Sample records for basic phenomena involved

  1. Using the Quirk-Schofield Diagram to Explain Environmental Colloid Dispersion Phenomena

    ERIC Educational Resources Information Center

    Mays, David C.

    2007-01-01

    Colloid dispersion, through its role in soil science, hydrology, and contaminant transport, is a basic component of many natural resources and environmental education programs. However, comprehension of colloid dispersion phenomena is limited by the numerous variables involved. This article demonstrates how the Quirk-Schofield diagram can be used…

  2. Observe, simplify, titrate, model, and synthesize: A paradigm for analyzing behavior

    PubMed Central

    Alberts, Jeffrey R.

    2013-01-01

    Phenomena in behavior and their underlying neural mechanisms are exquisitely complex problems. Infrequently do we reflect on our basic strategies of investigation and analysis, or formally confront the actual challenges of achieving an understanding of the phenomena that inspire research. Philip Teitelbaum is distinct in his elegant approaches to understanding behavioral phenomena and their associated neural processes. He also articulated his views on effective approaches to scientific analyses of brain and behavior, his vision of how behavior and the nervous system are patterned, and what constitutes basic understanding. His rubrics involve careful observation and description of behavior, simplification of the complexity, analysis of elements, and re-integration through different forms of synthesis. Research on the development of huddling behavior by individual and groups of rats is reviewed in a context of Teitelbaum’s rubrics of research, with the goal of appreciating his broad and positive influence on the scientific community. PMID:22481081

  3. The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics

    NASA Technical Reports Server (NTRS)

    Wright, K. H., Jr.; Stone, N. H.; Samir, U.

    1983-01-01

    In this review attention is called to basic phenomena and physical processes involved in the expansion of a plasma into a vacuum, or the expansion of a plasma into a more tenuous plasma, in particular the fact that upon the expansion, ions are accelerated and reach energies well above their thermal energy. Also, in the process of the expansion a rarefaction wave propagates into the ambient plasma, an ion front moves into the expansion volume, and discontinuities in plasma parameters occur. The physical processes which cause the above phenomena are discussed, and their possible application is suggested for the case of the distribution of ions and electrons (hence plasma potential and electric fields) in the wake region behind artificial and natural obstacles moving supersonically in a rarefied space plasma. To illustrate this, some in situ results are reexamined. Directions for future work in this area via the utilization of the Space Shuttle and laboratory work are also mentioned.

  4. What Undergraduates Think about Clouds and Fog

    ERIC Educational Resources Information Center

    Rappaport, Elliot D.

    2009-01-01

    Weather events are part of every student's experience, and are controlled by basic principles involving the behavior of matter and energy. Despite this, many students have difficulty explaining simple atmospheric phenomena, even after exposure to primary and secondary science curricula. This study investigated the level to which undergraduates…

  5. Symposium Entitled: Particle Lung Interactions: ’Overload’ Related Phenomena. A Journal of Aerosol Medicine - Deposition, Clearance, and Effects in the Lung. Volume 3, Supplement 1

    DTIC Science & Technology

    1991-04-01

    week and two years (subchronic GMRL studies versus chronic ITRI and Fh-ITA studies ); exposure concentrations were changed by a factor of 40 (Fh-ITA...a forum for the publication of studies involving inhalation of particles and gases in the respiratory tract, covering the use of aerosols as tools to... study basic physiologic phenomena, their use as selective delivery systems for medication, and the toxic effects of inhaled agents. JOURNAL OF AEROSOL

  6. Video-Taping Dialogs, with Commentary to Teach Cultural Elements.

    ERIC Educational Resources Information Center

    Taylor, Harvey M.

    Description of a project involving the use of the video-tape recorder in a beginning course in Japanese focuses on cultural implications of basic unit dialogues. Instant replay, close-up, and other camera techniques allow students to concentrate on cross-cultural phenomena which are normally not perceived without the use of media. General…

  7. The Arts as a Venue for Developmental Science: Realizing a Latent Opportunity

    ERIC Educational Resources Information Center

    Goldstein, Thalia R.; Lerner, Matthew D.; Winner, Ellen

    2017-01-01

    Children in all cultures readily engage in artistic activities, yet the arts (dance, drama, drawing, and music) have traditionally been marginal topics in the discipline of developmental science. We argue that developmental psychologists cannot afford to ignore such naturalistic activities that involve so many basic phenomena--attention,…

  8. Basic dynamics from a pulse-coupled network of autonomous integrate-and-fire chaotic circuits.

    PubMed

    Nakano, H; Saito, T

    2002-01-01

    This paper studies basic dynamics from a novel pulse-coupled network (PCN). The unit element of the PCN is an integrate-and-fire circuit (IFC) that exhibits chaos. We an give an iff condition for the chaos generation. Using two IFC, we construct a master-slave PCN. It exhibits interesting chaos synchronous phenomena and their breakdown phenomena. We give basic classification of the phenomena and their existence regions can be elucidated in the parameter space. We then construct a ring-type PCN and elucidate that the PCN exhibits interesting grouping phenomena based on the chaos synchronization patterns. Using a simple test circuit, some of typical phenomena can be verified in the laboratory.

  9. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  10. Basic investigation of turbine erosion phenomena

    NASA Technical Reports Server (NTRS)

    Pouchot, W. D.; Kothmann, R. E.; Fentress, W. K.; Heymann, F. J.; Varljen, T. C.; Chi, J. W. H.; Milton, J. D.; Glassmire, C. M.; Kyslinger, J. A.; Desai, K. A.

    1971-01-01

    An analytical-empirical model is presented of turbine erosion that fits and explains experience in both steam and metal vapor turbines. Because of the complexities involved in analyzing turbine problems, in a pure scientific sense, it is obvious that this goal can be only partially realized. Therefore, emphasis is placed on providing a useful model for preliminary erosion estimates for given configurations, fluids, and flow conditions.

  11. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less

  12. Contemporary overview of soil creep phenomenon

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Dobak, Paweł

    2017-06-01

    Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.

  13. Space-Time Evolution of Magma Storage and Transfer at Mt. Etna Volcano (Italy): The 2015-2016 Reawakening of Voragine Crater

    NASA Astrophysics Data System (ADS)

    Cannata, Andrea; Di Grazia, Giuseppe; Giuffrida, Marisa; Gresta, Stefano; Palano, Mimmo; Sciotto, Mariangela; Viccaro, Marco; Zuccarello, Francesco

    2018-02-01

    The eruptions of December 2015 and May 2016 at Voragine crater were among the most explosive recorded during the last two decades at Mt. Etna volcano. Here we present data coming from geophysics (infrasound, LP, VLP, volcanic tremor, VT earthquakes, and ground deformations) and petrology (textural and microanalytical data on plagioclase and olivine crystals) to investigate the preeruptive magma storage and transfer dynamics leading to these exceptional explosive eruptions. Integration of all the available data has led us to constrain chemically, physically, and kinetically the environments where magmas were stored before the eruption, and how they have interacted during the transfer en-route to the surface. Although the evolution and behavior of volcanic phenomena at the surface was rather similar, some differences in storage and transfer dynamics were observed for 2015 and 2016 eruptions. Specifically, the 2015 eruptions have been fed by magmas stored at shallow levels that were pushed upward as a response of magma injections from deeper environments, whereas evidence of chemical interaction between shallow and deep magmatic environments becomes more prominent during the 2016 eruptions. Main findings evidence the activation of magmatic environments deeper than those generally observed for other recent Etnean eruptions, with involvement of deep basic magmas that were brought to shallow crustal levels in very short time scales (˜1 month). The fast transfer from the deepest levels of the plumbing system of basic, undegassed magmas might be viewed as the crucial triggering factor leading to development of exceptionally violent volcanic phenomena even with only basic magma involved.

  14. A broad look at solar physics adapted from the solar physics study of August 1975

    NASA Technical Reports Server (NTRS)

    Parker, E.; Timothy, A.; Beckers, J.; Hundhausen, A.; Kundu, M. R.; Leith, C. E.; Lin, R.; Linsky, J.; Macdonald, F. B.; Noyes, R.

    1979-01-01

    The current status of our knowledge of the basic mechanisms involved in fundamental solar phenomena is reviewed. These include mechanisms responsible for heating the corona, the generation of the solar wind, the particle acceleration in flares, and the dissipation of magnetic energy in field reversal regions, known as current sheets. The discussion covers solar flares and high-energy phenomena, solar active regions; solar interior, convection, and activity; the structure and energetics of the quiet solar atmosphere; the structure of the corona; the solar composition; and solar terrestrial interactions. It also covers a program of solar research, including the special observational requirements for spectral and angular resolution, sensitivity, time resolution, and duration of the techniques employed.

  15. Fluctuations of visual awareness: Combining motion-induced blindness with binocular rivalry

    PubMed Central

    Jaworska, Katarzyna; Lages, Martin

    2014-01-01

    Binocular rivalry (BR) and motion-induced blindness (MIB) are two phenomena of visual awareness where perception alternates between multiple states despite constant retinal input. Both phenomena have been extensively studied, but the underlying processing remains unclear. It has been suggested that BR and MIB involve the same neural mechanism, but how the two phenomena compete for visual awareness in the same stimulus has not been systematically investigated. Here we introduce BR in a dichoptic stimulus display that can also elicit MIB and examine fluctuations of visual awareness over the course of each trial. Exploiting this paradigm we manipulated stimulus characteristics that are known to influence MIB and BR. In two experiments we found that effects on multistable percepts were incompatible with the idea of a common oscillator. The results suggest instead that local and global stimulus attributes can affect the dynamics of each percept differently. We conclude that the two phenomena of visual awareness share basic temporal characteristics but are most likely influenced by processing at different stages within the visual system. PMID:25240063

  16. What can we learn about emotion by studying psychopathy?

    PubMed Central

    Marsh, Abigail A.

    2013-01-01

    Psychopathy is a developmental disorder associated with core affective traits, such as low empathy, guilt, and remorse, and with antisocial and aggressive behaviors. Recent neurocognitive and neuroimaging studies of psychopathy in both institutionalized and community samples have begun to illuminate the basis of this condition, in particular the ways that psychopathy affects the experience and recognition of fear. In this review, I will consider how understanding emotional processes in psychopathy can shed light on the three questions central to the study of emotion: (1) Are emotions discrete, qualitatively distinct phenomena, or quantitatively varying phenomena best described in terms of dimensions like arousal and valence? (2) What are the brain structures involved in generating specific emotions like fear, if any? And (3) how do our own experiences of emotion pertain to our perceptions of and responses to others' emotion? I conclude that insights afforded by the study of psychopathy may provide better understanding of not only fundamental social phenomena like empathy and aggression, but of the basic emotional processes that motivate these behaviors. PMID:23675335

  17. Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano

    2011-01-01

    Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.

  18. Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Aquino, Italo S

    2002-01-01

    Experiments on basic classical conditioning phenomena in adult and young Africanized honey bees (Apis mellifera L.) are described. Phenomena include conditioning to various stimuli, extinction (both unpaired and CS only), conditioned inhibition, color and odor discrimination. In addition to work on basic phenomena, experiments on practical applications of conditioning methodology are illustrated with studies demonstrating the effects of insecticides on learning and the reaction of bees to consumer products. Electron microscope photos are presented of Africanized workers, drones, and queen bees. Possible sub-species differences between Africanized and European bees are discussed. Copyright 2002 S. Karger AG, Basel

  19. Consensus on core phenomena and statements describing Basic Body Awareness Therapy within the movement awareness domain in physiotherapy.

    PubMed

    Skjaerven, L H; Mattsson, M; Catalan-Matamoros, D; Parker, A; Gard, G; Gyllensten, A Lundvik

    2018-02-26

    Physiotherapists are facing complex health challenges in the treatment of persons suffering from long-lasting musculoskeletal disorders and mental health problems. Basic Body Awareness Therapy (BBAT) is a physiotherapy approach within the movement awareness domain developed to bridge physical, mental, and relational health challenges. The purpose of this study was to reach a consensus on core phenomena and statements describing BBAT. A consensus-building process was conducted using the nominal group technique (NGT). Twenty-one BBAT experts from 10 European countries participated in a concentrated weekend workshop of 20 hours. All participants signed informed consent. Participants reached a consensus on 138 core phenomena, clustered in three overarching categories: clinical core, historical roots, and research and evaluation phenomena. Of the 106 clinical core phenomena, the participants agreed on three categories of phenomena: movement quality, movement awareness practice, and movement awareness therapy and pedagogy. Furthermore, the participants reached 100 percent consensus on 16 of 30 statements describing BBAT. This study provides a consensus on core phenomena and statements describing BBAT. The data reveal phenomena implemented when promoting movement quality through movement awareness. Data provide clarity in some aspects of the vocabulary as fundamental theory. Further reearch will be developed.

  20. Saturation behavior: a general relationship described by a simple second-order differential equation.

    PubMed

    Kepner, Gordon R

    2010-04-13

    The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.

  1. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  2. A formulation of the foundations of genetics and evolution.

    PubMed

    Bahr, Brian Edward

    2016-05-01

    This paper proposes a formulation of theories of the foundations of genetics and evolution that can be used to mathematically simulate phenotype expression, reproduction, mutation, and natural selection. It will be shown that Mendelian inheritance can be mathematically simulated with expressions involving matrices and that these expressions can also simulate phenomena that are modifications to Mendel's basic principles, like alleles that give rise to quantitative effects and traits that are the expression of multiple alleles and/or multiple genetic loci. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; hide

    2016-01-01

    Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.

  4. Solar Coronal Jets: Observations, Theory, and Modeling

    NASA Technical Reports Server (NTRS)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  5. The Existence of a Hypnotic State Revealed by Eye Movements

    PubMed Central

    Kallio, Sakari; Hyönä, Jukka; Revonsuo, Antti; Sikka, Pilleriin; Nummenmaa, Lauri

    2011-01-01

    Hypnosis has had a long and controversial history in psychology, psychiatry and neurology, but the basic nature of hypnotic phenomena still remains unclear. Different theoretical approaches disagree as to whether or not hypnosis may involve an altered mental state. So far, a hypnotic state has never been convincingly demonstrated, if the criteria for the state are that it involves some objectively measurable and replicable behavioural or physiological phenomena that cannot be faked or simulated by non-hypnotized control subjects. We present a detailed case study of a highly hypnotizable subject who reliably shows a range of changes in both automatic and volitional eye movements when given a hypnotic induction. These changes correspond well with the phenomenon referred to as the “trance stare” in the hypnosis literature. Our results show that this ‘trance stare’ is associated with large and objective changes in the optokinetic reflex, the pupillary reflex and programming a saccade to a single target. Control subjects could not imitate these changes voluntarily. For the majority of people, hypnotic induction brings about states resembling normal focused attention or mental imagery. Our data nevertheless highlight that in some cases hypnosis may involve a special state, which qualitatively differs from the normal state of consciousness. PMID:22039474

  6. An experimental approach to the fundamental principles of hemodynamics.

    PubMed

    Pontiga, Francisco; Gaytán, Susana P

    2005-09-01

    An experimental model has been developed to give students hands-on experience with the fundamental laws of hemodynamics. The proposed experimental setup is of simple construction but permits the precise measurements of physical variables involved in the experience. The model consists in a series of experiments where different basic phenomena are quantitatively investigated, such as the pressure drop in a long straight vessel and in an obstructed vessel, the transition from laminar to turbulent flow, the association of vessels in vascular networks, or the generation of a critical stenosis. Through these experiments, students acquire a direct appreciation of the importance of the parameters involved in the relationship between pressure and flow rate, thus facilitating the comprehension of more complex problems in hemodynamics.

  7. Teaching cardiovascular physiology with equivalent electronic circuits in a practically oriented teaching module.

    PubMed

    Ribaric, Samo; Kordas, Marjan

    2011-06-01

    Here, we report on a new tool for teaching cardiovascular physiology and pathophysiology that promotes qualitative as well as quantitative thinking about time-dependent physiological phenomena. Quantification of steady and presteady-state (transient) cardiovascular phenomena is traditionally done by differential equations, but this is time consuming and unsuitable for most undergraduate medical students. As a result, quantitative thinking about time-dependent physiological phenomena is often not extensively dealt with in an undergraduate physiological course. However, basic concepts of steady and presteady state can be explained with relative simplicity, without the introduction of differential equation, with equivalent electronic circuits (EECs). We introduced undergraduate medical students to the concept of simulating cardiovascular phenomena with EECs. EEC simulations facilitate the understanding of simple or complex time-dependent cardiovascular physiological phenomena by stressing the analogies between EECs and physiological processes. Student perceptions on using EEC to simulate, study, and understand cardiovascular phenomena were documented over a 9-yr period, and the impact of the course on the students' knowledge of selected basic facts and concepts in cardiovascular physiology was evaluated over a 3-yr period. We conclude that EECs are a valuable tool for teaching cardiovascular physiology concepts and that EECs promote active learning.

  8. The physics of polarization

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, Egidio

    This course is intended to give a description of the basic physical concepts which underlie the study and the interpretation of polarization phenomena. Apart from a brief historical introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2 - 6) covers the most relevant facts about the polarization phenomena that are typically encountered in laboratory applications and in everyday life. In Sect. 2, the modern description of polarization in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The polarization phenomena which are met in the reflection and refraction of a beam of radiation at the separation surface between two dielectrics, or between a dielectric and a metal, are recalled in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered in everyday life. The second part of this course (Sects. 7-14) deals with the description, within the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted by accelerated charges. Such properties are derived by taking as starting point the Liénard and Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the non-relativistic approximation. The results are developed to find the percentage polarization, the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted in different phenomena particularly relevant from the astrophysical point of view. The emission of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering (Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation (Sect. 12), cyclotron radiation (Sect. 13), and synchrotron radiation (Sect. 14). Finally, the third part (Sects. 15-19) is devoted to give a sketch of the theory of the generation and transfer of polarized radiation in spectral lines. After a general introduction to the argument (Sect. 15), the concepts of density-matrix and of atomic polarization are illustrated in Sect. 16. In Sect. 17, a parallelism is established, within the framework of the theory of stellar atmospheres, between the usual formalism, which neglects polarization phenomena, and the more involved formalism needed for the interpretation of spectro-polarimetric observations. Some consequences of the radiative transfer equations for polarized radiation, pointing to the importance of dichroism phenomena in establishing the amplification condition via stimulated emission, are discussed in Sect. 18. The last section (Sect. 19) is devoted to introduce the problem of finding a self-consistent solution of the radiative transfer equations for polarized radiation and of the statistical equilibrium equations for the density matrix (non-LTE of the 2nd kind).

  9. Some remarks on a current study involving preservice elementary teachers and some basic astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Gangui, Alejandro; Iglesias, María; Quinteros, Cynthia

    2011-06-01

    Recent studies have shown that not only primary school students but also their future teachers reach science courses with pre-constructed and consistent models of the world surrounding them. These ideas include many misconceptions which turn out to be robust and hence make difficult an appropriate teaching-learning process. We have designed some tools (and show here results with a questionnaire) that proved helpful in putting in evidence some of the most frequently used alternative models on a few basic astronomical notions. We have tested this questionnaire with preservice elementary teachers from various normal schools in Buenos Aires and made a first analysis of the results. The collection of data recovered so far shows that some non-scientific conceptions are indeed part of the prospective teachers' (scientific) background and, therefore, that the issue deserves special attention during their formal training.

  10. A Stand-Alone Interactive Physics Showcase

    ERIC Educational Resources Information Center

    Pfaff, Daniel; Hagelgans, Anja; Weidemuller, Matthias; Bretzer, Klaus

    2012-01-01

    We present a showcase with interactive exhibits of basic physical experiments that constitutes a complementary method for teaching physics and interesting students in physical phenomena. Our interactive physics showcase, shown in Fig. 1, stimulates interest for science by letting the students experience, firsthand, surprising phenomena and…

  11. University Students' Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina

    2013-01-01

    This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that…

  12. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  13. Chaos in World Politics: A Reflection

    NASA Astrophysics Data System (ADS)

    Ferreira, Manuel Alberto Martins; Filipe, José António Candeias Bonito; Coelho, Manuel F. P.; Pedro, Isabel C.

    Chaos theory results from natural scientists' findings in the area of non-linear dynamics. The importance of related models has increased in the last decades, by studying the temporal evolution of non-linear systems. In consequence, chaos is one of the concepts that most rapidly have been expanded in what research topics respects. Considering that relationships in non-linear systems are unstable, chaos theory aims to understand and to explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusion, scientifically it represents a disarray connection, but basically it involves much more than that. The existing close relationship between change and time seems essential to understand what happens in the basics of chaos theory. In fact, this theory got a crucial role in the explanation of many phenomena. The relevance of this kind of theories has been well recognized to explain social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. The goal of this chapter is to make a reflection on chaos theory - and dynamical systems such as the theories of complexity - in terms of the interpretation of political issues, considering some kind of events in the political context and also considering the macro-strategic ideas of states positioning in the international stage.

  14. Annual Conference on Nuclear and Space Radiation Effects, 21st, Colorado Springs, CO, July 23-25, 1984, Proceedings

    NASA Technical Reports Server (NTRS)

    Winokur, P. S. (Editor)

    1984-01-01

    Radiation effects on electronic systems and devices (particularly spacecraft systems) are examined with attention given to such topics as radiation transport, energy deposition, and charge collection; single-event phenomena; basic mechanisms of radiation effects in structures and materials; and EMP phenomena. Also considered are radiation effects in integrated circuits, spacecraft charging and space radiation effects, hardness assurance for devices and systems, and SGEMP/IEMP phenomena.

  15. Developing the Use of Visual Representations to Explain Basic Astronomy Phenomena

    ERIC Educational Resources Information Center

    Galano, Silvia; Colantonio, Arturo; Leccia, Silvio; Marzoli, Irene; Puddu, Emanuella; Testa, Italo

    2018-01-01

    [This paper is part of the Focused Collection on Astronomy Education Research.] Several decades of research have contributed to our understanding of students' reasoning about astronomical phenomena. Some authors have pointed out the difficulty in reading and interpreting images used in school textbooks as factors that may justify the persistence…

  16. Key Characteristics of Successful Science Learning: The Promise of Learning by Modelling

    ERIC Educational Resources Information Center

    Mulder, Yvonne G.; Lazonder, Ard W.; de Jong, Ton

    2015-01-01

    The basic premise underlying this research is that scientific phenomena are best learned by creating an external representation that complies with the complex and dynamic nature of such phenomena. Effective representations are assumed to incorporate three key characteristics: they are graphical, dynamic, and provide a pre-specified outline of the…

  17. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    ERIC Educational Resources Information Center

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  18. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  19. An investigation of bleed configurations and their effect on shock wave/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Hamed, Awatef

    1995-01-01

    The design of high efficiency supersonic inlets is a complex task involving the optimization of a number of performance parameters such as pressure recovery, spillage, drag, and exit distortion profile, over the flight Mach number range. Computational techniques must be capable of accurately simulating the physics of shock/boundary layer interactions, secondary corner flows, flow separation, and bleed if they are to be useful in the design. In particular, bleed and flow separation, play an important role in inlet unstart, and the associated pressure oscillations. Numerical simulations were conducted to investigate some of the basic physical phenomena associated with bleed in oblique shock wave boundary layer interactions that affect the inlet performance.

  20. Dynamics of sleep/wake determination--Normal and abnormal

    NASA Astrophysics Data System (ADS)

    Mahowald, Mark W.; Schenck, Carlos H.; O'Connor, Kevin A.

    1991-10-01

    Virtually all members of the animal kingdom experience a relentless and powerful cycling of states of being: wakefulness, rapid eye movement sleep, and nonrapid eye movement sleep. Each of these states is composed of a number of physiologic variables generated in a variety of neural structures. The predictable oscillations of these states are driven by presumed neural pacemakers which are entrained to the 24 h geophysical environment by the light/dark cycle. Experiments in nature have indicated that wake/sleep rhythm perturbations may occur either involving desynchronization of the basic 24 h wake/sleep cycle within the geophysical 24 h cycle (circadian rhythm disturbances) or involving the rapid oscillation or incomplete declaration of state (such as narcolepsy). The use of phase spaces to describe states of being may be of interest in the description of state determination in both illness and health. Some fascinating clinical and experimental phenomena may represent bifurcations in the sleep/wake control system.

  1. "Optics 4 every1", the hands-on optics outreach program of the Universidad Autonoma de Nuevo Leon

    NASA Astrophysics Data System (ADS)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.

    2016-09-01

    The Fisica Pato2 (Physics 4 every1) outreach group started as a need of hands-on activities and active Science demonstrations in the education for kids, teenagers and basic education teachers in Nuevo Leffon maintaining a main objective of spread the word about the importance of Optics and Photonics; for accomplish this objective, since November 2013 several outreach events are organized every year by the group. The program Optics 4 every1 is supported by the Facultad de Ciencias Fisico Matematicas of the Universidad Autonoma de Nuevo Leon and the International Society for Optics and Photonics and consist in quick hands-on activities and Optics demonstrations designed for teach basic optical phenomena related with light and its application in everyday life. During 2015, with the purpose of celebrate the International Year of Light 2015, the outreach group was involved in 13 different events and reached more than 8,000 people. The present work explains the activities done and the outcome obtained with this program.

  2. An Experimental Study of Applied Ground Loads in Landing

    NASA Technical Reports Server (NTRS)

    Milwitzky, Benjamin; Lindquist, Dean C; Potter, Dexter M

    1955-01-01

    Results are presented of an experimental investigation made of the applied ground loads and the coefficient of friction between the tire and the ground during the wheel spin-up process in impacts of a small landing gear under controlled conditions on a concrete landing strip in the Langley impact basin. The basic investigation included three major phases: impacts with forward speed at horizontal velocities up to approximately 86 feet per second, impacts with forward speed and reverse wheel rotation to simulate horizontal velocities up to about 273 feet per second, and spin-up drop tests for comparison with the other tests. In addition to the basic investigation, supplementary tests were made to evaluate the drag-load alleviating effects of prerotating the wheel before impact so as to reduce the relative velocity between the tire and ground. In the presentation of the results, an attempt has been made to interpret the experimental data so as to obtain some insight into the physical phenomena involved in the wheel spin-up process.

  3. Towards physics of neural processes and behavior

    PubMed Central

    Latash, Mark L.

    2016-01-01

    Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. PMID:27497717

  4. Collective relaxation processes in atoms, molecules and clusters

    NASA Astrophysics Data System (ADS)

    Kolorenč, Přemysl; Averbukh, Vitali; Feifel, Raimund; Eland, John

    2016-04-01

    Electron correlation is an essential driver of a variety of relaxation processes in excited atomic and molecular systems. These are phenomena which often lead to autoionization typically involving two-electron transitions, such as the well-known Auger effect. However, electron correlation can give rise also to higher-order processes characterized by multi-electron transitions. Basic examples include simultaneous two-electron emission upon recombination of an inner-shell vacancy (double Auger decay) or collective decay of two holes with emission of a single electron. First reports of this class of processes date back to the 1960s, but their investigation intensified only recently with the advent of free-electron lasers. High fluxes of high-energy photons induce multiple excitation or ionization of a system on the femtosecond timescale and under such conditions the importance of multi-electron processes increases significantly. We present an overview of experimental and theoretical works on selected multi-electron relaxation phenomena in systems of different complexity, going from double Auger decay in atoms and small molecules to collective interatomic autoionization processes in nanoscale samples.

  5. Deionization shocks in microstructures

    NASA Astrophysics Data System (ADS)

    Mani, Ali; Bazant, Martin Z.

    2011-12-01

    Salt transport in bulk electrolytes is limited by diffusion and advection, but in microstructures with charged surfaces (e.g., microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counterions are selectively removed by a membrane or electrode, a “deionization shock” can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of coions and colloidal impurities. We elucidate the basic physics of deionization shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that deionization shocks accelerate and sharpen in narrowing channels, while they decelerate and weaken, and sometimes disappear, in widening channels. These phenomena may find applications in separations (deionization, decontamination, biological assays) and energy storage (batteries, supercapacitors) involving electrolytes in microstructures.

  6. Annual Conference on Nuclear and Space Radiation Effects, 17th, Cornell University, Ithaca, N.Y., July 15-18, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Mcgarrity, J. M.

    1980-01-01

    The conference covered the radiation effects on devices, circuits, and systems, physics and basic radiation effects in materials, dosimetry and radiation transport, spacecraft charging, and space radiation effects. Other subjects included single particle upset phenomena, systems-generated electromagnetic pulse phenomena, fabrication of hardened components, testing techniques, and hardness assurance.

  7. Modeling of Economy Considering Crisis

    NASA Astrophysics Data System (ADS)

    Petrov, Lev F.

    2009-09-01

    We discuss main modeling's problems of economy dynamic processes and the reason forecast's absence of economic crisis. We present a structure of complexity level of system and models and discuss expected results concerning crisis phenomena. We formulate the basic perspective directions of the mathematical modeling of economy, including possibility of the analysis of the pre crisis, crisis and post crisis phenomena in economic systems.

  8. Emerging Conceptual Understanding of Complex Astronomical Phenomena by Using a Virtual Solar System

    ERIC Educational Resources Information Center

    Gazit, Elhanan; Yair, Yoav; Chen, David

    2005-01-01

    This study describes high school students' conceptual development of the basic astronomical phenomena during real-time interactions with a Virtual Solar System (VSS). The VSS is a non-immersive virtual environment which has a dynamic frame of reference that can be altered by the user. Ten 10th grade students were given tasks containing a set of…

  9. Charged dust phenomena in the near-Earth space environment.

    PubMed

    Scales, W A; Mahmoudian, A

    2016-10-01

    Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  10. Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Yamato, Ichiro

    2013-07-01

    There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.

  11. Initiating Young Children into Basic Astronomical Concepts and Phenomena

    NASA Astrophysics Data System (ADS)

    Kallery, M.

    2010-07-01

    In the present study we developed and implemented three units of activities aiming at acquainting very young children with basic astronomical concepts and phenomena such as the sphericity of the earth, the earth’s movements and the day/night cycle. The activities were developed by a group composed of a researcher/facilitator and six early-years teachers. In the activities children were presented with appropriate for their age scientific information along with conceptual tools such as a globe and an instructional video. Action research processes were used to optimize classroom practices and to gather useful information for the final shaping of the activities and the instruction materials. In these activities the adopted approach to learning can be characterized as socially constructed. The results indicated awareness of concepts and phenomena that the activities dealt with in high percentages of children, storage of the new knowledge in the long term memory and easy retrieval of it, and children’s enthusiasm for the subject.

  12. Education for All: Status and Trends, 1994. Basic Education Population and Development.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Education for All Forum Secretariat.

    This second issue of "Education for All: Status and Trends" focuses on the interactions between basic education and certain demographic and socioeconomic phenomena. It examines significant correlations between selected indicators and the trends in those indicators over a decade or more. It also presents projections of certain indicators to the…

  13. Optics education in an optometric setting

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Vasudevan; Raghuram, Aparna

    2003-10-01

    We discuss optics education within the context of an Optometric professional program leading to a degree of Doctor of Optometry (O.D.). Basic course work in Geometric, Physical, Ophthalmic and Visual Optics will be described and we will discuss how basic optical phenomena can be made relevant to the Optometric student with different academic backgrounds.

  14. Multiple steady states in atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    1993-01-01

    The equations describing the distributions and concentrations of trace species are nonlinear and may thus possess more than one solution. This paper develops methods for searching for multiple physical solutions to chemical continuity equations and applies these to subsets of equations describing tropospheric chemistry. The calculations are carried out with a box model and use two basic strategies. The first strategy is a 'search' method. This involves fixing model parameters at specified values, choosing a wide range of initial guesses at a solution, and using a Newton-Raphson technique to determine if different initial points converge to different solutions. The second strategy involves a set of techniques known as homotopy methods. These do not require an initial guess, are globally convergent, and are guaranteed, in principle, to find all solutions of the continuity equations. The first method is efficient but essentially 'hit or miss' in the sense that it cannot guarantee that all solutions which may exist will be found. The second method is computationally burdensome but can, in principle, determine all the solutions of a photochemical system. Multiple solutions have been found for models that contain a basic complement of photochemical reactions involving O(x), HO(x), NO(x), and CH4. In the present calculations, transitions occur between stable branches of a multiple solution set as a control parameter is varied. These transitions are manifestations of hysteresis phenomena in the photochemical system and may be triggered by increasing the NO flux or decreasing the CH4 flux from current mean tropospheric levels.

  15. A critical view of the quest for brain structural markers of Albert Einstein's special talents (a pot of gold under the rainbow).

    PubMed

    Colombo, Jorge A

    2018-06-01

    Assertions regarding attempts to link glial and macrostructural brain events with cognitive performance regarding Albert Einstein, are critically reviewed. One basic problem arises from attempting to draw causal relationships regarding complex, delicately interactive functional processes involving finely tuned molecular and connectivity phenomena expressed in cognitive performance, based on highly variable brain structural events of a single, aged, formalin fixed brain. Data weaknesses and logical flaws are considered. In other instances, similar neuroanatomical observations received different interpretations and conclusions, as those drawn, e.g., from schizophrenic brains. Observations on white matter events also raise methodological queries. Additionally, neurocognitive considerations on other intellectual aptitudes of A. Einstein were simply ignored.

  16. Grouping and Emergent Features in Vision: Toward a Theory of Basic Gestalts

    ERIC Educational Resources Information Center

    Pomerantz, James R.; Portillo, Mary C.

    2011-01-01

    Gestalt phenomena are often so powerful that mere demonstrations can confirm their existence, but Gestalts have proven hard to define and measure. Here we outline a theory of basic Gestalts (TBG) that defines Gestalts as emergent features (EFs). The logic relies on discovering wholes that are more discriminable than are the parts from which they…

  17. It's Not Your Grandmother's Genetics Anymore!

    ERIC Educational Resources Information Center

    Smith, Mike U.

    2014-01-01

    Genetics is perhaps the most rapidly growing field of science today. Recent findings such as those of the Human Genome Project have led to new understandings of basic genetic phenomena and even to increased confusion about some basic genetic ideas, such as the nature of the gene. These developments directly influence how we should teach genetics.…

  18. The Second National Chinese Conference on Permafrost, Lanzhou, China, 12-18 October 1981.

    DTIC Science & Technology

    1982-03-01

    discuss questions of Quaternary glaciers and periglacial phenomena. It is our understanding that Professor Cui Zhijul of Peking University is...frost heaving (4) Remote sensing (a) snow distribution and water yield over frozen terrain (b) indicators of frozen ground (c) glacier sedimentation ...Li Shude and Zhang TingJun, Basic features of periglacial 41 phenomena, Altai Shan, China (missed presentation) 15 OCTOBER 1981, MORNING Wang Chunhe

  19. 1989 IEEE Annual Conference on Nuclear and Space Radiation Effects, 26th, Marco Island, FL, July 25-29, 1989, Proceedings. Part 1

    NASA Technical Reports Server (NTRS)

    Ochoa, Agustin, Jr. (Editor)

    1989-01-01

    Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.

  20. University Physics Students' Use of Models in Explanations of Phenomena Involving Interaction between Metals and Electromagnetic Radiation.

    ERIC Educational Resources Information Center

    Redfors, Andreas; Ryder, Jim

    2001-01-01

    Examines third year university physics students' use of models when explaining familiar phenomena involving interaction between metals and electromagnetic radiation. Concludes that few students use a single model consistently. (Contains 27 references.) (DDR)

  1. Aspects of fluency in writing.

    PubMed

    Uppstad, Per Henning; Solheim, Oddny Judith

    2007-03-01

    The notion of 'fluency' is most often associated with spoken-language phenomena such as stuttering. The present article investigates the relevance of considering fluency in writing. The basic argument for raising this question is empirical-it follows from a focus on difficulties in written and spoken language as manifestations of different problems which should be investigated separately on the basis of their symptoms. Key-logging instruments provide new possibilities for the study of writing. The obvious use of this new technology is to study writing as it unfolds in real time, instead of focusing only on aspects of the end product. A more sophisticated application is to exploit the key-logging instrument in order to test basic assumptions of contemporary theories of spelling. The present study is a dictation task involving words and non-words, intended to investigate spelling in nine-year-old pupils with regard to their mastery of the doubling of consonants in Norwegian. In this study, we report on differences with regard to temporal measures between a group of strong writers and a group of poor ones. On the basis of these pupils' writing behavior, the relevance of the concept of 'fluency' in writing is highlighted. The interpretation of the results questions basic assumptions of the cognitive hypothesis about spelling; the article concludes by hypothesizing a different conception of spelling.

  2. Towards physics of neural processes and behavior.

    PubMed

    Latash, Mark L

    2016-10-01

    Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Student difficulties measuring distances in terms of wavelength: Lack of basic skills or failure to transfer?

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2013-06-01

    In a previous paper that focused on the transmission of periodic waves at the boundary between two media, we documented difficulties with the basic concepts of wavelength, frequency, and propagation speed, and with the relationship v=fλ. In this paper, we report on student attempts to apply this relationship in problems involving two-source and thin-film interference. In both cases, interference arises from differences in the path lengths traveled by two waves. We found that some students (up to 40% on certain questions) had difficulty with a task that is fundamental to understanding these phenomena: expressing a physical distance, such as the separation between two sources, in terms of the wavelength of a periodic wave. We administered a series of questions to try to identify factors that influence student performance. We concluded that most incorrect responses stemmed from erroneous judgment about the type of reasoning required, not an inability to do said reasoning. A number of students do not seem to treat the spacing of moving wave fronts as analogous to immutable measurement tools (e.g., rulers).

  4. Cognitive and neural components of the phenomenology of agency.

    PubMed

    Morsella, Ezequiel; Berger, Christopher C; Krieger, Stepehen C

    2011-06-01

    A primary aspect of the self is the sense of agency – the sense that one is causing an action. In the spirit of recent reductionistic approaches to other complex, multifaceted phenomena (e.g., working memory; cf. Johnson &Johnson, 2009), we attempt to unravel the sense of agency by investigating its most basic components, without invoking high-level conceptual or 'central executive' processes. After considering the high-level components of agency, we examine the cognitive and neural underpinnings of its low-level components, which include basic consciousness and subjective urges (e.g., the urge to breathe when holding one's breath). Regarding urges, a quantitative review revealed that certain inter-representational dynamics (conflicts between action plans, as when holding one's breath) reliably engender fundamental aspects both of the phenomenology of agency and of 'something countering the will of the self'. The neural correlates of such dynamics, for both primordial urges (e.g., air hunger) and urges elicited in laboratory interference tasks, are entertained. In addition, we discuss the implications of this unique perspective for the study of disorders involving agency.

  5. Contemporary concepts of dissociation.

    PubMed

    Avdibegović, Esmina

    2012-10-01

    The concept of dissociation was developed in the late 19th century by Pierre Janet for conditions of "double consciousness" in hypnosis, hysteria, spirit possession and mediumship. He defined dissociation as a deficit in the capacity of integration of two or more different "systems of ideas and functions that constitute personality", and suggested that it can be related to a genetic component, to severe illness and fatigue, and particularly to experiencing adverse, potentially traumatizing events. By the late 20th century, various and often contradictory concepts of dissociation were suggested, which were either insufficient or exceedingly including when compared to the original idea. Currently, dissociation is used to describe a wide range of normal and abnormal phenomena as a process in which behaviour, thoughts and emotions can become separated one from another. A complete presentation of mechanisms involved in dissociation is still unknown. Scientific research on basic processes of dissociation is derived mainly from studies of hypnosis and post-traumatic stress disorder. Given the controversies in modern concepts of dissociation, some researchers and theorists suggest return to the original understanding of dissociation as a basic premise for the further development of the concept of dissociation.

