are illustrated. Finally, experimental validation results are shown for small-aperture permanent and fast-ramped quadrupole magnets for the new linear accelerator Linac4 at CERN (European Organization for Nuclear Research).

  12. The Unique Properties of Agricultural Aerosols Measured at a Cattle Feeding Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranuma, Naruki; Brooks, S. D.; Gramann, J.

    2011-05-11

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the nominally upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portablemore » Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy (RM) was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of fugitive dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 µm or less) were as high as 1200 μg/m3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant fraction of the organic particles was composed of internally mixed with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences will lead to serious errors in estimates of aerosol effects on climate, visibility, and public health.« less

  13. The unique properties of agricultural aerosols measured at a cattle feeding operation

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-05-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the nominally upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy (RM) was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of fugitive dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant percentage of the organic particles, up to 28 %, were composed of internally mixed with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences will lead to serious errors in estimates of aerosol effects on climate, visibility, and public health.

  14. Magnetic Fluids--Part 1.

    ERIC Educational Resources Information Center

    Hoon, S. R.; Tanner, B. K.

    1985-01-01

    Basic physical concepts of importance in understanding magnetic fluids (fine ferromagnetic particles suspended in a liquid) are discussed. They include home-made magnetic fluids, stable magnetic fluids, and particle surfactants. (DH)

  15. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  16. PITCH-ANGLE SCATTERING: RESONANCE VERSUS NONRESONANCE, A BASIC TEST OF THE QUASILINEAR DIFFUSIVE RESULT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragot, B. R.

    2012-01-01

    Due to the very broad range of the scales available for the development of turbulence in space and astrophysical plasmas, the energy at the resonant scales of wave-particle interaction often constitutes only a tiny fraction of the total magnetic turbulent energy. Despite the high efficiency of resonant wave-particle interaction, one may therefore question whether resonant interaction really is the determining interaction process between particles and turbulent fields. By evaluating and comparing resonant and nonresonant effects in the frame of a quasilinear calculation, the dominance of resonance is here put to the test. By doing so, a basic test of themore » classical resonant quasilinear diffusive result for the pitch-angle scattering of charged energetic particles is also performed.« less

  17. STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu

    2015-10-20

    In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for themore » Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.« less

  18. Characterization of contaminant removal by an optical strip material

    NASA Astrophysics Data System (ADS)

    Hamilton, James P.; Frigo, S. P.; Caroll, Brenden J.; Assoufidyen, L.; Lewis, Matthew S.; Cook, Russell E.; de Carlo, F.

    2001-03-01

    Department of Chemistry and Engineering Physics, University of Wisconsin-Platteville, Platteville, WI 53818 Advanced Photon Source, X-Ray Facilities Division, Argonne National Laboratory, Advanced Photon Source, User Program Division, Argonne National Laboratory, *Electron Microscopy Center, Materials Science Division, Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne IL 60439-4856 USA A novel optical strip coating material, Opticlean, has been shown to safely remove fingerprints, particles and contamination from a variety of optical surfaces including coated glass, Si and first surface mirrors. Contaminant removal was monitored by Nomarski, Atomic Force and Scanning Electron Microscopy. Sub-micron features on diffraction gratings and silicon wafers were also cleaned without leaving light scattering particles on the surface. **This work was supported in part by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under contract no. W-31-109-ENG-38. The authors acknowledge the support and facilities provided by the Advanced Photon Source and the Electron Microscopy Center at Argonne National Laboratory.

  19. An overview of subatomic particles for non-physicists.

    PubMed

    Lederman, Leon M

    2007-08-01

    The particles used in radiation therapy are part of a larger universe of particles discovered by experimental physicists. May of these particles are themselves composed of particles. Understanding the way particles interact, and the forces underlying their interactions, is basic to the quest to understand the universe. High-energy physics studies in the past have identified the particles used in medicine; future studies may identify still others, but if not, may contribute to a better knowledge of the milieu in which medicine and other human endeavors exist.

  20. Digital Holographic Interferometry for Airborne Particle Characterization

    DTIC Science & Technology

    2015-03-19

    Interferometry and polarimetry for aerosol particle characterization, Bioaerosols: Characterization and Environmental Impact, Austin, TX (2014) [organizer...and conference chair]. 6. Invited talk: Holographic Interferometry and polarimetry for aerosol particle characterization, Optical...Stokes parameters, NATO Advanced Science Institute on Special Detection Technique ( Polarimetry ) and Remote Sensing, Kyiv, Ukraine (2010). (c

  1. Toward a descriptive model of solar particles in the heliosphere

    NASA Technical Reports Server (NTRS)

    Shea, M. A.; Smart, D. F.; Adams, James H., Jr.; Chenette, D.; Feynman, Joan; Hamilton, Douglas C.; Heckman, G. R.; Konradi, A.; Lee, Martin A.; Nachtwey, D. S.

    1988-01-01

    During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made.

  2. Particle transport and deposition: basic physics of particle kinetics.

    PubMed

    Tsuda, Akira; Henry, Frank S; Butler, James P

    2013-10-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. The particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic. Conversely, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drugs. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this article. A large portion of this article deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: (i) the physical characteristics of particles, (ii) particle behavior in gas flow, and (iii) gas-flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The article concludes with a summary and a brief discussion of areas of future research. © 2013 American Physiological Society. Compr Physiol 3:1437-1471, 2013.

  3. Basic firefly algorithm for document clustering

    NASA Astrophysics Data System (ADS)

    Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza

    2015-12-01

    The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).

  4. Pre- and Post-Processing Tools to Create and Characterize Particle-Based Composite Model Structures

    DTIC Science & Technology

    2017-11-01

    ARL-TR-8213 ● NOV 2017 US Army Research Laboratory Pre- and Post -Processing Tools to Create and Characterize Particle-Based...ARL-TR-8213 ● NOV 2017 US Army Research Laboratory Pre- and Post -Processing Tools to Create and Characterize Particle-Based Composite...AND SUBTITLE Pre- and Post -Processing Tools to Create and Characterize Particle-Based Composite Model Structures 5a. CONTRACT NUMBER 5b. GRANT

  5. Air-to-Air Missile Vector Scoring

    DTIC Science & Technology

    2012-03-22

    SIR sampling-importance resampling . . . . . . . . . . . . . . 53 EPF extended particle filter . . . . . . . . . . . . . . . . . . . . 54 UPF unscented...particle filter ( EPF ) or a unscented particle fil- ter (UPF) [20]. The basic concept is to apply a bank of N EKF or UKF filters to move particles from...Merwe, Doucet, Freitas and Wan provide a comprehensive discussion on the EPF and UPF, including algorithms for implementation [20]. 2Result based on

  6. Speciation dynamics of metals in dispersion of nanoparticles with discrete distribution of charged binding sites.

    PubMed

    Polyakov, Pavel D; Duval, Jérôme F L

    2014-02-07

    We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.

  7. Some Basic Concepts of Wave-Particle Interactions in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Lakhina, Gurbax S.; Tsurutani, Bruce T.

    1997-01-01

    The physical concepts of wave-particle interactions in a collisionless plasma are developed from first principles. Using the Lorentz force, starting with the concepts of gyromotion, particle mirroring and the loss-cone, normal and anomalous cyclotron resonant interactions, pitch-angle scattering, and cross-field diffusion are developed.

  8. Sectional methods for aggregation problems: application to volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Rossi, E.

    2016-12-01

    Particle aggregation is a general problem that is common to several scientific disciplines such as planetary formation, food industry and aerosol sciences. So far the ordinary approach to this class of problems relies on the solution of the Smoluchowski Coagulation Equations (SCE), a set of Ordinary Differential Equations (ODEs) derived from the Population Balance Equations (PBE), which basically describe the change in time of an initial grain-size distribution due to the interaction of "single" particles. The frequency of particles collisions and their sticking efficiencies depend on the specific problem under analysis, but the mathematical framework and the possible solutions to the ODEs seem to be somehow discipline-independent and very general. In this work we will focus on the problem of volcanic ash aggregation, since it represents an extreme case of complexity that can be relevant also to other disciplines. In fact volcanic ash aggregates observed during the fallouts are characterized by relevant porosities and they do not fit with simplified descriptions based on monomer-like structures or fractal geometries. In this work we propose a bidimensional approach to the PBEs which uses additive (mass) and non-additive (volume) internal descriptors in order to better characterize the evolution of volcanic ash aggregation. In particular we used sectional methods (fixed-pivot) to discretize the internal parameters space. This algorithm has been applied to a one dimensional volcanic plume model in order to investigate how the Total Grain Size Distribution (TGSD) changes throughout the erupted column in real scenarios (i.e. Eyjafjallajokull 2010, Sakurajima 2013 and Mt. Saint Helens 1980).

  9. International Linear Collider Reference Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, James,; Okada, Yasuhiro,; Walker, Nicholas J.,

    2007-08-13

    {lg_bullet} What is the universe? How did it begin? {lg_bullet} What are matter and energy? What are space and time? These basic questions have been the subject of scientific theories and experiments throughout human history. The answers have revolutionized the enlightened view of the world, transforming society and advancing civilization. Universal laws and principles govern everyday phenomena, some of them manifesting themselves only at scales of time and distance far beyond everyday experience. Particle physics experiments using particle accelerators transform matter and energy, to reveal the basic workings of the universe. Other experiments exploit naturally occurring particles, such as solarmore » neutrinos or cosmic rays, and astrophysical observations, to provide additional insights.« less

  10. Particle Physics Primer: Explaining the Standard Model of Matter.

    ERIC Educational Resources Information Center

    Vondracek, Mark

    2002-01-01

    Describes the Standard Model, a basic model of the universe that describes electromagnetic force, weak nuclear force radioactivity, and the strong nuclear force responsible for holding particles within the nucleus together. (YDS)

  11. Fundamental studies of chalcogenide nanocrystals, carbonaceous nanoparticles, and chromatographic materials

    NASA Astrophysics Data System (ADS)

    Baker, Jared Scott

    2011-12-01

    The development of novel nanomaterials and the understanding of their fundamental physical and chemical properties represent an exciting area of research. These materials are continuously being sought for ever-increasing applications; finding their way into uses that influence mankind on a daily basis. Combining elements from traditional nanoparticle characterization with electrophoretic-based techniques, this dissertation presents the analysis of carbon nanoparticles (CNPs) generated from a novel source (candle soot) as well as a unique perspective on the reactivity and degradation process of magic-sized cadmium chalcogenide nanocrystals. One potential application of CNPs is their use as an alternative fluorophore in a separation-based sensor system. Laser-induced-fluorescence (LIF) is a commonly used manner of detection in this type of platform, but is limited in many cases by problems associated with the fluorophore. Carbon-based nanoparticles have the potential to improve upon traditional fluorophores in applications that make use of LIF as the detection scheme. CNPs were extracted from the carbonaceous material produced by the incomplete combustion of a candle. The soot was submitted to an oxidizing treatment and extraction/filtration procedures rendering watersoluble luminescent species. Electron microscopy was used to identify globular, amorphous structures in the nanometer size-range. An aqueous suspension of CNPs demonstrated excellent stability in terms of its electronic properties, showing little change in absorption and emission spectra upon storage under ambient conditions over a two-year period. Capitalizing on the strengths of capillary electrophoresis (CE) as a characterization technique, we have analyzed the negatively-charged CNPs in terms of charge and size by studying the influence of variable CE conditions on the resulting separation. Separations at different pH revealed a highly complex mixture of CNPs, containing species with large electrophoretic mobilities under a wide range of pH values. The mobility of these nanoparticles as a function of ionic strength was compared to classical electrokinetic theory, suggesting that the species are small, highly charged particles with appreciable zeta potentials, even at low pH. In an attempt to reduce the complexity of the CNP solution, two molecular-weight based fractionation techniques were employed and evaluated. Traditional dialysis and ultracentrifugation filtration techniques were modified to generate multiple CNPs fractions based on size. Analysis of the fractions by absorption and photoluminescence spectroscopy as well as CE revealed specific characteristics for a given sized-fraction. Namely, a strong correlation between the size of the CNPs and their luminescent emission was observed. CE was utilized to characterize each fraction and to ultimately judge the effectiveness of the fractionation techniques. The characterization of the persistence and degradation of magic-sized CdSe nanocrystals (NCs) after their removal from the original reaction mixture and dispersion into basic aqueous solutions was performed by absorption spectroscopy. NCs degraded after dilution into aqueous NaOH, resulting in red-shifted excitonic absorption bands and eventual flocculation. Dilution of NCs into basic aqueous solutions of cysteinate resulted in degradation via a different mechanism with an absence of flocculation; kinetics varied with concentration of cysteinate. The chemical fate of NCs after dilution into basic aqueous solutions containing both Cd2+ and cysteinate varied with the cysteinate-to-Cd 2+ molar ratio, which determined the relative solute mole fractions of various Cd2+-cysteinate complexes. CdSe NCs persisted on long timescales only when dispersed in solutions containing [Cd(cysteinate) 3]4-. Equilibria are presented to account for the observed spectral changes after dilution of CdSe into various basic media. Cadmium(II)-cysteinate complex-formation equilibria influenced the temporal persistence of the nanocrystals; the pathway through which CdSe NCs degraded depended on the concentration of free, uncoordinated cysteinate. These findings indicate that solution-phase chemistry can determine whether NCs remain intact upon removal from their original reaction mixtures. Departing from the analysis of nanomaterials, an additional chapter focuses on the evaluation of a new chromatographic packing material. Two chromatographic columns packed with superficially porous packing material, Kinetex(TM) 1.7 mum and 2.6 mum C18 particles were evaluated in terms of their physical properties and performance characteristics. These columns were compared to a column packed with a sub-2 mum totally porous material and to a Halo(TM) column packed with 2.7 mum C18 superficially porous packing. The columns packed with superficially porous particles displayed a comparably narrower size distribution, which is narrower than the distribution of the totally porous sub-2 mum particles. Physical characteristics of the Kinetex(TM) particles were evaluated in terms of surface area, pore diameter, and specific pore volume. Total, external, internal and shell porosities among the four different columns were evaluated and compared. The specific permeability for the Kinetex columns showed values close to those predicted by the Kozeny-Carman equation. All four columns were evaluated in terms of their chromatographic performance and compared using the Knox equation. The columns packed with the 2.6 mum and 2.7 mum superficially porous materials showed reduced plate heights below 2, while the sub-2 mum particles showed values of 2.2 and above.

  12. Physical Investigations of Small Particles: (I) Aerosol Particle Charging and Flux Enhancement and (II) Whispering Gallery Mode Sensing

    NASA Astrophysics Data System (ADS)

    Lopez-Yglesias, Xerxes

    Part I: Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement. Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes. The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an "enhancement factor" to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth. Part II: Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, lambdaR, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.

  13. Computer modeling of test particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Decker, Robert B.

    1988-01-01

    The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.

  14. Anomalous segregation dynamics of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Mones, Enys; Czirók, András; Vicsek, Tamás

    2015-06-01

    A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider the adhesion difference-driven segregation of actively moving units, a fundamental but still poorly explored aspect of collective motility. In particular, we propose a model in which particles have a tendency to adhere through a mechanism which makes them both stay in touch and synchronize their direction of motion—but the interaction is limited to particles of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that in a very large system of particles, interacting without explicit alignment rule, three basic segregation regimes seem to exist as a function of time: (i) at the beginning the time dependence of the correlation length is analogous to that predicted by the Cahn-Hilliard theory, (ii) next rapid segregation occurs characterized with a separation of the different kinds of units being faster than any previously suggested speed, finally, (iii) the growth of the characteristic sizes in the system slows down due to a new regime in which self-confined, rotating, splitting and re-joining clusters appear. Our results can explain recent observations of segregating tissue cells in vitro.

  15. Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb -1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations andmore » multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.) and 0.093±0.017 (stat.)±0.021 (syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV, respectively.« less

  16. Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-10-11

    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb -1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations andmore » multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.) and 0.093±0.017 (stat.)±0.021 (syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV, respectively.« less

  17. Compensation Techniques in Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayed, Hisham Kamal

    2011-05-01

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Twomore » problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.« less

  18. Article coated with flash bonded superhydrophobic particles

    DOEpatents

    Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  19. Future particle-physics projects in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, D. S., E-mail: denisovd@fnal.gov

    2015-07-15

    Basic proposals of experiments aimed at precision measurements of Standard Model parameters and at searches for new particles, including dark-matter particles, are described along with future experimental projects considered by American Physical Society at the meeting in the summer of 2013 and intended for implementation within the next ten to twenty years.

  20. Future particle-physics projects in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, D. S.

    2015-08-25

    Basic proposals of experiments aimed at precision measurements of Standard Model parameters and at searches for new particles, including dark-matter particles, are described along with future experimental projects considered by American Physical Society at the meeting in the summer of 2013 and intended for implementation within the next ten to twenty years.

  1. Internally electrodynamic particle model: Its experimental basis and its predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less

  2. Internally electrodynamic particle model: Its experimental basis and its predictions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2010-03-01

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.

  3. Active particles in complex and crowded environments

    DOE PAGES

    Bechinger, Clemens; Di Leonardo, Roberto; Löwen, Hartmut; ...

    2016-11-23

    Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachinesmore » hold a great potential as autonomous agents for health care, sustainability, and security applications. Finally, with a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing.« less

  4. Multi-Messenger Astronomy and Dark Matter

    NASA Astrophysics Data System (ADS)

    Bergström, Lars

    This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.

  5. The ultimate limits of the relativistic rocket equation. The Planck photon rocket

    NASA Astrophysics Data System (ADS)

    Haug, Espen Gaarder

    2017-07-01

    In this paper we look at the ultimate limits of a photon propulsion rocket. The maximum velocity for a photon propulsion rocket is just below the speed of light and is a function of the reduced Compton wavelength of the heaviest subatomic particles in the rocket. We are basically combining the relativistic rocket equation with Haug's new insight on the maximum velocity for anything with rest mass. An interesting new finding is that in order to accelerate any subatomic "fundamental" particle to its maximum velocity, the particle rocket basically needs two Planck masses of initial load. This might sound illogical until one understands that subatomic particles with different masses have different maximum velocities. This can be generalized to large rockets and gives us the maximum theoretical velocity of a fully-efficient and ideal rocket. Further, no additional fuel is needed to accelerate a Planck mass particle to its maximum velocity; this also might sound absurd, but it has a very simple and logical solution that is explained in this paper.

  6. Synthesis and Characterization of Molybdenum Based Colloidal Particles.

    PubMed

    Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein

    1998-11-15

    The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.

  7. Teaching nuclear science: A cosmological approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viola, V.E.

    1994-10-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, asmore » well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level.« less

  8. Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation.

    PubMed

    Myllys, Nanna; Ponkkonen, Tuomo; Passananti, Monica; Elm, Jonas; Vehkamäki, Hanna; Olenius, Tinja

    2018-05-24

    The role of a strong organobase, guanidine, in sulfuric acid-driven new-particle formation is studied using state-of-the-art quantum chemical methods and molecular cluster formation simulations. Cluster formation mechanisms at the molecular level are resolved, and theoretical results on cluster stability are confirmed with mass spectrometer measurements. New-particle formation from guanidine and sulfuric acid molecules occurs without thermodynamic barriers under studied conditions, and clusters are growing close to a 1:1 composition of acid and base. Evaporation rates of the most stable clusters are extremely low, which can be explained by the proton transfers and symmetrical cluster structures. We compare the ability of guanidine and dimethylamine to enhance sulfuric acid-driven particle formation and show that more than 2000-fold concentration of dimethylamine is needed to yield as efficient particle formation as in the case of guanidine. At similar conditions, guanidine yields 8 orders of magnitude higher particle formation rates compared to dimethylamine. Highly basic compounds such as guanidine may explain experimentally observed particle formation events at low precursor vapor concentrations, whereas less basic and more abundant bases such as ammonia and amines are likely to explain measurements at high concentrations.

  9. [Polyethylene disease].

    PubMed

    Sosna, A; Radonský, T; Pokorný, D; Veigl, D; Horák, Z; Jahoda, D

    2003-01-01

    The experience obtained during revision surgery and findings of polyethylene granulomas in surrounding tissues of replacement as well as marked differences in the viability of implants resulted in the study of polyethylene disease and its basic mechanisms producing the development of osteoaggressive granulomas. We investigated the morphology of particles and their number in tissues surrounding the implant. The aim of our study was to develop a method for the detection of polyethylene particles in tissues, to identify different types of wear and to assess factors that may influence the viability of joint arthroplasty in general. Every revizion of joint arthroplasty performed during the last five years was evaluated in terms of the presence of polyethylene granules and the viability state of articular polyethylene inserts. A total of 55 samples were taken from tissues around loosened endoprostheses. The location of each sample was exactly determined. A technique was developed to identify wear particles and to visualize them after all organic structures of a polyethylene granuloma were dissolved with nitrogenic acid. The viability of articular polyethylene implants showed extreme differences in relation to different periods of manufacture and probably also to different methods of sterilization. Articular inserts sterilized with formaldehyde (the method used at the beginning of arthroplasty in our country) showed the highest viability and the lowest wear. The polyethylene particles present in tissues surrounding the implant were characterized in terms of morphology and size. The comparison of literature data and our results has revealed that there are many unknown facts about the quality and structure of polyethylene. The method of sterilization also appears to play a role. Because the issue is complex, we were not able to identify all factors leading, in some cases, to an early and unexpected failure of the implant and we consider further investigation to be necessary. Polyethylene disease is an important factor limiting the viability of joint arthroplasty. It results from a complex interaction of polyethylene particles arising by wear with surrounding tissues. The particles, less than 0.5 micron in size, are phagocytized by macrophages and, by complex mechanism of expression of inflammation mediators, they result in the inhibition of osteogenesis and activation of osteoclastic processes. The previous methods of sterilization with formaldehyde vapors apparently reduced wear influenced the resistance of polyethylene to wear to a lesser degree. A method was developed to detect these particles and to characterize their morphology in the tissues of a polyethylene granuloma.

  10. Developing an in vitro technology to study the inflammation potential of ambient particle types

    NASA Astrophysics Data System (ADS)

    Haddrell, Allen E.

    Elevated levels of suspended particles in the troposphere, termed particulate matter, elicit a myriad of adverse health effects in humans, ranging from shortness of breath and wheezing to myocardial infarction and death. It is currently believed that the adverse health effects associated with particulate matter are mediated by the inflammatory response initiated by the lung following particulate matter inhalation. What remains an area of much interest is elucidating the specific properties of particulate matter, physical or chemical, that cause the upregulation of proinflammatory mediators. The basic premise of this thesis was to identify the specific chemical components of particulate matter responsible for its adverse health effects. To address this issue, instrumentation and methodology were developed wherein one could design, create, levitate and deposit particles of both known chemical composition and size onto lung cells, in vitro, followed by the monitoring of the downstream biological response. An initial study focused on the role of the endotoxin component in particulate matter toxicity. Through a series of blocking studies we found that endotoxin acted synergistically with the particle core to elicit upregulation of proinflammatory mediators, including IL-1beta, TNF-alpha and ICAM-1; all of which are associated with the NF-kappaB pathway. Through characterizing this relatively simple system, one observation became apparent: the presence of the insoluble particle core had a profound effect on the cellular response; that is to say, the particle core was not simply a delivery vector, but a determinant factor in the final intracellular location of the toxic chemical. The latter observation held true as other particle types were studied and in addition, it was found that the nature of the actual chemical species itself plays a dual role in particle toxicity; first by retaining its toxic properties and second by altering the physical properties of the particle. It stems from these findings that the toxicity of the chemical components must be studied in concert and not as individual entities.

  11. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    NASA Astrophysics Data System (ADS)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  12. Oxidative coupling of methane over a Sr-promoted La{sub 2}O{sub 3} catalyst supported on a low surface area porous catalyst carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Uphade, B.S.; Mulla, S.A.R.

    1997-09-01

    Oxidative coupling of methane (OCM) to higher hydrocarbons over Sr-promoted La{sub 2}O{sub 3} supported on commercial low surface area porous catalyst carriers at 800 and 850 C and a space velocity of 102,000 cm{sup 3}/g{center_dot}h has been thoroughly investigated. Effects of support, catalyst particle size, linear gas velocity, Sr/La ratio, CH{sub 4}/O{sub 2} ratio in the feed, and catalyst dilution by inert solid particles on the conversion, yield, or selectivity and product ratios (C{sub 2}H{sub 4}/C{sub 2}H{sub 6} and CO/CO{sub 2}) in the OCM process have been studied. The catalysts have been characterized for their basicity, acidity, and oxygen chemisorptionmore » by the TPD of CO{sub 2}, ammonia, and oxygen, respectively, from 50 to 950 C and also characterized for their surface area. The supported catalysts showed better performance than the unsupported one. The best OCM results (obtained over Sr-La{sub 2}O{sub 3}/SA-5205 with a Sr/La ratio of 0.3 at a space velocity of 102,000 cm{sup 3}/g{center_dot}h) are 30.1% CH{sub 4} conversion with 65.6% selectivity for C{sub 2+} (or 19.7% C{sub 2+}-yield) at 850 C (CH{sub 4}/O{sub 2} = 16.0). The basicity is strongly influenced by the Sr/La ratio; the supported catalysts showed the best performance for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence for their Sr/La ratio of about 0.3. The methane/O{sub 2} ratio also showed a strong influence on the OCM process. However, the influence of linear gas velocity and particle size is found to be small; it results mainly from the temperature gradient in the catalyst. The catalyst dilution has beneficial effects for achieving a higher C{sub 2}H{sub 4}/C{sub 2}H{sub 6} ratio and also for reducing the hazardous nature of the OCM process because of the coupling of the exothermic oxidative conversion reactions and the endothermic thermal cracking reactions and also due to the increased heat transfer area.« less

  13. Synthesis and evaluation of porous polymethylsilsesquioxane microspheres as low silanol activity chromatographic stationary phase for basic compound separation.

    PubMed

    Huo, Zhixia; Wan, Qianhong; Chen, Lei

    2018-06-08

    Polymethylsilsesquioxanes (PMSQ) are potentially useful materials for liquid chromatography owing to their unique chemical, electrical and mechanical properties. Surprisingly however, no systematic studies on the use of spherical PMSQ particles as chromatographic packing have been reported. Accordingly, we present a comprehensive study aimed to characterize the chromatographic properties of this material in high performance liquid chromatography (HPLC) and to compare them with those observed on methyl (C 1 ) bonded silica phase under comparable conditions. Porous spherical particles were synthesized by a two-step hydrolysis and condensation procedure from methyltrimethoxysilane (MTMS) as a sole precursor. The as-synthesized microspheres possess spherical shape, narrow size distribution, mesoporous structure, high surface area (817 m 2  g -1 ) and reasonable carbon load (16.6%). They can be used directly as the HPLC stationary phase without the need for size classification. The PMSQ phase exhibits typical reversed-phase chromatographic properties with higher methylene selectivity and low silanol activity compared with the C 1 column. The retention mechanism for basic compounds was systematically evaluated by studying the effect of pH, ionic and solvent strength of the mobile phase. Basic compounds displayed lower retention factor and symmetric peak shape on the PMSQ column whereas longer retention and strong tailing peaks were observed on the C 1 column. The difference in retention behavior between the two columns is explained in terms of different principal retention mechanisms. Because of the low silanol activity, retention of basic compounds on the PMSQ column is governed solely by a reversed-phase mechanism. By contrast, multiple interactions including reversed-phase, cation exchange and simultaneous reversed-phase/cationic exchange interaction contribute to the retention on the C 1 column, as previously observed on other silica based reversed-phases. Furthermore, the PMSQ phase exhibited significantly enhanced stability under alkaline conditions compared with its silica-based counterpart. Taken together, the favorable morphology and pore structure combined with the benefits of low silanol activity, high pH stability and prolonged column lifetime make the newly developed PMSQ phase a promising and viable alternative to silica based reversed-phase packings for separation of basic compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. PARTICLE GROWTH IN HIGH-SPEED PARTICLE BEAM INLETS. (R823980)

    EPA Science Inventory

    Physical and chemical characterization of airborne particles is essential for determining their role in air pollution. Characterization instruments typically employ the use of sonic nozzles that transmit a wide range of particle sizes to a low-pressure region. The carrier gas ...

  15. Magnetic particles

    NASA Technical Reports Server (NTRS)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  16. Modeling the complex shape evolution of sedimenting particle swarms in fractures

    NASA Astrophysics Data System (ADS)

    Mitchell, C. A.; Nitsche, L.; Pyrak-Nolte, L. J.

    2016-12-01

    The flow of micro- and nano-particles through subsurface systems can occur in several environments, such as hydraulic fracturing or enhanced oil recovery. Computer simulations were performed to advance our understanding of the complexity of subsurface particle swarm transport in fractures. Previous experiments observed that particle swarms in fractures with uniform apertures exhibit enhanced transport speeds and suppressed bifurcations for an optimal range of apertures. Numerical simulations were performed for low Reynolds number, no interfacial tension and uniform viscosity conditions with particulate swarms represented by point-particles that mutually interact through their (regularized) Stokeslet fields. A P3 M technique accelerates the summations for swarms exceeding 105 particles. Fracture wall effects were incorporated using a least-squares variant of the method of fundamental solutions, with grid mapping of the surface force and source elements within the fast-summation scheme. The numerical study was executed on the basis of dimensionless variables and parameters, in the interest of examining the fundamental behavior and relationships of particle swarms in the presence of uniform apertures. Model parameters were representative of particle swarms experiments to enable direct comparison of the results with the experimental observations. The simulations confirmed that the principal phenomena observed in the experiments can be explained within the realm of Stokes flow. The numerical investigation effectively replicated swarm evolution in a uniform fracture and captured the coalescence, torus and tail formation, and ultimate breakup of the particle swarm as it fell under gravity in a quiescent fluid. The rate of swarm evolution depended on the number of particles in a swarm. When an ideal number of particles was used, swarm transport was characterized by an enhanced velocity regime as observed in the laboratory data. Understanding the physics particle swarms in fractured media will improve the ability to perform controlled micro-particulate transport through rock. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).

  17. Geometrical approach to tumor growth.

    PubMed

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  18. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 1).

    PubMed

    Omoumi, Patrick; Becce, Fabio; Racine, Damien; Ott, Julien G; Andreisek, Gustav; Verdun, Francis R

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been used successfully in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits; to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging (Part 2).

    PubMed

    Omoumi, Patrick; Verdun, Francis R; Guggenberger, Roman; Andreisek, Gustav; Becce, Fabio

    2015-12-01

    In recent years, technological advances have allowed manufacturers to implement dual-energy computed tomography (DECT) on clinical scanners. With its unique ability to differentiate basis materials by their atomic number, DECT has opened new perspectives in imaging. DECT has been successfully used in musculoskeletal imaging with applications ranging from detection, characterization, and quantification of crystal and iron deposits, to simulation of noncalcium (improving the visualization of bone marrow lesions) or noniodine images. Furthermore, the data acquired with DECT can be postprocessed to generate monoenergetic images of varying kiloelectron volts, providing new methods for image contrast optimization as well as metal artifact reduction. The first part of this article reviews the basic principles and technical aspects of DECT including radiation dose considerations. The second part focuses on applications of DECT to musculoskeletal imaging including gout and other crystal-induced arthropathies, virtual noncalcium images for the study of bone marrow lesions, the study of collagenous structures, applications in computed tomography arthrography, as well as the detection of hemosiderin and metal particles. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Enhanced critical currents of commercial 2G superconducting coated conductors through proton irradiation

    NASA Astrophysics Data System (ADS)

    Welp, Ulrich; Leroux, M.; Kihlstrom, K. J.; Kwok, W.-K.; Koshelev, A. E.; Miller, D. J.; Rupich, M. W.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.

    2015-03-01

    We report on magnetization and transport measurements of the critical current density, Jc, of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons. Proton irradiation produces a mixed pinning landscape composed of pre-existing rare earth particles and a uniform distribution of irradiation induced nm-sized defects. This pinning landscape strongly reduces the suppression of Jc in magnetic fields resulting in a doubling of Jc in a field of ~ 4T. The irradiation dose-dependence of Jc is characterized by a temperature and field dependent sweat spot that at 5 K and 6 T occurs around 20x1016 p/cm2. Large-scale time dependent Ginzburg-Landau simulations yield a good description of our results. This work supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences (KK, ML, AEK) and by the D.O.E, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (UW, WKK).

  1. Proton Transports in Pure Liquid Water Characterized by Melted Ice Lattice Model

    NASA Astrophysics Data System (ADS)

    Jie, Binbin; Sah, Chihtang

    Basic water properties have not been understood for 200 years. Our Melted Ice Lattice model accounts for the 2 basic properties of pure water, the ion product (pH) and mobilities. It has HCP primitive unit cells, each with 4H2O, based on the 1933 Bernal-Fowler model, verified by 1935 Pauling residual entropy theory of 1928-1935 Giauque experimental low temperature specific heat measurements. Our 2 ion species are point-mass protons p + and p-, for mass and electricity transport. Three protonic thermal activation energies are obtained from pH and p + and p- mobilities vs T (0-100OC). Proton transport is analyzed in 3 proton-phonon collision steps: proton detrapping by protonic phonon absorption, proton scattering by oxygenic (water) phonons, and proton trapping with protonic phonon emission. Distinction between Potential and Kinetic Energy Bands of protons (Fermions) and phonons (Bosons) is noted. Experimental protonic activation energies are the phonon energies given by the spring-mass vibration frequencies of lattice, wn = (kn/mn)1/2 . n is the proton-mass unit of the synchronized vibrating particles in the primitive unit cells.

  2. Sol-gel methods for synthesis of aluminosilicates for dental applications.

    PubMed

    Cestari, Alexandre

    2016-12-01

    Amorphous aluminosilicates glasses containing fluorine, phosphorus and calcium are used as a component of the glass ionomer dental cement. This cement is used as a restorative, basis or filling material, but presents lower mechanical resistance than resin-modified materials. The Sol-Gel method is a possible route for preparation of glasses with lower temperature and energy consumption, with higher homogeneity and with uniform and nanometric particles, compared to the industrial methods Glass ionomer cements with uniform, homogeneous and nanometric particles can present higher mechanical resistance than commercial ionomers. The aim of this work was to adapt the Sol-Gel methods to produce new aluminosilicate glass particles by non-hydrolytic, hydrolytic acid and hydrolytic basic routes, to improve glass ionomer cements characteristics. Three materials were synthesized with the same composition, to evaluate the properties of the glasses produced from the different methods, because multicomponent oxides are difficult to prepare with homogeneity. The objective was to develop a new route to produce new glass particles for ionomer cements with possible higher resistance. The particles were characterized by thermal analysis (TG, DTA, DSC), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The glasses were tested with polyacrylic acid to form the glass ionomer cement by the setting reaction. It was possible to produce distinct materials for dental applications and a sample presented superior characteristics (homogeneity, nanometric particles, and homogenous elemental distribution) than commercial glasses for ionomer cements. The new route for glass production can possible improve the mechanical resistance of the ionomer cements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Photophysical Study of Novel Perylene Analogues for Biophysical Applications

    NASA Astrophysics Data System (ADS)

    Palos-Chávez, Jorge; Penick, Mark; Negrete, George; Brancaleon, Lorenzo

    2011-03-01

    Perylene and perylene derivatives have been shown to be useful in a variety of photoinitiated applications, such as molecular dyes, organic solar cells, etc. Recently we started the characterization of novel 3,9-perylene analogues which could potentially lead to the synthesis of novel molecules with improved ability to separate charges. We have characterized the basic photophysical properties of these molecules, and we are currently investigating the photochemistry that leads to photoproducts in chlorinated compounds. Spectroscopic measurements show the substantial changes in photophysical parameters consistent with the conversion of the original compounds into photoproducts. SEM and AFM imaging show that these photoproducts form ordered particles. Mass spectrometry studies have confirmed the presence of these photoproducts as well. Additional studies are underway concerning the use of these novel perylene analogues in binding to biological structures such as proteins. It is hoped that these compounds will prove useful for biophysical applications, specifically in studying the manipulation of protein conformation via physical methods. Supported by NIH/NIGMS MBRS RISE GM-60655.

  4. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  5. Coal Combustion Science quarterly progress report, April--June 1992. Task 1, Coal devolatilization: Task 2, Coal char combustion; Task 3, Fate of mineral matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  6. Characterization of composite materials based on cement-ceramic powder blended binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulovaná, Tereza; Pavlík, Zbyšek

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less

  7. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore.

    PubMed

    Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio

    2015-06-28

    We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.

  8. Performance assessment of a pre-partitioned adaptive chemistry approach in large-eddy simulation of turbulent flames

    NASA Astrophysics Data System (ADS)

    Pepiot, Perrine; Liang, Youwen; Newale, Ashish; Pope, Stephen

    2016-11-01

    A pre-partitioned adaptive chemistry (PPAC) approach recently developed and validated in the simplified framework of a partially-stirred reactor is applied to the simulation of turbulent flames using a LES/particle PDF framework. The PPAC approach was shown to simultaneously provide significant savings in CPU and memory requirements, two major limiting factors in LES/particle PDF. The savings are achieved by providing each particle in the PDF method with a specialized reduced representation and kinetic model adjusted to its changing composition. Both representation and model are identified efficiently from a pre-determined list using a low-dimensional binary-tree search algorithm, thereby keeping the run-time overhead associated with the adaptive strategy to a minimum. The Sandia D flame is used as benchmark to quantify the performance of the PPAC algorithm in a turbulent combustion setting. In particular, the CPU and memory benefits, the distribution of the various representations throughout the computational domain, and the relationship between the user-defined error tolerances used to derive the reduced representations and models and the actual errors observed in LES/PDF are characterized. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-90ER14128.

  9. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.

    PubMed

    Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi

    2009-05-30

    Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.