  6. Experimental characterization of a small custom-built double-acting gamma-type stirling engine

    NASA Astrophysics Data System (ADS)

    Intsiful, Peter; Mensah, Francis; Thorpe, Arthur

    This paper investigates characterization of a small custom-built double-acting gamma-type stirling engine. Stirling-cycle engine is a reciprocating energy conversion machine with working spaces operating under conditions of oscillating pressure and flow. These conditions may be due to compressibility as wells as pressure and temperature fluctuations. In standard literature, research indicates that there is lack of basic physics to account for the transport phenomena that manifest themselves in the working spaces of reciprocating engines. Previous techniques involve governing equations: mass, momentum and energy. Some authors use engineering thermodynamics. None of these approaches addresses this particular engine. A technique for observing and analyzing the behavior of this engine via parametric spectral profiles has been developed, using laser beams. These profiles enabled the generation of pv-curves and other trajectories for investigating the thermos-physical and thermos-hydrodynamic phenomena that manifest in the exchangers. The engine's performance was examined. The results indicate that with current load of 35.78A, electric power of 0.505 kW was generated at a speed of 240 rpm and 29.50 percent efficiency was obtained. Nasa grants to Howard University NASA/HBCU-NHRETU & CSTEA.

  7. Interacting Dark Resonances with Plasmonic Meta-Molecules

    DTIC Science & Technology

    2014-09-17

    different K-subsystems, as seen in Fig. 1(b). Within the transparency window, of the K-configuration atomic electromagnetic induced transparency ( EIT ...exhibits EIT -type phenomena as seen by a reduction in absorbance at x 264 THz. The basic physical mechanism behind this EIT -type phenomena can be...radiative plasmonic atom.5 However, in the presence of a second dark plasmonic atom, the EIT -type transparency at FIG. 1. (a) Atomic four-level system

  8. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Arcia, Edgar

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  9. Retrocausation Or Extant Indefinite Reality?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.

    2006-10-01

    The possibility of retrocausation has been considered to explain the occurrence of anomalous phenomena in which the ostensible effects are preceded by their causes. A scrutiny of both experimental methodology and the experimental data is called for. A review of experimental data reveals the existence of such effects to be a serious possibility. The experimental methodology entails some conceptual difficulties, these depending on the underlying assumptions about the effects. A major point is an ambiguity between anomalous acquisition of information and retrocausation in exerted influences. A unifying theory has been proposed, based upon the fundamental randomness of quantum mechanics. Quantum mechanical randomness may be regarded as a tenacious phenomenon, that apparently is only resolved by the human observer of the random variable in question. This has led to the "observational theory" of anomalous phenomena, which is based upon the assumption that the preference of a motivated observer is able to interact with the extant indefinite random variable that is being observed. This observational theory has led to a novel prediction, which has been corroborated in experiments. Moreover, different classes of anomalous phenomena can be explained by the same basic mechanism. This foregoes retroactive causation, but, instead, requires that macroscopic physical variables remain in a state of indefinite reality and thus remain influenceable by mental efforts until these are observed. More work is needed to discover the relevant psychological and neurophysiological variables involved in effective motivated observation. Besides these practicalities, the fundamentals still have some interesting loose ends.

  10. 32 CFR 272.3 - Definition of basic research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...

  11. 32 CFR 272.3 - Definition of basic research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...

  12. 32 CFR 272.3 - Definition of basic research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the fundamental aspects of phenomena and of observable facts without specific applications towards..., environmental, and life sciences related to long-term national security needs. It is farsighted high payoff...

  13. Just the two of us: misalignment of theory and methods in examining dyadic phenomena.

    PubMed

    Krasikova, Dina V; LeBreton, James M

    2012-07-01

    Many organizational phenomena such as leader-member exchange, mentoring, coaching, interpersonal conflict and cooperation, negotiation, performance appraisal, and the employment interview involve inherently dyadic relationships and interactions. Even when theories explicitly acknowledge the dyadic nature of such phenomena, it is not uncommon to observe a disconnection or misalignment between the level of theory and method. Our purpose in the current paper is to discuss how organizational scholars might better align these components of their research endeavors. We discuss how recent developments involving the actor-partner interdependence model (APIM) and reciprocal one-with-many (OWM) models are applicable to studying dyadic phenomena in organizations. The emphasis is on preanalytic considerations associated with collecting and organizing reciprocal dyadic data, types of research questions that APIM and reciprocal OWM models can help answer, and specific analytic techniques involved in testing dyadic hypotheses. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  14. English/Russian terminology on radiometric calibration of space-borne optoelectronic sensors

    NASA Astrophysics Data System (ADS)

    Privalsky, V.; Zakharenkov, V.; Humpherys, T.; Sapritsky, V.; Datla, R.

    The efficient use of data acquired through exo-atmospheric observations of the Earth within the framework of existing and newly planned programs requires a unique understanding of respective terms and definitions. Yet, the last large-scale document on the subject - The International Electrotechnical Vocabulary - had been published 18 years ago. This lack of a proper document, which would reflect the changes that had occurred in the area since that time, is especially detrimental to the developing international efforts aimed at global observations of the Earth from space such as the Global Earth Observations Program proposed by the U.S.A. at the 2003 WMO Congress. To cover this gap at least partially, a bi-lingual explanatory dictionary of terms and definitions in the area of radiometric calibration of space-borne IR sensors is developed. The objectives are to produce a uniform terminology for the global space-borne observations of the Earth, establish a unique understanding of terms and definitions by the radiometric communities, including a correspondence between the Russian and American terms and definitions, and to develop a formal English/Russian reference dictionary for use by scientists and engineers involved in radiometric observations of the Earth from space. The dictionary includes close to 400 items covering basic concepts of geometric, wave and corpuscular optics, remote sensing technologies, and ground-based calibration as well as more detailed treatment of terms and definitions in the areas of radiometric quantities, symbols and units, optical phenomena and optical properties of objects and media, and radiometric systems and their properties. The dictionary contains six chapters: Basic Concepts, Quantities, Symbols, and Units, Optical phenomena, Optical characteristics of surfaces and media, Components of Radiometric Systems, Characteristics of radiometric system components, plus English/Russian and Russian/Inglish indices.

  15. 1987 Annual Conference on Nuclear and Space Radiation Effects, Snowmass Village, CO, July 28-31, 1987, Proceedings

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.

  16. Subsurface And Surface Water Flow Interactions

    EPA Science Inventory

    In this chapter we present basic concepts and principles underlying the phenomena of groundwater and surface water interactions. Fundamental equations and analytical and numerical solutions describing stream-aquifer interactions are presented in hillslope and riparian aquifer en...

  17. If You Understand Leaky Buckets, You Understand a Lot of Physics.

    ERIC Educational Resources Information Center

    Ruby, Lawrence

    1991-01-01

    Applications of this model to problems associated with basic phenomena in radioactivity, heat transfer, neutron chain reactions, RC circuits and vacuum pumping are presented. Example computations for each situation are included. (CW)

  18. Evaluation of Different Normalization and Analysis Procedures for Illumina Gene Expression Microarray Data Involving Small Changes

    PubMed Central

    Johnstone, Daniel M.; Riveros, Carlos; Heidari, Moones; Graham, Ross M.; Trinder, Debbie; Berretta, Regina; Olynyk, John K.; Scott, Rodney J.; Moscato, Pablo; Milward, Elizabeth A.

    2013-01-01

    While Illumina microarrays can be used successfully for detecting small gene expression changes due to their high degree of technical replicability, there is little information on how different normalization and differential expression analysis strategies affect outcomes. To evaluate this, we assessed concordance across gene lists generated by applying different combinations of normalization strategy and analytical approach to two Illumina datasets with modest expression changes. In addition to using traditional statistical approaches, we also tested an approach based on combinatorial optimization. We found that the choice of both normalization strategy and analytical approach considerably affected outcomes, in some cases leading to substantial differences in gene lists and subsequent pathway analysis results. Our findings suggest that important biological phenomena may be overlooked when there is a routine practice of using only one approach to investigate all microarray datasets. Analytical artefacts of this kind are likely to be especially relevant for datasets involving small fold changes, where inherent technical variation—if not adequately minimized by effective normalization—may overshadow true biological variation. This report provides some basic guidelines for optimizing outcomes when working with Illumina datasets involving small expression changes. PMID:27605185

  19. High-altitude electrical discharges associated with thunderstorms and lightning

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; McHarg, Matthew G.; Stenbaek-Nielsen, Hans C.

    2015-12-01

    The purpose of this paper is to introduce electrical discharge phenomena known as transient luminous events above thunderstorms to the lightning protection community. Transient luminous events include the upward electrical discharges from thunderstorms known as starters, jets, and gigantic jets, and electrical discharges initiated in the lower ionosphere such as sprites, halos, and elves. We give an overview of these phenomena with a focus on starters, jets, gigantic jets, and sprites, because similar to ordinary lightning, streamers and leaders are basic components of these four types of transient luminous events. We present a few recent observations to illustrate their main properties and briefly review the theories. The research in transient luminous events has not only advanced our understanding of the effects of thunderstorms and lightning in the middle and upper atmosphere, but also improved our knowledge of basic electrical discharge processes critical for sparks and lightning.

  20. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  1. Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Stevens, N. J.

    1980-01-01

    A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.

  2. Learning and the persistence of appetite: extinction and the motivation to eat and overeat.

    PubMed

    Bouton, Mark E

    2011-04-18

    The modern world is saturated with highly palatable and highly available food, providing many opportunities to associate food with environmental cues and actions (through Pavlovian and operant or instrumental learning, respectively). Basic learning processes can often increase the tendency to approach and consume food, whereas extinction, in which Pavlovian and operant behaviors decline when the reinforcer is withheld, weakens but does not erase those tendencies. Contemporary research suggests that extinction involves an inhibitory form of new learning that appears fragile because it is highly dependent on the context for expression. These ideas are supported by the phenomena of renewal, spontaneous recovery, resurgence, reinstatement, and rapid reacquisition in appetitive learning, which together may help explain why overeating may be difficult to suppress permanently, and why appetitive behavior may seem so persistent. Copyright © 2010. Published by Elsevier Inc.

  3. Normal personality characteristics in schizophrenia: a review of the literature involving the FFM.

    PubMed

    Dinzeo, Thomas J; Docherty, Nancy M

    2007-05-01

    Schizophrenia is generally viewed as a disruption of normal functioning because of an underlying core illness. A number of theorists have speculated that this core illness may unilaterally disrupt normal personality functioning. However, recent data suggests that the relationship may be more complex and reciprocal than previously conceptualized. Furthermore, basic personality characteristics appear to be associated with numerous clinical phenomena. This article reviews the empirical literature pertaining to normal personality characteristics [structured around the five-factor model (FFM) of personality] in individuals with schizophrenia. Evidence suggests that certain personality characteristics may be uniquely related to the etiology of psychosis, as well as symptom severity, occupational functioning, cigarette smoking, substance use and violent behavior, social isolation, and suicidality in patients with schizophrenia. The implications of these findings and suggestions for future research are discussed.

  4. A Bayesian framework for knowledge attribution: evidence from semantic integration.

    PubMed

    Powell, Derek; Horne, Zachary; Pinillos, N Ángel; Holyoak, Keith J

    2015-06-01

    We propose a Bayesian framework for the attribution of knowledge, and apply this framework to generate novel predictions about knowledge attribution for different types of "Gettier cases", in which an agent is led to a justified true belief yet has made erroneous assumptions. We tested these predictions using a paradigm based on semantic integration. We coded the frequencies with which participants falsely recalled the word "thought" as "knew" (or a near synonym), yielding an implicit measure of conceptual activation. Our experiments confirmed the predictions of our Bayesian account of knowledge attribution across three experiments. We found that Gettier cases due to counterfeit objects were not treated as knowledge (Experiment 1), but those due to intentionally-replaced evidence were (Experiment 2). Our findings are not well explained by an alternative account focused only on luck, because accidentally-replaced evidence activated the knowledge concept more strongly than did similar false belief cases (Experiment 3). We observed a consistent pattern of results across a number of different vignettes that varied the quality and type of evidence available to agents, the relative stakes involved, and surface details of content. Accordingly, the present findings establish basic phenomena surrounding people's knowledge attributions in Gettier cases, and provide explanations of these phenomena within a Bayesian framework. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm.

    PubMed

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-21

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO 2 /water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO 2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO 2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart's law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  6. Causal mechanisms of seismo-EM phenomena during the 1965–1967 Matsushiro earthquake swarm

    PubMed Central

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-01-01

    The 1965–1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities. PMID:28322263

  7. Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm

    NASA Astrophysics Data System (ADS)

    Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo

    2017-03-01

    The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.

  8. Perceptual and affective mechanisms in facial expression recognition: An integrative review.

    PubMed

    Calvo, Manuel G; Nummenmaa, Lauri

    2016-09-01

    Facial expressions of emotion involve a physical component of morphological changes in a face and an affective component conveying information about the expresser's internal feelings. It remains unresolved how much recognition and discrimination of expressions rely on the perception of morphological patterns or the processing of affective content. This review of research on the role of visual and emotional factors in expression recognition reached three major conclusions. First, behavioral, neurophysiological, and computational measures indicate that basic expressions are reliably recognized and discriminated from one another, albeit the effect may be inflated by the use of prototypical expression stimuli and forced-choice responses. Second, affective content along the dimensions of valence and arousal is extracted early from facial expressions, although this coarse affective representation contributes minimally to categorical recognition of specific expressions. Third, the physical configuration and visual saliency of facial features contribute significantly to expression recognition, with "emotionless" computational models being able to reproduce some of the basic phenomena demonstrated in human observers. We conclude that facial expression recognition, as it has been investigated in conventional laboratory tasks, depends to a greater extent on perceptual than affective information and mechanisms.

  9. REVIEWS OF TOPICAL PROBLEMS: Physical aspects of cryobiology

    NASA Astrophysics Data System (ADS)

    Zhmakin, A. I.

    2008-03-01

    Physical phenomena during biological freezing and thawing processes at the molecular, cellular, tissue, and organ levels are examined. The basics of cryosurgery and cryopreservation of cells and tissues are presented. Existing cryobiological models, including numerical ones, are reviewed.

  10. Eighty phenomena about the self: representation, evaluation, regulation, and change

    PubMed Central

    Thagard, Paul; Wood, Joanne V.

    2015-01-01

    We propose a new approach for examining self-related aspects and phenomena. The approach includes (1) a taxonomy and (2) an emphasis on multiple levels of mechanisms. The taxonomy categorizes approximately eighty self-related phenomena according to three primary functions involving the self: representing, effecting, and changing. The representing self encompasses the ways in which people depict themselves, either to themselves or to others (e.g., self-concepts, self-presentation). The effecting self concerns ways in which people facilitate or limit their own traits and behaviors (e.g., self-enhancement, self-regulation). The changing self is less time-limited than the effecting self; it concerns phenomena that involve lasting alterations in how people represent and control themselves (e.g., self-expansion, self-development). Each self-related phenomenon within these three categories may be examined at four levels of interacting mechanisms (social, individual, neural, and molecular). We illustrate our approach by focusing on seven self-related phenomena. PMID:25870574

  11. What Studying Leadership Can Teach Us About the Science of Behavior.

    PubMed

    Malott, Maria E

    2016-05-01

    Throughout history, individuals have changed the world in significant ways, forging new paths; demonstrating remarkable capacity to inspire others to follow; and repeatedly showing independence, resilience, consistency, and commitment to principle. However, significant cultural change is rarely accomplished single-handedly; instead, it results from the complex and dynamic interaction of groups of individuals. To illustrate how leaders participate in cultural phenomena, I describe how a few individuals helped to establish the Cold War. In this analysis, I distinguish two types of cultural phenomena: metacontingencies, involving lineages of interlocking behavioral contingencies, and cultural cusps, involving complicated, unique, and nonreplicable interrelations between individuals and circumstances. I conclude that by analyzing leaders' actions and their results, we can appreciate that cultural and behavioral phenomena are different, and although cultural phenomena are inherently complex and in many cases do not lend themselves to replication, not only should the science of behavior account for them, cultural phenomena should also constitute a major area of behavior analysis study and application.

  12. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  13. Mass action at the single-molecule level.

    PubMed

    Shon, Min Ju; Cohen, Adam E

    2012-09-05

    We developed a system to reversibly encapsulate small numbers of molecules in an array of nanofabricated "dimples". This system enables highly parallel, long-term, and attachment-free studies of molecular dynamics via single-molecule fluorescence. In studies of bimolecular reactions of small numbers of confined molecules, we see phenomena that, while expected from basic statistical mechanics, are not observed in bulk chemistry. Statistical fluctuations in the occupancy of sealed reaction chambers lead to steady-state fluctuations in reaction equilibria and rates. These phenomena are likely to be important whenever reactions happen in confined geometries.

  14. 1988 IEEE Annual Conference on Nuclear and Space Radiation Effects, 25th, Portland, OR, July 12-15, 1988, Proceedings

    NASA Technical Reports Server (NTRS)

    Coakley, Peter G. (Editor)

    1988-01-01

    The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.

  15. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review

    NASA Astrophysics Data System (ADS)

    Kumamoto, Shin-Ichiro; Kamihigashi, Takashi

    2018-03-01

    Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.

  16. Report on the solar physics-plasma physics workshop

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.

    1976-01-01

    The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.

  17. Chlamydomonas: A Model Green Plant.

    ERIC Educational Resources Information Center

    Sheffield, E.

    1985-01-01

    Discusses the instructional potential of Chlamydomonas in providing a basis for a range of experimental investigations to illustrate basic biological phenomena. Describes the use of this algae genus in studies of population growth, photosynthesis, and mating behavior. Procedures for laboratory exercises are included. (ML)

  18. The use of lidar for stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1977-01-01

    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.

  19. Solar and interplanetary dynamics; Proceedings of the Symposium, Harvard University, Cambridge, Mass., August 27-31, 1979

    NASA Technical Reports Server (NTRS)

    Dryer, M. (Editor); Tandberg-Hanssen, E.

    1980-01-01

    The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.

  20. The Formalization of Cultural Psychology. Reasons and Functions.

    PubMed

    Salvatore, Sergio

    2017-03-01

    In this paper I discuss two basic theses about the formalization of cultural psychology. First, I claim that formalization is a relevant, even necessary stage of development of this domain of science. This is so because formalization allows the scientific language to achieve a much needed autonomy from the commonsensical language of the phenomena that this science deals with. Second, I envisage the two main functions that formalization has to perform in the field of cultural psychology: on the one hand, it has to provide formal rules grounding and constraining the deductive construction of the general theory; on the other hand, it has to provide the devices for supporting the interpretation of local phenomena, in terms of the abductive reconstruction of the network of linkages among empirical occurrences comprising the local phenomena.

  1. Conceiving "personality": Psychologist's challenges and basic fundamentals of the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals.

    PubMed

    Uher, Jana

    2015-09-01

    Scientists exploring individuals, as such scientists are individuals themselves and thus not independent from their objects of research, encounter profound challenges; in particular, high risks for anthropo-, ethno- and ego-centric biases and various fallacies in reasoning. The Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) aims to tackle these challenges by exploring and making explicit the philosophical presuppositions that are being made and the metatheories and methodologies that are used in the field. This article introduces basic fundamentals of the TPS-Paradigm including the epistemological principle of complementarity and metatheoretical concepts for exploring individuals as living organisms. Centrally, the TPS-Paradigm considers three metatheoretical properties (spatial location in relation to individuals' bodies, temporal extension, and physicality versus "non-physicality") that can be conceived in different forms for various kinds of phenomena explored in individuals (morphology, physiology, behaviour, the psyche, semiotic representations, artificially modified outer appearances and contexts). These properties, as they determine the phenomena's accessibility in everyday life and research, are used to elaborate philosophy-of-science foundations and to derive general methodological implications for the elementary problem of phenomenon-methodology matching and for scientific quantification of the various kinds of phenomena studied. On the basis of these foundations, the article explores the metatheories and methodologies that are used or needed to empirically study each given kind of phenomenon in individuals in general. Building on these general implications, the article derives special implications for exploring individuals' "personality", which the TPS-Paradigm conceives of as individual-specificity in all of the various kinds of phenomena studied in individuals.

  2. The Behavior of Translucent Composite Laminates under Highly Energetic Laser Irradiations

    NASA Astrophysics Data System (ADS)

    Allheily, Vadim; Merlat, Lionel; Lacroix, Fabrice; Eichhorn, Alfred; L'Hostis, Gildas

    With the emergence of composite materials in the last decades, the interaction between light and diffusive materials has become a challenging topic in many key manufacturing areas (laser welding, laser surface treatment, engraving, etc.). In this paper, the behavior of laminated glass fiber-reinforced plastic composites (GFRP) under 1.07 μm-wavelength irradiations is investigated. Optical parameters are first assessed to build up a basic analytical interaction model involving internal refraction and reflection. The scattering effect due to the presence of oriented glass fibers is also a topic of interest. A thermodynamic analysis is then carried out from the induced volume heat source until the degradation temperature of the material is reached out. The study finally results in a one-dimensional model describing the optical and thermo-dynamical behavior of GFRP under high-power laser irradiations up to ignition of the chemical degradation phenomena.

  3. Visualizing time-related data in biology, a review

    PubMed Central

    Secrier, Maria; Schneider, Reinhard

    2014-01-01

    Time is of the essence in biology as in so much else. For example, monitoring disease progression or the timing of developmental defects is important for the processes of drug discovery and therapy trials. Furthermore, an understanding of the basic dynamics of biological phenomena that are often strictly time regulated (e.g. circadian rhythms) is needed to make accurate inferences about the evolution of biological processes. Recent advances in technologies have enabled us to measure timing effects more accurately and in more detail. This has driven related advances in visualization and analysis tools that try to effectively exploit this data. Beyond timeline plots, notable attempts at more involved temporal interpretation have been made in recent years, but awareness of the available resources is still limited within the scientific community. Here, we review some advances in biological visualization of time-driven processes and consider how they aid data analysis and interpretation. PMID:23585583

  4. Process Mechanics Analysis in Single Point Incremental Forming

    NASA Astrophysics Data System (ADS)

    Ambrogio, G.; Filice, L.; Fratini, L.; Micari, F.

    2004-06-01

    The request of highly differentiated products and the need of process flexibility have brought the researchers to focus the attention on innovative sheet forming processes. Industrial application of conventional processes is, in fact, economically convenient just for large scale productions; furthermore conventional processes do not allow to fully satisfy the mentioned demand of flexibility. In this contest, single point incremental forming (SPIF) is an innovative and flexible answer to market requests. The process is characterized by a peculiar process mechanics, being the sheet plastically deformed only through a localised stretching mechanism. Some recent experimental studies have shown that SPIF permits a relevant increase of formability limits, just as a consequence of the peculiar deformation mechanics. The research here addressed is focused on the theoretical investigation of process mechanics; the aim was to achieve a deeper understanding of basic phenomena involved in SPIF which justify the above mentioned formability enhancing.

  5. A long-lived mesoscale convective complex. II - Evolution and structure of the mature complex

    NASA Technical Reports Server (NTRS)

    Wetzel, P. J.; Cotton, W. R.; Mcanelly, R. L.

    1983-01-01

    The present investigation is concerned with an eight-day episode, during which a series of mesoscale convective complexes (MCC) developed and moved across the country, producing heavy rain and some flooding over an extensive region. An overview of the considered period from August 3 to August 10, 1977 is presented, and the evolution of the August 4 storm is examined. The structure of the mature MCC is discussed, taking into account the August 4-5 storm, a comparative case involving the August 3-4 storm, and an evaluation of the observed phenomena. It is concluded that MCCs are basically tropical in nature and that their dynamics are dominated by buoyant accelerations. It was found that the MCCs developed a warm-core, divergent anticyclonic flow pattern in the upper troposphere which was not present prior to the development of convection. A similar structure is observed in tropical cloud clusters.

  6. Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Pnueli, David; Gutfinger, Chaim

    1997-01-01

    This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.

  7. A Practical Integrated Approach to Supramolecular Chemistry III. Thermodynamics of Inclusion Phenomena

    ERIC Educational Resources Information Center

    Hernandez-Benito, Jesus; Garcia-Santos, M. Pilar; O'Brein, Emma; Calle, Emilio; Casado, Julio

    2004-01-01

    A practical approach for familiarizing students with the thermodynamics of the inclusion phenomena is described. The experiment facilitates calculation of the activation parameters corresponding to the reactions involved in the inclusion mechanism.

  8. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the burning process in particular.

  9. Introduction to Shock Waves and Shock Wave Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, William Wyatt

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and commonmore » techniques. However, the list will not be exhaustive by any means.« less

  10. Size does Matter

    NASA Astrophysics Data System (ADS)

    Vespignani, Alessandro

    From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...

  11. Electromechanical phenomena in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Lew Yan Voon, L. C.; Willatzen, M.

    2011-02-01

    Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the measurements and calculations of the bulk electromechanical coefficients remain challenging. Much of the literature has focused on InGaN/GaN, AlGaN/GaN, ZnMgO/ZnO, and ZnCdO/ZnO quantum wells, and InAs/GaAs and AlGaN/AlN quantum dots for their optoelectronic properties; and work on the bending of nanowires have been mostly for GaN and ZnO nanowires. We hope the present review article will stimulate further research into the field of electromechanical phenomena and help in the development of applications.

  12. Bilingualism: Beyond Basic Principles. Multilingual Matters.

    ERIC Educational Resources Information Center

    Dewaele, Jean-Marc, Ed.; Housen, Alex, Ed.; Wei, Li, Ed.

    This collection of papers focuses on individual bilingualism and societal and educational phenomena. After "Introduction and Overview" (Jean-Marc Dewaele, Alex Housen, and Li Wei), 12 papers include: (1) "Who is Afraid of Bilingualism?" (Hugo Baetens Beardsmore); (2) "The Importance of being Bilingual" (John Edwards);…

  13. A quest for antipsychotic drug actions in the brain: personal experiences from 50 years of neuropsychiatric research at Karolinska Institutet.

    PubMed

    Sedvall, Göran

    2007-09-10

    The exploration of physiological and molecular actions of psychoactive drugs in the brain represents a fundamental approach to the understanding of emerging psychological phenomena. The author gives a personal account of his medical training and research career at Karolinska Institutet over the past 50 years. The paper aims at illustrating how a broad medical education and the integration of basic and clinical neuroscience research is a fruitful ground for the development of new methods and knowledge in this complicated field. Important aspects for an optimal research environment are recruitment of well-educated students, a high intellectual identity of teachers and active researchers, international input and collaboration in addition to good physical resources. In depth exploration of specific signaling pathways as well as an integrative analysis of genes, molecules and systems using multivariate modeling, and bioinformatics, brain mechanisms behind mental phenomena may be understood at a basic level and will ultimately be used for the alleviation and treatment of mental disorders.

  14. CAWSES Related Projects in Japan : Grant-in-Aid for Creative Scientific Research ügBasic Study of Space Weather Predictionüh and CHAIN (Continuous H Alpha Imaging Network)

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Kurokawa, H.

    The Grant-in-Aid for Creative Scientific Research of the Ministry of Education Science Sports Technology and Culture of Japan The Basic Study of Space Weather Prediction PI K Shibata Kyoto Univ has started in 2005 as 5 years projects with total budget 446Myen The purpose of this project is to develop a physical model of solar-terrestrial phenomena and space storms as a basis of space weather prediction by resolving fundamental physics of key phenomena from solar flares and coronal mass ejections to magnetospheric storms under international cooperation program CAWSES Climate and Weather of the Sun-Earth System Continuous H Alpha Imaging Network CHAIN Project led by H Kurokawa is a key project in this space weather study enabling continuous H alpha full Sun observations by connecting many solar telescopes in many countries through internet which provides the basis of the study of space weather prediction

  15. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  16. Estimation of the temporary service life of DC arc plasmatron cathode

    NASA Astrophysics Data System (ADS)

    Kulygin, V. M.; Pereslavtsev, A. V.; Tresvyatskii, S. S.

    2017-09-01

    The service life of the cathode of a DC arc plasmatron continuously working with tubular electrodes that operate in the air has been considered using the semi-phenomenological approach. The thermal emission, that ensures the necessary flow of electrons, and the evaporation of the cathode material, which determines its erosion, have been taken as the basic physical phenomena that constitute the workflow. The relationships that enable the estimation of the cathode's operating time have been obtained using the known regularities of these phenomena and experimental data available in the literature. The resulting evaluations coincide satisfactorily with the endurance test results.

  17. Development of resource shed delineation in aquatic ecosystems

    EPA Science Inventory

    Environmental issues in aquatic ecosystems of high management priority involve spatially explicit phenomena that occur over vast areas. A "landscape" perspective is thus necessary, including an understanding of how ecological phenomena at a local scale are affected by physical fo...

  18. Activation of motility and chemotaxis in the spermatozoa: From invertebrates to humans

    PubMed Central

    YOSHIDA, MANABU

    2005-01-01

    Activation of the sperm motility and chemotactic behavior of sperm toward eggs are the first communication between spermatozoa and eggs at fertilization, and understanding of the phenomena is a prerequisite for progress of not only basic biology, but also clinical aspects. The nature of molecules derived from eggs by which sperm are activated and attracted towards the eggs and the molecular mechanisms underlying the sperm activation and chemotaxis have been investigated in only a few invertebrate species, sea urchins, ascidians and herring fish. However, knowledge on this phenomena has been ignored in mammalian species including humans. The current review first introduces the studies on the activation and chemotaxis of sperm in marine invertebrates, and the same phenomena in mammals including humans, are described. (Reprod Med Biol 2005; 4: 101–115) PMID:29699215

  19. Transport Phenomena During Equiaxed Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  20. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    NASA Astrophysics Data System (ADS)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  1. Teaching nuclear science: A cosmological approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viola, V.E.

    1994-10-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, asmore » well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level.« less

  2. Prospective Science Teachers' Conceptions about Astronomical Subjects

    ERIC Educational Resources Information Center

    Küçüközer, Hüseyin

    2007-01-01

    The main objective of this study was to identify prospective science teachers' conceptions on basic astronomical phenomena. A questionnaire consisting of nine open-ended questions was administered to 327 prospective science teachers. The questionnaire was constructed after extensive review of the literature and took into consideration the reported…

  3. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    NASA Astrophysics Data System (ADS)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  4. Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography

    NASA Astrophysics Data System (ADS)

    Anderson, Donald M.

    1995-07-01

    The debate over the relative value of practical or applied versus fundamental research has heated up considerably in recent years, and oceanography has not been spared this re-evaluation of science funding policy. Some federal agencies with marine interests have always focused their resources on practical problems, but those with a traditional commitment to basic research such as the National Science Foundation have increasingly had to fight to maintain their freedom to fund quality science without regard to practical or commercial applications. Within this context, it is instructive to highlight the extent to which certain scientific programs can satisfy both sides of this policy dilemma—i.e. address important societal issues through advances in fundamental or basic research. One clear oceanographic example of such a program involves the phenomena called "red tides" or "harmful algal blooms". This paper describes the nature and extent of the problems caused by these outbreaks, emphasizing the alarming expansion in their incidence and their impacts in recent years, both in the U.S. and worldwide. The objective is to highlight fundamental physical, biological, and chemical oceanographic question that must be addressed if we are to achieve the practical goal of scientifically based management of fisheries resources, public health, and ecosystem health in regions threatened by toxic and harmful algae.

  5. Millisecond Oscillations in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    van der Klis, M.

    The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations, and kilohertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin and orbital motion close around the neutron star, and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and some possibly related phenomena in black-hole candidates, and describe the attempts to use these observations to perform measurements of fundamental physical interest in these systems.

  6. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  7. Investigation of Rotating Stall Phenomena in Axial Flow Compressors. Volume I. Basic Studies of Rotating Stall

    DTIC Science & Technology

    1976-06-01

    rotating stall control system which was tested both on a low speed rig and a J-85-S engine. The second objective was to perform fundamental studies of the...Stator Stage 89 6 Annular Cascade Configuration Used for Rotating Stall Studies on Rotoi-Stator Stage ..... .............. ... 90 7 Static Pressure Rise...ground tests on a J-8S-S turbojet engine. The work i3 reported in three separate volumes. Volume I entitled, "Basic Studies of Rotating Stall", covers

  8. Berimbau: A simple instrument for teaching basic concepts in the physics and psychoacoustics of music

    NASA Astrophysics Data System (ADS)

    Vilão, Rui C.; Melo, Santino L. S.

    2014-12-01

    We address the production of musical tones by a simple musical instrument of the Brazilian tradition: the berimbau-de-barriga. The vibration physics of the string and of the air mass inside the gourd are reviewed. Straightforward measurements of an actual berimbau, which illustrate the basic physical phenomena, are performed using a PC-based "soundcard oscilloscope." The inharmonicity of the string and the role of the gourd are discussed in the context of known results in the psychoacoustics of pitch definition.

  9. Effects of energy-related activities on the Atlantic Continental Shelf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manowitz, B

    1975-01-01

    Sixteen papers were presented and are announced separately. Coastal waters, continental shelf geology and aquatic ecosystems are studied for modelling basic data for assessment of possible environmental impacts from offshore energy development. Sediment transport and wave phenomena are modelled for understanding water pollution transport and diffusion. (PCS)

  10. Optics Demonstrations Using Cylindrical Lenses

    ERIC Educational Resources Information Center

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  11. Handbook of Communication.

    ERIC Educational Resources Information Center

    Pool, Ithiel de Sola, Ed.; And Others

    Each of the 31 chapters which comprise this volume reviews the state of the art in a specific area of communications research. The chapters are grouped into three sections, the first of which focuses upon the basic communication process. An introduction to the concept of a communication system and to the phenomena of language and nonverbal…

  12. Marine Resources

    NASA Technical Reports Server (NTRS)

    Sherman, J. W., III

    1975-01-01

    The papers presented in the marine session may be broadly grouped into several classes: microwave region instruments compared to infrared and visible region sensors, satellite techniques compared to aircraft techniques, open ocean applications compared to coastal region applications, and basic research and understanding of ocean phenomena compared to research techniques that offer immediate applications.

  13. The Structure of Language. The Bobbs-Merrill Series in Composition and Rhetoric.

    ERIC Educational Resources Information Center

    Thomas, Owen, Ed.

    Articles represent four schools of thought in the field of linguistics: structural, behavioral, transformational, and tagmemic. Summarizing structural linguistics before 1956, John Lotz emphasizes the importance of spoken language and the "internal order" imposed upon "physical and behavioral phenomena," and indicates some of the basic beliefs of…

  14. Comparison of Two Analysis Approaches for Measuring Externalized Mental Models

    ERIC Educational Resources Information Center

    Al-Diban, Sabine; Ifenthaler, Dirk

    2011-01-01

    Mental models are basic cognitive constructs that are central for understanding phenomena of the world and predicting future events. Our comparison of two analysis approaches, SMD and QFCA, for measuring externalized mental models reveals different levels of abstraction and different perspectives. The advantages of the SMD include possibilities…

  15. The Basics of Cyberbullying

    ERIC Educational Resources Information Center

    Roberts-Pittman, Bridget; Slavens, Julie; Balch, Bradley V.

    2012-01-01

    Bullying is not simply the same act of misbehavior taking place electronically. While the two phenomena share common characteristics (use of power, harmful intent), distinct and important differences exist. The first is the concept of power. Power in cyberspace is not measured by physical size or family income. Instead, power lies in the anonymity…

  16. Rain rate measurement capabilities using a Seasat type radar altimeter

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.; Walsh, E. J.

    1981-01-01

    The combined use of a space-based radar and a radiometer for measurement of precipitation is discussed. Phenomena to exploit or overcome is surveyed. Basic measurement problems are discussed. Several active systems are proposed, including three ocean systems and two land-sea systems. Recommendations for future research are given.

  17. Bridging Some Intercultural Gaps: Methodological Reflections from Afar

    ERIC Educational Resources Information Center

    Kama, Amit

    2006-01-01

    Identity formation and self construction are inherently cultural phenomena. Although it may seem that human psychology--e.g., basic traits, tendencies, "characteristics," or even the definition of self--are universal and ahistorical, this essentialist view is quite erroneous and needs to be recognized and avoided. The task of studying one's…

  18. Information Architecture without Internal Theory: An Inductive Design Process.

    ERIC Educational Resources Information Center

    Haverty, Marsha

    2002-01-01

    Suggests that information architecture design is primarily an inductive process, partly because it lacks internal theory and partly because it is an activity that supports emergent phenomena (user experiences) from basic design components. Suggests a resemblance to Constructive Induction, a design process that locates the best representational…

  19. On complex adaptive systems and terrorism [rapid communication

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; Elgazzar, A. S.; Hegazi, A. S.

    2005-03-01

    Complex adaptive systems (CAS) are ubiquitous in nature. They are basic in social sciences. An overview of CAS is given with emphasize on the occurrence of bad side effects to seemingly “wise” decisions. Hence application to terrorism is given. Some conclusions on how to deal with this phenomena are proposed.

  20. Contrast limiting factors of optical fiber bundles for flexible endoscopy

    NASA Astrophysics Data System (ADS)

    Ortega-Quijano, N.; Arce-Diego, J. L.; Fanjul-Vélez, F.

    2008-11-01

    Medical endoscopy constitutes a basic device for the development of minimally invasive procedures for a wide range of medical applications, involving diagnosis, treatment and surgery, as well as biopsy sampling. Its minimally invasive nature results in no surgery, or only small incisions, which involves a minimal hospitalization time. The medical relevance of endoscopes relies on the fact that they are one of the most effective means of early stages of cancer diagnosis, with the subsequent improvement in the patient's quality of life. Flexible endoscopy by means of coherent optical fiber bundles shows both flexibility and a high active area. However, the parallel arrangement of the fibers within the bundle produces interference phenomena between them, which results in optical crosstalk. As a consequence, there is a power exchange between contiguous fibers, producing a worsening in the contrast of the image. In this work, this quality limiting factor is deeply studied. We quantitatively analyze crosstalk, performing several studies that show the limitations imposed to the endoscopic system. Finally, we propose some solutions by an analytical method to accurately determine the appropriate optical fibers for each particular design. The method is also applied to endoscopic OCT.

  1. Inductive reasoning.

    PubMed

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Survey of literature on convective heat transfer coefficients and recovery factors for high atmosphere thermometry

    NASA Technical Reports Server (NTRS)

    Chung, S.

    1973-01-01

    Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.

  3. Application of wave mechanics theory to fluid dynamics problems: Fundamentals

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.

  4. The Development of Bimodal Bilingualism: Implications for Linguistic Theory.

    PubMed

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2016-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and 'transfer' as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair.

  5. Dissociative Experience and Cultural Neuroscience: Narrative, Metaphor and Mechanism

    PubMed Central

    Kirmayer, Laurence J.

    2016-01-01

    Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical “either/or” arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context. PMID:18213511

  6. Dissociative experience and cultural neuroscience: narrative, metaphor and mechanism.

    PubMed

    Seligman, Rebecca; Kirmayer, Laurence J

    2008-03-01

    Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical "either/or" arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context.

  7. The Development of Bimodal Bilingualism: Implications for Linguistic Theory

    PubMed Central

    Lillo-Martin, Diane; de Quadros, Ronice Müller; Pichler, Deborah Chen

    2017-01-01

    A wide range of linguistic phenomena contribute to our understanding of the architecture of the human linguistic system. In this paper we present a proposal dubbed Language Synthesis to capture bilingual phenomena including code-switching and ‘transfer’ as automatic consequences of the addition of a second language, using basic concepts of Minimalism and Distributed Morphology. Bimodal bilinguals, who use a sign language and a spoken language, provide a new type of evidence regarding possible bilingual phenomena, namely code-blending, the simultaneous production of (aspects of) a message in both speech and sign. We argue that code-blending also follows naturally once a second articulatory interface is added to the model. Several different types of code-blending are discussed in connection to the predictions of the Synthesis model. Our primary data come from children developing as bimodal bilinguals, but our proposal is intended to capture a wide range of bilingual effects across any language pair. PMID:28603576

  8. Emulating weak localization using a solid-state quantum circuit.

    PubMed

    Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M

    2014-10-14

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  9. Students' Reasons for Preferring Teleological Explanations

    ERIC Educational Resources Information Center

    Trommler, Friederike; Gresch, Helge; Hammann, Marcus

    2018-01-01

    The teleological bias, a major learning obstacle, involves explaining biological phenomena in terms of purposes and goals. To probe the teleological bias, researchers have used acceptance judgement tasks and preference judgement tasks. In the present study, such tasks were used with German high school students (N = 353) for 10 phenomena from human…

  10. Probing Year 11 Physics Students' Understandings of Gravitation

    ERIC Educational Resources Information Center

    Moore, Simon; Dawson, Vaille

    2015-01-01

    Science education involves students learning explanations of natural phenomena which are neither obvious nor intuitive. Generally, they have been arrived at and refined by years of dedicated inquiry on the part of large scientific communities. At the same time, these phenomena often concern the objects of everyday experience regarding which…

  11. The Role of Thermal Properties in Periodic Time-Varying Phenomena

    ERIC Educational Resources Information Center

    Marin, E.

    2007-01-01

    The role played by physical parameters governing the transport of heat in periodical time-varying phenomena within solids is discussed. Starting with a brief look at the conduction heat transport mechanism, the equations governing heat conduction under static, stationary and non-stationary conditions, and the physical parameters involved, are…

  12. Autonomous Sensory Meridian Response (ASMR) and Frisson: Mindfully Induced Sensory Phenomena That Promote Happiness

    ERIC Educational Resources Information Center

    del Campo, Marisa A.; Kehle, Thomas J.

    2016-01-01

    There are many important phenomena involved in human functioning that are unnoticed, misunderstood, not applied, or do not pique the interest of the scientific community. Among these, "autonomous sensory meridian response" ("ASMR") and "frisson" are two very noteworthy instances that may prove to be therapeutically…

  13. The Bio-Logic and machinery of plant morphogenesis.

    PubMed

    Niklas, Karl J

    2003-04-01

    Morphogenesis (the development of organic form) requires signal-trafficking and cross-talking across all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many biologists are currently converging on the pictorial conventions of computer scientists to render biological signaling as logic circuits supervising the operation of one or more signal-activated metabolic or gene networks. This approach can redact and simplify complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is discussed in terms of how logic circuits and signal-activated subsystems work, and it is illustrated for examples of increasingly more complex morphogenetic phenomena, e.g., auxin-mediated cell expansion, entry into the mitotic cell cycle phases, and polar/lateral intercellular auxin transport. For each of these phenomena, a posited circuit/subsystem diagram draws rapid attention to missing components, either in the logic circuit or in the subsystem it supervises. These components must be identified experimentally if each of these basic phenomena is to be fully understood. Importantly, the power of the circuit/subsystem approach to modeling developmental phenomena resides not in its pictorial appeal but in the mathematical tools that are sufficiently strong to reveal and quantify the synergistics of networked systems and thus foster a better understanding of morphogenesis.

  14. Air flow in the boundary layer near a plate

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L

    1937-01-01

    The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.

  15. Construction Morphology and the Parallel Architecture of Grammar

    ERIC Educational Resources Information Center

    Booij, Geert; Audring, Jenny

    2017-01-01

    This article presents a systematic exposition of how the basic ideas of Construction Grammar (CxG) (Goldberg, 2006) and the Parallel Architecture (PA) of grammar (Jackendoff, 2002]) provide the framework for a proper account of morphological phenomena, in particular word formation. This framework is referred to as Construction Morphology (CxM). As…

  16. A New Computerized Approach for Teaching the Nature of Membrane Potentials.

    ERIC Educational Resources Information Center

    Vazquez, Jesus

    1991-01-01

    Presents a BASIC program that can be useful in explaining physicochemical phenomena underlying the generation of membrane potential in excitable cells. Its simplicity allows students to understand the nature of these processes through a direct, hands-on approach. Also, the simulated voltage and concentration kinetics agree well with those…

  17. Internal Reflection Spectra of Surface Compounds and Adsorbed Molecules

    NASA Astrophysics Data System (ADS)

    Zolotarev, V. M.; Lygin, V. I.; Tarasevich, B. N.

    1981-01-01

    The application of attenuated total reflection (ATR) spectroscopy in surface studies of inorganic adsorbents and catalysts, polymers, and optically transparent electrodes is discussed. The basic principles of ATR spectroscopy as applied to surface phenomena are considered, with special reference to thin films, industrial adsorbents and catalysts, and polymer degradation processes. 276 references.

  18. Commentary: How Readily Can Findings from Basic Cognitive Psychology Research Be Applied in the Classroom?

    ERIC Educational Resources Information Center

    Efklides, Anastasia

    2012-01-01

    The commentary discusses phenomena highlighted in the studies of the special issue such as the hypercorrection effect, overconfidence, and the efficiency of interventions designed to increase monitoring accuracy. The discussion is based on a broader theoretical framework of self-regulation of learning that stresses the inferential character of…

  19. Learning the Psychology of the Tip-of-the-Tongue Phenomenon through On-Line Practice

    ERIC Educational Resources Information Center

    Ruiz, Marcos; Contreras, María José

    2017-01-01

    Psychology undergraduates can benefit from direct experiences with laboratory procedures of psychological phenomena. However, they are not always available for students within a distance education program. The present study included students from the Spanish National Distance Education University (UNED) that were to take part in a Basic Psychology…

  20. Mechanics Simulations in Second Life

    ERIC Educational Resources Information Center

    Black, Kelly

    2010-01-01

    This paper examines the use of the 3-D virtual world Second Life to explore basic mechanics in physics. In Second Life, students can create scripts that take advantage of a virtual physics engine in order to conduct experiments that focus on specific phenomena. The paper explores two particular examples of this process: (1) the movement of an…

  1. Atoms and Molecules: Do They Have a Place in Primary Science?

    ERIC Educational Resources Information Center

    Lee, Kam-Wah Lucille; Tan, Swee-Ngin

    2004-01-01

    In primary science, topics such as matter, air, water, and changes of state are generally introduced through hands-on activities using everyday resources. Many children find it difficult to understand basic science concepts such as states of matter (solids, liquids, and gases) and everyday phenomena such as evaporating and dissolving. Teachers may…

  2. Violent Florida Weather, Science (Experimental): 5343.05.

    ERIC Educational Resources Information Center

    Espy, J. A., Jr.

    This is a basic weather course describing Florida's weather and is designed to give the student the opportunity to study the phenomena which cause the more destructive disturbances in the atmosphere. The study includes the detection, growth, effects and possible alternation of storms. It is suggested that a student enrolled in this course would…

  3. How Can We Improve School Safety Research?

    ERIC Educational Resources Information Center

    Astor, Ron Avi; Guerra, Nancy; Van Acker, Richard

    2010-01-01

    The authors of this article consider how education researchers can improve school violence and school safety research by (a) examining gaps in theoretical, conceptual, and basic research on the phenomena of school violence; (b) reviewing key issues in the design and evaluation of evidence-based practices to prevent school violence; and (c)…

  4. Ciencias 2 (Science 2). [Student's Workbook].

    ERIC Educational Resources Information Center

    Raposo, Lucilia

    Ciencias 2 is the second in a series of elementary science textbooks written for Portuguese-speaking students. The text develops the basic skills that students need to study their surroundings and observe natural facts and phenomena by following scientific methods. The book is composed of 10 chapters and includes 57 lessons. Topics included are…

  5. A Threshold Theory of the Humor Response

    ERIC Educational Resources Information Center

    Epstein, Robert; Joker, Veronica R.

    2007-01-01

    The humor response has long been considered mysterious, and it is given relatively little attention in modern experimental psychology, in spite of the fact that numerous studies suggest that it has substantial benefits for mood and health. Existing theories of humor fail to account for some of the most basic humor phenomena. On most occasions when…

  6. Transient hypothyroidism after withdrawal of thyroxin therapy

    PubMed Central

    Distiller, L. A.; Joffe, B. I.

    1975-01-01

    Continued administration of large doses of thyroid may not produce hyperthyroidism in euthyroid individuals. Cessation of prolonged high-dosage thyroid replacement can cause transient clinical and biochemical hypothyroidism owing to pituitary suppression. A case is recorded in which both these phenomena are well demonstrated. This case highlights these basic endocrinological principles. PMID:1197170

  7. Archetypes, Causal Description and Creativity in Natural World

    NASA Astrophysics Data System (ADS)

    Chiatti, Leonardo

    The idea, formulated for the first time by Pauli, of a "creativity" of natural processes on a quantum scale is briefly investigated, with particular reference to the phenomena, common throughout the biological world, involved in the amplification of microscopic "creative" events at oscopic level. The involvement of non-locality is also discussed with reference to the synordering of events, a concept introduced for the first time by Bohm. Some convergences are proposed between the metamorphic process envisaged by Bohm and that envisaged by Goethe, and some possible applications concerning known biological phenomena are briefly discussed.

  8. Comparison of the light-flash phenomena observed in space and in laboratory experiments.

    PubMed

    McNulty, P J; Pease, V P; Bond, V P

    1977-01-01

    Astronauts on Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes were closed and adapted to darkness. These observations were studied under controlled conditions during a number of sessions on board Apollo and Skylab spacecraft and the data available to date on these so-called light flashes are in the form of descriptions of the phenomena and frequency of occurrence. Similar visual phenomena have been demonstrated in a number of laboratories by exposing the eyes of human subjects to beams of neutrons, alpha particles, pions and protons. More than one physical mechanism is involved in the laboratory and space phenomena. No direct comparison of the laboratory and space observations has been made by observers who have experienced both. However, the range of visual phenomena observed in the laboratory is consistent with the Apollo and Skylab observations. Measured detection efficiencies can be used to estimate the frequencies with which various phenomena would be observed if that subject was exposed to cosmic rays in space.

  9. Critical Void Volume Fraction fc at Void Coalescence for S235JR Steel at Low Initial Stress Triaxiality

    NASA Astrophysics Data System (ADS)

    Grzegorz Kossakowski, Paweł; Wciślik, Wiktor

    2017-10-01

    The paper is concerned with the nucleation, growth and coalescence of microdefects in the form of voids in S235JR steel. The material is known to be one of the basic steel grades commonly used in the construction industry. The theory and methods of damage mechanics were applied to determine and describe the failure mechanisms that occur when the material undergoes deformation. Until now, engineers have generally employed the Gurson-Tvergaard- Needleman model. This material model based on damage mechanics is well suited to define and analyze failure processes taking place in the microstructure of S235JR steel. It is particularly important to determine the critical void volume fraction fc , which is one of the basic parameters of the Gurson-Tvergaard-Needleman material model. As the critical void volume fraction fc refers to the failure stage, it is determined from the data collected for the void coalescence phase. A case of multi-axial stresses is considered taking into account the effects of spatial stress state. In this study, the parameter of stress triaxiality η was used to describe the failure phenomena. Cylindrical tensile specimens with a circumferential notch were analysed to obtain low values of initial stress triaxiality (η = 0.556 of the range) in order to determine the critical void volume fraction fc . It is essential to emphasize how unique the method applied is and how different it is from the other more common methods involving parameter calibration, i.e. curve-fitting methods. The critical void volume fraction fc at void coalescence was established through digital image analysis of surfaces of S235JR steel, which involved studying real, physical results obtained directly from the material tested.

  10. Oxygen regulates molecular mechanisms of cancer progression and metastasis.

    PubMed

    Gupta, Kartik; Madan, Esha; Sayyid, Muzzammil; Arias-Pulido, Hugo; Moreno, Eduardo; Kuppusamy, Periannan; Gogna, Rajan

    2014-03-01

    Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.

  11. Nuclear Reactions in Micro/Nano-Scale Metal Particles

    NASA Astrophysics Data System (ADS)

    Kim, Y. E.

    2013-03-01

    Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.

  12. Carboxyl‐terminal Heparin‐binding Fragments of Platelet Factor 4 Retain the Blocking Effect on the Receptor Binding of Basic Fibroblast Growth Factor

    PubMed Central

    Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie

    1993-01-01

    Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164

  13. Inquiry Learning: Students' Perception of Light Wave Phenomena in an Informal Environment

    ERIC Educational Resources Information Center

    Ford, Ken

    2011-01-01

    This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging…

  14. Estimating a Meaningful Point of Change: A Comparison of Exploratory Techniques Based on Nonparametric Regression

    ERIC Educational Resources Information Center

    Klotsche, Jens; Gloster, Andrew T.

    2012-01-01

    Longitudinal studies are increasingly common in psychological research. Characterized by repeated measurements, longitudinal designs aim to observe phenomena that change over time. One important question involves identification of the exact point in time when the observed phenomena begin to meaningfully change above and beyond baseline…

  15. A novel method of sensing temperatures of magnet coils of SINP-MaPLE plasma device

    NASA Astrophysics Data System (ADS)

    Pal, A. M.; Bhattacharya, S.; Biswas, S.; Basu, S.; Pal, R.

    2014-03-01

    A set of 36 magnet coils is used to produce a continuous, uniform magnetic field of about 0.35 Tesla inside the vacuum chamber of the MaPLE Device, a linear laboratory plasma device (3 m long and 0.30 m in diameter) built for studying basic magnetized plasma physics phenomena. To protect the water cooled-coils from serious damage due to overheating temperatures of all the coils are monitored electronically using low cost temperature sensor IC chips, a technique first being used in similar magnet system. Utilizing the Parallel Port of a Personal Computer a novel scheme is used to avoid deploying microprocessor that is associated with involved circuitry and low level programming to address and control the large number of sensors. The simple circuits and a program code to implement the idea are developed, tested and presently in operation. The whole arrangement comes out to be not only attractive, but also simple, economical and easy to install elsewhere.

  16. MODELLING OF FUEL BEHAVIOUR DURING LOSS-OF-COOLANT ACCIDENTS USING THE BISON CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastore, G.; Novascone, S. R.; Williamson, R. L.

    2015-09-01

    This work presents recent developments to extend the BISON code to enable fuel performance analysis during LOCAs. This newly developed capability accounts for the main physical phenomena involved, as well as the interactions among them and with the global fuel rod thermo-mechanical analysis. Specifically, new multiphysics models are incorporated in the code to describe (1) transient fission gas behaviour, (2) rapid steam-cladding oxidation, (3) Zircaloy solid-solid phase transition, (4) hydrogen generation and transport through the cladding, and (5) Zircaloy high-temperature non-linear mechanical behaviour and failure. Basic model characteristics are described, and a demonstration BISON analysis of a LWR fuel rodmore » undergoing a LOCA accident is presented. Also, as a first step of validation, the code with the new capability is applied to the simulation of experiments investigating cladding behaviour under LOCA conditions. The comparison of the results with the available experimental data of cladding failure due to burst is presented.« less

  17. In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units

    PubMed Central

    Sanchez, Gabriel N.; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L.; Schnitzer, Mark J.

    2017-01-01

    SUMMARY Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle’s contractile units. Despite the motor unit’s centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. PMID:26687220

  18. The physics of lipid droplet nucleation, growth and budding.

    PubMed

    Thiam, Abdou Rachid; Forêt, Lionel

    2016-08-01

    Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Nonlinear dynamical systems for theory and research in ergonomics.

    PubMed

    Guastello, Stephen J

    2017-02-01

    Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.

  20. Optimized Materials From First Principles Simulations: Are We There Yet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, G; Gygi, F

    2005-07-26

    In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less

  1. The Social Context Network Model in Psychiatric and Neurological Diseases.

    PubMed

    Baez, Sandra; García, Adolfo M; Ibanez, Agustín

    2017-01-01

    The role of contextual modulations has been extensively studied in basic sensory and cognitive processes. However, little is known about their impact on social cognition, let alone their disruption in disorders compromising such a domain. In this chapter, we flesh out the social context network model (SCNM), a neuroscientific proposal devised to address the issue. In SCNM terms, social context effects rely on a fronto-temporo-insular network in charge of (a) updating context cues to make predictions, (b) consolidating context-target associative learning, and (c) coordinating internal and external milieus. First, we characterize various social cognition domains as context-dependent phenomena. Then, we review behavioral and neural evidence of social context impairments in behavioral variant frontotemporal dementia (bvFTD) and autism spectrum disorder (ASD), highlighting their relation with key SCNM hubs. Next, we show that other psychiatric and neurological conditions involve context-processing impairments following damage to the brain regions included in the model. Finally, we call for an ecological approach to social cognition assessment, moving beyond widespread abstract and decontextualized methods.

  2. In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units.

    PubMed

    Sanchez, Gabriel N; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L; Schnitzer, Mark J

    2015-12-16

    Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle's contractile units. Despite the motor unit's centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Student comprehension of mathematics through astronomy

    NASA Astrophysics Data System (ADS)

    Search, Robert

    The purpose of this study is to examine how knowledge of astronomy can enhance college-level learning situations involving mathematics. The fundamental symbiosis between mathematics and astronomy was established early in the 17th century when Johannes Kepler deduced the 3 basic laws of planetary motion. This mutually harmonious relationship between these sciences has been reinforced repeatedly in history. In the early 20th century, for example, astronomer Arthur Eddington used photographic evidence from a 1919 solar eclipse to verify Einstein's mathematical theory of relativity. This study was conducted in 5 undergraduate mathematics classes over the course of 2 years. An introductory course in ordinary differential equations, taught in Spring Semester 2013, involved 4 students. A similar course in Spring Semester 2014 involved 6 students, a Summer Semester 2014 Calculus II course involved 2 students, and a Summer 2015 Astronomy course involved 8 students. The students were asked to use Kepler's astronomical evidence to deduce mathematical laws normally encountered on an undergraduate level. They were also asked to examine the elementary mathematical aspects involved in a theoretical trajectory to the planet Neptune. The summer astronomy class was asked to draw mathematical conclusions about large numbers from the recent discoveries concerning the dwarf planet Pluto. The evidence consists primarily of videotaped PowerPoint presentations conducted by the students in both differential equations classes, along with interviews and tests given in all the classes. All presentations were transcribed and examined to determine the effect of astronomy as a generator of student understanding of mathematics. An analysis of the data indicated two findings: definite student interest in a subject previously unknown to most of them and a desire to make the mathematical connection to celestial phenomena.

  4. Extending SME to Handle Large-Scale Cognitive Modeling.

    PubMed

    Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre

    2017-07-01

    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.

  5. Computational/experimental studies of isolated, single component droplet combustion

    NASA Technical Reports Server (NTRS)

    Dryer, Frederick L.

    1993-01-01

    Isolated droplet combustion processes have been the subject of extensive experimental and theoretical investigations for nearly 40 years. The gross features of droplet burning are qualitatively embodied by simple theories and are relatively well understood. However, there remain significant aspects of droplet burning, particularly its dynamics, for which additional basic knowledge is needed for thorough interpretations and quantitative explanations of transient phenomena. Spherically-symmetric droplet combustion, which can only be approximated under conditions of both low Reynolds and Grashof numbers, represents the simplest geometrical configuration in which to study the coupled chemical/transport processes inherent within non-premixed flames. The research summarized here, concerns recent results on isolated, single component, droplet combustion under microgravity conditions, a program pursued jointly with F.A. Williams of the University of California, San Diego. The overall program involves developing and applying experimental methods to study the burning of isolated, single component droplets, in various atmospheres, primarily at atmospheric pressure and below, in both drop towers and aboard space-based platforms such as the Space Shuttle or Space Station. Both computational methods and asymptotic methods, the latter pursued mainly at UCSD, are used in developing the experimental test matrix, in analyzing results, and for extending theoretical understanding. Methanol, and the normal alkanes, n-heptane, and n-decane, have been selected as test fuels to study time-dependent droplet burning phenomena. The following sections summarizes the Princeton efforts on this program, describe work in progress, and briefly delineate future research directions.

  6. Dynamics of fire plumes in verticle shear

    Treesearch

    Philip Cunningham; Scott L. Goodrick; Hussaini M. Yousuff; Rodman R. Linn; Chunmei Xia

    2003-01-01

    Plumes from wildfires and prescribed fires represent a critical aspect of smoke mangement and aire quality assessment, as as such it is important to understand the structure and dynamics of these plumes, both with respect to a basic understanding of the phenomena and with respect to an assessment of the validity of plumerise parameterizations over a wide variety of...

  7. General Chemistry Laboratory Experiment to Demonstrate Organic Synthesis, Fluorescence, and Chemiluminescence through Production of a Biphasic Glow Stick

    ERIC Educational Resources Information Center

    Pay, Adam L.; Kovash, Curtiss; Logue, Brian A.

    2017-01-01

    A laboratory experiment is described for beginning, nonmajor chemistry students, which allows students to examine the phenomena of fluorescence and chemiluminescence, as well as gain experience in basic organic synthesis. Students synthesize fluorescein and bis(2,4,6-trichlorophenyl) oxalate (TCPO) to explore fluorescence and chemiluminescence by…

  8. The Misinformation Effect Revisited: Interactions between Spontaneous Memory Processes and Misleading Suggestions

    ERIC Educational Resources Information Center

    Pansky, Ainat; Tenenboim, Einat; Bar, Sarah Kate

    2011-01-01

    Recent findings indicate that retained information tends to converge at the basic level (BL). The aim of the present study was to apply these findings to the investigation of misinformation phenomena. In three experiments, we examined the extent to which the contaminating effects of misinformation are influenced by its consistency with the…

  9. Concept of Quantum Geometry in Optoelectronic Processes in Solids: Application to Solar Cells.

    PubMed

    Nagaosa, Naoto; Morimoto, Takahiro

    2017-07-01

    The concept of topology is becoming more and more relevant to the properties and functions of electronic materials including various transport phenomena and optical responses. A pedagogical introduction is given here to the basic ideas and their applications to optoelectronic processes in solids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Plasma Processing of Materials

    DTIC Science & Technology

    1985-02-22

    inert gas or in a reduced pressure environment) one can obtain rapidly solidified metastable (i.e., amorphous, microcrystalline, and supersaturated...integrated circuits dnd thus is an area of’vital : importance to our electronics industry. Applications utilizing noble gas plasmas, such as ion-plating...phenomena and probably will not benefit -ubstantially from acditional basic research. Applications utilizing molecular gas plasmas, where reactive species

  11. Progressions of Qualitative Models as a Foundation for Intelligent Learning Environments. Report No. 6277.

    ERIC Educational Resources Information Center

    White, Barbara Y.; Frederiksen, John R.

    This report discusses the importance of presenting qualitative, causally consistent models in the initial stages of learning so that students can gain an understanding of basic electrical circuit concepts and principles that builds on their preexisting ways of reasoning about physical phenomena, and it argues that tutoring environments must help…

  12. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    ERIC Educational Resources Information Center

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  13. A Visual Aid for Teaching Basic Concepts of Soil-Water Physics.

    ERIC Educational Resources Information Center

    Eshel, Amram

    1997-01-01

    Presents a visual aid designed to generate an image of water movement among soil particles using an overhead projector to teach the physical phenomena related to water status and water movement in the soil. Utilizes a base plate of thin transparent plastic, opaque plastic sheets, a plate of glass, and a colored aqueous solution. (AIM)

  14. Recent advances in radar applications to agriculture

    NASA Technical Reports Server (NTRS)

    Morain, S. A.

    1970-01-01

    A series of remote radar sensing studies are summarized. These efforts comprise geoscience interpretations of such complex phenomena as those manifested in agricultural patterns. Considered are basic remote sensing needs in agriculture and the design and implementation of radar keys in the active microwave region as well as fine resolution radar imagery techniques for agriculture determinations and soil mapping.

  15. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    PubMed

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.

  16. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment - case study: Bâsca Chiojdului River catchment (Romania)

    NASA Astrophysics Data System (ADS)

    Costache, Romulus; Zaharia, Liliana

    2017-06-01

    Given the significant worldwide human and economic losses caused due to floods annually, reducing the negative consequences of these hazards is a major concern in development strategies at different spatial scales. A basic step in flood risk management is identifying areas susceptible to flood occurrences. This paper proposes a methodology allowing the identification of areas with high potential of accelerated surface run-off and consequently, of flash-flood occurrences. The methodology involves assessment and mapping in GIS environment of flash flood potential index (FFPI), by integrating two statistical methods: frequency ratio and weights-of-evidence. The methodology was applied for Bâsca Chiojdului River catchment (340 km2), located in the Carpathians Curvature region (Romania). Firstly, the areas with torrential phenomena were identified and the main factors controlling the surface run-off were selected (in this study nine geographical factors were considered). Based on the features of the considered factors, many classes were set for each of them. In the next step, the weights of each class/category of the considered factors were determined, by identifying their spatial relationships with the presence or absence of torrential phenomena. Finally, the weights for each class/category of geographical factors were summarized in GIS, resulting the FFPI values for each of the two statistical methods. These values were divided into five classes of intensity and were mapped. The final results were used to estimate the flash-flood potential and also to identify the most susceptible areas to this phenomenon. Thus, the high and very high values of FFPI characterize more than one-third of the study catchment. The result validation was performed by (i) quantifying the rate of the number of pixels corresponding to the torrential phenomena considered for the study (training area) and for the results' testing (validating area) and (ii) plotting the ROC (receiver operating characteristics) curve.

  17. A new asymptotic method for jump phenomena

    NASA Technical Reports Server (NTRS)

    Reiss, E. L.

    1980-01-01

    Physical phenomena involving rapid and sudden transitions, such as snap buckling of elastic shells, explosions, and earthquakes, are characterized mathematically as a small disturbance causing a large-amplitude response. Because of this, standard asymptotic and perturbation methods are ill-suited to these problems. In the present paper, a new method of analyzing jump phenomena is proposed. The principal feature of the method is the representation of the response in terms of rational functions. For illustration, the method is applied to the snap buckling of an elastic arch and to a simple combustion problem.

  18. Gilles de la Tourette syndrome in a cohort of deaf people.

    PubMed

    Robertson, M M; Roberts, S; Pillai, S; Eapen, V

    2015-10-01

    We present six patients with Gilles de la Tourette syndrome (TS) who are also deaf. TS has been observed previously, but rarely reported in deaf people, and to date, so called "unusual" phenomenology has been highlighted. TS occurs almost worldwide and in all cultures, and the clinical phenomenology is virtually identical. In our cohort of deaf patients (we suggest another culture) with TS, the phenomenology is the same as in hearing people, and as in all other cultures, with classic motor and vocal/phonic tics, as well as associated phenomena including echo-phenomena, pali-phenomena and rarer copro-phenomena. When "words" related to these phenomenon (e.g. echolalia, palilalia, coprolalia or mental coprolalia) are elicited in deaf people, they occur usually in British Sign Language (BSL): the more "basic" vocal/phonic tics such as throat clearing are the same phenomenologically as in hearing TS people. In our case series, there was a genetic predisposition to TS in all cases. We would argue that TS in deaf people is the same as TS in hearing people and in other cultures, highlighting the biological nature of the disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Preformed cell structure and cell heredity

    PubMed Central

    2008-01-01

    This review will first recall the phenomena of “cortical inheritance” observed and genetically demonstrated in Paramecium 40 years ago, and later in other ciliates (Tetrahymena, Oxytricha, Paraurostyla), and will analyze the deduced concept of “cytotaxis” or “structural memory.” The significance of these phenomena, all related (but not strictly restricted) to the properties of ciliary basal bodies and their mode of duplication, will be interpreted in the light of present knowledge on the mechanism and control of basal body/centriole duplication. Then other phenomena described in a variety of organisms will be analyzed or mentioned which show the relevance of the concept of cytotaxis to other cellular processes, mainly (1) cytoskeleton assembly and organization with examples on ciliates, trypanosome, mammalian cells and plants, and (2) transmission of polarities with examples on yeast, trypanosome and metazoa. Finally, I will discuss some aspects of this particular type of non-DNA inheritance: (1) why so few documented examples if structural memory is a basic parameter in cell heredity, and (2) how are these phenomena (which all rely on protein/protein interactions, and imply a formatting role of preexisting proteinic complexes on neo-formed proteins and their assembly) related to prions? PMID:19164887

  20. Extreme precipitation in the Polish Carpathians in the 20th century in the context of last 500 years

    NASA Astrophysics Data System (ADS)

    Limanowka, Danuta; Cebulak, Elzbieta; Pyrc, Robert

    2010-05-01

    Extreme weather phenomena together with their exceptional course and intensity have always been dangerous for people. In the historical documents such phenomena were marked as basic disasters. First notes about weather phenomena were made in Polish lands in the 10th century. Most information concerns floods caused by intensive rains. Using the data base created within the Millennium project, extreme precipitation cases exceeding 100 mm were analysed. In each case, the intensive precipitation was followed by a summer flood in the Polish Carpathians in the Upper Vistula River basin. Data from the period of instrumental measurements in the 20th century were studied in detail by the analysis of the frequency of occurrence and the spatial and temporal distribution. The results were referred to last 500 years. The information obtained gives approximate image of extreme precipitation in the historical times in Polish lands. All available multi-proxy data were used. Newspapers' notes concerning described phenomena from 1848-1850 published in Kraków were used to complete and verify the quality of data from the early instrumental period and also to complete the data from the period of the Second World War.

  1. Astronomical phenomena: events with high impact factor in teaching optics and photonics

    NASA Astrophysics Data System (ADS)

    Curticapean, Dan

    2014-07-01

    Astronomical phenomena fascinate people from the very beginning of mankind up to today. They have a enthusiastic effect, especially on young people. Among the most amazing and well-known phenomena are the sun and moon eclipses. The impact factor of such events is very high, as they are being covered by mass media reports and the Internet, which provides encyclopedic content and discussion in social networks. The principal optics and photonics topics that can be included in such lessons originate from geometrical optics and the basic phenomena of reflection, refraction and total internal reflection. Lenses and lens systems up to astronomical instruments also have a good opportunity to be presented. The scientific content can be focused on geometrical optics but also diffractive and quantum optics can be incorporated successfully. The author will present how live streams of the moon eclipses can be used to captivate the interest of young listeners for optics and photonics. The gathered experience of the last two moon eclipses visible from Germany (on Dec, 21 2010 and Jun, 15 2011) will be considered. In an interactive broadcast we reached visitors from more than 135 countries.

  2. Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena

    NASA Astrophysics Data System (ADS)

    Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory

    2012-02-01

    Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.

  3. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less

  4. Transport Phenomena Projects: Natural Convection between Porous, Concentric Cylinders--A Method to Learn and to Innovate

    ERIC Educational Resources Information Center

    Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.

    2013-01-01

    A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…

  5. Teachers' and Prospective Teachers' Explanations of Liquid-State Phenomena: A Comparative Study Involving Three European Countries

    ERIC Educational Resources Information Center

    Leite, Laurinda; Mendoza, Jose; Borsese, Aldo

    2007-01-01

    As contact with liquids occurs from an early stage in individuals' lives, children construct explanations for liquids and liquid-state phenomena. These may differ from the accepted scientific explanations, interfere with formal teaching, and even persist until entry into higher education. The objective of this investigation is to compare…

  6. Materials sciences research. [research facilities, research projects, and technical reports of materials tests

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

  7. Fluorescence excited in a thunderstorm atmosphere by relativistic runaway electron avalanches

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.

    2017-05-01

    The spectrum and spatiotemporal evolution of the fluorescence of an atmospheric discharge developing in the regime of relativistic runaway electron avalanche (RREA) generation have been calculated without involving the relativistic feedback. The discharges generating narrow bipolar pulses, along with the discharges responsible for terrestrial gamma-ray flashes, are shown to be relatively dark. Nevertheless, the fluorescence excited by a discharge involving RREAs can be recorded with cameras used to record high-altitude optical phenomena. A possible connection between a certain class of optical phenomena observed at the tops of thunderclouds and RREA emission is pointed out.

  8. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development.

    PubMed

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa ( Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and contributes to the understanding of the basic molecular mechanisms during the alfalfa flowering process. These results may offer insight into potential strategies for improving seed yield, quality, and stress tolerance in alfalfa.

  9. Resilience vs soft crisis: dynamic risk assessment in complex hybrid systems. Case history of Ginosa (Taranto, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Parisi, Alessandro; Argentiero, Ilenia; Fidelibus, Maria Dolores; Pellicani, Roberta; Spilotro, Giuseppe

    2017-04-01

    Considering a natural system without human-induced modifications, its resilience can be altered by many natural drivers (e.g. geological characteristics, climate) and their spatial modifications over time. Therefore, natural hazardous phenomena could shift natural system over tipping points in an easier or more difficult way. So long as natural system does not involve human settlements or transport infrastructures, natural system risk assessment could not be a basic topic. Nowadays, human activities have modified many natural systems forming, as a result, hybrid systems (both human and natural), in which natural and human-induced drivers modify hybrid systems vulnerability in order to decrease or increase their resilience: scientists define this new age Anthropocene. In this context, dynamic risk assessment of hybrid systems is required in order to avoid disaster when hazardous phenomena occur, but it is a quite complex issue. In fact, soft crisis emerging signals are difficult to identify because of wrong risk perception and lack of communication. Furthermore, natural and human-induced modifications are rarely registered and supervised by governments, so it is fairly difficult defining how systems resilience changes over time. Inhabitants of Ginosa (Taranto, South of Italy) had modified many old rock dwellings over thousand years since the Middle Ages. Indeed, they had built up three-storey houses on three hypogeum levels of rock dwellings along the ravine. The Matrice street collapse in Ginosa is an example of how natural and human-induced spatial modifications over time had led a soft crisis to evolve in a disaster, fortunately without fatalities. This research aim is to revisit events before the Matrice street collapse on the 21st January 2014. The will is to define the relationship between the hybrid system resilience and soft crisis variation over time and how human and natural drivers were involved in the shift.

  10. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development

    PubMed Central

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and contributes to the understanding of the basic molecular mechanisms during the alfalfa flowering process. These results may offer insight into potential strategies for improving seed yield, quality, and stress tolerance in alfalfa. PMID:27757120

  11. Effects of the New Madrid earthquake series in the Mississippi Alluvial Valley. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saucier, R.T.

    1977-02-01

    Geological effects of the New Madrid earthquake series of 1811-12 in the upper portion of the Lower Mississippi Valley include land subsidence, uplift or doming, landslides, bank caving, fissuring, and sand blow phenomena. Features resulting from the liquefaction of sand are widespread in the alluvial valley and offer the greatest potential for definitively assessing the effects of major earthquakes on thick alluvial deposits and predicting the recurrence interval of infrequent major earthquakes in the region. However, liquefaction phenomena have not been the subject of detailed geological investigations applying knowledge of alluvial morphology and earth sciences methodology. Comparative aerial photo interpretationmore » has been used to classify liquefaction phenomena according to morphology, distribution, and relationship to major depositional environments. Surface morphology and spatial distribution of sand blows and fissures indicate basic control by drainage lines, water table position, and thickness of fine-grained topstratum deposits, Research efforts have been aimed at locating field test sites where the subsurface expression of the liquefaction phenomena can be investigated through trenching and land planing. Subsurface expression is presumed to be more permanent than surface expression and may permit the recognition of such features in older formations. Evidence of fissures and related phenomena is being sought in older Quaternary deposits to permit estimates of the frequency of past major earthquakes.« less

  12. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Technical Reports Server (NTRS)

    Jones, C. W. (Editor)

    1985-01-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  13. 1985 Annual Conference on Nuclear and Space Radiation Effects, 22nd, Monterey, CA, July 22-24, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Jones, C. W.

    1985-12-01

    Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.

  14. Scientific divulgation through the teaching of Astronomy and Mathematics

    NASA Astrophysics Data System (ADS)

    Silva, Alysson Wanderley Teixeira; de Macedo, Josué Antunes; Voelzke, Marcos Rincon

    2015-09-01

    This article presents an experience report of a workshop held at the State School Professor Plínio Ribeiro, who aimed to spread the use of interactive materials for teaching Astronomy and its relationship with Mathematics during the Forum Biotemas. Despite being part of the official documents, be present in the curricular proposals from several Brazilian states, and has contributed to the human and technological development, Astronomy is rarely taught adequately in basic education, with unsatisfactory results presented by students and teachers. In this sense was held a workshop planned for elementary education students called 'Astronomy and Mathematics: Learn to Observe the Sky With Other Eyes' involving several resources. The methodology consisted of awareness of those involved, presentation videos, using Stellarium software, application of Mathematics in Astronomy and discussions. Among the main results, can highlight students' interest in scientific matters, because when the study of the sciences takes place without interaction with natural and technological phenomena, a huge gap in the education of students occurs. In this sense, the use of different resources, as templates, observations, real and virtual experiments, animations, simulations, video lessons, can arouse the interest of students by conceptual content, differently from what happens when the study takes place using only conventional resources, with books and handouts.

  15. Astrophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  16. Spray combustion under oscillatory pressure conditions

    NASA Technical Reports Server (NTRS)

    Jacobs, H. R.; Santoro, R. J.

    1991-01-01

    The performance and stability of liquid rocket engines is often argued to be significantly impacted by atomization and droplet vaporization processes. In particular, combustion instability phenomena may result from the interactions between the oscillating pressure field present in the rocket combustor and the fuel and oxidizer injection process. Few studies have been conducted to examine the effects of oscillating pressure fields on spray formation and its evolution under rocket engine conditions. The pressure study is intended to address the need for such studies. In particular, two potentially important phenomena are addressed in the present effort. The first involves the enhancement of the atomization process for a liquid jet subjected to an oscillating pressure field of known frequency and amplitude. The objective of this part of the study is to examine the coupling between the pressure field and or the resulting periodically perturbed velocity field on the breakup of the liquid jet. In particular, transverse mode oscillations are of interest since such modes are considered of primary importance in combustion instability phenomena. The second aspect of the project involves the effects of an oscillating pressure on droplet coagulation and secondary atomization. The objective of this study is to examine the conditions under which phenomena following the atomization process are affected by perturbations to the pressure or velocity fields. Both coagulation and represent a coupling mechanism between the pressure field and the energy release process in rocket combustors. It is precisely this coupling which drives combustion instability phenomena. Consequently, the present effort is intended to provide the fundamental insights needed to evaluate these processes as important mechanisms in liquid rocket instability phenomena.

  17. Polymers in Fluid Flows

    NASA Astrophysics Data System (ADS)

    Benzi, Roberto; Ching, Emily S. C.

    2018-03-01

    The interaction of flexible polymers with fluid flows leads to a number of intriguing phenomena observed in laboratory experiments, namely drag reduction, elastic turbulence, and heat transport modification in natural convection, and is one of the most challenging subjects in soft matter physics. In this review, we examine our present knowledge on the subject. Our present knowledge is mostly based on direct numerical simulations performed in the last twenty years, which have successfully explained, at least qualitatively, most of the experimental results. Our goal is to disentangle as much as possible the basic mechanisms acting in the system in order to capture the basic features underlying different theoretical approaches and explanations.

  18. Comparing early signs and basic symptoms as methods for predicting psychotic relapse in clinical practice.

    PubMed

    Eisner, Emily; Drake, Richard; Lobban, Fiona; Bucci, Sandra; Emsley, Richard; Barrowclough, Christine

    2018-02-01

    Early signs interventions show promise but could be further developed. A recent review suggested that 'basic symptoms' should be added to conventional early signs to improve relapse prediction. This study builds on preliminary evidence that basic symptoms predict relapse and aimed to: 1. examine which phenomena participants report prior to relapse and how they describe them; 2. determine the best way of identifying pre-relapse basic symptoms; 3. assess current practice by comparing self- and casenote-reported pre-relapse experiences. Participants with non-affective psychosis were recruited from UK mental health services. In-depth interviews (n=23), verbal checklists of basic symptoms (n=23) and casenote extracts (n=208) were analysed using directed content analysis and non-parametric statistical tests. Three-quarters of interviewees reported basic symptoms and all reported conventional early signs and 'other' pre-relapse experiences. Interviewees provided rich descriptions of basic symptoms. Verbal checklist interviews asking specifically about basic symptoms identified these experiences more readily than open questions during in-depth interviews. Only 5% of casenotes recorded basic symptoms; interviewees were 16 times more likely to report basic symptoms than their casenotes did. The majority of interviewees self-reported pre-relapse basic symptoms when asked specifically about these experiences but very few casenotes reported these symptoms. Basic symptoms may be potent predictors of relapse that clinicians miss. A self-report measure would aid monitoring of basic symptoms in routine clinical practice and would facilitate a prospective investigation comparing basic symptoms and conventional early signs as predictors of relapse. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Learning to Explain Astronomy across Moving Frames of Reference: Exploring the Role of Classroom and Planetarium-Based Instructional Contexts

    ERIC Educational Resources Information Center

    Plummer, Julia Diane; Kocareli, Alicia; Slagle, Cynthia

    2014-01-01

    Learning astronomy involves significant spatial reasoning, such as learning to describe Earth-based phenomena and understanding space-based explanations for those phenomena as well as using the relevant size and scale information to interpret these frames of reference. This study examines daily celestial motion (DCM) as one case of how children…

  20. Investigating the Integration of Everyday Phenomena and Practical Work in Physics Teaching in Vietnamese High Schools

    ERIC Educational Resources Information Center

    Ng, Wan; Nguyen, Van Thanh

    2006-01-01

    Making science relevant in students' learning is an important aspect of science education. This involves the ability to draw in examples from daily contexts to begin with the learning or to apply concepts learnt into familiar everyday phenomena that students observe and experience around them. Another important aspect of science education is the…

  1. Teaching Astrophysics to Upper Level Undergraduates

    NASA Astrophysics Data System (ADS)

    Van Dorn Bradt, Hale

    2010-03-01

    A Socratic peer-instruction method for teaching upper level undergraduates is presented. Basically, the instructor sits with the students and guides their presentations of the material. My two textbooks* (on display) as well as many others are amenable to this type of teaching. *Astronomy Methods - A Physical Approach to Astronomical Observations (CUP 2004) *Astrophysics Processes-The Physics of Astronomical Phenomena (CUP 2008)

  2. A Bullet-Block Experiment That Explains the Chain Fountain

    ERIC Educational Resources Information Center

    Pantaleone, J.; Smith, R.