  10. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less

  11. Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganini, Iván E.; Pastorino, Claudio, E-mail: pastor@cnea.gov.ar; Urrutia, Ignacio, E-mail: iurrutia@cnea.gov.ar

    2015-06-28

    We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surfacemore » tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T − ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.« less

  12. Novel Nano-particle, Temperature-Independent Damping System: Basic Science and Applications

    DTIC Science & Technology

    2009-12-31

    based impact damping or a fluid -based viscous damping system, and/d =fn in a frictional damping systems.. The increase in frequency is caused by either...to provide temperature independent damping. While the damping performance of a dry particle medium unlike a viscous fluid is said to be unaffected by...the mechanical components of the dampers are filled with selected particles. The advantages of particle damping over the conventional damping

  13. The Basics of Electric Weapons and Pulsed-Power Technologies

    DTIC Science & Technology

    2012-01-01

    launchers. DEWs send energy, instead of matter, toward a target, and can be separated into three types: laser weapons, particle -beam weapons, and high...beam’s energy de- position, target material, and flight dynamics is needed. Particle Beams A particle -beam weapon is a directed flow of atomic or sub...atomic particles . These parti- cles can be neutral or electrically charged. Neutral beams need to be used outside the atmosphere (in space), where

  14. Systemic characterization and evaluation of particle packings as initial sets for discrete element simulations

    NASA Astrophysics Data System (ADS)

    Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Valera, Roberto Roselló; Oñate, Eugenio

    2018-07-01

    A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.

  15. Systemic characterization and evaluation of particle packings as initial sets for discrete element simulations

    NASA Astrophysics Data System (ADS)

    Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Valera, Roberto Roselló; Oñate, Eugenio

    2017-10-01

    A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.

  16. Radiation effects in accelerator components

    NASA Astrophysics Data System (ADS)

    Borden, M. J.

    1995-05-01

    A review of basic radiation effects is presented. The fundamental definitions of radioactivity are given for alpha, beta, positron decay, gamma-ray emission and electron capture. The interaction of neutrons with material is covered including: absorption through radiative capture, neutron-proton interaction, alpha particle emission, neutron-multi-neutron reactions and fission. Basic equations defining inelastic and elastic scattering are presented with examples of neutron energy loss per collision for several elements. Photon interactions are considered for gamma-rays and x-rays. Photoelectric collisions, the Compton effect and pair production are reviewed. Electron-proton interactions are discussed with emphasis placed on defect production. Basic displacement damage mechanisms for photon and particle interaction are presented. Several examples of radiation effects to plastics, electronics and ceramics are presented. Extended references are given for each example.

  17. HIV-1 matrix domain removal ameliorates virus assembly and processing defects incurred by positive nucleocapsid charge elimination.

    PubMed

    Ko, Li-Jung; Yu, Fu-Hsien; Huang, Kuo-Jung; Wang, Chin-Tien

    2015-01-01

    Human immunodeficiency virus type 1 nucleocapsid (NC) basic residues presumably contribute to virus assembly via RNA, which serves as a scaffold for Gag-Gag interaction during particle assembly. To determine whether NC basic residues play a role in Gag cleavage (thereby impacting virus assembly), Gag processing efficiency and virus particle production were analyzed for an HIV-1 mutant NC15A, with alanine serving as a substitute for all NC basic residues. Results indicate that NC15A significantly impaired virus maturation in addition to significantly affecting Gag membrane binding and assembly. Interestingly, removal of the matrix (MA) central globular domain ameliorated the NC15A assembly and processing defects, likely through enhancement of Gag multimerization and membrane binding capacities.

  18. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    PubMed

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Submicron Protein Particle Characterization using Resistive Pulse Sensing and Conventional Light Scattering Based Approaches.

    PubMed

    Barnett, Gregory V; Perhacs, Julia M; Das, Tapan K; Kar, Sambit R

    2018-02-08

    Characterizing submicron protein particles (approximately 0.1-1μm) is challenging due to a limited number of suitable instruments capable of monitoring a relatively large continuum of particle size and concentration. In this work, we report for the first time the characterization of submicron protein particles using the high size resolution technique of resistive pulse sensing (RPS). Resistive pulse sensing, dynamic light scattering and size-exclusion chromatography with in-line multi-angle light scattering (SEC-MALS) are performed on protein and placebo formulations, polystyrene size standards, placebo formulations spiked with silicone oil, and protein formulations stressed via freeze-thaw cycling, thermal incubation, and acid treatment. A method is developed for monitoring submicron protein particles using RPS. The suitable particle concentration range for RPS is found to be approximately 4 × 10 7 -1 × 10 11 particles/mL using polystyrene size standards. Particle size distributions by RPS are consistent with hydrodynamic diameter distributions from batch DLS and to radius of gyration profiles from SEC-MALS. RPS particle size distributions provide an estimate of particle counts and better size resolution compared to light scattering. RPS is applicable for characterizing submicron particles in protein formulations with a high degree of size polydispersity. Data on submicron particle distributions provide insights into particles formation under different stresses encountered during biologics drug development.

  20. Chemical speciation of individual airborne particles by the combined use of quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

    PubMed

    Song, Young-Chul; Ryu, JiYeon; Malek, Md Abdul; Jung, Hae-Jin; Ro, Chul-Un

    2010-10-01

    In our previous work, it was demonstrated that the combined use of attenuated total reflectance (ATR) FT-IR imaging and quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), named low-Z particle EPMA, had the potential for characterization of individual aerosol particles. Additionally, the speciation of individual mineral particles was performed on a single particle level by the combined use of the two techniques, demonstrating that simultaneous use of the two single particle analytical techniques is powerful for the detailed characterization of externally heterogeneous mineral particle samples and has great potential for characterization of atmospheric mineral dust aerosols. These single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, such as low-Z particle EPMA on morphology and elemental concentrations and the ATR-FT-IR imaging on molecular species, crystal structures, functional groups, and physical states. In this work, this analytical methodology was applied to characterize an atmospheric aerosol sample collected in Incheon, Korea. Overall, 118 individual particles were observed to be primarily NaNO(3)-containing, Ca- and/or Mg-containing, silicate, and carbonaceous particles, although internal mixing states of the individual particles proved complicated. This work demonstrates that more detailed physiochemical properties of individual airborne particles can be obtained using this approach than when either the low-Z particle EPMA or ATR-FT-IR imaging technique is used alone.

  1. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.

    1989-01-01

    The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.

  2. Block copolymer lithography of rhodium nanoparticles for high temperature electrocatalysis.

    PubMed

    Boyd, David A; Hao, Yong; Li, Changyi; Goodwin, David G; Haile, Sossina M

    2013-06-25

    We present a method for forming ordered rhodium nanostructures on a solid support. The approach makes use of a block copolymer to create and assemble rhodium chloride nanoparticles from solution onto a surface; subsequent plasma and thermal processing are employed to remove the polymer and fully convert the nanostructures to metallic rhodium. Films cast from a solution of the triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) dissolved in toluene with rhodium(III) chloride hydrate were capable of producing a monolayer of rhodium nanoparticles of uniform size and interparticle spacing. The nanostructures were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The electrocatalytic performance of the nanoparticles was investigated with AC impedance spectroscopy. We observed that the addition of the particles to a model solid oxide fuel cell anode provided up to a 14-fold improvement in the anode activity as evidenced by a decrease in the AC impedance resistance. Examination of the anode after electrochemical measurement revealed that the basic morphology and distribution of the particles were preserved.

  3. Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry

    NASA Astrophysics Data System (ADS)

    Patel, J.; Němcová, L.; Maguire, P.; Graham, W. G.; Mariotti, D.

    2013-06-01

    Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e.g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 μM to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au0 atoms, leading to nucleation growth of the AuNPs.

  4. Nanobiotechnology applications of reconstituted high density lipoprotein.

    PubMed

    Ryan, Robert O

    2010-12-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions.

  5. An exact solution to the relativistic equation of motion of a charged particle driven by a linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1988-01-01

    An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..

  6. Foam flotation as a separation process

    NASA Technical Reports Server (NTRS)

    Currin, B. L.

    1986-01-01

    The basic principles of foam separation techniques are discussed. A review of the research concerning bubble-particle interaction and its role in the kinetics of the flotation process is given. Most of the research in this area deals with the use of theoretical models to predict the effects of bubble and particle sizes, of liquid flow, and of various forces on the aperture and retention of particles by bubbles. A discussion of fluid mechanical aspects of particle flotation is given.

  7. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    NASA Astrophysics Data System (ADS)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  8. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  9. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques.

    PubMed

    Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un

    2010-07-15

    Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.

  10. HCV Core Residues Critical for Infectivity Are Also Involved in Core-NS5A Complex Formation

    PubMed Central

    Gawlik, Katarzyna; Baugh, James; Chatterji, Udayan; Lim, Precious J.; Bobardt, Michael D.; Gallay, Philippe A.

    2014-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease. The molecular machinery of HCV assembly and particle release remains obscure. A better understanding of the assembly events might reveal new potential antiviral strategies. It was suggested that the nonstructural protein 5A (NS5A), an attractive recent drug target, participates in the production of infectious particles as a result of its interaction with the HCV core protein. However, prior to the present study, the NS5A-binding site in the viral core remained unknown. We found that the D1 domain of core contains the NS5A-binding site with the strongest interacting capacity in the basic P38-K74 cluster. We also demonstrated that the N-terminal basic residues of core at positions 50, 51, 59 and 62 were required for NS5A binding. Analysis of all substitution combinations of R50A, K51A, R59A, and R62A, in the context of the HCVcc system, showed that single, double, triple, and quadruple mutants were fully competent for viral RNA replication, but deficient in secretion of viral particles. Furthermore, we found that the extracellular and intracellular infectivity of all the mutants was abolished, suggesting a defect in the formation of infectious particles. Importantly, we showed that the interaction between the single and quadruple core mutants and NS5A was impaired in cells expressing full-length HCV genome. Interestingly, mutations of the four basic residues of core did not alter the association of core or NS5A with lipid droplets. This study showed for the first time that basic residues in the D1 domain of core that are critical for the formation of infectious extracellular and intracellular particles also play a role in core-NS5A interactions. PMID:24533158

  11. SEDIDAT: A BASIC program for the collection and statistical analysis of particle settling velocity data

    NASA Astrophysics Data System (ADS)

    Wright, Robyn; Thornberg, Steven M.

    SEDIDAT is a series of compiled IBM-BASIC (version 2.0) programs that direct the collection, statistical calculation, and graphic presentation of particle settling velocity and equivalent spherical diameter for samples analyzed using the settling tube technique. The programs follow a menu-driven format that is understood easily by students and scientists with little previous computer experience. Settling velocity is measured directly (cm,sec) and also converted into Chi units. Equivalent spherical diameter (reported in Phi units) is calculated using a modified Gibbs equation for different particle densities. Input parameters, such as water temperature, settling distance, particle density, run time, and Phi;Chi interval are changed easily at operator discretion. Optional output to a dot-matrix printer includes a summary of moment and graphic statistical parameters, a tabulation of individual and cumulative weight percents, a listing of major distribution modes, and cumulative and histogram plots of a raw time, settling velocity. Chi and Phi data.

  12. Synchronization of finite-size particles by a traveling wave in a cylindrical flow

    NASA Astrophysics Data System (ADS)

    Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.

    2013-09-01

    Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.

  13. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis.

    PubMed

    Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V

    2011-01-01

    Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.

  14. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Todd D.

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructuresmore » Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.« less

  15. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  16. Displacement Damage Induced Catastrophic Second Breakdown in Silicon Carbide Schottky Power Diodes

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Selva, Luis; Selva, Luis

    2004-01-01

    A novel catastrophic breakdown mode in reversed biased Silicon carbide diodes has been seen for low LET particles. These particles are too low in LET to induce SEB, however SEB was seen from particles of higher LET. The low LET mechanism correlates with second breakdown in diodes due to increase leakage and assisted charge injection from incident particles. Percolation theory was used to predict some basic responses of the devices, but the inherent reliability issue with silicon carbide have proven challenging.

  17. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring-summer transition in May 2014

    NASA Astrophysics Data System (ADS)

    Herenz, Paul; Wex, Heike; Henning, Silvia; Bjerring Kristensen, Thomas; Rubach, Florian; Roth, Anja; Borrmann, Stephan; Bozem, Heiko; Schulz, Hannes; Stratmann, Frank

    2018-04-01

    Within the framework of the RACEPAC (Radiation-Aerosol-Cloud Experiment in the Arctic Circle) project, the Arctic aerosol, arriving at a ground-based station in Tuktoyaktuk (Mackenzie River delta area, Canada), was characterized during a period of 3 weeks in May 2014. Basic meteorological parameters and particle number size distributions (PNSDs) were observed and two distinct types of air masses were found. One type were typical Arctic haze air masses, termed accumulation-type air masses, characterized by a monomodal PNSD with a pronounced accumulation mode at sizes above 100 nm. These air masses were observed during a period when back trajectories indicate an air mass origin in the north-east of Canada. The other air mass type is characterized by a bimodal PNSD with a clear minimum around 90 nm and with an Aitken mode consisting of freshly formed aerosol particles. Back trajectories indicate that these air masses, termed Aitken-type air masses, originated from the North Pacific. In addition, the application of the PSCF receptor model shows that air masses with their origin in active fire areas in central Canada and Siberia, in areas of industrial anthropogenic pollution (Norilsk and Prudhoe Bay Oil Field) and the north-west Pacific have enhanced total particle number concentrations (NCN). Generally, NCN ranged from 20 to 500 cm-3, while cloud condensation nuclei (CCN) number concentrations were found to cover a range from less than 10 up to 250 cm-3 for a supersaturation (SS) between 0.1 and 0.7 %. The hygroscopicity parameter κ of the CCN was determined to be 0.23 on average and variations in κ were largely attributed to measurement uncertainties. Furthermore, simultaneous PNSD measurements at the ground station and on the Polar 6 research aircraft were performed. We found a good agreement of ground-based PNSDs with those measured between 200 and 1200 m. During two of the four overflights, particle number concentrations at 3000 m were found to be up to 20 times higher than those measured below 2000 m; for one of these two flights, PNSDs measured above 2000 m showed a different shape than those measured at lower altitudes. This is indicative of long-range transport from lower latitudes into the Arctic that can advect aerosol from different regions in different heights.

  18. Residual waste from Hanford tanks 241-C-203 and 241-C-204. 1. Solids characterization.

    PubMed

    Krupka, Kenneth M; Schaef, Herbert T; Arey, Bruce W; Heald, Steve M; Deutsch, William I; Lindberg, Michael J; Cantrell, Kirk J

    2006-06-15

    Bulk X-ray diffraction (XRD), synchrotron X-ray microdiffraction (microXRD), and scanning electron microscopy/ energy-dispersive X-ray spectroscopy (SEM/EDS) were used to characterize solids in residual sludge from single-shell underground waste tanks C-203 and C-204 at the U.S. Department of Energy's Hanford Site in southeastern Washington state. Cejkaite [Na4(UO2)(CO3)3] was the dominant crystalline phase in the C-203 and C-204 sludges. This is one of the few occurrences of cejkaite reported in the literature and may be the first documented occurrence of this phase in radioactive wastes from DOE sites. Characterization of residual solids from water leach and selective extraction tests indicates that cejkaite has a high solubility and a rapid rate of dissolution in water at ambient temperature and that these sludges may also contain poorly crystalline Na2U207 [or clarkeite Na[(UO2)O(OH)](H2O)0-1] as well as nitratine (soda niter, NaNO3), goethite [alpha-FeO(OH)], and maghemite (gamma-Fe2O3). Results of the SEM/EDS analyses indicate that the C-204 sludge also contains a solid that lacks crystalline form and is composed of Na, Al, P, O, and possibly C. Other identified solids include Fe oxides that often also contain Cr and Ni and occur as individual particles, coatings on particles, and botryoidal aggregates; a porous-looking material (or an aggregate of submicrometer particles) that typically contain Al, Cr, Fe, Na, Ni, Si, U, P, O, and C; Si oxide (probably quartz); and Na-Al silicate(s). The latter two solids probably represent minerals from the Hanford sediment, which were introduced into the tank during prior sampling campaigns or other tank operation activities. The surfaces of some Fe-oxide particles in residual solids from the water leach and selective extraction tests appear to have preferential dissolution cavities. If these Fe oxides contain contaminants of concern, then the release of these contaminants into infiltrating water would be limited by the dissolution rates of these Fe oxides, which in general have lowto very low solubilities and slow dissolution rates at near neutral to basic pH values under oxic conditions.

  19. Visual Basic VPython Interface: Charged Particle in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Prayaga, Chandra

    2006-12-01

    A simple Visual Basic (VB) to VPython interface is described and illustrated with the example of a charged particle in a magnetic field. This interface allows data to be passed to Python through a text file read by Python. The first component of the interface is a user-friendly data entry screen designed in VB, in which the user can input values of the charge, mass, initial position and initial velocity of the particle, and the magnetic field. Next, a command button is coded to write these values to a text file. Another command button starts the VPython program, which reads the data from the text file, numerically solves the equation of motion, and provides the 3d graphics animation. Students can use the interface to run the program several times with different data and observe changes in the motion.

  20. METHODS FOR MODELING PARTICLE DEPOSITION AS A FUNCTION OF AGE. (R827352C004)

    EPA Science Inventory

    The purpose of this paper is to review the application of mathematical models of inhaled particle deposition to people of various ages. The basic considerations of aerosol physics, biological characteristics and model structure are presented along with limitations inherent in ...

  1. Ion beams provided by small accelerators for material synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Mackova, Anna; Havranek, Vladimir

    2017-06-01

    The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.

  2. The Influence of Basic Physical Properties of Soil on its Electrical Resistivity Value under Loose and Dense Condition

    NASA Astrophysics Data System (ADS)

    Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.

    2014-04-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  3. Separating large microscale particles by exploiting charge differences with dielectrophoresis.

    PubMed

    Polniak, Danielle V; Goodrich, Eric; Hill, Nicole; Lapizco-Encinas, Blanca H

    2018-04-13

    Dielectrophoresis (DEP), the migration of particles due to polarization effects under the influence of a nonuniform electric field, was employed for characterizing the behavior and achieving the separation of larger (diameter >5 μm) microparticles by exploiting differences in electrical charge. Usually, electrophoresis (EP) is the method of choice for separating particles based on differences in electrical charge; however, larger particles, which have low electrophoretic mobilities, cannot be easily separated with EP-based techniques. This study presents an alternative for the characterization, assessment, and separation of larger microparticles, where charge differences are exploited with DEP instead of EP. Polystyrene microparticles with sizes varying from 5 to 10 μm were characterized employing microdevices for insulator-based dielectrophoresis (iDEP). Particles within an iDEP microchannel were exposed simultaneously to DEP, EP, and electroosmotic (EO) forces. The electrokinetic behavior of four distinct types of microparticles was carefully characterized by means of velocimetry and dielectrophoretic capture assessments. As a final step, a dielectropherogram separation of two distinct types of 10 μm particles was devised by first characterizing the particles and then performing the separation. The two types of 10 μm particles were eluted from the iDEP device as two separate peaks of enriched particles in less than 80 s. It was demonstrated that particles with the same size, shape, surface functionalization, and made from the same bulk material can be separated with iDEP by exploiting slight differences in the magnitude of particle charge. The results from this study open the possibility for iDEP to be used as a technique for the assessment and separation of biological cells that have very similar characteristics (shape, size, similar make-up), but slight variance in surface electrical charge. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.

  5. Occurrence and particle-size distributions of polycyclic aromatic hydrocarbons in the ambient air of coking plant.

    PubMed

    Liu, Xiaofeng; Peng, Lin; Bai, Huiling; Mu, Ling; Song, Chongfang

    2014-06-01

    The purpose of this study was to characterize the occurrence and size distributions of ten species of polycyclic aromatic hydrocarbons (PAHs) in the ambient air of coking plants. Particulate-matter samples of four size fractions, including ≤2.1, 2.1-4.2, 4.2-10.2, and ≥10.2 μm, were collected using a Staplex234 cascade impactor during August 2009 at two coking plants in Shanxi, China. The PAHs were analyzed by a gas chromatograph equipped with a mass-selective detector. The concentrations of total particulate-matter PAHs were 1,412.7 and 2,241.1 ng/m(3) for plants I and II, and the distributions showed a peak within the 0.1-2.1 μm size range for plant I and the 0.1-4.2 μm for plant II. The size distributions of individual PAHs (except fluoranthene) exhibited a considerable peak within the 0.1-2.1 μm size range in coking plant I, which can be explained by the gas-particle partition mechanism. The ambient air of the coking plant was heavily polluted by PAHs associated with fine particles (≤2.1 μm), and benzo[b]fluoranthene made the largest contribution to total PAHs. The exposure levels of coking-plant workers to PAHs associated with fine particles were higher than to PAHs associated with coarse particles. Benzo[b]fluoranthene, benzo[a]pyrene, and dibenzo[a,h]anthracene should be the primary pollutants monitored in the coking plant. This research constitutes a significant contribution to assessing the exposure risk of coking-plant workers and providing basic data for PAH standards for ambient air in coking plants.

  6. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  7. Physicochemical characterization of discrete weapons grade plutonium metal particles originating from the 1960 BOMARC incident

    NASA Astrophysics Data System (ADS)

    Bowen, James M.

    The goal of this research was to investigate the physicochemical properties of weapons grade plutonium particles originating from the 1960 BOMARC incident for the purpose of predicting their fate in the environment and to address radiation protection and nuclear security concerns. Methods were developed to locate and isolate the particles in order to characterize them. Physical, chemical, and radiological characterization was performed using a variety of techniques. And finally, the particles were subjected to a sequential extraction procedure, a series of increasingly aggressive reagents, to simulate an accelerated environmental exposure. A link between the morphology of the particles and their partitioning amongst environmental mechanisms was established.

  8. Preparation of Octadecyltrichlorosilane Nanopatterns Using Particle Lithography: An Atomic Force Microscopy Laboratory

    ERIC Educational Resources Information Center

    Highland, Zachary L.; Saner, ChaMarra K.; Garno, Jayne C.

    2018-01-01

    Experiments are described that involve undergraduates learning concepts of nanoscience and chemistry. Students prepare nanopatterns of organosilane films using protocols of particle lithography. A few basic techniques are needed to prepare samples, such as centrifuging, mixing, heating, and drying. Students obtain hands-on skills with nanoscale…

  9. Estimating Solar Proton Flux at LEO From a Geomagnetic Cutoff Model

    DTIC Science & Technology

    2015-07-14

    simple shadow cones (using nomenclature from Stormer theory of particle motion in a dipole magnetic field [6]), that result from particles trajectories...basic Stormer theory [7]. However, in LEO the changes would be small relative to uncertainties in the model and therefore unnecessary. If the model were

  10. Evolution of Some Particle Detectors Based On the Discharge in Gases

    DOE R&D Accomplishments Database

    Charpak, G.

    1969-11-19

    Summary of the properties of some of the detectors that are commonly used in counter experiments to localize charged particles, and which are based on discharge in gases under the influence of electric fields and some basic facts of gaseous amplification in homogeneous and inhomogeneous fields.

  11. Synthesis, characterization and biological studies of copper oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad

    2018-04-01

    The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.

  12. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Nesterov, A.; Löffler, F.; Cheng, Yun-Chien; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.

    2010-04-01

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  13. Apparatus to collect, classify, concentrate, and characterize gas-borne particles

    DOEpatents

    Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.

    2003-12-16

    An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of particle collection, classification, concentration (enrichment), an characterization processes onto a single substrate or layered stack of such substrates. By mounting a UV laser diode laser light source on the substrate, or substrates tack, so that it is located down-stream of the sample inlet port and at right angle the sample particle stream, the UV light source can illuminate individual particles in the stream to induce a fluorescence response in those particles having a fluorescent signature such as biological particles, some of said particles. An illuminated particle having a fluorescent signal above a threshold signal would trigger a sorter module that would separate that particle from the particle stream.

  14. Characterization of 81P/Wild 2 Particles C2067,1,111,6.0 and C2067,1,111,8.0

    NASA Technical Reports Server (NTRS)

    Smith, T.; Khodja, H.; Raepsaet, C.; Burchell, M. J.; Flynn, G. J.; Herzog, G. F.; Park, J.; Lindsay, F.; Nakamura-Messenger, K.; Keller, L. P.; hide

    2012-01-01

    The concentrations of C and N in cometary particles are of interest in characterizing the regions where comets formed. One aim of this work is to analyze enough Stardust particles to draw meaningful statistical conclusions about their inventories of C and N. Toward that end we report recent studies of Stardust particles and related materials.

  15. Ripples or Dunes?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color image taken by the Mars Exploration Rover Spirit's panoramic camera shows the windblown waves of soil that characterize the rocky surface of Gusev Crater, Mars. Scientists were puzzled about whether these geologic features were 'ripples' or 'dunes.' Ripples are shaped by gentle winds that deposit coarse grains on the tops or crests of the waves. Dunes are carved by faster winds and contain a more uniform distribution of material. Images taken of these features by the rover's microscopic imager on the 41st martian sol, or day, of the rover's mission revealed their identity to be ripples. This information helps scientists better understand the winds that shape the landscape of Mars. This image was taken early in Spirit's mission.

    [figure removed for brevity, see original site] Click on image for larger view [Image credit: NASA/JPL/ASU]

    This diagram illustrates how windblown sediments travel. There are three basic types of particles that undergo different motions depending on their size. These particles are dust, sand and coarse sand, and their sizes approximate flour, sugar, and ball bearings, respectively. Sand particles move along the 'saltation' path, hitting the surface downwind. When the sand hits the surface, it sends dust into the atmosphere and gives coarse sand a little shove. Mars Exploration Rover scientists are studying the distribution of material on the surface of Mars to better understand how winds shaped the landscape.

  16. Bimodal and multimodal plant biomass particle mixtures

    DOEpatents

    Dooley, James H.

    2013-07-09

    An industrial feedstock of plant biomass particles having fibers aligned in a grain, wherein the particles are individually characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L, wherein the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces, and wherein the particles in the feedstock are collectively characterized by having a bimodal or multimodal size distribution.

  17. Evidence for the role of basic amino acids in the coat protein arm region of Cucumber necrosis virus in particle assembly and selective encapsidation of viral RNA.

    PubMed

    Alam, Syed Benazir; Reade, Ron; Theilmann, Jane; Rochon, D'Ann

    2017-12-01

    Cucumber necrosis virus (CNV) is a T = 3 icosahedral virus with a (+)ssRNA genome. The N-terminal CNV coat protein arm contains a conserved, highly basic sequence ("KGRKPR"), which we postulate is involved in RNA encapsidation during virion assembly. Seven mutants were constructed by altering the CNV "KGRKPR" sequence; the four basic residues were mutated to alanine individually, in pairs, or in total. Virion accumulation and vRNA encapsidation were significantly reduced in mutants containing two or four substitutions and virion morphology was also affected, where both T = 1 and intermediate-sized particles were produced. Mutants with two or four substitutions encapsidated significantly greater levels of truncated RNA than that of WT, suggesting that basic residues in the "KGRKPR" sequence are important for encapsidation of full-length CNV RNA. Interestingly, "KGRKPR" mutants also encapsidated relatively higher levels of host RNA, suggesting that the "KGRKPR" sequence also contributes to selective encapsidation of CNV RNA. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Effect of diffusional creep on particle morphology of polycrystalline alloys strengthened by second phase particles

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.; Behrendt, D. R.

    1973-01-01

    Diffusional creep in a polycrystalline alloy containing second-phase particles can disrupt the particle morphology. For alloys which depend on the particle distribution for strength, changes in the particle morphology can affect the mechanical properties. Recent observations of diffusional creep in alloys containing soluble particles (gamma-prime strengthened Ni base alloys) and inert particles have been reexamined in light of the basic mechanisms of diffusional creep, and a generalized model of this effect is proposed. The model indicates that diffusional creep will generally result in particle-free regions in the vicinity of grain boundaries serving as net vacancy sources. The factors which control the changes in second-phase morphology have been identified, and methods of reducing the effects of diffusional creep are suggested.

  19. Preparation and Characterization of Colloidal Silica Particles under Mild Conditions

    ERIC Educational Resources Information Center

    Neville, Frances; Zin, Azrinawati Mohd.; Jameson, Graeme J.; Wanless, Erica J.

    2012-01-01

    A microscale laboratory experiment for the preparation and characterization of silica particles at neutral pH and ambient temperature conditions is described. Students first employ experimental fabrication methods to make spherical submicrometer silica particles via the condensation of an alkoxysilane and polyethyleneimine, which act to catalyze…

  20. Photophoretic velocimetry for the characterization of aerosols.

    PubMed

    Haisch, Christoph; Kykal, Carsten; Niessner, Reinhard

    2008-03-01

    Aerosols are particles in a size range from some nanometers to some micrometers suspended in air or other gases. Their relevance varies as wide as their origin and composition. In the earth's atmosphere they influence the global radiation balance and human health. Artificially produced aerosols are applied, e.g., for drug administration, as paint and print pigments, or in rubber tire production. In all these fields, an exact characterization of single particles as well as of the particle ensemble is essential. Beyond characterization, continuous separation is often required. State-of-the-art separation techniques are based on electrical, thermal, or flow fields. In this work we present an approach to apply light in the form of photophoretic (PP) forces for characterization and separation of aerosol particles according to their optical properties. Such separation technique would allow, e.g., the separation of organic from inorganic particles of the same aerodynamic size. We present a system which automatically records velocities induced by PP forces and does a statistical evaluation in order to characterize the particle ensemble properties. The experimental system essentially consists of a flow cell with rectangular cross section (1 cm(2), length 7 cm), where the aerosol stream is pumped through in the vertical direction at ambient pressure. In the cell, a laser beam is directed orthogonally to the particle flow direction, which results in a lateral displacement of the particles. In an alternative configuration, the beam is directed in the opposite direction to the aerosol flow; hence, the particles are slowed down by the PP force. In any case, the photophoretically induced variations of speed and position are visualized by a second laser illumination and a camera system, feeding a mathematical particle tracking algorithm. The light source inducing the PP force is a diode laser (lambda = 806 nm, P = 0.5 W).

  1. Use of the Cultex® Radial Flow System as an in vitro exposure method to assess acute pulmonary toxicity of fine dusts and nanoparticles with special focus on the intra- and inter-laboratory reproducibility.

    PubMed

    Steinritz, Dirk; Möhle, Niklas; Pohl, Christine; Papritz, Mirko; Stenger, Bernhard; Schmidt, Annette; Kirkpatrick, Charles James; Thiermann, Horst; Vogel, Richard; Hoffmann, Sebastian; Aufderheide, Michaela

    2013-12-05

    Exposure of the respiratory tract to airborne particles (including metal-dusts and nano-particles) is considered as a serious health hazard. For a wide range of substances basic knowledge about the toxic properties and the underlying pathomechanisms is lacking or even completely missing. Legislation demands the toxicological characterization of all chemicals placed on the market until 2018 (REACH). As toxicological in vivo data are rare with regard to acute lung toxicity or exhibit distinct limitations (e.g. inter-species differences) and legislation claims the reduction of animal experiments in general ("3R" principle), profound in vitro models have to be established and characterized to meet these requirements. In this paper we characterize a recently introduced advanced in vitro exposure system (Cultex® RFS) showing a great similarity to the physiological in vivo exposure situation for the assessment of acute pulmonary toxicity of airborne materials. Using the Cultex® RFS, human lung epithelial cells (A549 cells) were exposed to different concentrations of airborne metal dusts (nano- and microscale particles) at the air-liquid-interface (ALI). Cell viability (WST-1 assay) as a parameter of toxicity was assessed 24h after exposure with special focus on the intra- and inter-laboratory (three independent laboratories) reproducibility. Our results show the general applicability of the Cultex® RFS with regard to the requirements of the ECVAM (European Centre for the Validation of Alternative Methods) principles on test validity underlining its robustness and stability. Intra- and inter-laboratory reproducibility can be considered as sufficient if predefined quality criteria are respected. Special attention must be paid to the pure air controls that turned out to be a critical parameter for a rational interpretation of the results. Our results are encouraging and future work is planned to improve the inter-laboratory reproducibility, to consolidate the results so far and to develop a valid prediction model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. On the Nature of Aerosol Particles in the Atmosphere of Irkutsk

    NASA Astrophysics Data System (ADS)

    Yermakov, A. N.; Golobokova, L. P.; Netsvetaeva, O. G.; Aloyan, A. E.; Arutyunyan, V. O.; Khodzher, T. V.

    2018-03-01

    Monitoring data on the ion composition of precipitation and the water-soluble fraction of aerosol have been used to identify two types of aerosol particles in the surface atmosphere of Irkutsk ("metal" and "ammonia" groups). The aerosol acidity is basically governed by the acidity of ammonia particles, and the ion composition depends on air relative humidity (RH). Preliminary estimates are given for the distribution of major cations and anions by aerosol groups.

  3. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline.

    PubMed

    Mazumdar, Prativa; Maity, Samir; Shyamal, Milan; Das, Debasish; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-14

    A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1).

  4. Dust in magnetised plasmas - Basic theory and some applications. [to planetary rings

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Morfill, G. E.

    1984-01-01

    In this paper the theory of charged test particle motion in magnetic fields is reviewed. This theory is then extended to charged dust particles, for which gravity and charge fluctuations play an important role. It is shown that systematic drifts perpendicular to the magnetic field and stochastic transport effects may then have to be considered none of which occur in the case of atomic particles (with the exception of charge exchange reactions). Some applications of charged dust particle transport theory to planetary rings are then briefly discussed.

  5. Ice in space: An experimental and theoretical investigation

    NASA Technical Reports Server (NTRS)

    Patashnick, H.; Rupprecht, G.

    1977-01-01

    Basic knowledge is provided on the behavior of ice and ice particles under a wide variety of conditions including those of interplanetary space. This information and, in particular, the lifetime of ice particles as a function of solar distance is an absolute requirement for a proper interpretation of photometric profiles in comets. Because fundamental properties of ice and ice particles are developed in this report, the applicability of this information extends beyond the realm of comets into any area where volatile particles exist, be it in space or in the earth's atmosphere.

  6. Study on law of negative corona discharge in microparticle-air two-phase flow media

    NASA Astrophysics Data System (ADS)

    He, Bo; Li, Tianwei; Xiu, Yaping; Zhao, Heng; Peng, Zongren; Meng, Yongpeng

    2016-03-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity) measurements and ultraviolet observations.

  7. Accurate quantification of magnetic particle properties by intra-pair magnetophoresis for nanobiotechnology

    NASA Astrophysics Data System (ADS)

    van Reenen, Alexander; Gao, Yang; Bos, Arjen H.; de Jong, Arthur M.; Hulsen, Martien A.; den Toonder, Jaap M. J.; Prins, Menno W. J.

    2013-07-01

    The application of magnetic particles in biomedical research and in-vitro diagnostics requires accurate characterization of their magnetic properties, with single-particle resolution and good statistics. Here, we report intra-pair magnetophoresis as a method to accurately quantify the field-dependent magnetic moments of magnetic particles and to rapidly generate histograms of the magnetic moments with good statistics. We demonstrate our method with particles of different sizes and from different sources, with a measurement precision of a few percent. We expect that intra-pair magnetophoresis will be a powerful tool for the characterization and improvement of particles for the upcoming field of particle-based nanobiotechnology.

  8. Parallel Measurements of Light Scattering and Characterization of Marine Particles in Water: An Evaluation of Methodology

    DTIC Science & Technology

    2008-01-01

    A second objective is to characterize variability in the volume scattering function and particle size distribution for various optical water types...volume scattering function (VSF) and the particle size distribution (PSD) • Analysis of in situ optical measurements and particle size distributions ...SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY

  9. Chromosome damage in human cells by γ rays, α particles and heavy ions: track interactions in basic dose-response relationships.

    PubMed

    Loucas, Bradford D; Durante, Marco; Bailey, Susan M; Cornforth, Michael N

    2013-01-01

    We irradiated normal human lymphocytes and fibroblasts with (137)Cs γ rays, 3.5 MeV α particles and 1 GeV/amu (56)Fe ions and measured the subsequent formation of chromosome-type aberrations by mFISH at the first mitosis following irradiation. This was done for the purposes of characterizing the shape of dose-response relationships and determining the frequency distribution of various aberration types with respect to the parameters of dose, radiation quality and cell type. Salient results and conclusions include the following. For low-LET γ rays, lymphocytes showed a more robust dose response for overall damage and a higher degree of upward curvature compared to fibroblasts. For both sources of high-LET radiation, and for both cell types, the response for simple and complex exchanges was linear with dose. Independent of all three parameters considered, the most likely damage outcome was the formation of a simple exchange event involving two breaks. However, in terms of the breakpoints making up exchange events, the majority of damage registered following HZE particle irradiation was due to complex aberrations involving multiple chromosomes. This adds a decidedly nonlinear component to the overall breakpoint response, giving it a significant degree of positive curvature, which we interpret as being due to interaction between ionizations of the primary HZE particle track and long-range δ rays produced by other nearby tracks. While such track interaction had been previously theorized, to the best of our knowledge, it has never been demonstrated experimentally.

  10. Chromosome Damage in Human Cells by γ Rays, α Particles and Heavy Ions: Track Interactions in Basic Dose-Response Relationships

    PubMed Central

    Loucas, Bradford D.; Durante, Marco; Bailey, Susan M.; Cornforth, Michael N.

    2013-01-01

    We irradiated normal human lymphocytes and fibroblasts with 137Cs γ rays, 3.5 MeV α particles and 1 GeV/amu 56Fe ions and measured the subsequent formation of chromosome-type aberrations by mFISH at the first mitosis following irradiation. This was done for the purposes of characterizing the shape of dose-response relationships and determining the frequency distribution of various aberration types with respect to the parameters of dose, radiation quality and cell type. Salient results and conclusions include the following. For low-LET γ rays, lymphocytes showed a more robust dose response for overall damage and a higher degree of upward curvature compared to fibroblasts. For both sources of high-LET radiation, and for both cell types, the response for simple and complex exchanges was linear with dose. Independent of all three parameters considered, the most likely damage outcome was the formation of a simple exchange event involving two breaks. However, in terms of the breakpoints making up exchange events, the majority of damage registered following HZE particle irradiation was due to complex aberrations involving multiple chromosomes. This adds a decidedly nonlinear component to the overall breakpoint response, giving it a significant degree of positive curvature, which we interpret as being due to interaction between ionizations of the primary HZE particle track and long-range δ rays produced by other nearby tracks. While such track interaction had been previously theorized, to the best of our knowledge, it has never been demonstrated experimentally. PMID:23198992

  11. The Quantified Characterization Method of the Micro-Macro Contacts of Three-Dimensional Granular Materials on the Basis of Graph Theory.

    PubMed

    Guan, Yanpeng; Wang, Enzhi; Liu, Xiaoli; Wang, Sijing; Luan, Hebing

    2017-08-03

    We have attempted a multiscale and quantified characterization method of the contact in three-dimensional granular material made of spherical particles, particularly in cemented granular material. Particle contact is defined as a type of surface contact with voids in its surroundings, rather than a point contact. Macro contact is a particle contact set satisfying the restrictive condition of a two-dimensional manifold with a boundary. On the basis of graph theory, two dual geometrical systems are abstracted from the granular pack. The face and the face set, which satisfies the two-dimensional manifold with a boundary in the solid cell system, are extracted to characterize the particle contact and the macro contact, respectively. This characterization method is utilized to improve the post-processing in DEM (Discrete Element Method) from a micro perspective to describe the macro effect of the cemented granular material made of spherical particles. Since the crack has the same shape as its corresponding contact, this method is adopted to characterize the crack and realize its visualization. The integral failure route of the sample can be determined by a graph theory algorithm. The contact force is assigned to the weight value of the face characterizing the particle contact. Since the force vectors can be added, the macro contact force can be solved by adding the weight of its corresponding faces.

  12. Mutations in the Basic Region of the Mason-Pfizer Monkey Virus Nucleocapsid Protein Affect Reverse Transcription, Genomic RNA Packaging, and the Virus Assembly Site.

    PubMed

    Dostálková, Alžběta; Kaufman, Filip; Křížová, Ivana; Kultová, Anna; Strohalmová, Karolína; Hadravová, Romana; Ruml, Tomáš; Rumlová, Michaela

    2018-05-15

    In addition to specific RNA-binding zinc finger domains, the retroviral Gag polyprotein contains clusters of basic amino acid residues that are thought to support Gag-viral genomic RNA (gRNA) interactions. One of these clusters is the basic K 16 NK 18 EK 20 region, located upstream of the first zinc finger of the Mason-Pfizer monkey virus (M-PMV) nucleocapsid (NC) protein. To investigate the role of this basic region in the M-PMV life cycle, we used a combination of in vivo and in vitro methods to study a series of mutants in which the overall charge of this region was more positive (RNRER), more negative (AEAEA), or neutral (AAAAA). The mutations markedly affected gRNA incorporation and the onset of reverse transcription. The introduction of a more negative charge (AEAEA) significantly reduced the incorporation of M-PMV gRNA into nascent particles. Moreover, the assembly of immature particles of the AEAEA Gag mutant was relocated from the perinuclear region to the plasma membrane. In contrast, an enhancement of the basicity of this region of M-PMV NC (RNRER) caused a substantially more efficient incorporation of gRNA, subsequently resulting in an increase in M-PMV RNRER infectivity. Nevertheless, despite the larger amount of gRNA packaged by the RNRER mutant, the onset of reverse transcription was delayed in comparison to that of the wild type. Our data clearly show the requirement for certain positively charged amino acid residues upstream of the first zinc finger for proper gRNA incorporation, assembly of immature particles, and proceeding of reverse transcription. IMPORTANCE We identified a short sequence within the Gag polyprotein that, together with the zinc finger domains and the previously identified RKK motif, contributes to the packaging of genomic RNA (gRNA) of Mason-Pfizer monkey virus (M-PMV). Importantly, in addition to gRNA incorporation, this basic region (KNKEK) at the N terminus of the nucleocapsid protein is crucial for the onset of reverse transcription. Mutations that change the positive charge of the region to a negative one significantly reduced specific gRNA packaging. The assembly of immature particles of this mutant was reoriented from the perinuclear region to the plasma membrane. On the contrary, an enhancement of the basic character of this region increased both the efficiency of gRNA packaging and the infectivity of the virus. However, the onset of reverse transcription was delayed even in this mutant. In summary, the basic region in M-PMV Gag plays a key role in the packaging of genomic RNA and, consequently, in assembly and reverse transcription. Copyright © 2018 American Society for Microbiology.

  13. Characterization of brightness and stoichiometry of bright particles by flow-fluorescence fluctuation spectroscopy.

    PubMed

    Johnson, Jolene; Chen, Yan; Mueller, Joachim D

    2010-11-03

    Characterization of bright particles at low concentrations by fluorescence fluctuation spectroscopy (FFS) is challenging, because the event rate of particle detection is low and fluorescence background contributes significantly to the measured signal. It is straightforward to increase the event rate by flow, but the high background continues to be problematic for fluorescence correlation spectroscopy. Here, we characterize the use of photon-counting histogram analysis in the presence of flow. We demonstrate that a photon-counting histogram efficiently separates the particle signal from the background and faithfully determines the brightness and concentration of particles independent of flow speed, as long as undersampling is avoided. Brightness provides a measure of the number of fluorescently labeled proteins within a complex and has been used to determine stoichiometry of protein complexes in vivo and in vitro. We apply flow-FFS to determine the stoichiometry of the group specific antigen protein within viral-like particles of the human immunodeficiency virus type-1 from the brightness. Our results demonstrate that flow-FFS is a sensitive method for the characterization of complex macromolecular particles at low concentrations. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Sub 2 nm Particle Characterization in Systems with Aerosol Formation and Growth

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    Aerosol science and technology enable continual advances in material synthesis and atmospheric pollutant control. Among these advances, one important frontier is characterizing the initial stages of particle formation by real time measurement of particles below 2 nm in size. Sub 2 nm particles play important roles by acting as seeds for particle growth, ultimately determining the final properties of the generated particles. Tailoring nanoparticle properties requires a thorough understanding and precise control of the particle formation processes, which in turn requires characterizing nanoparticle formation from the initial stages. The knowledge on particle formation in early stages can also be applied in quantum dot synthesis and material doping. This dissertation pursued two approaches in investigating incipient particle characterization in systems with aerosol formation and growth: (1) using a high-resolution differential mobility analyzer (DMA) to measure the size distributions of sub 2 nm particles generated from high-temperature aerosol reactors, and (2) analyzing the physical and chemical pathways of aerosol formation during combustion. Part. 1. Particle size distributions reveal important information about particle formation dynamics. DMAs are widely utilized to measure particle size distributions. However, our knowledge of the initial stages of particle formation is incomplete, due to the Brownian broadening effects in conventional DMAs. The first part of this dissertation studied the applicability of high-resolution DMAs in characterizing sub 2 nm particles generated from high-temperature aerosol reactors, including a flame aerosol reactor (FLAR) and a furnace aerosol reactor (FUAR). Comparison against a conventional DMA (Nano DMA, Model 3085, TSI Inc.) demonstrated that the increased sheath flow rates and shortened residence time indeed greatly suppressed the diffusion broadening effect in a high-resolution DMA (half mini type). The incipient particle size distributions were discrete, suggesting the formation of stable clusters that may be intermediate phases between initial chemical reactions and downstream particle growth. The evolution of incipient cluster size distributions further provided information on the gaseous precursor reaction kinetics, which matched well with the data obtained through other techniques. Part 2. The size distributions and their evolution measured by the DMAs help explain the physical pathways of aerosol formation. The chemical analysis of the incipient particles is an important counterpart to the existing characterization method. The chemical compositions of charged species were measured online with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF). The tandem arrangement of the high-resolution DMA and the APi-TOF realized the simultaneous measurement of the mobility and the mass of combustion-generated natively charged particles, which enabled their chemical and physical formation pathways to be derived. The results showed that the initial stages of particle formation were strongly influenced by chemically ionized species during combustion, and that incipient particles composed of pure oxides did not exist. The effective densities of the incipient particles were much lower than those of bulk materials, due to their amorphous structures and different chemical compositions. Measuring incipient particles with high-resolution DMAs is limited because a DMA classifies charged particles only, while the charging characteristics of sub 2 nm particles are not well understood. The charge fraction of combustion-generated incipient particles was measured by coupling a charged particle remover and a condensation particle counter. A high charge fraction was observed, confirming the strong interaction among chemically ionized species and formed particles. The combustion system was modeled by using a unimodal aerosol dynamics model combined with Fuchs' charging theory, and showed that the charging process indeed affected particle formation dynamics during combustion.

  15. Characterization of compounds by time-of-flight measurement utilizing random fast ions

    DOEpatents

    Conzemius, R.J.

    1989-04-04

    An apparatus is described for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions. 8 figs.

  16. Characterization of compounds by time-of-flight measurement utilizing random fast ions

    DOEpatents

    Conzemius, Robert J.

    1989-01-01

    An apparatus for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions.

  17. Exploring Focal and Aberration Properties of Electrostatic Lenses through Computer Simulation

    ERIC Educational Resources Information Center

    Sise, Omer; Manura, David J.; Dogan, Mevlut

    2008-01-01

    The interactive nature of computer simulation allows students to develop a deeper understanding of the laws of charged particle optics. Here, the use of commercially available optical design programs is described as a tool to aid in solving charged particle optics problems. We describe simple and practical demonstrations of basic electrostatic…

  18. Methods and Strategies: Much Ado about Nothing

    ERIC Educational Resources Information Center

    Smith, P. Sean; Plumley, Courtney L.; Hayes, Meredith L.

    2017-01-01

    This column provides ideas and techniques to enhance your science teaching. This month's issue discusses how children think about the small-particle model of matter. What Richard Feynman referred to as the "atomic hypothesis" is perhaps more familiar to us as the small-particle model of matter. In its most basic form, the model states…

  19. Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI).

    PubMed

    Nethaji, S; Sivasamy, A; Mandal, A B

    2013-04-01

    Activated carbon prepared from corn cob biomass, magnetized by magnetite nanoparticles (MCCAC) was used for the adsorption of hexavalent chromium from aqueous solution. The adsorbent was characterized by SEM, TEM, XRD, VSM, surface functionality and zero-point charge. The iron oxide nanoparticles were of 50 nm sizes and the saturation magnetization value for the adsorbent is 48.43 emu/g. Adsorption was maximum at pH 2. Isotherm data were modeled using Langmuir, Freundlich and Temkin isotherm. The prepared MCCAC had a heterogeneous surface. The maximum monolayer adsorption capacity was 57.37 mg/g. Kinetic studies were carried out and the data fitted the pseudo second-order equation. The mechanism of the adsorption process was studied by incorporating the kinetic data with intraparticle diffusion model, Bangham equation and Boyd plot. The adsorption was by chemisorption and the external mass transfer was the rate-determining step. A micro column was designed and the basic column parameters were estimated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  1. The John Charnley Award: an accurate and sensitive method to separate, display, and characterize wear debris: part 1: polyethylene particles.

    PubMed

    Billi, Fabrizio; Benya, Paul; Kavanaugh, Aaron; Adams, John; Ebramzadeh, Edward; McKellop, Harry

    2012-02-01

    Numerous studies indicate highly crosslinked polyethylenes reduce the wear debris volume generated by hip arthroplasty acetabular liners. This, in turns, requires new methods to isolate and characterize them. We describe a method for extracting polyethylene wear particles from bovine serum typically used in wear tests and for characterizing their size, distribution, and morphology. Serum proteins were completely digested using an optimized enzymatic digestion method that prevented the loss of the smallest particles and minimized their clumping. Density-gradient ultracentrifugation was designed to remove contaminants and recover the particles without filtration, depositing them directly onto a silicon wafer. This provided uniform distribution of the particles and high contrast against the background, facilitating accurate, automated, morphometric image analysis. The accuracy and precision of the new protocol were assessed by recovering and characterizing particles from wear tests of three types of polyethylene acetabular cups (no crosslinking and 5 Mrads and 7.5 Mrads of gamma irradiation crosslinking). The new method demonstrated important differences in the particle size distributions and morphologic parameters among the three types of polyethylene that could not be detected using prior isolation methods. The new protocol overcomes a number of limitations, such as loss of nanometer-sized particles and artifactual clumping, among others. The analysis of polyethylene wear particles produced in joint simulator wear tests of prosthetic joints is a key tool to identify the wear mechanisms that produce the particles and predict and evaluate their effects on periprosthetic tissues.

  2. High frequency sonar variability in littoral environments: Irregular particles and bubbles

    NASA Astrophysics Data System (ADS)

    Richards, Simon D.; Leighton, Timothy G.; White, Paul R.

    2002-11-01

    Littoral environments may be characterized by high concentrations of suspended particles. Such suspensions contribute to attenuation through visco-inertial absorption and scattering and may therefore be partially responsible for the observed variability in high frequency sonar performance in littoral environments. Microbubbles which are prevalent in littoral waters also contribute to volume attenuation through radiation, viscous and thermal damping and cause dispersion. The attenuation due to a polydisperse suspension of particles with depth-dependent concentration has been included in a sonar model. The effects of a depth-dependent, polydisperse population of microbubbles on attenuation, sound speed and volume reverberation are also included. Marine suspensions are characterized by nonspherical particles, often plate-like clay particles. Measurements of absorption in dilute suspensions of nonspherical particles have shown disagreement with predictions of spherical particle models. These measurements have been reanalyzed using three techniques for particle sizing: laser diffraction, gravitational sedimentation, and centrifugal sedimentation, highlighting the difficulty of characterizing polydisperse suspensions of irregular particles. The measurements have been compared with predictions of a model for suspensions of oblate spheroids. Excellent agreement is obtained between this model and the measurements for kaolin particles, without requiring any a priori knowledge of the measurements.

  3. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2 [Review on morphology and nanostructure characterization of nano-particle emission from internal combustion engines

    DOE PAGES

    Choi, Seungmok; Myung, C. L.; Park, S.

    2014-03-05

    This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less

  4. A Thermal Precipitator for Fire Characterization Research

    NASA Technical Reports Server (NTRS)

    Meyer, Marit; Bryg, Vicky

    2008-01-01

    Characterization of the smoke from pyrolysis of common spacecraft materials provides insight for the design of future smoke detectors and post-fire clean-up equipment on the International Space Station. A thermal precipitator was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Initial modeling for the thermal precipitator design was performed with the finite element software COMSOL Multiphysics, and includes the flow field and heat transfer in the device. The COMSOL Particle Tracing Module was used to determine particle deposition on SEM stubs which include TEM grids. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. Microscopy results from fire characterization research using the thermal precipitator are presented.

  5. Development and Demonstration of a Computational Tool for the Analysis of Particle Vitiation Effects in Hypersonic Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Perkins, Hugh Douglas

    2010-01-01

    In order to improve the understanding of particle vitiation effects in hypersonic propulsion test facilities, a quasi-one dimensional numerical tool was developed to efficiently model reacting particle-gas flows over a wide range of conditions. Features of this code include gas-phase finite-rate kinetics, a global porous-particle combustion model, mass, momentum and energy interactions between phases, and subsonic and supersonic particle drag and heat transfer models. The basic capabilities of this tool were validated against available data or other validated codes. To demonstrate the capabilities of the code a series of computations were performed for a model hypersonic propulsion test facility and scramjet. Parameters studied were simulated flight Mach number, particle size, particle mass fraction and particle material.

  6. The role of particle-size soil fractions in the adsorption of heavy metals

    NASA Astrophysics Data System (ADS)

    Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin

    2014-05-01

    Ion-exchange adsorption phenomena are important in the immobilization of heavy metals (HMs) by soils. Numerous works are devoted to the study of this problem. However, the interaction features of different particle-size soil fractions and their role in the immobilization of HMs studied insufficiently. Therefore, the assessment of the effect of the particle-size distribution on the adsorption properties of soils is a vital task. The parameters of Cu2+, Pb2+ and Zn2+ adsorption by chernozems of the south of Russia and their particle-size fractions were studied. In the particle-size fractions separated from the soils, the concentrations of Cu2+, Pb2+, and Zn2 decreased with the decreasing particle size. The parameters of the adsorption values of k (the constant of the affinity)and Cmax.(the maximum adsorption of the HMs) characterizing the adsorption of HMs by the southern chernozem and its particle-size fractions formed the following sequence: silt > clay > entire soil. The adsorption capacity of chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem clay loamy southern chernozem> loamy southern chernozem> loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions, the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem> loamy chernozem> loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by the studied soils and their particle-size fractions showed that the extensive adsorption characteristic - the maximum adsorption (Cmax.) - is a less sensitive parameter characterizing the adsorption capacity of the soils than the intensive characteristic of the process - the adsorption equilibrium constant (k).The ratio between the content of exchangeable cations displaced from the soil adsorbing complex (SAC) into the solution and the content of adsorbed HMs decreased with the increasing concentration of adsorbed HMs. These values could be higher (for Cu2+ and Pb2+), equal, or lower than 1 (for Zn2+) and depend on the properties of HMs. At the first case, this was due to the dissolution of readily soluble salts at low HM concentrations in the SAC. In the latter case, this was related to the adsorption of associated forms HMs and the formation of new phases localized on the surface of soil particles at high HM concentrations in the SAC. Soil solution equilibrium (SSE) accords to the soil fine fraction composition. SSE thermodynamics causes the ratio of free and associated forms of ions and ion's activity in soil solution influencing composition, concentration and adsorption of HMs salts by SAC. This study was supported by the Russian Foundation for Basic Research, project no. 12-05-33078,14-05-00586_a, grant of President of MK-6448.2014.4

  7. Study of Complex Plasmas with Magnetic Dipoles

    DTIC Science & Technology

    2017-10-10

    variety of collective behavior manifested in a plasma, especially oscillations or waves characterized by high frequency accompanied by the motion of...behavior manifested in a plasma, especially oscillations or waves characterized by high frequency accompanied by the motion of electrons and/or ions...particles characterized by extremely low frequency modes and the collection of plasma particles characterized by high frequency modes. The interaction of

  8. Design of a Thermal Precipitator for the Characterization of Smoke Particles from Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Meyer, Marit Elisabeth

    2015-01-01

    A thermal precipitator (TP) was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Modeling of the thermal precipitator throughout the design process was performed with the COMSOL Multiphysics finite element software package, including the Eulerian flow field and thermal gradients in the fluid. The COMSOL Particle Tracing Module was subsequently used to determine particle deposition. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. The thermal precipitator was built and testing verified the performance of the first iteration of the device. The thermal precipitator was successfully operated and provided quality particle samples for microscopic analysis, which furthered the body of knowledge on smoke particulates. This information is a key element of smoke characterization and will be useful for future spacecraft fire detection research.

  9. Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization

    PubMed Central

    Wang, Ping; Liu, Dong-Yan

    2012-01-01

    Performances of two common types of red mud, Bayer red mud and Sintering red mud, were investigated in this research. Their compositions, mechanical properties and microstructure characterization were measured through XRD, TG and SEM analysis. Their shear strength, particle size, density and hydraulic characteristics also had been performed. Huge differences between the basic mineral types of these two kinds of red mud also can be found. The comparison of compositions shows that CaCO3 content in Sintering red mud is higher, Bayer red mud has more hazardous elements such as As, Pb and Hg and both have a high concentration of radioactivity. The micro particle of Bayer red mud is finer and more disperse, but the Sintering red mud has higher shear strength. Combining the TG and hydraulic characteristics analysis, it can be shown that Bayer red mud has higher value of water content and Sintering red mud has higher hydraulic conductivity. The paper then illustrates that Sintering red mud can become the main filling material of supporting structure of red mud stocking yard. Bayer red mud has a high reuse value and also can be used as a mixing material of masonry mortar.

  10. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo

    NASA Astrophysics Data System (ADS)

    Matejczyk, Bartłomiej; Valiskó, Mónika; Wolfram, Marie-Therese; Pietschmann, Jan-Frederik; Boda, Dezső

    2017-03-01

    In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolyte model. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge, electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.

  11. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo.

    PubMed

    Matejczyk, Bartłomiej; Valiskó, Mónika; Wolfram, Marie-Therese; Pietschmann, Jan-Frederik; Boda, Dezső

    2017-03-28

    In the framework of a multiscale modeling approach, we present a systematic study of a bipolar rectifying nanopore using a continuum and a particle simulation method. The common ground in the two methods is the application of the Nernst-Planck (NP) equation to compute ion transport in the framework of the implicit-water electrolytemodel. The difference is that the Poisson-Boltzmann theory is used in the Poisson-Nernst-Planck (PNP) approach, while the Local Equilibrium Monte Carlo (LEMC) method is used in the particle simulation approach (NP+LEMC) to relate the concentration profile to the electrochemical potential profile. Since we consider a bipolar pore which is short and narrow, we perform simulations using two-dimensional PNP. In addition, results of a non-linear version of PNP that takes crowding of ions into account are shown. We observe that the mean field approximation applied in PNP is appropriate to reproduce the basic behavior of the bipolar nanopore (e.g., rectification) for varying parameters of the system (voltage, surface charge,electrolyte concentration, and pore radius). We present current data that characterize the nanopore's behavior as a device, as well as concentration, electrical potential, and electrochemical potential profiles.

  12. Triton's geyser-like plumes: Discovery and basic characterization

    USGS Publications Warehouse

    Soderblom, L.A.; Kieffer, S.W.; Becker, T.L.; Brown, R.H.; Cook, A.F.; Hansen, C.J.; Johnson, T.V.; Kirk, R.L.; Shoemaker, E.M.

    1990-01-01

    At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptune's large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a sub-surface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark particles into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 ?? 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.

  13. Time Variations in Forecasts and Occurrences of Large Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2015-12-01

    The onsets and development of large solar energetic (E > 10 MeV) particle (SEP) events have been characterized in many studies. The statistics of SEP event onset delay times from associated solar flares and coronal mass ejections (CMEs), which depend on solar source longitudes, can be used to provide better predictions of whether a SEP event will occur following a large flare or fast CME. In addition, size distributions of peak SEP event intensities provide a means for a probabilistic forecast of peak intensities attained in observed SEP increases. SEP event peak intensities have been compared with their rise and decay times for insight into the acceleration and transport processes. These two time scales are generally treated as independent parameters describing the development of a SEP event, but we can invoke an alternative two-parameter description based on the assumption that decay times exceed rise times for all events. These two parameters, from the well known Weibull distribution, provide an event description in terms of its basic shape and duration. We apply this distribution to several large SEP events and ask what the characteristic parameters and their dependence on source longitudes can tell us about the origins of these important events.

  14. Particle Substructure. A Common Theme of Discovery in this Century

    DOE R&D Accomplishments Database

    Panofsky, W. K. H.

    1984-02-01

    Some example of modern developments in particle physics are given which demonstrate that the fundamental rules of quantum mechanics, applied to all forces in nature as they became understood, have retained their validity. The well-established laws of electricity and magnetism, reformulated in terms of quantum mechanics, have exhibited a truly remarkable numerical agreement between theory and experiment over an enormous range of observation. As experimental techniques have grown from the top of a laboratory bench to the large accelerators of today, the basic components of experimentation have changed vastly in scale but only little in basic function. More important, the motivation of those engaged in this type of experimentation has hardly changed at all.

  15. Investigation of transport process involved in FGD. Final repot, September 1, 1993--August 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadambi, J.R.; Tien, J.S.; Yurteri, C.

    1995-02-01

    The objectives of this five year plan of study are to experimentally obtain a basic understanding of (1) turbulent flow structure of the mixing zone and it influence on particle dispersion, (2) the effect of particle loading on turbulent properties and mixing, (3) the effect of jet entrainment, (4) water spray-sorbent interaction, sorbent wetting and mixing, (5) investigate the flow field where certain ratios of jet velocity to flu gas velocity result in regions of negative flow and define onset o negative flow, and (6) sorbent reactivity in immediate mixing zone. In the first two years of the project amore » sorbent injection facility which can simulate the conditions encountered in COOLSIDE set up was designed and built. Non-intrusive laser based diagnostic tools PDA/LDA were used for flow characterization of particle laden jet in cocurrent flows. In the third year a new technique called TTLDV which combines particle transit time in measurement volume of LDV and LDV velocity measurements to simultaneously obtain non-spherical lime particle size and velocity was developed. Better sorbent injection schemes were investigated spray occurrent flow tests were conducted. During the fourth year the spray cocurrent flow interaction data was analyzed. A criterion was developed for predicting the flow reversal which results in deposition of water droplets on the duct wall (Table 3). The flow reversal occurs when the spray has entrained all the cocurrent flowing stream. The criterion is based upon the mass flow rate of the two phases. The criterion successfully predicted the flow reversals encountered in the experiments and will be a very useful practical tool. Lime laden jet occurrent flow interactions tests were completed. Tests on the swirling nozzle have been conducted. The single phase data have been analyzed while the two phase glass particle laden jet data is being analyzed.« less

  16. Shear jamming: where does it come from and how is it affected by particle properties?

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the questions we address here is: how does shear bring a system from a unjammed state to a jammed state and how do particle properties, such as inter-particle friction and particle shape, affect shear jamming? Since Z can be used to distinguish jammed states from unjammed ones (Z = 3 is the isotropic jamming point for 2 D frictional disks), it is vital to understand how shear increases Z. In the first part of this talk, we propose a set of three particles in contact, denoted as a trimer, as the basic unit to microscopically characterize the deformation of the system. Trimers, stabilized by inter-grain friction, are then expected to bend in response to shear to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In the second part of this talk, we look into the effect of particle properties on shear jamming. Photoelastic disks either wrapped with Teflon to reduce friction or with fine teeth on the edge to increase friction are used to study the effect of friction. In addition, disks are replaced with ellipses to introduce anisotropy into the particle shape. Shear jamming is observed for all the cases. For the disk system, the lowest packing fraction that can reach a shear jammed state increases with friction. For the ellipse system, shear brings the system to a more ordered state and particles tend to align to a certain angle relative to the principal directions of shear, regardless of packing fraction. Support by NSF DMR1206351, NASA NNX15AD38G, the W. M. Keck Foundation and a Triangle MRSEC fellowship is greatly appreciated.

  17. Characterization of beta phase growth and experimental validation of long term thermal exposure sensitization of AA5XXX alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Yakun

    The United States Navy has a need for fast, light-weight ships to provide rapid deployment in its operations. Strong and corrosion-resistant aluminum alloys, such as AA5083 (UNS A95083) as well as other AA5XXX alloys, have properties that are well-suited for such applications. However, AA5XXX alloys are susceptible to intergranular corrosion (IGC) and stress corrosion cracking (SCC) because of sensitization which is a consequence of the formation of the grain boundary beta-phase, Al3Mg2, and the anodic dissolution of the beta-phase. Significant research has been performed to measure and understand the effects of time, temperature, stress, and sea water on sensitization and associated intergranular corrosion and stress corrosion cracking under steady-state conditions. In the present work, the behaviors of beta-phase nucleation and growth were characterized using optical and electron microscopy, the relationship between preexisting particles and beta-phase, as well as the effect of different heat treatment times and temperatures on IGC and SCC susceptibility of 5XXX alloys were investigated. Grain boundary beta-phase thickness was measured with high resolution transmission electron microscopy (TEM). The corrosion sensitization susceptibility was evaluated according to the American Society for Testing and Materials (ASTM) standard G67 tests, that is, nitric acid mass-loss testing (NAMLT). Diffusion of Mg is manifested by the thickening of beta-phase along the grainboundary because the grain boundary is considered as the preferential site for beta-phase nucleation. The beta-phase growth rate was monitored using high resolution TEM. The variety of precipitates and their subsequent effects on beta-phase nucleation and growth kinetics was investigated. The existence of various intermetallic particles was observed in both baseline and thermally exposed (70°C and 175°C) samples. These particles are usually either rod-shaped or equiaxed, and rich in Mn, Fe, and Cr. Indexing of lattice planes observed in a few of these particles suggested the composition is Al6Mn or Al6(Mn, Fe, Cr). This research also shows that the beta-phase precipitation occurs between the preexisting Mn rich particles. The basic model for the determination of diffusivity values, the prediction of beta-phase thickness growth, and corrosion sensitization prediction have been improved by new data from this research.

  18. Modelling of flow processes of the structured two-phase disperse systems (solid phase-liquid medium).

    PubMed

    Uriev, N B; Kuchin, I V

    2007-10-31

    A review of the basic theories and models of shear flow of suspensions is presented and the results of modeling of structured suspensions under flow conditions. The physical backgrounds and conditions of macroscopic discontinuity in the behaviour of high-concentrated systems are analyzed. The use of surfactants and imposed vibration for regulation of rheological properties of suspensions are considered. A review of the recent approaches and methods of computer simulation of concentrated suspensions is undertaken and results of computer simulation of suspensions are presented. Formation and destruction of the structure of suspension under static and dynamic conditions (including imposed combined shear and orthogonal oscillations) are discussed. The influence of interaction of particles as well as of some parameters characterizing a type and intensity of external perturbations on suspensions behavior is demonstrated.

  19. Plasma synthesis, Mössbauer spectroscopy and X-ray diffraction studies of nanosized iron oxides

    NASA Astrophysics Data System (ADS)

    Paneva, Daniela; Zaharieva, Katerina; Grabis, Janis; Mitov, Ivan; Vissokov, Gheorghi

    2010-06-01

    In this article synthesis and study of iron oxide nanopowders are described. The synthesis of sample 1 and sample 2—iron oxides—was carried out by electric arc plasma cutting of ordinary steel. The sample 3 was prepared by evaporation of Fe2O3/FeO mixture in radio-frequency nitrogen plasma. The characterization of the as prepared iron oxide nanoproducts was achieved by means of Mössbauer spectroscopy and X-ray diffraction analysis. The presence of different phases of iron oxide with a basic phase Fe3 - xO4 (magnetite), additional Fe1 - xO (wüstite) and α or γ-Fe2O3 (hematite or maghemite) with superparamagnetic particles for sample 1 and sample 2 and Fe3 - xO4 (magnetite) for sample 3 is observed.

  20. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    NASA Astrophysics Data System (ADS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-12-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y2O3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained.

  1. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique.

    PubMed

    Donadel, Karina; Felisberto, Marcos D V; Laranjeira, Mauro C M

    2009-06-01

    Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP) were coated with hydroxyapatite (HAp) by spray-drying using two IOMP/HAp ratios (0.7 and 3.2). The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction). The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.

  2. A visual basic program to generate sediment grain-size statistics and to extrapolate particle distributions

    USGS Publications Warehouse

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2004-01-01

    Measures that describe and summarize sediment grain-size distributions are important to geologists because of the large amount of information contained in textural data sets. Statistical methods are usually employed to simplify the necessary comparisons among samples and quantify the observed differences. The two statistical methods most commonly used by sedimentologists to describe particle distributions are mathematical moments (Krumbein and Pettijohn, 1938) and inclusive graphics (Folk, 1974). The choice of which of these statistical measures to use is typically governed by the amount of data available (Royse, 1970). If the entire distribution is known, the method of moments may be used; if the next to last accumulated percent is greater than 95, inclusive graphics statistics can be generated. Unfortunately, earlier programs designed to describe sediment grain-size distributions statistically do not run in a Windows environment, do not allow extrapolation of the distribution's tails, or do not generate both moment and graphic statistics (Kane and Hubert, 1963; Collias et al., 1963; Schlee and Webster, 1967; Poppe et al., 2000)1.Owing to analytical limitations, electro-resistance multichannel particle-size analyzers, such as Coulter Counters, commonly truncate the tails of the fine-fraction part of grain-size distributions. These devices do not detect fine clay in the 0.6–0.1 μm range (part of the 11-phi and all of the 12-phi and 13-phi fractions). Although size analyses performed down to 0.6 μm microns are adequate for most freshwater and near shore marine sediments, samples from many deeper water marine environments (e.g. rise and abyssal plain) may contain significant material in the fine clay fraction, and these analyses benefit from extrapolation.The program (GSSTAT) described herein generates statistics to characterize sediment grain-size distributions and can extrapolate the fine-grained end of the particle distribution. It is written in Microsoft Visual Basic 6.0 and provides a window to facilitate program execution. The input for the sediment fractions is weight percentages in whole-phi notation (Krumbein, 1934; Inman, 1952), and the program permits the user to select output in either method of moments or inclusive graphics statistics (Fig. 1). Users select options primarily with mouse-click events, or through interactive dialogue boxes.

  3. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization 1. Direct contact between fresh and saltwater

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a basic study in generalized terms that originates from two needs: (1) to understand the major mechanisms involved in the mineralization of groundwater of the Great Bend Prairie aquifer of Kansas by saltwater originating from a deeper Permian bedrock formation, and (2) to develop simple, robust tools that can readily be used for local assessment and management activities in the salt-affected region. A simplified basic conceptual model is adopted, incorporating two horizontal layers of porous medium which come into contact at a specific location within the model domain. The top layer is saturated with freshwater, and the bottom layer is saturated with saltwater. The paper considers various stages of approximation which can be useful for simplified simulation of the build-up of the transition zone (TZ) between the freshwater and the saltwater. The hierarchy of approximate approaches leads to the development of the top specified boundary layer (TSBL) method, which is the major tool used in this study for initial characterization of the development of the TZ. It is shown that the thickness of the TZ is mainly determined by the characteristic dispersivity. The build-up of the TZ is completed after a time period equal to the time needed to advect a fluid particle along the whole extent of the TZ. Potential applications and the effects of natural recharge and pumpage on salinity transport in the domain are discussed and evaluated in the context of demonstrating the practicality of the TSBL approach.

  4. Synergistic role of solid lipid and porous silica in improving the oral delivery of weakly basic poorly water soluble drugs.

    PubMed

    Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen; Prestidge, Clive

    2017-01-01

    Oral absorption of weakly basic drugs (e.g. cinnarizine (CIN)) is limited by their pH dependent precipitation in intestinal conditions. To overcome this challenge, a novel drug delivery system composed of solid lipid and porous silica, namely silica encapsulated solid lipid (SESL) particles, was developed via hot homogenization of melted lipid dispersion, followed by ultra-sonication of the silica stabilized homogenized melted lipid dispersion. Scanning electron microscope (SEM) images of the SESL formulation revealed non-spherical and aggregated hybrid particles, with rough exterior and structured nanoparticles visible on the surface. A 1.5, 2.2 and 7-fold improvement in the dissolution of CIN was observed for the SESL particles, under simulated intestinal non-digesting conditions, in comparison to the drug loaded in solid lipid (CIN-SL) matrix, drug loaded in porous silica (CIN-PS) and pure drug powder. Under simulated intestinal digestive condition, significant improvement in the drug solubilization was reported for the SESL formulation in compared to the individual drug loaded systems i.e. CIN-PS and CIN-SL. Thereby, silica encapsulated solid lipid system provides a promising oral delivery approach for poorly water soluble weakly basic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Cylinders vs. Spheres: Biofluid Shear Thinning in Driven Nanoparticle Transport

    PubMed Central

    Cribb, Jeremy A.; Meehan, Timothy D.; Shah, Sheel M.; Skinner, Kwan; Superfine, Richard

    2011-01-01

    Increasingly, the research community applies magnetophoresis to micro and nanoscale particles for drug delivery applications and the nanoscale rheological characterization of complex biological materials. Of particular interest is the design and transport of these magnetic particles through entangled polymeric fluids commonly found in biological systems. We report the magnetophoretic transport of spherical and rod-shaped particles through viscoelastic, entangled solutions using lambda-phage DNA (λ-DNA) as a model system. In order to understand and predict the observed phenomena, we fully characterize three fundamental components: the magnetic field and field gradient, the shape and magnetic properties of the probe particles, and the macroscopic rheology of the solution. Particle velocities obtained in Newtonian solutions correspond to macroscale rheology, with forces calculated via Stokes Law. In λ-DNA solutions, nanorod velocities are 100 times larger than predicted by measured zero-shear viscosity. These results are consistent with particles experiencing transport through a shear thinning fluid, indicating magnetically driven transport in shear thinning may be especially effective and favor narrow diameter, high aspect ratio particles. A complete framework for designing single-particle magnetic-based delivery systems results when we combine a quantified magnetic system with qualified particles embedded in a characterized viscoelastic medium. PMID:20571853

  6. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters.

    PubMed

    Tsai, Candace Su-Jung; Hofmann, Mario; Hallock, Marilyn; Ellenbecker, Michael; Kong, Jing

    2015-11-01

    This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm(3) for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter. As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.

  7. AIRBORNE REDUCED NITROGEN: AMMONIA EMISSIONS FROM AGRICULTURE AND OTHER SOURCES. (R826371C006)

    EPA Science Inventory

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM2.5 mass in easte...

  8. FLUKA: A Multi-Particle Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan

    2005-12-14

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  9. Particles and fields subsatellite program

    NASA Technical Reports Server (NTRS)

    Horn, H. J.

    1972-01-01

    The development and characteristics of the Particles and Fields Lunar Subsatellite are discussed. The basic mission is to investigate two problems in space physics: (1) the formation and dynamics of the earth's magnetosphere and (2) the boundary layer of the solar wind as it flows over the lunar surface. Illustrations of the subsatellites and the mission concepts are included.

  10. Characterization of complete particles (VSV-G/SIN-GFP) and empty particles (VSV-G/EMPTY) in human immunodeficiency virus type 1-based lentiviral products for gene therapy: potential applications for improvement of product quality and safety.

    PubMed

    Zhao, Yuan; Keating, Kenneth; Dolman, Carl; Thorpe, Robin

    2008-05-01

    Lentiviral vectors persist in the host and are therefore ideally suited for long-term gene therapy. To advance the use of lentiviral vectors in humans, improvement of their production, purification, and characterization has become increasingly important and challenging. In addition to cellular contaminants derived from packaging cells, empty particles without therapeutic function are the major impurities that compromise product safety and efficacy. Removal of empty particles is difficult because of their innate similarity in particle size and protein composition to the complete particles. We propose that comparison of the properties of lentiviral products with those of purposely expressed empty particles may reveal potential differences between empty and complete particles. For this, three forms of recombinant lentiviral samples, that is, recombinant vesicular stomatitis virus glycoprotein (VSV-G) proteins, empty particles (VSV-G/Empty), and complete particles (VSV-G/SIN-GFP) carrying viral RNA, were purified by size-exclusion chromatography (SEC). The SEC-purified samples were further analyzed by immunoblotting with six antibodies to examine viral and cellular proteins associated with the particles. This study has demonstrated, for the first time, important differences between VSV-G/Empty particles and complete VSV-G/SIN-GFP particles. Differences include the processing of Gag protein and the inclusion of cellular proteins in the particles. Our findings support the development of improved production, purification, and characterization methods for lentiviral products.