    2018-01-01

    It is common in science for two phenomena to appear to be very different, but in fact follow from the same basic principles. Here we consider such a case, the connection between the chain fountain and a bullet-block collision experiment. When an upward moving bullet strikes a wooden block resting on a horizontal table, the block will rise to a…

  3. Observable phase factors and symmetry of electric and magnetic charges

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1978-01-01

    The observable phase factor is taken as a basic concept for the description of electromagnetism. Generalization of this concept to SU(2) and SU(2) x U(1) groups is carried out in such a way that the monopoles with quantized charges appear naturally and that the symmetry between the electric and magnetic phenomena is preserved. Some physical implications are discussed.

  4. Concept Confusion and Concept Discernment in Basic Magnetism Using Analogical Reasoning

    ERIC Educational Resources Information Center

    Lemmer, Miriam; Morabe, Olebogeng Nicodimus

    2017-01-01

    Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the…

  5. Quality Assurance and Evaluation through Brazilian Lenses: An Exploration into the Validity of Umbrella Concepts

    ERIC Educational Resources Information Center

    Centeno, Vera G.; Kauko, Jaakko; Candido, Helena H. D.

    2018-01-01

    In our present research we address the question of whether it is valid to apply the Quality Assurance and Evaluation (QAE) umbrella concept, which was formulated to explain new phenomena in European educational governance, to similar developments in Brazilian basic education. This led us to reflect on the possible pitfalls and potential strengths…

  6. A Sun-Earth-Moon Activity to Develop Student Understanding of Lunar Phases and Frames of Reference

    ERIC Educational Resources Information Center

    Ashmann, Scott

    2012-01-01

    The Moon is an ever-present subject of observation, and it is a recurring topic in the science curriculum from kindergarten's basic observations through graduate courses' mathematical analyses of its orbit. How do students come to comprehend Earth's nearest neighbor? What is needed for them to understand the lunar phases and other phenomena and…

  7. Segregation and the Black-White Test Score Gap. NBER Working Paper No. 12988

    ERIC Educational Resources Information Center

    Vigdor, Jacob; Ludwig, Jens

    2007-01-01

    The mid-1980s witnessed breaks in two important trends related to race and schooling. School segregation, which had been declining, began a period of relative stasis. Black-white test score gaps, which had also been declining, also stagnated. The notion that these two phenomena may be related is also supported by basic cross-sectional evidence. We…

  8. Videotape Recording of Narcotic Addicts in Group Therapy: The Analysis of Communicational and Interactive Behavior.

    ERIC Educational Resources Information Center

    Soloway, Irv

    An approach to the study of drug sub-culture groups and a model for predictive research in the identification and isolation of heroin addicts are developed in this thesis. The basic methodologies employed are the linguistic methods of Kenneth Pike and Claude Levi-Strauss for use in the analysis of social phenomena. Communicative mechanisms by…

  9. A statistical mechanics approach to autopoietic immune networks

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Agliari, Elena

    2010-07-01

    In this work we aim to bridge theoretical immunology and disordered statistical mechanics. We introduce a model for the behavior of B-cells which naturally merges the clonal selection theory and the autopoietic network theory as a whole. From the analysis of its features we recover several basic phenomena such as low-dose tolerance, dynamical memory of antigens and self/non-self discrimination.

  10. Acupuncture-Based Biophysical Frontiers of Complementary Medicine

    DTIC Science & Technology

    2001-10-28

    cf. Fig. 1, an evolutionary older type of intercell communications , transporting ionic electrical signals between excitable cells, whose conductivity...traditional psychology: Biophysical bases of psychosomatic disorders and transpersonal stress reprogramming", in Basic and Clinical Aspects of the Theory...biophysical basis of transpersonal transcendental phenomena", Int. J. Appl. Sci. & Computat, vol. 7, pp. 174-187, 2000 [also presented at Int. Conf

  11. Drawings and Ideas of Physics Teacher Candidates Relating to the Superposition Principle on a Continuous Rope

    ERIC Educational Resources Information Center

    Sengoren, Serap Kaya; Tanel, Rabia; Kavcar, Nevzat

    2006-01-01

    The superposition principle is used to explain many phenomena in physics. Incomplete knowledge about this topic at a basic level leads to physics students having problems in the future. As long as prospective physics teachers have difficulties in the subject, it is inevitable that high school students will have the same difficulties. The aim of…

  12. Basic Facts about the Pion

    NASA Astrophysics Data System (ADS)

    Roberts, Craig

    2015-04-01

    With discovery of the Higgs boson, the Standard Model of Particle Physics became complete. Its formulation and verification are a remarkable story. However, the most important chapter is the least understood. Quantum Chromodynamics (QCD) is that part of the Standard Model which is supposed to describe all of nuclear physics and yet, almost fifty years after the discovery of quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: pions, neutrons, protons. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB), whose implications are truly extraordinary. This presentation will reveal how DCSB, not the Higgs boson, generates more than 98% of the visible mass in the Universe, explain why confinement guarantees that condensates, those quantities that were commonly viewed as constant mass-scales that fill all spacetime, are instead wholly contained within hadrons; and, with particular focus on the pion, elucidate a range of observable consequences of these phenomena whose measurement is the focus of a vast international experimental programme. This research was supported by U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357.

  13. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  14. Basic tasks for improving spectral-acoustic forecasting of dynamic phenomena in coal mines

    NASA Astrophysics Data System (ADS)

    Shadrin, A. V.; Kontrimas, A. A.

    2017-09-01

    A number of tasks for improving the spectral-acoustic method for forecasting dynamic phenomena and controlling stress condition in coalmines is considered. They are: considering the influence of a gas factor on the danger indicator, dependence of a relative pressure coefficient on the distance between the source and the receiver of the probing acoustic signal, correct selection of operating frequencies, the importance of developing the techniques for defining the critical value of the outburst danger index The influence of the rock mass stress condition ahead of the preliminary opening face on the relative pressure coefficient defined for installing the sound receiver in the wall of the opening behind the opening face is also justified in the article.

  15. Radar cross section fundamentals for the aircraft designer

    NASA Technical Reports Server (NTRS)

    Stadmore, H. A.

    1979-01-01

    Various aspects of radar cross-section (RCS) techniques are summarized, with emphasis placed on fundamental electromagnetic phenomena, such as plane and spherical wave formulations, and the definition of RCS is given in the far-field sense. The basic relationship between electronic countermeasures and a signature level is discussed in terms of the detectability range of a target vehicle. Fundamental radar-signature analysis techniques, such as the physical-optics and geometrical-optics approximations, are presented along with examples in terms of aircraft components. Methods of analysis based on the geometrical theory of diffraction are considered and various wave-propagation phenomena are related to local vehicle geometry. Typical vehicle components are also discussed, together with their contribution to total vehicle RCS and their individual signature sensitivities.

  16. Hepatologie Neuere Forschungsergebnisse in ihrer Bedeutung für das Verständnis von Leberkrankheiten

    NASA Astrophysics Data System (ADS)

    Gerok, W.; Blum, H. E.; Offensperger, W.; Offensperger, S.; Andus, T.; Groß, V.; Heinrich, P. C.

    1991-06-01

    By two exemplary clinical situations — acute viral hepatitis, acute-phase reaction of the liver — the significance of basic research for the understanding of clinical phenomena and for the development of new diagnostic and therapeutic procedures is demonstrated. The very different phenomena following infection with the hepatitis-B-virus can be explained by the variation in the interactions of virus and liver cell, by the immune reaction of the host, and by mutants of the virus. The reaction of the liver to an extrahepatic infection is mediated by interleukin-6, and characterized by an alteration in protein metabolism. The synthesis of acute-phase proteins is increased. The proteins confine the local injury and establish the homeostasis of the organism.

  17. Compressibility, Laws of Nature, Initial Conditions and Complexity

    NASA Astrophysics Data System (ADS)

    Chibbaro, Sergio; Vulpiani, Angelo

    2017-10-01

    We critically analyse the point of view for which laws of nature are just a mean to compress data. Discussing some basic notions of dynamical systems and information theory, we show that the idea that the analysis of large amount of data by means of an algorithm of compression is equivalent to the knowledge one can have from scientific laws, is rather naive. In particular we discuss the subtle conceptual topic of the initial conditions of phenomena which are generally incompressible. Starting from this point, we argue that laws of nature represent more than a pure compression of data, and that the availability of large amount of data, in general, is not particularly useful to understand the behaviour of complex phenomena.

  18. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  19. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  20. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability.

    PubMed

    Pál, Balázs

    2018-05-15

    Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.

  1. How placebos change the patient's brain.

    PubMed

    Benedetti, Fabrizio; Carlino, Elisa; Pollo, Antonella

    2011-01-01

    Although placebos have long been considered a nuisance in clinical research, today they represent an active and productive field of research and, because of the involvement of many mechanisms, the study of the placebo effect can actually be viewed as a melting pot of concepts and ideas for neuroscience. Indeed, there exists not a single but many placebo effects, with different mechanisms and in different systems, medical conditions, and therapeutic interventions. For example, brain mechanisms of expectation, anxiety, and reward are all involved, as well as a variety of learning phenomena, such as Pavlovian conditioning, cognitive, and social learning. There is also some experimental evidence of different genetic variants in placebo responsiveness. The most productive models to better understand the neurobiology of the placebo effect are pain and Parkinson's disease. In these medical conditions, the neural networks that are involved have been identified: that is, the opioidergic-cholecystokinergic-dopaminergic modulatory network in pain and part of the basal ganglia circuitry in Parkinson's disease. Important clinical implications emerge from these recent advances in placebo research. First, as the placebo effect is basically a psychosocial context effect, these data indicate that different social stimuli, such as words and rituals of the therapeutic act, may change the chemistry and circuitry of the patient's brain. Second, the mechanisms that are activated by placebos are the same as those activated by drugs, which suggests a cognitive/affective interference with drug action. Third, if prefrontal functioning is impaired, placebo responses are reduced or totally lacking, as occurs in dementia of the Alzheimer's type.

  2. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  3. COED Transactions, Vol. IX, No. 3, March 1977. Evaluation of a Complex Variable Using Analog/Hybrid Computation Techniques.

    ERIC Educational Resources Information Center

    Marcovitz, Alan B., Ed.

    Described is the use of an analog/hybrid computer installation to study those physical phenomena that can be described through the evaluation of an algebraic function of a complex variable. This is an alternative way to study such phenomena on an interactive graphics terminal. The typical problem used, involving complex variables, is that of…

  4. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  5. Falsifiability is not optional.

    PubMed

    LeBel, Etienne P; Berger, Derek; Campbell, Lorne; Loving, Timothy J

    2017-08-01

    Finkel, Eastwick, and Reis (2016; FER2016) argued the post-2011 methodological reform movement has focused narrowly on replicability, neglecting other essential goals of research. We agree multiple scientific goals are essential, but argue, however, a more fine-grained language, conceptualization, and approach to replication is needed to accomplish these goals. Replication is the general empirical mechanism for testing and falsifying theory. Sufficiently methodologically similar replications, also known as direct replications, test the basic existence of phenomena and ensure cumulative progress is possible a priori. In contrast, increasingly methodologically dissimilar replications, also known as conceptual replications, test the relevance of auxiliary hypotheses (e.g., manipulation and measurement issues, contextual factors) required to productively investigate validity and generalizability. Without prioritizing replicability, a field is not empirically falsifiable. We also disagree with FER2016's position that "bigger samples are generally better, but . . . that very large samples could have the downside of commandeering resources that would have been better invested in other studies" (abstract). We identify problematic assumptions involved in FER2016's modifications of our original research-economic model, and present an improved model that quantifies when (and whether) it is reasonable to worry that increasing statistical power will engender potential trade-offs. Sufficiently powering studies (i.e., >80%) maximizes both research efficiency and confidence in the literature (research quality). Given that we are in agreement with FER2016 on all key open science points, we are eager to start seeing the accelerated rate of cumulative knowledge development of social psychological phenomena such a sufficiently transparent, powered, and falsifiable approach will generate. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Experimental study of ELF signatures developed by ballistic missile launch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peglow, S.G.; Rynne, T.M.

    1993-04-08

    The Lawrence Livermore National Laboratory (Livermore, CA) and SARA, Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. These tests involved the launch of Lance missiles with a subsequent direction of F-15Es into the launch area for subsequent detection and simulated destruction of redeployed missile launchers, LLNL and SARA deployed SARN`s ELF sensors and various data acquisition systems for monitoring of basic phenomena. On 25 January 1993, a single missile launch allowed initial measurements of the phenomena and an assessment of appropriate sensor sensitivity settings as well as the appropriateness of the sensor deploymentmore » sites (e.g., with respect to man-made ELF sources such as power distributions and communication lines). On 27 January 1993, a measurement of a double launch of Lance missiles was performed. This technical report covers the results of the analysis of latter measurements. An attempt was made to measure low frequency electromagnetic signatures that may be produced during a missile launch. Hypothetical signature production mechanisms include: (1) Perturbations of the earth geo-potential during the launch of the missile. This signature may arise from the interaction of the ambient electric field with the conducting body of the missile as well as the partially ionized exhaust plume. (2) Production of spatial, charge sources from triboelectric-like mechanisms. Such effects may occur during the initial interaction of the missile plume with the ground material and lead to an initial {open_quotes}spike{close_quotes} output, Additionally, there may exist charge transfer mechanisms produced during the exhausting of the burnt fuel oxidizer.« less

  7. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived.

    PubMed

    Qian, Ma; Ma, Jie

    2009-06-07

    Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.

  8. Predicting the Future as Bayesian Inference: People Combine Prior Knowledge with Observations when Estimating Duration and Extent

    ERIC Educational Resources Information Center

    Griffiths, Thomas L.; Tenenbaum, Joshua B.

    2011-01-01

    Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…

  9. A Research Project on Higher Education. Investigations into the Learning and Teaching of Basic Concepts in Economics. No. 54. (1).

    ERIC Educational Resources Information Center

    Dahlgren, Lars Owe; Marton, Ference

    A progress report on a research project directed toward facilitating deeper understanding of economic concepts at the university level is presented. The purposes of the project are to explore phenomena conceptualization and to investigate why some students are more successful at a learning task than other students. In the analysis of a…

  10. Forward hadron calorimeter at MPD/NICA

    NASA Astrophysics Data System (ADS)

    Golubeva, M.; Guber, F.; Ivashkin, A.; Izvestnyy, A.; Kurepin, A.; Morozov, S.; Parfenov, P.; Petukhov, O.; Taranenko, A.; Selyuzhenkov, I.; Svintsov, I.

    2017-01-01

    Forward hadron calorimeter (FHCAL) at MPD/NICA experimental setup is described. The main purpose of the FHCAL is to provide an experimental measurement of a heavy-ion collision centrality (impact parameter) and orientation of its reaction plane. Precise event-by-event estimate of these basic observables is crucial for many physics phenomena studies to be performed by the MPD experiment. The simulation results of FHCAL performance are presented.

  11. Fugitive Dust Emissions: Development of a Real-time Monitor

    DTIC Science & Technology

    2011-10-01

    the mechanical disturbance of soils which injects particles into the air. Common sources of FD include vehicles driving on unpaved roads...agricultural tilling, and heavy construction operations. For these sources the dust-generation process is caused by two basic physical phenomena...visibility, source apportionment , etc. The PM10 standard set by the U.S. Environmental Protection Agency in 1987 is an example of size-selective

  12. Prospective Teachers' Difficulties in Interpreting Elementary Phenomena of Electrostatic Interactions: Indicators of the Status of Their Intuitive Ideas

    ERIC Educational Resources Information Center

    Criado, Ana Maria; Garcia-Carmona, Antonio

    2010-01-01

    Student teachers were tested before and after a teaching unit on electrostatic interactions in an attempt to consider their intuitive ideas and concept development. A study was made of students' explanations of basic interactions: those between two charged bodies, and those between a charged body and a neutral body. Two indicators of the cognitive…

  13. Heterojunction Solid-State Devices for Millimeter-Wave Sources.

    DTIC Science & Technology

    1983-10-01

    technology such as MBE and/or OK-CVD will be required. Our large-signal, numerical WATT device simulations are the first to predict from basic transport...results are due to an improved method for determining semiconductor material parameters. We use a theoretical Monte Carlo materials simulation ... simulations . These calculations have helped provide insight into velocity overshoot and ballistic transport phenomena. We find that ballistic or near

  14. The Design and Development of a Context-Rich, Photo-Based Online Testing to Assess Students' Science Learning

    ERIC Educational Resources Information Center

    Lin, Min-Jin; Guo, Chorng-Jee; Hsu, Chia-Er

    2011-01-01

    This study designed and developed a CP-MCT (content-rich, photo-based multiple choice online test) to assess whether college students can apply the basic light concept to interpret daily light phenomena. One hundred college students volunteered to take the CP-MCT, and the results were statistically analyzed by applying t-test or ANOVA (Analysis of…

  15. The facts on file. Dictionary of geology and geophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapidus, D.F.; Coates, D.R.

    1987-01-01

    This reference to the basic vocabulary of geology and geophysics has more than 3,000 clear and concise entries defining the entire range of geological phenomena. This book covers such areas as types of rocks and rock formations, deformation processes such as erosion and plate tectonics, volcanoes, glaciers and their effects on topography, geodesy and survey methods, earthquakes and seismology, fuels and mineral deposits.

  16. Computational models of music perception and cognition I: The perceptual and cognitive processing chain

    NASA Astrophysics Data System (ADS)

    Purwins, Hendrik; Herrera, Perfecto; Grachten, Maarten; Hazan, Amaury; Marxer, Ricard; Serra, Xavier

    2008-09-01

    We present a review on perception and cognition models designed for or applicable to music. An emphasis is put on computational implementations. We include findings from different disciplines: neuroscience, psychology, cognitive science, artificial intelligence, and musicology. The article summarizes the methodology that these disciplines use to approach the phenomena of music understanding, the localization of musical processes in the brain, and the flow of cognitive operations involved in turning physical signals into musical symbols, going from the transducers to the memory systems of the brain. We discuss formal models developed to emulate, explain and predict phenomena involved in early auditory processing, pitch processing, grouping, source separation, and music structure computation. We cover generic computational architectures of attention, memory, and expectation that can be instantiated and tuned to deal with specific musical phenomena. Criteria for the evaluation of such models are presented and discussed. Thereby, we lay out the general framework that provides the basis for the discussion of domain-specific music models in Part II.

  17. Numerical Modeling of Fiber-Reinforced Metal Matrix Composite Processing by the Liquid Route: Literature Contribution

    NASA Astrophysics Data System (ADS)

    Lacoste, Eric; Arvieu, Corinne; Mantaux, Olivier

    2018-04-01

    One of the technologies used to produce metal matrix composites (MMCs) is liquid route processing. One solution is to inject a liquid metal under pressure or at constant rate through a fibrous preform. This foundry technique overcomes the problem of the wettability of ceramic fibers by liquid metal. The liquid route can also be used to produce semiproducts by coating a filament with a molten metal. These processes involve physical phenomena combined with mass and heat transfer and phase change. The phase change phenomena related to solidification and also to the melting of the metal during the process notably result in modifications to the permeability of porous media, in gaps in impregnation, in the appearance of defects (porosities), and in segregation in the final product. In this article, we provide a state-of-the-art review of numerical models and simulation developed to study these physical phenomena involved in MMC processing by the liquid route.

  18. [When thinking to scleroderma?].

    PubMed

    Cogan, E

    2007-09-01

    Scleroderma encompasses an heterogeneous group of autoimmune disorders characterized by an hidebound thickened skin involvement. When the changes are limited to the skin, localized scleroderma is suspected. Although the latter is most often a benign disease, it may be exceptionally associated with involvement of multiple organs, mainly the neurological system. At the opposite, systemic sclerosis is a serious disorder associated with high morbidity and even mortality and defined by an extended skin sclerosis, multiple organ involvement and general symptoms. Raynaud phenomena is nearly always present at the beginning of the disease. Identifying initial manifestations of the disease (Raynaud phenomena, diffuse non pitting edema, symmetrical polyarthritis with tendon friction rubs, dysphagia associated with mucosal telangiectasia) may allow the clinician to rapidly transfer the patient to a specialized reference center in order to organize a multidisciplinary approach and to prompt optimum therapy.

  19. Bernoulli? Perhaps, but What about Viscosity?

    ERIC Educational Resources Information Center

    Eastwell, Peter

    2007-01-01

    Bernoulli's principle is being misunderstood and consequently misused. This paper clarifies the issues involved, hypothesises as to how this unfortunate situation has arisen, provides sound explanations for many everyday phenomena involving moving air, and makes associated recommendations for teaching the effects of moving fluids.

  20. Teachers' Involvement in Implementing the Basic Science and Technology Curriculum of the Nine-Year Basic Education

    ERIC Educational Resources Information Center

    Odili, John Nwanibeze; Ebisine, Sele Sylvester; Ajuar, Helen Nwakaife

    2011-01-01

    The study investigated teachers' involvement in implementing the basic science and technology curriculum in primary schools in WSLGA (Warri South Local Government Area) of Delta State. It sought to identify the availability of the document in primary schools and teachers' knowledge of the objectives and activities specified in the curriculum.…

  1. Goethe's phenomenology of nature: a juvenilization of science.

    PubMed

    Skaftnesmo, Trond

    2009-01-01

    Empirical science is not a mere collection of facts. It builds theories and frames hypotheses within those theories. Empirical theories are stated as plausible answers to questions we pose to nature. According to the Galilean-Baconian tradition within science, these questions should basically explore the causes of observed phenomena, and further be restricted to the measurable and quantitative realm. Thus, the answers are generally expected to explain the effective causes behind the actual phenomena. By framing falsifiable hypotheses, the theories are tested against the empirical foundation on which they rest. In this way we try to relieve science from false theories. Thus, we have two epistemological levels: First, the theoretical level; the scientific theory explaining the phenomena, and second, the empirical level; the phenomena or facts verifying or falsifying those theories. According to the poet and multi-scientist Johann Wolfgang von Goethe (1749-1832), there is however another way of science, namely an approach where these two levels fuse and become one. Goethe intended this approach to be a complementation of the Galilean-Baconian method, more than an alternative. He considered his "hypothesis-free method" to be a more comprehensive and secure way to understand nature. Whereas the Galilean-Baconian method aimed at explaining the effective causes of natural phenomena, in order to control and exploit nature for technical and industrial purposes, Goethe aimed at an exposition of the inherent meaning of the phenomena.We will explore, exemplify and discuss this approach with reference to the inherently Goethean phenomenology of evolution credited to the Dutch anatomist Louis Bolk (1866-1930), later commented and complemented by Stephen Jay Gould (1941-2002) and Jos Verhulst (1949 ). In the course of this presentation we will outline the Goethean approach as a method representing a juvenilization or in Bolk's terms, a fetalization of science.

  2. Tsunamis: bridging science, engineering and society.

    PubMed

    Kânoğlu, U; Titov, V; Bernard, E; Synolakis, C

    2015-10-28

    Tsunamis are high-impact, long-duration disasters that in most cases allow for only minutes of warning before impact. Since the 2004 Boxing Day tsunami, there have been significant advancements in warning methodology, pre-disaster preparedness and basic understanding of related phenomena. Yet, the trail of destruction of the 2011 Japan tsunami, broadcast live to a stunned world audience, underscored the difficulties of implementing advances in applied hazard mitigation. We describe state of the art methodologies, standards for warnings and summarize recent advances in basic understanding, and identify cross-disciplinary challenges. The stage is set to bridge science, engineering and society to help build up coastal resilience and reduce losses. © 2015 The Author(s).

  3. International Linear Collider Reference Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, James,; Okada, Yasuhiro,; Walker, Nicholas J.,

    2007-08-13

    {lg_bullet} What is the universe? How did it begin? {lg_bullet} What are matter and energy? What are space and time? These basic questions have been the subject of scientific theories and experiments throughout human history. The answers have revolutionized the enlightened view of the world, transforming society and advancing civilization. Universal laws and principles govern everyday phenomena, some of them manifesting themselves only at scales of time and distance far beyond everyday experience. Particle physics experiments using particle accelerators transform matter and energy, to reveal the basic workings of the universe. Other experiments exploit naturally occurring particles, such as solarmore » neutrinos or cosmic rays, and astrophysical observations, to provide additional insights.« less

  4. Concept confusion and concept discernment in basic magnetism using analogical reasoning

    NASA Astrophysics Data System (ADS)

    Lemmer, Miriam; Nicodimus Morabe, Olebogeng

    2017-07-01

    Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the consequences of this use in the teaching of magnetism with special reference to misconceptions. We begin by identifying concept confusion and associated misconceptions in magnetism due to in-service physics teachers’ spontaneous analogical reasoning. Two analogy-based experiments that can be used to convert such concept confusion to discernment are then described. These experiments focus on understanding basic principles about sources and interactions of magnetic fields and implement the constructivist learning processes of discrimination and generalization. Lastly, recommendations towards reinforcement of conceptual understanding of basic magnetism in its relation to electricity are proposed.

  5. The Equations of Oceanic Motions

    NASA Astrophysics Data System (ADS)

    Müller, Peter

    2006-10-01

    Modeling and prediction of oceanographic phenomena and climate is based on the integration of dynamic equations. The Equations of Oceanic Motions derives and systematically classifies the most common dynamic equations used in physical oceanography, from large scale thermohaline circulations to those governing small scale motions and turbulence. After establishing the basic dynamical equations that describe all oceanic motions, M|ller then derives approximate equations, emphasizing the assumptions made and physical processes eliminated. He distinguishes between geometric, thermodynamic and dynamic approximations and between the acoustic, gravity, vortical and temperature-salinity modes of motion. Basic concepts and formulae of equilibrium thermodynamics, vector and tensor calculus, curvilinear coordinate systems, and the kinematics of fluid motion and wave propagation are covered in appendices. Providing the basic theoretical background for graduate students and researchers of physical oceanography and climate science, this book will serve as both a comprehensive text and an essential reference.

  6. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  7. Explosive magnetic reconnection - Puzzle to be solved as the energy supply process for magnetospheric substorms?

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1985-01-01

    It is pointed out that magnetospheric substorms are perhaps the most basic type of disturbances which occur throughout the magnetosphere. There is little doubt that the energy for magnetospheric substorms is delivered from the sun to the magnetosphere by the solar wind, and theoretical and observational studies have been conducted to uncover the processes associated with the energy transfer from the solar wind to the magnetosphere, and the subsequent processes leading to various magnetospheric substorm phenomena. It has been widely accepted that explosive magnetic reconnection supplies the energy for magnetospheric substorm processes. It is indicated that the auroral phenomena must be various manifestations of a large-scale electrical discharge process which is powered by the solar wind-magnetosphere dynamo. Certain problems regarding explosive magnetic reconnection are discussed.

  8. Spatio-temporal phenomena in complex systems with time delays

    NASA Astrophysics Data System (ADS)

    Yanchuk, Serhiy; Giacomelli, Giovanni

    2017-03-01

    Real-world systems can be strongly influenced by time delays occurring in self-coupling interactions, due to unavoidable finite signal propagation velocities. When the delays become significantly long, complicated high-dimensional phenomena appear and a simple extension of the methods employed in low-dimensional dynamical systems is not feasible. We review the general theory developed in this case, describing the main destabilization mechanisms, the use of visualization tools, and commenting on the most important and effective dynamical indicators as well as their properties in different regimes. We show how a suitable approach, based on a comparison with spatio-temporal systems, represents a powerful instrument for disclosing the very basic mechanism of long-delay systems. Various examples from different models and a series of recent experiments are reported.

  9. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  10. 1986 Annual Conference on Nuclear and Space Radiation Effects, 23rd, Providence, RI, July 21-23, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Ellis, Thomas D. (Editor)

    1986-01-01

    The present conference on the effects of nuclear and space radiation on electronic hardware gives attention to topics in the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, electronic device radiation hardness assurance, SOI/SOS radiation effects, spacecraft charging and space radiation, IC radiation effects and hardening, single-event upset (SEU) phenomena and hardening, and EMP/SGEMP/IEMP phenomena. Specific treatments encompass the generation of interface states by ionizing radiation in very thin MOS oxides, the microdosimetry of meson energy deposited on 1-micron sites in Si, total dose radiation and engineering studies, plasma interactions with biased concentrator solar cells, the transient imprint memory effect in MOS memories, mechanisms leading to SEU, and the vaporization and breakdown of thin columns of water.

  11. Stochastic sensitivity analysis of the variability of dynamics and transition to chaos in the business cycles model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev; Ryazanova, Tatyana

    2018-01-01

    A problem of mathematical modeling of complex stochastic processes in macroeconomics is discussed. For the description of dynamics of income and capital stock, the well-known Kaldor model of business cycles is used as a basic example. The aim of the paper is to give an overview of the variety of stochastic phenomena which occur in Kaldor model forced by additive and parametric random noise. We study a generation of small- and large-amplitude stochastic oscillations, and their mixed-mode intermittency. To analyze these phenomena, we suggest a constructive approach combining the study of the peculiarities of deterministic phase portrait, and stochastic sensitivity of attractors. We show how parametric noise can stabilize the unstable equilibrium and transform dynamics of Kaldor system from order to chaos.

  12. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technologymore » will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.« less

  13. Performance factors in associative learning: assessment of the sometimes competing retrieval model.

    PubMed

    Witnauer, James E; Wojick, Brittany M; Polack, Cody W; Miller, Ralph R

    2012-09-01

    Previous simulations revealed that the sometimes competing retrieval model (SOCR; Stout & Miller, Psychological Review, 114, 759-783, 2007), which assumes local error reduction, can explain many cue interaction phenomena that elude traditional associative theories based on total error reduction. Here, we applied SOCR to a new set of Pavlovian phenomena. Simulations used a single set of fixed parameters to simulate each basic effect (e.g., blocking) and, for specific experiments using different procedures, used fitted parameters discovered through hill climbing. In simulation 1, SOCR was successfully applied to basic acquisition, including the overtraining effect, which is context dependent. In simulation 2, we applied SOCR to basic extinction and renewal. SOCR anticipated these effects with both fixed parameters and best-fitting parameters, although the renewal effects were weaker than those observed in some experiments. In simulation 3a, feature-negative training was simulated, including the often observed transition from second-order conditioning to conditioned inhibition. In simulation 3b, SOCR predicted the observation that conditioned inhibition after feature-negative and differential conditioning depends on intertrial interval. In simulation 3c, SOCR successfully predicted failure of conditioned inhibition to extinguish with presentations of the inhibitor alone under most circumstances. In simulation 4, cue competition, including blocking (4a), recovery from relative validity (4b), and unblocking (4c), was simulated. In simulation 5, SOCR correctly predicted that inhibitors gain more behavioral control than do excitors when they are trained in compound. Simulation 6 demonstrated that SOCR explains the slower acquisition observed following CS-weak shock pairings.

  14. Scientix in our school- discovering STEM

    NASA Astrophysics Data System (ADS)

    Melcu, Cornelia

    2017-04-01

    My name is Cornelia Melcu and I am a primary school teacher in Brasov. Additionally, I am a teacher trainer of Preparatory Class Curriculum, Google Application in Education Course and European Projects Course and a mentor to new teachers and students in university. I am an eTwinning, Scientix and ESERO ambassador too. During the last three school years my school was involved in several STEM projects, part of Scientix community. The main goal of those projects was to develop basic STEM skills of our students based on project work integrated into the curriculum. Open the Gates to the Universe (http://gatestotheuniverse.blogspot.ro; https://twinspace.etwinning.net/12520/home) is an eTwinning project for primary school students started on September 2015 and finished on September 2016. Some of our partners were from the Mediterranean area. The students discovered different aspects of space science and astronomy working on international groups. They explored some aspects of Science included in their curriculum using resources from ESERO, ROEDUSEIS and Space Awareness (e.g. Calculate with Rosetta, Writing the travel diary, Build Rosetta, How to become an astronaut, etc.) The project was a great opportunity to apply integrated learning methods for developing competencies which are a part of the primary school curriculum in Romania. In Language and Communication classes the students talked about their partners living places and their traditions and habits. They learnt some basic words in their partners language related to the weather. They created stories- both in Romanian and English; they described life in space and astronomical phenomena. They talked to the other partners during the several online meetings we organized and wrote short stories in English. In Mathematics and Science they found out about the Milky Way, the Solar System, the weather, famous astronauts and astronomers. They calculated, solved problems, made experiments and explained specific natural phenomena related to Space. During the ICT lessons, they used different devices for creating and playing online games and quizzes, took photos and edited them, searched for and found specific information related to the topic. In Art they made cards, posters, drawings and paintings. They learnt songs in Music and in PE made outdoor experiments (like calculating the distance between planets in our Solar System using a scale). During the Personal Development lessons the students found out solutions for problems (e.g. How would you survive in Space?) and they presented their project work to their schoolmates, teachers and parents. The project 'started where the children were', it was built on the knowledge and ideas children brought with them to lessons and helped them to develop their understanding of scientific concepts related to the Universe. It helped them to understand the diversity of weather conditions and as part of a world community and their responsibility for the environment. The students are able to identify main planets and stars on the sky and they have of basic notions related to Earth and Sun; In conclusion, the project provides opportunities for learning STEM topics in pre-primary and primary education. Implementing the project gave the children and all the adults involved (staff, parents) a lot of fun and satisfaction.

  15. Solar system plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  16. [Is the brain the creator of psychic phenomena or is a paradigm shift inevitable?].

    PubMed

    Bonilla, Ernesto

    2014-06-01

    Every day new scientific information is appearing that cannot be explained using the classical Newtonian model and is calling for the emergence of a new paradigm that would include the explanation of such phenomena as telepathy, clairvoyance, presentiment, precognition, out of the body experiences, psychic healing, after-death communication, near-death experiences and reincarnation. The materialist paradigm which considers the brain as the sole cause of consciousness and psychic phenomena has been challenged by a new paradigm that seems to demonstrate that there is not a cause-effect relationship between brain activity and psychic phenomena but only a correlation between them, since these phenomena can be experienced without the body and appear to have an extra-cerebral origin (cosmic field, cosmic consciousness?). Of course, the brain is intensely involved in the manifestation of consciousness in our daily life but this is not equivalent to affirm that brain creates consciousness. Recent findings force us to consider a non-physical, spiritual and transpersonal aspect of reality.

  17. Recent experiments testing an opponent-process theory of acquired motivation.

    PubMed

    Solomon, R L

    1980-01-01

    There are acquired motives of the addiction type which seem to be non-associative in nature. They all seem to involve affective phenomena caused by reinforcers, unconditioned stimuli or innate releasers. When such stimuli are repeatedly presented, at least three affective phenomena occur: (1) affective contrast effects, (2) affective habituation (tolerance), and (3) affective withdrawal syndromes. These phenomena can be precipitated either by pleasant or unpleasant events (positive or negative reinforcers). Whenever we see these three phenomena, we also see the development of an addictive cycle, a new motivational system. These phenomena are explained by an opponent-process theory of motivation which holds that there are affect control systems which oppose large departures from affective equilibrium. The control systems are strengthened by use and weakened by disuse. Current observations and experiments testing the theory are described for: (1) the growth of social attachment (imprinting) in ducklings; and (2) the growth of adjunctive behaviors. The findings so far support the theory.

  18. Ionospheric modification by radio waves: An overview and novel applications

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.

    2008-12-01

    High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.

  19. Transport coefficients and mechanical response in hard-disk colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang

    2016-11-01

    We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).

  20. Plant Development, Auxin, and the Subsystem Incompleteness Theorem

    PubMed Central

    Niklas, Karl J.; Kutschera, Ulrich

    2012-01-01

    Plant morphogenesis (the process whereby form develops) requires signal cross-talking among all levels of organization to coordinate the operation of metabolic and genomic subsystems operating in a larger network of subsystems. Each subsystem can be rendered as a logic circuit supervising the operation of one or more signal-activated system. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of progressively larger networks. This technique is illustrated here by rendering two logic circuits and signal-activated subsystems, one for auxin (IAA) polar/lateral intercellular transport and another for IAA-mediated cell wall loosening. For each of these phenomena, a circuit/subsystem diagram highlights missing components (either in the logic circuit or in the subsystem it supervises) that must be identified experimentally if each of these basic plant phenomena is to be fully understood. We also illustrate the “subsystem incompleteness theorem,” which states that no subsystem is operationally self-sufficient. Indeed, a whole-organism perspective is required to understand even the most simple morphogenetic process, because, when isolated, every biological signal-activated subsystem is morphogenetically ineffective. PMID:22645582

  1. Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion

    PubMed Central

    Ochsner, Kevin N.; Silvers, Jennifer A.; Buhle, Jason T.

    2014-01-01

    This paper reviews and synthesizes functional imaging research that over the past decade has begun to offer new insights into the brain mechanisms underlying emotion regulation. Towards that end, the first section of the paper outlines a model of the processes and neural systems involved in emotion generation and regulation. The second section surveys recent research supporting and elaborating the model, focusing primarily on studies of the most commonly investigated strategy, which is known as reappraisal. At its core, the model specifies how prefrontal and cingulate control systems modulate activity in perceptual, semantic and affect systems as a function of one's regulatory goals, tactics, and the nature of the stimuli and emotions being regulated. This section also shows how the model can be generalized to understand the brain mechanisms underlying other emotion regulation strategies as well as a range of other allied phenomena. The third and last section considers directions for future research, including how basic models of emotion regulation can be translated to understand changes in emotion across the lifespan and in clinical disorders. PMID:23025352

  2. New opportunities at the frontiers of spintronics

    DOE PAGES

    Hoffmann, Axel; Bader, Sam D.

    2015-10-05

    The field of spintronics, or magnetic electronics, is maturing and giving rise to new subfields. These new directions involve the study of collective spin excitations and couplings of the spin system to additional degrees of freedom of a material, as well as metastable phenomena due to perturbations that drive the system far from equilibrium. The interactions lead to possibilities for future applications within the realm of energy-efficient information technologies. Examples discussed herein include research opportunities associated with (i) various spin-orbit couplings, such as spin Hall effects, (ii) couplings to the thermal bath of a system, such as in spin Seebeckmore » effects, (iii) spin-spin couplings, such as via induced and interacting magnon excitations, and (iv) spin-photon couplings, such as in ultra-fast magnetization switching due to coherent photon pulses. These four basic frontier areas of research are giving rise to new applied disciplines known as spin-orbitronics, spin-caloritronics, magnonics, and spin-photonics, respectively. These topics are highlighted in order to stimulate interest in the new directions that spintronics research is taking, and to identify open issues to pursue.« less

  3. Development of the dynamic motion simulator of 3D micro-gravity with a combined passive/active suspension system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi

    1994-01-01

    The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.