  11. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in the capsid and the molecular details of capsid assembly. Here, we provide evidence supporting one of the two current models for capsid architecture. We also show for the first time the location of the packaging protein L1 52/55k in particles lacking the virus genome and how this location changes during maturation. Our results contribute to clarifying standing questions in adenovirus capsid architecture and provide new details on the role of L1 52/55k protein in assembly. PMID:26178997

  12. Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations

    NASA Astrophysics Data System (ADS)

    Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.

    2018-02-01

    While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.

  13. Precision wood particle feedstocks

    DOEpatents

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  14. Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.

    A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.

  15. Thermal properties of granulated materials.

    NASA Technical Reports Server (NTRS)

    Wechsler, A. E.; Glaser, P. E.; Fountain, J. A.

    1972-01-01

    Review of the thermophysical properties of granular materials or silicates believed to simulate the lunar surface layer. Emphasis is placed on thermal conductivity data and the effects of material and environmental variables on the thermal conductivity. There are three basic mechanisms of heat transfer in particulate materials: conduction by the gas contained in the void spaces between the particles; conduction within the solid particles and across the interparticle contacts; and thermal radiation within the particles, across the void spaces between particle surfaces, and between void spaces themselves. Gas and solid conduction, thermal radiation, and the interaction between conduction and radiation are considered.

  16. Isolation of genomic DNA using magnetic cobalt ferrite and silica particles.

    PubMed

    Prodelalová, Jana; Rittich, Bohuslav; Spanová, Alena; Petrová, Katerina; Benes, Milan J

    2004-11-12

    Adsorption separation techniques as an alternative to laborious traditional methods (e.g., based on phenol extraction procedure) have been applied for DNA purification. In this work we used two types of particles: silica and cobalt ferrite (unmodified or modified with a reagent containing weakly basic aminoethyl groups, aminophenyl groups, or alginic acid). DNA from chicken erythrocytes and DNA isolated from bacteria Lactococcus lactis were used for testing of adsorption/desorption properties of particles. The cobalt ferrite particles modified with different reagents were used for isolation of PCR-ready bacterial DNA from different dairy products.

  17. The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava

    2016-08-01

    This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.

  18. National Transonic Facility Fan Blade prepreg material characterization tests

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.

    1981-01-01

    The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.

  19. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence, reliable methods which can be used to characterize these properties of encapsulates are vital. In this chapter, the state-of-art of these methods, their principles and applications, and release mechanisms are described as follows.

  20. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.

  1. Material removal in magnetorheological finishing of optics.

    PubMed

    Kordonski, William; Gorodkin, Sergei

    2011-05-10

    A concept of material removal based on the principle of conservation of particles momentum in a binary suspension is applied to analyze material removal in magnetorheological finishing and magnetorheological jet processes widely used in precision optics fabrication. According to this concept, a load for surface indentation by abrasive particles is provided at their interaction near the wall with heavier basic (magnetic) particles, which fluctuate (due to collision) in the shear flow of concentrated suspension. The model is in good qualitative and quantitative agreement with experimental results.

  2. Innovative experimental particle physics through technological advances: Past, present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Harry W.K.; /Fermilab

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  3. Synthesis and characterization of monodispersed polymer/polydiacetylene nanocrystal composite particles.

    PubMed

    Wei, Zhong; Ujiiye-Ishii, Kento; Masuhara, Akito; Kasai, Hitoshi; Okada, Shuji; Matsune, Hideki; Asahi, Tsuyoshi; Masuhara, Hiroshi; Nakanishi, Hachiro

    2005-06-01

    Monodispersed polymer/polydiacetylenecomposite particles were synthesized by soap-free seeded emulsion polymerization of styrene andmethyl methacrylate; the products were characterized by XRD, SEM, TEM, UV-visible spectroscopy, and single particle scattering spectroscopy. In the synthesis process, polydiacetylene nanocrystals were found to act as inhibitor, and consequently a relatively low concentration was necessary. Different monomers lead to the differences in reaction condition and particle morphology; the PMMA composite particles were simpler in preparation than polystyrene particles, but the latter havebetter spherical morphology. The composite particles were composed of polymer shells and polydiacetylene cores, which kept their crystal structure and optical properties. A high percentage of cored particles could be achieved with optimized reaction conditions where the amount of seed was sufficient and the oily oligomer by-product was suppressed.

  4. Seasonal variations of number size distributions and mass concentrations of atmospheric particles in Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Jianhua; Guinot, Benjamin; Yu, Tong; Wang, Xin; Liu, Wenqing

    2005-06-01

    Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.

  5. Beginning to Teach Chemistry: How Personal and Academic Characteristics of Pre-Service Science Teachers Compare with Their Understandings of Basic Chemical Ideas

    ERIC Educational Resources Information Center

    Kind, Vanessa; Kind, Per Morten

    2011-01-01

    Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by…

  6. Particle circulation and solids transport in large bubbling fluidized beds. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homsy, G.M.

    1982-04-01

    We have undertaken a theoretical study of the possibility of the formation of plumes or channeling when coal particles volatilize upon introduction to a fluidized bed, Fitzgerald (1980). We have completed the analysis of the basic state of uniform flow and are currently completing a stability analysis. We have modified the continuum equations of fluidization, Homsy et al. (1980), to include the source of gas due to volatilization, which we assume to be uniformly distributed spatially. Simplifying these equations and solving leads to the prediction of a basic state analogous to the state of uniform fluidization found when no sourcemore » is present within the medium. We are currently completing a stability analysis of this basic state which will give the critical volatilization rate above which the above simple basic state is unstable. Because of the experimental evidence of Jewett and Lawless (1981), who observed regularly spaced plume-like instabilities upon drying a bed of saturated silica gel, we are considering two-dimensional periodic disturbances. The analysis is similar to that given by Homsy, et al. (1980) and Medlin et al. (1974). We hope to determine the stability limits for this system shortly.« less

  7. Optical Scattering Characterization for the Glennan Microsystems Microscale Particulate Classifier

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    2002-01-01

    Small sensors that are tolerant to mechanically and thermally harsh environments present the possibility for in-situ particle characterization in propulsion, industrial, and planetary science applications. Under a continuing grant from the Glennan Microsystems Initiative to the Microgravity Fluids Physics Branch of the NASA-Glenn Research Center, a Microscale Particle Classifier (MiPAC) instrument is being developed. The MiPAC instrument will be capable of determining the size distribution of airborne particles from about 1 nm to 30 micrometers, and will provide partial information as to the concentration, charge state, shape, and structure of the particles, while being an order of magnitude smaller in size and lighter in weight than presently commercially available instruments. The portion of the instrument that will characterize the nm-range particles will employ electrical mobility techniques and is being developed under a separate grant to Prof. David Pui of the University of Minnesota. The portion of the instrument that will characterize the micrometer-size particles such as dirt, pollens, spores, molds, soot, and combustion aerosols will use light scattering techniques. The development of data analysis techniques to be employed in the light scattering portion of the instrument is covered by this grant.

  8. Evaluation of columns packed with shell particles with compounds of pharmaceutical interest.

    PubMed

    Ruta, Joséphine; Zurlino, Daria; Grivel, Candice; Heinisch, Sabine; Veuthey, Jean-Luc; Guillarme, Davy

    2012-03-09

    The commercial C18 columns packed with sub-3 μm shell particles were tested and compared to a reference UHPLC column, in terms of kinetic performance as well as selectivity, retention capability, peak shape and loading capacity. For this purpose, a set of pharmaceutically relevant molecules was selected, including acidic, neutral and basic drugs. Regarding kinetic performance, h(opt) values for the shell particles were found between 1.7 and 2, while the UHPLC column provided a value of approximately 2.5. However, this impressive performance should be considered with caution, particularly for the construction of kinetic plots since h(opt) values were sometimes related to the column dimensions, depending on the provider (h(opt) comprised between 1.8 and 2.6 for longer columns of 150 mm packed with shell particles). Despite the non-porous inner core of the shell particles representing between 25 and 36% of the particle, we demonstrated that the decrease in retention was on the maximum equal to 15% for Ascentis column while Acquity and Poroshell were strictly equivalent in terms of retention. Concerning loading capacity, it remains comparable to that of fully porous sub-2 μm particles and always more pronounced with 0.1% formic acid vs. phosphate buffer. The loading capacity of the different columns was found to be better correlated to the pore volume or surface coverage than the shell thickness. Experimentally, the most pronounced overloading was observed with the Poroshell. Finally, the selectivity and peak shape were evaluated using a mixture of basic and acidic drugs. It appears that results were very similar between sub-3 μm shell particles and fully porous sub-2-μm particles for our mixture of compounds, showing the ability to transfer existing methods to shell particles, with only limited adjustments. This study confirms the potential of columns packed with shell particles and demonstrates the interest of such column technology with pharmaceutical compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A surface analytical examination of Stringer particles in Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Avalos-Borja, M.; Pizzo, P. P.

    1983-01-01

    A surface analytical examination of powder metallurgy processed Al-Li-Cu alloys was conducted. The oxide stringer particles often found in these alloys was characterized. Particle characterization is important to more fully understand their impact on the stress corrosion and fracture properties of the alloy. The techniques used were SIMS (Secondary Ion Mass Spectroscopy) and SAM (Scanning Auger Microscopy). The results indicate that the oxide stringer particles contain both Al and Li with relatively high Li content and the Li compounds may be associated with the stringer particles, thereby locally depleting the adjacent matrix of Li solute.

  10. A surface-analytical examination of stringer particles in aluminum-lithium-copper alloys

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Avalos-Borja, M.; Pizzo, P. P.

    1984-01-01

    A surface analytical examination of powder metallurgy processed Al-Li-Cu alloys was conducted. The oxide stringer particles often found in these alloys are characterized. Particle characterization is important to more fully understand their impact on the stress corrosion and fracture properties of the alloy. The techniques used where SIMS (Secondary Ion Mass Spectroscopy) and SAM (Scanning Auger Microscopy). The results indicate that the oxide stringer particles contain both Al and LI with relatively high Li content and the Li compounds may be associated with the stringer particles, thereby locally depleting the adjacent matrix of Li solute.

  11. Physical and chemical characterization of airborne particles from welding operations in automotive plants.

    PubMed

    Dasch, Jean; D'Arcy, James

    2008-07-01

    Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles <100 nm. About half the mass of aluminum welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels.

  12. Research in space physics at the University of Iowa, 1982

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.; Frank, L. A.; Gurnett, D. A.; Shawhan, S. D.; Robison, E. D.; Robertson, T. D.

    1983-01-01

    The energetic particles and the electric, magnetic, and electromagnetic fields associated with the Earth, the Sun, the Moon, the planets, comets, and the interplanetary medium are examined. Matters under current investigation are following: energetic particles trapped in the Earth's magnetic field, origin and propagation of very low frequency radio waves and electrostatic, the magnetospheres of Jupiter, Saturn and prospectively Uranus and Neptune, diffusion of energetic particles in Saturn's magnetosphere, radio emissions from Jupiter and Saturn, solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays, interplanetary propagation and acceleration of energetic particles, the theory of wave phenomena in turbulent plasmas, and basic wave-particle-chemical processes in the ionospheric plasma.

  13. Single-particle characterization of indoor aerosol particles collected at an underground shopping area in Seoul, Korea.

    PubMed

    Maskey, Shila; Kang, TaeHee; Jung, Hae-Jin; Ro, Chul-Un

    2011-02-01

    In this study, single-particle characterization of aerosol particles collected at an underground shopping area was performed for the first time. A quantitative single-particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize a total of 7900 individual particles for eight sets of aerosol samples collected at an underground shopping area in Seoul, Korea. Based on secondary electron images and X-ray spectral data of individual particles, fourteen particle types were identified, in which primary soil-derived particles were the most abundant, followed by carbonaceous, Fe-containing, secondary soil-derived, and secondary sea-salt particles. Carbonaceous particles exist in three types: organic carbon, carbon-rich, and CNO-rich. A significant number of textile particles with chemical composition C, N, and O were encountered in some of the aerosol samples, which were from the textile shops and/or from clothes of passersby. Primary soil-derived particles showed seasonal variation, with peak values in spring samples, reflecting higher air exchange between indoor and outdoor environments in the spring. Secondary soil-derived, secondary sea-salt, and ammonium sulfate particles were frequently encountered in winter samples. Fe-containing particles, contributed from a nearby subway station, were in the range of about 19% relative abundances for all samples. In underground shopping areas, particulate matters can be a considerable health hazard to the workers, shoppers, passersby, and shop-keepers as they spend their considerable time in this closed microenvironment. However, no study on the characteristics of indoor aerosols in an underground shopping area has been reported to our knowledge. This work provides detailed information on characteristics of underground shopping area aerosols on a single particle level. © 2010 John Wiley & Sons A/S.

  14. Integrated Method for Purification and Single-Particle Characterization of Lentiviral Vector Systems by Size Exclusion Chromatography and Tunable Resistive Pulse Sensing.

    PubMed

    Heider, Susanne; Muzard, Julien; Zaruba, Marianne; Metzner, Christoph

    2017-07-01

    Elements derived from lentiviral particles such as viral vectors or virus-like particles are commonly used for biotechnological and biomedical applications, for example in mammalian protein expression, gene delivery or therapy, and vaccine development. Preparations of high purity are necessary in most cases, especially for clinical applications. For purification, a wide range of methods are available, from density gradient centrifugation to affinity chromatography. In this study we have employed size exclusion columns specifically designed for the easy purification of extracellular vesicles including exosomes. In addition to viral marker protein and total protein analysis, a well-established single-particle characterization technology, termed tunable resistive pulse sensing, was employed to analyze fractions of highest particle load and purity and characterize the preparations by size and surface charge/electrophoretic mobility. With this study, we propose an integrated platform combining size exclusion chromatography and tunable resistive pulse sensing for monitoring production and purification of viral particles.

  15. Characteristics of particulate matter emissions from toy cars with electric motors.

    PubMed

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  16. Lunar Dust Characterization Activity at GRC

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.

    2008-01-01

    The fidelity of lunar simulants as compared to actual regolith is evaluated using Figures of Merit (FOM) which are based on four criteria: Particle Size, Particle Shape, Composition, and Density of the bulk material. In practice, equipment testing will require other information about both the physical properties (mainly of the dust fraction) and composition as a function of particle size. At Glenn Research Center (GRC) we are involved in evaluating a number of simulant properties of consequence to testing of lunar equipment in a relevant environment, in order to meet Technology Readiness Level (TRL) 6 criteria. Bulk regolith has been characterized for many decades, but surprisingly little work has been done on the dust fraction (particles less than 20 micrometers in diameter). GRC is currently addressing the information shortfall by characterizing the following physical properties: Particle Size Distribution, Adhesion, Abrasivity, Surface Energy, Magnetic Susceptibility, Tribocharging and Surface Chemistry/Reactivity. Since some of these properties are also dependent on the size of the particles we have undertaken the construction of a six stage axial cyclone particle separator to fractionate dust into discrete particle size distributions for subsequent evaluation of these properties. An introduction to this work and progress to date will be presented.

  17. Relativistic Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  18. Cross Sections From Scalar Field Theory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel

    2008-01-01

    A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.

  19. Evaluation of an Intervention Instructional Program to Facilitate Understanding of Basic Particle Concepts among Students Enrolled in Several Levels of Study

    ERIC Educational Resources Information Center

    Treagust, David F.; Chandrasegaran, A. L.; Zain, Ahmad N. M.; Ong, Eng Tek; Karpudewan, Mageswary; Halim, Lilia

    2011-01-01

    The efficacy of an intervention instructional program was evaluated to facilitate understanding of particle theory concepts among students (N = 190) using a diagnostic instrument consisting of eleven two-tier multiple-choice items in a pre-test--post-test design. The students involved were high school students, undergraduates and postgraduates…

  20. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    NASA Astrophysics Data System (ADS)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  1. Characterization and first results of an ice nucleating particle measurement system based on counterflow virtual impactor technique

    NASA Astrophysics Data System (ADS)

    Schenk, L. P.; Mertes, S.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Schmidt, S.; Schneider, J.; Worringen, A.; Kandler, K.; Bukowiecki, N.; Ebert, M.; Curtius, J.; Stratmann, F.

    2014-10-01

    A specific instrument combination was developed to achieve a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nucleating particles (INP). For this purpose a pumped counterflow virtual impactor system called IN-PCVI was set up and characterized to separate ice particles that had been activated on INP in the Fast Ice Nucleus Chamber (FINCH) from interstitial, non-activated particles. This coupled setup consisting of FINCH (ice particle activation and counting), IN-PCVI (INP separation and preparation), and further aerosol instrumentation (INP characterization) had been developed for the application in field experiments. The separated INP were characterized on-line with regard to their total number concentration, number size distribution and chemical composition, especially with the Aircraft-based Laser Ablation Aerosol Mass Spectrometer ALABAMA. Moreover, impactor samples for electron microscopy were taken. Due to the coupling the IN-PCVI had to be operated with different flow settings than known from literature, which required a further characterization of its cut-off-behavior. Taking the changed cut-off-behavior into account, the INP number concentration measured by the IN-PCVI system was in good agreement with the one detected by the FINCH optics for water saturation ratios up to 1.01 (ice saturation ratios between 1.21-1.34 and temperatures between -18 and -26 °C). First field results of INP properties are presented which were gained during the INUIT-JFJ/CLACE 2013 campaign at the high altitude research station Jungfraujoch in the Bernese Alps, Switzerland (3580 m a.s.l.).

  2. Particle Swarm Transport across the Fracture-Matrix Interface

    NASA Astrophysics Data System (ADS)

    Malenda, M. G.; Pyrak-Nolte, L. J.

    2016-12-01

    A fundamental understanding of particle transport is required for many diverse applications such as effective proppant injection, for deployment of subsurface imaging micro-particles, and for removal of particulate contaminants from subsurface water systems. One method of particulate transport is the use of particle swarms that act as coherent entities. Previous work found that particle swarms travel farther and faster in single fractures than individual particles when compared to dispersions and emulsions. In this study, gravity-driven experiments were performed to characterize swarm transport across the fracture-matrix interface. Synthetic porous media with a horizontal fracture were created from layers of square-packed 3D printed (PMMA) spherical grains (12 mm diameter). The minimum fracture aperture ranged from 0 - 10 mm. Swarms (5 and 25 µL) were composed of 3.2 micron diameter fluorescent polystryene beads (1-2% by mass). Swarms were released into a fractured porous medium that was submerged in water and was illuminated with a green (528 nm) LED array. Descending swarms were imaged with a CCD camera (2 fps). Whether an intact swarm was transported across a fracture depended on the volume of the swarm, the aperture of the fracture, and the alignment of pores on the two fracture walls. Large aperture fractures caused significant deceleration of a swarm because the swarm was free to expand laterally in the fracture. Swarms tended to remain intact when the pores on the two fracture walls were vertically aligned and traveled in the lower porous medium with speeds that were 30%-50% of their original speed in the upper matrix. When the pores on opposing walls were no longer aligned, swarms were observed to bifurcate around the grain into two smaller slower-moving swarms. Understanding the physics of particle swarms in fractured porous media has important implications for enhancing target particulate injection into the subsurface as well as for contaminant particulate transport. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by National Science Foundation REU program under Award Number (PHY-1460899) at Purdue University.

  3. The Spherical Brazil Nut Effect and its Significance to Asteroids

    NASA Astrophysics Data System (ADS)

    Perera, Viranga; Jackson, Alan P.; Asphaug, Erik; Ballouz, Ronald-Louis

    2015-11-01

    Asteroids are intriguing remnant objects from the early solar system. They can inform us on how planets formed, they could possibly impact the earth in the future, and they likely contain precious metals; for those reasons, there will be future exploration and mining space missions to them. Telescopic observations and spacecraft data have helped us understand basic properties such as their size, mass, spin rate, orbital elements, and their surface properties. However, their interior structures have remained elusive. In order to fully characterize the interiors of these bodies, seismic data will be necessary. However, we can infer their interior structures by combining several key factors that we know about them: 1). Past work has shown that asteroids between 150 m to 10 km in size are rubble-piles that are a collection of particles held together by gravity and possibly cohesion. 2). Asteroid surfaces show cratering that suggests that past impacts would have seismically shaken these bodies. 3). Spacecraft images show that some asteroids have large protruding boulders on their surfaces. A rubble-pile object made of particles of different sizes and that undergoes seismic shaking will experience granular flow. Specifically, a size sorting effect known as the Brazil Nut Effect will lead larger particles to move towards the surface while smaller particles will move downwards. Previous work has suggested that this effect could possibly explain not only why there are large boulders on the surfaces of some asteroids but also might suggest that the interior particles of these bodies would be organized by size. Previous works have conducted computer simulations and lab experiments; however, all the particle configurations used have been either cylindrical or rectangular boxes. In this work we present a spherical configuration of self-gravitating particles that is a better representation of asteroids. Our results indicate that while friction is not necessary for the Brazil Nut Effect to take place, it aids the sorting process after a certain energy threshold is met. Even though we find that the outer layers of asteroids could possibly be size sorted, the inner regions are likely mixed.

  4. Automation of aggregate characterization using laser profiling and digital image analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungkwan

    2002-08-01

    Particle morphological properties such as size, shape, angularity, and texture are key properties that are frequently used to characterize aggregates. The characteristics of aggregates are crucial to the strength, durability, and serviceability of the structure in which they are used. Thus, it is important to select aggregates that have proper characteristics for each specific application. Use of improper aggregate can cause rapid deterioration or even failure of the structure. The current standard aggregate test methods are generally labor-intensive, time-consuming, and subject to human errors. Moreover, important properties of aggregates may not be captured by the standard methods due to a lack of an objective way of quantifying critical aggregate properties. Increased quality expectations of products along with recent technological advances in information technology are motivating new developments to provide fast and accurate aggregate characterization. The resulting information can enable a real time quality control of aggregate production as well as lead to better design and construction methods of portland cement concrete and hot mix asphalt. This dissertation presents a system to measure various morphological characteristics of construction aggregates effectively. Automatic measurement of various particle properties is of great interest because it has the potential to solve such problems in manual measurements as subjectivity, labor intensity, and slow speed. The main efforts of this research are placed on three-dimensional (3D) laser profiling, particle segmentation algorithms, particle measurement algorithms, and generalized particle descriptors. First, true 3D data of aggregate particles obtained by laser profiling are transformed into digital images. Second, a segmentation algorithm and a particle measurement algorithm are developed to separate particles and process each particle data individually with the aid of various kinds of digital image technologies. Finally, in order to provide a generalized, quantitative, and representative way to characterize aggregate particles, 3D particle descriptors are developed using the multi-resolution analysis feature of wavelet transforms. Verification tests show that this approach could characterize various aggregate properties in a fast, accurate, and reliable way. When implemented, this ability to automatically analyze multiple characteristics of an aggregate sample is expected to provide not only economic but also intangible strategic gains.

  5. Transport of Colloids along Corners: Visualization of Evaporation-Induced Flows beyond the Axisymmetric Condition.

    PubMed

    Vélez-Cordero, J Rodrigo; Yáñez Soto, Bernardo; Arauz-Lara, José L

    2016-08-16

    Nonhomogeneous evaporation fluxes have been shown to promote the formation of internal currents in sessile droplets, explaining the patterns that suspended particles leave after the droplet has dried out. Although most evaporation experiments have been conducted using spherical-cap-shaped drops, which are essentially in an axisymmetric geometry, here we show an example of nonhomogeneous evaporation in asymmetric geometries, which is visualized by following the motion of colloidal particles along liquid fingers forming a meniscus at square corners. It is found that the particle's velocity increases with the diffusive evaporation factor [Formula: see text] for the three tested fluids: water, isopropyl alcohol (IPA), and ethanol (EtOH). Here, [Formula: see text] is the vapor diffusivity in air, RH is the relative amount of vapor in the atmosphere, and cs is the saturated vapor concentration. We observed that in IPA and EtOH the internal currents promote a 3D spiral motion, whereas in water the particle's trajectory is basically unidirectional. By adding 0.25 critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS) surfactant in water, a velocity blast was observed in the whole circulation flow pattern, going from [Formula: see text] to nearly [Formula: see text] in the longitudinal velocity component. To assess the effect of breaking the axisymmetric condition on the evaporation flux profile, we numerically solved the diffusive equation in model geometries that preserve the value of the contact angle θ but introduce an additional angle ϕ that characterizes the solid substrate. By testing different combinations of θ and ϕ, we corroborated that the evaporation flux increases when the substrate and the gas-liquid curves meet at corners with increasing sharpness.

  6. Metal-enhanced fluorescence of dye-doped silica nano particles.

    PubMed

    Gunawardana, Kalani B; Green, Nathaniel S; Bumm, Lloyd A; Halterman, Ronald L

    2015-03-01

    Recent advancements in metal-enhanced fluorescence (MEF) suggest that it can be a promising tool for detecting molecules at very low concentrations when a fluorophore is fixed near the surface of metal nanoparticles. We report a simple method for aggregating multiple gold nanoparticles (GNPs) on Rhodamine B (RhB)-doped silica nanoparticles (SiNPs) utilizing dithiocarbamate (DTC) chemistry to produce MEF in solution. Dye was covalently incorporated into the growing silica framework via co-condensation of a 3-aminopropyltriethoxysilane (APTES) coupled RhB precursor using the Stöber method. Electron microscopy imaging revealed that these mainly non-spherical particles were relatively large (80 nm on average) and not well defined. Spherical core-shell particles were prepared by physisorbing a layer of RhB around a small spherical silica particle (13 nm) before condensing an outer layer of silica onto the surface. The core-shell method produced nanospheres (~30 nm) that were well defined and monodispersed. Both dye-doped SiNPs were functionalized with pendant amines that readily reacted with carbon disulfide (CS2) under basic conditions to produce DTC ligands that have exhibited a high affinity for gold surfaces. GNPs were produced via citrate reduction method and the resulting 13 nm gold nanospheres were then recoated with an ether-terminated alkanethiol to provide stability in ethanol. Fluorescent enhancement was observed when excess GNPs were added to DTC coated dye-doped SiNPs to form nanoparticle aggregates. Optimization of this system gave a fluorescence brightness enhancement of over 200 fold. Samples that gave fluorescence enhancement were characterized through Transmission Emission Micrograph (TEM) to reveal a pattern of multiple aggregation of GNPs on the dye-doped SiNPs.

  7. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  8. Detailed characterization of particulate matter emitted by lean-burn gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelenyuk, Alla; Wilson, Jacqueline; Imre, Dan

    This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantlymore » with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings« less

  9. Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car

    NASA Astrophysics Data System (ADS)

    Karjalainen, Panu; Timonen, Hilkka; Saukko, Erkka; Kuuluvainen, Heino; Saarikoski, Sanna; Aakko-Saksa, Päivi; Murtonen, Timo; Bloss, Matthew; Dal Maso, Miikka; Simonen, Pauli; Ahlberg, Erik; Svenningsson, Birgitta; Brune, William Henry; Hillamo, Risto; Keskinen, Jorma; Rönkkö, Topi

    2016-07-01

    Changes in vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic-related emissions, both primary (direct) particulate emission and secondary particle formation (from gaseous precursors in the exhaust emissions) need to be characterized. In this study, we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a Euro 5 level gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the tailpipe to the atmosphere, and also takes into account differences in driving patterns. We observed that, in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence.

  10. Physics, mathematics and numerics of particle adsorption on fluid interfaces

    NASA Astrophysics Data System (ADS)

    Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim

    2012-11-01

    We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.

  11. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    NASA Astrophysics Data System (ADS)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.

    We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  12. Structure and Properties of Energetic Materials

    DTIC Science & Technology

    1992-12-02

    basic research is needed. First, a quantitative study of friction effects on propellants with varying particle sizes can be conducted. Second, using...Army position, policy, or decision, unless so designated by other documentation. Mat. Res. Soc. Symp. Proc. Vol. 296. t 1993 Materials Research Society...further observations and analysis. INTRODUCTION Recently, a study group sponsored by the Army Research Office developed and published an overall basic

  13. Effect of bioglass 45S5 addition on properties, microstructure and cellular response of tetracalcium phosphate/monetite cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stulajterova, R., E-mail: rstulajterova@saske.sk

    Tetracalcium phosphate/nanomonetite (TTCPMH) cement composites with 7.5 and 15 wt% addition of melt-derived 45S5 bioactive glass were prepared by mechanical homogenization of powder components and 2% NaH{sub 2}PO{sub 4} solution was used as a hardening liquid. The properties of composites with the acidic (Ca/P ratio equal 1.5) or basic (Ca/P ratio equal 1.67) TTCPMH component were compared. Addition of glass component caused rapid rise in pH of composites up to 10. In microstructure of basic cement composite, the large bioglass particles weakly bounded to surrounding cement matrix were found contrary to a more compact microstructure of acidic cement composites withmore » the high number of spherical silica particles. Both the significant refinement of hydroxyapatite particles and the change to needle-like morphology with rise in the content of bioglass were identified in hydroxyapatite coatings created during soaking of composites in phosphate buffered saline. In acidic cement mixtures, the increase of compressive strength with an amount of bioglass was found whereas the opposite tendency was revealed in the case of basic cement mixtures. The higher concentrations of ions were verified in solutions after immersion of acidic cement composites. The severe cytotoxicity of extracts and composite cement substrates containing 15 wt% of bioglass demonstrated adverse effects of both the ionic concentrations and unappropriate surface texture on proliferation of mesenchymal stem cells. The enhanced ALP activities of cells cultured on composite cements confirmed the positive effect of bioactive glass addition on differentiation of mesenchymal stem cells. - Highlights: • Novel B45S5 bioglass/tetracalcium phosphate/nanomonetite cement composites • Cement basicity negatively affected their microstructure. • Acid composite cements had higher compressive strengths than basic composites. • Fast differentiation of MSC to osteoblast line on composite with 7.5 wt% of bioglass • Severe cytotoxicity of 24 h extracts from composites with 15 wt% of bioglass.« less

  14. Development of a balloon-borne device for analysis of high-altitude ice and aerosol particulates: Ice Cryo Encapsulator by Balloon (ICE-Ball)

    NASA Astrophysics Data System (ADS)

    Boaggio, K.; Bandamede, M.; Bancroft, L.; Hurler, K.; Magee, N. B.

    2016-12-01

    We report on details of continuing instrument development and deployment of a novel balloon-borne device for capturing and characterizing atmospheric ice and aerosol particles, the Ice Cryo Encapsulator by Balloon (ICE-Ball). The device is designed to capture and preserve cirrus ice particles, maintaining them at cold equilibrium temperatures, so that high-altitude particles can recovered, transferred intact, and then imaged under SEM at an unprecedented resolution (approximately 3 nm maximum resolution). In addition to cirrus ice particles, high altitude aerosol particles are also captured, imaged, and analyzed for geometry, chemical composition, and activity as ice nucleating particles. Prototype versions of ICE-Ball have successfully captured and preserved high altitude ice particles and aerosols, then returned them for recovery and SEM imaging and analysis. New improvements include 1) ability to capture particles from multiple narrowly-defined altitudes on a single payload, 2) high quality measurements of coincident temperature, humidity, and high-resolution video at capture altitude, 3) ability to capture particles during both ascent and descent, 4) better characterization of particle collection volume and collection efficiency, and 5) improved isolation and characterization of capture-cell cryo environment. This presentation provides detailed capability specifications for anyone interested in using measurements, collaborating on continued instrument development, or including this instrument in ongoing or future field campaigns.

  15. The impact of port emissions and marine biogenics on the single-particle chemistry of marine aerosol measured on board the R/V Atlantis during the CalNEX 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Gaston, C. J.; Quinn, P.; Bates, T. S.; Prather, K. A.

    2010-12-01

    Marine environments are characterized by low particle concentrations and, as such, are sensitive to changes in particle number concentration and chemistry induced by biogenic and anthropogenic influences. Measurements of both gas phase and particle phase emissions on board the R/V Atlantis during the CalNEX 2010 field campaign provided an opportunity to examine the impact of anthropogenic and marine biogenic emissions on particle chemistry along the California coast. Real-time, single-particle measurements made using an aerosol time-of-flight mass spectrometer (ATOFMS) revealed the single-particle mixing state of the sampled marine aerosols. Submicron particles (0.2-1.0 um) containing organic carbon, elemental carbon mixed with organic carbon, and unique V-containing particles previously detected in port regions were prevalent throughout the Southern California coast; most of these particles were also associated with sulfate. Measurements made in the deep water channel near Sacramento, CA revealed dramatically different particle chemistry that was characterized by organic carbon and amines. Particles measured further away from the continent toward the open ocean were influenced by marine biological activity due to a phytoplankton bloom that was occurring off the California coast. During this sampling period, unique ocean-derived particles containing internal mixtures of Mg and organic carbon were detected in addition to unique particles containing elemental S ions, which were only detected at night. An aerosol generator used to bubble seawater in order to characterize primary emissions from the ocean confirmed that the Mg-organic carbon and S-containing particles were indeed emitted from the ocean. These measurements reveal the strong impact of both port emissions as well as marine biogenic emissions on aerosol chemistry along the California coast.

  16. Mixing fuel particles for space combustion research using acoustics

    NASA Technical Reports Server (NTRS)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20 sec low gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  17. Mixing fuel particles for space combustion research using acoustics

    NASA Technical Reports Server (NTRS)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  18. Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom

    DOEpatents

    Johnston, Roger G.

    1988-01-01

    Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer.

  19. Apparatus and method for detection and characterization of particles using light scattered therefrom

    DOEpatents

    Johnston, R.G.

    1987-03-23

    Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.

  20. [Targeted drug delivery system: potential application to resveratrol].

    PubMed

    Farghali, Hassan; Kameníková, Ludmila

    2017-01-01

    Drug delivery system (DDS) is intended to increasing effectiveness of drugs through targeted distribution and to reducing of unwanted effects. In this mini-review, the basic principles of nanotechnology that were developed for DDS were reported including sections on the present research in key areas that are important for future investigations. Attention is paid on resveratrol as a model phytochemical with interesting pharmacologic profile which was demonstrated in great numbers of studies and for its wide use as supplemental therapy. Due to complicated pharmacokinetic profile of resveratrol that is characterized by very low bioavailability in spite of high oral absorption, the effects of resveratrol is being studied in new nanotechnology preparations of pharmaceutical formulation. Herein we report on results of present in vitro and in vivo investigations with resveratrol in new types of drug formulations using different nanoparticles as liposomes, solid lipid particles, cyclodextrins and micelles.Key words: targeted drug delivery nanotechnology resveratrol.

  1. Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Fabisiak, K.; Zhusupkalieva, G.; Fedorov, A.

    2016-09-01

    The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7-25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.

  2. Multilayer coating of optical substrates by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Daniel, M. V.; Demmler, M.

    2017-10-01

    Ion beam sputtering is well established in research and industry, despite its relatively low deposition rates compared to electron beam evaporation. Typical applications are coatings of precision optics, like filters, mirrors and beam splitter. Anti-reflective or high-reflective multilayer stacks benefit from the high mobility of the sputtered particles on the substrate surface and the good mechanical characteristics of the layers. This work gives the basic route from single layer optimization of reactive ion beam sputtered Ta2O5 and SiO2 thin films towards complex multilayer stacks for high-reflective mirrors and anti-reflective coatings. Therefore films were deposited using different oxygen flow into the deposition chamber Afterwards, mechanical (density, stress, surface morphology, crystalline phases) and optical properties (reflectivity, absorption and refractive index) were characterized. These knowledge was used to deposit a multilayer coating for a high reflective mirror.

  3. Small low mass advanced PBR's for propulsion

    NASA Astrophysics Data System (ADS)

    Powell, J. R.; Todosow, M.; Ludewig, H.

    1993-10-01

    The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.

  4. First large scale chemical synthesis of the 72 amino acid HIV-1 nucleocapsid protein NCp7 in an active form.

    PubMed

    de Rocquigny, H; Ficheux, D; Gabus, C; Fournié-Zaluski, M C; Darlix, J L; Roques, B P

    1991-10-31

    The nucleocapsid protein (NC) of the human immunodeficiency virus type 1 plays a crucial role in the formation of infectious viral particles and therefore should be a major target for the development of antiviral agents. This requires an investigation of NC protein structure and of its interactions with both primer tRNA(Lys,3) and genomic RNA. Nucleocapsid protein NCp7, which results from the maturation of NCp15, contains two zinc fingers flanked by sequences rich in basic and proline residues. Here we report the first synthesis of large quantities of NCp7 able to activate HIV-1 RNA dimerization and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. In addition UV spectroscopic analyses performed to characterize the Co2+ binding properties of each zinc finger suggest that the two fingers probably interact in NCp7.

  5. Tracking the Growth Transitions of A Solvent-Charged Model Globular Protein

    NASA Astrophysics Data System (ADS)

    Babcock, Jeremiah; Friday, Jacob; Brancaleon, Lorenzo

    2011-03-01

    Biophysical studies have shown that solutes like proteins undergo aggregation through specific pathways that often lead to long polymeric structures called fibrils. The knowledge of the size of early-stage protein aggregates (oligomers) has an important bearing on the elucidation of the dynamics of the process of protein unit combinations. In this study, bovine serum albumin, a well-characterized model protein known to polymerize in alkaline and acidic conditions in the normal (N) to basic (B) or (N) to (E) transition, was incubated at pH 9.0 and pH 3.1 for longer than eight days. Particle growth in solution was monitored by absorption, fluorescence and circular dichroism spectroscopy and concurrently measured by atomic force microscopy (AFM) methods to yield BSA oligomer size distributions. Results show that the BSA aggregation pathway is concentration-dependent and rapidly forms spherical aggregates, which preferentially come together to form flexible polymers.

  6. Artificial magnetic field for the space station (Protecting space stations in future space missions)

    NASA Astrophysics Data System (ADS)

    Ahmadi Tara, Miss

    Problem Explanation Strong solar storms and cosmic rays make great disturbances for equip-ment outside the magnetosphere. Also these disturbances are so harmful for biological process of living cells. If one decides to stay more outside the Earth, one's healthy is in a great danger. To investigate space station situation against strong solar storms, 5 recent strong solar storms have been selected. Dst of these storms are more than -300 nT. Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artifi-cial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) artificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these fields always are anti-aligned because artificial field could change direction by itself basic on the situation of Sun. Relationship between artificial field and solar storm has two types: 1) Artificial field loads up to solar storm's magnetic field and makes magnetic reconnection 2) ar-tificial field repulses energetic solar particles. These below equations show situation of artificial field against magnetic reconnection with magnetic field of solar storm and repulsing particles. Basic on the volume of repulsed particles the strength of field could be: General equation of artificial field: Equations of artificial field basic on the magnetic reconnection: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance General equation of artificial field: Equations of artificial field basic on the magnetic reconnec-tion: Also equation of balance of electrical energy is: That , V and P are denoting respectively density, velocity and pressure. is plasma energy density. J= current density, Bo =artificial magnetic field, B,E=plasma magnetic and electric field. Vs=volume of a sphere with r radius and =resistance Results Tab II. Danger percentage of 5 strong solar storms for equipment and astronauts in the future space station within the influence on artificial field As has been shown in Tab II artificial magnetic field could pass great dangers of solar storms and protect space station wherever of free space. FIG.2) Upper panel shows X-ray flux at two wavelengths 0.5-4 ˚ and 1-8 ˚. Lower Panel shows Proton flux in various energy levels received on the Moon's A A surface from solar storm 2000(obtained from simulation) 0-14(UT) obtained from outside the field, 14-7(UT) obtained from receiver in the field, 7-0(UT) obtained from receiver behind in-strument Conclusion In this brief paper, I describe a way to protect future space station from energetic particles. This field could reduce damage of solar storms and cosmic rays that arrived to the space station outside the Earth magnetic field. This field performs as magnetosphere for space station. It could change its situation and make easy live on the space station. This strong magnetic field must be generated by low-temperature superconductors. They are suit-able material to use at generating a strong magnetic field. These materials could be used in the structure of spacecrafts during long duration space travels in future

  7. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  8. Dilation and breakage dissipation of granular soils subjected to monotonic loading

    NASA Astrophysics Data System (ADS)

    Sun, Yifei; Xiao, Yang; Ji, Hua

    2016-12-01

    Dilation and breakage energy dissipation of four different granular soils are investigated by using an energy balance equation. Due to particle breakage, the dilation curve does not necessarily pass through the origin of coordinates. Breakage energy dissipation is found to increase significantly at the initial loading stage and then gradually become stabilised. The incremental dissipation ratio between breakage energy and plastic work exhibits almost independence of the confining pressure. Accordingly, a plastic flow rule considering the effect of particle breakage is suggested. The critical state friction angle is found to be a combination of the basic friction between particles and the friction contributed by particle breakage.

  9. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  10. Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH4

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Jiao, Chengpeng; Wang, Liqiong; Huang, Zili; Liang, Feng; Liu, Simin; Wang, Yuhua; Zhang, Haijun; Zhang, Shaowei

    2018-01-01

    ISOBAM-104 protected Rh/Ag bimetallic nanoparticles (NPs) with average diameter less than 3.0 nm were synthesized by a co-reduction method. Ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM and x-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, particle size, and electronic structure of the prepared bimetallic NPs. The catalytic activities of prepared bimetallic NPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated in detail. The results indicated that as-prepared Rh/Ag bimetallic NPs showed a higher catalytic activity than corresponding monometallic NPs. Among all the monometallic NPs and bimetallic NPs, Rh80Ag20 bimetallic NPs exhibited the highest catalytic activity with a value of 6010 mol-H2·h-1·mol-catalyst-1 at pH = 12 and 303 K. The high catalytic activities of Rh/Ag bimetallic NPs could be attributed to presence of negatively charged Rh atoms and positively charged Ag atoms, which is supported by the results of XPS and density functional theory calculation. Based on the kinetic study, the apparent activation energy for the hydrolysis reaction of the basic KBH4 solution catalyzed by Rh80Ag20 bimetallic NPs was about 47.0 ± 3.9 kJ mol-1.

  11. The Apollo 15 coarse fines (4-10 mm)

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Sherman, Sarah Bean

    1989-01-01

    A new catalog of the Apollo 15 coarse fines particles is presented. Powell's macroscopic descriptions, resulting from his 1972 particle by particle binocular examination of all of the Apollo 15 4 to 10 mm fines samples, are retained. His groupings are also retained, but petrographic, chemical, and other data from later analyses are incorporated into this catalog to better characterize individual particles and describe the groups. A large number of particles have no characterization beyond that done by Powell. Complete descriptions of the particles and all known references are provided. The catalog is intended for anyone interested in the rock types collected by Dave Scott and Jim Irwin in the Hadley-Appenine region, and particularly for researchers requiring sample allocations.

  12. Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan

    NASA Astrophysics Data System (ADS)

    Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.

    2013-12-01

    Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size distributions of volcanic ash from Sakurajima volcano have basically characteristics of unimodal and gaussian. Mode of distributions are 150 - 200 micron at 5 km and 70-80 micron at 20 km respectively from the Showa crater. Mode and deviation of the grain size distribution are function of distance from the source. Fine volcanic ash less than 1 micron in diameter is few and exists in every samples. Component of volcanic ash samples are dark-colored dense glass shard (ca. 50%), light-colored dense glass shard (10%), variously colored and vesiculated glass shard (10%), free crystal (20%), lithic fragment (10%), and altered fragment (less than 5%) which are mostly having similar ratio in every location suggesting single source process of the eruption. We also found fine volcanic ash samples less than 10 micron are frequently aggregated. The present study includes the result of "Research and Development of Margin Assessment Methodology of Decay Heat Removal Function against External Hazards" entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

  13. Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust

    PubMed Central

    Chubb, Lauren G.; Cauda, Emanuele G.

    2017-01-01

    Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139

  14. Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro.

    PubMed

    Leclerc, L; Rima, W; Boudard, D; Pourchez, J; Forest, V; Bin, V; Mowat, P; Perriat, P; Tillement, O; Grosseau, P; Bernache-Assollant, D; Cottier, M

    2012-08-01

    Micrometric and nanometric particles are increasingly used in different fields and may exhibit variable toxicity levels depending on their physicochemical characteristics. The aim of this study was to determine the impact of the size parameter on cellular uptake and biological activity, working with well-characterized fluorescent particles. We focused our attention on macrophages, the main target cells of the respiratory system responsible for the phagocytosis of the particles. FITC fluorescent silica particles of variable submicronic sizes (850, 500, 250 and 150 nm) but with similar surface coating (COOH) were tailored and physico-chemically characterized. These particles were then incubated with the RAW 264.7 macrophage cell line. After microscopic observations (SEM, TEM, confocal), a quantitative evaluation of the uptake was carried out. Fluorescence detected after a quenching with trypan blue allows us to distinguish and quantify entirely engulfed fluorescent particles from those just adhering to the cell membrane. Finally, these data were compared to the in vitro toxicity assessed in terms of cell damage, inflammation and oxidative stress (evaluated by LDH release, TNF-α and ROS production respectively). Particles were well characterized (fluorescence, size distribution, zeta potential, agglomeration and surface groups) and easily visualized after cellular uptake using confocal and electron microscopy. The number of internalized particles was precisely evaluated. Size was found to be an important parameter regarding particles uptake and in vitro toxicity but this latter strongly depends on the particles doses employed.

  15. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  16. Engineering mechanics: statics and dynamics. [Textbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, B.I.

    1983-01-01

    The purpose of this textbook is to provide engineering students with basic learning material about statics and dynamics which are fundamental engineering subjects. The chapters contain information on: an introduction to engineering mechanics; forces on particles, rigid bodies, and structures; kinetics of particles, particle systems, and rigid bodies in motion; kinematics; mechanical vibrations; and friction, work, moments of inertia, and potential energy. Each chapter contains introductory material, the development of the essential equations, worked-out example problems, homework problems, and, finally, summaries of the essential methods and equations, graphically illustrated where appropriate. (LCL)

  17. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  18. Space Particle Hazard Measurement and Modeling

    DTIC Science & Technology

    2016-09-01

    understand the interactions of the physical processes driving, then specify and ultimately predict the state of the energetic particle populations...Hudson, and B. T. Kress (2013), Direct observation of the CRAND proton radiation belt source, J. Geophys. Res. Space Physics , 118, doi:10.1002...anticritical temperature for spacecraft charging, J. Geophys Res.: Space Physics , 113, 2156-2202, doi: 10.1029/2008JA013161 2010 – Tested basic

  19. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    NASA Technical Reports Server (NTRS)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  20. Timing the Random and Anomalous Arrival of Particles in a Geiger Counter with GPS Devices

    ERIC Educational Resources Information Center

    Blanco, F.; La Rocca, P.; Riggi, F.; Riggi, S.

    2008-01-01

    The properties of the arrival time distribution of particles in a detector have been studied by the use of a small Geiger counter, with a GPS device to tag the event time. The experiment is intended to check the basic properties of the random arrival time distribution between successive events and to simulate the investigations carried out by…

  1. Extended Range Intercept Technology

    DTIC Science & Technology

    1991-09-01

    particle size other than Freon class fluids. The requirements for a solvent used in grinding ammonium perchlorate to a one micron particle size are high...demonstrate a preprototype missile and launch control systems technology for tactical missile defense applications, including performance ...these two flights would be to verify flight performance and stability of the basic air frame and control system design (LTV Missiles and 1 -2 wp«-2a

  2. Particles trajectories in magnetic filaments

    NASA Astrophysics Data System (ADS)

    Bret, A.

    2015-07-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  3. The combustion of large particles of char in bubbling fluidized beds: The dependence of Sherwood number and the rate of burning on particle diameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, J.S.; Hayhurst, A.N.; Scott, S.A.

    Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter ofmore » the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a burning char particle; the implication of this correlation is that a completely new picture emerges for the combustion of a char particle in a hot fluidized bed. (author)« less

  4. The MAGIC Meteoric Smoke Particle Sampler - Description and Results

    NASA Astrophysics Data System (ADS)

    Hedin, J.

    2013-12-01

    Between a few to several hundred tons of meteoric material enters the Earth's atmosphere each day, and much of this material ablates in the 70 -130 km region of the atmosphere. Already in the early 1960's it was suggested that meteoroid ablation products could recondense and form solid nanometer-scale smoke particles in the altitude range of the mesosphere and lower thermosphere (MLT). These so-called meteoric smoke particles (MSPs) are then subject to further coagulation, sedimentation, and transport by the mesospheric meridional circulation which in turn determines the latitudinal and seasonal variation of the MSP distribution. MSPs have been suggested to be important for a variety of atmospheric phenomena: 1. they are the most likely candidate for the nuclei of mesospheric ice particles (NLC and PMSE); 2. they provide surface area on which heterogeneous chemical reactions take place and may influence, for example, the water vapor distribution and Ox/HOx chemistry in the mesosphere; 3. they act as ultimate sink in mesospheric metal chemistry by scavenging various gas-phase products of meteoric ablation; 4. they can significantly influence the ionospheric D-region charge balance by scavenging free electrons and positive ions; and 5. they may be involved in the formation of NAT particles in polar stratospheric clouds and the destruction of ozone. Given the above points, it is obvious that there is a large scientific interest in the properties and global distribution of MSPs. Basic information about MSP properties is today available from optical occultation measurements (AIM/SOFIE) and, more indirectly, from in-situ measurements of the charged particle population. In order to understand the role of meteoric smoke particles in the mesosphere and their impact on that environment their presence must be certified and their physical characterization (number density, size distribution, shape, composition etc.) determined. A way to obtain maximum information about particle properties is by direct collection followed by detailed laboratory analysis. However, the sounding rocket approach, which is the only practical method to carry out a sampling experiment at the desired mesospheric altitudes, is subject to critical limitations imposed by aerodynamics. As nanometer size particles tend to follow the airflow around the rocket payload structure, their sampling is a substantial experimental challenge. The objective of the MAGIC project (Mesospheric Aerosol - Genesis, Interaction and Composition) was to design and build an instrument to directly sample meteoric smoke particles in the mesosphere and return them to ground for detailed laboratory investigations. Here we describe the MAGIC meteoric smoke particle sampler and present attempts to directly sample MSPs and the challenges and uncertainties in the sampling procedure.

  5. Precision wood particle feedstocks with retained moisture contents of greater than 30% dry basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James H; Lanning, David N

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfacesmore » in the mixture of wood particles have end checking.« less

  6. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    PubMed

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

  7. Ultrafine particle concentrations and exposures in seven residences in northern California.

    PubMed

    Bhangar, S; Mullen, N A; Hering, S V; Kreisberg, N M; Nazaroff, W W

    2011-04-01

    Human exposures to ultrafine particles (UFP) are poorly characterized given the potential associated health risks. Residences are important sites of exposure. To characterize residential exposures to UFP in some circumstances and to investigate governing factors, seven single-family houses in California were studied during 2007-2009. During multiday periods, time-resolved particle number concentrations were monitored indoors and outdoors and information was acquired concerning occupancy, source-related activities, and building operation. On average, occupants were home for 70% of their time. The geometric mean time-average residential exposure concentration for 21 study subjects was 14,500 particles per cm(3) (GSD = 1.8; arithmetic mean ± standard deviation = 17,000 ± 10,300 particles per cm(3)). The average contribution to residential exposures from indoor episodic sources was 150% of the contribution from particles of outdoor origin. Unvented natural-gas pilot lights contributed up to 19% to exposure for the two households where present. Episodic indoor source activities, most notably cooking, caused the highest peak exposures and most of the variation in exposure among houses. Owing to the importance of indoor sources and variations in the infiltration factor, residential exposure to UFP cannot be characterized by ambient measurements alone. Indoor and outdoor sources each contribute to residential ultrafine particle (UFP) concentrations and exposures. Under the conditions investigated, peak exposure concentrations indoors were associated with cooking, using candles, or the use of a furnace. Active particle removal systems can mitigate exposure by reducing the persistence of particles indoors. Eliminating the use of unvented gas pilot lights on cooking appliances could also be beneficial. The study results indicate that characterization of human exposure to UFP, an air pollutant of emerging public health concern, cannot be accomplished without a good understanding of conditions inside residences. © 2010 John Wiley & Sons A/S.

  8. Synthesis and characterization of bioresorbable calcium phosphosilicate nanocomposite particles for fluorescence imaging and biomedical applications

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas T.

    Organically doped calcium phosphosilicate nanoparticles (CPSNPs) were developed and characterized, driven by the need for non-toxic vectors for drug delivery and fluorescence biological imaging applications. In particular, advancement in drug delivery for the chemotherapeutic treatment of cancers is required to increase drug efficacy and improve patient quality of life. Additionally, brighter and more photostable fluorophores are needed to meet demands for improved sensitivity and experimental diversity, which may lead to improvements in early detection of solid tumors and advancement in understanding of biological processes. A literature survey on the state of the field for nanoparticle based biological fluorescence imaging and drug delivery is presented in Chapter 1. Chapter 2 focuses on the characterization techniques used in this work. The development and optical characterization of 20-40 nm diameter, citrate functionalized Cy3 amidite doped calcium phosphosilicate nanoparticles (Cy3 CPSNPs) for in vitro fluorescence imaging is outlined in Chapters 3 and 4, respectively. In particular, sodium citrate was used to functionalize the surface and provide electrosteric dispersion of these particles. CPSNPs stabilized with sodium citrate routinely exhibited highly negative zeta potentials greater than -25 mV in magnitude. Furthermore, the fluorescence quantum yield of the encapsulated fluorophore was improved by more than 4.5-fold when compared to the unencapsulated dye. The bioimaging and drug delivery capability of CPSNPs was explored. Cy3 CPSNPs dissolved quickly in the acidic environment experienced during endocytosis, releasing the encapsulated fluorophore. This is consistent with solution phase experiments that show the particles are dissolved at pH 5. CPSNPs loaded with fluorescein and a hydrophobic growth inhibitor, ceramide C6, proved the ability to simultaneously image and delivery of the hydrophobic drug to cells in vitro. Chapter 5 examined the colloidal stability of citrate and polyethylene glycol (PEG) functionalized CPSNPs in 70 volume % ethanol/30% water, both experimentally using TEM and theoretically using DLVO and polymeric steric dispersion theories. There are three basic mechanisms for colloidal stability for macroscopic suspensions (i.e., for particulate diameters down to ˜100nm), metastable electrostatic in which some finite degree of agglomeration continuously takes place because a finite energy barrier against agglomeration; and electrosteric and steric mechanisms in which infinitely high potential energy barriers toward agglomeration are present leading to thermodynamically stable suspensions. One of the fundamental issues addressed in this chapter was whether the mechanisms of electrosteric or steric dispersion, based on relatively large adsorbed polyelectrolytes for macroscopic size particulates, scales with particles in the range of ˜40 nm diameter such that a small, charged organic molecule such as citrate provides the thermodynamic colloidal stability of electrosteric mechanisms as suggested by preliminary theoretical calculations. The particle diameter-number distributions for as-prepared and after drying (at 25°C) and redispersion were used as metrics for thermodynamic colloidal stability. How efficiently particles redispersed after drying and reintroduction into the 70:30 ethanol:water solvent was used as the primary metric for whether the metastable electrostatic mechanism or thermodynamically stable electrosteric or steric approaches were responsible for the robust dispersion experimentally observed in the colloids. These experiments found that, even with the thin electrosteric layer provided by the adsorbed citrate, particles were electrosterically dispersed, and were unagglomerated when dried under argon and redispersed. Preliminary work outlining the synthesis and characterization of silver core, calcium phosphosilicate shell nanoparticles for surface plasmon coupled emission and metal enhanced fluorescence applications is discussed in Chapter 6. Thin (2-5 nm) calcium phosphosilicate shells were formed around agglomerated silver cores in the presence of 8-Methoxypyrene-1,3,6-trisulfonic acid trisodium salt (MPTS). Calcium phosphosilicate shells were consistently formed after 72 hours in the presence of 5x10-5 M CaCl2, 3x10 -5 M Na2HPO4, 3x10-6 M Na 2SiO3, and silver core nanoparticles prepared by citrate reduction in aqueous solution. However, the particles synthesized were agglomerated, resulting in a loss of the plasmon resonance peak, and the shells prepared were not thick enough to provide sufficient separation of the fluorophore from the surface to prevent quenching and allow plasmon resonance enhanced fluorescence. (Abstract shortened by UMI.)

  9. From the sea to the laboratory: Characterization of microplastic as prerequisite for the assessment of ecotoxicological impact.

    PubMed

    Potthoff, Annegret; Oelschlägel, Kathrin; Schmitt-Jansen, Mechthild; Rummel, Christoph Daniel; Kühnel, Dana

    2017-05-01

    The presence of microplastic (MP) in the aquatic environment is recognized as a global-scale pollution issue. Secondary MP particles result from an ongoing fragmentation process governed by various biotic and abiotic factors. For a reliable risk assessment of these MP particles, knowledge about interactions with biota is needed. However, extensive testing with standard organisms under reproducible laboratory conditions with well-characterized MP suspensions is not available yet. As MP in the environment represents a mixture of particles differing in properties (e.g., size, color, polymer type, surface characteristics), it is likely that only specific particle fractions pose a threat towards organisms. In order to assign hazardous effects to specific particle properties, these characteristics need to be analyzed. As shown by the testing of particles (e.g. nanoparticles), characteristics other than chemical properties are important for the emergence of toxicity in organisms, and parameters such as surface area or size distribution need consideration. Therefore, the use of "well-defined" particles for ecotoxicological testing (i.e., standard particles) facilitates the establishment of causal links between physical-chemical properties of MP particles and toxic effects in organisms. However, the benefits of well-defined particles under laboratory conditions are offset by the disadvantage of the unknown comparability with MP in the environment. Therefore, weathering effects caused by biological, chemical, physical or mechanical processes have to be considered. To date, the characterization of the progression of MP weathering based on powder and suspension characterization methods is in its infancy. The aim of this commentary is to illustrate the prerequisites for testing MP in the laboratory from 3 perspectives: (i) knowledge of particle properties; (ii) behavior of MP in test setups involving ecotoxicological test organisms; and (iii) accordingly, test conditions that may need adjustment. Only under those prerequisites will reliable hazard assessment of MP be feasible. Integr Environ Assess Manag 2017;13:500-504. © 2017 SETAC. © 2017 SETAC.

  10. Topical Issue on Optical Particle Characterization and Remote Sensing of the Atmosphere: Part I

    NASA Technical Reports Server (NTRS)

    Videen, Gorden; Kocifaj, Miroslav; Sun, Wenbo; Kai, Kenji; Kawamoto, Kazuaki; Horvath, Helmuth; Mishchenko, Michael

    2015-01-01

    Increasing our understanding of the Earth-atmosphere system has been a scientific and political priority for the last few decades. This system not only touches on environmental science, but it has applicability to our broader understanding of planetary atmospheres in general. While this issue focuses primarily on electromagnetics, other fundamental fields of science, including fluid and thermodynamics play major roles. In recent years, significant research efforts have led to advances in the fields of radiative transfer and electromagnetic scattering from irregularly shaped particles. Recently, several workshops and small conferences have taken place to promote the fusion of these efforts. Late in 2013, for instance, two such meetings took place. The Optical Characterization of Atmospheric Aerosols (OCAA) meeting took place in Smolenice, Slovakia to promote a better understanding of microphysical properties of aerosol particles, and the characterization of such atmospheric particles using optical techniques. A complementary conference was organized in Nagoya, Japan, the 3rd International Symposium on Atmospheric Light Scattering and Remote Sensing (ISALSaRS), whose goal is to fuse the advances achieved in particle characterization with remote-sensing techniques. While the focus of these meetings is slightly different, they represent the same aspects of this rapidly growing field. This Topical Issue is the first of two parts. Within this issue we analyze different aspects of the problem of atmospheric characterization and present a broad overview of the topical area. Research includes theory and experiment, ranging from fundamental microphysical properties of individual aerosol particles to broad characterizations of atmospheric properties. Since this is an active field, we also have encouraged the submission of ideas for new methodologies that may represent the future of the field.

  11. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  12. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    PubMed Central

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  13. Characterization of airborne particles in an open pit mining region.

    PubMed

    Huertas, José I; Huertas, María E; Solís, Dora A

    2012-04-15

    We characterized airborne particle samples collected from 15 stations in operation since 2007 in one of the world's largest opencast coal mining regions. Using gravimetric, scanning electron microscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) analysis the samples were characterized in terms of concentration, morphology, particle size distribution (PSD), and elemental composition. All of the total suspended particulate (TSP) samples exhibited a log-normal PSD with a mean of d=5.46 ± 0.32 μm and σ(ln d)=0.61 ± 0.03. Similarly, all particles with an equivalent aerodynamic diameter less than 10 μm (PM(10)) exhibited a log-normal type distribution with a mean of d=3.6 ± 0.38 μm and σ(ln d)=0.55 ± 0.03. XPS analysis indicated that the main elements present in the particles were carbon, oxygen, potassium, and silicon with average mass concentrations of 41.5%, 34.7%, 11.6%, and 5.7% respectively. In SEM micrographs the particles appeared smooth-surfaced and irregular in shape, and tended to agglomerate. The particles were typically clay minerals, including limestone, calcite, quartz, and potassium feldspar. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Development of an indicator for characterizing particle size distribution and quality of stormwater runoff.

    PubMed

    Wang, Qian; Zhang, Qionghua; Dzakpasu, Mawuli; Lian, Bin; Wu, Yaketon; Wang, Xiaochang C

    2018-03-01

    Stormwater particles washed from road-deposited sediments (RDS) are traditionally characterized as either turbidity or total suspended solids (TSS). Although these parameters are influenced by particle sizes, neither of them characterizes the particle size distribution (PSD), which is of great importance in pollutant entrainment and treatment performance. Therefore, the ratio of turbidity to TSS (Tur/TSS) is proposed and validated as a potential surrogate for the bulk PSD and quality of stormwater runoff. The results show an increasing trend of Tur/TSS with finer sizes of both RDS and stormwater runoff. Taking heavy metals (HMs, including Cu, Pb, Zn, Cr, and Ni) as typical pollutants in stormwater runoff, the concentrations (mg/kg) were found to vary significantly during rainfall events and tended to increase significantly with Tur/TSS. Therefore, Tur/TSS is a valid parameter to characterize the PSD and quality of stormwater. The high negative correlations between Tur/TSS and rainfall intensity demonstrate that stormwater with higher Tur/TSS generates under low intensity and, thus, characterizes small volume, finer sizes, weak settleability, greater mobility, and bioavailability. Conversely, stormwater with lower Tur/TSS generates under high intensity and, thus, characterizes large volume, coarser sizes, good settleability, low mobility, and bioavailability. These results highlight the need to control stormwater with high Tur/TSS. Moreover, Tur/TSS can aid the selection of stormwater control measures with appropriate detention storage, pollution loading, and removal effectiveness of particles.

  16. Flow field induced particle accumulation inside droplets in rectangular channels.

    PubMed

    Hein, Michael; Moskopp, Michael; Seemann, Ralf

    2015-07-07

    Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.

  17. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    EPA Science Inventory

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  18. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    PubMed

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  19. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO₂-MgO catalysts.

    PubMed

    Angelici, Carlo; Velthoen, Marjolein E Z; Weckhuysen, Bert M; Bruijnincx, Pieter C A

    2014-09-01

    Silica-magnesia (Si/Mg=1:1) catalysts were studied in the one-pot conversion of ethanol to butadiene. The catalyst synthesis method was found to greatly influence morphology and performance, with materials prepared through wet-kneading performing best both in terms of ethanol conversion and butadiene yield. Detailed characterization of the catalysts synthesized through co-precipitation or wet-kneading allowed correlation of activity and selectivity with morphology, textural properties, crystallinity, and acidity/basicity. The higher yields achieved with the wet-kneaded catalysts were attributed to a morphology consisting of SiO2 spheres embedded in a thin layer of MgO. The particle size of the SiO2 catalysts also influenced performance, with catalysts with smaller SiO2 spheres showing higher activity. Temperature-programmed desorption (TPD) measurements showed that best butadiene yields were obtained with SiO2-MgO catalysts characterized by an intermediate amount of acidic and basic sites. A Hammett indicator study showed the catalysts' pK(a) value to be inversely correlated with the amount of dehydration by-products formed. Butadiene yields could be further improved by the addition of 1 wt% of CuO as promoter to give butadiene yields and selectivities as high as 40% and 53%, respectively. The copper promoter boosts the production of the acetaldehyde intermediate changing the rate-determining step of the process. TEM-energy-dispersive X-ray (EDX) analyses showed CuO to be present on both the SiO2 and MgO components. UV/Vis spectra of promoted catalysts in turn pointed at the presence of cluster-like CuO species, which are proposed to be responsible for the increased butadiene production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  1. On Characterizing Particle Shape

    NASA Technical Reports Server (NTRS)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon

    2014-01-01

    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  2. UV/TiO₂ photocatalytic oxidation of recalcitrant organic matter: effect of salinity and pH.

    PubMed

    Muthukumaran, Shobha; Song, Lili; Zhu, Bo; Myat, Darli; Chen, Jin-Yuan; Gray, Stephen; Duke, Mikel

    2014-01-01

    Photocatalytic oxidation processes have interest for water treatment since these processes can remove recalcitrant organic compounds and operate at mild conditions of temperature and pressure. However, performance under saline conditions present in many water resources is not well known. This study aims to explore the basic effects of photocatalysis on the removal of organic matter in the presence of salt. A laboratory-scale photocatalytic reactor system, employing ultraviolet (UV)/titanium dioxide (TiO₂) photocatalysis was evaluated for its ability to remove the humic acid (HA) from saline water. The particle size and zeta potential of TiO₂ under different conditions including solution pH and sodium chloride (NaCl) concentrations were characterized. The overall degradation of organics over the NaCl concentration range of 500-2,000 mg/L was found to be 80% of the non-saline equivalent after 180 min of the treatment. The results demonstrated that the adsorption of HA onto the TiO₂ particles was dependent on both the pH and salinity due to electrostatic interaction and highly unstable agglomerated dispersion. This result supports UV/TiO₂ as a viable means to remove organic compounds, but the presence of salt in waters to be treated will influence the performance of the photocatalytic oxidation process.

  3. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  4. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Ouyang, Tingping; Li, Mingkun; Zhao, Xiang; Zhu, Zhaoyu; Tian, Chengjing; Qiu, Yan; Peng, Xuechao; Hu, Qiao

    2016-05-01

    Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1) Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2) XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3) the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4) The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5) During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.

  5. The role of solitons in charge and energy transfer in 1D molecular chains

    NASA Astrophysics Data System (ADS)

    Ivić , Zoran

    1998-03-01

    The idea that polarons and solitons could play the crucial role in the transport processes in biological structures, has been critically reexamined on the basis of the general theory of self-trapping phenomena. The criteria which enable one to determine conditions for the existence and stability of polarons and solitons and to determine their character, in dependence of the values of the basic physical parameters of the system, were formulated. Validity of the so-called Davydov's soliton model was discussed on the basis of these criteria. It was found that the original Davydov's proposal, based upon the idea of the soliton creation due to the single excitation (particle, vibron, etc.) self-trapping, cannot explain the intramolecular energy transfer in α-helix and acetanilide. However, Davydov theory is flexible enough to describe the single electron transfer in some systems (α-helix and acetanilide for example). In the many-particle systems, dressing effect, due to the quantum nature of phonons, may cause the creation of the bound states of the several excitons in the molecular chain. The possibility of creation of the soliton states of this type is discussed for the simple Fröhlich's one-dimensional model. The regions of the system parameter space where different mechanisms dominate the behaviour of such entities are characterized.

  6. Atomistic Simulation of High-Density Uranium Fuels

    DOE PAGES

    Garcés, Jorge Eduardo; Bozzolo, Guillermo

    2011-01-01

    We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1) the trend indicating formation of interfacial compounds, (2) much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3) Si depletion in the Al matrix, (4) an unexpected interaction between Mo and Simore » which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5) the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.« less

  7. Characterization of Moving Dust Particles

    NASA Technical Reports Server (NTRS)

    Bos, Brent J.; Antonille, Scott R.; Memarsadeghi, Nargess

    2010-01-01

    A large depth-of-field Particle Image Velocimeter (PIV) has been developed at NASA GSFC to characterize dynamic dust environments on planetary surfaces. This instrument detects and senses lofted dust particles. We have been developing an autonomous image analysis algorithm architecture for the PIV instrument to greatly reduce the amount of data that it has to store and downlink. The algorithm analyzes PIV images and reduces the image information down to only the particle measurement data we are interested in receiving on the ground - typically reducing the amount of data to be handled by more than two orders of magnitude. We give a general description of PIV algorithms and describe only the algorithm for estimating the velocity of the traveling particles.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles frommore » a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.« less

  9. Attenuated total reflectance FT-IR imaging and quantitative energy dispersive-electron probe X-ray microanalysis techniques for single particle analysis of atmospheric aerosol particles.

    PubMed

    Ryu, JiYeon; Ro, Chul-Un

    2009-08-15

    This work demonstrates the practical applicability of the combined use of attenuated total reflectance (ATR) FT-IR imaging and low-Z particle electron probe X-ray microanalysis (EPMA) techniques for the characterization of individual aerosol particles. These two single particle analytical techniques provide complementary information on the physicochemical characteristics of the same individual particles, that is, the low-Z particle EPMA for the information on the morphology and elemental concentration and the ATR-FT-IR imaging on the functional group, molecular species, and crystal structure. It was confirmed that the ATR-FT-IR imaging technique can provide sufficient FT-IR absorption signals to perform molecular speciation of individual particles of micrometer size when applied to artificially generated aerosol particles such as ascorbic acid and NaNO(3) aerosols. An exemplar indoor atmospheric aerosol sample was investigated to demonstrate the practical feasibility of the combined application of ATR-FT-IR imaging and low-Z particle EPMA techniques for the characterization of individual airborne particles.

  10. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection.

    PubMed

    Thickett, Stuart C; Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 10(7) lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection.

  11. Bio-Functional, Lanthanide-Labeled Polymer Particles by Seeded Emulsion Polymerization and their Characterization by Novel ICP-MS Detection

    PubMed Central

    Thickett, Stuart C.; Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Winnik, Mitchell A.

    2010-01-01

    We present the synthesis and characterization of monodisperse, sub-micron poly(styrene) (PS) particles loaded with up to and including 107 lanthanide (Ln) ions per particle. These particles have been synthesized by seeded emulsion polymerization with a mixture of monomer and a pre-formed Ln complex, and analyzed on a particle-by-particle basis by a unique inductively coupled plasma mass cytometer. Seed particles were prepared by surfactant-free emulsion polymerization (SFEP) to obtain large particle sizes in aqueous media. Extensive surface acid functionality was introduced using the acid-functional initiator ACVA, either during seed latex synthesis or in the second stage of polymerization. The loading of particles with three different Ln ions (Eu, Tb, and Ho) has proven to be close to 100 % efficient on an individual and combined basis. Covalent attachment of metal-tagged peptides and proteins such as Neutravidin to the particle surface was shown to be successful and the number of bound species can be readily determined. We believe these particles can serve as precursors for multiplexed, bead-based bio-assays utilizing mass cytometric detection. PMID:20396648

  12. Bottled Water Basics

    MedlinePlus

    ... the following measures: Use a point-of-use filter Consider using point-of-use (per- 2 Bottled ... tap sonal use, end-of-tap, under sink) filters that remove particles one micrometer or less in ...

  13. Improving the particle distribution and mechanical properties of friction-stir-welded composites by using a smooth pin tool

    NASA Astrophysics Data System (ADS)

    Liu, Huijie; Hu, Yanying; Zhao, Yunqiang; Fujii, Hidetoshi

    2017-09-01

    Friction stir welding (FSW) is a very promising technique for joining particle-reinforced aluminum-matrix composites (PRAMCs), but with increase in the volume fraction of reinforcing particles, their distribution in welds becomes inhomogeneous. This leads to an inconsistent deformation of welds and their destruction at low stresses. In order to improve the weld microstructure, a smooth pin tool was used for the friction stir welding of AC4A + 30 vol.% SiC particle-reinforced aluminum-matrix composites. The present work describes the effect of welding parameters on the characteristics of particle distribution and the mechanical properties of welds. The ultimate strength of weld reached, 309 MPa, was almost 190% of that of the basic material. The mechanism of SiC particle conglomeration is clearly illustrated by means of schematic illustrations.

  14. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  15. MASS SPECTROMETRY OF INDIVIDUAL AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    Typically, in real-time aerosol mass spectrometry (RTAMS), individual airborne particles
    are ablated and ionized with a single focused laser pulse. This technique yields information that
    permits bulk characterization of the particle, but information about the particle's sur...

  16. CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies

    NASA Astrophysics Data System (ADS)

    Delzanno, G.; Camporeale, E.; Moulton, J. D.; Borovsky, J. E.; MacDonald, E.; Thomsen, M. F.

    2012-12-01

    We present a recently developed Particle-In-Cell (PIC) code in curvilinear geometry called CPIC (Curvilinear PIC) [1], where the standard PIC algorithm is coupled with a grid generation/adaptation strategy. Through the grid generator, which maps the physical domain to a logical domain where the grid is uniform and Cartesian, the code can simulate domains of arbitrary complexity, including the interaction of complex objects with a plasma. At present the code is electrostatic. Poisson's equation (in logical space) can be solved with either an iterative method based on the Conjugate Gradient (CG) or the Generalized Minimal Residual (GMRES) coupled with a multigrid solver used as a preconditioner, or directly with multigrid. The multigrid strategy is critical for the solver to perform optimally or nearly optimally as the dimension of the problem increases. CPIC also features a hybrid particle mover, where the computational particles are characterized by position in logical space and velocity in physical space. The advantage of a hybrid mover, as opposed to more conventional movers that move particles directly in the physical space, is that the interpolation of the particles in logical space is straightforward and computationally inexpensive, since one does not have to track the position of the particle. We will present our latest progress on the development of the code and document the code performance on standard plasma-physics tests. Then we will present the (preliminary) application of the code to a basic dynamic-charging problem, namely the charging and shielding of a spherical spacecraft in a magnetized plasma for various level of magnetization and including the pulsed emission of an electron beam from the spacecraft. The dynamical evolution of the sheath and the time-dependent current collection will be described. This study is in support of the ConnEx mission concept to use an electron beam from a magnetospheric spacecraft to trace magnetic field lines from the magnetosphere to the ionosphere [2]. [1] G.L. Delzanno, E. Camporeale, "CPIC: a new Particle-in-Cell code for plasma-material interaction studies", in preparation (2012). [2] J.E. Borovsky, D.J. McComas, M.F. Thomsen, J.L. Burch, J. Cravens, C.J. Pollock, T.E. Moore, and S.B. Mende, "Magnetosphere-Ionosphere Observatory (MIO): A multisatellite mission designed to solve the problem of what generates auroral arcs," Eos. Trans. Amer. Geophys. Union 79 (45), F744 (2000).

  17. In situ study of Li-ions diffusion and deformation in Li-rich cathode materials by using scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Zeng, Kaiyang; Li, Tao; Tian, Tian

    2017-08-01

    In this paper, the scanning probe microscopy (SPM) based techniques, namely, conductive-AFM, electrochemical strain microscopy (ESM) and AM-FM (amplitude modulation-frequency modulation) techniques, are used to in situ characterize the changes in topography, conductivity and elastic properties of Li-rich layered oxide cathode (Li1.2Mn0.54Ni0.13Co0.13O2) materials, in the form of nanoparticles, when subject to the external electric field. Nanoparticles are the basic building blocks for composite cathode in a Li-ion rechargeable battery. Characterization of the structure and electrochemical properties of the nanoparticles is very important to understand the performance and reliability of the battery materials and devices. In this study, the conductivity, deformation and mechanical properties of the Li-rich oxide nanoparticles under different polarities of biases are studied using the above-mentioned SPM techniques. This information can be correlated with the Li+-ion diffusion and migration in the particles under external electrical field. The results also confirm that the SPM techniques are ideal tools to study the changes in various properties of electrode materials at nano- to micro-scales during or after the ‘simulated’ battery operation conditions. These techniques can also be used to in situ characterize the electrochemical performances of other energy storage materials, especially in the form of the nanoparticles.