  4. Unifying theoretical framework for deciphering the oxygen reduction reaction on platinum.

    PubMed

    Huang, Jun; Zhang, Jianbo; Eikerling, Michael

    2018-05-07

    Rapid conversion of oxygen into water is crucial to the operation of polymer electrolyte fuel cells and other emerging electrochemical energy technologies. Chemisorbed oxygen species play double-edged roles in this reaction, acting as vital intermediates on one hand and site-blockers on the other. Any attempt to decipher the oxygen reduction reaction (ORR) must first relate the formation of oxygen intermediates to basic electronic and electrostatic properties of the catalytic surface, and then link it to parameters of catalyst activity. An approach that accomplishes this feat will be of great utility for catalyst materials development and predictive model formulation of electrode operation. Here, we present a theoretical framework for the multiple interrelated surface phenomena and processes involved, particularly, by incorporating the double-layer effects. It sheds light on the roles of oxygen intermediates and gives out the Tafel slope and exchange current density as continuous functions of electrode potential. Moreover, it develops the concept of a rate determining term, which should replace the concept of a rate determining step for multielectron reactions, and offers a new perspective on the volcano relation of the ORR.

  5. Water Ice Clouds as Seen from the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Banfield, D.; Cuozzo, K.

    2005-12-01

    Water ice clouds that bear a striking resemblance to terrestrial cirrus (e.g., "Mare's tails") have been observed by the Panoramic Camera (Pancam), the Navigation Camera (Navcam), the Hazard Camera (Hazcam), and the Minature Thermal Emission Spectrometer (Mini-TES) on board the Mars Exploration Rovers (MER). Such phenomena represent an opportunity to characterize local and regional scale meteorology as well as our understanding of the processes involved. However, a necessary first-step is to adequately describe some basic properties of the detected clouds: 1) when are the clouds present (i.e., local time, season, etc.)? 2) where are the clouds present? That is to say, what is the relative frequency between the two rover sites as well as the connection to detections from orbiting spacecraft. 3) what are the observed morphologies? 4) what are the projected velocities (i.e., wind speeds and directions) associated with the clouds? 5) what is the abundance of water ice nuclei (i.e., optical depth)? Our talk will summarize our progress in answering the above questions, as well as provide initial results in connecting the observations to more global behavior in the Martian climate.

  6. Blade pitch optimization methods for vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  7. Functional magnetic resonance imaging: basic principles and application in the neurosciences.

    PubMed

    Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C

    2018-03-12

    Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1990-01-01

    Recent results of aerodynamic and acoustic research on both single rotation and counterrotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA) flight program; CRP-X1, the initial 5+5 Hamilton Standard counterrotating design; and F7-A7, the 8+8 counterrotating G.E. design used in the proof of concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortexes are described. Aerodynamic and acoustic computational results derived from 3-D Euler and acoustic radiation codes are presented. Research on unsteady flows which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of 3-D unsteady Euler solutions are illustrated for a single rotation propeller at angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies on the unsteady aerodynamics of oscillating cascades are outlined.

  9. Soluto-inertial phenomena: Designing long-range, long-lasting, surface-specific interactions in suspensions

    PubMed Central

    Banerjee, Anirudha; Williams, Ian; Azevedo, Rodrigo Nery; Squires, Todd M.

    2016-01-01

    Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial “beacon” designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles. PMID:27410044

  10. Spin-Mechanical Inertia in Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Wu, Xiaochuan; Xiao, Di

    Interplay between spin dynamics and mechanical motions is responsible for numerous striking phenomena, which has shaped a rapidly expanding field known as spin-mechanics. The guiding principle of this field has been the conservation of angular momentum that involves both quantum spins and classical mechanical rotations. However, in an antiferromagnet, the macroscopic magnetization vanishes while the order parameter (Néel order) does not carry an angular momentum. It is therefore not clear whether the order parameter dynamics has any mechanical consequence as its ferromagnetic counterparts. Here we demonstrate that the Néel order dynamics affects the mechanical motion of a rigid body by modifying its inertia tensor in the presence of strong magnetocrystalline anisotropy. This effect depends on temperature when magnon excitations are considered. Such a spin-mechanical inertia can produce measurable consequences at nanometer scales. Our discovery establishes spin-mechanical inertia as an essential ingredient to properly describe spin-mechanical effects in AFs, which supplements the known governing physics from angular momentum conservation. This work was supported by the DOE, Basic Energy Sciences, Grant No. DE-SC0012509. D.X. also acknowledges support from a Research Corporation for Science Advancement Cottrell Scholar Award.

  11. A review of astrophysical reconnection

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Magnetic reconnection is a basic plasma process involving rapid rearrangement of magnetic field topology. It often leads to violent release of magnetic energy and its conversion to the plasma thermal and kinetic energy as well as nonthermal particle acceleration. It is thus believed to power numerous types of explosive phenomena both inside and outside the Solar system, including various kinds of high-energy flares. In this talk I will first give an overview of astrophysical systems where reconnection is believed to play an important role. Examples include pulsed high-energy emission in pulsar magnetospheres; gamma-ray flares in pulsar wind nebulae and AGN/blazar jets; Gamma-Ray Bursts; and giant flares in magnetar systems. I will also analyze the physical conditions of the plasma in some of these astrophysical systems and will discuss the fundamental physical differences between various astrophysical instances of magnetic reconnection and the more familiar solar and space examples of reconnection. In particular, I will demonstrate the importance of including radiative effects in order to understand astrophysical magnetic reconnection and in order to connect our theoretical models with the observed radiation signatures.

  12. Microscopic approach of the crystallization of tripalmitin and tristearin by microscopy.

    PubMed

    Silva, Roberta Claro da; Martini Soares, Fabiana Andrea Schafer De; Maruyama, Jéssica Mayumi; Dagostinho, Natália Roque; Silva, Ylana Adami; Ract, Juliana Neves Rodrigues; Gioielli, Luiz Antonio

    2016-06-01

    The crystallization behavior of lipids has important implications in industrial processing of food products, whose physical characteristics depend largely on crystallized fats. The study of the crystallization behavior and polymorphism of a pure lipid system is of great scientific importance as a means of gaining an understanding of the phenomena involved, serving as basic knowledge to help guide the addition or removal of these compounds in different raw materials. The crystallization behavior and polymorphism of pure tripalmitin (PPP) and tristearin (SSS) were investigated by Polarized Light Microscopy (PLM) and Differential Scanning Calorimetry (DSC) under different crystallization conditions. The polymorphic forms (β' and β) of PPP and SSS exhibited different morphologies depending on how they were obtained, either from α form recrystallization or from isotropic melt. Crystallization in the β form was faster in SSS than in PPP, indicating that the process occurs faster in TAGs composed of longer fatty acid chains. Both β' and β polymorphic forms were obtained from α form recrystallization, albeit with predominance of the β form. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Rhythm and mood: relationships between the circadian clock and mood-related behavior.

    PubMed

    Schnell, Anna; Albrecht, Urs; Sandrelli, Federica

    2014-06-01

    Mood disorders are multifactorial and heterogeneous diseases caused by the interplay of several genetic and environmental factors. In humans, mood disorders are often accompanied by abnormalities in the organization of the circadian system, which normally synchronizes activities and functions of cells and tissues. Studies on animal models suggest that the basic circadian clock mechanism, which runs in essentially all cells, is implicated in the modulation of biological phenomena regulating affective behaviors. In particular, recent findings highlight the importance of the circadian clock mechanisms in neurological pathways involved in mood, such as monoaminergic neurotransmission, hypothalamus-pituitary-adrenal axis regulation, suprachiasmatic nucleus and olfactory bulb activities, and neurogenesis. Defects at the level of both, the circadian clock mechanism and system, may contribute to the etiology of mood disorders. Modification of the circadian system using chronotherapy appears to be an effective treatment for mood disorders. Additionally, understanding the role of circadian clock mechanisms, which affect the regulation of different mood pathways, will open up the possibility for targeted pharmacological treatments. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Modeling complex systems in the geosciences

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-03-01

    Many geophysical phenomena can be described as complex systems, involving phenomena such as extreme or "wild" events that often do not follow the Gaussian distribution that would be expected if the events were simply random and uncorrelated. For instance, some geophysical phenomena like earthquakes show a much higher occurrence of relatively large values than would a Gaussian distribution and so are examples of the "Noah effect" (named by Benoit Mandelbrot for the exceptionally heavy rain in the biblical flood). Other geophysical phenomena are examples of the "Joseph effect," in which a state is especially persistent, such as a spell of multiple consecutive hot days (heat waves) or several dry summers in a row. The Joseph effect was named after the biblical story in which Joseph's dream of seven fat cows and seven thin ones predicted 7 years of plenty followed by 7 years of drought.

  15. Nanoflares, Spicules, and Other Small-Scale Dynamic Phenomena on the Sun

    NASA Technical Reports Server (NTRS)

    Klimchuk, James

    2010-01-01

    There is abundant evidence of highly dynamic phenomena occurring on very small scales in the solar atmosphere. For example, the observed pr operties of many coronal loops can only be explained if the loops are bundles of unresolved strands that are heated impulsively by nanoflares. Type II spicules recently discovered by Hinode are an example of small-scale impulsive events occurring in the chromosphere. The exist ence of these and other small-scale phenomena is not surprising given the highly structured nature of the magnetic field that is revealed by photospheric observations. Dynamic phenomena also occur on much lar ger scales, including coronal jets, flares, and CMEs. It is tempting to suggest that these different phenomena are all closely related and represent a continuous distribution of sizes and energies. However, this is a dangerous over simplification in my opinion. While it is tru e that the phenomena all involve "magnetic reconnection" (the changin g of field line connectivity) in some form, how this occurs depends s trongly on the magnetic geometry. A nanoflare resulting from the interaction of tangled magnetic strands within a confined coronal loop is much different from a major flare occurring at the current sheet form ed when a CME rips open an active region. I will review the evidence for ubiquitous small-scale dynamic phenomena on the Sun and discuss wh y different phenomena are not all fundamentally the same.

  16. Modeling of microgravity combustion experiments

    NASA Technical Reports Server (NTRS)

    Buckmaster, John

    1995-01-01

    This program started in February 1991, and is designed to improve our understanding of basic combustion phenomena by the modeling of various configurations undergoing experimental study by others. Results through 1992 were reported in the second workshop. Work since that time has examined the following topics: Flame-balls; Intrinsic and acoustic instabilities in multiphase mixtures; Radiation effects in premixed combustion; Smouldering, both forward and reverse, as well as two dimensional smoulder.

  17. Air Force Office of Scientific Research, 1993 Research Highlights.

    DTIC Science & Technology

    1993-01-01

    used to describe the behavior of critical point phenomena by Nobel laureate Dr. Kenneth Wilson. Their research has produced useful engineering...40 years of its existence, AFOSR has supported the work of about two dozen scientists who, later, have been awarded the Nobel prize as well as a...locations and types of sensor or actuator elements that are suitable for structurally- integrated nondestructive evaluation ( NDE ) systems. The basic

  18. Chemical Phenomena of Atomic Force Microscopy Scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.

    Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less

  19. Chemical Phenomena of Atomic Force Microscopy Scanning

    DOE PAGES

    Ievlev, Anton V.; Brown, Chance; Burch, Matthew J.; ...

    2018-01-30

    Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip–surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometrymore » with an atomic force microscopy to investigate the chemical interactions that take place at the tip–surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. In conclusion, the explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip–surface junction.« less

  20. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    PubMed

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  1. Virtual laboratory for the study of transport processes in surface waterflows

    NASA Astrophysics Data System (ADS)

    Aguilar, C.; Egüen, M.; Contreras, E.; Polo, M. J.

    2012-04-01

    The equations involved in the study of transport processes depend on the spatial and temporal scale of the study and according to the required level of detail can become very difficult to solve analytically. Besides, experimentation of processes with any transport phenomena involved is complex due to their natural or forced occurrence in the environment (eg. Rainfall-runoff, sediment yield, controlled and uncontrolled pollutant loadings, etc.) and the great diversity of substances and components with an specific chemical behavior. However, due to the numerous fields of application of transport phenomena (basic and applied research, hydrology and associated fluxes, sediment transport, pollutant loadings to water flows, industrial processes, soil and water quality, atmospheric emissions, legislation, etc.), realistic studies of transport processes are required. In this context, case study application, an active methodology according to the structural implications of the European Higher Education Area (EHEA), with the aid of computer tools constitute an interactive, instantaneous and flexible method with a new interplay between students and lecturers. Case studies allow the lecturer to design significant activities that generate knowledge in the students and motivates them to look for information, discuss, and be autonomous. This work presents the development of a graphical interface for the solution of different case studies for the acquisition of capacities and abilities in the autonomous apprenticeship of courses related to transport processes in Environmental Hydraulics. The interactive tool helps to develop and improve abilities in mixing and transport in surface water related courses. Thus, students clarify theoretical concepts and visualize processes with negative effects for the environment and that therefore, can only be reproduced in the laboratory or in the field under very controlled conditions and commonly with tracers instead of the real substances. The tool can be used for different case studies in terms of processes involved, governing variable, initial conditions, etc. (eg. Accidental spill of a conservative pollutant from a factory in a river stretch that constitutes a source of drinking water for a town downstream) and can be used as a virtual laboratory for the analysis of the influence of the different variables and parameters of the process. Thus, autonomous apprenticeship is fostered and therefore, the development of personal abilities and the analysis and summary of information related to the case study is stimulated.

  2. Student Belief and Involvement in the Paranormal and Performance in Introductory Psychology.

    ERIC Educational Resources Information Center

    Messer, Wayne S.; Griggs, Richard A.

    1989-01-01

    Assesses student belief and involvement in 10 paranormal phenomena. Findings show 99 percent of the sample expressed belief in at least one. Students expressing these beliefs achieved significantly lower course grades. Discusses instructor's role in combating unfounded beliefs and fostering critical thinking. (NL)

  3. How Students Can Be Supported to Apply Geoscientific Knowledge Learned in the Classroom to Phenomena in the Field: An Example from High School Students in Norway

    ERIC Educational Resources Information Center

    Remmen, Kari Beate; Frøyland, Merethe

    2013-01-01

    Our study explores how students apply geoscientific knowledge learned in the classroom to phenomena in a field setting. This was investigated by collecting video data from an ordinary high school context in Norway involving one teacher and a class of 17 high school students. We analyzed how the students learned rock identification and relative…

  4. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  5. Sensitizing solid state nuclear magnetic resonance of dilute nuclei by spin-diffusion assisted polarization transfers.

    PubMed

    Lupulescu, Adonis; Frydman, Lucio

    2011-10-07

    Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics

  6. Preface

    NASA Astrophysics Data System (ADS)

    Vargas, Helion

    2005-06-01

    The biennial International Conferences on Photoacoustic and Photothermal Phenomena (ICPPP) are widely recognized as the major venue for the dissemination of recent and significant research results in the traditional areas, as well as in new and exciting outgrowths of this interdisciplinary field. The ICPPP is concerned with the science, applications and technologies involving the optical, electron-beam or otherwise production, propagation and detection of acoustic, thermal and general diffusion-wave fields.

    In the 2004 edition the conference was held in Rio de Janeiro, Brazil, and involved 14 topics covered in the scientific programme. These are Spectroscopy, Analytical Chemistry and Photochemistry, PA and PT Imaging and Microscopy, Thermophysical Properties and Characterization of Materials, Laser Ultrasonics, Ultrafast PA and PT Phenomena, Electronic and Optical Materials, Thin Films and Devices, Non Linear Phenomena and Inverse Problem, Nanoscale Phenomena, Non Destructive Evaluation, Diffusion Waves and Applications, Industrial Applications, New Instruments and Methodology, Biological,Medical and Dental Applications, Agriculture, Food and Environmental Applications . More than 300 short abstracts contributions were received and refereed for acceptation, from 690 authors of 28 different countries.

    This volume contains the proceedings of the 13ICPPP including the 207 full papers accepted after a very careful peer review process. Their contents are very deep and modern and show the peculiar interdisciplinary nature of the area. It is provided a collection of papers which includes the traditional subjects of the area as well as new developments of th the fields. The characterization of materials is occupying a great interest in the papers and many studies involving nanoscale phenomena were developed exploring the photothermal methodology. As in the previous conferences thermal wave microscopy and non-linear photothermal phenomena keep a high interest. The application of the methodology to any diffusive wave, other than the thermal one, showed significant growth. In the applications field many expressive papers are analyzing environmental, dental and medical concerns besides those involving other industrial purposes.

    The Conference received financial support from various Brazilian institutions and agencies, specially the National Council for Scientific and Technological Development - CNPq and Research and Projects Financing - Brazilian innovation Agency - FINEP, and from United Nations Educational, Scientific and Cultural Organization - UNESCO, to whom the conference organizers are very grateful.

    We would like to thank greatly the colleagues that helped much with the refereeing tasks and for the stimulating discussions and suggestions during the conference organization and proceedings preparation. Besides we wish to thank the authors for the high quality of their contributions. In special it should be acknowledge the essential help of the people from State University of the North of Rio de Janeiro (Fluminense)- UENF, State University of Campinas - UNICAMP and National Institute for Space Research - INPE, and colleagues that chaired previous conferences. Finally, we are all grateful evious for the precious work of the conference secretary Nelia F. Leite.

    Helion Vargas Chairman of the 13th International Conference on Photoacoustic and Photothermal Phenomena

  7. Grouping and emergent features in vision: toward a theory of basic Gestalts.

    PubMed

    Pomerantz, James R; Portillo, Mary C

    2011-10-01

    Gestalt phenomena are often so powerful that mere demonstrations can confirm their existence, but Gestalts have proven hard to define and measure. Here we outline a theory of basic Gestalts (TBG) that defines Gestalts as emergent features (EFs). The logic relies on discovering wholes that are more discriminable than are the parts from which they are built. These wholes contain EFs that can act as basic features in human vision. As context is added to a visual stimulus, a hierarchy of EFs appears. Starting with a single dot and adding a second yields the first two potential EFs: the proximity (distance) and orientation (angle) between the two dots. A third dot introduces two more potential EFs: symmetry and linearity; a fourth dot produces surroundedness. This hierarchy may extend to collinearity, parallelism, closure, and more. We use the magnitude of Configural Superiority Effects to measure the salience of EFs on a common scale, potentially letting us compare the strengths of various grouping principles. TBG appears promising, with our initial experiments establishing and quantifying at least three basic EFs in human vision.

  8. Types of Changes That Occur as Declarative Knowledge Increases

    ERIC Educational Resources Information Center

    Oosterhof, Albert

    2012-01-01

    Declarative knowledge involves being able to state and explain characteristics, terminologies, properties, phenomena, concepts, principles, and techniques. Chi and Ohlsson (2005) characterize it as the dominant form of knowledge, maintaining that it does not involve isolated units but rather is organized as semantic networks, theories, schemas, or…

  9. Ion exchange phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourg, I.C.; Sposito, G.

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less

  10. FOSREM - Fibre-Optic System for Rotational Events&Phenomena Monitoring

    NASA Astrophysics Data System (ADS)

    Jaroszewicz, Leszek; Krajewski, Zbigniew; Kurzych, Anna; Kowalski, Jerzy; Teisseyre, Krzysztof

    2016-04-01

    We present the construction and tests of fiber-optic rotational seismometer named FOSREM (Fibre-Optic System for Rotational Events&Phenomena Monitoring). This presented device is designed for detection and monitoring the one-axis rotational motions, brought about to ground or human-made structures both by seismic events and the creep processes. The presented system works by measuring Sagnac effect and generally consists of two basic elements: optical sensor and electronic part. The optical sensor is based on so-called the minimum configuration of FOG (Fibre-Optic Gyroscope) where the Sagnac effect produces a phase shift between two counter-propagating light beams proportional to the measured rotation speed. The main advantage of the sensor of this type is its complete insensitivity to linear motions and a direct measurement of rotational speed. It may work even when tilted, moreover, used in continuous mode it may record the tilt. The electronic system, involving specific electronic solutions, calculates and records rotational events data by realizing synchronous in a digital form by using 32 bit DSP (Digital Signal Processing). Storage data and system control are realised over the internet by using connection between FOSREM and GSM/GPS. The most significant attribute of our system is possibility to measure rotation in wide range both amplitude up to 10 rad/s and frequency up to 328.12 Hz. Application of the wideband, low coherence and high power superluminescent diode with long fibre loop and suitable low losses optical elements assures the theoretical sensitivity of the system equal to 2·10-8 rad/s/Sqrt(Hz). Moreover, the FOSREM is fully remote controlled as well as is suited for continuous, autonomous work in very long period of time (weeks, months, even years), so it is useful for systematic seismological investigation at any place. Possible applications of this system include seismic monitoring in observatories, buildings, mines and even on glaciers and in their vicinity. In geodetic, geomorphological and glaciological survey, joint measurement of tilt and seismic phenomena using a set of three FOSREM devices oriented in perpendicular planes would enable to collect very important information.

  11. The Mexican hydro-meteorological disasters and climate network (redesclim) as model on outreach decision makers on disaster public policy in Mexico.

    NASA Astrophysics Data System (ADS)

    Welsh-Rodriguez, C. M.; Rodriguez-Estevez, J. M., Sr.; Romo-Aguilar, M. D. L.; Brito-Castillo, L.; Salinas-Prieto, A.; Gonzalez-Sosa, E.; Pérez-Campuzano, E.

    2017-12-01

    REDESCLIM was designed and develop in 2011 due to a public call from The Science and Technology Mexican Council (CONACYT); CONACYT lead the activities for its organization and development among the academic community. REDESCLIM was created to enhance the capacity of response to hydro-meteorological disasters and climate events through an integrative effort of researchers, technologists, entrepreneurs, politicians and society. Brief summary of our objectives: 1) Understand the causes of disasters, to reduce risks to society and ecosystems 2) Support research and interdisciplinary assessment of the physical processes in natural and social phenomena to improve understanding of causes and impacts 3) Strengths collaboration with academic, government, private and other interdisciplinary networks from Mexico and other countries 4) Build human capacity and promote the development of skills 5) Recommend strategies for climate hazard prevention, mitigation and response, especially for hazard with the greatest impacts in Mexico, such as hurricanes, floods, drought, wild fires and other extremes events. We provide a continues communication channel on members research results to provide scientific information that could be used for different proposes, specificaly for decision makers who are dealing with ecological and hydro meteorological problems that can result in disasters, and provide a services menu based on the members scientific projects, publications, teaching courses, in order to impact public policy as final result. http://www.redesclim.org.mx. So far we have some basic results: Fiver national meetings (participants from 35 countries around the world), 7 Workshops and seminars (virtual and in-person), Climatic data platforms ( http://clicom.mex.cicese.mx, http://clicom-mex.cicese.mx/malla, http://atlasclimatico.unam.mx/REDESCLIM2/ ), climate change scenarios for the general public at http://escenarios.inecc.gob.mx, 14 seed projects, one model to hurricane simulation, one popular science journal, one popular science book. We are moving to: ¡ To influence public policy involving the government, private enterprise, academy and society. ¡ To promote the knowledge of natural phenomena. ¡ To reduce the risk of disasters against hydrometeorological and climatic phenomena in Mexico.

  12. Emergent functions of quantum materials

    NASA Astrophysics Data System (ADS)

    Tokura, Yoshinori; Kawasaki, Masashi; Nagaosa, Naoto

    2017-11-01

    Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids, that lead to novel and remarkable functions thanks to emergence--collective behaviours that arise from strong interactions among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity, colossal magnetoresistance, giant magnetoelectric effect, and topological insulators. These phenomena will probably be crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving a sustainable and safe society. Dissipationless electronics using topological currents and quantum spins, energy harvesting such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena and functions in materials from the viewpoint of strong correlation and topology.

  13. A two-dimensional model for the study of interpersonal attraction.

    PubMed

    Montoya, R Matthew; Horton, Robert S

    2014-02-01

    We describe a model for understanding interpersonal attraction in which attraction can be understood as a product of the initial evaluations we make about others. The model posits that targets are evaluated on two basic dimensions, capacity and willingness, such that affective and behavioral attraction result from evaluations of (a) a target's capacity to facilitate the perceiver's goals/needs and (b) a target's potential willingness to facilitate those goals/needs. The plausibility of the two-dimensional model of attraction is evaluated vis-à-vis the extant literature on various attraction phenomena including the reciprocity of liking effect, pratfall effect, matching hypothesis, arousal effects, and similarity effect. We conclude that considerable evidence across a wide range of phenomena supports the idea that interpersonal attraction is principally determined by inferences about the target's capacity and willingness.

  14. Modeling of the Edwards pipe experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiselj, I.; Petelin, S.

    1995-12-31

    The Edwards pipe experiment is used as one of the basic benchmarks for the two-phase flow codes due to its simple geometry and the wide range of phenomena that it covers. Edwards and O`Brien filled 4-m-long pipe with liquid water at 7 MPa and 502 K and ruptured one end of the tube. They measured pressure and void fraction during the blowdown. Important phenomena observed were pressure rarefaction wave, flashing onset, critical two-phase flow, and void fraction wave. Experimental data were used to analyze the capabilities of the RELAP5/MOD3.1 six-equation two-phase flow model and to examine two different numerical schemes:more » one from the RELAP5/MOD3.1 code and one from our own code, which was based on characteristic upwind discretization.« less

  15. Effects of buoyancy on gas jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Edelman, Raymond B.

    1993-01-01

    The objective of this effort was to gain a better understanding of the fundamental phenomena involved in laminar gas jet diffusion flames in the absence of buoyancy by studying the transient phenomena of ignition and flame development, (quasi-) steady-state flame characteristics, soot effects, radiation, and, if any, extinction phenomena. This involved measurements of flame size and development, as well as temperature and radiation. Additionally, flame behavior, color, and luminosity were observed and recorded. The tests quantified the effects of Reynolds number, nozzle size, fuel reactivity and type, oxygen concentration, and pressure on flame characteristics. Analytical and numerical modeling efforts were also performed. Methane and propane flames were studied in the 2.2 Second Drop Tower and the 5.18-Second Zero-Gravity Facility of NASA LeRC. In addition, a preliminary series of tests were conducted in the KC-135 research aircraft. Both micro-gravity and normal-gravity flames were studied in this program. The results have provided unique and new information on the behavior and characteristics of gas jet diffusion flames in micro-gravity environments.

  16. EDITORIAL: Tribocorrosion: fundamentals, materials and applications

    NASA Astrophysics Data System (ADS)

    MORE ADDRESSES--> Alfons Fischer,

  1. Simulation studies of plasma waves in the electron foreshock - The generation of Langmuir waves by a gentle bump-on-tail electron distribution

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.

  2. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    USGS Publications Warehouse

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-01-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System(VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  3. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa

    PubMed Central

    Proietto, Marco; Bianchi, Michele Maria; Ballario, Paola; Brenna, Andrea

    2015-01-01

    Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC), a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ), the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM). The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock. PMID:26198228

  4. The quest for a new modelling framework in mathematical biology. Comment on "On the interplay between mathematics and biology: Hallmarks towards a new systems biology" by N. Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Eftimie, Raluca

    2015-03-01

    One of the main unsolved problems of modern physics is finding a "theory of everything" - a theory that can explain, with the help of mathematics, all physical aspects of the universe. While the laws of physics could explain some aspects of the biology of living systems (e.g., the phenomenological interpretation of movement of cells and animals), there are other aspects specific to biology that cannot be captured by physics models. For example, it is generally accepted that the evolution of a cell-based system is influenced by the activation state of cells (e.g., only activated and functional immune cells can fight diseases); on the other hand, the evolution of an animal-based system can be influenced by the psychological state (e.g., distress) of animals. Therefore, the last 10-20 years have seen also a quest for a "theory of everything"-approach extended to biology, with researchers trying to propose mathematical modelling frameworks that can explain various biological phenomena ranging from ecology to developmental biology and medicine [1,2,6]. The basic idea behind this approach can be found in a few reviews on ecology and cell biology [6,7,9-11], where researchers suggested that due to the parallel between the micro-scale dynamics and the emerging macro-scale phenomena in both cell biology and in ecology, many mathematical methods used for ecological processes could be adapted to cancer modelling [7,9] or to modelling in immunology [11]. However, this approach generally involved the use of different models to describe different biological aspects (e.g., models for cell and animal movement, models for competition between cells or animals, etc.).

  5. Spontaneous ultraweak photon emission from biological systems and the endogenous light field.

    PubMed

    Schwabl, Herbert; Klima, Herbert

    2005-04-01

    Still one of the most astonishing biological electromagnetic phenomena is the ultraweak photon emission (UPE) from living systems. Organisms and tissues spontaneously emit measurable intensities of light, i.e. photons in the visible part of the electromagnetic spectrum (380-780 nm), in the range from 1 to 1,000 photons x s-1 x cm-2, depending on their condition and vitality. It is important not to confuse UPE from living systems with other biogenic light emitting processes such as bioluminescence or chemiluminescence. This article examines with basic considerations from physics on the quantum nature of photons the empirical phenomenon of UPE. This leads to the description of the non-thermal origin of this radiation. This is in good correspondence with the modern understanding of life phenomena as dissipative processes far from thermodynamic equilibrium. UPE also supports the understanding of life sustaining processes as basically driven by electromagnetic fields. The basic features of UPE, like intensity and spectral distribution, are known in principle for many experimental situations. The UPE of human leukocytes contributes to an endogenous light field of about 1011 photons x s-1 which can be influenced by certain factors. Further research is needed to reveal the statistical properties of UPE and in consequence to answer questions about the underlying mechanics of the biological system. In principle, statistical properties of UPE allow to reconstruct phase-space dynamics of the light emitting structures. Many open questions remain until a proper understanding of the electromagnetic interaction of the human organism can be achieved: which structures act as receptors and emitters for electromagnetic radiation? How is electromagnetic information received and processed within cells?

  6. 48 CFR 37.202 - Exclusions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Routine information technology services unless they are an integral part of a contract for the acquisition... research involving medical, biological, physical, social, psychological, or other phenomena. [60 FR 49722...

  7. 48 CFR 37.202 - Exclusions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Routine information technology services unless they are an integral part of a contract for the acquisition... research involving medical, biological, physical, social, psychological, or other phenomena. [60 FR 49722...

  8. 48 CFR 37.202 - Exclusions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Routine information technology services unless they are an integral part of a contract for the acquisition... research involving medical, biological, physical, social, psychological, or other phenomena. [60 FR 49722...

  9. Causal relations among events and states in dynamic geographical phenomena

    NASA Astrophysics Data System (ADS)

    Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan

    2007-06-01

    There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst events and states. The qualitative spatiotemporal change is an important issue in the dynamic geographic-scale phenomena. In real estate transition, the events and states are needed to be represented explicitly. In our modeling the evolution of a dynamic system, it can not avoid fetching in the view of causality. The object's transition is represented by the state of object. Event causes the state of objects changing and causes other events happen. Events connect with objects closely. The basic causal relations are the state-event and event-state relationships. Lastly, the paper concludes with the overview about the causal relations amongst events and states. And this future work is pointed.

  10. Astronomy: Social Representations of the Integrated High School Students and Graduates in Physics

    NASA Astrophysics Data System (ADS)

    Barbosa, J. I. L.

    The topics related to Astronomy are spread through almost all levels of basic education in Brazil and are also disseminated through the mass media, activities that do not always occur in the proper way. However, their students form their explanations about the phenomena studied by Astronomy, that is, they begin to construct their opinions, their beliefs and their attitudes regarding this object or this situation. In this sense, this work was divided in two fronts, which have the following objectives: (1) To identify the social representations of Astronomy elaborated by students of Integrated secondary education and undergraduate students in Physics; (2) To verify to what extent the social representations developed by the investigated students are equivalent; (3) To Investigate if the social representations designed per undergraduate students in Physics about Astronomy undergo changes after these participate in a course on basic subjects of Astronomy, in comparison with those exposed before the mentioned event. On the first front there is a research of a basic nature, where the data were obtained through of survey, and analysed in accordance with the methodologies pertinent to Central Nucleus Theory, the second front deals with an investigation of an applied nature, and the data obtained were explored through statistical analyses. The results indicate that the researchers have been involved in social representations of the object Astronomy, which are based on elements of the formal education space, and also disclosed in the media, in addition, demonstrate that the students have information about Astronomy and a valuation position in relation to this Science. On the second front, the results indicate that there were changes in the social representations of the undergraduate students in Physics about the term inductor Astronomy, after the course, that is, several elements evoked before the course were replaced by others, which were worked during the event.

  11. Passion and Preparation in the Basic Course: The Influence of Students' Ego-Involvement with Speech Topics and Preparation Time on Public-Speaking Grades

    ERIC Educational Resources Information Center

    Mazer, Joseph P.; Titsworth, Scott

    2012-01-01

    Authors of basic public-speaking course textbooks frequently encourage students to select speech topics in which they have vested interest, care deeply about, and hold strong opinions and beliefs. This study explores students' level of ego-involvement with informative and persuasive speech topics, examines possible ego-involvement predictors of…

  12. Diffuse-Interface Methods in Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  13. Nature's optics and our understanding of light

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2015-01-01

    Optical phenomena visible to everyone have been central to the development of, and abundantly illustrate, important concepts in science and mathematics. The phenomena considered from this viewpoint are rainbows, sparkling reflections on water, mirages, green flashes, earthlight on the moon, glories, daylight, crystals and the squint moon. And the concepts involved include refraction, caustics (focal singularities of ray optics), wave interference, numerical experiments, mathematical asymptotics, dispersion, complex angular momentum (Regge poles), polarisation singularities, Hamilton's conical intersections of eigenvalues ('Dirac points'), geometric phases and visual illusions.

  14. Quantum phenomena in gravitational field

    NASA Astrophysics Data System (ADS)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  15. Manipulating Neutral Atoms in Chip-Based Magnetic Traps

    NASA Technical Reports Server (NTRS)

    Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James

    2009-01-01

    Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.

  16. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests.

    PubMed

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-08-06

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth.

  17. Plasma universe

    NASA Technical Reports Server (NTRS)

    Alfven, H.

    1986-01-01

    Traditionally the views on the cosmic environent have been based on observations in the visual octave of the electromagnetic spectrum, during the last half-century supplemented by infrared and radio observations. Space research has opened the full spectrum. Of special importance are the X-ray-gamma-ray regions, in which a number of unexpected phenomena have been discovered. Radiations in these regions are likely to originate mainly from magnetised cosmic plasmas. Such a medium may also emit synchrotron radiation which is observable in the radio region. If a model of the universe is based on the plasma phenomena mentioned it is found that the plasma universe is drastically different from the traditional visual universe. Information about the plasma universe can also be obtained by extrapolation of laboratory experiments and magnetospheric in situ measurements of plasmas. This approach is possible because it is likely that the basic properties of plasmas are the same everywhere. In order to test the usefulness of the plasma universe model it is applied to cosmogony. Such an approach seems to be rather successful. For example, the complicated structure of the Saturnian C ring can be accounted for. It is possible to reconstruct certain phenomena 4 to 5 billions of years ago with an accuracy of better than 1%.

  18. A Basic Experiment on the Aerodynamics of Sniffing

    NASA Astrophysics Data System (ADS)

    Settles, Gary S.; Kester, Douglas A.

    1999-11-01

    Our previous work (APS/DFD97:Ii1 and 98:FA10) used flow visualization to observe canine olfaction. The results raised some basic questions about the aerodynamics of sniffing, e.g. what flow rate is required, as a function of distance from a scent source, to acquire a detectable scent? Commercial sampler technology does not address such questions. A basic experiment was thus designed to investigate the aerodynamic phenomena and performance of sniffing. A stable thermal layer on a horizontal plane was used as a "scent" source per Reynolds Analogy. The detector was a thermocouple inside a sniffer tube. Flow patterns were observed by schlieren. Results show the importance of sniffer proximity to localize a scent source. A transient scent spike occurs at the sniff onset, followed by signal decline due to source depletion. Sniffing shows extreme sensitivity to disruptive air currents. Unstably-stratified scent sources (thermal plumes) are also considered. These results help us understand evolved sniffing behavior, and they suggest sampler design criteria for electronic-nose devices. (Research supported by DARPA.)

  19. The Optimizer Topology Characteristics in Seismic Hazards

    NASA Astrophysics Data System (ADS)

    Sengor, T.

    2015-12-01

    The characteristic data of the natural phenomena are questioned in a topological space approach to illuminate whether there is an algorithm behind them bringing the situation of physics of phenomena to optimized states even if they are hazards. The optimized code designing the hazard on a topological structure mashes the metric of the phenomena. The deviations in the metric of different phenomena push and/or pull the fold of the other suitable phenomena. For example if the metric of a specific phenomenon A fits to the metric of another specific phenomenon B after variation processes generated with the deviation of the metric of previous phenomenon A. Defining manifold processes covering the metric characteristics of each of every phenomenon is possible for all the physical events; i.e., natural hazards. There are suitable folds in those manifold groups so that each subfold fits to the metric characteristics of one of the natural hazard category at least. Some variation algorithms on those metric structures prepare a gauge effect bringing the long time stability of Earth for largely scaled periods. The realization of that stability depends on some specific conditions. These specific conditions are called optimized codes. The analytical basics of processes in topological structures are developed in [1]. The codes are generated according to the structures in [2]. Some optimized codes are derived related to the seismicity of NAF beginning from the quakes of the year 1999. References1. Taner SENGOR, "Topological theory and analytical configuration for a universal community model," Procedia- Social and Behavioral Sciences, Vol. 81, pp. 188-194, 28 June 2013, 2. Taner SENGOR, "Seismic-Climatic-Hazardous Events Estimation Processes via the Coupling Structures in Conserving Energy Topologies of the Earth," The 2014 AGU Fall Meeting, Abstract no.: 31374, ABD.

  20. Bio-Mimetics of Disaster Anticipation—Learning Experience and Key-Challenges

    PubMed Central

    Tributsch, Helmut

    2013-01-01

    Simple Summary Starting from 1700 B.C. in the old world and up to recent times in China there is evidence of earthquake prediction based on unusual metrological phenomena and animal behavior. The review tries to explore the credibility and to pin down the nature of geophysical phenomena involved. It appears that the concept of ancient Greek philosophers in that a dry gas, pneuma is correlated with earthquakes, is relevant. It is not the cause of earthquakes, as originally thought, but may be an accompanying phenomenon and occasional precursor. This would explain unusual animal behavior as well as thermal anomalies detected from satellites. Abstract Anomalies in animal behavior and meteorological phenomena before major earthquakes have been reported throughout history. Bio-mimetics or bionics aims at learning disaster anticipation from animals. Since modern science is reluctant to address this problem an effort has been made to track down the knowledge available to ancient natural philosophers. Starting with an archaeologically documented human sacrifice around 1700 B.C. during the Minoan civilization immediately before a large earthquake, which killed the participants, earthquake prediction knowledge throughout antiquity is evaluated. Major practical experience with this phenomenon has been gained from a Chinese earthquake prediction initiative nearly half a century ago. Some quakes, like that of Haicheng, were recognized in advance. However, the destructive Tangshan earthquake was not predicted, which was interpreted as an inherent failure of prediction based on animal phenomena. This is contradicted on the basis of reliable Chinese documentation provided by the responsible earthquake study commission. The Tangshan earthquake was preceded by more than 2,000 reported animal anomalies, some of which were of very dramatic nature. They are discussed here. Any physical phenomenon, which may cause animal unrest, must involve energy turnover before the main earthquake event. The final product, however, of any energy turnover is heat. Satellite based infrared measurements have indeed identified significant thermal anomalies before major earthquakes. One of these cases, occurring during the 2001 Bhuj earthquake in Gujarat, India, is analyzed together with parallel animal anomalies observed in the Gir national park. It is suggested that the time window is identical and that both phenomena have the same geophysical origin. It therefore remains to be demonstrated that energy can be released locally before major earthquake events. It is shown that by considering appropriate geophysical feedback processes, this is possible for large scale energy conversion phenomena within highly non-linear geophysical mechanisms. With satellite monitored infrared anomalies indicating possible epicenters and local animal and environmental observations immediately initiated, the learning experience towards an understanding of the phenomena involved could be accelerated. PMID:26487318

  1. Relevance of ancient Indian wisdom to modern mental health – A few examples

    PubMed Central

    Shamasundar, C.