  18. Recent progress of particle migration in viscoelastic fluids.

    PubMed

    Yuan, Dan; Zhao, Qianbin; Yan, Sheng; Tang, Shi-Yang; Alici, Gursel; Zhang, Jun; Li, Weihua

    2018-02-13

    Recently, research on particle migration in non-Newtonian viscoelastic fluids has gained considerable attention. In a viscoelastic fluid, three dimensional (3D) particle focusing can be easily realized in simple channels without the need for any external force fields or complex microchannel structures compared with that in a Newtonian fluid. Due to its promising properties for particle precise focusing and manipulation, this field has been developed rapidly, and research on the field has been shifted from fundamentals to applications. This review will elaborate the recent progress of particle migration in viscoelastic fluids, especially on the aspect of applications. The hydrodynamic forces on the micro/nano particles in viscoelastic fluids are discussed. Next, we elaborate the basic particle migration in viscoelasticity-dominant fluids and elasto-inertial fluids in straight channels. After that, a comprehensive review on the applications of viscoelasticity-induced particle migration (particle separation, cell deformability measurement and alignment, particle solution exchange, rheometry-on-a-chip and others) is presented; finally, we thrash out some perspectives on the future directions of particle migration in viscoelastic fluids.

  19. High frequency acoustic on-chip integration for particle characterization and manipulation in microfluidics

    NASA Astrophysics Data System (ADS)

    Li, Sizhe; Carlier, Julien; Toubal, Malika; Liu, Huiqin; Campistron, Pierre; Callens, Dorothée; Nassar, Georges; Nongaillard, Bertrand; Guo, Shishang

    2017-10-01

    This letter presents a microfluidic device that integrates high frequency (650 MHz) bulk acoustic waves for the realization of particle handling on-chip. The core structure of the microfluidic chip is made up of a confocal lens, a vertical reflection wall, and a ZnO film transducer coupled with a silicon substrate for exciting acoustic beams. The excited acoustic waves propagate in bulk silicon and are then guided by a 45° silicon mirror into the suspensions in the microchannel; afterwards, the acoustic energy is focused on particles by the confocal lens and reflected by a reflection wall. Parts of the reflected acoustic energy backtrack into the transducer, and acoustic attenuation measurements are characterized for particle detection. Meanwhile, a strong acoustic streaming phenomenon can be seen around the reflection wall, which is used to implement particle manipulation. This platform opens a frontier for on-chip integration of high sensitivity acoustic characterization and localized acoustic manipulation in microfluidics.

  20. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  1. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter.

    PubMed

    L, Frère; I, Paul-Pont; J, Moreau; P, Soudant; C, Lambert; A, Huvet; E, Rinnert

    2016-12-15

    Every step of microplastic analysis (collection, extraction and characterization) is time-consuming, representing an obstacle to the implementation of large scale monitoring. This study proposes a semi-automated Raman micro-spectroscopy method coupled to static image analysis that allows the screening of a large quantity of microplastic in a time-effective way with minimal machine operator intervention. The method was validated using 103 particles collected at the sea surface spiked with 7 standard plastics: morphological and chemical characterization of particles was performed in <3h. The method was then applied to a larger environmental sample (n=962 particles). The identification rate was 75% and significantly decreased as a function of particle size. Microplastics represented 71% of the identified particles and significant size differences were observed: polystyrene was mainly found in the 2-5mm range (59%), polyethylene in the 1-2mm range (40%) and polypropylene in the 0.335-1mm range (42%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Experimental Investigation of Nascent Soot Physical Properties and The Influence on Particle Morphology and Growth

    NASA Astrophysics Data System (ADS)

    Lieb, Sydnie Marie

    Soot released to the atmosphere is a dangerous pollutant for human health and the environment. Understanding the physical properties and surface properties of these particles is important to properly explaining the growth of soot particles in flames as well as their interactions with other particles and gases in the environment. Particles below 15 nm in diameter, nascent soot particles, dominate the early growth stages of soot formation; previously these particles were characterized as hard graphitic spheres. New evidence derived from the current dissertation work, to a large extent, challenges this prior characterization. This dissertation study begins by revisiting the use of atomic force microscope (AFM) as a tool to investigate the structural properties of nascent soot. The impact of tip artifacts, which are known to complicate measurements of features below 10 nm in diameter, are carefully considered so as to provide a concise interpretation of the morphology of nascent soot as seen by AFM. The results of the AFM morphology collaborate with earlier photo- and thermal-fragmentation particle mass spectrometry and Fourier transform infrared spectroscopy that nascent soot is not a graphitized carbon material and that they are not spherical. Furthermore, phase mode imaging is introduced as a method to investigate the physical properties of nascent soot particles in a greater detail and finer resolution. The helium ion microscope (HIM) has been identified as a useful technique for the imaging of nascent soot. Using this imaging method nascent soot particles were imaged with a high resolution that had not been obtained by prior techniques. The increased contrast provides a closer look at the nascent soot particles and further suggested that these particles are not as structurally homogeneous as previously thought. Geometric shape analysis was performed to characterize the particles in terms of sphericity, circularity, and fractal dimension. The geometric analysis showed that the particles deviate from spherical and that they are not characterized by a defined structure. This observation supports the theory that nascent soot is not homogenous in structure or composition, and challenges the classical assumption that spherical growth and aggregation are separate, size dependent processes. In light of the new evidence that suggests nascent soot particles are structurally inhomogenous, careful consideration must be given to mobility measurements of particle mass and size. The interpretation of particle volume of irregularly shaped nascent soot particles is considered in this dissertation work. Additionally, uncertainties in the mass density of nascent soot are reviewed and the error in mass calculation is quantified.

  3. Quasi-stationary fluid theory of the hole-boring process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Zhikun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Shi, Yin

    We present a quasi-stationary fluid theory to precisely describe the hole-boring process. The corresponding distributions of the electrostatic field and the particle density are theoretically obtained, which give more details than the previous stationary theory. The theoretical result is confirmed by one-dimensional particle-in-cell simulations. Such quasi-stationary fluid theory may help in understanding the basic mechanisms of ion acceleration in the radiation pressure acceleration.

  4. Current Interruption and Particle Beam Generation by a Plasma Focus.

    DTIC Science & Technology

    1982-11-30

    Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions...results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a...strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device. (Author)

  5. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  6. Synthesis and self-assembly of amphiphilic polymeric microparticles.

    PubMed

    Dendukuri, Dhananjay; Hatton, T Alan; Doyle, Patrick S

    2007-04-10

    We report the synthesis and self-assembly of amphiphilic, nonspherical, polymeric microparticles. Wedge-shaped particles bearing segregated hydrophilic and hydrophobic sections were synthesized in a microfludic channel by polymerizing across laminar coflowing streams of hydrophilic and hydrophobic polymers using continuous flow lithography (CFL). Particle monodispersity was characterized by measuring both the size of the particles formed and the extent of amphiphilicity. The coefficient of variation (COV) was found to be less than 2.5% in all measured dimensions. Particle structure was further characterized by measuring the curvature of the interface between the sections and the extent of cross-linking using FTIR spectroscopy. The amphiphilic particles were allowed to self-assemble in water or at water-oil interfaces. In water, the geometry of the particles enabled the formation of micelle-like structures, while in emulsions, the particles migrated to the oil-water interface and oriented themselves to minimize their surface energy.

  7. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  8. Importance of pH-regulated charge density on the electrophoresis of soft particles

    NASA Astrophysics Data System (ADS)

    Gopmandal, Partha P.; Ohshima, H.

    2017-02-01

    The present study deals with the electrophoresis of spherical soft particles consisting of an ion and liquid-penetrable but liquid-flow-impenetrable inner core surrounded by an ion and fluid-penetrable polyelectrolyte layer. The inner core is considered to be dielectric and bearing basic functional group coated with polyelectrolyte layer containing acidic functional group. An approximate expression for the electrophoretic mobility of such a particle is obtained under a low potential limit. The electrophoretic behaviour of the undertaken particle is investigated for a wide range of bulk pH values and electrolyte concentrations. Our study also indicates some remarkable features of the electrophoresis e.g., occurrence of zero mobility, mobility reversal etc.

  9. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less

  10. Shear thickening in suspensions: the lubricated-to-frictional contact scenario

    NASA Astrophysics Data System (ADS)

    Morris, Jeffrey

    2017-11-01

    Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the predictions of the lubricated-to-frictional rheology is generally good, but discrepancies demand some perspective on the strong simplifying assumptions in the model. Since contact is difficult to both establish and to characterize for surfaces between particles of micron scale or smaller, what is happening in the very close ``contacts'' is not clear, and how changes at this scale give rise to the large-scale force organization is yet to be established. The insight to the elements needed for the abrupt flow induced transition seen in DST thus suggests a need for consideration of both the microscopic physics of contact and the statistical physics governing the macroscopic properties. This work was supported in part by the NSF CBET program, Grant # 1605283.

  11. Single-particle characterization of atmospheric aerosols collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment field campaign using low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Geng, Hong; Cheng, Fangqin; Ro, Chul-Un

    2011-11-01

    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.

  12. Connecting Fundamental Constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mario, D.

    2008-05-29

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension willmore » appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.« less

  13. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.

    2012-12-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.

  14. Nanoscale Experimental Characterization and 3D Mechanistic Modeling of Shale with Quantified Heterogeneity

    NASA Astrophysics Data System (ADS)

    Bennett, K. C.; Borja, R. I.

    2014-12-01

    Shale is a fine-grained sedimentary rock consisting primarily of clay and silt, and is of particular interest with respect to hydrocarbon production as both a source and seal rock. The deformation and fracture properties of shale depend on the mechanical properties of its basic constituents, including solid clay particles, inclusions such as silt and organics, and multiscale porosity. This paper presents the results of a combined experimental/numerical investigation into the mechanical behavior of shale at the nanoscale. Large grids of nanoindentation tests, spanning various length scales ranging from 200-20000 nanometers deep, were performed on a sample of Woodford shale in both the bedding plane normal (BPN) and bedding plane parallel (BPP) directions. The nanoindentions were performed in order to determine the mechanical properties of the constituent materials in situ as well as those of the highly heterogeneous composite material at this scale. Focused ion beam (FIB) milling and scanning electron microscopy (SEM) were used in conjunction (FIB-SEM) to obtain 2D and 3D images characterizing the heterogeneity of the shale at this scale. The constituent materials were found to be best described as consisting of near micrometer size clay and silt particles embedded in a mixed organic/clay matrix, with some larger (near 10 micrometers in diameter) pockets of organic material evident. Indented regions were identified through SEM, allowing the 200-1000 nanometer deep indentations to be classified according to the constituent materials which they engaged. We use nonlinear finite element modeling to capture results of low-load (on the order of milliNewtons) and high-load (on the order of a few Newtons) nanoindentation tests. Experimental results are used to develop a 3D mechanistic model that interprets the results of nanoindentation tests on specimens of Woodford shale with quantified heterogeneity.

  15. Source apportionment of settleable particles in an impacted urban and industrialized region in Brazil.

    PubMed

    Santos, Jane Meri; Reis, Neyval Costa; Galvão, Elson Silva; Silveira, Alexsander; Goulart, Elisa Valentim; Lima, Ana Teresa

    2017-09-01

    Settleable particulate matter (SPM), especially coarser particles with diameters greater than 10 μm, has been found culprit of high deposition rates in cities affected by hinterland industrial activities. This is the case of Metropolitan Region of Vitoria (MRV), Espirito Santo, Brazil where industrial facilities are located within the urban sprawl and building constructions are intense. Frequent population complaints to the environmental protection agency (IEMA) throughout the years have triggered monitoring campaigns to determine SPM deposition rates and source apportionment. Eight different locations were monitored throughout the MRV, and SPM was quantified and chemically characterized. Sources profiles were defined either by using US EPA SPECIATE data or by experimental analysis. Atmospheric fallout in the MRV ranged between 2 and 20g/(m 2 30-day), with only one monitoring station ranging from 6-10 g/(m 2 30-day). EC, OC, Fe, Al, and Si were found the main constituents of dry deposition in the region. Source apportionment by the chemical mass balance (CMB) model determined that steel and iron ore pelletizing industries were the main contributor to one of the eight locations whereas resuspension, civil construction, and vehicular sources were also very important contributors to the other stations. Quarries and soil were also considered expressive SPM sources, but at the city periphery. CMB model could differentiate contributions from six industrial source groups: thermoelectric; iron ore, pellet, and pellet furnaces; coal coke and coke oven; sintering, blast furnace, and basic oxygen furnace; and soil, resuspension, and vehicles. However, the CMB model was unable to differentiate between iron ore and pellet stockpiles which are present in both steel and iron ore pelletizing industries. Further characterization of source and SPM might be necessary to aid local authorities in decision-making regarding these two industrial sources.

  16. Alternative Environments for Basic Skills Development.

    ERIC Educational Resources Information Center

    Crowe, Michael R.; And Others

    This study focused on the identification and description of environmental characteristics and their relationship to basic skills exposure. The objectives of the study were to identify the major factors that characterize environments in which learning is intended to occur, and to delineate patterns of co-exposure to basic skills and environmental…

  17. DEVELOPMENT AND LABORATORY CHARACTERIZATION OF A PROTOTYPE COARSE PARTICLE CONCENTRATOR FOR INHALATION TOXICOLOGICAL STUDIES. (R825270)

    EPA Science Inventory

    This paper presents the development and laboratory characterization of a prototype slit nozzle virtual impactor that can be used to concentrate coarse particles. A variety of physical design and flow parameters were evaluated including different acceleration and collection sli...

  18. Composition of individual aerosol particles above the Israelian Mediterranean coast during the summer time

    NASA Astrophysics Data System (ADS)

    Ganor, E.; Levin, Z.; Van Grieken, R.

    Aerosol particles were collected aboard a ship in Haifa Bay and Tel Aviv, Israel, during the summer time. The aerosol particles (6170) were analyzed as individual particles and classified according to their chemical composition, size, number concentration per cubic centimeter and morphology. Most of the aerosol particles could be classified into four groups. The first contains gypsum from the sea and from industrial sources brought in by land breezes. A second group is characterized by continental aluminosilicate and quartz. A third group consists of sea salt mixed with sulfate particles. The fourth group is characterized by an abundance of sulfate particles, some of which are ammonium sulfate brought by the land breezes. The particles were identified as marine and mineral aerosols which originated in Eastern Europe and the Mediterranean sea, while local aerosols brought by land breeze characterized by phosphate, fly ash and soil particles originated in the Haifa industrial zone. In addition, the aerosols were analyzed for sulfates and nitrates. Aerosols of sea and land breezes differed as follows: (1) Sulfate and nitrate concentrations in the aerosols were 5-10 times higher during land breeze than during sea breeze, and the total content of suspended particles was, respectively, 6-12 times higher. (2) Particle size spectra during land breeze were broader than during sea breeze and their concentrations were about 20 times greater. Analyses of individual particles by electron microscopy revealed that during the sea breeze the aerosols contained calcium sulfate, sodium sulfate and sulfuric acid. The sulfuric acid, of pH 2.5, is due to the long-range transport as previously reported ( Ganor et al., 1993) while the other sulfates are from the sea. This explains the high concentration of sulfates in the atmospheric sea breeze above the Israelian Mediterranean coast during the summertime.

  19. Single-particle characterization of summertime Antarctic aerosols collected at King George Island using quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

    PubMed

    Maskey, Shila; Geng, Hong; Song, Young-Chul; Hwang, Heejin; Yoon, Young-Jun; Ahn, Kang-Ho; Ro, Chul-Un

    2011-08-01

    Single-particle characterization of Antarctic aerosols was performed to investigate the impact of marine biogenic sulfur species on the chemical compositions of sea-salt aerosols in the polar atmosphere. Quantitative energy-dispersive electron probe X-ray microanalysis was used to characterize 2900 individual particles in 10 sets of aerosol samples collected between March 12 and 16, 2009 at King Sejong Station, a Korean scientific research station located at King George Island in the Antarctic. Two size modes of particles, i.e., PM(2.5-10) and PM(1.0-2.5), were analyzed, and four types of particles were identified, with sulfur-containing sea-salt particles being the most abundant, followed by genuine sea-salt particles without sulfur species, iron-containing particles, and other species including CaCO(3)/CaMg(CO(3))(2), organic carbon, and aluminosilicates. When a sulfur-containing sea-salt particle showed an atomic concentration ratio of sulfur to sodium of >0.083 (seawater ratio), it is regarded as containing nonsea-salt sulfate (nss-SO(4)(2-)) and/or methanesulfonate (CH(3)SO(3)(-)), which was supported by attenuated total reflection Fourier transform-infrared imaging measurements. These internal mixture particles of sea-salt/CH(3)SO(3)(-)/SO(4)(2-) were very frequently encountered. As nitrate-containing particles were not encountered, and the air-masses for all of the samples originated from the Pacific Ocean (based on 5-day backward trajectories), the oxidation of dimethylsulfide (DMS) emitted from phytoplanktons in the ocean is most likely to be responsible for the formation of the mixed sea-salt/CH(3)SO(3)(-)/SO(4)(2-) particles.

  20. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    PubMed

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (<100 nm) to submicron (<1000 nm) size range, whereas edge-loading conditions generated particles that ranged from <100 nm up to 3000-6000 nm in size. Particles isolated from normal wear were primarily chromium (98.5%) and round to oval in shape. Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  1. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  2. Particles trajectories in magnetic filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by amore » spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.« less

  3. Construction of the radiation oncology teaching files system for charged particle radiotherapy.

    PubMed

    Masami, Mukai; Yutaka, Ando; Yasuo, Okuda; Naoto, Takahashi; Yoshihisa, Yoda; Hiroshi, Tsuji; Tadashi, Kamada

    2013-01-01

    Our hospital started the charged particle therapy since 1996. New institutions for charged particle therapy are planned in the world. Our hospital are accepting many visitors from those newly planned medical institutions and having many opportunities to provide with the training to them. Based upon our experiences, we have developed the radiation oncology teaching files system for charged particle therapy. We adopted the PowerPoint of Microsoft as a basic framework of our teaching files system. By using our export function of the viewer any physician can create teaching files easily and effectively. Now our teaching file system has 33 cases for clinical and physics contents. We expect that we can improve the safety and accuracy of charged particle therapy by using our teaching files system substantially.

  4. Characterization of Two Unique Cholesterol-Rich Lipid Particles Isolated from Human Atherosclerotic Lesions

    PubMed Central

    Chao, Fei-Fei; Blanchette-Mackie, E. Joan; Chen, Ya-Jun; Dickens, Benjamin F.; Berlin, Elliott; Amende, Lynn M.; Skarlatos, Sonia I.; Gamble, Wilbert; Resau, James H.; Mergner, Wolfgang T.; Kruth, Howard S.

    1990-01-01

    The authors' laboratory, using histochemicalmethods, previously identified two types of cholesterol-containing lipid particles in the extracellular spaces of human atherosclerotic lesions, one particle enriched in esterified cholesterol and the other particle enriched in unesterified cholesterol. The authors isolated and characterized these lipid particles. The esterified cholesterol-rich lipid particle was a small lipid droplet and differed from intracellular lipid dropletsfound in foam cells with respect to size and chemical composition. It had an esterified cholesterol core surrounded by aphospholipidunesterified cholesterol monolayer. Some aqueous spaces were seen within the particle core. Unesterified cholesterol-rich lipid particles were multilamellated, solid structures and vesicles comprised of single or multiple lamellas. The esterified cholesterol-rich particle had a density <1.01 g/ml, whereas the unesterified cholesterol-rich particle had a density between 1.03 and 1.05 g/ml. Both particles were similar in size fraction, whereas palmitate, stearate, oleate, and linoleate were predominant in the phospholipid fraction. The origins and the role of these two unusual lipid particles in vessel wall cholesterol metabolism remain to be determined. ImagesFigure 1Figure 3Figure 4Figure 5 PMID:2297045

  5. A Novel Source of Mesoscopic Particles for Laser Plasma Studies

    DTIC Science & Technology

    2015-12-16

    variety of micro- nanoplasma environment for not only basic studies of understanding the intense laser field science but also to provide new...Distribution approved for public release 5 7Rajeev P. P., Taneja P., Ayyub P., Sandhu A. S., and Kumar G. R. Metal Nanoplasmas as Bright Sources of...of micro- nanoplasma environment for not only basic studies of understanding the intense laser field science but also to provide new technologies for

  6. Analysis of Ballast Water Sampling Port Designs Using Computational Fluid Dynamics

    DTIC Science & Technology

    2008-02-01

    straight, vertical, upward-flowing pipe having a sample port diameter between 1.5 and 2.0 times the basic isokinetic diameter as defined in this report...water, flow modeling, sample port, sample pipe, particle trajectory, isokinetic sampling 18. Distribution Statement This document is available to...2.0 times the basic isokinetic diameter as defined in this report. Sample ports should use ball valves for isolation purposes and diaphragm or

  7. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    PubMed

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  8. Coagulation algorithms with size binning

    NASA Technical Reports Server (NTRS)

    Statton, David M.; Gans, Jason; Williams, Eric

    1994-01-01

    The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.

  9. Subvisible (2-100 μm) particle analysis during biotherapeutic drug product development: Part 2, experience with the application of subvisible particle analysis.

    PubMed

    Corvari, Vincent; Narhi, Linda O; Spitznagel, Thomas M; Afonina, Nataliya; Cao, Shawn; Cash, Patricia; Cecchini, Irene; DeFelippis, Michael R; Garidel, Patrick; Herre, Andrea; Koulov, Atanas V; Lubiniecki, Tony; Mahler, Hanns-Christian; Mangiagalli, Paolo; Nesta, Douglas; Perez-Ramirez, Bernardo; Polozova, Alla; Rossi, Mara; Schmidt, Roland; Simler, Robert; Singh, Satish; Weiskopf, Andrew; Wuchner, Klaus

    2015-11-01

    Measurement and characterization of subvisible particles (including proteinaceous and non-proteinaceous particulate matter) is an important aspect of the pharmaceutical development process for biotherapeutics. Health authorities have increased expectations for subvisible particle data beyond criteria specified in the pharmacopeia and covering a wider size range. In addition, subvisible particle data is being requested for samples exposed to various stress conditions and to support process/product changes. Consequently, subvisible particle analysis has expanded beyond routine testing of finished dosage forms using traditional compendial methods. Over the past decade, advances have been made in the detection and understanding of subvisible particle formation. This article presents industry case studies to illustrate the implementation of strategies for subvisible particle analysis as a characterization tool to assess the nature of the particulate matter and applications in drug product development, stability studies and post-marketing changes. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. [Preparation of panax notoginseng saponins-tanshinone H(A) composite method for pulmonary delivery with spray-drying method and its characterization].

    PubMed

    Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei

    2013-02-01

    To prepare panax notoginseng saponins-tanshinone II(A) composite particles for pulmonary delivery, in order to explore a dry powder particle preparation method ensuring synchronized arrival of multiple components of traditional Chinese medicine compounds at absorption sites. Panax notoginseng saponins-tanshinone II(A) composite particles were prepared with spray-drying method, and characterized by scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffraction (XRD), infrared analysis (IR), dry laser particle size analysis, high performance liquid chromatography (HPLC) and the aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The dry powder particles produced had narrow particle size distribution range and good aerodynamic behavior, and could realize synchronized administration of multiple components. The spray-drying method is used to combine traditional Chinese medicine components with different physical and chemical properties in the same particle, and product into traditional Chinese medicine compound particles in line with the requirements for pulmonary delivery.

  11. Synthesis and characterization of Al & SiCp nano particles by non-contact ultrasonic assisted method

    NASA Astrophysics Data System (ADS)

    Swain, Pradyut Kumar; Das, Ratnakar; Sahoo, Ashok Kumar; Naik, Bikash; Padhi, Payodhar

    2018-05-01

    The present study deals with proper mixing of SiCp nano particle in the aluminum metal matrix in two stages of processing i.e. primary and secondary. During primary processing, the breaking of agglomeration of nano particles take place and these are mixed with liquid aluminum powder using high frequency(35kHz) mechanical vibration. But, during secondary processing, mixing of nano particles along with subsequent cooling take place using high frequency non contact ultrasonic method. The study also reveals that in the liquid metal nano particle were uniformly dispersed and the segregation of the particles near the grain boundaries is due to pushing of the nano particle during grain growth. The study was performed by taking aluminum as matrix and SiCp as reinforcement with weight fraction of 2% and 3% and SiCp particles sizes of 30nm each. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were conducted for characterization of nano composite material.

  12. Characterization of airborne particles generated from metal active gas welding process.

    PubMed

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  13. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    PubMed

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    PubMed

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synthesis and characterization of nanomagnetite particles and their polymer coated forms.

    PubMed

    Utkan, Guldem Guven; Sayar, Filiz; Batat, Pinar; Ide, Semra; Kriechbaum, Manfred; Pişkin, Erhan

    2011-01-15

    Superparamagnetic nanoparticles were prepared by coprecipitation of ferrous (Fe(2+)) and ferric (Fe(3+)) aqueous solution by a base. Nanomagnetite particles were coated with poly(St/PEG-EEM/DMAPM) and poly(St/PEG-MA/DMAPM) layer by emulsifier-free emulsion polymerization. Chemical structure of nanoparticles was characterized by both FTIR and (1)H NMR. Particle morphologies were determined by Zeta Sizer, DLS, XRD and SAXS. Structural analysis showed that after polymer coating nanomagnetite particles kept their superparamagnetic property. Besides the synthesized magnetites, polymer coated forms of these particles are more biocompatible, well dispersable and uniform. These properties make them a very strong candidate for bioengineering applications, such as bioseparation, gene transfer. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Effect of Cobalt Particle Size on Acetone Steam Reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Zhang, He; Yu, Ning

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation,more » and the oxidation state of the cobalt nanoparticles.« less

  17. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-03-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  18. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow.

    PubMed

    van der Mei, Henny C; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E; Collias, Dimitris I; Mitchell, Michael D; Busscher, Henk J

    2008-07-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not allow direct observation of bacterial adhesion and the determination of viability. Here we propose to use a parallel plate flow chamber with carbon particles attached to the bottom plate to study bacterial adhesion to individual carbon particles and determine the viability of adhering bacteria. Observation and enumeration is done after live/dead staining in a confocal laser scanning microscope. Escherichiae coli adhered in higher numbers than Raoultella terrigena, except to a coconut-based carbon, which showed low bacterial adhesion compared to other wood-based carbon types. After adhesion, 83-96% of the bacteria adhering to an acidic carbon were dead, while on a basic carbon 54-56% were dead. A positively charged, basic carbon yielded 76-78% bacteria dead, while on a negatively charged coconut-based carbon only 32-37% were killed upon adhesion. The possibility to determine both adhesion as well as the viability of adhering bacteria upon adhesion to carbon particles is most relevant, because if bacteria adhere but remain viable, this still puts the water treatment system at risk, as live bacteria can grow and form a biofilm that can then be shedded to cause contamination. (c) 2008 Wiley Periodicals, Inc.

  19. High energy particles and quanta in astrophysics

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  20. Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Cerutti, Benoît

    We discuss the role of PIC simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.

  1. Spin waves in fluids

    NASA Technical Reports Server (NTRS)

    Kistler, E. L.

    1972-01-01

    A working report is presented in order to document early results of research on the stability of laminar boundary layers. The report shows that constitutive equations for a structured continua may be derived by the technique of reinterpreting velocity in the conventional stress to rate-of-strain relationship so as to account for effects of particle rotation. It is demonstrated that accounting for particle structure even at a molecular level makes the fluid viscoelastic with the ability to propagate vector waves. It is shown that particle structure modifies the basic stability equation for the system, which in turn would alter values for critical Reynolds number.

  2. Submicron Aerosol Characterization of Water by a Differential Mobility Particle Sizer.

    DTIC Science & Technology

    1987-02-01

    7 :-711 no0 StIHICRON AEROSOL CHARACTERIZATION OF WATER DY A vi1 DIFFERENTIAL NOBILITY PA.. (U) DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON... WATER BY A DIFFERENTIAL MOBILITY PARTICLE SIZER (U) by B. Kournikakis, A. Gunning, J. Fildes and J. Ho Project No. 251SD EL .TE APR 099?07uD February...RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA SUFFIELD MEMORANDUM NO. 1193 SUBMICRON AEROSOL CHARACTERIZATION OF WATER BY Accession For A DIFFERENTIAL

  3. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    PubMed

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  4. Particle size and interfacial effects on heat transfer characteristics of water and {alpha}-SiC nanofluids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeeva, E.; Smith, D. S.; Yu, W.

    2010-01-01

    The effect of average particle sizes on basic macroscopic properties and heat transfer performance of {alpha}-SiC/water nanofluids was investigated. The average particle sizes, calculated from the specific surface area of nanoparticles, were varied from 16 to 90 nm. Nanofluids with larger particles of the same material and volume concentration provide higher thermal conductivity and lower viscosity increases than those with smaller particles because of the smaller solid/liquid interfacial area of larger particles. It was also demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity. Heat transfer coefficients weremore » measured and compared to the performance of base fluids as well as to nanofluids reported in the literature. Criteria for evaluation of the heat transfer performance of nanofluids are discussed and optimum directions in nanofluid development are suggested.« less

  5. Method for characterizing the upset response of CMOS circuits using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Nixon, Robert H. (Inventor); Soli, George A. (Inventor); Blaes, Brent R. (Inventor)

    1995-01-01

    A method for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. A technique utilizing test structures to quickly and inexpensively characterize the SEU sensitivity of standard cell latches intended for use in a space environment. This bench-level approach utilizes alpha particles to induce upsets in a low LET sensitive 4-k bit test SRAM. This SRAM consists of cells that employ an offset voltage to adjust their upset sensitivity and an enlarged sensitive drain junction to enhance the cell's upset rate.

  6. Lifting degeneracy in holographic characterization of colloidal particles using multi-color imaging.

    PubMed

    Ruffner, David B; Cheong, Fook Chiong; Blusewicz, Jaroslaw M; Philips, Laura A

    2018-05-14

    Micrometer sized particles can be accurately characterized using holographic video microscopy and Lorenz-Mie fitting. In this work, we explore some of the limitations in holographic microscopy and introduce methods for increasing the accuracy of this technique with the use of multiple wavelengths of laser illumination. Large high index particle holograms have near degenerate solutions that can confuse standard fitting algorithms. Using a model based on diffraction from a phase disk, we explain the source of these degeneracies. We introduce multiple color holography as an effective approach to distinguish between degenerate solutions and provide improved accuracy for the holographic analysis of sub-visible colloidal particles.

  7. Bayesian approach to analyzing holograms of colloidal particles.

    PubMed

    Dimiduk, Thomas G; Manoharan, Vinothan N

    2016-10-17

    We demonstrate a Bayesian approach to tracking and characterizing colloidal particles from in-line digital holograms. We model the formation of the hologram using Lorenz-Mie theory. We then use a tempered Markov-chain Monte Carlo method to sample the posterior probability distributions of the model parameters: particle position, size, and refractive index. Compared to least-squares fitting, our approach allows us to more easily incorporate prior information about the parameters and to obtain more accurate uncertainties, which are critical for both particle tracking and characterization experiments. Our approach also eliminates the need to supply accurate initial guesses for the parameters, so it requires little tuning.

  8. Characterizing and controlling industrial dust: a case study in small particle measurement.

    PubMed

    Combes, Richard S; Warren, D Alan

    2005-07-01

    Instrumentation used to measure characteristics of fine particles entrained in gas or suspended in aerosols provides information needed to develop valid regulations for emission sources and to support the design of control technologies. This case study offers a brief history of "micromeritics," a term used by early researchers to describe the science of small particles, and the related invention of laboratory instruments for characterizing very fine particles. The historical view provides insights into the role that Progressive Era government agencies played in advancing esoteric science and applying this knowledge to the regulation of workplace air pollution. Micromeritics instrumentation developed in conjunction with federal research now has many commercial applications worldwide, with characterizing airborne pollutants only a minor one. However, the continuing advances in the micromeritics field provide important laboratory measurement capabilities to environmental research organizations, such as the National Institute for Occupational Safety and Health (NIOSH).

  9. Correlation Characterization of Particles in Volume Based on Peak-to-Basement Ratio

    PubMed Central

    Vovk, Tatiana A.; Petrov, Nikolay V.

    2017-01-01

    We propose a new express method of the correlation characterization of the particles suspended in the volume of optically transparent medium. It utilizes inline digital holography technique for obtaining two images of the adjacent layers from the investigated volume with subsequent matching of the cross-correlation function peak-to-basement ratio calculated for these images. After preliminary calibration via numerical simulation, the proposed method allows one to quickly distinguish parameters of the particle distribution and evaluate their concentration. The experimental verification was carried out for the two types of physical suspensions. Our method can be applied in environmental and biological research, which includes analyzing tools in flow cytometry devices, express characterization of particles and biological cells in air and water media, and various technical tasks, e.g. the study of scattering objects or rapid determination of cutting tool conditions in mechanisms. PMID:28252020

  10. Isolation and Characterization of Precise Dye/Dendrimer Ratios

    PubMed Central

    Dougherty, Casey A.; Furgal, Joseph C.; van Dongen, Mallory A.; Goodson, Theodore; Banaszak Holl, Mark M.; Manono, Janet; DiMaggio, Stassi

    2014-01-01

    Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6-carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne `click' ligand, separation into sample containing precisely defined `click' ligand/particle ratios using reverse-phase high performance liquid chromatography (rp-HPLC), followed by reaction with excess azide-functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using rp-HPLC. These materials were characterized using 1H and 19F NMR, rp-HPLC, UV-Vis and fluorescence spectroscopy, lifetime measurements, and MALDI. PMID:24604830

  11. Measurement of composite resin filler particles by using scanning electron microscopy and digital imaging.

    PubMed

    Jaarda, M J; Lang, B R; Wang, R F; Edwards, C A

    1993-04-01

    Composite resins are routinely classified on the basis of filler particle size for purposes of research, clinical applications, and communications. The size and characterizations of filler particles have also been considered a significant factor in the rate of wear of composites. Making valid correlations between the filler particles within a composite and wear requires accuracy of filler particle size and characterization. This study was initiated to examine two methods that would (1) qualify the filler particle content of a composite resin and (2) quantify the number, size, and the area occupied by the filler particles in composite resins. Three composite resins, BIS-FIL I, Visio-Fil, and Ful-Fil, were selected as the materials to be examined, on the basis of their published composite classification type as fine particle. The findings demonstrated that scientific methods are available to examine qualitatively and measure quantitatively the composite resin filler particles in terms of their numbers, sizes, and area occupied by use of a scanning electron microscope and digital imaging. Significant differences in the filler particle numbers, sizes, and the area occupied were found for the three composite resins in this study that were classified as fine particle.

  12. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less

  13. Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles.

    PubMed

    Zou, Hua; Wu, Shishan; Shen, Jian

    2008-09-16

    This paper presents a novel method for preparation of polymer-silica colloidal nanocomposites based on emulsion polymerization and subsequent sol-gel nanocoating process. The polystyrene latex particles bearing basic groups on their surfaces were successfully synthesized through emulsion polymerization using 4-vinylpyridine (4VP) as a functional comonomer and polyvinylpyrrolidone (PVP) as a surfactant. A series of poly(styrene-co-4-vinylpyridine)/SiO2 nanocomposite particles with smooth or rough core-shell morphology were obtained through the coating process. The poly(styrene-co-4-vinylpyridine) particles could be dissolved subsequently or simultaneously during the sol-gel coating process to form hollow particles. The effects of the amount of 4VP, PVP, NH(4)OH, and tetraethoxysilane (TEOS) on both the nanocomposite particles and hollow particles were investigated. Transmission electron microscopy showed that the morphology of the nanocomposite particles and hollow particles was strongly influenced by the initial feed of the comonomer 4VP and the coupling agent PVP. The conditions to obtain all hollow particles were also studied. Thermogravimetric analysis and energy dispersive X-ray spectroscopy analyses indicated that the interiors of hollow particles were not really "hollow".

  14. Hardware-Software Complex for Measurement of Energy and Angular Distributions of Charged Particles Formed in Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Vikhlyantsev, O. P.; Generalov, L. N.; Kuryakin, A. V.; Karpov, I. A.; Gurin, N. E.; Tumkin, A. D.; Fil'chagin, S. V.

    2017-12-01

    A hardware-software complex for measurement of energy and angular distributions of charged particles formed in nuclear reactions is presented. Hardware and software structures of the complex, the basic set of the modular nuclear-physical apparatus of a multichannel detecting system on the basis of Δ E- E telescopes of silicon detectors, and the hardware of experimental data collection, storage, and processing are presented and described.

  15. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from 10 ms to 5 min, which can be further applied to monitor the dynamics of heterogeneous reactions. The OT-RS system provides a flexible method to characterize and monitor the physical properties and heterogeneous chemistry of optically trapped solid particles in gaseous environment at single-particle level.

  16. Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy.

    PubMed

    Greiner, Vanille J; Egelé, Caroline; Oncul, Sule; Ronzon, Frédéric; Manin, Catherine; Klymchenko, Andrey; Mély, Yves

    2010-08-01

    Hepatitis B surface antigen (HBsAg) particles, produced in the yeast Hansenula polymorpha, are 20 nm particles, composed of S surface viral proteins and host-derived lipids. Since the detailed structure of these particles is still missing, we further characterized them by fluorescence techniques. Fluorescence correlation spectroscopy indicated that the particles are mainly monomeric, with about 70 S proteins per particle. The S proteins were characterized through the intrinsic fluorescence of their thirteen Trp residues. Fluorescence quenching and time-resolved fluorescence experiments suggest the presence of both low emissive embedded Trp residues and more emissive Trp residues at the surface of the HBsAg particles. The low emission of the embedded Trp residues is consistent with their close proximity in alpha-helices. Furthermore, S proteins exhibit restricted movement, as expected from their tight association with lipids. The lipid organization of the particles was studied using viscosity-sensitive DPH-based probes and environment sensitive 3-hydroxyflavone probes, and compared to lipid vesicles and low density lipoproteins (LDLs), taken as models. Like LDLs, the HBsAg particles were found to be composed of an ordered rigid lipid interface, probably organized as a phospholipid monolayer, and a more hydrophobic and fluid inner core, likely composed of triglycerides and free fatty acids. However, the lipid core of HBsAg particles was substantially more polar than the LDL one, probably due to its larger content in proteins and its lower content in sterols. Based on our data, we propose a structural model for HBsAg particles where the S proteins deeply penetrate into the lipid core. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  17. ATLAS OF SOURCE EMISSION PARTICLES

    EPA Science Inventory

    An atlas of various source emission particles characterized by electron optical techniques has been compiled for use by air pollution investigators. The particles studied were emitted by mobile, stationary, and natural sources. Sources included automobiles, manufacturing operatio...

  18. Chemical Characterization of Ambient Coarse Particulate Matter in Rural Areas of Arizona Impacted by Significant Population Growth

    EPA Science Inventory

    Characterization of PMc is critical to the understanding of recently observed adverse health effects (e.g., asthma, reduced cardiac variability, etc) from coarse particles in ambient air. PMc mass an (PMc, particles between PM2.5 and PM10) in a rural area of increasing populati...

  19. Particle Size Characterization of Water-Elutriated Libby Amphibole 2000 and RTI International Amosite

    USGS Publications Warehouse

    Lowers, Heather; Bern, Amy M.

    2009-01-01

    This report presents data on particle characterization analyzed by scanning electron microscopy on Libby amphibole collected by the U.S. Geological Survey in 2000 (LA2000) and amosite material collected by RTI International (RTI amosite). The particle characterization data were generated to support a portion of the Libby Action Plan. Prior to analysis, the raw LA2000 and RTI amosite materials were subjected to a preparation step. Each sample was water-elutriated by U.S. Environmental Protection Agency (USEPA) Office of Research and Development, Research Triangle Park using the methods generally described in another published report and then delivered to the U.S. Geological Survey, Denver Microbeam Laboratory for analysis. Data presented here represent analyses performed by the U.S. Geological Survey, Denver Microbeam Laboratory and USEPA National Enforcement Investigations Center. This report consists of two Excel spreadsheet files developed by USEPA, Region 8 Superfund Technical Assistance Unit and describe the particle size characterization of the LA2000 and RTI amosite, respectively. Multiple tabs and data entry cells exist in each spreadsheet and are defined herein.

  20. Particle tracking in drug and gene delivery research: State-of-the-art applications and methods.

    PubMed

    Schuster, Benjamin S; Ensign, Laura M; Allan, Daniel B; Suk, Jung Soo; Hanes, Justin

    2015-08-30

    Particle tracking is a powerful microscopy technique to quantify the motion of individual particles at high spatial and temporal resolution in complex fluids and biological specimens. Particle tracking's applications and impact in drug and gene delivery research have greatly increased during the last decade. Thanks to advances in hardware and software, this technique is now more accessible than ever, and can be reliably automated to enable rapid processing of large data sets, thereby further enhancing the role that particle tracking will play in drug and gene delivery studies in the future. We begin this review by discussing particle tracking-based advances in characterizing extracellular and cellular barriers to therapeutic nanoparticles and in characterizing nanoparticle size and stability. To facilitate wider adoption of the technique, we then present a user-friendly review of state-of-the-art automated particle tracking algorithms and methods of analysis. We conclude by reviewing technological developments for next-generation particle tracking methods, and we survey future research directions in drug and gene delivery where particle tracking may be useful. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Engineering Education: A Clear Decision

    ERIC Educational Resources Information Center

    Strimel, Greg J.; Grubbs, Michael E.; Wells, John G.

    2017-01-01

    The core subjects in P-12 education have a common key characteristic that makes them stable over time. That characteristic is a steady content. For example, in the sciences, the basics of biology remain the same--the cell is the basic building block around which organisms are defined, characterized, structured, etc. Similarly, the basics of…

  2. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.

    PubMed

    Miller, Arthur; Drake, Pamela L; Hintz, Patrick; Habjan, Matt

    2010-07-01

    An air quality survey was conducted at a precious metals refinery in order to evaluate worker exposures to airborne metals and to provide detailed characterization of the aerosols. Two areas within the refinery were characterized: a furnace room and an electro-refining area. In line with standard survey practices, both personal and area air filter samples were collected on 37-mm filters and analyzed for metals by inductively coupled plasma-atomic emission spectroscopy. In addition to the standard sampling, measurements were conducted using other tools, designed to provide enhanced characterization of the workplace aerosols. The number concentration and number-weighted particle size distribution of airborne particles were measured with a fast mobility particle sizer (FMPS). Custom-designed software was used to correlate particle concentration data with spatial location data to generate contour maps of particle number concentrations in the work areas. Short-term samples were collected in areas of localized high concentrations and analyzed using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) to determine particle morphology and elemental chemistry. Analysis of filter samples indicated that all of the workers were exposed to levels of silver above the Occupational Safety and Health Administration permissible exposure limit of 0.01 mg m(-3) even though the localized ventilation was functioning. Measurements with the FMPS indicated that particle number concentrations near the furnace increased up to 1000-fold above the baseline during the pouring of molten metal. Spatial mapping revealed localized elevated particle concentrations near the furnaces and plumes of particles rising into the stairwells and traveling to the upper work areas. Results of TEM/EDS analyses confirmed the high number of nanoparticles measured by the FMPS and indicated the aerosols were rich in metals including silver, lead, antimony, selenium, and zinc. Results of the survey were used to deduce appropriate strategies for mitigation of worker exposure to airborne metals.

  3. Simple route for nano-hydroxyapatite properties expansion.

    PubMed

    Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L

    2015-10-20

    Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.

  4. Bootstrapping quarks and gluons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges thatmore » lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.« less

  5. Gauge Bosons--The Ties That Bind.

    ERIC Educational Resources Information Center

    Hill, Christopher T.

    1982-01-01

    Discusses four basic forces/interactions in nature (strong force, weak force, electromagnetic force and gravity), associated with elementary particles. Focuses on "gauge bosons" (for example, photons), thought to account for strong, weak, and electromagnetic forces. (Author/JN)

  6. Supergravity and the Unification of the Laws of Physics

    ERIC Educational Resources Information Center

    Freedman, Daniel Z.; van Nieuwenhuizen, Peter

    1978-01-01

    In this new theory the gravitational force arises from a symmetry relating particles with vastly different properties. The ultimate result may be a unified theory of all the basic forces in nature. (Author/BB)

  7. Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinaharan, I., E-mail: dinaweld2009@gmail.com

    Fly ash (FA) is a waste product of coal combustion in thermal power plants which is available in massive quantities all over the world causing land pollution. This paper reports the characterization of AA6061 aluminum matrix composites (AMCs) reinforced with FA particles synthesized using friction stir processing (FSP). The volume fraction of FA particles was varied from 0 to 18 in steps of 6. The prepared AMCs were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and electron backscattered diagram (EBSD). The wear rate was estimated using a pin-on-disc wear apparatus. FA particles were observed to be distributed homogeneouslymore » in the AMC irrespective of the location within the stir zone. The EBSD micrographs revealed remarkable grain refinement in the AMC. The incorporation of FA particles enhanced the microhardness and wear resistance of the AMC. The strengthening mechanisms of the AMC were discussed and correlated to the observed microstructures. The wear mechanisms were identified by characterizing the wear debris and worn surfaces. - Highlights: •Industrial waste fly ash was used to produce aluminum matrix composites. •Friction stir processing was used to produce AA6061/Fly Ash composite. •Fly ash particles refined the grains of aluminum matrix. •Fly ash particles enhanced the hardness and wear resistance. •Successful utilization of fly ash to make aluminum composites reduces land pollution.« less

  8. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  9. Brownian dynamics of self-regulated particles with additional degrees of freedom: Symmetry breaking and homochirality

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Debankur; Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-04-01

    We consider the Brownian motion of a collection of particles each with an additional degree of freedom. The degree of freedom of a particle (or, in general, a molecule) can assume distinct values corresponding to certain states or conformations. The time evolution of the additional degree of freedom of a particle is guided by those of its neighbors as well as the temperature of the system. We show that the local averaging over these degrees of freedom results in emergence of a collective order in the dynamics in the form of selection or dominance of one of the isomers leading to a symmetry-broken state. Our statistical model captures the basic features of homochirality, e.g., autocatalysis and chiral inhibition.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apaydin, Ramazan Oguzhan; Ebin, Burcak; Gurmen, Sebahattin

    Copper-Nickel (CuNi) nanostructured alloy particles were produced by Ultrasonic Spray Pyrolysis and Hydrogen Reduction Method (USP-HR) from high purity copper and nickel nitrate aqueous solutions. The effect of the precursor solution in the range of 0.1 and 0.5 mol/L on the morphology and crystallite size of CuNi nanoparticles were investigated under 2 h running time, 700 °C operating temperature and 0.5 L/min H{sub 2} flow rate. Particle size, morphology, composition and crystallite structure were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD). Particle characterization studies show that nanostructured alloy particles have cubic crystal structuremore » and they are in submicron size range with spherical morphology. The crystallite sizes of the particles calculated with Scherrer formula are 40 and 34 nm and average particles sizes observed from the SEM images are 300 and 510 nm for each experiment respectively.« less

  11. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    PubMed

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  12. Characterization of aerosols and fibers emitted from composite materials combustion.

    PubMed

    Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M

    2016-01-15

    This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. FAST TRACK COMMUNICATION: Suppressing anomalous diffusion by cooperation

    NASA Astrophysics Data System (ADS)

    Dybiec, Bartłomiej

    2010-08-01

    Within a continuous time random walk scenario we consider a motion of a complex of particles which moves coherently. The motion of every particle is characterized by the waiting time and jump length distributions which are of the power-law type. Due to the interactions between particles it is assumed that the waiting time is adjusted to the shortest or to the longest waiting time. Analogously, the jump length is adjusted to the shortest or to the longest jump length. We show that adjustment to the shortest waiting time can suppress the subdiffusive behavior even in situations when the exponent characterizing the waiting time distribution assures subdiffusive motion of a single particle. Finally, we demonstrate that the characteristic of the motion depends on the number of particles building a complex.

  14. Sub-Fickean Diffusion in a One-Dimensional Plasma Ring

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.

    2013-12-01

    A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.

  15. Carcinogenicity of airborne combustion products observed in subcutaneous tissue and lungs of laboratory rodents.

    PubMed Central

    Pott, F; Stöber, W

    1983-01-01

    Most air pollution in West Germany is caused by combustion products. Particulate organic matter released by incomplete combustion is suspected to contribute to the "urban factor" of lung cancer frequency in urban-industrial centers. The carcinogenic potential of single components, groups of compounds and total source emissions of combustion processes was investigated in laboratory animals by subcutaneous injection, intratracheal instillation or inhalation. Tests by subcutaneous injection of condensates of automobile exhaust, extracts of coal furnace emissions and of airborne particles and different fractions of these extracts showed that the polycyclic aromatic hydrocarbons (PAH) with four to six benzene rings have the strongest experimental carcinogenicity. However, polar compounds (heterocyclic nitrogen-containing PAH, phenols, and others) also show remarkable carcinogenic potency. There were large differences between the dose-response relationships of several PAHs. In the subcutaneous tissue, benzo(a)pyrene and dibenz(a,h)anthracene are the most carcinogenic of the tested airborne PAHs. Furthermore, they can induce high tumor rates in the lung after subcutaneous injection in newborn mice and after intratracheal instillation of mice or hamsters. The tumor rate of benzo(a)pyrene did not further increase after simultaneous instillation of carbon black, but lead chloride may have a promoting effect. Far more than 100 PAHs are found in the urban atmosphere. However, because of the remarkable similarity of the PAH profiles in the examined samples, it may be sufficient to measure just a few stable PAHs in the urban air in order to facilitate an assessment of the carcinogenic potency of the PAH content in the atmosphere. To examine the carcinogenic or cocarcinogenic effects of gas and vapor emissions, studies with a two-phase model were carried out: phase 1 relates to the induction of a basic tumor rate in the lung by a well known carcinogen, while phase 2 is characterized by an inhalation of the substance under investigation. In an experiment with mice, the inhalation of a mixture of SO2 and NO2 seemed to increase the basic tumor rate induced by dibenz(a,h)anthracene. In a similar two-phase experiment conducted with hamsters, the inhalation of diesel exhaust (total exhaust as well as exhaust without particles) increased a basic tumor rate induced by diethyl nitrosamine. These experiments deserve confirmation before a detailed interpretation is attempted. PMID:6186480

  16. Carcinogenicity of airborne combustion products observed in subcutaneous tissue and lungs of laboratory rodents.

    PubMed

    Pott, F; Stöber, W

    1983-01-01

    Most air pollution in West Germany is caused by combustion products. Particulate organic matter released by incomplete combustion is suspected to contribute to the "urban factor" of lung cancer frequency in urban-industrial centers. The carcinogenic potential of single components, groups of compounds and total source emissions of combustion processes was investigated in laboratory animals by subcutaneous injection, intratracheal instillation or inhalation. Tests by subcutaneous injection of condensates of automobile exhaust, extracts of coal furnace emissions and of airborne particles and different fractions of these extracts showed that the polycyclic aromatic hydrocarbons (PAH) with four to six benzene rings have the strongest experimental carcinogenicity. However, polar compounds (heterocyclic nitrogen-containing PAH, phenols, and others) also show remarkable carcinogenic potency. There were large differences between the dose-response relationships of several PAHs. In the subcutaneous tissue, benzo(a)pyrene and dibenz(a,h)anthracene are the most carcinogenic of the tested airborne PAHs. Furthermore, they can induce high tumor rates in the lung after subcutaneous injection in newborn mice and after intratracheal instillation of mice or hamsters. The tumor rate of benzo(a)pyrene did not further increase after simultaneous instillation of carbon black, but lead chloride may have a promoting effect. Far more than 100 PAHs are found in the urban atmosphere. However, because of the remarkable similarity of the PAH profiles in the examined samples, it may be sufficient to measure just a few stable PAHs in the urban air in order to facilitate an assessment of the carcinogenic potency of the PAH content in the atmosphere. To examine the carcinogenic or cocarcinogenic effects of gas and vapor emissions, studies with a two-phase model were carried out: phase 1 relates to the induction of a basic tumor rate in the lung by a well known carcinogen, while phase 2 is characterized by an inhalation of the substance under investigation. In an experiment with mice, the inhalation of a mixture of SO2 and NO2 seemed to increase the basic tumor rate induced by dibenz(a,h)anthracene. In a similar two-phase experiment conducted with hamsters, the inhalation of diesel exhaust (total exhaust as well as exhaust without particles) increased a basic tumor rate induced by diethyl nitrosamine. These experiments deserve confirmation before a detailed interpretation is attempted.

  17. Simulation of Helical Flow Hydrodynamics in Meanders and Advection-Turbulent Diffusion Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.

    2013-12-01

    Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.

  18. Effective friction of granular flows made of non-spherical particles

    NASA Astrophysics Data System (ADS)

    Somfai, Ellák; Nagy, Dániel B.; Claudin, Philippe; Favier, Adeline; Kálmán, Dávid; Börzsönyi, Tamás

    2017-06-01

    Understanding the rheology of dense granular matter is a long standing problem and is important both from the fundamental and the applied point of view. As the basic building blocks of granular materials are macroscopic particles, the nature of both the response to deformations and the dissipation is very different from that of molecular materials. In the absence of large gradients, the best approach formulates the constitutive equation as an effective friction: for sheared granular matter the ratio of the off-diagonal and the diagonal elements of the stress tensor depends only on dynamical parameters, in particular the inertial number. In this work we employ numerical simulations to extend this formalism to granular packings made of frictionless elongated particles. We measured how the shape of the particles affects the effective friction, volume fraction and first normal stress difference, and compared it to the spherical particle case. We had to introduce polydispersity in particle size in order to keep the systems of the more elongated particles disordered.

  19. General advancing front packing algorithm for the discrete element method

    NASA Astrophysics Data System (ADS)

    Morfa, Carlos A. Recarey; Pérez Morales, Irvin Pablo; de Farias, Márcio Muniz; de Navarra, Eugenio Oñate Ibañez; Valera, Roberto Roselló; Casañas, Harold Díaz-Guzmán

    2018-01-01

    A generic formulation of a new method for packing particles is presented. It is based on a constructive advancing front method, and uses Monte Carlo techniques for the generation of particle dimensions. The method can be used to obtain virtual dense packings of particles with several geometrical shapes. It employs continuous, discrete, and empirical statistical distributions in order to generate the dimensions of particles. The packing algorithm is very flexible and allows alternatives for: 1—the direction of the advancing front (inwards or outwards), 2—the selection of the local advancing front, 3—the method for placing a mobile particle in contact with others, and 4—the overlap checks. The algorithm also allows obtaining highly porous media when it is slightly modified. The use of the algorithm to generate real particle packings from grain size distribution curves, in order to carry out engineering applications, is illustrated. Finally, basic applications of the algorithm, which prove its effectiveness in the generation of a large number of particles, are carried out.

  20. Electrospray-assisted ultraviolet aerodynamic particle sizer spectrometer for real-time characterization of bacterial particles.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Hwang, Gi Byoung; Lee, Byung Uk; Lee, Seung Bok; Jurng, Jong Soo; Bae, Gwi Nam

    2010-01-15

    The ultraviolet aerodynamic particle sizer (UVAPS) spectrometer is a novel, commercially available aerosol counter for real-time, continuous monitoring of viable bioaerosols based on the fluorescence induced from living microorganisms. For aerosolization of liquid-based microorganisms, general aerosolization methods such as atomization or nebulization may not be adequate for an accurate and quantitative characterization of the microorganisms because of the formation of agglomerated particles. In such cases, biological electrospray techniques have an advantage because they generate nonagglomerated particles, attributable to the repulsive electrical forces among particles with unipolar charges. Biological electrosprays are quickly gaining potential for the detection and control of living organisms in applications ranging from mass spectrometry to developmental microbiology. In this study, we investigated the size distribution, total concentration, and fluorescence percentage of bacterial particles in a real-time manner by electrospray-assisted UVAPS. A suspension containing Escherichia coli as a test microorganism was sprayed in a steady cone-jet mode using a specially designed electrospray system with a point-to-orifice-plate configuration based on charge-reduced electrospray size spectrometry. With the electrospray process, 98% of the total E. coli particle number concentration had a size of <1 mum and the geometric mean diameter was 0.779 mum, as compared with the respective values of 78% and 0.907 mum after nebulization. The fractions of fluorescence responsive particles and of particles that contained viable organisms in culture were 12% and 7%, respectively, from the electrospray process and 34% and 24% from nebulization. These results demonstrate that (1) the presence of agglomerated particles can lead to markedly overestimated fluorescence and culturability percentages compared with the values obtained from nonagglomerated particles, and (2) electrospray-assisted UVAPS can provide more accurate and quantitative real-time characterization of liquid-based microorganisms, owing to the generation of nonagglomerated particles.

  1. Characterization and Air Drying of Chunkwood and Chips

    Treesearch

    Joseph B. Sturos

    1984-01-01

    Chunkwood was found to be composed of a few large particles and many small particles with the large particles constituting almost half the total weight. More than 75 percent of the chunk weight was composed of particles weighing more than 100 grams (ovendry), while 85 percent of the chip weight was composed of particles weighing 3 grams or less. Energy densities...

  2. Applications of Synthetic Microchannel and Nanopore Systems

    NASA Astrophysics Data System (ADS)

    Hinkle, Thomas Preston

    This thesis describes research conducted on the physics and applications of micro- and nanoscale ion-conducting channels. Making use of the nanoscale physics that takes place in the vicinity of charged surfaces, there is the possibility that nanopores, holes on the order of 1 nm in size, could be used to make complex integrated ionic circuits. For inspiration on what such circuits could achieve we only need to look to biology systems, immensely complex machines that at their most basic level require precise control of ions and intercellular electric potentials to function. In order to contribute to the ever expanding field of nanopore research, we engineered novel hybrid insulator-conductor nanopores that behave analagously to ionic diodes, which allow passage of current flow in one direction but severely limit the current in the opposite direction. The experiments revealed that surface polarization of the conducting material can induce the formation of an electrical double layer in the same way static surface charges can. Furthermore, we showed that the hybrid device behaved similar to an ionic diode, and could see potential use as a standard rectifying element in ionic circuits. Another application based on ion conducting channels is resistive pulse sensing, a single particle detection and characterization method. We present three main experiments that expand the capacity of resistive pulse sensing for particle characterization. First, we demonstrate how resistive pulse sensing in pores with longitudinal irregularities can be used to measure the lengths of individual nanoparticles. Then, we describe an entirely new hybrid approach to resistive pulse sensing, whereby the electrical measurements are combined with simultaneous optical imaging. The hybrid method allows for validation of the resistive pulse signals and will greatly contribute to their interpretability. We present experiments that explore some of the possibilities of the hybrid method. Then, building off the hybrid method we present experiments performed to measure single particle deformability with resistive pulse sensing. Using a novel microfluidic channel design, we were able to reproducibily induce bidirectional deformation of cells. We describe how these deformations could be detected with the resistive pulse signal alone, paving the way for resistive pulse sensing based cell deformability cytometers.

  3. The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1.

    PubMed

    Caridi, Flavia; Vázquez-Calvo, Angela; Sobrino, Francisco; Martín-Acebes, Miguel A

    2015-05-01

    The picornavirus foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. The FMDV capsid is highly acid labile, and viral particles lose infectivity due to their disassembly at pH values slightly below neutrality. This acid sensitivity is related to the mechanism of viral uncoating and genome penetration from endosomes. In this study, we have analyzed the molecular basis of FMDV acid-induced disassembly by isolating and characterizing a panel of novel FMDV mutants differing in acid sensitivity. Amino acid replacements altering virion stability were preferentially distributed in two different regions of the capsid: the N terminus of VP1 and the pentameric interface. Even more, the acid labile phenotype induced by a mutation located at the pentameric interface in VP3 could be compensated by introduction of an amino acid substitution in the N terminus of VP1. These results indicate that the acid sensitivity of FMDV can be considered a multifactorial trait and that virion stability is the fine-tuned product of the interaction between residues from different capsid proteins, in particular those located within the N terminus of VP1 or close to the pentameric interface. The viral capsid protects the viral genome from environmental factors and contributes to virus dissemination and infection. Thus, understanding of the molecular mechanisms that modulate capsid stability is of interest for the basic knowledge of the biology of viruses and as a tool to improve the stability of conventional vaccines based on inactivated virions or empty capsids. Using foot-and-mouth disease virus (FMDV), which displays a capsid with extreme acid sensitivity, we have performed a genetic study to identify the molecular determinants involved in capsid stability. A panel of FMDV mutants with differential sensitivity to acidic pH was generated and characterized, and the results showed that two different regions of FMDV capsid contribute to modulating viral particle stability. These results provide new insights into the molecular mechanisms of acid-mediated FMDV uncoating. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    PubMed

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.

  5. Preparation and Characterization of Pyrotechnics Binder-Coated Nano-Aluminum Composite Particles

    NASA Astrophysics Data System (ADS)

    Ye, Mingquan; Zhang, Shuting; Liu, Songsong; Han, Aijun; Chen, Xin

    2017-07-01

    The aim of this article is to protect the activity of nano-aluminum (Al) particles in solid rocket propellants and pyrotechnics. The morphology, structure, active aluminum content, and thermal and catalytic properties of the coated samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential scanning calorimetry (TG-DSC), and oxidation-reduction titration methods. The results indicated that nano-Al particles could be effectively coated with phenolic resin (PF), fluororubber (Viton B), and shellac through a solvent/nonsolvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 5-15 nm. Analysis of the active Al content revealed that Viton B coating had a much better protective effect. The TG-DSC results showed that the energy amount and energy release rate of PF-, Viton B-, and shellac-coated Al particles were larger than those of the raw nano-Al particles. The catalytic effects of coated Al particles on the thermal decomposition of ammonium perchlorate (AP) were better than those of raw nano-Al particles, and the effect of shellac-coated Al particles was significantly better than that of Viton B-coated Al particles.

  6. Lack of evidence for microplastic contamination in honey.

    PubMed

    Mühlschlegel, Peter; Hauk, Armin; Walter, Ulrich; Sieber, Robert

    2017-11-01

    Honey samples from Switzerland were investigated with regard to their microplastic particle burden. Five representative honey samples of different origin were processed following a standardized protocol to separate plastic-based microparticles from particles of natural origin, such as pollen, propolis, wax, and bee-related debris. The procedure was optimized to minimize post-sampling microplastic cross-contamination in the laboratory. The isolated microplastic particles were characterized and grouped by means of light microscopy as well as chemically characterized by microscopically coupled Raman and Fourier transform infrared spectroscopy. Five particle classes with an abundance significantly above blank levels were identified: black particles (particle count between 1760/kg and 8680/kg), white transparent fibres (particle count between 132/kg and 728/kg), white transparent particles (particle count between 60/kg and 172/kg), coloured fibres (particle count between 32/kg and 108/kg), and coloured particles (particle count between 8/kg and 64/kg). The black particles, which represented the majority of particles, were identified as char or soot and most probably originated from the use of smokers, a widespread practice in beekeeping. The majority of fibres were identified as cellulose or polyethylene terephthalate and were most likely of textile origin. In addition to these particle and fibre groups lower numbers of fragments were detected that were related to glass, polysaccharides or chitin, and few bluish particles contained copper phthalocyanine pigment. We found no indications that the honey samples were significantly contaminated with microplastic particles.

  7. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy.

    PubMed

    Yao, Aihua; Chen, Qi; Ai, Fanrong; Wang, Deping; Huang, Wenhai

    2011-10-01

    The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe(3)O(4) nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B(12)-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an "on-off", stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

  8. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  9. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    PubMed

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  10. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation.

    PubMed

    Boverhof, Darrell R; David, Raymond M

    2010-02-01

    Nanotechnology is a rapidly emerging field of great interest and promise. As new materials are developed and commercialized, hazard information also needs to be generated to reassure regulators, workers, and consumers that these materials can be used safely. The biological properties of nanomaterials are closely tied to the physical characteristics, including size, shape, dissolution rate, agglomeration state, and surface chemistry, to name a few. Furthermore, these properties can be altered by the medium used to suspend or disperse these water-insoluble particles. However, the current toxicology literature lacks much of the characterization information that allows toxicologists and regulators to develop "rules of thumb" that could be used to assess potential hazards. To effectively develop these rules, toxicologists need to know the characteristics of the particle that interacts with the biological system. This void leaves the scientific community with no options other than to evaluate all materials for all potential hazards. Lack of characterization could also lead to different laboratories reporting discordant results on seemingly the same test material because of subtle differences in the particle or differences in the dispersion medium used that resulted in altered properties and toxicity of the particle. For these reasons, good characterization using a minimal characterization data set should accompany and be required of all scientific publications on nanomaterials.

  11. Single-particle characterization of urban aerosol particles collected in three Korean cites using low-Z electron probe X-ray microanalysis.

    PubMed

    Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René

    2002-11-15

    A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.

  12. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver.

    PubMed

    Rogers, Kim R; Navratilova, Jana; Stefaniak, Aleksandr; Bowers, Lauren; Knepp, Alycia K; Al-Abed, Souhail R; Potter, Phillip; Gitipour, Alireza; Radwan, Islam; Nelson, Clay; Bradham, Karen D

    2018-04-01

    Given the potential for human exposure to silver nanoparticles from spray disinfectants and dietary supplements, we characterized the silver-containing nanoparticles in 22 commercial products that advertised the use of silver or colloidal silver as the active ingredient. Characterization parameters included: total silver, fractionated silver (particulate and dissolved), primary particle size distribution, hydrodynamic diameter, particle number, and plasmon resonance absorbance. A high degree of variability between claimed and measured values for total silver was observed. Only 7 of the products showed total silver concentrations within 20% of their nominally reported values. In addition, significant variations in the relative percentages of particulate vs. soluble silver were also measured in many of these products reporting to be colloidal. Primary silver particle size distributions by transmission electron microscopy (TEM) showed two populations of particles - smaller particles (<5nm) and larger particles between 20 and 40nm. Hydrodynamic diameter measurements using nanoparticle tracking analysis (NTA) correlated well with TEM analysis for the larger particles. Z-average (Z-Avg) values measured using dynamic light scattering (DLS); however, were typically larger than both NTA or TEM particle diameters. Plasmon resonance absorbance signatures (peak absorbance at around 400nm indicative of metallic silver nanoparticles) were only noted in 4 of the 9 yellow-brown colored suspensions. Although the total silver concentrations were variable among products, ranging from 0.54mg/L to 960mg/L, silver containing nanoparticles were identified in all of the product suspensions by TEM. Published by Elsevier B.V.

  13. Time-resolved characterization of primary and secondary particle emissions of a modern gasoline passenger car

    NASA Astrophysics Data System (ADS)

    Karjalainen, P.; Timonen, H.; Saukko, E.; Kuuluvainen, H.; Saarikoski, S.; Aakko-Saksa, P.; Murtonen, T.; Dal Maso, M.; Ahlberg, E.; Svenningsson, B.; Brune, W. H.; Hillamo, R.; Keskinen, J.; Rönkkö, T.

    2015-11-01

    Changes in traffic systems and vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic related emissions, both primary and secondary particles that are formed in the atmosphere from gaseous exhaust emissions need to be characterized. In this study we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a modern gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the engine to the atmosphere, and takes into account also differences in driving patterns. We observed that in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number, and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence. Thus, in order to enhance human health and wellbeing in urban areas, our study strongly indicates that in future legislation, special attention should be directed into the reduction of gaseous hydrocarbons.

  14. Feasibility of a tetracycline-binding method for detecting synovial fluid basic calcium phosphate crystals.

    PubMed

    Rosenthal, Ann K; Fahey, Mark; Gohr, Claudia; Burner, Todd; Konon, Irina; Daft, Laureen; Mattson, Eric; Hirschmugl, Carol; Ryan, Lawrence M; Simkin, Peter

    2008-10-01

    Basic calcium phosphate (BCP) crystals are common components of osteoarthritis (OA) synovial fluid. Progress in understanding the role of these bioactive particles in clinical OA has been hampered by difficulties in their identification. Tetracyclines stain calcium phosphate mineral in bone. The aim of this study was to investigate whether tetracycline staining might be an additional or alternative method for identifying BCP crystals in synovial fluid. A drop of oxytetracycline was mixed with a drop of fluid containing synthetic or native BCP, calcium pyrophosphate dihydrate (CPPD), or monosodium urate (MSU) crystals and placed on a microscope slide. Stained and unstained crystals were examined by light microscopy, with and without a portable broad-spectrum ultraviolet (UV) pen light. A small set of characterized synovial fluid samples were compared by staining with alizarin red S and oxytetracycline. Synthetic BCP crystals in synovial fluid were quantified fluorimetrically using oxytetracycline. After oxytetracycline staining, synthetic and native BCP crystals appeared as fluorescent amorphous aggregates under UV light. Oxytetracycline did not stain CPPD or MSU crystals or other particulates. Oxytetracycline staining had fewer false-positive test results than did alizarin red S staining and could provide estimates of the quantities of synthetic BCP crystals in synovial fluid. With further validation, oxytetracycline staining may prove to be a useful adjunct or alternative to currently available methods for identifying BCP crystals in synovial fluid.

  15. A Variational Property of the Velocity Distribution in a System of Material Particles

    ERIC Educational Resources Information Center

    Siboni, S.

    2009-01-01

    A simple variational property concerning the velocity distribution of a set of point particles is illustrated. This property provides a full characterization of the velocity distribution which minimizes the kinetic energy of the system for prescribed values of linear and angular momentum. Such a characterization is applied to discuss the kinetic…

  16. Turbulence in laboratory and natural plasmas: Connecting the dots

    NASA Astrophysics Data System (ADS)

    Jenko, Frank

    2015-11-01

    It is widely recognized that turbulence is an important and fascinating frontier topic of both basic and applied plasma physics. Numerous aspects of this paradigmatic example of self-organization in nonlinear systems far from thermodynamic equilibrium remain to be better understood. Meanwhile, for both laboratory and natural plasmas, an impressive combination of new experimental and observational data, new theoretical concepts, and new computational capabilities (on the brink of the exascale era) have become available. Thus, it seems fair to say that we are currently facing a golden age of plasma turbulence research, characterized by fundamental new insights regarding the role and nature of turbulent processes in phenomena like cross-field transport, particle acceleration and propagation, plasma heating, magnetic reconnection, or dynamo action. At the same time, there starts to emerge a more unified view of this key topic of basic plasma physics, putting it into the much broader context of complex systems research and connecting it, e.g., to condensed matter physics and biophysics. I will describe recent advances and future challenges in this vibrant area of plasma physics, highlighting novel insights into the redistribution and dissipation of energy in turbulent plasmas at kinetic scales, using gyrokinetic, hybrid, and fully kinetic approaches in a complementary fashion. In this context, I will discuss, among other things, the influence of damped eigenmodes, the importance of nonlocal interactions, the origin and nature of non-universal power law spectra, as well as the role of coherent structures. Moreover, I will outline exciting new research opportunities on the horizon, combining extreme scale simulations with basic plasma and fusion experiments as well as with observations from satellites.

  17. Characterization, Exposure Measurement and Control for Nanoscale Particles in Workplaces and on the Road

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Pui, David Y. H.

    2011-07-01

    The amount of engineered nanoparticles is increasing at a rapid rate and more concerns are being raised about the occupational health and safety of nanoparticles in the workplace, and implications of nanotechnology on the environment and living systems. At the same time, diesel engine emissions are one of the serious air pollution sources in urban area. Ultrafine particles on the road can result in harmful effects on the health of drivers and passengers. Research on characterization, exposure measurement and control is needed to address the environmental, health and safety issues of nanoscale particles. We present results of our studies on airborne particles in workplaces and on the road.

  18. Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements.

    PubMed

    Sivaprakasam, Vasanthi; Lin, Horn-Bond; Huston, Alan L; Eversole, Jay D

    2011-03-28

    A two-wavelength laser-induced fluorescence (LIF) instrument has been developed and used to characterize individual biological aerosol particles, including biological warfare (BW) agent surrogates. Fluorescence in discrete spectral bands from widely different species, and also from similar species under different growth conditions were measured and compared. The two-wavelength excitation approach was found to increase discrimination among several biological materials, and especially with respect to diesel exhaust particles, a common interferent for LIF BW detection systems. The spectral characteristics of a variety of biological materials and ambient air components have been studied as a function of aerosol particle size and incident fluence.

  19. Anthology of the Development of Radiation Transport Tools as Applied to Single Event Effects

    NASA Astrophysics Data System (ADS)

    Reed, R. A.; Weller, R. A.; Akkerman, A.; Barak, J.; Culpepper, W.; Duzellier, S.; Foster, C.; Gaillardin, M.; Hubert, G.; Jordan, T.; Jun, I.; Koontz, S.; Lei, F.; McNulty, P.; Mendenhall, M. H.; Murat, M.; Nieminen, P.; O'Neill, P.; Raine, M.; Reddell, B.; Saigné, F.; Santin, G.; Sihver, L.; Tang, H. H. K.; Truscott, P. R.; Wrobel, F.

    2013-06-01

    This anthology contains contributions from eleven different groups, each developing and/or applying Monte Carlo-based radiation transport tools to simulate a variety of effects that result from energy transferred to a semiconductor material by a single particle event. The topics span from basic mechanisms for single-particle induced failures to applied tasks like developing websites to predict on-orbit single event failure rates using Monte Carlo radiation transport tools.

  20. Big Questions: The Ultimate Building Blocks of Matter

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

  1. A Review of Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Jain, N. K.; Nangia, Uma; Jain, Jyoti

    2018-03-01

    This paper presents an overview of the research progress in Particle Swarm Optimization (PSO) during 1995-2017. Fifty two papers have been reviewed. They have been categorized into nine categories based on various aspects. This technique has attracted many researchers because of its simplicity which led to many improvements and modifications of the basic PSO. Some researchers carried out the hybridization of PSO with other evolutionary techniques. This paper discusses the progress of PSO, its improvements, modifications and applications.

  2. Direct conversion of nuclear radiation energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, George H.

    1970-01-01

    This book presents a comprehensive study of methods for converting nuclear radiationi directly without resorting to a heat cycle. The concepts discussed primarily involve direct collection of charged particles released by radioisotopes and by nuclear and thermonuclear reactors. Areas considered include basic energy conversion, charged-particle transport theory, secondary-electron emission, and leakage currents and associated problems. Applications to both nuclear instrumentaion and power sources are discussed. Problems are also included as an aid to the reader or for classroom use.

  3. Spectral characterization of Martian soil analogues

    NASA Technical Reports Server (NTRS)

    Agresti, David G.

    1987-01-01

    As previously reported, reflectance spectra of iron oxide precipitated as ultrafine particles, unlike ordinary fine grained hematite, have significant similarities to reflectance spectra from the bright regions of Mars. These particles were characterized according to composition, magnetic properties, and particle size distribution. Mossbauer, magnetic susceptibility, and optical data were obtained for samples with a range of concentrations of iron oxide in silica gel of varying pore diameters. To analyze the Mossbauer spectra, a versatile fitting program was enhanced to provide user friendly screen input and theoretical models appropriate for the superparamagnetic spectra obtained.

  4. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  5. Fundamental physics at the intensity frontier. Report of the workshop held December 2011 in Rockville, MD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.; Weerts, H.; Brock, R.