    2008-01-01

    The ancient Indian concepts and paradigms relating to mental health are holistic and cover aspects that have been neglected by the modern mental health literature. The latter can borrow, study, and incorporate them in their text books to advantage. The current trend in mental health research is heavily biased in favour of biological aspects of psychological phenomena neglecting the basic entity, the mind. Correction of this partisan tilt is urgently needed. PMID:19742213

  2. GUTs and TOEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    2015-01-20

    Albert Einstein said that what he wanted to know was “God’s thoughts,” which is a metaphor for the ultimate and most basic rules of the universe. Once known, all other phenomena would then be a consequence of these simple rules. While modern science is far from that goal, we have some thoughts on how this inquiry might unfold. In this video, Fermilab’s Dr. Don Lincoln tells what we know about GUTs (grand unified theories) and TOEs (theories of everything).

  3. Joint Services Electronics Program. Basic Research in Electronics (JSEP)

    DTIC Science & Technology

    1992-08-01

    DBRs). Our DBR work allows us to develop improved vertical cavity surface-emitting lasers ( VCSELs ) and also to examine details of optical phenomena... in short-cavity lasers. We have used MBE regrowth techniques to provide current tunnelling into the device active region of the VCSEL . We use an AlAs... optical detector structures. We have already developed significant capability in the low temperature (2506C - 3000C) growth of undoped GaAs and AIo.3Gao

  4. Boundary layer transition: A review of theory, experiment and related phenomena

    NASA Technical Reports Server (NTRS)

    Kistler, E. L.

    1971-01-01

    The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.

  5. The Emergence of Contextual Social Psychology.

    PubMed

    Pettigrew, Thomas F

    2018-07-01

    Social psychology experiences recurring so-called "crises." This article maintains that these episodes actually mark advances in the discipline; these "crises" have enhanced relevance and led to greater methodological and statistical sophistication. New statistical tools have allowed social psychologists to begin to achieve a major goal: placing psychological phenomena in their larger social contexts. This growing trend is illustrated with numerous recent studies; they demonstrate how cultures and social norms moderate basic psychological processes. Contextual social psychology is finally emerging.

  6. Music Theory and the Harmony Method in J. Kepler's Work " The harmony of the Universe"

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.

    In Kepler's book The Harmony of the Universe, edited in 1619, the theory of music as a science of that time is presented. Also the investigation of the correspondence between musical proportion and orbital parameters of the planets is presented. Kepler's book The Harmony of the Universe is a work that discloses the basic physical regularities of the developing Universe, which so far had not been definitively formulated. To explain the development process, Kepler introduced the concept of a "productive force" or "forming force" that directs the development of natural phenomena with the principles of world harmony, described by him. In addition to the four known natural interactions is a fifth one, that had never been studied fully. In this way we can explain the development of natural phenomena as alive and nonalive. Arising from the "productive force" that directs the flow of processes with the laws of harmony is an explanation of the existence of "anti-entropy" processes, a contradiction to the second law of thermodynamics, but playing a fundamental part in nature. The "golden section" apparatus defines space and time frames of process flow. The contents of the book give a notion about the way or "program" of development. Which basic law of nature is hiden in the contents of book is yet to be resolved (Kepler, 1939).

  7. Evidence for a bimodal distribution in human communication.

    PubMed

    Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2010-11-02

    Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc.

  8. Evidence for a bimodal distribution in human communication

    PubMed Central

    Wu, Ye; Zhou, Changsong; Xiao, Jinghua; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2010-01-01

    Interacting human activities underlie the patterns of many social, technological, and economic phenomena. Here we present clear empirical evidence from Short Message correspondence that observed human actions are the result of the interplay of three basic ingredients: Poisson initiation of tasks and decision making for task execution in individual humans as well as interaction among individuals. This interplay leads to new types of interevent time distribution, neither completely Poisson nor power-law, but a bimodal combination of them. We show that the events can be separated into independent bursts which are generated by frequent mutual interactions in short times following random initiations of communications in longer times by the individuals. We introduce a minimal model of two interacting priority queues incorporating the three basic ingredients which fits well the distributions using the parameters extracted from the empirical data. The model can also embrace a range of realistic social interacting systems such as e-mail and letter communications when taking the time scale of processing into account. Our findings provide insight into various human activities both at the individual and network level. Our analysis and modeling of bimodal activity in human communication from the viewpoint of the interplay between processes of different time scales is likely to shed light on bimodal phenomena in other complex systems, such as interevent times in earthquakes, rainfall, forest fire, and economic systems, etc. PMID:20959414

  9. Integration of Basic Knowledge Models for the Simulation of Cereal Foods Processing and Properties.

    PubMed

    Kristiawan, Magdalena; Kansou, Kamal; Valle, Guy Della

    Cereal processing (breadmaking, extrusion, pasting, etc.) covers a range of mechanisms that, despite their diversity, can be often reduced to a succession of two core phenomena: (1) the transition from a divided solid medium (the flour) to a continuous one through hydration, mechanical, biochemical, and thermal actions and (2) the expansion of a continuous matrix toward a porous structure as a result of the growth of bubble nuclei either by yeast fermentation or by water vaporization after a sudden pressure drop. Modeling them is critical for the domain, but can be quite challenging to address with mechanistic approaches relying on partial differential equations. In this chapter we present alternative approaches through basic knowledge models (BKM) that integrate scientific and expert knowledge, and possess operational interest for domain specialists. Using these BKMs, simulations of two cereal foods processes, extrusion and breadmaking, are provided by focusing on the two core phenomena. To support the use by non-specialists, these BKMs are implemented as computer tools, a Knowledge-Based System developed for the modeling of the flour mixing operation or Ludovic ® , a simulation software for twin screw extrusion. They can be applied to a wide domain of compositions, provided that the data on product rheological properties are available. Finally, it is stated that the use of such systems can help food engineers to design cereal food products and predict their texture properties.

  10. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    NASA Astrophysics Data System (ADS)

    Blandón, J. S.; Grisales, J. P.; Riascos, H.

    2017-06-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.

  11. A didactic proposal about Rutherford backscattering spectrometry with theoretic, experimental, simulation and application activities

    NASA Astrophysics Data System (ADS)

    Corni, Federico; Michelini, Marisa

    2018-01-01

    Rutherford backscattering spectrometry is a nuclear analysis technique widely used for materials science investigation. Despite the strict technical requirements to perform the data acquisition, the interpretation of a spectrum is within the reach of general physics students. The main phenomena occurring during a collision between helium ions—with energy of a few MeV—and matter are: elastic nuclear collision, elastic scattering, and, in the case of non-surface collision, ion stopping. To interpret these phenomena, we use classical physics models: material point elastic collision, unscreened Coulomb scattering, and inelastic energy loss of ions with electrons, respectively. We present the educational proposal for Rutherford backscattering spectrometry, within the framework of the model of educational reconstruction, following a rationale that links basic physics concepts with quantities for spectra analysis. This contribution offers the opportunity to design didactic specific interventions suitable for undergraduate and secondary school students.

  12. Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation

    PubMed Central

    Volpe, Giorgio; Volpe, Giovanni; Gigan, Sylvain

    2014-01-01

    The motion of particles in random potentials occurs in several natural phenomena ranging from the mobility of organelles within a biological cell to the diffusion of stars within a galaxy. A Brownian particle moving in the random optical potential associated to a speckle pattern, i.e., a complex interference pattern generated by the scattering of coherent light by a random medium, provides an ideal model system to study such phenomena. Here, we derive a theory for the motion of a Brownian particle in a speckle field and, in particular, we identify its universal characteristic timescale. Based on this theoretical insight, we show how speckle light fields can be used to control the anomalous diffusion of a Brownian particle and to perform some basic optical manipulation tasks such as guiding and sorting. Our results might broaden the perspectives of optical manipulation for real-life applications. PMID:24496461

  13. Comets: Data, problems, and objectives

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1977-01-01

    A highly abridged review of new relevant results from the observations of Comet Kohoutek is followed by an outline summary of our basic knowledge concerning comets, both subjects being confined to data related to the nature and origin of comets rather than the phenomena (for example, plasma phenomena are omitted). The discussion then centers on two likely places of cometary origin in the developing solar system, the proto-Uranus-Neptune region versus the much more distant fragmented interstellar cloud region, now frequented by comets of the Opik-Oort cloud. The Comet Kohoutek results add new insights, particularly with regard to the parent molecules and the nature of meteoric solids in comets, to restrict the range of the physical circumstances of comet formation. A few fundamental and outstanding questions are asked, and a plea made for unmanned missions to comets and asteroids in order to provide definitive answers as to the nature and origin of comets, asteroids, and the solar system generally.

  14. Mechanism of Occurring Over-Voltage Phenomena in Distributed Power System on Energization of Transformers

    NASA Astrophysics Data System (ADS)

    Nakachi, Yoshiki; Ueda, Fukashi; Kajikawa, Takuya; Amau, Tooru; Kameyama, Hirokazu; Ito, Hisanori

    This paper verifies the mechanism of occurring over voltage phenomena in the distributed power system on energizing the transformer. This over-voltage, which is observed at the actual distributed power system, with heavy inrush current is found to occur at about 0.1-0.2sec after the energizing and continue for a duration of more than 0.1[sec]. There is a concern that this over-voltage may operate the protection relay and deteriorate the insulation of apparatus. It is basically caused by the resonance between the shunt capacitors and saturated/unsaturated magnetizing inductance of transformer, system inductance. By using analytical formulation of a simple equivalent circuit, its mechanism has been verified through simulations carried out by using EMTP. Moreover, the sympathetic interaction between transformers is prolonged the duration of the over-voltage by the field test data is discussed in this paper.

  15. The problem of the Grand Unification Theory

    NASA Astrophysics Data System (ADS)

    Treder, H.-J.

    The evolution and fundamental questions of physical theories unifying the gravitational, electromagnetic, and quantum-mechanical interactions are explored, taking Pauli's aphorism as a motto: 'Let no man join what God has cast asunder.' The contributions of Faraday and Riemann, Lorentz, Einstein, and others are discussed, and the criterion of Pauli is applied to Grand Unification Theories (GUT) in general and to those seeking to link gravitation and electromagnetism in particular. Formal mathematical symmetry principles must be shown to have real physical relevance by predicting measurable phenomena not explainable without a GUT; these phenomena must be macroscopic because gravitational effects are to weak to be measured on the microscopic level. It is shown that empirical and theoretical studies of 'gravomagnetism', 'gravoelectricity', or possible links between gravoelectrity and the cosmic baryon assymmetry eventually lead back to basic questions which appear philosophical or purely mathematical but actually challenge physics to seek verifiable answers.

  16. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically

    PubMed Central

    Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro

    2015-01-01

    Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure. PMID:26416086

  17. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  18. Annual Conference on Nuclear and Space Radiation Effects, 19th, Las Vegas, NV, July 20-22, 1982, Proceedings

    NASA Technical Reports Server (NTRS)

    Long, D. M.

    1982-01-01

    The results of research concerning the effects of nuclear and space radiation are presented. Topics discussed include the basic mechanisms of nuclear and space radiation effects, radiation effects in devices, and radiation effects in microcircuits, including studies of radiation-induced paramagnetic defects in MOS structures, silicon solar cell damage from electrical overstress, radiation-induced charge dynamics in dielectrics, and the enhanced radiation effects on submicron narrow-channel NMOS. Also examined are topics in SGEMP/IEMP phenomena, hardness assurance and testing, energy deposition, desometry, and radiation transport, and single event phenomena. Among others, studies are presented concerning the limits to hardening electronic boxes to IEMP coupling, transient radiation screening of silicon devices using backside laser irradiation, the damage equivalence of electrons, protons, and gamma rays in MOS devices, and the single event upset sensitivity of low power Schottky devices.

  19. Expanding the role of striatal cholinergic interneurons and the midbrain dopamine system in appetitive instrumental conditioning.

    PubMed

    Crossley, Matthew J; Horvitz, Jon C; Balsam, Peter D; Ashby, F Gregory

    2016-01-01

    The basal ganglia are a collection of subcortical nuclei thought to underlie a wide variety of vertebrate behavior. Although a great deal is known about the functional and physiological properties of the basal ganglia, relatively few models have been formally developed that have been tested against both behavioral and physiological data. Our previous work (Ashby FG, Crossley MJ. J Cogn Neurosci 23: 1549-1566, 2011) showed that a model grounded in the neurobiology of the basal ganglia could account for basic single-neuron recording data, as well as behavioral phenomena such as fast reacquisition that constrain models of conditioning. In this article we show that this same model accounts for a variety of appetitive instrumental conditioning phenomena, including the partial reinforcement extinction (PRE) effect, rapid and slowed reacquisition following extinction, and renewal of previously extinguished instrumental responses by environmental context cues. Copyright © 2016 the American Physiological Society.

  20. Hydrology

    NASA Astrophysics Data System (ADS)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  1. The evolution of social learning mechanisms and cultural phenomena in group foragers.

    PubMed

    van der Post, Daniel J; Franz, Mathias; Laland, Kevin N

    2017-02-10

    Advanced cognitive abilities are widely thought to underpin cultural traditions and cumulative cultural change. In contrast, recent simulation models have found that basic social influences on learning suffice to support both cultural phenomena. In the present study we test the predictions of these models in the context of skill learning, in a model with stochastic demographics, variable group sizes, and evolved parameter values, exploring the cultural ramifications of three different social learning mechanisms. Our results show that that simple forms of social learning such as local enhancement, can generate traditional differences in the context of skill learning. In contrast, we find cumulative cultural change is supported by observational learning, but not local or stimulus enhancement, which supports the idea that advanced cognitive abilities are important for generating this cultural phenomenon in the context of skill learning. Our results help to explain the observation that animal cultures are widespread, but cumulative cultural change might be rare.

  2. Multipoint observations of plasma phenomena made in space by Cluster

    NASA Astrophysics Data System (ADS)

    Goldstein, M. L.; Escoubet, P.; Hwang, K.-Joo; Wendel, D. E.; Viñas, A.-F.; Fung, S. F.; Perri, S.; Servidio, S.; Pickett, J. S.; Parks, G. K.; Sahraoui, F.; Gurgiolo, C.; Matthaeus, W.; Weygand, J. M.

    2015-06-01

    Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al. 2005 Multiscale Coupling of Sun-Earth Processes, p. 459, Keith et al. 2005 Sur. Geophys. 26, 307-339, Paschmann et al. 2005 Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series of ISSI. Berlin: Springer, Goldstein et al. 2006 Adv. Space Res. 38, 21-36, Taylor et al. 2010 The Cluster Mission: Space Plasma in Three Dimensions, Springer, pp. 309-330 and Escoubet et al. 2013 Ann. Geophys. 31, 1045-1059).

  3. The Hidden Curriculum: What Are We Actually Teaching about the Fundamentals of Care?

    PubMed

    MacMillan, Kathleen

    2016-01-01

    The issues of missed or inadequately provided basic nursing care and related complications are being identified as worldwide phenomena of interest. Without being aware of it, educators and practicing nurses may be teaching nursing students that fundamental nursing care is unimportant, uncomplicated and not really nursing's responsibility. This paper explores the concept of the "hidden curriculum" in nursing education, as it relates to fundamental nursing care and calls for greater partnerships between education and service to uncover the hidden curriculum; to effectively shape it to achieve alignment between classroom and practice; and, ultimately, to improve care processes and patient outcomes through collaboration. A renewed focus on the vital importance of what is considered "basics" to patient outcomes is required in nursing education. Copyright © 2016 Longwoods Publishing.

  4. Basic physics of nuclear magnetic resonance.

    PubMed

    Patz, S

    1986-01-01

    This review of basic physics of nuclear magnetic resonance (NMR) discusses precession of magnetic nuclei in a static external field, introduces the concept of the rotating frame, and describes excitation of nuclei by an RF field. Treats subject of T1 and T2 relaxation from the dual viewpoints of (1) phenomena of relaxation times for both the longitudinal and transverse magnetization and (2) relaxation resulting from local field fluctuations. It describes practical ways in which T1 and T2 are measured (i.e., inversion recovery and spin-echo) and gives the value of the nuclear magnetization in thermodynamic equilibrium with a static external field. It discusses the reduction of NMR signal resulting from saturation. These concepts are related to clinical use with a set of four spin-echo images of a human head.

  5. Information processing as a paradigm for decision making.

    PubMed

    Oppenheimer, Daniel M; Kelso, Evan

    2015-01-03

    For decades, the dominant paradigm for studying decision making--the expected utility framework--has been burdened by an increasing number of empirical findings that question its validity as a model of human cognition and behavior. However, as Kuhn (1962) argued in his seminal discussion of paradigm shifts, an old paradigm cannot be abandoned until a new paradigm emerges to replace it. In this article, we argue that the recent shift in researcher attention toward basic cognitive processes that give rise to decision phenomena constitutes the beginning of that replacement paradigm. Models grounded in basic perceptual, attentional, memory, and aggregation processes have begun to proliferate. The development of this new approach closely aligns with Kuhn's notion of paradigm shift, suggesting that this is a particularly generative and revolutionary time to be studying decision science.

  6. BASIC ELECTRICITY. SCIENCE IN ACTION SERIES, NUMBER 14.

    ERIC Educational Resources Information Center

    CASSEL, RICHARD

    THIS TEACHING GUIDE, INVOLVING ACTIVITIES FOR DEVELOPING AN UNDERSTANDING OF BASIC ELECTRICITY, EMPHASIZES STUDENT INVESTIGATIONS RATHER THAN FACTS, AND IS BASED ON THE PREMISE THAT THE MAJOR GOAL IN SCIENCE TEACHING IS THE DEVELOPMENT OF THE INVESTIGATIVE ATTITUDE IN THE STUDENT. ACTIVITIES SUGGESTED INVOLVE SIMPLE DEMONSTRATIONS AND EXPERIMENTS…

  7. Shadow Formation at Preschool from a Socio-Materiality Perspective

    ERIC Educational Resources Information Center

    Impedovo, Maria Antonietta; Delserieys-Pedregosa, Alice; Jégou, Corinne; Ravanis, Konstantinos

    2017-01-01

    The paper is set in socio-material farming to offer a way of conceptualising actions and interactions of children in preschool involved in the understanding of scientific concepts. A model of early science education about the physical phenomena of shadow formation is implemented in group work in a French context. The research involved 44 children…

  8. Gender, Visible Bodies and Schooling: Cultural Pathologies of Childhood

    ERIC Educational Resources Information Center

    Paechter, Carrie

    2011-01-01

    In this paper, I consider two interrelated problems. The first concerns the issues and difficulties involved in studying how children think about their bodies, in the schooling setting. The second involves an attempt to bring together a series of phenomena around which gendered media and social panics are being constructed in the UK and elsewhere.…

  9. Translational bioinformatics: linking the molecular world to the clinical world.

    PubMed

    Altman, R B

    2012-06-01

    Translational bioinformatics represents the union of translational medicine and bioinformatics. Translational medicine moves basic biological discoveries from the research bench into the patient-care setting and uses clinical observations to inform basic biology. It focuses on patient care, including the creation of new diagnostics, prognostics, prevention strategies, and therapies based on biological discoveries. Bioinformatics involves algorithms to represent, store, and analyze basic biological data, including DNA sequence, RNA expression, and protein and small-molecule abundance within cells. Translational bioinformatics spans these two fields; it involves the development of algorithms to analyze basic molecular and cellular data with an explicit goal of affecting clinical care.

  10. Physics of atmospheric luminous anomalies: a sieve for SETI?

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2004-06-01

    Anomalous atmospheric light phenomena reoccur in many locations of Earth, some of which have become a laboratory area for a rigorous instrumented study of the involved physics. Three Italian missions to Hessdalen (Norway) furnished crucial multi-wavelength data, the analysis of which has recently permitted us to establish that the very most part of light phenomena are caused by a geophysical mechanism producing light balls whose structure and radiant characteristics are very similar to the ones of ball lightning. While most of light phenomena in Hessdalen and elsewhere can now be successfully explained within the framework of a natural mechanism, a residual of "locally overlapping data" remains presently unexplained. To investigate them also the ETV (Extraterrestrial Visitation) working hypothesis is taken into account. It is shown how the search for ETV (SETV), consistent with the assumption of interstellar and galactic diffusion, can be carried out only from a rigorous data screening coming originally from the study of natural phenomena.

  11. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S. (Editor)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).

  12. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    NASA Astrophysics Data System (ADS)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  13. TOPICAL REVIEW: Physics and phenomena in pulsed magnetrons: an overview

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Welzel, T.

    2009-05-01

    This paper reviews the contribution made to the observation and understanding of the basic physical processes occurring in an important type of magnetized low-pressure plasma discharge, the pulsed magnetron. In industry, these plasma sources are operated typically in reactive mode where a cathode is sputtered in the presence of both chemically reactive and noble gases typically with the power modulated in the mid-frequency (5-350 kHz) range. In this review, we concentrate mostly, however, on physics-based studies carried out on magnetron systems operated in argon. This simplifies the physical-chemical processes occurring and makes interpretation of the observations somewhat easier. Since their first recorded use in 1993 there have been more than 300 peer-reviewed paper publications concerned with pulsed magnetrons, dealing wholly or in part with fundamental observations and basic studies. The fundamentals of these plasmas and the relationship between the plasma parameters and thin film quality regularly have whole sessions at international conferences devoted to them; however, since many different types of magnetron geometries have been used worldwide with different operating parameters the important results are often difficult to tease out. For example, we find the detailed observations of the plasma parameter (particle density and temperature) evolution from experiment to experiment are at best difficult to compare and at worst contradictory. We review in turn five major areas of studies which are addressed in the literature and try to draw out the major results. These areas are: fast electron generation, bulk plasma heating, short and long-term plasma parameter rise and decay rates, plasma potential modulation and transient phenomena. The influence of these phenomena on the ion energy and ion energy flux at the substrate is discussed. This review, although not exhaustive, will serve as a useful guide for more in-depth investigations using the referenced literature and also hopefully as an inspiration for future studies.

  14. Retrieval-induced forgetting and interference between cues: training a cue-outcome association attenuates retrieval by alternative cues.

    PubMed

    Ortega-Castro, Nerea; Vadillo, Miguel A

    2013-03-01

    Some researchers have attempted to determine whether situations in which a single cue is paired with several outcomes (A-B, A-C interference or interference between outcomes) involve the same learning and retrieval mechanisms as situations in which several cues are paired with a single outcome (A-B, C-B interference or interference between cues). Interestingly, current research on a related effect, which is known as retrieval-induced forgetting, can illuminate this debate. Most retrieval-induced forgetting experiments are based on an experimental design that closely resembles the A-B, A-C interference paradigm. In the present experiment, we found that a similar effect may be observed when items are rearranged such that the general structure of the task more closely resembles the A-B, C-B interference paradigm. This result suggests that, as claimed by other researchers in the area of contingency learning, the two types of interference, namely A-B, A-C and A-B, C-B interference, may share some basic mechanisms. Moreover, the type of inhibitory processes assumed to underlie retrieval-induced forgetting may also play a role in these phenomena. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Less travelled roads in clinical immunology and allergy: drug reactions and the environmental influence.

    PubMed

    Selmi, Carlo; Crotti, Chiara; Meroni, Pier Luigi

    2013-08-01

    Allergy and clinical immunology are examples of areas of knowledge in which working hypotheses are dominant over mechanistic understanding. As such, sometimes scientific efforts follow major streams and overlook some epidemiologically prevalent conditions that thus become underestimated by the research community. For this reason, we welcome the present issue of Clinical Reviews in Allergy and Immunology that is dedicated to uncommon themes in clinical immunology and allergy. First, comprehensive discussions are provided for allergy phenomena of large potential impact in clinical practice such as reactions to cephalosporins or aspirin-induced asthma and in everyday life such as allergies to food additives or legumes. Further, the issue addresses other uncommon themes such as urticaria and angioedema, cercarial dermatitis, or late-onset inflammation to soft tissue fillers. Last, there will be discussion on transversal issues such as olfactory defects in autoimmunity, interleukin 1 beta pathway, and the search for new serological markers in chronic inflammation. As a result, we are convinced that this issue will be of help to clinicians involved in internal medicine as well as to allergists and clinical immunologists. More importantly, we are convinced that these discussions will be of interest also to basic scientists for the numerous translational implications.

  16. Metallomesogenic stationary phase for open-tubular capillary electrochromatography.

    PubMed

    Chen, Jian-Lian

    2006-02-01

    A synthetic coppermesogenic polymer is prepared and then covalently bonded to the siloxane-based deactivated column as the stationary phases of open-tubular CEC with essentially high phase ratio. The EOF generated from the modified phase is surveyed through conventional aqueous buffers and hydroorganic mobile phases. Zeta potentials, which are computed from the EOF data and the ratio of dielectric constant to viscosity, are plotted as a function of pH, ionic molarity, and compositional range. These plots responsible for the electroosmotic characteristic of the bonded phases are found to be like those of bare fused-silica or deactivated columns through decreasing or increasing the ACN content in the mobile phase, respectively. This two-phase characteristic is basically derived from the polymeric configuration with carboxylato ligands attached onto the polysiloxane backbone. Phthalates and amino acids are suitable probes to examine the two phenomena, more-polar and less-polar mediums, respectively, and to judge whether the chromatographic retention is the major source of separation mechanism. With the mixing modes of Lewis acid-base interaction, dispersive force, and shape discrimination, the chromatographic partition adequately accomplishes the uneasily resolved separations by only CZE mode, although the electrophoretic migration is truly somewhat involved.

  17. Effect of magnetic reconnection in stellar plasma

    NASA Astrophysics Data System (ADS)

    Hammoud, M.; El Eid, M.; Darwish, M.

    2017-06-01

    An important phenomenon in Astrophysics is the process of magnetic reconnection (MGR), which is envisaged to understand the solar flares, coronal mass ejection, interaction of the solar wind with the Earth’s magnetic field (so called geomagnetic storm) and other phenomena. In addition, it plays a role in the formation of stars. MGR involves topological change of a set of magnetic field lines leading to a new equilibrium configuration of lower magnetic energy. The MGR is basically described in the framework of the Maxwell’s equations linked to Navier-Stockes equations. Nevertheless, many details are still not understood. In this paper, we investigate the MGR process in the framework of the Magnetohydrodynamic (MHD) model of a single conducting fluid using a modern powerful computational tool (OpenFOAM). We will show that the MGR process takes place only if resistivity exists. However, despite the high conductivity of the plasma, resistivity becomes effective in a very thin layer generating sharp gradients of the magnetic field, and thus accelerating the reconnection process. The net effect of MGR is that magnetic energy is converted into thermal and kinetic energies leading to heating and acceleration of charged particles. The Sun’s coronal ejection is an example of the MGR process.

  18. Management of Primary Care: a challenge for international cooperation in health.

    PubMed

    Fonseca, Luiz Eduardo; Figueiredo, Maria Cristina Botelho de; Porto, Celina Santos Boga Marques

    2017-07-01

    The need to resolve immediate problems in basic healthcare systems and the decisions that must be made in the daily management of healthcare centers must reach beyond awareness of common sense, and be reinforced by the evidence sought in scientific knowledge that will provide a new look at the facts and phenomena that happen on a daily basis. This article examines an experience of triangular cooperation in health between Angola, Brazil and Japan, which took place in Luanda, Angola between 2011 and 2014. The "Project to Strengthen the Healthcare Through the Development of Human Resources at the Josina Hospital and in other Healthcare Services, and to Revitalize Primary Healthcare in Angola (ProForsa)", with the involvement of Fiocruz as the party executing the primary healthcare component. This is an innovative role in technical cooperation as a tool of political action. A training program with multiple possibilities enabled technical-political partnerships in an approach for "structuring cooperation in health". The article analyzes how interventions in international cooperation in health management may create scientific evidence that, together with the local political context, can transform organizational elements such as healthcare centers, their clinical management and physical infrastructure.

  19. Changes in neuronal properties and spinal reflexes during development of spasticity following spinal cord lesions and stroke: studies in animal models and patients.

    PubMed

    Hultborn, Hans

    2003-05-01

    It is a well-known fact that spinal reflexes may gradually change and often become enhanced following spinal cord lesions. Although these phenomena are known, the underlying mechanisms are still unknown and under investigation, mainly in animal models. Over the last twenty years, new methods have been developed that can reliably estimate the activity of specific spinal pathways in humans at rest and during voluntary movement. These methods now make it possible to describe components of the spinal pathophysiology in spasticity in humans following spinal lesions or stroke. We now know that spinal networks are capable of generating the basic pattern of locomotion in a large number of vertebrates, including the monkey--and in all likelihood, humans. Although spinal networks are capable of generating locomotor-like activity in the absence of afferent signals, functional gait is not possible without sensory feedback. The results of animal studies on the sensory control of and the transmitter systems involved in the spinal locomotor centers are now being used to improve rehabilitation of walking in persons with spinal cord injury and hemiplegia.

  20. Strolling Toward New Concepts.

    PubMed

    Ito, Koreaki

    2016-09-08

    For more than four decades now, I have been studying how genetic information is transformed into protein-based cellular functions. This has included investigations into the mechanisms supporting cellular localization of proteins, disulfide bond formation, quality control of membranes, and translation. I tried to extract new principles and concepts that are universal among living organisms from our observations of Escherichia coli. While I wanted to distill complex phenomena into basic principles, I also tried not to overlook any serendipitous observations. In the first part of this article, I describe personal experiences during my studies of the Sec pathway, which have centered on the SecY translocon. In the second part, I summarize my views of the recent revival of translation studies, which has given rise to the concept that nonuniform polypeptide chain elongation is relevant for the subsequent fates of newly synthesized proteins. Our studies of a class of regulatory nascent polypeptides advance this concept by showing that the dynamic behaviors of the extraribosomal part of the nascent chain affect the ongoing translation process. Vibrant and regulated molecular interactions involving the ribosome, mRNA, and nascent polypeptidyl-tRNA are based, at least partly, on their autonomously interacting properties.

  1. Vortex ring motions in stratified media

    NASA Astrophysics Data System (ADS)

    Auvity, Bruno; Koulal, Mokrane; Dupont, Pascal; Peerhossaini, Hassan

    2003-11-01

    The behavior of vortex rings generated in a stably stratified media has received only weak treatment in the literature. This configuration is believed to shed light on the basic phenomena involved in the collapse of wake in stratified fluid. The present study focused on experimental observations of the formation, the advection and the collapse of horizontal vortex rings in stratified media. Stable continuous vertical stratification was produced in a tank using the well-known two-tanks method. The generation of vortex ring was realized moving a piston through a tube. The maximum piston stroke achievable was seven tube diameters. The problem is mainly characterized by two parameters : the initial Reynolds number and the initial Froude number of the vortex ring. Both these numbers were varied in the study. The Reynolds number based on the tube diameter and piston velocity was in the range 1,500 - 5,500 and the Froude number based on the same parameters in the range 1.4 - 4.7. Dye visualizations were performed from the top and the side of the tank showing the vortex ring may develop an important asymmetry. Different processes to the complete collapse of the vortex ring were identified.

  2. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigmamore » STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.« less

  3. Ultrafast electron diffraction study of ab-plane dynamics in superconducting Bi2Sr<2CaCu2O8+d

    NASA Astrophysics Data System (ADS)

    Konstantinova, Tatiana; Reid, Alexander; Wu, Lijun; Durr, Hermann; Wang, Xijie; Zhu, Yimei

    The role of phonons and other collective modes in cooperative electron phenomena in high-TC cuprate superconductors is an extensively interesting topic. Time-resolved experiments provide temporal hierarchy of the bosonic modes interacting with electrons. However, majority of research in this field explore dynamics of electronic states and can only make indirect conclusion about involvement of the lattice. We report time-resolved study of optimally doped Bi2Sr2CaCu2O8+d lattice response to photo-excitation by means of ultrafast electron diffraction that is directly sensitive to atomic motion. Data analysis utilizing Bloch-wave calculation of diffraction peak intensity allows separation of Cu-O in-plane vibration building up on the sub picosecond time scale from the low energy phonon population growth with a much slower rate. This study confirms the assumption of strong electron coupling to the Cu-O plane phonons. This work was supported by the US DOE, Office of Science, Basic Energy Science, Materials Science and Engineering Division under Contract No: DE-AC02-98CH10886; DOE LDRD funding under contract DE-AC02-76SF00515 and BNL.

  4. Imitate or innovate: Competition of strategy updating attitudes in spatial social dilemma games

    NASA Astrophysics Data System (ADS)

    Danku, Zsuzsa; Wang, Zhen; Szolnoki, Attila

    2018-01-01

    Evolution is based on the assumption that competing players update their strategies to increase their individual payoffs. However, while the applied updating method can be different, most of previous works proposed uniform models where players use identical way to revise their strategies. In this work we explore how imitation-based or learning attitude and innovation-based or myopic best-response attitude compete for space in a complex model where both attitudes are available. In the absence of additional cost the best response trait practically dominates the whole snow-drift game parameter space which is in agreement with the average payoff difference of basic models. When additional cost is involved then the imitation attitude can gradually invade the whole parameter space but this transition happens in a highly nontrivial way. However, the role of competing attitudes is reversed in the stag-hunt parameter space where imitation is more successful in general. Interestingly, a four-state solution can be observed for the latter game which is a consequence of an emerging cyclic dominance between possible states. These phenomena can be understood by analyzing the microscopic invasion processes, which reveals the unequal propagation velocities of strategies and attitudes.

  5. Drying of Durum Wheat Pasta and Enriched Pasta: A Review of Modeling Approaches.

    PubMed

    Mercier, Samuel; Mondor, Martin; Moresoli, Christine; Villeneuve, Sébastien; Marcos, Bernard

    2016-05-18

    Models on drying of durum wheat pasta and enriched pasta were reviewed to identify avenues for improvement according to consumer needs, product formulation and processing conditions. This review first summarized the fundamental phenomena of pasta drying, mass transfer, heat transfer, momentum, chemical changes, shrinkage and crack formation. The basic equations of the current models were then presented, along with methods for the estimation of pasta transport and thermodynamic properties. The experimental validation of these models was also presented and highlighted the need for further model validation for drying at high temperatures (>-100°C) and for more accurate estimation of the pasta diffusion and mass transfer coefficients. This review indicates the need for the development of mechanistic models to improve our understanding of the mass and heat transfer mechanisms involved in pasta drying, and to consider the local changes in pasta transport properties and relaxation time for more accurate description of the moisture transport near glass transition conditions. The ability of current models to describe dried pasta quality according to the consumers expectations or to predict the impact of incorporating ingredients high in nutritional value on the drying of these enriched pasta was also discussed.

  6. Cryosphere: a kingdom of anomalies and diversity

    NASA Astrophysics Data System (ADS)

    Melnikov, Vladimir; Gennadinik, Viktor; Kulmala, Markku; Lappalainen, Hanna K.; Petäjä, Tuukka; Zilitinkevich, Sergej

    2018-05-01

    The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below 0 °C and pronounced H2O phase changes. In spite of its strong variability in space and time, the cryosphere plays the role of a global thermostat, keeping the thermal regime on the Earth within rather narrow limits, affording continuation of the conditions needed for the maintenance of life. Objects and processes related to cryosphere are very diverse, due to the following basic reasons: the anomalous thermodynamic and electromagnetic properties of H2O, the intermediate intensity of hydrogen bonds and the wide spread of cryogenic systems all over the Earth. However, these features attract insufficient attention from research communities. Cryology is usually understood as a descriptive discipline within physical geography, limited to glaciology and permafrost research. We emphasise its broad interdisciplinary landscape involving physical, chemical and biological phenomena related to the H2O phase transitions and various forms of ice. This paper aims to draw the attention of readers to the crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system very special, if not unique, objects in the universe.

  7. Metrology conditions for thin layer activation in wear and corrosion studies

    NASA Astrophysics Data System (ADS)

    Lacroix, O.; Sauvage, T.; Blondiaux, G.; Racolta, P. M.; Popa-Simil, L.; Alexandreanu, B.

    1996-02-01

    Thin Layer Activation (TLA) is an ion beam technique. This method consists of an accelerated ion bombardment of the surface of interest of a machine part subjected to wear. Radioactive tracers are created by nuclear reactions in a well defined volume of material. Loss of material owing to wear, corrosion or abrasion phenomena is characterized by monitoring the resulting changes in radioactivity. For the industrial application of this method, special attention has been paid during irradiation to the range of activated thickness, yields and activation homogeneity and to on-line radioactivity measurements. There are two basic methods for measuring the material loss by TLA technique. One of them is based on remanant radioactivity measurements using a previously obtained calibration curve. The second is based on measuring the increasing radioactivity in the lubricant due to suspended wear particles. In this paper, we have chosen to present some calibration curves for both proton and deuteron irradiation of Fe, Cr, Cu, Ti and Ni samples. Thickness ranges are indicated and intrinsic error checking and calculational procedures are also presented. The article ends with a review of some typical experiments involving running-in programme optimization and lubricants certifying procedures.

  8. The Future of Psychology: Connecting Mind to Brain

    PubMed Central

    Barrett, Lisa Feldman

    2009-01-01

    Psychological states such as thoughts and feelings are real. Brain states are real. The problem is that the two are not real in the same way, creating the mind–brain correspondence problem. In this article, I present a possible solution to this problem that involves two suggestions. First, complex psychological states such as emotion and cognition an be thought of as constructed events that can be causally reduced to a set of more basic, psychologically primitive ingredients that are more clearly respected by the brain. Second, complex psychological categories like emotion and cognition are the phenomena that require explanation in psychology, and, therefore, they cannot be abandoned by science. Describing the content and structure of these categories is a necessary and valuable scientific activity. Physical concepts are free creations of the human mind, and are not, however it may seem, uniquely determined by the external world.—Einstein & Infeld (1938, p. 33) The cardinal passions of our life, anger, love, fear, hate, hope, and the most comprehensive divisions of our intellectual activity, to remember, expect, think, know, dream (and he goes on to say, feel) are the only facts of a subjective order…—James (1890, p. 195) PMID:19844601

  9. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  10. Enrico Morselli's Psychology and "Spiritism": psychiatry, psychology and psychical research in Italy in the decades around 1900.

    PubMed

    Brancaccio, Maria Teresa

    2014-12-01

    This paper traces Enrico Morselli's intellectual trajectory from the 1870s to the early 1900s. His interest in phenomena of physical mediumship is considered against the backdrop of the theoretical developments in Italian psychiatry and psychology. A leading positivist psychiatrist and a prolific academic, Morselli was actively involved in the making of Italian experimental psychology. Initially sceptical of psychical research and opposed to its association with the 'new psychology', Morselli subsequently conducted a study of the physical phenomena produced by the medium Eusapia Palladino. He concluded that her phenomena were genuine and represented them as the effects of an unknown bio-psychic force present in all human beings. By contextualizing Morselli's study of physical mediumship within contemporary theoretical and disciplinary discourse, this study elaborates shifts in the interpretations of 'supernormal' phenomena put forward by leading Italian psychiatrists and physiologists. It demonstrates that Morselli's interest in psychical research stems from his efforts to comprehend the determinants of complex psychological phenomena at a time when the dynamic theory of matter in physics, and the emergence of neo-vitalist theories influenced the theoretical debates in psychiatry, psychology and physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Using Artificial Life to Assess the Typicality of Terrestrial Life: Implications for Human Mission Planetary Protection

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark; Powers, Edward I. (Technical Monitor)

    2001-01-01

    The extent to which extraterrestrial life questions can be addressed, in the absence of an actual example, rests in some measure on the extent to which terrestrial life is representative of life in general since we will likely have to draw heavily, if not completely, from terrestrial life research. One example of a practical question involving extraterrestrial life that arises in preparing for a human mission to another planet such as Mars, is trying to assess and minimize the possible adverse effects of the presence of humans on possible indigenous extraterrestrial life-forms. This paper will present some key planetary protection challenges for a human Mars mission and then focus on one possible approach for assessing the extent to which terrestrial life is representative of biological phenomena in general, informing perhaps, the level of confidence we might have in applying terrestrial research - to extraterrestrial life issues. The approach involves appealing to the relatively new field of Artificial Life (A-Life) to: (1) use what might be the most basic minimal set of life-defining characteristics in (2) a large number of open-ended Artificial Life simulations to generate a "life possibility space" (3) the products of which can be examined for their plausibility within the context of relevant constraining knowledge, so that (4) the remaining possibility space can be examined for its variability relative to terrestrial life, where low variability might suggest that terrestrial life is representative of life in general, and high variability would indicate otherwise.