    2012-06-05

    Particle physics aims to understand the universe around us. The Standard Model of particle physics describes the basic structure of matter and forces, to the extent we have been able to probe thus far. However, it leaves some big questions unanswered. Some are within the Standard Model itself, such as why there are so many fundamental particles and why they have different masses. In other cases, the Standard Model simply fails to explain some phenomena, such as the observed matter-antimatter asymmetry in the universe, the existence of dark matter and dark energy, and the mechanism that reconciles gravity with quantummore » mechanics. These gaps lead us to conclude that the universe must contain new and unexplored elements of Nature. Most of particle and nuclear physics is directed towards discovering and understanding these new laws of physics. These questions are best pursued with a variety of approaches, rather than with a single experiment or technique. Particle physics uses three basic approaches, often characterized as exploration along the cosmic, energy, and intensity frontiers. Each employs different tools and techniques, but they ultimately address the same fundamental questions. This allows a multi-pronged approach where attacking basic questions from different angles furthers knowledge and provides deeper answers, so that the whole is more than a sum of the parts. A coherent picture or underlying theoretical model can more easily emerge, to be proven correct or not. The intensity frontier explores fundamental physics with intense sources and ultra-sensitive, sometimes massive detectors. It encompasses searches for extremely rare processes and for tiny deviations from Standard Model expectations. Intensity frontier experiments use precision measurements to probe quantum effects. They typically investigate very large energy scales, even higher than the kinematic reach of high energy particle accelerators. The science addresses basic questions, such as: Are there new sources of CP violation? Is there CP violation in the leptonic sector? Are neutrinos their own antiparticles? Do the forces unify? Is there a weakly coupled hidden sector that is related to dark matter? Do new symmetries exist at very high energy scales? To identify the most compelling science opportunities in this area, the workshop Fundamental Physics at the Intensity Frontier was held in December 2011, sponsored by the Office of High Energy Physics in the US Department of Energy Office of Science. Participants investigated the most promising experiments to exploit these opportunities and described the knowledge that can be gained from such a program. The workshop generated much interest in the community, as witnessed by the large and energetic participation by a broad spectrum of scientists. This document chronicles the activities of the workshop, with contributions by more than 450 authors. The workshop organized the intensity frontier science program along six topics that formed the basis for working groups: experiments that probe (i) heavy quarks, (ii) charged leptons, (iii) neutrinos, (iv) proton decay, (v) light, weakly interacting particles, and (vi) nucleons, nuclei, and atoms. The conveners for each working group included an experimenter and a theorist working in the field and an observer from the community at large. The working groups began their efforts well in advance of the workshop, holding regular meetings and soliciting written contributions. Specific avenues of exploration were identified by each working group. Experiments that study rare strange, charm, and bottom meson decays provide a broad program of measurements that are sensitive to new interactions. Charged leptons, particularly muons and taus, provide a precise probe for new physics because the Standard Model predictions for their properties are very accurate. Research at the intensity frontier can reveal CP violation in the lepton sector, and elucidate whether neutrinos are their own antiparticles. A very weakly coupled hidden-sector that may comprise the dark matter in the universe could be discovered. The search for proton decay can probe the unification of the forces with unprecedented reach and test sacrosanct symmetries to very high scales. Detecting an electric dipole moment for the neutron, or neutral atoms, could establish a clear signal for new physics, while limits on such a measurement would place severe constraints on many new theories. This workshop marked the first instance where discussion of these diverse programs was held under one roof. As a result, it was realized that this broad effort has many connections; a large degree of synergy exists between the different areas and they address similar questions. Results from one area were found to be pertinent to experiments in another domain.« less

  6. Ozone - Current Air Quality Index

    MedlinePlus

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  7. Fundamental Quantum Mechanics--A Graphic Presentation

    ERIC Educational Resources Information Center

    Wise, M. N.; Kelley, T. G.

    1977-01-01

    Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)

  8. Electron Optics Cannot Be Taught through Computation?

    ERIC Educational Resources Information Center

    van der Merwe, J. P.

    1980-01-01

    Describes how certain concepts basic to electron optics may be introduced to undergraduate physics students by calculating trajectories of charged particles through electrostatic fields which can be evaluated on minicomputers with a minimum of programing effort. (Author/SA)

  9. CHARACTERIZATION OF LARGE PARTICLES AT A RURAL SITE IN THE EASTERN UNITED STATES: MASS DISTRIBUTION AND INDIVIDUAL PARTICLE ANALYSIS

    EPA Science Inventory

    A unique combination of an effective sampler and analysis of individual particles has been used in studying large particles (> 5 micrometers) at a rural site in Eastern United States. The sampler is a modified 'high volume' rotary inertial impactor, which consists of four collect...

  10. Synthesis, characterization, and protein labeling of difunctional magnetic nanoparticles modified with thiazole orange dye

    NASA Astrophysics Data System (ADS)

    Fei, Xuening; Zhu, Huifang; Zhou, Jianguo; Yu, Lu

    2014-03-01

    A dual functional nanoparticle was designed and synthesized by encapsulating magnetic core inside silica particles and subsequently a thiazole orange (TO) dye derivative was modified on the surface of the nanoparticles. The obtained particles were characterized by Fourier transform infrared spectroscope, Uv-Vis spectrophotometer, fluorescence spectrophotometer, transmission electron microscope, dynamic light scattering, etc. The size of preliminary magnetic particles is ca. 7 nm, but after coating a silica layer and dye, the size of particles is increased to ca. 60 nm. The hydrodynamic diameter, water dispersibility, and zeta potential were also determined. The hydrodynamic diameter of particles with silica and dye is 65.2 and 70.5 nm, respectively, with positive zeta potential (25.1, 38.5 mV). Furthermore magnetic properties of the particles were measured and the experimental results suggested that it could meet the requirement of application as magnetic resonance imaging agent. Finally to verify the availability of the particles as fluorescent labeling, protein labeling experiment was performed using bovine serum albumin (BSA) protein and the results showed that the dual functional particle has higher affinity with BSA than TO molecule itself.

  11. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Biswajit, E-mail: bpanda@mes.ac.in; Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH groupmore » of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.« less

  12. Characterization of Imposed Ordered Structures in MDPX

    NASA Astrophysics Data System (ADS)

    Hall, Taylor; Thomas, Edward; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    It is well understood that the microparticles in complex, or dusty, plasmas will form self-consistent crystalline patterns at the proper plasma parameters. In the Magnetized Dusty Plasma Experiment (MDPX) device, studies have been made of imposed, ordered structuring of the dust particles to a two dimensional grid. At high magnetic field (B >1 Tesla), the dust particles are shown to become spatially oriented to the structure of a wire mesh embedded in an electrically floating, upper electrode while the particles are suspended in a plasma that is generated by the powered, lower electrode in the experiment. With even higher magnetic field (B >2 Tesla), the particles become strongly confined to the mesh pattern with the particles constrained to a quasi-discreet motion that closely follows the mesh pattern. This presentation characterizes the structure of the potential energy well in which the dust particles are trapped through observation of particle motion and measurement of the thermal properties of the particles. This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  13. A stochastic bioburden model for spacecraft sterilization.

    NASA Technical Reports Server (NTRS)

    Roark, A. L.

    1972-01-01

    Development of a stochastic model of the probability distribution for the random variable representing the number of microorganisms on a surface as a function of time. The first basic principle associated with bioburden estimation is that viable particles are removed from surfaces. The second notion important to the analysis is that microorganisms in environments and on surfaces occur in clumps. The last basic principle relating to bioburden modeling is that viable particles are deposited on a surface. The bioburden on a spacecraft is determined by the amount and kind of control exercised on the spacecraft assembly location, the shedding characteristics of the individuals in the vicinity of the spacecraft, its orientation, the geographical location in which the assembly takes place, and the steps in the assembly procedure. The model presented has many of the features which are desirable for its use in the spacecraft sterilization programs currently being planned by NASA.

  14. A Study of Green's Function Methods Applied to Space Radiation Protection

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.

    2001-01-01

    The purpose of this research was to study the propagation of galactic ions through various materials. Galactic light ions result from the break up of heavy ion particles and their propagation through materials is modeled using the one-dimensional Boltzmann equation. When ions enter materials there can occur (i) the interaction of ions with orbital electrons which causes ionization within the material and (ii) ions collide with atoms causing production of secondary particles which penetrate deeper within the material. These processes are modeled by a continuum model. The basic idea is to place a control volume within the material and examine the change in ion flux across this control volume. In this way on can derive the basic equations for the transport of light and heavy ions in matter. Green's function perturbation methods can then be employed to solve the resulting equations using energy dependent nuclear cross sections.

  15. Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Stevens, N. J.

    1980-01-01

    A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.

  16. Method to characterize inorganic particulates in lung tissue biopsies using field emission scanning electron microscopy

    USGS Publications Warehouse

    Lowers, Heather; Breit, George N.; Strand, Matthew; Pillers, Renee M.; Meeker, Gregory P.; Todorov, Todor I.; Plumlee, Geoffrey S.; Wolf, Ruth E.; Robinson, Maura; Parr, Jane; Miller, Robert J.; Groshong, Steve; Green, Francis; Rose, Cecile

    2018-01-01

    Humans accumulate large numbers of inorganic particles in their lungs over a lifetime. Whether this causes or contributes to debilitating disease over a normal lifespan depends on the type and concentration of the particles. We developed and tested a protocol for in situ characterization of the types and distribution of inorganic particles in biopsied lung tissue from three human groups using field emission scanning electron microscopy (FE-SEM) combined with energy dispersive spectroscopy (EDS). Many distinct particle types were recognized among the 13 000 particles analyzed. Silica, feldspars, clays, titanium dioxides, iron oxides and phosphates were the most common constituents in all samples. Particles were classified into three general groups: endogenous, which form naturally in the body; exogenic particles, natural earth materials; and anthropogenic particles, attributed to industrial sources. These in situ results were compared with those using conventional sodium hypochlorite tissue digestion and particle filtration. With the exception of clays and phosphates, the relative abundances of most common particle types were similar in both approaches. Nonetheless, the digestion/filtration method was determined to alter the texture and relative abundances of some particle types. SEM/EDS analysis of digestion filters could be automated in contrast to the more time intensive in situ analyses.

  17. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  18. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE PAGES

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  19. Actin-based propulsion of a microswimmer.

    PubMed

    Leshansky, A M

    2006-07-01

    A simple hydrodynamic model of actin-based propulsion of microparticles in dilute cell-free cytoplasmic extracts is presented. Under the basic assumption that actin polymerization at the particle surface acts as a force dipole, pushing apart the load and the free (nonanchored) actin tail, the propulsive velocity of the microparticle is determined as a function of the tail length, porosity, and particle shape. The anticipated velocities of the cargo displacement and the rearward motion of the tail are in good agreement with recently reported results of biomimetic experiments. A more detailed analysis of the particle-tail hydrodynamic interaction is presented and compared to the prediction of the simplified model.

  20. Fracture Toughness of Polypropylene-Based Particulate Composites

    PubMed Central

    Arencón, David; Velasco, José Ignacio

    2009-01-01

    The fracture behaviour of polymers is strongly affected by the addition of rigid particles. Several features of the particles have a decisive influence on the values of the fracture toughness: shape and size, chemical nature, surface nature, concentration by volume, and orientation. Among those of thermoplastic matrix, polypropylene (PP) composites are the most industrially employed for many different application fields. Here, a review on the fracture behaviour of PP-based particulate composites is carried out, considering the basic topics and experimental techniques of Fracture Mechanics, the mechanisms of deformation and fracture, and values of fracture toughness for different PP composites prepared with different particle scale size, either micrometric or nanometric.

  1. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  2. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    DOE PAGES

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during amore » field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.« less

  3. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-04-21

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaignmore » in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.« less

  4. Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH

    NASA Astrophysics Data System (ADS)

    Liu, W. T.; Sun, P. N.; Ming, F. R.; Zhang, A. M.

    2018-01-01

    Smoothed particle hydrodynamics (SPH) method with numerical diffusive terms shows satisfactory stability and accuracy in some violent fluid-solid interaction problems. However, in most simulations, uniform particle distributions are used and the multi-resolution, which can obviously improve the local accuracy and the overall computational efficiency, has seldom been applied. In this paper, a dynamic particle splitting method is applied and it allows for the simulation of both hydrostatic and hydrodynamic problems. The splitting algorithm is that, when a coarse (mother) particle enters the splitting region, it will be split into four daughter particles, which inherit the physical parameters of the mother particle. In the particle splitting process, conservations of mass, momentum and energy are ensured. Based on the error analysis, the splitting technique is designed to allow the optimal accuracy at the interface between the coarse and refined particles and this is particularly important in the simulation of hydrostatic cases. Finally, the scheme is validated by five basic cases, which demonstrate that the present SPH model with a particle splitting technique is of high accuracy and efficiency and is capable for the simulation of a wide range of hydrodynamic problems.

  5. The Bumper Boats Effect: Effect of Inertia on Self Propelled Active Particles Systems

    NASA Astrophysics Data System (ADS)

    Dai, Chengyu; Bruss, Isaac; Glotzer, Sharon

    Active matter has been well studied using the standard Brownian dynamics model, which assumes that the self-propelled particles have no inertia. However, many examples of active systems, such as sub-millimeter bacteria and colloids, have non-negligible inertia. Using particle-based Langevin Dynamics simulation with HOOMD-blue, we study the role of particle inertia on the collective emergent behavior of self-propelled particles. We find that inertia hinders motility-induced phase separation. This is because the effective speed of particles is reduced due to particle-particle collisions-\\x9Dmuch like bumper boats, which take time to reach terminal velocity after a crash. We are able to fully account for this effect by tracking a particle's average rather than terminal velocity, allowing us to extend the standard Brownian dynamics model to account for the effects of momentum. This study aims to inform experimental systems where the inertia of the active particles is non-negligible. We acknowledge the funding support from the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  6. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-05-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. arxiv:0812.3951, J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  7. Characterization of Flow Bench Engine Testing

    NASA Astrophysics Data System (ADS)

    Voris, Alex; Riley, Lauren; Puzinauskas, Paul

    2015-11-01

    This project was an attempt at characterizing particle image velocimetry (PIV) and swirl-meter test procedures. The flow direction and PIV seeding were evaluated for in-cylinder steady state flow of a spark ignition engine. For PIV seeding, both wet and dry options were tested. The dry particles tested were baby powder, glass particulate, and titanium dioxide. The wet particles tested were fogs created with olive oil, vegetable oil, DEHS, and silicon oil. The seeding was evaluated at 0.1 and 0.25 Lift/Diameter and at cylinder pressures of 10, 25 and 40 inches of H2O. PIV results were evaluated through visual and fluid momentum comparisons. Seeding particles were also evaluated based on particle size and cost. It was found that baby powder and glass particulate were the most effective seeding options for the current setup. The oil fogs and titanium dioxide were found to deposit very quickly on the mock cylinder and obscure the motion of the particles. Based on initial calculations and flow measurements, the flow direction should have a negligible impact on PIV and swirl-meter results. The characterizations found in this project will be used in future engine research examining the effects of intake port geometry on in-cylinder fluid motion and exhaust gas recirculation tolerances. Thanks to NSF site grant #1358991.

  8. Characterization of Alaskan HMA mixtures with the simple performance tester.

    DOT National Transportation Integrated Search

    2014-05-01

    Material characterization provides basic and essential information for pavement design and the evaluation of hot mix asphalt (HMA). : This study focused on the accurate characterization of an Alaskan HMA mixture using an asphalt mixture performance t...

  9. Characterization of single particle aerosols by elastic light scattering at multiple wavelengths

    NASA Astrophysics Data System (ADS)

    Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.

    2018-03-01

    We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.

  10. Real time characterization of hydrodynamics in optically trapped networks of micro-particles.

    PubMed

    Curran, Arran; Yao, Alison M; Gibson, Graham M; Bowman, Richard; Cooper, Jon M; Padgett, Miles L

    2010-04-01

    The hydrodynamic interactions of micro-silica spheres trapped in a variety of networks using holographic optical tweezers are measured and characterized in terms of their predicted eigenmodes. The characteristic eigenmodes of the networks are distinguishable within 20-40 seconds of acquisition time. Three different multi-particle networks are considered; an eight-particle linear chain, a nine-particle square grid and, finally, an eight-particle ring. The eigenmodes and their decay rates are shown to behave as predicted by the Oseen tensor and the Langevin equation, respectively. Finally, we demonstrate the potential of using our micro-ring as a non-invasive sensor to the local environmental viscosity, by showing the distortion of the eigenmode spectrum due to the proximity of a planar boundary. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  11. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my; Ubaidillah, E-mail: ubaidillah@uns.ac.id

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmentalmore » Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.« less

  12. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    NASA Astrophysics Data System (ADS)

    Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.

    2010-03-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  13. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  14. A water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range

    DOE PAGES

    Pinterich, Tamara; Spielman, Steven R.; Hering, Susanne; ...

    2017-06-08

    We developed a water-based fast integrated mobility spectrometer (WFIMS) with enhanced dynamic size range. The WFIMS builds on two established technologies: the fast integrated mobility spectrometer and laminar flow water-based condensation methodology. Inside WFIMS, particles of differing electrical mobility are separated in a drift tube and subsequently enlarged through water condensation. Particle size and concentration are measured via digital imaging at a frame rate of 10 Hz. When we measure particles of different mobilities simultaneously, the WFIMS resolves particle diameters ranging from 8 to 580 nm within 1 s or less. The performance of WFIMS was characterized with differential mobilitymore » analyzer (DMA) classified (NH 4) 2SO 2 particles with diameters ranging from 8 to 265 nm. The mean particle diameters measured by WFIMS were found to be in excellent agreement with DMA centroid diameters. Furthermore, detection efficiency of WFIMS was characterized using a condensation particle counter as a reference and is nearly 100% for particles with diameter greater than 8 nm. In general, measured and simulated WFIMS mobility resolutions are in good agreement. But, some deviations are observed at low particle mobilities, likely due to the non-idealities of the WFIMS electric field.« less

  15. Characterization of oxide nanoparticles in Al-free and Al-containing oxide dispersion strengthened ferritic steels.

    PubMed

    Lee, Jae Hoon; Kim, Jeoung Han

    2013-09-01

    Oxide nanoparticles in oxide dispersion strengthened (ODS) ferritic steels with and without Al have been characterized by transmission electron microscopy. It is confirmed that most of the complex oxide particles consist of Y2TiO5 for 18Cr-ODS steel and YAlO3 or YAl5O12 for 18Cr5Al-ODS steel, respectivley. The addition of 5% Al in 18Cr-ODS steel leads to the formation of larger oxide particles and the reduction in their number density. For 18Cr-ODS steel, 87% of the oxide particles are coherent. The misfit strain of the coherent particles and a few semi-coherent particles is about 0.034 and 0.056, respectively. For 18Cr5Al-ODS steel, 75% of the oxide particles are semi-coherent, of which the misfit strain is 0.091 and 0.125, respectively. These results suggest that for the Al-containing ODS steel the Al addition accelerates the formation of semi-coherent oxide particles and its larger coherent and semi-coherent particles result in the larger misfit strain between the oxide particle and alloy matrix, indicating that the coherence of oxide nanoparticles in ODS steels is size-dependent.

  16. External quality assessment of urine particle identification: a Northern European experience.

    PubMed

    Kouri, Timo T; Makkonen, Pirjo

    2015-11-01

    External quality assessment (EQA) schemes for urinalysis have been provided by Labquality Ltd, the publicly owned EQA service provider in Finland, since the 1980s. In 2014, the scheme on urine particle identification had 329 participating laboratories, out of which 60% from 19 countries were outside Finland. Each of the four annual web-based rounds were distributed with four Sternheimer-stained images from a single patient sample, as viewed both by bright-field and phase-contrast optics. Participants reported classified categories either at the basic or at the advanced level. Participating laboratories received assessment of their analytical performance as compared to their peers, including reflections from clinical data and preanalytical detail of the specimen. In general, reporting of basic urine particles succeeded in the eight schemes during the years 2013-2014 as follows: red blood cells 82%-92%, white blood cells 82%-97%, squamous epithelial cells 92%-98%, casts 84%-94%, and small epithelial cells 73%-83% (minimum and maximum of expected or accepted reports). This basic level of differentiation is used in routine laboratory reports, or as verification of results produced by automated instruments. Considerable effort is needed to standardise national procedures and reporting formats, in order to improve the shown figures internationally. Future technologies may help to alleviate limitations created by single digital images. Despite improvements, degenerating cells and casts always exhibit intermediate forms creating disputable classifications. That is why assessment of performance should encompass justified acceptable categories into the assessed outcomes. Preanalytical and clinical detail provide essential added value to morphological findings.

  17. SU-F-J-200: An Improved Method for Event Selection in Compton Camera Imaging for Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackin, D; Beddar, S; Polf, J

    2016-06-15

    Purpose: The uncertainty in the beam range in particle therapy limits the conformality of the dose distributions. Compton scatter cameras (CC), which measure the prompt gamma rays produced by nuclear interactions in the patient tissue, can reduce this uncertainty by producing 3D images confirming the particle beam range and dose delivery. However, the high intensity and short time windows of the particle beams limit the number of gammas detected. We attempt to address this problem by developing a method for filtering gamma ray scattering events from the background by applying the known gamma ray spectrum. Methods: We used a 4more » stage Compton camera to record in list mode the energy deposition and scatter positions of gammas from a Co-60 source. Each CC stage contained a 4×4 array of CdZnTe crystal. To produce images, we used a back-projection algorithm and four filtering Methods: basic, energy windowing, delta energy (ΔE), or delta scattering angle (Δθ). Basic filtering requires events to be physically consistent. Energy windowing requires event energy to fall within a defined range. ΔE filtering selects events with the minimum difference between the measured and a known gamma energy (1.17 and 1.33 MeV for Co-60). Δθ filtering selects events with the minimum difference between the measured scattering angle and the angle corresponding to a known gamma energy. Results: Energy window filtering reduced the FWHM from 197.8 mm for basic filtering to 78.3 mm. ΔE and Δθ filtering achieved the best results, FWHMs of 64.3 and 55.6 mm, respectively. In general, Δθ filtering selected events with scattering angles < 40°, while ΔE filtering selected events with angles > 60°. Conclusion: Filtering CC events improved the quality and resolution of the corresponding images. ΔE and Δθ filtering produced similar results but each favored different events.« less

  18. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating.

    PubMed

    Rickey, Kelly M; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S Venkataprasad; Wu, Yue; Cheng, Gary J; Ruan, Xiulin

    2015-11-03

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~10(5) Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films.

  19. Characterizing the molecular architectures of chromatin-modifying complexes.

    PubMed

    Setiaputra, Dheva T; Yip, Calvin K

    2017-11-01

    Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Welding of Semiconductor Nanowires by Coupling Laser-Induced Peening and Localized Heating

    PubMed Central

    Rickey, Kelly M.; Nian, Qiong; Zhang, Genqiang; Chen, Liangliang; Suslov, Sergey; Bhat, S. Venkataprasad; Wu, Yue; Cheng, Gary J.; Ruan, Xiulin

    2015-01-01

    We demonstrate that laser peening coupled with sintering of CdTe nanowire films substantially enhances film quality and charge transfer while largely maintaining basic particle morphology. During the laser peening phase, a shockwave is used to compress the film. Laser sintering comprises the second step, where a nanosecond pulse laser beam welds the nanowires. Microstructure, morphology, material content, and electrical conductivities of the films are characterized before and after treatment. The morphology results show that laser peening can decrease porosity and bring nanowires into contact, and pulsed laser heating fuses those contacts. Multiphysics simulations coupling electromagnetic and heat transfer modules demonstrate that during pulsed laser heating, local EM field enhancement is generated specifically around the contact areas between two semiconductor nanowires, indicating localized heating. The characterization results indicate that solely laser peening or sintering can only moderately improve the thin film quality; however, when coupled together as laser peen sintering (LPS), the electrical conductivity enhancement is dramatic. LPS can decrease resistivity up to a factor of ~10,000, resulting in values on the order of ~105 Ω-cm in some cases, which is comparable to CdTe thin films. Our work demonstrates that LPS is an effective processing method to obtain high-quality semiconductor nanocrystal films. PMID:26527570

  1. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF₂-MgO Carriers.

    PubMed

    Bonarowska, Magdalena; Wojciechowska, Maria; Zieliński, Maciej; Kiderys, Angelika; Zieliński, Michał; Winiarek, Piotr; Karpiński, Zbigniew

    2016-11-25

    Pd/MgO, Pd/MgF₂ and Pd/MgO-MgF₂ catalysts were investigated in the reaction of CCl₄ hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF₂-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C₂-C₅ hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF₂ is beneficial for shaping high activity of palladium catalysts. The MgO-MgF₂ support characterized by stronger Lewis acidity than MgF₂ contributes to very good catalytic activity for a relatively long reaction period (~5 h) but subsequent neutralization of stronger acid centers (by coking) eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO) are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  2. A new biocatalyst: Penicillin G acylase immobilized in sol-gel micro-particles with magnetic properties.

    PubMed

    Bernardino, Susana M S A; Fernandes, Pedro; Fonseca, Luís P

    2009-05-01

    The present work focuses on the development and basic characterization of a new magnetic biocatalyst, namely penicillin G acylase (PGA), immobilized in sol-gel matrices with magnetic properties, ultimately aimed for application in cephalexin (CEX) synthesis. A mechanically stable carrier, based on porous xerogels silica matrixes starting from tetramethoxysilane (TMOS), was prepared leading to micro-carriers with medium sized particles of 30 microm, as determined by scanning electron microscopy. An immobilization yield of 95-100% and a recovered activity of 50-65% at 37 degrees C, as determined by penicillin G (PG) hydrolysis (pH STAT method), were observed. These results clearly exceed those reported in a previous work on PGA immobilization in sol-gel, where only 10% of activity was recovered. The values of activity were kept constant for 6 months. Immobilized PGA (682 U/g(dry weight)) retained high specific activity throughout ten consecutive runs for PG hydrolysis, suggesting adequate biocatalyst stability. The CEX synthesis was performed at 14 degrees C, using the free and immobilized PGA in aqueous medium. Phenylglycine methyl ester was used as acyl donor at 90 mM and 7-aminodeacetoxycephalosporanic acid was the limiting substrate at 30 mM. The CEX stoichiometric yield after 1-h reaction was close to 68% (23 mM CEX/h) and 65% (19 mM CEX/h), respectively.

  3. Application of Quantum Dot nanocrystal in Luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir

    2018-03-01

    The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.

  4. The Preparation of Soft Magnetic Composites Based on FeSi and Ferrite Fibers

    NASA Astrophysics Data System (ADS)

    Strečková, Magdaléna; Fáberová, Mária; Bureš, Radovan; Kurek, Pavel

    2016-12-01

    The fields of soft magnetic composites and powder metallurgy technologies have a powerful potential to redesign the way of electric motor preparation, and will continue to grow for years to come. A design of the novel soft microcomposite material composed of spherical FeSi particles and Ni0.3Zn0.7Fe2O4 ferrite nanofibers is reported together with a characterization of basic mechanical and electrical properties. The needle-less electrospinning method was used for a preparation of Ni0.3Zn0.7Fe2O4 ferrite nanofibers, which has a spinel-type crystal structure as verified by XRD and TEM analysis. The dielectric coating was prepared by mixing of nanofibers with glycerol and ethanol because of safe manipulation with fumed fibers and homogeneous distribution of the coating around the FeSi particle surface. The final microcomposite samples were prepared by a combination of the traditional PM compaction technique supplemented with a conventional sintering process of the prepared green compacts. The composition and distribution of the secondary phase formed by the spinel ferrite fibers were examined by SEM. It is demonstrated that the prepared composite material has a tight arrangement without any significant porosity, which manifest itself through superior mechanical properties (high mechanical hardness, Young modulus, and transverse rupture strength) and specific electric resistivity compared to the related composite materials including resin as the organic binder.

  5. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most sensitive method. We found that internally mixed particles, containing ice active biological material, follow the ice nucleation behavior observed for the pure biological particles. We verified this by modeling the freezing behavior of the mixed particles with the Soccerball model (SBM). It can be concluded that a single INM located on a mineral dust particle determines the freezing behavior of that particle with the result that freezing occurs at temperatures at which pure mineral dust particles are not yet ice active.

  6. Characterization of Libby, MT amphibole (LA) elongated particles for toxicology studies: Field Collection, sample preparation, dose characterization, and particle counting methods using SEM/EDS

    EPA Science Inventory

    Since 1999, the US EPA and USGS have been studying the chemistry, mineralogy, and morphology of the amphiboles from the Rainy Creek Complex of Libby, MT (LA), following an increased incidence of lung and pleural diseases. LA material collected in 2000 (LA2000) was described in M...

  7. Semiconductor Characterization: from Growth to Manufacturing

    NASA Astrophysics Data System (ADS)

    Colombo, Luigi

    The successful growth and/or deposition of materials for any application require basic understanding of the materials physics for a given device. At the beginning, the first and most obvious characterization tool is visual observation; this is particularly true for single crystal growth. The characterization tools are usually prioritized in order of ease of measurement, and have become especially sophisticated as we have moved from the characterization of macroscopic crystals and films to atomically thin materials and nanostructures. While a lot attention is devoted to characterization and understanding of materials physics at the nano level, the characterization of single crystals as substrates or active components is still critically important. In this presentation, I will review and discuss the basic materials characterization techniques used to get to the materials physics to bring crystals and thin films from research to manufacturing in the fields of infrared detection, non-volatile memories, and transistors. Finally I will present and discuss metrology techniques used to understand the physics and chemistry of atomically thin two-dimensional materials for future device applications.

  8. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  9. Characterization method for relative Raman enhancement for surface-enhanced Raman spectroscopy using gold nanoparticle dimer array

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Ikegami, Kohei; Isono, Yoshitada

    2017-06-01

    In this paper, a characterization method for Raman enhancement for highly sensitive and quantitative surface-enhanced Raman spectroscopy (SERS) is reported. A particle dimer shows a marked electromagnetic enhancement when the particle connection direction is matched to the polarization direction of incident light. In this study, dimers were arrayed by nanotrench-guided self-assembly for a marked total Raman enhancement. By measuring acetonedicarboxylic acid, the fabricated structures were characterized for SERS depending on the polarization angle against the particle connection direction. This indicates that the fabricated structures cause an effective SERS enhancement, which is dominated by the electromagnetic enhancement. Then, we measured 4,4‧-bipyridine, which is a pesticide material, for quantitative analysis. In advance, we evaluated the enhancement of the particle structure by the Raman measurement of acetonedicarboxylic acid. Finally, we compared the Raman intensities of acetonedicarboxylic acid and 4,4‧-bipyridine. Their intensities showed good correlation. The advantage of this method for previously evaluating the enhancement of the substrate was demonstrated. This developed SERS characterization method is expected to be applied to various quantitative trace analyses of molecules with high sensitivity.

  10. Structural, textural and morphological characteristics of tannins from Acacia mearnsii encapsulated using sol-gel methods: Applications as antimicrobial agents.

    PubMed

    Dos Santos, Cristiane; Vargas, Álvaro; Fronza, Ney; Dos Santos, João Henrique Zimnoch

    2017-03-01

    Tannins from Acacia mearnsii were encapsulated using four different sol-gel methods acid (SGAR), basic (SGBR), silicate (SGSR) and non-hydrolytic (SGNHR) routes. The hybrid materials were analyzed using a set of techniques to characterize their structure, texture and morphology. The antimicrobial performance of the encapsulated materials was evaluated against different microorganisms (Staphylococcus aureus, Escherichia coli, Aspergillus niger and Candida sp.). The data showed that the encapsulation route significantly affects the characteristics of the resulting hybrid materials. Better functional performances were obtained using the silicate route, which produced mesoporous materials with a small surface area (0.96m 2 g -1 ) and small particle size (<1nm). These characteristics promoted the gradual release of tannins in an aqueous medium and improved their interactions with microorganisms. Furthermore, the process demonstrated the preservation of tannins after synthesis and increased antimicrobial activity (via a controlled tannin release), as demonstrated by the moderate activity against filamentous fungi and yeast. Copyright © 2016. Published by Elsevier B.V.

  11. Deformable cells in confined geometries: From hemolysis to hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Faivre, Magalie; Stone, Howard A.

    2004-11-01

    Recent developments in microfluidics allow a wide range of possibilities for studying cellular-scale hydrodynamics. Here we use microfluidic technology to address several open questions in the blood flow literature where cell deformation and hydrodynamic interactions are significant. In particular, we investigate the pressure-driven flow of a dilute suspension in a channel and characterize the transition from steady axisymmetric cell shapes (for which numerical calculations exist) to asymmetric, highly extended shapes, which are precursors to hemolysis (i.e. destruction of the cell). In addition, we examine the influence of geometry on hydrodynamic interactions of deformable cells by contrasting one-dimensional motion of a train of particles in a channel with two-dimensional motions in a Hele-Shaw cell. This study can help to understand flow of cells in microcirculation from the unidirectional flow in capillaries to the two-dimensional flow in the lung alveoli and provides the basic steps to understand certain aspects of microcirculatory deseases like sickle cell anemia for example.

  12. GLAST answers about high-energy peaked BL Lacs: double-humped {gamma}-ray peak and extreme accelerators?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costamante, L.; Aharonian, F.; Khangulyan, D.

    2007-07-12

    An often overlooked fact is that the MeV-GeV emission from High-energy peaked BL Lacs (HBL) is basically unknown: there are only 3 objects of this type among all EGRET identified blazars with measured spectra. GLAST will be able to measure the spectrum for many of them, in particular TeV-blazars, and surprises are expected. GLAST will tell if the {gamma}-ray peak in some HBL is actually a ''double peak'', as suggested by the comparison of EGRET and HESS data in PKS 2155-304, We also remind and argue that a new class of BL Lacs could exist, where particles are shock-accelerated nearmore » the maximum possible rate, characterized by the synchrotron emission peaking in the GLAST band (100 MeV - few GeV). Such objects could easily have escaped detection or identification so far, and could now be unveiled by GLAST.« less

  13. Synthesis of hydroxyapatite nanoparticles from egg shells by sol-gel method

    NASA Astrophysics Data System (ADS)

    Azis, Y.; Adrian, M.; Alfarisi, C. D.; Khairat; Sri, R. M.

    2018-04-01

    Hydroxyapatite, [Ca10(PO4)6(OH)2, (HAp)] is widely used in medical fields especially as a bone and teeth substitute. Hydroxyapatite nanoparticles have been succesfully synthesized from egg shells as a source of calcium by using sol-gel method. The egg shells were calcined, hydrated (slaking) and undergone carbonation to form Precipitated Calcium Carbonate (PCC).Then the PCC was added (NH4)2HPO4 to form HAp with variation the mole ratio Ca and P (1.57; 1.67 and 1.77), aging time (24, 48, and 72 hr) and under basic condition pH (9, 10 and 11). The formation of hydroxyapatite biomaterial was characterized using XRD, FTIR, SEM-EDX. The XRD patterns showed that the products were hydroxyapatite crystals. The best result was obtained at 24 hr aging time, pH 9 with hexagonal structure of hydroxyapatite. Particle size of HAp was 35-54 nm and the morphology of hydroxyapatite observed using SEM, it showed that the uniformity crystal of hydroxyapatite.

  14. A New Technique for Preparation of High-Grade Titanium Slag from Titanomagnetite Concentrate by Reduction-Melting-Magnetic Separation Processing

    NASA Astrophysics Data System (ADS)

    Lv, Chao; Yang, Kun; Wen, Shu-ming; Bai, Shao-jun; Feng, Qi-cheng

    2017-10-01

    This paper proposes a new technique for preparation of high-grade titanium slag from Panzhihua vanadium titanomagnetite concentrate by reduction-melting-magnetic separation processing. Chemical analysis, x-ray diffraction, and scanning electron microscopy in conjunction with energy-dispersive spectroscopy were used to characterize the samples. The effective separation of iron and titanium slag could be realized by melting metallized pellets at 1550°C for 60 min with the addition of 1% CaO (basicity of 1.1) and 2% graphite powder. The small iron particles embedded in the slag could be removed by fine grinding and magnetic separation process. The grade of TiO2 in the obtained high-grade titanium slag reached 60.68% and the total recovery of TiO2 was 91.25%, which could be directly applied for producing titanium white by the sulfuric acid process. This technique provides an alternative method to use vanadium titanomagnetite concentrate of the Panzhihua area in China.

  15. Propulsion system ignition overpressure for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Jones, J. H.; Guest, S. H.; Struck, H. G.; Rheinfurth, M. H.; Verferaime, V. S.

    1981-01-01

    Liquid and solid rocket motor propulsion systems create an overpressure wave during ignition, caused by the accelerating gas particles pushing against or displacing the air contained in the launch pad or launch facility and by the afterburning of the fuel-rich gases. This wave behaves as a blast or shock wave characterized by a positive triangular-shaped first pulse and a negative half-sine wave second pulse. The pulse travels up the space vehicle and has the potential of either overloading individual elements or exciting overall vehicle dynamics. The latter effect results from the phasing difference of the wave from one side of the vehicle to the other. This overpressure phasing, or delta P environment, because of its frequency content as well as amplitude, becomes a design driver for certain panels (e.g., thermal shields) and payloads for the Space Shuttle. The history of overpressure effects on the Space Shuttle, the basic overpressure phenomenon, Space Shuttle overpressure environment, scale model overpressure testing, and techniques for suppressing the overpressure environments are considered.

  16. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoffmore » distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.« less

  17. Hybrid metal organic scintillator materials system and particle detector

    DOEpatents

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  18. New support for high-performance liquid chromatography based on silica coated with alumina particles.

    PubMed

    Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M

    2014-01-01

    A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.

  19. [Efficacy of complex therapy with metformin and ramipril combination for patients with metabolic syndrome].

    PubMed

    Kaĭdashev, I P; Savchenko, L H; Kaĭdasheva, E I; Kutsenko, N L; Kutsenko, L O; Solokhina, I L; Mamontova, T V

    2010-01-01

    We have studied efficiency of a complex therapy with metformin and ramipril combination (1000 mg and 5 mg per day) respectively in patients with metabolic syndrome (MS). The group of patients with MS which answered the basic criteria IDF (2005) was determined. Carbohydrate and Lipidic metabolism were studied. Patients were characterized with raised weight index (WI), arterial hypertension, increased concentration of triglycerides in blood serum, of glucose, of HbAlc level and S-peptide, and also high level of endotelin (1-38) and CD32+CD40+circulating particles of endothelium. Three months treatment lead to decrease in WI, arterial pressure, triglycerides concentration, HbAlc, glucose, except CD32+CD40+. Six months treatment lead to more expressed positive dynamics. Thus, metformin and ramipril combination in patients with MS leads to decrease in insulin resistancy, carbohydrate and lipid metabolism normalization, to restoration of endothelium functions that is possible to consider as prophylaxis of the development of type 2 diabetes melitus and its cardiovascular complications.

  20. The impact of plasma dynamics on the self-magnetic-pinch diode impedance

    DOE PAGES

    Bennett, Nichelle; Crain, M. Dale; Droemer, Darryl W.; ...

    2015-03-20

    In this study, the self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. The basic operation of this diode has long been understood in the context of pinched diodes, including the dynamic effect that the diode impedance decreases during the pulse due to electrode plasma formation and expansion. Experiments being conducted at Sandia National Laboratories' RITS-6 accelerator are helping to characterize these plasmas using time-resolved and time-integrated camera systems in the x-ray and visible. These diagnostics are analyzed in conjunction with particle-in-cell simulations of anode plasma formation and evolution. The results confirm the long-standingmore » theory of critical-current operation with the addition of a time-dependent anode-cathode gap length. Finally, the results may suggest that anomalous impedance collapse is driven by increased plasma radial drift, leading to larger-than-average ion v r × B θ acceleration into the gap.« less

Top