  12. New methodology of measurement the unsteady thermal cooling of objects

    NASA Astrophysics Data System (ADS)

    Winczek, Jerzy

    2018-04-01

    The problems of measurements of unsteady thermal turbulent flow affect a many of domains, such as heat energy, manufacturing technologies, and many others. The subject of the study is focused on the analysis of current state of the problem, overview of the design solutions and methods to measure non-stationary thermal phenomena, presentation, and choice of adequate design of the cylinder, development of the method to measure and calculate basic values that characterize the process of heat exchange on the model surface.

  13. High density circuit technology, part 3

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    Dry processing - both etching and deposition - and present/future trends in semiconductor technology are discussed. In addition to a description of the basic apparatus, terminology, advantages, glow discharge phenomena, gas-surface chemistries, and key operational parameters for both dry etching and plasma deposition processes, a comprehensive survey of dry processing equipment (via vendor listing) is also included. The following topics are also discussed: fine-line photolithography, low-temperature processing, packaging for dense VLSI die, the role of integrated optics, and VLSI and technology innovations.

  14. 1992 IEEE Annual Conference on Nuclear and Space Radiation Effects, 29th, New Orleans, LA, July 13-17, 1992, Proceedings

    NASA Technical Reports Server (NTRS)

    Van Vonno, Nick W. (Editor)

    1992-01-01

    The papers presented in this volume provide an overview of recent theoretical and experimental research related to nuclear and space radiation effects. Topics dicussed include single event phenomena, radiation effects in particle detectors and associated electronics for accelerators, spacecraft charging, and space environments and effects. The discussion also covers hardness assurance and testing techniques, electromagnetic effects, radiation effects in devices and integrated circuits, dosimetry and radiation facilities, isolation techniques, and basic mechanisms.

  15. BCM-2.0 - The new version of computer code ;Basic Channeling with Mathematica©;

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Korotchenko, K. B.; Pivovarov, Yu. L.; Rozhkova, E. I.; Tukhfatullin, T. A.; Eikhorn, Yu. L.

    2017-07-01

    The new symbolic-numerical code devoted to investigation of the channeling phenomena in periodic potential of a crystal has been developed. The code has been written in Wolfram Language taking advantage of analytical programming method. Newly developed different packages were successfully applied to simulate scattering, radiation, electron-positron pair production and other effects connected with channeling of relativistic particles in aligned crystal. The result of the simulation has been validated against data from channeling experiments carried out at SAGA LS.

  16. Response Expectancy and the Placebo Effect.

    PubMed

    Kirsch, Irving

    2018-01-01

    In this chapter, I review basic tenets of response expectancy theory (Kirsch, 1985), beginning with the important distinction between response expectancies and stimulus expectancies. Although both can affect experience, the effects of response expectancies are stronger and more resistant to extinction than those of stimulus expectancies. Further, response expectancies are especially important to understanding placebo effects. The response expectancy framework is consistent with and has been amplified by the Bayesian model of predictive coding. Clinical implications of these phenomena are exemplified. © 2018 Elsevier Inc. All rights reserved.

  17. Old/Past/Ancient/Historic Frontiers in Black Hole Astrophysics

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia

    Basic questions about black holes, some of which are fairly old, include (1) What is a black hole? (2) Do black holes exist? And the answer to this depends a good deal on the answer to (1), (3) Where, when, why, and how have they formed? and (4) What are they good for? Here I attempt some elaboration of the questions and partial answers, noting that general relativity is required to described some of the phenomena, while dear old Isaac Newton is OK for others.

  18. Planetary rings and astrophysical discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik

    2016-05-01

    Disks are ubiquitous in astrophysics and participate in some of its most important processes. Of special interest is their role in star, planet and moon formation, the growth of supermassive black holes, and the launching of jets. Although astrophysical disks can be up to ten orders of magnitude larger than planetary rings and differ hugely in composition, all disks share to some extent the same basic dynamics and many physical phenomena. This review explores these areas of overlap. Topics covered include disk formation, accretion, collisions, instabilities, and satellite-disk interactions.

  19. Basic approaches to and tasks of space technology

    NASA Technical Reports Server (NTRS)

    Okhotin, A. S.

    1978-01-01

    The high vacuum and weightlessness of outer space offer great possibilities for the new field of space technology. To take advantage of this, it is necessary to study such physical and chemical phenomena as diffusion, surface tension, heat exchange, and crystallization. The research shows the possibility of obtaining materials with a more perfect structure. Methods of treating materials can be used in space which are impossible on earth. Achievements in material science in outer space will have a large impact on the national economy.

  20. A Simple Experiment Illustrating the Structure of Association Colloids.

    ERIC Educational Resources Information Center

    Friberg, Stig. E.; Bendiksen, Beverly

    1979-01-01

    The experiment described is intended to illustrate the intermolecular phenomena involved in association colloids. These are normal and inverse micelles and lyotropic liquid crystals. Solubilization, microemulsion and emulsion are discussed. (Author/SA)

  1. Scientific Motivational Techniques Adaptable to Social Studies Lessons

    ERIC Educational Resources Information Center

    Steiner, Robert L.

    1975-01-01

    Two science classroom techniques that can be used in the social studies classroom to motivate students involve puzzling phenomena and relating science to social issues such as over-population, energy, and pollution. (JR)

  2. Explicative factors of face-to-face harassment and cyberbullying in a sample of primary students.

    PubMed

    García Fernández, Cristina M; Romera Félix, Eva M; Ortega Ruiz, Rosario

    2015-01-01

    Research has shown that there is a co-occurrence between bullying and cyberbullying in relation to certain variables that describe and explain them. The present study aims to examine the differential influence of individual and contextual variables on perception of the role played in the involvement in both phenomena. Participants were 1278 schoolchildren (47.7 % girls) of primary education, aged 10 to 14 years ( M =11.11, SD = 0.75). Logistic regression analysis indicated that social adjustment, normative adjustment, disruptiveness, gender, and self-esteem explain a substantial part of the involvement in both violent phenomena as victims, aggressors, and bully/victims. The results are discussed regarding the weight that must attributed to individual versus contextual factors, concluding that the explicative weight of the immediate social elements and educational context may make the difference.

  3. Historical Experiments in Students' Hands: Unfragmenting Science through Action and History

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth Mary

    2008-08-01

    Two students, meeting together with a teacher, redid historical experiments. Unlike conventional instruction where science topics and practices often fragment, they experienced interrelatedness among phenomena, participants’ actions, and history. This study narrates actions that fostered an interrelated view. One action involved opening up historical telephones to examine interior circuitry. Another made sound visible in a transparent air column filled with Styrofoam bits and through Lissajous figures produced by reflecting light off orthogonal nineteenth century tuning forks crafted by Koenig and Kohl. Another involved orienting magnetic compasses to reveal the magnetism of conducting wires, historically investigated by Oersted and Schweigger. Replicating Homberg’s triboluminescent compound elicited students’ reflective awareness of history. These actions bore pedagogical value in recovering some of the interrelatedness inherent in the history and reintroducing the wonder of science phenomena to students today.

  4. Vibrational dynamics of vocal folds using nonlinear normal modes.

    PubMed

    Pinheiro, Alan P; Kerschen, Gaëtan

    2013-08-01

    Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical modeling of these folds have tried to gain a profound understanding of the observed nonlinear phenomena. In this context, the present work uses the nonlinear normal mode theory to investigate the nonlinear modal behavior of 16 subjects using a two-mass mechanical modeling of the vocal folds. The free response of the conservative system at different energy levels is considered to assess the impact of the structural nonlinearity of the vocal fold tissues. The results show very interesting and complex nonlinear phenomena including frequency-energy dependence, subharmonic regimes and, in some cases, modal interactions, entrainment and bifurcations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Geometric and Optic Characterization of a Hemispherical Dome Port for Underwater Photogrammetry

    PubMed Central

    Menna, Fabio; Nocerino, Erica; Fassi, Francesco; Remondino, Fabio

    2016-01-01

    The popularity of automatic photogrammetric techniques has promoted many experiments in underwater scenarios leading to quite impressive visual results, even by non-experts. Despite these achievements, a deep understanding of camera and lens behaviors as well as optical phenomena involved in underwater operations is fundamental to better plan field campaigns and anticipate the achievable results. The paper presents a geometric investigation of a consumer grade underwater camera housing, manufactured by NiMAR and equipped with a 7′′ dome port. After a review of flat and dome ports, the work analyzes, using simulations and real experiments, the main optical phenomena involved when operating a camera underwater. Specific aspects which deal with photogrammetric acquisitions are considered with some tests in laboratory and in a swimming pool. Results and considerations are shown and commented. PMID:26729133

  6. Survey of Basic Education in Eastern Africa. UNESCO/UNICEF Co-Operation Programme.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Nairobi (Kenya). Regional Office of Science and Technology for Africa.

    A survey of basic education in 13 Eastern African countries (Madagascar, Burundi, Comores, Ethiopia, Mauritius, Botswana, Kenya, Lesotho, Swaziland, Tanzania, Zambia, Malawi, and Somalia) covers basic education programs and UNICEF's supporting role. Basic education is seen as a concept evolved in the region, involving formal school systems and…

  7. Motor correlates of models of secondary bilateral synchrony and multiple epileptic foci.

    PubMed

    Jiruska, Premysl; Proks, Jan; Otáhal, Jakub; Mares, Pavel

    2007-10-01

    Bilateral synchronous epileptiform discharges registered in patients with partial epilepsies may be generated by different pathophysiological mechanisms. Differentiation between underlying mechanisms is often crucial for correct diagnosis and adequate treatment in clinical epileptology. The aim of this study was to model in rats two possible mechanisms--secondary bilateral sychrony and interaction between multiple epilepic foci. Furthermore, to describe in detail semiology, laterality and differences in motor phenomena. Secondary bilateral synchrony was modeled by unilateral topical application of bicuculline methiodide (BMI) over the sensorimotor cortex. Bilateral symmetric application of BMI was used as a model of multiple epileptic foci. Electrographic and behavioural phenomena were recorded for 1h following the application of BMI. Electroencephalogram in both groups was characterized by presence of bilateral synchronous discharges. Myoclonic and clonic seizures involving forelimb and head muscles represented the most common motor seizure pattern in both groups. Significant differences were found in the laterality of motor phenomena. Motor seizures in unilateral foci always started in the contralateral limbs whereas symmetrical foci exhibited bilateral independent onset of convulsions. Similar lateralization was observed in interictal motor phenomena (myoclonic jerks). An important influence of posture on epileptic motor phenomena was demonstrated. Active or passive changes in animal posture (verticalization to bipedal posture) caused conversion from unilateral myoclonic jerks or clonic seizures to bilaterally synchronous (generalized) motor phenomena in both groups.

  8. Emergent insects, pathogens and drought shape changing patterns in oak decline in North America and Europe

    Treesearch

    Laurel J. Haavik; Sharon A. Billings; James M. Guldin; Fred M. Stephen

    2015-01-01

    Forest declines are well-studied phenomena. However, recent patterns suggest that the traditional sequence of events and factors involved in forest decline are changing. Several reports in recent decades involve emergent mortality agents, many of which are native insects and diseases. In addition, changing climate and weather patterns place increasing emphasis on root...

  9. [Adolescents previously involved in Satanism: mental health problems experience].

    PubMed

    Heathcote, H; Gmeiner, A; Poggenpoel, M

    1998-03-01

    As far as the phenomena of adolescents previously involved with satanism that experience obstacles in the strive for mental health, no research has previously been done. Adolescents previously involved in satanism, presents behaviour problems like aggressive outbursts depression, "psychosis", or suicide attempts that can even lead to suicide. In the phenomena-analysis semi-structured, phenomenological interviews with the respondents and their parents, were performed. The respondents were requested to write a naive sketch about there life. After the data-control was done, guidelines for nursing staff had been set. The guidelines are set for the management of adolescents that has previously been involved in satanism, and experiences obstacles in their strive for mental health. Interviews with experts in satanism was done, literature in the form of books, magazines and newsclippings were used to verify the findings in the research. The most important guidelines are that: the caregivers have to be reborn Christians; they are not allowed to show, any fear or sympathy; they have to have sufficient knowledge about satanism; the adolescent has to be unconditionally accepted; the caregivers have to work in a team; the adolescents have to be taught to deal with their emotions.

  10. 'We didn't know anything, it was a mess!' Emergent structures and the effectiveness of a rescue operation multi-team system.

    PubMed

    Fleştea, Alina Maria; Fodor, Oana Cătălina; Curşeu, Petru Lucian; Miclea, Mircea

    2017-01-01

    Multi-team systems (MTS) are used to tackle unpredictable events and to respond effectively to fast-changing environmental contingencies. Their effectiveness is influenced by within as well as between team processes (i.e. communication, coordination) and emergent phenomena (i.e. situational awareness). The present case study explores the way in which the emergent structures and the involvement of bystanders intertwine with the dynamics of processes and emergent states both within and between the component teams. Our findings show that inefficient transition process and the ambiguous leadership generated poor coordination and hindered the development of emergent phenomena within the whole system. Emergent structures and bystanders substituted leadership functions and provided a pool of critical resources for the MTS. Their involvement fostered the emergence of situational awareness and facilitated contingency planning processes. However, bystander involvement impaired the emergence of cross-understandings and interfered with coordination processes between the component teams. Practitioner Summary: Based on a real emergency situation, the present research provides important theoretical and practical insights about the role of bystander involvement in the dynamics of multi-team systems composed to tackle complex tasks and respond to fast changing and unpredictable environmental contingencies.

  11. Strengthening capacity building in space science research: A developing country perspective on IHY activities

    NASA Astrophysics Data System (ADS)

    Munyeme, G.

    The economic and social impact of science based technologies has become increasingly dominant in modern world The benefits are a result of combined leading-edge science and technology skills which offers opportunities for new innovations Knowledge in basic sciences has become the cornerstone of sustainable economic growth and national prosperity Unfortunately in many developing countries research and education in basic sciences are inadequate to enable science play its full role in national development For this reason most developing countries have not fully benefited from the opportunities provided by modern technologies The lack of human and financial resources is the main reason for slow transfer of scientific knowledge and technologies to developing countries Developing countries therefore need to develop viable research capabilities and knowledge in basic sciences The advert of the International Heliophysical Year IHY may provide opportunities for strengthening capacity in basic science research in developing countries Among the science goals of the IHY is the fostering of international scientific cooperation in the study of heliophysical phenomena This paper will address and provide an in depth discussion on how basic science research can be enhanced in a developing country using the framework of science goals and objectives of IHY It will further highlight the hurdles and experiences of creating in-country training capacity and research capabilities in space science It will be shown that some of these hurdles can be

  12. Extending topological surgery to natural processes and dynamical systems.

    PubMed

    Antoniou, Stathis; Lambropoulou, Sofia

    2017-01-01

    Topological surgery is a mathematical technique used for creating new manifolds out of known ones. We observe that it occurs in natural phenomena where a sphere of dimension 0 or 1 is selected, forces are applied and the manifold in which they occur changes type. For example, 1-dimensional surgery happens during chromosomal crossover, DNA recombination and when cosmic magnetic lines reconnect, while 2-dimensional surgery happens in the formation of tornadoes, in the phenomenon of Falaco solitons, in drop coalescence and in the cell mitosis. Inspired by such phenomena, we introduce new theoretical concepts which enhance topological surgery with the observed forces and dynamics. To do this, we first extend the formal definition to a continuous process caused by local forces. Next, for modeling phenomena which do not happen on arcs or surfaces but are 2-dimensional or 3-dimensional, we fill in the interior space by defining the notion of solid topological surgery. We further introduce the notion of embedded surgery in S3 for modeling phenomena which involve more intrinsically the ambient space, such as the appearance of knotting in DNA and phenomena where the causes and effect of the process lies beyond the initial manifold, such as the formation of black holes. Finally, we connect these new theoretical concepts with a dynamical system and we present it as a model for both 2-dimensional 0-surgery and natural phenomena exhibiting a 'hole drilling' behavior. We hope that through this study, topology and dynamics of many natural phenomena, as well as topological surgery itself, will be better understood.

  13. Extending topological surgery to natural processes and dynamical systems

    PubMed Central

    Antoniou, Stathis; Lambropoulou, Sofia

    2017-01-01

    Topological surgery is a mathematical technique used for creating new manifolds out of known ones. We observe that it occurs in natural phenomena where a sphere of dimension 0 or 1 is selected, forces are applied and the manifold in which they occur changes type. For example, 1-dimensional surgery happens during chromosomal crossover, DNA recombination and when cosmic magnetic lines reconnect, while 2-dimensional surgery happens in the formation of tornadoes, in the phenomenon of Falaco solitons, in drop coalescence and in the cell mitosis. Inspired by such phenomena, we introduce new theoretical concepts which enhance topological surgery with the observed forces and dynamics. To do this, we first extend the formal definition to a continuous process caused by local forces. Next, for modeling phenomena which do not happen on arcs or surfaces but are 2-dimensional or 3-dimensional, we fill in the interior space by defining the notion of solid topological surgery. We further introduce the notion of embedded surgery in S3 for modeling phenomena which involve more intrinsically the ambient space, such as the appearance of knotting in DNA and phenomena where the causes and effect of the process lies beyond the initial manifold, such as the formation of black holes. Finally, we connect these new theoretical concepts with a dynamical system and we present it as a model for both 2-dimensional 0-surgery and natural phenomena exhibiting a ‘hole drilling’ behavior. We hope that through this study, topology and dynamics of many natural phenomena, as well as topological surgery itself, will be better understood. PMID:28915271

  14. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests

    PubMed Central

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-01-01

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth. PMID:26258785

  15. Introduction to High-Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Rosswog, Stephan; Bruggen, Marcus

    2003-04-01

    High-energy astrophysics covers cosmic phenomena that occur under the most extreme physical conditions. It explores the most violent events in the Universe: the explosion of stars, matter falling into black holes, and gamma-ray bursts - the most luminous explosions since the Big Bang. Driven by a wealth of new observations, the last decade has seen a large leap forward in our understanding of these phenomena. Exploring modern topics of high-energy astrophysics, such as supernovae, neutron stars, compact binary systems, gamma-ray bursts, and active galactic nuclei, this textbook is ideal for undergraduate students in high-energy astrophysics. It is a self-supporting, timely overview of this exciting field of research. Assuming a familiarity with basic physics, it introduces all other concepts, such as gas dynamics or radiation processes, in an instructive way. An extended appendix gives an overview of some of the most important high-energy astrophysics instruments, and each chapter ends with exercises.• New, up-to-date, introductory textbook providing a broad overview of high-energy phenomena and the many advances in our knowledge gained over the last decade • Written especially for undergraduate teaching use, it introduces the necessary physics and includes many exercises • This book fills a valuable niche at the advanced undergraduate level, providing professors with a new modern introduction to the subject

  16. Describing students' talk about physical science phenomena outside and inside the classroom: A case of secondary school students from Maragoli, western region of Kenya

    NASA Astrophysics Data System (ADS)

    Oberrecht, Stephen Patrick

    Because of cultural and linguistic influences on science learning involving students from diverse cultural and linguistic backgrounds, calls have been made for teachers to enact teaching that is sensitive to these students' backgrounds. However, most of the research involving such students has tended to focus on students at elementary grade levels from predominantly two linguistic backgrounds, Hispanic and Haitian Creole, learning science concepts mainly in the life sciences. Also, most of the studies examined classroom interactions between teachers and the students and among students. Not much attention had been paid to how students talk about ideas inherent in scientific phenomena in an outside-the-classroom context and much less on how that talk relates to that of the classroom. Thus, this research extends knowledge in the area of science learning involving students learning science in a language other than their first language to include students from a language background other than Hispanic and Haitian Creole at not only the high school level but also their learning of ideas in a content area other than the life science (i.e., the physical sciences). More importantly, this research extends knowledge in the area by relating science learning outside and inside the classroom. This dissertation describes this exploratory research project that adopted a case study strategy. The research involved seven Form Two (tenth grade) students (three boys and four girls) from one public, mixed gender day secondary school in rural Kenya. I collected data from the students through focus group discussions as they engaged in talking about ideas inherent in selected physical science phenomena and activities they encountered in their everyday lives, as well as learned about in their science classrooms. I supplemented these data with data from one-on-one semi-structured interviews with two teachers (one for chemistry and one for physics) on their teaching of ideas investigated in this research, the secondary school syllabus (KIE, 2002) as well as the students' responses to questions on teacher-made assessments involving the ideas investigated. Three main findings emerged through this research. The findings are: (1) the students adopted everyday ways of making sense of the world (i.e., everyday language and everyday observations) in talking about ideas investigated both outside- and inside-the-classroom contexts, (2) cultural knowledge emerged from the student's talk related to the nature and form of lightning different from that emphasized in science, and (3) students who may initially seem uninterested in participating in discussions involving science ideas showed possibilities for participation in such discussions. Drawing on the work of scholars such as Aikenhead (2001), Ballenger (1997), Brock-Utne (2007), Herbel-Eisenmann (2002) and Warren et al. (2001), I argue that students' everyday ways of makings sense of the world are rich starting points from which to leverage students towards meaningful learning in science. However, this may happen only if instructional materials such as the syllabus are explicit in not only giving examples of phenomena and students' experiences with them in outside the classroom contexts, but also acknowledging that possibilities exist for cultural understanding and talk about ideas inherent in the phenomena involving ideas students learn about in their science classrooms.

  17. Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life

    PubMed Central

    Loker, Eric S.

    2012-01-01

    An emerging picture of the nature of immune systems across animal phyla reveals both conservatism of some features and the appearance among and within phyla of novel, lineage-specific defense solutions. The latter collectively represent a major and underappreciated form of animal diversity. Factors influencing this macroevolutionary (above the species level) pattern of novelty are considered and include adoption of different life styles, life histories, and body plans; a general advantage of being distinctive with respect to immune defenses; and the responses required to cope with parasites, many of which afflict hosts in a lineage-specific manner. This large-scale pattern of novelty implies that immunological phenomena can affect microevolutionary processes (at the population level within species) that can eventually lead to macroevolutionary events such as speciation, radiations, or extinctions. Immunologically based phenomena play a role in favoring intraspecific diversification, specialization and host specificity of parasites, and mechanisms are discussed whereby this could lead to parasite speciation. Host switching – the acquisition of new host species by parasites – is a major mechanism that drives parasite diversity and is frequently involved in disease emergence. It is also one that can be favored by reductions in immune competence of new hosts. Mechanisms involving immune phenomena favoring intraspecific diversification and speciation of host species are also discussed. A macroevolutionary perspective on immunology is invaluable in today’s world, including the need to study a broader range of species with distinctive immune systems. Many of these species are faced with extinction, another macroevolutionary process influenced by immune phenomena. PMID:22566909

  18. Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1998-01-01

    Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.

  19. Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.

    PubMed

    Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S

    2011-02-01

    Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  20. Capsules with highly active pores and interiors: versatile platforms at the nanoscale.

    PubMed

    Müller, Achim; Gouzerh, Pierre

    2014-04-22

    Spherical porous capsules offer new exciting approaches in chemistry, materials sciences, and in context of physical and biological phenomena. The underlying concepts are reported with particular emphasis on metal oxide based capsules of the {M132 } Keplerate type which display-due to their exceptional structural features and easy variation/derivatization as well as exchange of building units-an unmatched range of properties and offer unique opportunities for investigating a variety of basic aspects of nanoscience, including the discovery of some new phenomena, especially those related to hydrophobicity issues that are of significance for everyday life. This relies in particular on the existence of a large number of flexible crown ether type pores/channels and the possibility of changing the interior from completely hydrophilic to completely hydrophobic due to the presence of numerous easily exchangeable internal ligands/functionalities; the capsules can even be constructed so that they enclose a large number of highly active Lewis and Brønsted acid sites. The manifold of possible applications/uses are outlined as subtitles with reference to results as well as possible future studies. There are, among many others, options to control passing cations under different internal frames allowing also their separations, to conduct studies about hydrophobic recognitions and clustering of biological interest in water, controlled internal ion transport, nanoscale dewetting, and to carry out basic as well as new types of reactions under confined conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Skin colour typology and suntanning pathways.

    PubMed

    Chardon, A; Cretois, I; Hourseau, C

    1991-08-01

    Synopsis The evaluation of sun-product efficacy, with laboratory solar simulators or in actual sun, implicates clinical and subjective assessment of the various skin responses in terms of wavelengths constitutive of solar light. These photobiological responses vary according to skin types and particularly to basic skin melanic content, i.e. with skin colour. Now, the instrumental measurement of live skin colour has become easier to perform, fast and reliable. Based on the standard CIE-L*a*b* colour system and correlated with the human eye, this technique was used to define the skin colour domain of the caucasian population, to propose a skin colour classification, and then to objectively follow, over a three week period, the dynamics and kinetics of tanning induced by UVB, UVA and UVB +/- A multi-exposures on the three skin categories. The specific directions in the three-dimensional L*a*b* colour space of the tanning components, i.e. erythema, immediate pigmentation and constitutional melanization, as well as the resulting tanning pathways, were analysed and defined in the three-dimensional colour space, using a vectorial method. The UVB, UVA and UVB +/- A tannings were differentiated by their intensity, their hue and especially their lasting capacity: UVA tanning clearly appeared more lasting than UVB. In addition, the UVA*UVB interaction on tanning intensity was not found to be significant. With the skin colour classification and the tanning models, this comprehensive study supplies a basic tool for the colorimetric interpretation of the skin phenomena involved, provided that this interpretation is always considered in the three dimensions of the colour space. It also suggests some useful practical applications for sun product formulation and evaluation.

  2. Basic Self-Disturbances beyond Schizophrenia: Discrepancies and Affinities in Panic Disorder - An Empirical Clinical Study.

    PubMed

    Madeira, Luís; Carmenates, Sergio; Costa, Cristina; Linhares, Ludgero; Stanghellini, Giovanni; Figueira, Maria Luísa; Sass, Louis

    2017-01-01

    Anomalous self-experiences (ASEs), presumably involving alterations in "core" or "minimal self," have been studied as manifest in schizophrenia and its spectrum, in contrast with mood disorder and personality disorder samples. This is the first study to examine ASEs in panic disorder (PD), beginning the exploration of these disturbances of subjectivity in anxiety disorders. We aimed to clarify what might, or might not, be specific to the schizophrenia spectrum domain - which, in turn, could be useful for developing pathogenetic models for various disorders. 47 hospital outpatients with PD and no other medical and psychiatric comorbidity and 47 healthy control (HC) subjects were assessed with the Examination of Anomalous Self Experiences (EASE) and Cambridge Depersonalization Scale (CDS). All our PD patients had overall ASE and EASE scores significantly higher than our HCs (mean ± SD 17.94 ± 11.88 vs. HC 1.00 ± 1.81), approaching levels found in previous schizophrenia spectrum samples. The distribution of particular EASE items and subitems in the PD sample was heterogeneous, varying from rare (<10%) or absent (termed "discrepancies" with schizophrenia spectrum: 29 items) to being present in >50% of subjects ("affinities" with schizophrenia spectrum: 7 items). EASE and CDS scores were highly correlated (r = 0.756, 95% CI 0.665-0.840). PD patients scored higher on items suggesting common forms of derealization and depersonalization, perhaps suggesting "secondary" and defensive psychological processes, while lacking indicators of more profound ipseity disturbance. Our study supports the basic-self-disturbance model of schizophrenia, while suggesting the possibility of transnosological "schizophrenia-like phenomena," which might require careful phenomenological exploration to be distinguished from those of true psychotic or schizophrenic conditions. © 2017 S. Karger AG, Basel.

  3. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Gopalswamy, Nat; Thompson, Barbara

    2009-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  4. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; Gopalswamy, Nathanial; Thompson, Barbara

    2010-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  5. Bio-Mimetics of Disaster Anticipation-Learning Experience and Key-Challenges.

    PubMed

    Tributsch, Helmut

    2013-03-19

    Anomalies in animal behavior and meteorological phenomena before major earthquakes have been reported throughout history. Bio-mimetics or bionics aims at learning disaster anticipation from animals. Since modern science is reluctant to address this problem an effort has been made to track down the knowledge available to ancient natural philosophers. Starting with an archaeologically documented human sacrifice around 1700 B.C. during the Minoan civilization immediately before a large earthquake, which killed the participants, earthquake prediction knowledge throughout antiquity is evaluated. Major practical experience with this phenomenon has been gained from a Chinese earthquake prediction initiative nearly half a century ago. Some quakes, like that of Haicheng, were recognized in advance. However, the destructive Tangshan earthquake was not predicted, which was interpreted as an inherent failure of prediction based on animal phenomena. This is contradicted on the basis of reliable Chinese documentation provided by the responsible earthquake study commission. The Tangshan earthquake was preceded by more than 2,000 reported animal anomalies, some of which were of very dramatic nature. They are discussed here. Any physical phenomenon, which may cause animal unrest, must involve energy turnover before the main earthquake event. The final product, however, of any energy turnover is heat. Satellite based infrared measurements have indeed identified significant thermal anomalies before major earthquakes. One of these cases, occurring during the 2001 Bhuj earthquake in Gujarat, India, is analyzed together with parallel animal anomalies observed in the Gir national park. It is suggested that the time window is identical and that both phenomena have the same geophysical origin. It therefore remains to be demonstrated that energy can be released locally before major earthquake events. It is shown that by considering appropriate geophysical feedback processes, this is possible for large scale energy conversion phenomena within highly non-linear geophysical mechanisms. With satellite monitored infrared anomalies indicating possible epicenters and local animal and environmental observations immediately initiated, the learning experience towards an understanding of the phenomena involved could be accelerated.

  6. ``Physics with a Smile''-Explaining Phenomena with a Qualitative Problem-Solving Strategy

    NASA Astrophysics Data System (ADS)

    Mualem, Roni; Eylon, Bat-Sheva

    2007-03-01

    Various studies indicate that high school physics students and even college students majoring in physics have difficulties in qualitative understanding of basic concepts and principles of physics.1-5 For example, studies carried out with the Force Concept Inventory (FCI)1,6 illustrate that qualitative tasks are not easy to solve even at the college level. Consequently, "conceptual physics" courses have been designed to foster qualitative understanding, and advanced high school physics courses as well as introductory college-level courses strive to develop qualitative understanding. Many physics education researchers emphasize the importance of acquiring some qualitative understanding of basic concepts in physics as early as middle school or in the context of courses that offer "Physics First" in the ninth grade before biology or chemistry.7 This trend is consistent with the call to focus the science curriculum on a small number of basic concepts and ideas, and to instruct students in a more "meaningful way" leading to better understanding. Studies7-10 suggest that familiar everyday contexts (see Fig. 1) are useful in fostering qualitative understanding.

  7. Report on ice formation on aircraft

    NASA Technical Reports Server (NTRS)

    1939-01-01

    The physical phenomena involved in the icing of aircraft have been analyzed and measured. Recommendations on warning devices are made as well as the different types of ice and glazing that can occur on airplanes are examined and discussed.

  8. Static Electricity-Responsive Supramolecular Assembly.

    PubMed

    Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki

    2017-12-01

    Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrical Breakdown Phenomena Involving Material Interfaces

    DTIC Science & Technology

    2013-06-01

    create ozone through chemical reactions involving reactive species created by the electrical discharge [3]. The glow discharge breakdown in such...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Investigation Of Pre-Ionization And Atmospheric Pulsed Discharge Plasma 5a...growth of the air discharge in the form of a conductive filament consisting of electrons and ions. This filament is created by temporal pulse that

  10. Describing Students' Talk about Physical Science Phenomena outside and inside the Classroom: A Case of Secondary School Students from Maragoli, Western Region of Kenya

    ERIC Educational Resources Information Center

    Orado, Grace N.

    2014-01-01

    Because of cultural and linguistic influences on science learning involving students from diverse cultural and linguistic backgrounds, calls have been made for teachers to enact teaching that is sensitive to these students' backgrounds. However, most of the research involving such students has tended to focus on students at elementary grade levels…

  11. Basic deprivation and involvement in risky sexual behaviour among out-of-school young people in a Lagos slum.

    PubMed

    Kunnuji, Michael

    2014-01-01

    Research has shown that in countries such as Nigeria many urban dwellers live in a state of squalour and lack the basic necessities of food, clothing and shelter. The present study set out to examine the association between forms of basic deprivation--such as food deprivation, high occupancy ratio as a form of shelter deprivation, and inadequate clothing--and two sexual outcomes--timing of onset of penetrative sex and involvement in multiple sexual partnerships. The study used survey data from a sample of 480 girls resident in Iwaya community. A survival analysis of the timing of onset of sex and a regression model for involvement in multiple sexual partnerships reveal that among the forms of deprivation explored, food deprivation is the only significant predictor of the timing of onset of sex and involvement in multiple sexual partnerships. The study concludes that the sexual activities of poor out-of-school girls are partly explained by their desire to overcome food deprivation and recommends that government and non-governmental-organisation programmes working with young people should address the problem of basic deprivation among adolescent girls.

  12. Multiscale Transient and Steady-State Study of the Influence of Microstructure Degradation and Chromium Oxide Poisoning on Solid Oxide Fuel Cell Cathode Performance

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.; Shen, Fengyu; Lu, Kathy

    2018-01-01

    Oxygen reduction in a solid oxide fuel cell cathode involves a nonequilibrium process of coupled mass and heat diffusion and electrochemical and chemical reactions. These phenomena occur at multiple temporal and spatial scales, making the modeling, especially in the transient regime, very difficult. Nonetheless, multiscale models are needed to improve the understanding of oxygen reduction and guide cathode design. Of particular importance for long-term operation are microstructure degradation and chromium oxide poisoning both of which degrade cathode performance. Existing methods are phenomenological or empirical in nature and their application limited to the continuum realm with quantum effects not captured. In contrast, steepest-entropy-ascent quantum thermodynamics can be used to model nonequilibrium processes (even those far-from equilibrium) at all scales. The nonequilibrium relaxation is characterized by entropy generation, which can unify coupled phenomena into one framework to model transient and steady behavior. The results reveal the effects on performance of the different timescales of the varied phenomena involved and their coupling. Results are included here for the effects of chromium oxide concentrations on cathode output as is a parametric study of the effects of interconnect-three-phase-boundary length, oxygen mean free path, and adsorption site effectiveness. A qualitative comparison with experimental results is made.

  13. A review of experimental investigations on thermal phenomena in nanofluids

    PubMed Central

    2011-01-01

    Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids. PMID:21711918

  14. 10.1142/9781911299660_fmatter years Laser Interaction and Related Plasma Phenomena (lirpp Vol. 13)

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich

    2016-10-01

    When these proceedings of 13th international conference LASER INTERACTION AND RELATED PLASMA PHENOMENA (LIRPP) will be circulated in 1998, it is just 30 years that this conference series began. Professor Miley asked me to present some thoughts at this occasion since I am involved from the beginning to 1991 a director and then as emeritus director. The conferences were in the following years 1969, 1971, 1973, 1976, 1979, 1982, 1985, 1987, 1989, 1991, 1993, 1995 and 1997 and reference to each of the conferences is simply given by the year in brackets...

  15. 48 CFR 37.202 - Exclusions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONTRACTING SERVICE CONTRACTING Advisory and Assistance Services 37.202 Exclusions. The following activities...) Routine information technology services unless they are an integral part of a contract for the acquisition... research involving medical, biological, physical, social, psychological, or other phenomena. [60 FR 49722...

  16. [SONG's theory on mast cells and meridian-acupoint and its research prospect].

    PubMed

    Li, Yongming

    2016-10-12

    The historical origin of researches regarding acupuncture and mast cells (MCs) is reviewed, and the hypothesis that dermal MCs might be correlated with the acupuncture phenomena proposed by SONG Jimei in 1977 is introduced. This hypothesis, for the first time, suggests MCs could be the cellular basis of meridian sensation and arrival of qi ( deqi ) of acupoints. With independent tests of several research institutes, currently sufficient evidences prove the scientific values of SONG 's theory as well as its potential values for the basic research and clinical practice of acupuncture. It is reported recently that MCs might receive signals from central nerve system and acupoint stimulation, showing cross-talk effects, therefore, MCs can be sensitized at acupoints. In this paper, with a review of 40-year research evidence, 15 biological characteristics regarding mast cells and acupuncture phenomena are identified, in the meanwhile, 10 key questions and research direction, including the distribution of MCs in skin and its general relationship with meridian-acupoint, etc. are proposed.

  17. Understanding students' explanations of biological phenomena: Conceptual frameworks or p-prims?

    NASA Astrophysics Data System (ADS)

    Southerland, Sherry A.; Abrams, Eleanor; Cummins, Catherine L.; Anzelmo, Julie

    2001-07-01

    This study explores two differing perspectives of the nature of students' biological knowledge structures, conceptual frameworks, and p-prims. Students from four grade levels and from three regions of the United States were asked to explain a variety of biological phenomena. Students' responses to the interview probes were analyzed to describe 1) patterns in the nature of students' explanations across grade levels and interview probes, and 2) the consistency of students' explanations across individual interview probes and across the range of probes. The results were interpreted from both perspectives of knowledge structures. While definitive assertions supporting either perspective could not be made, each hypothesis was explored. Although the more prevalent description of student conceptions within a broader conceptual framework could not be discounted, the p-prim of need as a rationale for change was also found to offer a useful description of knowledge frameworks for this content area. The difficulties endemic to the use of biology for the study of basic knowledge structures are also discussed.

  18. A quantum theory account of order effects and conjunction fallacies in political judgments.

    PubMed

    Yearsley, James M; Trueblood, Jennifer S

    2017-09-06

    Are our everyday judgments about the world around us normative? Decades of research in the judgment and decision-making literature suggest the answer is no. If people's judgments do not follow normative rules, then what rules if any do they follow? Quantum probability theory is a promising new approach to modeling human behavior that is at odds with normative, classical rules. One key advantage of using quantum theory is that it explains multiple types of judgment errors using the same basic machinery, unifying what have previously been thought of as disparate phenomena. In this article, we test predictions from quantum theory related to the co-occurrence of two classic judgment phenomena, order effects and conjunction fallacies, using judgments about real-world events (related to the U.S. presidential primaries). We also show that our data obeys two a priori and parameter free constraints derived from quantum theory. Further, we examine two factors that moderate the effects, cognitive thinking style (as measured by the Cognitive Reflection Test) and political ideology.

  19. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    PubMed

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  20. AWARE - The Automated EUV Wave Analysis and REduction algorithm

    NASA Astrophysics Data System (ADS)

    Ireland, J.; Inglis; A. R.; Shih, A. Y.; Christe, S.; Mumford, S.; Hayes, L. A.; Thompson, B. J.

    2016-10-01

    Extreme ultraviolet (EUV) waves are large-scale propagating disturbances observed in the solar corona, frequently associated with coronal mass ejections and flares. Since their discovery over two hundred papers discussing their properties, causes and physics have been published. However, their fundamental nature and the physics of their interactions with other solar phenomena are still not understood. To further the understanding of EUV waves, and their relation to other solar phenomena, we have constructed the Automated Wave Analysis and REduction (AWARE) algorithm for the detection of EUV waves over the full Sun. The AWARE algorithm is based on a novel image processing approach to isolating the bright wavefront of the EUV as it propagates across the corona. AWARE detects the presence of a wavefront, and measures the distance, velocity and acceleration of that wavefront across the Sun. Results from AWARE are compared to results from other algorithms for some well known EUV wave events. Suggestions are also give for further refinements to the basic algorithm presented here.

  1. Cosmic Discovery

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    1984-04-01

    In the remarkable opening section of this book, a well-known Cornell astronomer gives precise thumbnail histories of the 43 basic cosmic discoveries - stars, planets, novae, pulsars, comets, gamma-ray bursts, and the like - that form the core of our knowledge of the universe. Many of them, he points out, were made accidentally and outside the mainstream of astronomical research and funding. This observation leads him to speculate on how many more major phenomena there might be and how they might be most effectively sought out in afield now dominated by large instruments and complex investigative modes and observational conditions. The book also examines discovery in terms of its political, financial, and sociological context - the role of new technologies and of industry and the military in revealing new knowledge; and methods of funding, of peer review, and of allotting time on our largest telescopes. It concludes with specific recommendations for organizing astronomy in ways that will best lead to the discovery of the many - at least sixty - phenomena that Harwit estimates are still waiting to be found.

  2. A comparison of thermoelectric phenomena in diverse alloy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Bruce

    1999-01-01

    The study of thermoelectric phenomena in solids provides a wealth of opportunity for exploration of the complex interrelationships between structure, processing, and properties of materials. As thermoelectricity implies some type of coupled thermal and electrical behavior, it is expected that a basic understanding of transport behavior in materials is the goal of such a study. However, transport properties such as electrical resistivity and thermal diffusivity cannot be fully understood and interpreted without first developing an understanding of the material's preparation and its underlying structure. It is the objective of this dissertation to critically examine a number of diverse systems inmore » order to develop a broad perspective on how structure-processing-property relationships differ from system to system, and to discover the common parameters upon which any good thermoelectric material is based. The alloy systems examined in this work include silicon-germanium, zinc oxide, complex intermetallic compounds such as the half-Heusler MNiSn, where M = Ti, Zr, or Hf, and rare earth chalcogenides.« less

  3. Cueing Strategies and Basic Skills in Early Reading.

    ERIC Educational Resources Information Center

    Beebe, Mona J.; Bulcock, Jeffrey W.

    The extent to which cuing strategies and basic skills explanations of early reading constitute complementary approaches was examined in a study involving 94 fourth grade students. Basic skills--a unidimensional component based on measures of vocabulary development, language skills, and work-study skills--proved to be a powerful variable mediating…

  4. Basic research in solar physics

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1991-01-01

    This grant, dating back more than 20 years has supported a variety of investigations of the chromospheres and coronae of the Sun and related cool stars by the Principal Investigator, his postdocs and graduate students, and colleagues at other institutions. This work involved studies of radiative transfer and spectral line formation theory, and the application of these techniques to the analysis of spectra obtained from space and ground-based observatories in the optical, ultraviolet, x-ray and radio portions of the spectrum. Space observations have included the analysis of spectra from OSO-7, Skylab, SMM, and the HRTS rocket experiments. Recent work has concentrated on the interaction of magnetic fields, plasma and radiation in the outer atmospheres of the Sun and other magnetically active stars with different fundamental parameters. Our study of phenomena common to the Sun and stars, the 'solar-stellar connection', can elucidate the fundamental physics, because spatially-resolved observations of the Sun provide us with the 'groundtruth,' while interpretation of stellar data permit us to isolate those parameters critical to stellar activity. Recently, we have studied the differences in physical properties between solar regions of high magnetic flux density and the surrounding plasma. High-resolution CN and CO spectroheliograms have been used to model the thermal inhomogeneities driven by unstable CO cooling, and we have analyzed spatially resolved UV spectra from HRTS to model the thermal structure and energy balance of small-scale structures. The study of nonlinear relations between atmospheric radiative losses and the photospheric magnetic flux density has been continued. We have also proposed a new model for the decay of plages by random walk diffusion of magnetic flux. Our analysis of phenomena common to the Sun and stars included the application of available spectroscopic diagnostics, establishing evidence that the atmospheres of the least active stars are heated at a 'basal' rate that is also found in the centers of solar supergranules, and using the Doppler-imaging technique to measure the position, size, and brightness of stellar active regions. We are computing multi-component models for solar and stellar atmospheres, and models for coronal loops and for the transition-region down flows. The study of solar and stellar flares permits us to assess the role of turbulent energy transport, to pinpoint the mechanism behind Type I radio bursts, to determine whether plasma radiation or cyclotron maser is responsible for microwave flares on M dwarfs, and to extend our knowledge of the basic physics pertinent to cyclotron-maser processes operating on the Sun.

  5. A flight investigation of basic performance characteristics of a teetering-rotor attack helicopter

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1979-01-01

    Flight data were obtained with an instrumented AH-16 helicopter having uninstrumented, standard main-rotor blades. The data are presented to facilitate the analysis of data taken when the same vehicle was flown with instrumented main-rotor blades built with new airfoils. Test results include data on performance, flight-state parameters, pitch-link loads and blade angles for level flight, descending turns and pull-ups. Flight test procedures and the effects of both trim variations and transient phenomena on the data are discussed.

  6. Statistics and Discoveries at the LHC (1/4)

    ScienceCinema

    Cowan, Glen

    2018-02-09

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  7. Statistics and Discoveries at the LHC (3/4)

    ScienceCinema

    Cowan, Glen

    2018-02-19

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  8. Statistics and Discoveries at the LHC (4/4)

    ScienceCinema

    Cowan, Glen

    2018-05-22

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  9. Fluid mechanics of additive manufacturing of metal objects by accretion of droplets - a survey

    NASA Astrophysics Data System (ADS)

    Tesař, Václav

    2016-03-01

    Paper presents a survey of principles of additive manufacturing of metal objects by accretion of molten metal droplets, focusing on fluid-mechanical problems that deserve being investigated. The main problem is slowness of manufacturing due to necessarily small size of added droplets. Increase of droplet repetition rate calls for basic research of the phenomena that take place inside and around the droplets: ballistics of their flight, internal flowfield with heat and mass transfer, oscillation of surfaces, and the ways to elimination of satellite droplets.

  10. Scaling phenomena in fatigue and fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barenblatt, G.I.

    2004-12-01

    The general classification of scaling laws will be presented and the basic concepts of modern similarity analysis--intermediate asymptotics, complete and incomplete similarity--will be introduced and discussed. The examples of scaling laws corresponding to complete similarity will be given. The Paris scaling law in fatigue will be discussed as an instructive example of incomplete similarity. It will be emphasized that in the Paris law the powers are not the material constants. Therefore, the evaluation of the life-time of structures using the data obtained from standard fatigue tests requires some precautions.

  11. Phenomenological and mechanics aspects of nondestructive evaluation and characterization by sound and ultrasound of material and fracture properties

    NASA Technical Reports Server (NTRS)

    Fu, L. S. W.

    1982-01-01

    Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).

  12. GUTs and TOEs

    ScienceCinema

    Lincoln, Don

    2018-01-16

    Albert Einstein said that what he wanted to know was “God’s thoughts,” which is a metaphor for the ultimate and most basic rules of the universe. Once known, all other phenomena would then be a consequence of these simple rules. While modern science is far from that goal, we have some thoughts on how this inquiry might unfold. In this video, Fermilab’s Dr. Don Lincoln tells what we know about GUTs (grand unified theories) and TOEs (theories of everything).

  13. Statistics and Discoveries at the LHC (2/4)

    ScienceCinema

    Cowan, Glen

    2018-04-26

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  14. The mathematical modeling of rapid solidification processing. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Gutierrez-Miravete, E.

    1986-01-01

    The detailed formulation of and the results obtained from a continuum mechanics-based mathematical model of the planar flow melt spinning (PFMS) rapid solidification system are presented and discussed. The numerical algorithm proposed is capable of computing the cooling and freezing rates as well as the fluid flow and capillary phenomena which take place inside the molten puddle formed in the PFMS process. The FORTRAN listings of some of the most useful computer programs and a collection of appendices describing the basic equations used for the modeling are included.

  15. Mariner Mars 1971 television picture catalog. Volume 1: Experiment design and picture data

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1974-01-01

    A compilation of Mariner 9 television data is presented for the study of the planet Mars and of its two satellites, Phobos and Deimos. The concept of the basic mission, camera characteristics, and various processing techniques of the raw television data recovered from the spacecraft are discussed. Data are arranged into the following disciplines; (1) mapping and geology, (2) polar studies, (3) geodesy, (4) variable surface features, (5) atmospheric phenomena, and (6) satellites. Reproduction and arrangements of approximately 3000 individual pictures and photomosaics are provided.

  16. Study on law of negative corona discharge in microparticle-air two-phase flow media

    NASA Astrophysics Data System (ADS)

    He, Bo; Li, Tianwei; Xiu, Yaping; Zhao, Heng; Peng, Zongren; Meng, Yongpeng

    2016-03-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity) measurements and ultraviolet observations.

  17. Spin manipulation with magnetic semiconductor barriers.

    PubMed

    Miao, Guo-Xing; Moodera, Jagadeesh S

    2015-01-14

    Magnetic semiconductors are a class of materials with special spin-filtering capabilities with magnetically tunable energy gaps. Many of these materials also possess another intrinsic property: indirect exchange interaction between the localized magnetic moments and the adjacent free electrons, which manifests as an extremely large effective magnetic field applying only on the spin degrees of freedom of the free electrons. Novel device concepts can be created by taking advantage of these properties. We discuss in the article the basic principles of these phenomena, and potential ways of applying them in constructing spintronic devices.

  18. 3D Feature Extraction for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Silver, Deborah

    1996-01-01

    Visualization techniques provide tools that help scientists identify observed phenomena in scientific simulation. To be useful, these tools must allow the user to extract regions, classify and visualize them, abstract them for simplified representations, and track their evolution. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This article explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and those from Finite Element Analysis.

  19. Prediction and Repetition in Quantum Mechanics: The EPR Experiment and Quantum Probability

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2007-02-01

    The article considers the implications of the experiment of A. Einstein, B. Podolsky, and N. Rosen (EPR), and of the exchange (concerning this experiment) between EPR and Bohr concerning the incompleteness, or else nonlocality, of quantum mechanics for our understanding of quantum phenomena and quantum probability. The article specifically argues that in the case of quantum phenomena, including those involved in the experiments of the EPR type, the probabilistic considerations are important even when the predictions concerned can be made with certainty, due to the impossibility, in general, to repeat any given quantum experiment with the same outcome. The article argue that this fact, not properly considered or taken into account by EPR, makes it difficult and ultimately impossible to sustain their argument, which it is consistent with Bohr's counterargument to EPR and with his view of quantum phenomena and quantum mechanics.

  20. Autoscopic phenomena and one's own body representation in dreams.

    PubMed

    Occhionero, Miranda; Cicogna, Piera Carla

    2011-12-01

    Autoscopic phenomena (AP) are complex experiences that include the visual illusory reduplication of one's own body. From a phenomenological point of view, we can distinguish three conditions: autoscopic hallucinations, heautoscopy, and out-of-body experiences. The dysfunctional pattern involves multisensory disintegration of personal and extrapersonal space perception. The etiology, generally either neurological or psychiatric, is different. Also, the hallucination of Self and own body image is present during dreams and differs according to sleep stage. Specifically, the representation of the Self in REM dreams is frequently similar to the perception of Self in wakefulness, whereas in NREM dreams, a greater polymorphism of Self and own body representation is observed. The parallels between autoscopic phenomena in pathological cases and the Self-hallucination in dreams will be discussed to further the understanding of the particular states of self awareness, especially the complex integration of different memory sources in Self and body representation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Searching for Electrical Properties, Phenomena and Mechanisms in the Construction and Function of Chromosomes

    PubMed Central

    Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren

    2013-01-01

    Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715

  2. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  3. Toxicogenomics and clinical toxicology: an example of the connection between basic and applied sciences.

    PubMed

    Ferrer-Dufol, Ana; Menao-Guillen, Sebastian

    2009-04-10

    The relationship between basic research and its potential clinical applications is often a difficult subject. Clinical toxicology has always been very dependent on experimental research whose usefulness has been impaired by the existence of huge differences in the toxicity expression of different substances, inter- and intra-species which make it difficult to predict clinical effects in humans. The new methods in molecular biology developed in the last decades are furnishing very useful tools to study some of the more relevant molecules implied in toxicokinetic and toxicodynamic processes. We aim to show some meaningful examples of how recent research developments with genes and proteins have clear applications to understand significant clinical matters, such as inter-individual variations in susceptibility to chemicals, and other phenomena related to the way some substances act to induce variations in the expression and functionality of these targets.

  4. A Thermodynamically General Theory for Convective Circulations and Vortices

    NASA Astrophysics Data System (ADS)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  5. In search of the saddiq: visitational dreams among Moroccan Jews in Israel.

    PubMed

    Bilu, Y; Abramovitch, H

    1985-02-01

    Folk veneration of saints (hagiolatry) plays a major role in the lives of many Moroccan Jews living in Israel and constitutes a basic ingredient of their distinctive ethnic identity. In this context, pilgrimages to the saint's tomb and visitational dreams, in which he appears in person or in some symbolic guise, are related phenomena through which the linkage to the saint is maintained and his blessing is granted to his adherents. This paper is concerned with visitational dreams collected among Moroccan Jews in a major pilgrimage center in northern Israel. An attempt is made to show how personal concerns of the dreamers are mediated through the culturally shared idiom of the saint. We discuss the basic structure of visitational dreams, the major life problems conveyed by them (drawing on illustrations from the dream collection), their therapeutic qualities and their significance in the framework of the pilgrimage to the saint's sanctuary.

  6. Thermodynamics and Diffusion Coupling in Alloys—Application-Driven Science

    NASA Astrophysics Data System (ADS)

    Ågren, John

    2012-10-01

    As emphasized by Stokes (1997), the common assumption of a linear progression from basic research (science), via applied research, to technological innovations (engineering) should be questioned. In fact, society would gain much by supporting long-term research that stems from practical problems and has usefulness as a key word. Such research may be fundamental, and often, it cannot be distinguished from "basic" research if it were not for its different motivation. The development of the Calphad method and the more recent development of accompanying kinetic approaches for diffusion serve as excellent examples and are the themes of this symposium. The drivers are, e.g., the development of new materials, processes, and lifetime predictions. Many challenges of the utmost practical importance require long-term fundamental research. This presentation will address some of them, e.g., the effect of various ordering phenomena on activation barriers, and the strength and practical importance of correlation effects.

  7. Astronomy: social background of students of the integrated high school

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Barbosa, J. I. L.

    2017-07-01

    Astronomy-related contents exist in almost all levels of basic education in Brazil and are also frequently disseminated through mass media. Thus, students form their own explanations about the phenomena studied by this science. Therefore, this work has the objective of identifying the possible social background of the Integrated High School students on the term Astronomy. It is a research of a basic nature, descriptive, and for that reason a quali-quantitative approach was adopted; the procedures to obtain the data were effected in the form of a survey. The results show that the tested students have a social background about the object Astronomy, which is on the one hand fortified by elements they have made or which is part of the experience lived by the respondents within the formal space of education, and on the other hand based on elements possibly disseminated through the mass media.

  8. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective

    PubMed Central

    Ginsburg, Isaac; van Heerden, Peter Vernon; Koren, Erez

    2017-01-01

    This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders PMID:28203100

  9. Influence of Additives on Masonry and Protective Paints’ Quality

    NASA Astrophysics Data System (ADS)

    Kostiunina, I. L.; Vyboishchik, A. V.

    2017-11-01

    The environment is one of main factors influencing the living conditions of urban population in Russia nowadays. One of the main drawbacks restraining the aesthetic improvement process of modern Russian cities is unsatisfactory protection of buildings from atmospheric phenomena. Moreover, industrial waste in modern industrial cities of Russia prevents a long-lasting decoration of urban buildings. The article presents an overview of the composition and physical properties of masonry paints applied in the Chelyabinsk region. The traditional technology of coatings obtaining is studied, the drawbacks of this technology are examined, the new materials and applications are offered. The influence of additives on the basic properties of masonry paints, viz. weather resistance, viscosity, hardness, cost, is considered. The application of new technologies utilizing industrial waste can solve the abovestated problem, which also, along with improving basic physical and chemical properties, will result in the cost reduction and the increase of the masonry paints hardness.

  10. Radio techniques for probing the terrestrial ionosphere.

    NASA Astrophysics Data System (ADS)

    Hunsucker, R. D.

    The subject of the book is a description of the basic principles of operation, plus the capabilities and limitations of all generic radio techniques employed to investigate the terrestrial ionosphere. The purpose of this book is to present to the reader a balanced treatment of each technique so they can understand how to interpret ionospheric data and decide which techniques are most effective for studying specific phenomena. The first two chapters outline the basic theory underlying the techniques, and each following chapter discusses a separate technique. This monograph is entirely devoted to techniques in aeronomy and space physics. The approach is unique in its presentation of the principles, capabilities and limitations of the most important presently used radio techniques. Typical examples of data are shown for the various techniques, and a brief historical account of the technique development is presented. An extended annotated bibliography of the salient papers in the field is included.

  11. Biofluid mechanics of special organs and the issue of system control. Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008 Pasadena, California.

    PubMed

    Zamir, Mair; Moore, James E; Fujioka, Hideki; Gaver, Donald P

    2010-03-01

    In the field of fluid flow within the human body, focus has been placed on the transportation of blood in the systemic circulation since the discovery of that system; but, other fluids and fluid flow phenomena pervade the body. Some of the most fascinating fluid flow phenomena within the human body involve fluids other than blood and a service other than transport--the lymphatic and pulmonary systems are two striking examples. While transport is still involved in both cases, this is not the only service which they provide and blood is not the only fluid involved. In both systems, filtration, extraction, enrichment, and in general some "treatment" of the fluid itself is the primary function. The study of the systemic circulation has also been conventionally limited to treating the system as if it were an open-loop system governed by the laws of fluid mechanics alone, independent of physiological controls and regulations. This implies that system failures can be explained fully in terms of the laws of fluid mechanics, which of course is not the case. In this paper we examine the clinical implications of these issues and of the special biofluid mechanics issues involved in the lymphatic and pulmonary systems.

  12. High school students' understanding and problem solving in population genetics

    NASA Astrophysics Data System (ADS)

    Soderberg, Patti D.

    This study is an investigation of student understanding of population genetics and how students developed, used and revised conceptual models to solve problems. The students in this study participated in three rounds of problem solving. The first round involved the use of a population genetics model to predict the number of carriers in a population. The second round required them to revise their model of simple dominance population genetics to make inferences about populations containing three phenotype variations. The third round of problem solving required the students to revise their model of population genetics to explain anomalous data where the proportions of males and females with a trait varied significantly. As the students solved problems, they were involved in basic scientific processes as they observed population phenomena, constructed explanatory models to explain the data they observed, and attempted to persuade their peers as to the adequacy of their models. In this study, the students produced new knowledge about the genetics of a trait in a population through the revision and use of explanatory population genetics models using reasoning that was similar to what scientists do. The students learned, used and revised a model of Hardy-Weinberg equilibrium to generate and test hypotheses about the genetics of phenotypes given only population data. Students were also interviewed prior to and following instruction. This study suggests that a commonly held intuitive belief about the predominance of a dominant variation in populations is resistant to change, despite instruction and interferes with a student's ability to understand Hardy-Weinberg equilibrium and microevolution.

  13. Teaching Quantum Mechanics on an Introductory Level.

    ERIC Educational Resources Information Center

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  14. Population Modelling with M&M's[R

    ERIC Educational Resources Information Center

    Winkel, Brian

    2009-01-01

    Several activities in which population dynamics can be modelled by tossing M&M's[R] candy are presented. Physical activities involving M&M's[R] can be modelled by difference equations and several population phenomena, including death and immigration, are studied. (Contains 1 note.)

  15. Can Science Test Supernatural Worldviews?

    ERIC Educational Resources Information Center

    Fishman, Yonatan I.

    2009-01-01

    Several prominent scientists, philosophers, and scientific institutions have argued that science cannot test supernatural worldviews on the grounds that (1) science presupposes a naturalistic worldview (Naturalism) or that (2) claims involving supernatural phenomena are inherently beyond the scope of scientific investigation. The present paper…

  16. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  17. Representing vision and blindness.

    PubMed

    Ray, Patrick L; Cox, Alexander P; Jensen, Mark; Allen, Travis; Duncan, William; Diehl, Alexander D

    2016-01-01

    There have been relatively few attempts to represent vision or blindness ontologically. This is unsurprising as the related phenomena of sight and blindness are difficult to represent ontologically for a variety of reasons. Blindness has escaped ontological capture at least in part because: blindness or the employment of the term 'blindness' seems to vary from context to context, blindness can present in a myriad of types and degrees, and there is no precedent for representing complex phenomena such as blindness. We explore current attempts to represent vision or blindness, and show how these attempts fail at representing subtypes of blindness (viz., color blindness, flash blindness, and inattentional blindness). We examine the results found through a review of current attempts and identify where they have failed. By analyzing our test cases of different types of blindness along with the strengths and weaknesses of previous attempts, we have identified the general features of blindness and vision. We propose an ontological solution to represent vision and blindness, which capitalizes on resources afforded to one who utilizes the Basic Formal Ontology as an upper-level ontology. The solution we propose here involves specifying the trigger conditions of a disposition as well as the processes that realize that disposition. Once these are specified we can characterize vision as a function that is realized by certain (in this case) biological processes under a range of triggering conditions. When the range of conditions under which the processes can be realized are reduced beyond a certain threshold, we are able to say that blindness is present. We characterize vision as a function that is realized as a seeing process and blindness as a reduction in the conditions under which the sight function is realized. This solution is desirable because it leverages current features of a major upper-level ontology, accurately captures the phenomenon of blindness, and can be implemented in many domain-specific ontologies.

  18. The Development of Clinical Reasoning Skills: A Major Objective of the Anatomy Course

    ERIC Educational Resources Information Center

    Elizondo-Omana, Rodrigo E.; Lopez, Santos Guzman

    2008-01-01

    Traditional medical school curricula have made a clear demarcation between the basic biomedical sciences and the clinical years. It is our view that a comprehensive medical education necessarily involves an increased correlation between basic science knowledge and its clinical applications. A basic anatomy course should have two main objectives:…

  19. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.

    PubMed

    Sekito, Takayuki; Chardwiriyapreecha, Soracom; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2014-01-01

    Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.

  20. Distinct pathways of neural coupling for different basic emotions.

    PubMed

    Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela

    2012-01-16

    Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.

  1. Vba2p, a vacuolar membrane protein involved in basic amino acid transport in Schizosaccharomyces pombe.

    PubMed

    Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi

    2010-01-01

    A recent study filling the gap in the genome sequence in the left arm of chromosome 2 of Schizosaccharomyces pombe revealed a homolog of budding yeast Vba2p, a vacuolar transporter of basic amino acids. GFP-tagged Vba2p in fission yeast was localized to the vacuolar membrane. Upon disruption of vba2, the uptake of several amino acids, including lysine, histidine, and arginine, was impaired. A transient increase in lysine uptake under nitrogen starvation was lowered by this mutation. These findings suggest that Vba2p is involved in basic amino acid transport in S. pombe under diverse conditions.

  2. Optical-thermal light-tissue interactions during photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Gould, Taylor; Wang, Quanzeng; Pfefer, T. Joshua

    2014-03-01

    Photoacoustic imaging (PAI) has grown rapidly as a biomedical imaging technique in recent years, with key applications in cancer diagnosis and oximetry. In spite of these advances, the literature provides little insight into thermal tissue interactions involved in PAI. To elucidate these basic phenomena, we have developed, validated, and implemented a three-dimensional numerical model of tissue photothermal (PT) response to repetitive laser pulses. The model calculates energy deposition, fluence distributions, transient temperature and damage profiles in breast tissue with blood vessels and generalized perfusion. A parametric evaluation of these outputs vs. vessel diameter and depth, optical beam diameter, wavelength, and irradiance, was performed. For a constant radiant exposure level, increasing beam diameter led to a significant increase in subsurface heat generation rate. Increasing vessel diameter resulted in two competing effects - reduced mean energy deposition in the vessel due to light attenuation and greater thermal superpositioning due to reduced thermal relaxation. Maximum temperatures occurred either at the surface or in subsurface regions of the dermis, depending on vessel geometry and position. Results are discussed in terms of established exposure limits and levels used in prior studies. While additional experimental and numerical study is needed, numerical modeling represents a powerful tool for elucidating the effect of PA imaging devices on biological tissue.

  3. Information physics fundamentals of nanophotonics.

    PubMed

    Naruse, Makoto; Tate, Naoya; Aono, Masashi; Ohtsu, Motoichi

    2013-05-01

    Nanophotonics has been extensively studied with the aim of unveiling and exploiting light-matter interactions that occur at a scale below the diffraction limit of light, and recent progress made in experimental technologies--both in nanomaterial fabrication and characterization--is driving further advancements in the field. From the viewpoint of information, on the other hand, novel architectures, design and analysis principles, and even novel computing paradigms should be considered so that we can fully benefit from the potential of nanophotonics. This paper examines the information physics aspects of nanophotonics. More specifically, we present some fundamental and emergent information properties that stem from optical excitation transfer mediated by optical near-field interactions and the hierarchical properties inherent in optical near-fields. We theoretically and experimentally investigate aspects such as unidirectional signal transfer, energy efficiency and networking effects, among others, and we present their basic theoretical formalisms and describe demonstrations of practical applications. A stochastic analysis of light-assisted material formation is also presented, where an information-based approach provides a deeper understanding of the phenomena involved, such as self-organization. Furthermore, the spatio-temporal dynamics of optical excitation transfer and its inherent stochastic attributes are utilized for solution searching, paving the way to a novel computing paradigm that exploits coherent and dissipative processes in nanophotonics.

  4. Similarity relations in visual search predict rapid visual categorization

    PubMed Central

    Mohan, Krithika; Arun, S. P.

    2012-01-01

    How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized that categorization performance is based on perceived similarity relations between items within and outside the category. To this end, we measured the categorization performance of human subjects on three diverse visual categories (animals, vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task. Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using its similarity to members within and outside its category. We were able to account for several classic categorization phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation. PMID:23092947

  5. Analytical study of the performance of a geomembrane leak detection system.

    PubMed

    Lugli, Francesco; Mahler, Claudio Fernando

    2016-05-01

    The electrical detection of leaks in geomembranes is a method that allows identifying leakage of contaminants in lined facilities (e.g. sanitary landfills, pollutant ponds, etc.). The procedure in the field involves placing electrodes above and below the geomembrane, to generate an electrical current, which in turn engenders an electric potential distribution in the protective layer (generally a clayey soil). The electric potential will be greater in areas with higher current density, i.e. near leaks. In this study, we combined models from the literature to carry out a parametric analysis to identify the variables that most influence the amplitude of the electrical signals produced by leaks. The basic hypothesis is that the electrical conduction phenomena in a liner system could be depicted by a direct current circuit. After determining the value of the current at the leak, we calculated the electric potential distribution according to the model of Darilek and Laine. This enabled analysing the sensitivity of the parameters, which can be useful in the design of landfills and facilitate the location of leaks. This study showed that geomembranes with low electrical resistance (owing to low thickness, low resistivity, or extensive area) can hinder the leak detection process. In contrast, low thickness and high resistivity of the protection layer magnify the leak signal. © The Author(s) 2016.

  6. High intensity positron source at HFR: Basic concept, scoring and design optimisation

    NASA Astrophysics Data System (ADS)

    Zeman, A.; Tuček, K.; Debarberis, L.; Hogenbirk, A.

    2012-01-01

    Recent applications of positron beam techniques in various fields of research have led to an increasing demand for high intensity positron sources required for advanced applications, particularly in materials science. Considerable efforts are being made worldwide to design and set-up high intensity positron sources and beam systems that are based on several principles. Such positron sources could be used in fundamental and applied research experiments, as well as in industrial applications, especially in the field of condensed matter characterisation at the nanometre scale. Phenomena involving positrons are also important in other applied science fields such as medicine, biology, physics, energy, etc. However, such studies are often limited due to the relative lack of suitable positron sources. Results from the recently completed Exploratory Research Project called "HIPOS" are discussed in this paper, which describes the principles behind such a powerful very high intensity positron beam experimental facility that is based on a reactor source. Details of a proposed concept that uses nuclear reactions [(n, γ) and (γ, pair)] within a designed positron generator at the High Flux Reactor (HFR) in Petten are also discussed. The HIPOS source has been designed to produce slow positrons with intensity of the order of 10 10 e +/s.

  7. Numerical simulations of Richtmyer{endash}Meshkov instabilities in finite-thickness fluid layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikaelian, K.O.

    1996-05-01

    Direct numerical simulations of Richtmyer{endash}Meshkov instabilities in shocked fluid layers are reported and compared with analytic theory. To investigate new phenomena such as freeze-out, interface coupling, and feedthrough, several new configurations are simulated on a two-dimensional hydrocode. The basic system is an {ital A}/{ital B}/{ital A} combination, where {ital A} is air and {ital B} is a finite-thickness layer of freon, SF{sub 6}, or helium. The middle layer {ital B} has perturbations either on its upstream or downstream side, or on both sides, in which case the perturbations may be in phase (sinuous) or out of phase (varicose). The evolutionmore » of such perturbations under a Mach 1.5 shock is calculated, including the effect of a reshock. Recently reported gas curtain experiments [J. M. Budzinski {ital et} {ital al}., Phys. Fluids {bold 6}, 3510 (1994)] are also simulated and the code results are found to agree very well with the experiments. A new gas curtain configuration is also considered, involving an initially sinuous SF{sub 6} or helium layer and a new pattern, opposite mushrooms, is predicted to emerge. Upon reshock a relatively simple sinuous gas curtain is found to evolve into a highly complex pattern of nested mushrooms. {copyright} {ital 1996 American Institute of Physics.}« less

  8. An encounter between 4e cognition and attachment theory

    NASA Astrophysics Data System (ADS)

    Petters, Dean

    2016-10-01

    This paper explores a constructive revision of the conceptual underpinnings of Attachment Theory through an encounter with the diverse elements of 4e cognition. Attachment relationships involve the development of preference for one or a few carers and expectations about their availability and responsiveness as a haven of safety and a base from which to explore. In attachment theory, mental representations have been assigned a central organising role in explaining attachment phenomena. The 4e cognition approaches in cognitive science raise a number of questions about the development and interplay of attachment and cognition. These include: (1) the nature of what Bowlby called 'internal working models of attachment'; (2) the extent to which the infant-carer dyad functions as an extension of the infant's mind; and (3) whether Bowlby's attachment control system concept can be usefully re-framed in enactive terms where traditional cognitivist representations are: (3i) substituted for sensorimotor skill-focused mediating representations; (3ii) viewed as arising from autopoietic living organisms; and/or (3iii) mostly composed from the non-contentful mechanisms of basic minds? A theme that cross-cuts these research questions is how representations for capturing meaning, and structures for adaptive control, are both required to explain the full range of behaviour of interest to Attachment Theory researchers.

  9. Slow and fast dynamics model of a Malaria with Sickle-Cell genetic disease with multi-stage infections of the mosquitoes population

    NASA Astrophysics Data System (ADS)

    Dewi Siawanta, Shanti; Adi-Kusumo, Fajar; Irwan Endrayanto, Aluicius

    2018-03-01

    Malaria, which is caused by Plasmodium, is a common disease in tropical areas. There are three types of Plasmodium i.e. Plasmodium Vivax, Plasmodium Malariae, and Plasmodium Falciparum. The most dangerous cases of the Malaria are mainly caused by the Plasmodium Falciparum. One of the important characteristics for the Plasmodium infection is due to the immunity of erythrocyte that contains HbS (Haemoglobin Sickle-cell) genes. The individuals who has the HbS gene has better immunity against the disease. In this paper, we consider a model that shows the spread of malaria involving the interaction between the mosquitos population, the human who has HbS genes population and the human with normal gene population. We do some analytical and numerical simulation to study the basic reproduction ratio and the slow-fast dynamics of the phase-portrait. The slow dynamics in our model represents the response of the human population with HbS gene to the Malaria disease while the fast dynamics show the response of the human population with the normal gene to the disease. The slow and fast dynamics phenomena are due to the fact that the population of the individuals who have HbS gene is much smaller than the individuals who has normal genes.

  10. Geoethical issues in long-term assessment of geohazards and related mitigation policies

    NASA Astrophysics Data System (ADS)

    Tinti, Stefano; Armigliato, Alberto

    2015-04-01

    Long-term assessment of large-impact and relatively (or very) infrequent geohazards like earthquakes, tsunamis and volcanic eruptions is nowadays a common practice for geoscientists and many groups have been and are involved in producing global and regional hazard maps in response of an increasing demand of the society. Though the societal needs are the basic motivations for such studies, often this aspect is not pondered enough and a lack of communication between geoscientists and the society might be a serious limit to the effective exploitation of the hazard assessment products and to the development of adequate mitigation policies. This paper is an analysis of the role of geoscientists in the process of the production of long-term assessments of dangerous natural phenomena (such as mapping of seismic, tsunami and volcanic hazards), with special emphasis given to the role of communicators and disseminators (with respect to the general public, to authorities, to restricted specialized audiences…), but also of providers of active support to the planners who should be given key elements for making decision. Geoethics imposes geoscientists to take clear and full responsibilities on the products resulting from their assessments, but also to be aware that these products are valuable insofar they are scientifically sound, known, understandable, and utilizable by a wide universe of users.

  11. The Physics of Life: A Biophysics Course for Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2014-03-01

    Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.

  12. On the quantum mechanics of consciousness, with application to anomalous phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahn, R.G.; Dunne, B.J.

    1986-08-01

    Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts andmore » formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrodinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition.« less

  13. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  14. The quantum epoché.

    PubMed

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.

  15. Probing Cosmic Infrared Sources: A Computer Modeling Approach

    DTIC Science & Technology

    1992-06-01

    developed to study various physical phenomena involving dust grains, e.g., molecule formation on grains, grain formation in expanding circumstellar...EVALUATION OF METHODS OF ANALYSIS IN INFRARED ASTR9?NOMY 16 4.0 THEORETICAL STUDIES INVOLVING DUST GRAINS., 16 4.1 Theory of Molecule Formation on Dust Grains...17 4.2 Modeling Grain Formation in Stellar Outflows 7 18 4.3 Infrared Emission from Fractal Grains * 19 4.4 Photochemistry in Circumstellar Envelopes

  16. Prevention of Hydrogeological Risk: The Time and Space Distribution of Catastrophic Events In A Selected Coastal Area of The Campanian Region, Italy.

    NASA Astrophysics Data System (ADS)

    Esposito, E.; Porfido, S.; Violante, C.; Alaia, F.

    Hydrogeological phenomena induced by rainstorm events occurring along a narrow coastal area of about 20 km, that lies between Amalfi and Salerno (Salerno Gulf), have been studied in detail. Several case histories have been reconstructed, since the XIX century, through the analysis of a wide variety of published and unpublished histor- ical and current sources, including scientific papers, archival and library documents, newspapers, state documents and available technical notes. The area develops on a uplifted region, with high gradient fluvial paths which account for the low stability of recent pyroclastic covers, related to the Somma-Vesuvio activity. The detachment of volcanic deposits is also favored by their different permeability. This study lead us to recognize at least twenty flooding phenomena of different magnitude. Among these, four particular events occurred in conjunction with exceptional daily rainfall intensity (up to 500 mm). In all cases the area involved was sufficiently large to hit numer- ous small historical villages. The rainstorms triggered several landslides, remarkable debris flows and overflowing which caused the loss of hundreds of human life and se- vere damage to the economic, social and infrastructural reality. Three flooding events followed in 25 years occurred over a relatively short time space. The first occurred on 7 October 1899, after 12-18 hours of heavy rainfall producing great damages in about twenty villages, distributed along the coast and inner areas. Eightyseven were the victims and hundreds the injuries. On 24-25 October 1910, a rainfall event lasting 35 hours induced the flooding that hit most of the coastal area between Salerno and Ravello (SA). About 400 buildings were completely destroyed, 200 were the dead and hundreds the injuries. Large landslides occurred in the villages of Cetara (SA) and Amalfi (SA). On 26 March 1924 after a heavy rainfall, sliding phenomena involving large volumes of material, occurred at Amalfi (SA) and Atrani (SA). Rock falls and de- bris flows were the most frequently observed phenomena throughout the investigated area. An extraordinary rainstorm on 25-26 October 1954 caused a great flood disaster. The thunderstorm gave way to 500 mm of rain in about 14 hours time. Three hundred and sixteen were the victims thousands the injuries, hundreds of buildings were com- pletely destroyed and many roads and railways were heavily damaged. Many sliding 1 phenomena involving different volumes were induced, ephemeral prograding shores were observed along the coast at river mouths. 2

  17. DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines

    NASA Technical Reports Server (NTRS)

    vonTerzi, Dominic; Bauer, H.-J.

    2010-01-01

    DNS is a powerful tool with high potential for investigating unsteady heat transfer and fluid flow phenomena, in particular for cases involving transition to turbulence and/or large coherent structures. - DNS of idealized configurations related to turbomachinery components is already possible. - For more realistic configurations and the inclusion of more effects, reduction of computational cost is key issue (e.g., hybrid methods). - Approach pursued here: Embedded DNS ( segregated coupling of DNS with LES and/or RANS). - Embedded DNS is an enabling technology for many studies. - Pre-transitional heat transfer and trailing-edge cutback film-cooling are good candidates for (embedded) DNS studies.

  18. How a (sub)Cellular Coincidence Detection Mechanism Featuring Layer-5 Pyramidal Cells May Help Produce Various Visual Phenomena.

    PubMed

    Bachmann, Talis

    2015-01-01

    Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive) processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here, a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of the sub-second temporal scale.

  19. [Pre- and post-conditioning phenomena: the protective physiological mechanisms in the aspect of pathogenesis and the theory of treatment of ENT pathology].

    PubMed

    Zhuravskiĭ, S G; Galagudza, M M; Ivanov, S A

    2013-01-01

    The objective of the present work was to expose the universal general biological significance of the protective pre- and postconditioning phenomena and to provide an insight into the possibility of application of therapeutic modalities based on these effects in current otorhinolaryngological practice. Pre- and postconditioning phenomena (Pre-C and Post-C respectively) began to be studied as protective physiological mechanisms since the 1980s, first in cardiology and thereafter in other fields of experimental medicine. At the same time, their protective properties had been known and intuitively used much earlier among the established human cultural and social stereotypes, psychophysical training techniques, and methods of traditional and empirical medicine. The widespread application of these phenomena gives evidence of their universal biological nature as factors involved in the interactions between the organism and pathogens (including co-morbidity), the process leading to the enhancement of non-specific resistance, mechanisms underlying realization of pharmacodynamic effects of a number of pharmaceutical products,etc. The understanding of the protective potential of PreC and PostC dictates the necessity to revise and further elaborate the present-day strategy of prophylaxis and treatment of the most serious chronic ENT diseases.

  20. Evidence of central cholinergic mechanisms in the appearance of affective aggressive behaviour: dissociation of aggression from autonomic and motor phenomena.

    PubMed

    Beleslin, D B; Samardzić, R

    1979-04-11

    Carbachol, muscarine, eserine and neostigmine injected into the cerebral ventricles of conscious cats evoked emotional behaviour with aggression, autonomic and motor phenomena as well as clonic-tonic convulsions. The main and the most impressive feature of the gross behavioural effects of intraventricular carbachol, muscarine, eserine and neostigmine in conscious cats was the affective type of aggression. However, neostigmine produced aggressive behaviour only in about one-quarter of the experiments. After intraventricular hemicholinium-3 and triethylcholine carbachol, muscarine, eserine and neostigmine elicited autonomic and motor phenomena. In these cats cholinomimetics and anticholinesterases evoked only slight hissing and snarling. Choline administered into the cerebral ventricles of hemicholinium-3 and triethylcholine-treated cats restored the emotional behaviour with aggression, autonomic and motor phenomena as well as clonic-tonic convulsions to intraventricular carbachol, muscarine, eserine and neostigmine. The restored gross behavioural changes to eserine were almost of the same intensity, while those to carbachol and muscarine were of lesser intensity than in control cats. From these experiments it is concluded that cholinergic neurones are involved in the appearance of the affective type of aggression resulting from intraventricular carbachol, muscarine, eserine and neostigmine.

Top